comparison src/buffer.h @ 428:3ecd8885ac67 r21-2-22

Import from CVS: tag r21-2-22
author cvs
date Mon, 13 Aug 2007 11:28:15 +0200
parents
children 9d177e8d4150
comparison
equal deleted inserted replaced
427:0a0253eac470 428:3ecd8885ac67
1 /* Header file for the buffer manipulation primitives.
2 Copyright (C) 1985, 1986, 1992, 1993, 1994, 1995
3 Free Software Foundation, Inc.
4 Copyright (C) 1995 Sun Microsystems, Inc.
5
6 This file is part of XEmacs.
7
8 XEmacs is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by the
10 Free Software Foundation; either version 2, or (at your option) any
11 later version.
12
13 XEmacs is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with XEmacs; see the file COPYING. If not, write to
20 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /* Synched up with: FSF 19.30. */
24
25 /* Authorship:
26
27 FSF: long ago.
28 JWZ: separated out bufslots.h, early in Lemacs.
29 Ben Wing: almost completely rewritten for Mule, 19.12.
30 */
31
32 #ifndef _XEMACS_BUFFER_H_
33 #define _XEMACS_BUFFER_H_
34
35 #ifdef MULE
36 #include "mule-charset.h"
37 #endif
38
39 /************************************************************************/
40 /* */
41 /* definition of Lisp buffer object */
42 /* */
43 /************************************************************************/
44
45 /* Note: we keep both Bytind and Bufpos versions of some of the
46 important buffer positions because they are accessed so much.
47 If we didn't do this, we would constantly be invalidating the
48 bufpos<->bytind cache under Mule.
49
50 Note that under non-Mule, both versions will always be the
51 same so we don't really need to keep track of them. But it
52 simplifies the logic to go ahead and do so all the time and
53 the memory loss is insignificant. */
54
55 /* Formerly, it didn't much matter what went inside the struct buffer_text
56 and what went outside it. Now it does, with the advent of "indirect
57 buffers" that share text with another buffer. An indirect buffer
58 shares the same *text* as another buffer, but has its own buffer-local
59 variables, its own accessible region, and its own markers and extents.
60 (Due to the nature of markers, it doesn't actually matter much whether
61 we stick them inside or out of the struct buffer_text -- the user won't
62 notice any difference -- but we go ahead and put them outside for
63 consistency and overall saneness of algorithm.)
64
65 FSFmacs gets away with not maintaining any "children" pointers from
66 a buffer to the indirect buffers that refer to it by putting the
67 markers inside of the struct buffer_text, using markers to keep track
68 of BEGV and ZV in indirect buffers, and relying on the fact that
69 all intervals (text properties and overlays) use markers for their
70 start and end points. We don't do this for extents (markers are
71 inefficient anyway and take up space), so we have to maintain
72 children pointers. This is not terribly hard, though, and the
73 code to maintain this is just like the code already present in
74 extent-parent and extent-children.
75 */
76
77 struct buffer_text
78 {
79 Bufbyte *beg; /* Actual address of buffer contents. */
80 Bytind gpt; /* Index of gap in buffer. */
81 Bytind z; /* Index of end of buffer. */
82 Bufpos bufz; /* Equivalent as a Bufpos. */
83 int gap_size; /* Size of buffer's gap */
84 int end_gap_size; /* Size of buffer's end gap */
85 long modiff; /* This counts buffer-modification events
86 for this buffer. It is incremented for
87 each such event, and never otherwise
88 changed. */
89 long save_modiff; /* Previous value of modiff, as of last
90 time buffer visited or saved a file. */
91
92 #ifdef MULE
93 /* We keep track of a "known" region for very fast access.
94 This information is text-only so it goes here. */
95 Bufpos mule_bufmin, mule_bufmax;
96 Bytind mule_bytmin, mule_bytmax;
97 int mule_shifter, mule_three_p;
98
99 /* And we also cache 16 positions for fairly fast access near those
100 positions. */
101 Bufpos mule_bufpos_cache[16];
102 Bytind mule_bytind_cache[16];
103 #endif
104
105 /* Similar to the above, we keep track of positions for which line
106 number has last been calculated. See line-number.c. */
107 Lisp_Object line_number_cache;
108
109 /* Change data that goes with the text. */
110 struct buffer_text_change_data *changes;
111
112 };
113
114 struct buffer
115 {
116 struct lcrecord_header header;
117
118 /* This structure holds the coordinates of the buffer contents
119 in ordinary buffers. In indirect buffers, this is not used. */
120 struct buffer_text own_text;
121
122 /* This points to the `struct buffer_text' that is used for this buffer.
123 In an ordinary buffer, this is the own_text field above.
124 In an indirect buffer, this is the own_text field of another buffer. */
125 struct buffer_text *text;
126
127 Bytind pt; /* Position of point in buffer. */
128 Bufpos bufpt; /* Equivalent as a Bufpos. */
129 Bytind begv; /* Index of beginning of accessible range. */
130 Bufpos bufbegv; /* Equivalent as a Bufpos. */
131 Bytind zv; /* Index of end of accessible range. */
132 Bufpos bufzv; /* Equivalent as a Bufpos. */
133
134 int face_change; /* This is set when a change in how the text should
135 be displayed (e.g., font, color) is made. */
136
137 /* change data indicating what portion of the text has changed
138 since the last time this was reset. Used by redisplay.
139 Logically we should keep this with the text structure, but
140 redisplay resets it for each buffer individually and we don't
141 want interference between an indirect buffer and its base
142 buffer. */
143 struct each_buffer_change_data *changes;
144
145 #ifdef REGION_CACHE_NEEDS_WORK
146 /* If the long line scan cache is enabled (i.e. the buffer-local
147 variable cache-long-line-scans is non-nil), newline_cache
148 points to the newline cache, and width_run_cache points to the
149 width run cache.
150
151 The newline cache records which stretches of the buffer are
152 known *not* to contain newlines, so that they can be skipped
153 quickly when we search for newlines.
154
155 The width run cache records which stretches of the buffer are
156 known to contain characters whose widths are all the same. If
157 the width run cache maps a character to a value > 0, that value
158 is the character's width; if it maps a character to zero, we
159 don't know what its width is. This allows compute_motion to
160 process such regions very quickly, using algebra instead of
161 inspecting each character. See also width_table, below. */
162 struct region_cache *newline_cache;
163 struct region_cache *width_run_cache;
164 #endif /* REGION_CACHE_NEEDS_WORK */
165
166 /* The markers that refer to this buffer. This is actually a single
167 marker -- successive elements in its marker `chain' are the other
168 markers referring to this buffer */
169 struct Lisp_Marker *markers;
170
171 /* The buffer's extent info. This is its own type, an extent-info
172 object (done this way for ease in marking / finalizing). */
173 Lisp_Object extent_info;
174
175 /* ----------------------------------------------------------------- */
176 /* All the stuff above this line is the responsibility of insdel.c,
177 with some help from marker.c and extents.c.
178 All the stuff below this line is the responsibility of buffer.c. */
179
180 /* In an indirect buffer, this points to the base buffer.
181 In an ordinary buffer, it is 0.
182 We DO mark through this slot. */
183 struct buffer *base_buffer;
184
185 /* List of indirect buffers whose base is this buffer.
186 If we are an indirect buffer, this will be nil.
187 Do NOT mark through this. */
188 Lisp_Object indirect_children;
189
190 /* Flags saying which DEFVAR_PER_BUFFER variables
191 are local to this buffer. */
192 int local_var_flags;
193
194 /* Set to the modtime of the visited file when read or written.
195 -1 means visited file was nonexistent.
196 0 means visited file modtime unknown; in no case complain
197 about any mismatch on next save attempt. */
198 int modtime;
199
200 /* the value of text->modiff at the last auto-save. */
201 int auto_save_modified;
202
203 /* The time at which we detected a failure to auto-save,
204 Or -1 if we didn't have a failure. */
205 int auto_save_failure_time;
206
207 /* Position in buffer at which display started
208 the last time this buffer was displayed. */
209 int last_window_start;
210
211 /* Everything from here down must be a Lisp_Object */
212
213 #define MARKED_SLOT(x) Lisp_Object x
214 #include "bufslots.h"
215 #undef MARKED_SLOT
216 };
217
218 DECLARE_LRECORD (buffer, struct buffer);
219 #define XBUFFER(x) XRECORD (x, buffer, struct buffer)
220 #define XSETBUFFER(x, p) XSETRECORD (x, p, buffer)
221 #define BUFFERP(x) RECORDP (x, buffer)
222 #define CHECK_BUFFER(x) CHECK_RECORD (x, buffer)
223 #define CONCHECK_BUFFER(x) CONCHECK_RECORD (x, buffer)
224
225 #define BUFFER_LIVE_P(b) (!NILP ((b)->name))
226
227 #define CHECK_LIVE_BUFFER(x) do { \
228 CHECK_BUFFER (x); \
229 if (!BUFFER_LIVE_P (XBUFFER (x))) \
230 dead_wrong_type_argument (Qbuffer_live_p, (x)); \
231 } while (0)
232
233 #define CONCHECK_LIVE_BUFFER(x) do { \
234 CONCHECK_BUFFER (x); \
235 if (!BUFFER_LIVE_P (XBUFFER (x))) \
236 x = wrong_type_argument (Qbuffer_live_p, (x)); \
237 } while (0)
238
239
240 #define BUFFER_BASE_BUFFER(b) ((b)->base_buffer ? (b)->base_buffer : (b))
241
242 /* Map over buffers sharing the same text as MPS_BUF. MPS_BUFVAR is a
243 variable that gets the buffer values (beginning with the base
244 buffer, then the children), and MPS_BUFCONS should be a temporary
245 Lisp_Object variable. */
246 #define MAP_INDIRECT_BUFFERS(mps_buf, mps_bufvar, mps_bufcons) \
247 for (mps_bufcons = Qunbound, \
248 mps_bufvar = BUFFER_BASE_BUFFER (mps_buf); \
249 UNBOUNDP (mps_bufcons) ? \
250 (mps_bufcons = mps_bufvar->indirect_children, \
251 1) \
252 : (!NILP (mps_bufcons) \
253 && (mps_bufvar = XBUFFER (XCAR (mps_bufcons)), 1) \
254 && (mps_bufcons = XCDR (mps_bufcons), 1)); \
255 )
256
257
258
259 /************************************************************************/
260 /* */
261 /* working with raw internal-format data */
262 /* */
263 /************************************************************************/
264
265 /* NOTE: In all the following macros, we follow these rules concerning
266 multiple evaluation of the arguments:
267
268 1) Anything that's an lvalue can be evaluated more than once.
269 2) Anything that's a Lisp Object can be evaluated more than once.
270 This should probably be changed, but this follows the way
271 that all the macros in lisp.h do things.
272 3) 'struct buffer *' arguments can be evaluated more than once.
273 4) Nothing else can be evaluated more than once. Use inline
274 functions, if necessary, to prevent multiple evaluation.
275 5) An exception to (4) is that there are some macros below that
276 may evaluate their arguments more than once. They are all
277 denoted with the word "unsafe" in their name and are generally
278 meant to be called only by other macros that have already
279 stored the calling values in temporary variables.
280
281
282 Use the following functions/macros on contiguous strings of data.
283 If the text you're operating on is known to come from a buffer, use
284 the buffer-level functions below -- they know about the gap and may
285 be more efficient.
286
287
288 (A) For working with charptr's (pointers to internally-formatted text):
289 -----------------------------------------------------------------------
290
291 VALID_CHARPTR_P (ptr):
292 Given a charptr, does it point to the beginning of a character?
293
294 ASSERT_VALID_CHARPTR (ptr):
295 If error-checking is enabled, assert that the given charptr
296 points to the beginning of a character. Otherwise, do nothing.
297
298 INC_CHARPTR (ptr):
299 Given a charptr (assumed to point at the beginning of a character),
300 modify that pointer so it points to the beginning of the next
301 character.
302
303 DEC_CHARPTR (ptr):
304 Given a charptr (assumed to point at the beginning of a
305 character or at the very end of the text), modify that pointer
306 so it points to the beginning of the previous character.
307
308 VALIDATE_CHARPTR_BACKWARD (ptr):
309 Make sure that PTR is pointing to the beginning of a character.
310 If not, back up until this is the case. Note that there are not
311 too many places where it is legitimate to do this sort of thing.
312 It's an error if you're passed an "invalid" char * pointer.
313 NOTE: PTR *must* be pointing to a valid part of the string (i.e.
314 not the very end, unless the string is zero-terminated or
315 something) in order for this function to not cause crashes.
316
317 VALIDATE_CHARPTR_FORWARD (ptr):
318 Make sure that PTR is pointing to the beginning of a character.
319 If not, move forward until this is the case. Note that there
320 are not too many places where it is legitimate to do this sort
321 of thing. It's an error if you're passed an "invalid" char *
322 pointer.
323
324
325 (B) For working with the length (in bytes and characters) of a
326 section of internally-formatted text:
327 --------------------------------------------------------------
328
329 bytecount_to_charcount (ptr, nbi):
330 Given a pointer to a text string and a length in bytes,
331 return the equivalent length in characters.
332
333 charcount_to_bytecount (ptr, nch):
334 Given a pointer to a text string and a length in characters,
335 return the equivalent length in bytes.
336
337 charptr_n_addr (ptr, n):
338 Return a pointer to the beginning of the character offset N
339 (in characters) from PTR.
340
341
342 (C) For retrieving or changing the character pointed to by a charptr:
343 ---------------------------------------------------------------------
344
345 charptr_emchar (ptr):
346 Retrieve the character pointed to by PTR as an Emchar.
347
348 charptr_emchar_n (ptr, n):
349 Retrieve the character at offset N (in characters) from PTR,
350 as an Emchar.
351
352 set_charptr_emchar (ptr, ch):
353 Store the character CH (an Emchar) as internally-formatted
354 text starting at PTR. Return the number of bytes stored.
355
356 charptr_copy_char (ptr, ptr2):
357 Retrieve the character pointed to by PTR and store it as
358 internally-formatted text in PTR2.
359
360
361 (D) For working with Emchars:
362 -----------------------------
363
364 [Note that there are other functions/macros for working with Emchars
365 in mule-charset.h, for retrieving the charset of an Emchar
366 and such. These are only valid when MULE is defined.]
367
368 valid_char_p (ch):
369 Return whether the given Emchar is valid.
370
371 CHARP (ch):
372 Return whether the given Lisp_Object is a character.
373
374 CHECK_CHAR_COERCE_INT (ch):
375 Signal an error if CH is not a valid character or integer Lisp_Object.
376 If CH is an integer Lisp_Object, convert it to a character Lisp_Object,
377 but merely by repackaging, without performing tests for char validity.
378
379 MAX_EMCHAR_LEN:
380 Maximum number of buffer bytes per Emacs character.
381
382 */
383
384
385 /* ---------------------------------------------------------------------- */
386 /* (A) For working with charptr's (pointers to internally-formatted text) */
387 /* ---------------------------------------------------------------------- */
388
389 #ifdef MULE
390 # define VALID_CHARPTR_P(ptr) BUFBYTE_FIRST_BYTE_P (* (unsigned char *) ptr)
391 #else
392 # define VALID_CHARPTR_P(ptr) 1
393 #endif
394
395 #ifdef ERROR_CHECK_BUFPOS
396 # define ASSERT_VALID_CHARPTR(ptr) assert (VALID_CHARPTR_P (ptr))
397 #else
398 # define ASSERT_VALID_CHARPTR(ptr)
399 #endif
400
401 /* Note that INC_CHARPTR() and DEC_CHARPTR() have to be written in
402 completely separate ways. INC_CHARPTR() cannot use the DEC_CHARPTR()
403 trick of looking for a valid first byte because it might run off
404 the end of the string. DEC_CHARPTR() can't use the INC_CHARPTR()
405 method because it doesn't have easy access to the first byte of
406 the character it's moving over. */
407
408 #define REAL_INC_CHARPTR(ptr) \
409 ((void) ((ptr) += REP_BYTES_BY_FIRST_BYTE (* (unsigned char *) (ptr))))
410
411 #define REAL_INC_CHARBYTIND(ptr,pos) \
412 (pos += REP_BYTES_BY_FIRST_BYTE (* (unsigned char *) (ptr)))
413
414 #define REAL_DEC_CHARPTR(ptr) do { \
415 (ptr)--; \
416 } while (!VALID_CHARPTR_P (ptr))
417
418 #ifdef ERROR_CHECK_BUFPOS
419 #define INC_CHARPTR(ptr) do { \
420 ASSERT_VALID_CHARPTR (ptr); \
421 REAL_INC_CHARPTR (ptr); \
422 } while (0)
423
424 #define INC_CHARBYTIND(ptr,pos) do { \
425 ASSERT_VALID_CHARPTR (ptr); \
426 REAL_INC_CHARBYTIND (ptr,pos); \
427 } while (0)
428
429 #define DEC_CHARPTR(ptr) do { \
430 CONST Bufbyte *dc_ptr1 = (ptr); \
431 CONST Bufbyte *dc_ptr2 = dc_ptr1; \
432 REAL_DEC_CHARPTR (dc_ptr2); \
433 assert (dc_ptr1 - dc_ptr2 == \
434 REP_BYTES_BY_FIRST_BYTE (*dc_ptr2)); \
435 (ptr) = dc_ptr2; \
436 } while (0)
437
438 #else /* ! ERROR_CHECK_BUFPOS */
439 #define INC_CHARBYTIND(ptr,pos) REAL_INC_CHARBYTIND (ptr,pos)
440 #define INC_CHARPTR(ptr) REAL_INC_CHARPTR (ptr)
441 #define DEC_CHARPTR(ptr) REAL_DEC_CHARPTR (ptr)
442 #endif /* ! ERROR_CHECK_BUFPOS */
443
444 #ifdef MULE
445
446 #define VALIDATE_CHARPTR_BACKWARD(ptr) do { \
447 while (!VALID_CHARPTR_P (ptr)) ptr--; \
448 } while (0)
449
450 /* This needs to be trickier to avoid the possibility of running off
451 the end of the string. */
452
453 #define VALIDATE_CHARPTR_FORWARD(ptr) do { \
454 Bufbyte *vcf_ptr = (ptr); \
455 VALIDATE_CHARPTR_BACKWARD (vcf_ptr); \
456 if (vcf_ptr != (ptr)) \
457 { \
458 (ptr) = vcf_ptr; \
459 INC_CHARPTR (ptr); \
460 } \
461 } while (0)
462
463 #else /* not MULE */
464 #define VALIDATE_CHARPTR_BACKWARD(ptr)
465 #define VALIDATE_CHARPTR_FORWARD(ptr)
466 #endif /* not MULE */
467
468 /* -------------------------------------------------------------- */
469 /* (B) For working with the length (in bytes and characters) of a */
470 /* section of internally-formatted text */
471 /* -------------------------------------------------------------- */
472
473 INLINE CONST Bufbyte *charptr_n_addr (CONST Bufbyte *ptr, Charcount offset);
474 INLINE CONST Bufbyte *
475 charptr_n_addr (CONST Bufbyte *ptr, Charcount offset)
476 {
477 return ptr + charcount_to_bytecount (ptr, offset);
478 }
479
480 /* -------------------------------------------------------------------- */
481 /* (C) For retrieving or changing the character pointed to by a charptr */
482 /* -------------------------------------------------------------------- */
483
484 #define simple_charptr_emchar(ptr) ((Emchar) (ptr)[0])
485 #define simple_set_charptr_emchar(ptr, x) ((ptr)[0] = (Bufbyte) (x), 1)
486 #define simple_charptr_copy_char(ptr, ptr2) ((ptr2)[0] = *(ptr), 1)
487
488 #ifdef MULE
489
490 Emchar non_ascii_charptr_emchar (CONST Bufbyte *ptr);
491 Bytecount non_ascii_set_charptr_emchar (Bufbyte *ptr, Emchar c);
492 Bytecount non_ascii_charptr_copy_char (CONST Bufbyte *ptr, Bufbyte *ptr2);
493
494 INLINE Emchar charptr_emchar (CONST Bufbyte *ptr);
495 INLINE Emchar
496 charptr_emchar (CONST Bufbyte *ptr)
497 {
498 return BYTE_ASCII_P (*ptr) ?
499 simple_charptr_emchar (ptr) :
500 non_ascii_charptr_emchar (ptr);
501 }
502
503 INLINE Bytecount set_charptr_emchar (Bufbyte *ptr, Emchar x);
504 INLINE Bytecount
505 set_charptr_emchar (Bufbyte *ptr, Emchar x)
506 {
507 return !CHAR_MULTIBYTE_P (x) ?
508 simple_set_charptr_emchar (ptr, x) :
509 non_ascii_set_charptr_emchar (ptr, x);
510 }
511
512 INLINE Bytecount charptr_copy_char (CONST Bufbyte *ptr, Bufbyte *ptr2);
513 INLINE Bytecount
514 charptr_copy_char (CONST Bufbyte *ptr, Bufbyte *ptr2)
515 {
516 return BYTE_ASCII_P (*ptr) ?
517 simple_charptr_copy_char (ptr, ptr2) :
518 non_ascii_charptr_copy_char (ptr, ptr2);
519 }
520
521 #else /* not MULE */
522
523 # define charptr_emchar(ptr) simple_charptr_emchar (ptr)
524 # define set_charptr_emchar(ptr, x) simple_set_charptr_emchar (ptr, x)
525 # define charptr_copy_char(ptr, ptr2) simple_charptr_copy_char (ptr, ptr2)
526
527 #endif /* not MULE */
528
529 #define charptr_emchar_n(ptr, offset) \
530 charptr_emchar (charptr_n_addr (ptr, offset))
531
532
533 /* ---------------------------- */
534 /* (D) For working with Emchars */
535 /* ---------------------------- */
536
537 #ifdef MULE
538
539 int non_ascii_valid_char_p (Emchar ch);
540
541 INLINE int valid_char_p (Emchar ch);
542 INLINE int
543 valid_char_p (Emchar ch)
544 {
545 return ((unsigned int) (ch) <= 0xff) || non_ascii_valid_char_p (ch);
546 }
547
548 #else /* not MULE */
549
550 #define valid_char_p(ch) ((unsigned int) (ch) <= 0xff)
551
552 #endif /* not MULE */
553
554 #define CHAR_INTP(x) (INTP (x) && valid_char_p (XINT (x)))
555
556 #define CHAR_OR_CHAR_INTP(x) (CHARP (x) || CHAR_INTP (x))
557
558 #ifdef ERROR_CHECK_TYPECHECK
559
560 INLINE Emchar XCHAR_OR_CHAR_INT (Lisp_Object obj);
561 INLINE Emchar
562 XCHAR_OR_CHAR_INT (Lisp_Object obj)
563 {
564 assert (CHAR_OR_CHAR_INTP (obj));
565 return CHARP (obj) ? XCHAR (obj) : XINT (obj);
566 }
567
568 #else
569
570 #define XCHAR_OR_CHAR_INT(obj) (CHARP (obj) ? XCHAR (obj) : XINT (obj))
571
572 #endif
573
574 #define CHECK_CHAR_COERCE_INT(x) do { \
575 if (CHARP (x)) \
576 ; \
577 else if (CHAR_INTP (x)) \
578 x = make_char (XINT (x)); \
579 else \
580 x = wrong_type_argument (Qcharacterp, x); \
581 } while (0)
582
583 #ifdef MULE
584 # define MAX_EMCHAR_LEN 4
585 #else
586 # define MAX_EMCHAR_LEN 1
587 #endif
588
589
590 /*----------------------------------------------------------------------*/
591 /* Accessor macros for important positions in a buffer */
592 /*----------------------------------------------------------------------*/
593
594 /* We put them here because some stuff below wants them before the
595 place where we would normally put them. */
596
597 /* None of these are lvalues. Use the settor macros below to change
598 the positions. */
599
600 /* Beginning of buffer. */
601 #define BI_BUF_BEG(buf) ((Bytind) 1)
602 #define BUF_BEG(buf) ((Bufpos) 1)
603
604 /* Beginning of accessible range of buffer. */
605 #define BI_BUF_BEGV(buf) ((buf)->begv + 0)
606 #define BUF_BEGV(buf) ((buf)->bufbegv + 0)
607
608 /* End of accessible range of buffer. */
609 #define BI_BUF_ZV(buf) ((buf)->zv + 0)
610 #define BUF_ZV(buf) ((buf)->bufzv + 0)
611
612 /* End of buffer. */
613 #define BI_BUF_Z(buf) ((buf)->text->z + 0)
614 #define BUF_Z(buf) ((buf)->text->bufz + 0)
615
616 /* Point. */
617 #define BI_BUF_PT(buf) ((buf)->pt + 0)
618 #define BUF_PT(buf) ((buf)->bufpt + 0)
619
620 /*----------------------------------------------------------------------*/
621 /* Converting between positions and addresses */
622 /*----------------------------------------------------------------------*/
623
624 /* Convert the address of a byte in the buffer into a position. */
625 INLINE Bytind BI_BUF_PTR_BYTE_POS (struct buffer *buf, Bufbyte *ptr);
626 INLINE Bytind
627 BI_BUF_PTR_BYTE_POS (struct buffer *buf, Bufbyte *ptr)
628 {
629 return (ptr - buf->text->beg + 1
630 - ((ptr - buf->text->beg + 1) > buf->text->gpt
631 ? buf->text->gap_size : 0));
632 }
633
634 #define BUF_PTR_BYTE_POS(buf, ptr) \
635 bytind_to_bufpos (buf, BI_BUF_PTR_BYTE_POS (buf, ptr))
636
637 /* Address of byte at position POS in buffer. */
638 INLINE Bufbyte * BI_BUF_BYTE_ADDRESS (struct buffer *buf, Bytind pos);
639 INLINE Bufbyte *
640 BI_BUF_BYTE_ADDRESS (struct buffer *buf, Bytind pos)
641 {
642 return (buf->text->beg +
643 ((pos >= buf->text->gpt ? (pos + buf->text->gap_size) : pos)
644 - 1));
645 }
646
647 #define BUF_BYTE_ADDRESS(buf, pos) \
648 BI_BUF_BYTE_ADDRESS (buf, bufpos_to_bytind (buf, pos))
649
650 /* Address of byte before position POS in buffer. */
651 INLINE Bufbyte * BI_BUF_BYTE_ADDRESS_BEFORE (struct buffer *buf, Bytind pos);
652 INLINE Bufbyte *
653 BI_BUF_BYTE_ADDRESS_BEFORE (struct buffer *buf, Bytind pos)
654 {
655 return (buf->text->beg +
656 ((pos > buf->text->gpt ? (pos + buf->text->gap_size) : pos)
657 - 2));
658 }
659
660 #define BUF_BYTE_ADDRESS_BEFORE(buf, pos) \
661 BI_BUF_BYTE_ADDRESS_BEFORE (buf, bufpos_to_bytind (buf, pos))
662
663 /*----------------------------------------------------------------------*/
664 /* Converting between byte indices and memory indices */
665 /*----------------------------------------------------------------------*/
666
667 INLINE int valid_memind_p (struct buffer *buf, Memind x);
668 INLINE int
669 valid_memind_p (struct buffer *buf, Memind x)
670 {
671 return ((x >= 1 && x <= (Memind) buf->text->gpt) ||
672 (x > (Memind) (buf->text->gpt + buf->text->gap_size) &&
673 x <= (Memind) (buf->text->z + buf->text->gap_size)));
674 }
675
676 INLINE Memind bytind_to_memind (struct buffer *buf, Bytind x);
677 INLINE Memind
678 bytind_to_memind (struct buffer *buf, Bytind x)
679 {
680 return (Memind) ((x > buf->text->gpt) ? (x + buf->text->gap_size) : x);
681 }
682
683
684 INLINE Bytind memind_to_bytind (struct buffer *buf, Memind x);
685 INLINE Bytind
686 memind_to_bytind (struct buffer *buf, Memind x)
687 {
688 #ifdef ERROR_CHECK_BUFPOS
689 assert (valid_memind_p (buf, x));
690 #endif
691 return (Bytind) ((x > (Memind) buf->text->gpt) ?
692 x - buf->text->gap_size :
693 x);
694 }
695
696 #define memind_to_bufpos(buf, x) \
697 bytind_to_bufpos (buf, memind_to_bytind (buf, x))
698 #define bufpos_to_memind(buf, x) \
699 bytind_to_memind (buf, bufpos_to_bytind (buf, x))
700
701 /* These macros generalize many standard buffer-position functions to
702 either a buffer or a string. */
703
704 /* Converting between Meminds and Bytinds, for a buffer-or-string.
705 For strings, this is a no-op. For buffers, this resolves
706 to the standard memind<->bytind converters. */
707
708 #define buffer_or_string_bytind_to_memind(obj, ind) \
709 (BUFFERP (obj) ? bytind_to_memind (XBUFFER (obj), ind) : (Memind) ind)
710
711 #define buffer_or_string_memind_to_bytind(obj, ind) \
712 (BUFFERP (obj) ? memind_to_bytind (XBUFFER (obj), ind) : (Bytind) ind)
713
714 /* Converting between Bufpos's and Bytinds, for a buffer-or-string.
715 For strings, this maps to the bytecount<->charcount converters. */
716
717 #define buffer_or_string_bufpos_to_bytind(obj, pos) \
718 (BUFFERP (obj) ? bufpos_to_bytind (XBUFFER (obj), pos) : \
719 (Bytind) charcount_to_bytecount (XSTRING_DATA (obj), pos))
720
721 #define buffer_or_string_bytind_to_bufpos(obj, ind) \
722 (BUFFERP (obj) ? bytind_to_bufpos (XBUFFER (obj), ind) : \
723 (Bufpos) bytecount_to_charcount (XSTRING_DATA (obj), ind))
724
725 /* Similar for Bufpos's and Meminds. */
726
727 #define buffer_or_string_bufpos_to_memind(obj, pos) \
728 (BUFFERP (obj) ? bufpos_to_memind (XBUFFER (obj), pos) : \
729 (Memind) charcount_to_bytecount (XSTRING_DATA (obj), pos))
730
731 #define buffer_or_string_memind_to_bufpos(obj, ind) \
732 (BUFFERP (obj) ? memind_to_bufpos (XBUFFER (obj), ind) : \
733 (Bufpos) bytecount_to_charcount (XSTRING_DATA (obj), ind))
734
735 /************************************************************************/
736 /* */
737 /* working with buffer-level data */
738 /* */
739 /************************************************************************/
740
741 /*
742
743 (A) Working with byte indices:
744 ------------------------------
745
746 VALID_BYTIND_P(buf, bi):
747 Given a byte index, does it point to the beginning of a character?
748
749 ASSERT_VALID_BYTIND_UNSAFE(buf, bi):
750 If error-checking is enabled, assert that the given byte index
751 is within range and points to the beginning of a character
752 or to the end of the buffer. Otherwise, do nothing.
753
754 ASSERT_VALID_BYTIND_BACKWARD_UNSAFE(buf, bi):
755 If error-checking is enabled, assert that the given byte index
756 is within range and satisfies ASSERT_VALID_BYTIND() and also
757 does not refer to the beginning of the buffer. (i.e. movement
758 backwards is OK.) Otherwise, do nothing.
759
760 ASSERT_VALID_BYTIND_FORWARD_UNSAFE(buf, bi):
761 If error-checking is enabled, assert that the given byte index
762 is within range and satisfies ASSERT_VALID_BYTIND() and also
763 does not refer to the end of the buffer. (i.e. movement
764 forwards is OK.) Otherwise, do nothing.
765
766 VALIDATE_BYTIND_BACKWARD(buf, bi):
767 Make sure that the given byte index is pointing to the beginning
768 of a character. If not, back up until this is the case. Note
769 that there are not too many places where it is legitimate to do
770 this sort of thing. It's an error if you're passed an "invalid"
771 byte index.
772
773 VALIDATE_BYTIND_FORWARD(buf, bi):
774 Make sure that the given byte index is pointing to the beginning
775 of a character. If not, move forward until this is the case.
776 Note that there are not too many places where it is legitimate
777 to do this sort of thing. It's an error if you're passed an
778 "invalid" byte index.
779
780 INC_BYTIND(buf, bi):
781 Given a byte index (assumed to point at the beginning of a
782 character), modify that value so it points to the beginning
783 of the next character.
784
785 DEC_BYTIND(buf, bi):
786 Given a byte index (assumed to point at the beginning of a
787 character), modify that value so it points to the beginning
788 of the previous character. Unlike for DEC_CHARPTR(), we can
789 do all the assert()s because there are sentinels at the
790 beginning of the gap and the end of the buffer.
791
792 BYTIND_INVALID:
793 A constant representing an invalid Bytind. Valid Bytinds
794 can never have this value.
795
796
797 (B) Converting between Bufpos's and Bytinds:
798 --------------------------------------------
799
800 bufpos_to_bytind(buf, bu):
801 Given a Bufpos, return the equivalent Bytind.
802
803 bytind_to_bufpos(buf, bi):
804 Given a Bytind, return the equivalent Bufpos.
805
806 make_bufpos(buf, bi):
807 Given a Bytind, return the equivalent Bufpos as a Lisp Object.
808 */
809
810
811 /*----------------------------------------------------------------------*/
812 /* working with byte indices */
813 /*----------------------------------------------------------------------*/
814
815 #ifdef MULE
816 # define VALID_BYTIND_P(buf, x) \
817 BUFBYTE_FIRST_BYTE_P (*BI_BUF_BYTE_ADDRESS (buf, x))
818 #else
819 # define VALID_BYTIND_P(buf, x) 1
820 #endif
821
822 #ifdef ERROR_CHECK_BUFPOS
823
824 # define ASSERT_VALID_BYTIND_UNSAFE(buf, x) do { \
825 assert (BUFFER_LIVE_P (buf)); \
826 assert ((x) >= BI_BUF_BEG (buf) && x <= BI_BUF_Z (buf)); \
827 assert (VALID_BYTIND_P (buf, x)); \
828 } while (0)
829 # define ASSERT_VALID_BYTIND_BACKWARD_UNSAFE(buf, x) do { \
830 assert (BUFFER_LIVE_P (buf)); \
831 assert ((x) > BI_BUF_BEG (buf) && x <= BI_BUF_Z (buf)); \
832 assert (VALID_BYTIND_P (buf, x)); \
833 } while (0)
834 # define ASSERT_VALID_BYTIND_FORWARD_UNSAFE(buf, x) do { \
835 assert (BUFFER_LIVE_P (buf)); \
836 assert ((x) >= BI_BUF_BEG (buf) && x < BI_BUF_Z (buf)); \
837 assert (VALID_BYTIND_P (buf, x)); \
838 } while (0)
839
840 #else /* not ERROR_CHECK_BUFPOS */
841 # define ASSERT_VALID_BYTIND_UNSAFE(buf, x)
842 # define ASSERT_VALID_BYTIND_BACKWARD_UNSAFE(buf, x)
843 # define ASSERT_VALID_BYTIND_FORWARD_UNSAFE(buf, x)
844
845 #endif /* not ERROR_CHECK_BUFPOS */
846
847 /* Note that, although the Mule version will work fine for non-Mule
848 as well (it should reduce down to nothing), we provide a separate
849 version to avoid compilation warnings and possible non-optimal
850 results with stupid compilers. */
851
852 #ifdef MULE
853 # define VALIDATE_BYTIND_BACKWARD(buf, x) do { \
854 Bufbyte *VBB_ptr = BI_BUF_BYTE_ADDRESS (buf, x); \
855 while (!BUFBYTE_FIRST_BYTE_P (*VBB_ptr)) \
856 VBB_ptr--, (x)--; \
857 } while (0)
858 #else
859 # define VALIDATE_BYTIND_BACKWARD(buf, x)
860 #endif
861
862 /* Note that, although the Mule version will work fine for non-Mule
863 as well (it should reduce down to nothing), we provide a separate
864 version to avoid compilation warnings and possible non-optimal
865 results with stupid compilers. */
866
867 #ifdef MULE
868 # define VALIDATE_BYTIND_FORWARD(buf, x) do { \
869 Bufbyte *VBF_ptr = BI_BUF_BYTE_ADDRESS (buf, x); \
870 while (!BUFBYTE_FIRST_BYTE_P (*VBF_ptr)) \
871 VBF_ptr++, (x)++; \
872 } while (0)
873 #else
874 # define VALIDATE_BYTIND_FORWARD(buf, x)
875 #endif
876
877 /* Note that in the simplest case (no MULE, no ERROR_CHECK_BUFPOS),
878 this crap reduces down to simply (x)++. */
879
880 #define INC_BYTIND(buf, x) do \
881 { \
882 ASSERT_VALID_BYTIND_FORWARD_UNSAFE (buf, x); \
883 /* Note that we do the increment first to \
884 make sure that the pointer in \
885 VALIDATE_BYTIND_FORWARD() ends up on \
886 the correct side of the gap */ \
887 (x)++; \
888 VALIDATE_BYTIND_FORWARD (buf, x); \
889 } while (0)
890
891 /* Note that in the simplest case (no MULE, no ERROR_CHECK_BUFPOS),
892 this crap reduces down to simply (x)--. */
893
894 #define DEC_BYTIND(buf, x) do \
895 { \
896 ASSERT_VALID_BYTIND_BACKWARD_UNSAFE (buf, x); \
897 /* Note that we do the decrement first to \
898 make sure that the pointer in \
899 VALIDATE_BYTIND_BACKWARD() ends up on \
900 the correct side of the gap */ \
901 (x)--; \
902 VALIDATE_BYTIND_BACKWARD (buf, x); \
903 } while (0)
904
905 INLINE Bytind prev_bytind (struct buffer *buf, Bytind x);
906 INLINE Bytind
907 prev_bytind (struct buffer *buf, Bytind x)
908 {
909 DEC_BYTIND (buf, x);
910 return x;
911 }
912
913 INLINE Bytind next_bytind (struct buffer *buf, Bytind x);
914 INLINE Bytind
915 next_bytind (struct buffer *buf, Bytind x)
916 {
917 INC_BYTIND (buf, x);
918 return x;
919 }
920
921 #define BYTIND_INVALID ((Bytind) -1)
922
923 /*----------------------------------------------------------------------*/
924 /* Converting between buffer positions and byte indices */
925 /*----------------------------------------------------------------------*/
926
927 #ifdef MULE
928
929 Bytind bufpos_to_bytind_func (struct buffer *buf, Bufpos x);
930 Bufpos bytind_to_bufpos_func (struct buffer *buf, Bytind x);
931
932 /* The basic algorithm we use is to keep track of a known region of
933 characters in each buffer, all of which are of the same width. We
934 keep track of the boundaries of the region in both Bufpos and
935 Bytind coordinates and also keep track of the char width, which
936 is 1 - 4 bytes. If the position we're translating is not in
937 the known region, then we invoke a function to update the known
938 region to surround the position in question. This assumes
939 locality of reference, which is usually the case.
940
941 Note that the function to update the known region can be simple
942 or complicated depending on how much information we cache.
943 For the moment, we don't cache any information, and just move
944 linearly forward or back from the known region, with a few
945 shortcuts to catch all-ASCII buffers. (Note that this will
946 thrash with bad locality of reference.) A smarter method would
947 be to keep some sort of pseudo-extent layer over the buffer;
948 maybe keep track of the bufpos/bytind correspondence at the
949 beginning of each line, which would allow us to do a binary
950 search over the pseudo-extents to narrow things down to the
951 correct line, at which point you could use a linear movement
952 method. This would also mesh well with efficiently
953 implementing a line-numbering scheme.
954
955 Note also that we have to multiply or divide by the char width
956 in order to convert the positions. We do some tricks to avoid
957 ever actually having to do a multiply or divide, because that
958 is typically an expensive operation (esp. divide). Multiplying
959 or dividing by 1, 2, or 4 can be implemented simply as a
960 shift left or shift right, and we keep track of a shifter value
961 (0, 1, or 2) indicating how much to shift. Multiplying by 3
962 can be implemented by doubling and then adding the original
963 value. Dividing by 3, alas, cannot be implemented in any
964 simple shift/subtract method, as far as I know; so we just
965 do a table lookup. For simplicity, we use a table of size
966 128K, which indexes the "divide-by-3" values for the first
967 64K non-negative numbers. (Note that we can increase the
968 size up to 384K, i.e. indexing the first 192K non-negative
969 numbers, while still using shorts in the array.) This also
970 means that the size of the known region can be at most
971 64K for width-three characters.
972 */
973
974 extern short three_to_one_table[];
975
976 INLINE int real_bufpos_to_bytind (struct buffer *buf, Bufpos x);
977 INLINE int
978 real_bufpos_to_bytind (struct buffer *buf, Bufpos x)
979 {
980 if (x >= buf->text->mule_bufmin && x <= buf->text->mule_bufmax)
981 return (buf->text->mule_bytmin +
982 ((x - buf->text->mule_bufmin) << buf->text->mule_shifter) +
983 (buf->text->mule_three_p ? (x - buf->text->mule_bufmin) : 0));
984 else
985 return bufpos_to_bytind_func (buf, x);
986 }
987
988 INLINE int real_bytind_to_bufpos (struct buffer *buf, Bytind x);
989 INLINE int
990 real_bytind_to_bufpos (struct buffer *buf, Bytind x)
991 {
992 if (x >= buf->text->mule_bytmin && x <= buf->text->mule_bytmax)
993 return (buf->text->mule_bufmin +
994 ((buf->text->mule_three_p
995 ? three_to_one_table[x - buf->text->mule_bytmin]
996 : (x - buf->text->mule_bytmin) >> buf->text->mule_shifter)));
997 else
998 return bytind_to_bufpos_func (buf, x);
999 }
1000
1001 #else /* not MULE */
1002
1003 # define real_bufpos_to_bytind(buf, x) ((Bytind) x)
1004 # define real_bytind_to_bufpos(buf, x) ((Bufpos) x)
1005
1006 #endif /* not MULE */
1007
1008 #ifdef ERROR_CHECK_BUFPOS
1009
1010 Bytind bufpos_to_bytind (struct buffer *buf, Bufpos x);
1011 Bufpos bytind_to_bufpos (struct buffer *buf, Bytind x);
1012
1013 #else /* not ERROR_CHECK_BUFPOS */
1014
1015 #define bufpos_to_bytind real_bufpos_to_bytind
1016 #define bytind_to_bufpos real_bytind_to_bufpos
1017
1018 #endif /* not ERROR_CHECK_BUFPOS */
1019
1020 #define make_bufpos(buf, ind) make_int (bytind_to_bufpos (buf, ind))
1021
1022 /*----------------------------------------------------------------------*/
1023 /* Converting between buffer bytes and Emacs characters */
1024 /*----------------------------------------------------------------------*/
1025
1026 /* The character at position POS in buffer. */
1027 #define BI_BUF_FETCH_CHAR(buf, pos) \
1028 charptr_emchar (BI_BUF_BYTE_ADDRESS (buf, pos))
1029 #define BUF_FETCH_CHAR(buf, pos) \
1030 BI_BUF_FETCH_CHAR (buf, bufpos_to_bytind (buf, pos))
1031
1032 /* The character at position POS in buffer, as a string. This is
1033 equivalent to set_charptr_emchar (str, BUF_FETCH_CHAR (buf, pos))
1034 but is faster for Mule. */
1035
1036 # define BI_BUF_CHARPTR_COPY_CHAR(buf, pos, str) \
1037 charptr_copy_char (BI_BUF_BYTE_ADDRESS (buf, pos), str)
1038 #define BUF_CHARPTR_COPY_CHAR(buf, pos, str) \
1039 BI_BUF_CHARPTR_COPY_CHAR (buf, bufpos_to_bytind (buf, pos), str)
1040
1041
1042
1043
1044 /************************************************************************/
1045 /* */
1046 /* working with externally-formatted data */
1047 /* */
1048 /************************************************************************/
1049
1050 /* Sometimes strings need to be converted into one or another
1051 external format, for passing to a library function. (Note
1052 that we encapsulate and automatically convert the arguments
1053 of some functions, but not others.) At times this conversion
1054 also has to go the other way -- i.e. when we get external-
1055 format strings back from a library function.
1056 */
1057
1058 #ifdef FILE_CODING
1059
1060 /* WARNING: These use a static buffer. This can lead to disaster if
1061 these functions are not used *very* carefully. Under normal
1062 circumstances, do not call these functions; call the front ends
1063 below. */
1064
1065 Extbyte *convert_to_external_format (CONST Bufbyte *ptr,
1066 Bytecount len,
1067 Extcount *len_out,
1068 enum external_data_format fmt);
1069 Bufbyte *convert_from_external_format (CONST Extbyte *ptr,
1070 Extcount len,
1071 Bytecount *len_out,
1072 enum external_data_format fmt);
1073
1074 #else /* ! MULE */
1075
1076 #define convert_to_external_format(ptr, len, len_out, fmt) \
1077 (*(len_out) = (int) (len), (Extbyte *) (ptr))
1078 #define convert_from_external_format(ptr, len, len_out, fmt) \
1079 (*(len_out) = (Bytecount) (len), (Bufbyte *) (ptr))
1080
1081 #endif /* ! MULE */
1082
1083 /* In all of the following macros we use the following general principles:
1084
1085 -- Functions that work with charptr's accept two sorts of charptr's:
1086
1087 a) Pointers to memory with a length specified. The pointer will be
1088 fundamentally of type `unsigned char *' (although labelled
1089 as `Bufbyte *' for internal-format data and `Extbyte *' for
1090 external-format data) and the length will be fundamentally of
1091 type `int' (although labelled as `Bytecount' for internal-format
1092 data and `Extcount' for external-format data). The length is
1093 always a count in bytes.
1094 b) Zero-terminated pointers; no length specified. The pointer
1095 is of type `char *', whether the data pointed to is internal-format
1096 or external-format. These sorts of pointers are available for
1097 convenience in working with C library functions and literal
1098 strings. In general you should use these sorts of pointers only
1099 to interface to library routines and not for general manipulation,
1100 as you are liable to lose embedded nulls and such. This could
1101 be a big problem for routines that want Unicode-formatted data,
1102 which is likely to have lots of embedded nulls in it.
1103 (In the real world, though, external Unicode data will be UTF-8,
1104 which will not have embedded nulls and is ASCII-compatible - martin)
1105
1106 -- Functions that work with Lisp strings accept strings as Lisp Objects
1107 (as opposed to the `struct Lisp_String *' for some of the other
1108 string accessors). This is for convenience in working with the
1109 functions, as otherwise you will almost always have to call
1110 XSTRING() on the object.
1111
1112 -- Functions that work with charptr's are not guaranteed to copy
1113 their data into alloca()ed space. Functions that work with
1114 Lisp strings are, however. The reason is that Lisp strings can
1115 be relocated any time a GC happens, and it could happen at some
1116 rather unexpected times. The internal-external conversion is
1117 rarely done in time-critical functions, and so the slight
1118 extra time required for alloca() and copy is well-worth the
1119 safety of knowing your string data won't be relocated out from
1120 under you.
1121 */
1122
1123
1124 /* Maybe convert charptr's data into ext-format and store the result in
1125 alloca()'ed space.
1126
1127 You may wonder why this is written in this fashion and not as a
1128 function call. With a little trickery it could certainly be
1129 written this way, but it won't work because of those DAMN GCC WANKERS
1130 who couldn't be bothered to handle alloca() properly on the x86
1131 architecture. (If you put a call to alloca() in the argument to
1132 a function call, the stack space gets allocated right in the
1133 middle of the arguments to the function call and you are unbelievably
1134 hosed.) */
1135
1136 #ifdef MULE
1137
1138 #define GET_CHARPTR_EXT_DATA_ALLOCA(ptr, len, fmt, ptr_out, len_out) do \
1139 { \
1140 Bytecount gceda_len_in = (Bytecount) (len); \
1141 Extcount gceda_len_out; \
1142 CONST Bufbyte *gceda_ptr_in = (ptr); \
1143 Extbyte *gceda_ptr_out = \
1144 convert_to_external_format (gceda_ptr_in, gceda_len_in, \
1145 &gceda_len_out, fmt); \
1146 /* If the new string is identical to the old (will be the case most \
1147 of the time), just return the same string back. This saves \
1148 on alloca()ing, which can be useful on C alloca() machines and \
1149 on stack-space-challenged environments. */ \
1150 \
1151 if (gceda_len_in == gceda_len_out && \
1152 !memcmp (gceda_ptr_in, gceda_ptr_out, gceda_len_out)) \
1153 { \
1154 (ptr_out) = (Extbyte *) gceda_ptr_in; \
1155 } \
1156 else \
1157 { \
1158 (ptr_out) = (Extbyte *) alloca (1 + gceda_len_out); \
1159 memcpy ((void *) ptr_out, gceda_ptr_out, 1 + gceda_len_out); \
1160 } \
1161 (len_out) = gceda_len_out; \
1162 } while (0)
1163
1164 #else /* ! MULE */
1165
1166 #define GET_CHARPTR_EXT_DATA_ALLOCA(ptr, len, fmt, ptr_out, len_out) do \
1167 { \
1168 (ptr_out) = (Extbyte *) (ptr); \
1169 (len_out) = (Extcount) (len); \
1170 } while (0)
1171
1172 #endif /* ! MULE */
1173
1174 #define GET_C_CHARPTR_EXT_DATA_ALLOCA(ptr, fmt, ptr_out) do \
1175 { \
1176 Extcount gcceda_ignored_len; \
1177 CONST Bufbyte *gcceda_ptr_in = (CONST Bufbyte *) (ptr); \
1178 Extbyte *gcceda_ptr_out; \
1179 \
1180 GET_CHARPTR_EXT_DATA_ALLOCA (gcceda_ptr_in, \
1181 strlen ((char *) gcceda_ptr_in), \
1182 fmt, \
1183 gcceda_ptr_out, \
1184 gcceda_ignored_len); \
1185 (ptr_out) = (char *) gcceda_ptr_out; \
1186 } while (0)
1187
1188 #define GET_C_CHARPTR_EXT_BINARY_DATA_ALLOCA(ptr, ptr_out) \
1189 GET_C_CHARPTR_EXT_DATA_ALLOCA (ptr, FORMAT_BINARY, ptr_out)
1190 #define GET_CHARPTR_EXT_BINARY_DATA_ALLOCA(ptr, len, ptr_out, len_out) \
1191 GET_CHARPTR_EXT_DATA_ALLOCA (ptr, len, FORMAT_BINARY, ptr_out, len_out)
1192
1193 #define GET_C_CHARPTR_EXT_FILENAME_DATA_ALLOCA(ptr, ptr_out) \
1194 GET_C_CHARPTR_EXT_DATA_ALLOCA (ptr, FORMAT_FILENAME, ptr_out)
1195 #define GET_CHARPTR_EXT_FILENAME_DATA_ALLOCA(ptr, len, ptr_out, len_out) \
1196 GET_CHARPTR_EXT_DATA_ALLOCA (ptr, len, FORMAT_FILENAME, ptr_out, len_out)
1197
1198 #define GET_C_CHARPTR_EXT_CTEXT_DATA_ALLOCA(ptr, ptr_out) \
1199 GET_C_CHARPTR_EXT_DATA_ALLOCA (ptr, FORMAT_CTEXT, ptr_out)
1200 #define GET_CHARPTR_EXT_CTEXT_DATA_ALLOCA(ptr, len, ptr_out, len_out) \
1201 GET_CHARPTR_EXT_DATA_ALLOCA (ptr, len, FORMAT_CTEXT, ptr_out, len_out)
1202
1203 /* Maybe convert external charptr's data into internal format and store
1204 the result in alloca()'ed space.
1205
1206 You may wonder why this is written in this fashion and not as a
1207 function call. With a little trickery it could certainly be
1208 written this way, but it won't work because of those DAMN GCC WANKERS
1209 who couldn't be bothered to handle alloca() properly on the x86
1210 architecture. (If you put a call to alloca() in the argument to
1211 a function call, the stack space gets allocated right in the
1212 middle of the arguments to the function call and you are unbelievably
1213 hosed.) */
1214
1215 #ifdef MULE
1216
1217 #define GET_CHARPTR_INT_DATA_ALLOCA(ptr, len, fmt, ptr_out, len_out) do \
1218 { \
1219 Extcount gcida_len_in = (Extcount) (len); \
1220 Bytecount gcida_len_out; \
1221 CONST Extbyte *gcida_ptr_in = (ptr); \
1222 Bufbyte *gcida_ptr_out = \
1223 convert_from_external_format (gcida_ptr_in, gcida_len_in, \
1224 &gcida_len_out, fmt); \
1225 /* If the new string is identical to the old (will be the case most \
1226 of the time), just return the same string back. This saves \
1227 on alloca()ing, which can be useful on C alloca() machines and \
1228 on stack-space-challenged environments. */ \
1229 \
1230 if (gcida_len_in == gcida_len_out && \
1231 !memcmp (gcida_ptr_in, gcida_ptr_out, gcida_len_out)) \
1232 { \
1233 (ptr_out) = (Bufbyte *) gcida_ptr_in; \
1234 } \
1235 else \
1236 { \
1237 (ptr_out) = (Extbyte *) alloca (1 + gcida_len_out); \
1238 memcpy ((void *) ptr_out, gcida_ptr_out, 1 + gcida_len_out); \
1239 } \
1240 (len_out) = gcida_len_out; \
1241 } while (0)
1242
1243 #else /* ! MULE */
1244
1245 #define GET_CHARPTR_INT_DATA_ALLOCA(ptr, len, fmt, ptr_out, len_out) do \
1246 { \
1247 (ptr_out) = (Bufbyte *) (ptr); \
1248 (len_out) = (Bytecount) (len); \
1249 } while (0)
1250
1251 #endif /* ! MULE */
1252
1253 #define GET_C_CHARPTR_INT_DATA_ALLOCA(ptr, fmt, ptr_out) do \
1254 { \
1255 Bytecount gccida_ignored_len; \
1256 CONST Extbyte *gccida_ptr_in = (CONST Extbyte *) (ptr); \
1257 Bufbyte *gccida_ptr_out; \
1258 \
1259 GET_CHARPTR_INT_DATA_ALLOCA (gccida_ptr_in, \
1260 strlen ((char *) gccida_ptr_in), \
1261 fmt, \
1262 gccida_ptr_out, \
1263 gccida_ignored_len); \
1264 (ptr_out) = gccida_ptr_out; \
1265 } while (0)
1266
1267 #define GET_C_CHARPTR_INT_BINARY_DATA_ALLOCA(ptr, ptr_out) \
1268 GET_C_CHARPTR_INT_DATA_ALLOCA (ptr, FORMAT_BINARY, ptr_out)
1269 #define GET_CHARPTR_INT_BINARY_DATA_ALLOCA(ptr, len, ptr_out, len_out) \
1270 GET_CHARPTR_INT_DATA_ALLOCA (ptr, len, FORMAT_BINARY, ptr_out, len_out)
1271
1272 #define GET_C_CHARPTR_INT_FILENAME_DATA_ALLOCA(ptr, ptr_out) \
1273 GET_C_CHARPTR_INT_DATA_ALLOCA (ptr, FORMAT_FILENAME, ptr_out)
1274 #define GET_CHARPTR_INT_FILENAME_DATA_ALLOCA(ptr, len, ptr_out, len_out) \
1275 GET_CHARPTR_INT_DATA_ALLOCA (ptr, len, FORMAT_FILENAME, ptr_out, len_out)
1276
1277 #define GET_C_CHARPTR_INT_CTEXT_DATA_ALLOCA(ptr, ptr_out) \
1278 GET_C_CHARPTR_INT_DATA_ALLOCA (ptr, FORMAT_CTEXT, ptr_out)
1279 #define GET_CHARPTR_INT_CTEXT_DATA_ALLOCA(ptr, len, ptr_out, len_out) \
1280 GET_CHARPTR_INT_DATA_ALLOCA (ptr, len, FORMAT_CTEXT, ptr_out, len_out)
1281
1282
1283 /* Maybe convert Lisp string's data into ext-format and store the result in
1284 alloca()'ed space.
1285
1286 You may wonder why this is written in this fashion and not as a
1287 function call. With a little trickery it could certainly be
1288 written this way, but it won't work because of those DAMN GCC WANKERS
1289 who couldn't be bothered to handle alloca() properly on the x86
1290 architecture. (If you put a call to alloca() in the argument to
1291 a function call, the stack space gets allocated right in the
1292 middle of the arguments to the function call and you are unbelievably
1293 hosed.) */
1294
1295 #define GET_STRING_EXT_DATA_ALLOCA(s, fmt, ptr_out, len_out) do \
1296 { \
1297 Extcount gseda_len_out; \
1298 struct Lisp_String *gseda_s = XSTRING (s); \
1299 Extbyte * gseda_ptr_out = \
1300 convert_to_external_format (string_data (gseda_s), \
1301 string_length (gseda_s), \
1302 &gseda_len_out, fmt); \
1303 (ptr_out) = (Extbyte *) alloca (1 + gseda_len_out); \
1304 memcpy ((void *) ptr_out, gseda_ptr_out, 1 + gseda_len_out); \
1305 (len_out) = gseda_len_out; \
1306 } while (0)
1307
1308
1309 #define GET_C_STRING_EXT_DATA_ALLOCA(s, fmt, ptr_out) do \
1310 { \
1311 Extcount gcseda_ignored_len; \
1312 Extbyte *gcseda_ptr_out; \
1313 \
1314 GET_STRING_EXT_DATA_ALLOCA (s, fmt, gcseda_ptr_out, \
1315 gcseda_ignored_len); \
1316 (ptr_out) = (char *) gcseda_ptr_out; \
1317 } while (0)
1318
1319 #define GET_STRING_BINARY_DATA_ALLOCA(s, ptr_out, len_out) \
1320 GET_STRING_EXT_DATA_ALLOCA (s, FORMAT_BINARY, ptr_out, len_out)
1321 #define GET_C_STRING_BINARY_DATA_ALLOCA(s, ptr_out) \
1322 GET_C_STRING_EXT_DATA_ALLOCA (s, FORMAT_BINARY, ptr_out)
1323
1324 #define GET_STRING_FILENAME_DATA_ALLOCA(s, ptr_out, len_out) \
1325 GET_STRING_EXT_DATA_ALLOCA (s, FORMAT_FILENAME, ptr_out, len_out)
1326 #define GET_C_STRING_FILENAME_DATA_ALLOCA(s, ptr_out) \
1327 GET_C_STRING_EXT_DATA_ALLOCA (s, FORMAT_FILENAME, ptr_out)
1328
1329 #define GET_STRING_OS_DATA_ALLOCA(s, ptr_out, len_out) \
1330 GET_STRING_EXT_DATA_ALLOCA (s, FORMAT_OS, ptr_out, len_out)
1331 #define GET_C_STRING_OS_DATA_ALLOCA(s, ptr_out) \
1332 GET_C_STRING_EXT_DATA_ALLOCA (s, FORMAT_OS, ptr_out)
1333
1334 #define GET_STRING_CTEXT_DATA_ALLOCA(s, ptr_out, len_out) \
1335 GET_STRING_EXT_DATA_ALLOCA (s, FORMAT_CTEXT, ptr_out, len_out)
1336 #define GET_C_STRING_CTEXT_DATA_ALLOCA(s, ptr_out) \
1337 GET_C_STRING_EXT_DATA_ALLOCA (s, FORMAT_CTEXT, ptr_out)
1338
1339
1340
1341 /************************************************************************/
1342 /* */
1343 /* fake charset functions */
1344 /* */
1345 /************************************************************************/
1346
1347 /* used when MULE is not defined, so that Charset-type stuff can still
1348 be done */
1349
1350 #ifndef MULE
1351
1352 #define Vcharset_ascii Qnil
1353
1354 #define CHAR_CHARSET(ch) Vcharset_ascii
1355 #define CHAR_LEADING_BYTE(ch) LEADING_BYTE_ASCII
1356 #define LEADING_BYTE_ASCII 0x80
1357 #define NUM_LEADING_BYTES 1
1358 #define MIN_LEADING_BYTE 0x80
1359 #define CHARSETP(cs) 1
1360 #define CHARSET_BY_LEADING_BYTE(lb) Vcharset_ascii
1361 #define XCHARSET_LEADING_BYTE(cs) LEADING_BYTE_ASCII
1362 #define XCHARSET_GRAPHIC(cs) -1
1363 #define XCHARSET_COLUMNS(cs) 1
1364 #define XCHARSET_DIMENSION(cs) 1
1365 #define REP_BYTES_BY_FIRST_BYTE(fb) 1
1366 #define BREAKUP_CHAR(ch, charset, byte1, byte2) do { \
1367 (charset) = Vcharset_ascii; \
1368 (byte1) = (ch); \
1369 (byte2) = 0; \
1370 } while (0)
1371 #define BYTE_ASCII_P(byte) 1
1372
1373 #endif /* ! MULE */
1374
1375 /************************************************************************/
1376 /* */
1377 /* higher-level buffer-position functions */
1378 /* */
1379 /************************************************************************/
1380
1381 /*----------------------------------------------------------------------*/
1382 /* Settor macros for important positions in a buffer */
1383 /*----------------------------------------------------------------------*/
1384
1385 /* Set beginning of accessible range of buffer. */
1386 #define SET_BOTH_BUF_BEGV(buf, val, bival) \
1387 do \
1388 { \
1389 (buf)->begv = (bival); \
1390 (buf)->bufbegv = (val); \
1391 } while (0)
1392
1393 /* Set end of accessible range of buffer. */
1394 #define SET_BOTH_BUF_ZV(buf, val, bival) \
1395 do \
1396 { \
1397 (buf)->zv = (bival); \
1398 (buf)->bufzv = (val); \
1399 } while (0)
1400
1401 /* Set point. */
1402 /* Since BEGV and ZV are almost never set, it's reasonable to enforce
1403 the restriction that the Bufpos and Bytind values must both be
1404 specified. However, point is set in lots and lots of places. So
1405 we provide the ability to specify both (for efficiency) or just
1406 one. */
1407 #define BOTH_BUF_SET_PT(buf, val, bival) set_buffer_point (buf, val, bival)
1408 #define BI_BUF_SET_PT(buf, bival) \
1409 BOTH_BUF_SET_PT (buf, bytind_to_bufpos (buf, bival), bival)
1410 #define BUF_SET_PT(buf, value) \
1411 BOTH_BUF_SET_PT (buf, value, bufpos_to_bytind (buf, value))
1412
1413
1414 #if 0 /* FSFmacs */
1415 /* These macros exist in FSFmacs because SET_PT() in FSFmacs incorrectly
1416 does too much stuff, such as moving out of invisible extents. */
1417 #define TEMP_SET_PT(position) (temp_set_point ((position), current_buffer))
1418 #define SET_BUF_PT(buf, value) ((buf)->pt = (value))
1419 #endif /* FSFmacs */
1420
1421 /*----------------------------------------------------------------------*/
1422 /* Miscellaneous buffer values */
1423 /*----------------------------------------------------------------------*/
1424
1425 /* Number of characters in buffer */
1426 #define BUF_SIZE(buf) (BUF_Z (buf) - BUF_BEG (buf))
1427
1428 /* Is this buffer narrowed? */
1429 #define BUF_NARROWED(buf) \
1430 ((BI_BUF_BEGV (buf) != BI_BUF_BEG (buf)) || \
1431 (BI_BUF_ZV (buf) != BI_BUF_Z (buf)))
1432
1433 /* Modification count. */
1434 #define BUF_MODIFF(buf) ((buf)->text->modiff)
1435
1436 /* Saved modification count. */
1437 #define BUF_SAVE_MODIFF(buf) ((buf)->text->save_modiff)
1438
1439 /* Face changed. */
1440 #define BUF_FACECHANGE(buf) ((buf)->face_change)
1441
1442 #define POINT_MARKER_P(marker) \
1443 (XMARKER (marker)->buffer != 0 && \
1444 EQ ((marker), XMARKER (marker)->buffer->point_marker))
1445
1446 #define BUF_MARKERS(buf) ((buf)->markers)
1447
1448 /* WARNING:
1449
1450 The new definitions of CEILING_OF() and FLOOR_OF() differ semantically
1451 from the old ones (in FSF Emacs and XEmacs 19.11 and before).
1452 Conversion is as follows:
1453
1454 OLD_BI_CEILING_OF(n) = NEW_BI_CEILING_OF(n) - 1
1455 OLD_BI_FLOOR_OF(n) = NEW_BI_FLOOR_OF(n + 1)
1456
1457 The definitions were changed because the new definitions are more
1458 consistent with the way everything else works in Emacs.
1459 */
1460
1461 /* Properties of CEILING_OF and FLOOR_OF (also apply to BI_ variants):
1462
1463 1) FLOOR_OF (CEILING_OF (n)) = n
1464 CEILING_OF (FLOOR_OF (n)) = n
1465
1466 2) CEILING_OF (n) = n if and only if n = ZV
1467 FLOOR_OF (n) = n if and only if n = BEGV
1468
1469 3) CEILING_OF (CEILING_OF (n)) = ZV
1470 FLOOR_OF (FLOOR_OF (n)) = BEGV
1471
1472 4) The bytes in the regions
1473
1474 [BYTE_ADDRESS (n), BYTE_ADDRESS_BEFORE (CEILING_OF (n))]
1475
1476 and
1477
1478 [BYTE_ADDRESS (FLOOR_OF (n)), BYTE_ADDRESS_BEFORE (n)]
1479
1480 are contiguous.
1481 */
1482
1483
1484 /* Return the maximum index in the buffer it is safe to scan forwards
1485 past N to. This is used to prevent buffer scans from running into
1486 the gap (e.g. search.c). All characters between N and CEILING_OF(N)
1487 are located contiguous in memory. Note that the character *at*
1488 CEILING_OF(N) is not contiguous in memory. */
1489 #define BI_BUF_CEILING_OF(b, n) \
1490 ((n) < (b)->text->gpt && (b)->text->gpt < BI_BUF_ZV (b) ? \
1491 (b)->text->gpt : BI_BUF_ZV (b))
1492 #define BUF_CEILING_OF(b, n) \
1493 bytind_to_bufpos (b, BI_BUF_CEILING_OF (b, bufpos_to_bytind (b, n)))
1494
1495 /* Return the minimum index in the buffer it is safe to scan backwards
1496 past N to. All characters between FLOOR_OF(N) and N are located
1497 contiguous in memory. Note that the character *at* N may not be
1498 contiguous in memory. */
1499 #define BI_BUF_FLOOR_OF(b, n) \
1500 (BI_BUF_BEGV (b) < (b)->text->gpt && (b)->text->gpt < (n) ? \
1501 (b)->text->gpt : BI_BUF_BEGV (b))
1502 #define BUF_FLOOR_OF(b, n) \
1503 bytind_to_bufpos (b, BI_BUF_FLOOR_OF (b, bufpos_to_bytind (b, n)))
1504
1505 #define BI_BUF_CEILING_OF_IGNORE_ACCESSIBLE(b, n) \
1506 ((n) < (b)->text->gpt && (b)->text->gpt < BI_BUF_Z (b) ? \
1507 (b)->text->gpt : BI_BUF_Z (b))
1508 #define BUF_CEILING_OF_IGNORE_ACCESSIBLE(b, n) \
1509 bytind_to_bufpos \
1510 (b, BI_BUF_CEILING_OF_IGNORE_ACCESSIBLE (b, bufpos_to_bytind (b, n)))
1511
1512 #define BI_BUF_FLOOR_OF_IGNORE_ACCESSIBLE(b, n) \
1513 (BI_BUF_BEG (b) < (b)->text->gpt && (b)->text->gpt < (n) ? \
1514 (b)->text->gpt : BI_BUF_BEG (b))
1515 #define BUF_FLOOR_OF_IGNORE_ACCESSIBLE(b, n) \
1516 bytind_to_bufpos \
1517 (b, BI_BUF_FLOOR_OF_IGNORE_ACCESSIBLE (b, bufpos_to_bytind (b, n)))
1518
1519
1520 extern struct buffer *current_buffer;
1521
1522 /* This is the initial (startup) directory, as used for the *scratch* buffer.
1523 We're making this a global to make others aware of the startup directory.
1524 `initial_directory' is stored in external format.
1525 */
1526 extern char initial_directory[];
1527 extern void init_initial_directory (void); /* initialize initial_directory */
1528
1529 EXFUN (Fbuffer_disable_undo, 1);
1530 EXFUN (Fbuffer_modified_p, 1);
1531 EXFUN (Fbuffer_name, 1);
1532 EXFUN (Fcurrent_buffer, 0);
1533 EXFUN (Ferase_buffer, 1);
1534 EXFUN (Fget_buffer, 1);
1535 EXFUN (Fget_buffer_create, 1);
1536 EXFUN (Fget_file_buffer, 1);
1537 EXFUN (Fkill_buffer, 1);
1538 EXFUN (Fother_buffer, 3);
1539 EXFUN (Frecord_buffer, 1);
1540 EXFUN (Fset_buffer, 1);
1541 EXFUN (Fset_buffer_modified_p, 2);
1542
1543 extern Lisp_Object QSscratch, Qafter_change_function, Qafter_change_functions;
1544 extern Lisp_Object Qbefore_change_function, Qbefore_change_functions;
1545 extern Lisp_Object Qbuffer_or_string_p, Qdefault_directory, Qfirst_change_hook;
1546 extern Lisp_Object Qpermanent_local, Vafter_change_function;
1547 extern Lisp_Object Vafter_change_functions, Vbefore_change_function;
1548 extern Lisp_Object Vbefore_change_functions, Vbuffer_alist, Vbuffer_defaults;
1549 extern Lisp_Object Vinhibit_read_only, Vtransient_mark_mode;
1550
1551 /* This structure marks which slots in a buffer have corresponding
1552 default values in Vbuffer_defaults.
1553 Each such slot has a nonzero value in this structure.
1554 The value has only one nonzero bit.
1555
1556 When a buffer has its own local value for a slot,
1557 the bit for that slot (found in the same slot in this structure)
1558 is turned on in the buffer's local_var_flags slot.
1559
1560 If a slot in this structure is zero, then even though there may
1561 be a DEFVAR_BUFFER_LOCAL for the slot, there is no default value for it;
1562 and the corresponding slot in Vbuffer_defaults is not used. */
1563
1564 extern struct buffer buffer_local_flags;
1565
1566
1567 /* Allocation of buffer data. */
1568
1569 #ifdef REL_ALLOC
1570
1571 char *r_alloc (unsigned char **, unsigned long);
1572 char *r_re_alloc (unsigned char **, unsigned long);
1573 void r_alloc_free (unsigned char **);
1574
1575 #define BUFFER_ALLOC(data, size) \
1576 ((Bufbyte *) r_alloc ((unsigned char **) &data, (size) * sizeof(Bufbyte)))
1577 #define BUFFER_REALLOC(data, size) \
1578 ((Bufbyte *) r_re_alloc ((unsigned char **) &data, (size) * sizeof(Bufbyte)))
1579 #define BUFFER_FREE(data) r_alloc_free ((unsigned char **) &(data))
1580 #define R_ALLOC_DECLARE(var,data) r_alloc_declare (&(var), data)
1581
1582 #else /* !REL_ALLOC */
1583
1584 #define BUFFER_ALLOC(data,size)\
1585 (data = xnew_array (Bufbyte, size))
1586 #define BUFFER_REALLOC(data,size)\
1587 ((Bufbyte *) xrealloc (data, (size) * sizeof(Bufbyte)))
1588 /* Avoid excess parentheses, or syntax errors may rear their heads. */
1589 #define BUFFER_FREE(data) xfree (data)
1590 #define R_ALLOC_DECLARE(var,data)
1591
1592 #endif /* !REL_ALLOC */
1593
1594 extern Lisp_Object Vbuffer_alist;
1595 void set_buffer_internal (struct buffer *b);
1596 struct buffer *decode_buffer (Lisp_Object buffer, int allow_string);
1597
1598 /* from editfns.c */
1599 void widen_buffer (struct buffer *b, int no_clip);
1600 int beginning_of_line_p (struct buffer *b, Bufpos pt);
1601
1602 /* from insdel.c */
1603 void set_buffer_point (struct buffer *buf, Bufpos pos, Bytind bipos);
1604 void find_charsets_in_bufbyte_string (unsigned char *charsets,
1605 CONST Bufbyte *str,
1606 Bytecount len);
1607 void find_charsets_in_emchar_string (unsigned char *charsets,
1608 CONST Emchar *str,
1609 Charcount len);
1610 int bufbyte_string_displayed_columns (CONST Bufbyte *str, Bytecount len);
1611 int emchar_string_displayed_columns (CONST Emchar *str, Charcount len);
1612 void convert_bufbyte_string_into_emchar_dynarr (CONST Bufbyte *str,
1613 Bytecount len,
1614 Emchar_dynarr *dyn);
1615 Charcount convert_bufbyte_string_into_emchar_string (CONST Bufbyte *str,
1616 Bytecount len,
1617 Emchar *arr);
1618 void convert_emchar_string_into_bufbyte_dynarr (Emchar *arr, int nels,
1619 Bufbyte_dynarr *dyn);
1620 Bufbyte *convert_emchar_string_into_malloced_string (Emchar *arr, int nels,
1621 Bytecount *len_out);
1622 /* from marker.c */
1623 void init_buffer_markers (struct buffer *b);
1624 void uninit_buffer_markers (struct buffer *b);
1625
1626 /* flags for get_buffer_pos_char(), get_buffer_range_char(), etc. */
1627 /* At most one of GB_COERCE_RANGE and GB_NO_ERROR_IF_BAD should be
1628 specified. At most one of GB_NEGATIVE_FROM_END and GB_NO_ERROR_IF_BAD
1629 should be specified. */
1630
1631 #define GB_ALLOW_PAST_ACCESSIBLE (1 << 0)
1632 #define GB_ALLOW_NIL (1 << 1)
1633 #define GB_CHECK_ORDER (1 << 2)
1634 #define GB_COERCE_RANGE (1 << 3)
1635 #define GB_NO_ERROR_IF_BAD (1 << 4)
1636 #define GB_NEGATIVE_FROM_END (1 << 5)
1637 #define GB_HISTORICAL_STRING_BEHAVIOR (GB_NEGATIVE_FROM_END | GB_ALLOW_NIL)
1638
1639 Bufpos get_buffer_pos_char (struct buffer *b, Lisp_Object pos,
1640 unsigned int flags);
1641 Bytind get_buffer_pos_byte (struct buffer *b, Lisp_Object pos,
1642 unsigned int flags);
1643 void get_buffer_range_char (struct buffer *b, Lisp_Object from, Lisp_Object to,
1644 Bufpos *from_out, Bufpos *to_out,
1645 unsigned int flags);
1646 void get_buffer_range_byte (struct buffer *b, Lisp_Object from, Lisp_Object to,
1647 Bytind *from_out, Bytind *to_out,
1648 unsigned int flags);
1649 Charcount get_string_pos_char (Lisp_Object string, Lisp_Object pos,
1650 unsigned int flags);
1651 Bytecount get_string_pos_byte (Lisp_Object string, Lisp_Object pos,
1652 unsigned int flags);
1653 void get_string_range_char (Lisp_Object string, Lisp_Object from,
1654 Lisp_Object to, Charcount *from_out,
1655 Charcount *to_out, unsigned int flags);
1656 void get_string_range_byte (Lisp_Object string, Lisp_Object from,
1657 Lisp_Object to, Bytecount *from_out,
1658 Bytecount *to_out, unsigned int flags);
1659 Bufpos get_buffer_or_string_pos_char (Lisp_Object object, Lisp_Object pos,
1660 unsigned int flags);
1661 Bytind get_buffer_or_string_pos_byte (Lisp_Object object, Lisp_Object pos,
1662 unsigned int flags);
1663 void get_buffer_or_string_range_char (Lisp_Object object, Lisp_Object from,
1664 Lisp_Object to, Bufpos *from_out,
1665 Bufpos *to_out, unsigned int flags);
1666 void get_buffer_or_string_range_byte (Lisp_Object object, Lisp_Object from,
1667 Lisp_Object to, Bytind *from_out,
1668 Bytind *to_out, unsigned int flags);
1669 Bufpos buffer_or_string_accessible_begin_char (Lisp_Object object);
1670 Bufpos buffer_or_string_accessible_end_char (Lisp_Object object);
1671 Bytind buffer_or_string_accessible_begin_byte (Lisp_Object object);
1672 Bytind buffer_or_string_accessible_end_byte (Lisp_Object object);
1673 Bufpos buffer_or_string_absolute_begin_char (Lisp_Object object);
1674 Bufpos buffer_or_string_absolute_end_char (Lisp_Object object);
1675 Bytind buffer_or_string_absolute_begin_byte (Lisp_Object object);
1676 Bytind buffer_or_string_absolute_end_byte (Lisp_Object object);
1677 void record_buffer (Lisp_Object buf);
1678 Lisp_Object get_buffer (Lisp_Object name,
1679 int error_if_deleted_or_does_not_exist);
1680 int map_over_sharing_buffers (struct buffer *buf,
1681 int (*mapfun) (struct buffer *buf,
1682 void *closure),
1683 void *closure);
1684
1685
1686 /************************************************************************/
1687 /* Case conversion */
1688 /************************************************************************/
1689
1690 /* A "trt" table is a mapping from characters to other characters,
1691 typically used to convert between uppercase and lowercase. For
1692 compatibility reasons, trt tables are currently in the form of
1693 a Lisp string of 256 characters, specifying the conversion for each
1694 of the first 256 Emacs characters (i.e. the 256 Latin-1 characters).
1695 This should be generalized at some point to support conversions for
1696 all of the allowable Mule characters.
1697 */
1698
1699 /* The _1 macros are named as such because they assume that you have
1700 already guaranteed that the character values are all in the range
1701 0 - 255. Bad lossage will happen otherwise. */
1702
1703 # define MAKE_TRT_TABLE() Fmake_string (make_int (256), make_char (0))
1704 # define TRT_TABLE_AS_STRING(table) XSTRING_DATA (table)
1705 # define TRT_TABLE_CHAR_1(table, ch) \
1706 string_char (XSTRING (table), (Charcount) ch)
1707 # define SET_TRT_TABLE_CHAR_1(table, ch1, ch2) \
1708 set_string_char (XSTRING (table), (Charcount) ch1, ch2)
1709
1710 #ifdef MULE
1711 # define MAKE_MIRROR_TRT_TABLE() make_opaque (256, 0)
1712 # define MIRROR_TRT_TABLE_AS_STRING(table) ((Bufbyte *) XOPAQUE_DATA (table))
1713 # define MIRROR_TRT_TABLE_CHAR_1(table, ch) \
1714 ((Emchar) (MIRROR_TRT_TABLE_AS_STRING (table)[ch]))
1715 # define SET_MIRROR_TRT_TABLE_CHAR_1(table, ch1, ch2) \
1716 (MIRROR_TRT_TABLE_AS_STRING (table)[ch1] = (Bufbyte) (ch2))
1717 #endif
1718
1719 # define IN_TRT_TABLE_DOMAIN(c) (((EMACS_UINT) (c)) <= 255)
1720
1721 #ifdef MULE
1722 #define MIRROR_DOWNCASE_TABLE_AS_STRING(buf) \
1723 MIRROR_TRT_TABLE_AS_STRING (buf->mirror_downcase_table)
1724 #define MIRROR_UPCASE_TABLE_AS_STRING(buf) \
1725 MIRROR_TRT_TABLE_AS_STRING (buf->mirror_upcase_table)
1726 #define MIRROR_CANON_TABLE_AS_STRING(buf) \
1727 MIRROR_TRT_TABLE_AS_STRING (buf->mirror_case_canon_table)
1728 #define MIRROR_EQV_TABLE_AS_STRING(buf) \
1729 MIRROR_TRT_TABLE_AS_STRING (buf->mirror_case_eqv_table)
1730 #else
1731 #define MIRROR_DOWNCASE_TABLE_AS_STRING(buf) \
1732 TRT_TABLE_AS_STRING (buf->downcase_table)
1733 #define MIRROR_UPCASE_TABLE_AS_STRING(buf) \
1734 TRT_TABLE_AS_STRING (buf->upcase_table)
1735 #define MIRROR_CANON_TABLE_AS_STRING(buf) \
1736 TRT_TABLE_AS_STRING (buf->case_canon_table)
1737 #define MIRROR_EQV_TABLE_AS_STRING(buf) \
1738 TRT_TABLE_AS_STRING (buf->case_eqv_table)
1739 #endif
1740
1741 INLINE Emchar TRT_TABLE_OF (Lisp_Object trt, Emchar c);
1742 INLINE Emchar
1743 TRT_TABLE_OF (Lisp_Object trt, Emchar c)
1744 {
1745 return IN_TRT_TABLE_DOMAIN (c) ? TRT_TABLE_CHAR_1 (trt, c) : c;
1746 }
1747
1748 /* Macros used below. */
1749 #define DOWNCASE_TABLE_OF(buf, c) TRT_TABLE_OF (buf->downcase_table, c)
1750 #define UPCASE_TABLE_OF(buf, c) TRT_TABLE_OF (buf->upcase_table, c)
1751
1752 /* 1 if CH is upper case. */
1753
1754 INLINE int UPPERCASEP (struct buffer *buf, Emchar ch);
1755 INLINE int
1756 UPPERCASEP (struct buffer *buf, Emchar ch)
1757 {
1758 return DOWNCASE_TABLE_OF (buf, ch) != ch;
1759 }
1760
1761 /* 1 if CH is lower case. */
1762
1763 INLINE int LOWERCASEP (struct buffer *buf, Emchar ch);
1764 INLINE int
1765 LOWERCASEP (struct buffer *buf, Emchar ch)
1766 {
1767 return (UPCASE_TABLE_OF (buf, ch) != ch &&
1768 DOWNCASE_TABLE_OF (buf, ch) == ch);
1769 }
1770
1771 /* 1 if CH is neither upper nor lower case. */
1772
1773 INLINE int NOCASEP (struct buffer *buf, Emchar ch);
1774 INLINE int
1775 NOCASEP (struct buffer *buf, Emchar ch)
1776 {
1777 return UPCASE_TABLE_OF (buf, ch) == ch;
1778 }
1779
1780 /* Upcase a character, or make no change if that cannot be done. */
1781
1782 INLINE Emchar UPCASE (struct buffer *buf, Emchar ch);
1783 INLINE Emchar
1784 UPCASE (struct buffer *buf, Emchar ch)
1785 {
1786 return (DOWNCASE_TABLE_OF (buf, ch) == ch) ? UPCASE_TABLE_OF (buf, ch) : ch;
1787 }
1788
1789 /* Upcase a character known to be not upper case. Unused. */
1790
1791 #define UPCASE1(buf, ch) UPCASE_TABLE_OF (buf, ch)
1792
1793 /* Downcase a character, or make no change if that cannot be done. */
1794
1795 #define DOWNCASE(buf, ch) DOWNCASE_TABLE_OF (buf, ch)
1796
1797 #endif /* _XEMACS_BUFFER_H_ */