Mercurial > hg > xemacs-beta
comparison src/alloc.c @ 428:3ecd8885ac67 r21-2-22
Import from CVS: tag r21-2-22
author | cvs |
---|---|
date | Mon, 13 Aug 2007 11:28:15 +0200 |
parents | |
children | 84b14dcb0985 |
comparison
equal
deleted
inserted
replaced
427:0a0253eac470 | 428:3ecd8885ac67 |
---|---|
1 /* Storage allocation and gc for XEmacs Lisp interpreter. | |
2 Copyright (C) 1985-1998 Free Software Foundation, Inc. | |
3 Copyright (C) 1995 Sun Microsystems, Inc. | |
4 Copyright (C) 1995, 1996 Ben Wing. | |
5 | |
6 This file is part of XEmacs. | |
7 | |
8 XEmacs is free software; you can redistribute it and/or modify it | |
9 under the terms of the GNU General Public License as published by the | |
10 Free Software Foundation; either version 2, or (at your option) any | |
11 later version. | |
12 | |
13 XEmacs is distributed in the hope that it will be useful, but WITHOUT | |
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |
16 for more details. | |
17 | |
18 You should have received a copy of the GNU General Public License | |
19 along with XEmacs; see the file COPYING. If not, write to | |
20 the Free Software Foundation, Inc., 59 Temple Place - Suite 330, | |
21 Boston, MA 02111-1307, USA. */ | |
22 | |
23 /* Synched up with: FSF 19.28, Mule 2.0. Substantially different from | |
24 FSF. */ | |
25 | |
26 /* Authorship: | |
27 | |
28 FSF: Original version; a long time ago. | |
29 Mly: Significantly rewritten to use new 3-bit tags and | |
30 nicely abstracted object definitions, for 19.8. | |
31 JWZ: Improved code to keep track of purespace usage and | |
32 issue nice purespace and GC stats. | |
33 Ben Wing: Cleaned up frob-block lrecord code, added error-checking | |
34 and various changes for Mule, for 19.12. | |
35 Added bit vectors for 19.13. | |
36 Added lcrecord lists for 19.14. | |
37 slb: Lots of work on the purification and dump time code. | |
38 Synched Doug Lea malloc support from Emacs 20.2. | |
39 og: Killed the purespace. Portable dumper. | |
40 */ | |
41 | |
42 #include <config.h> | |
43 #include "lisp.h" | |
44 | |
45 #include "backtrace.h" | |
46 #include "buffer.h" | |
47 #include "bytecode.h" | |
48 #include "chartab.h" | |
49 #include "device.h" | |
50 #include "elhash.h" | |
51 #include "events.h" | |
52 #include "extents.h" | |
53 #include "frame.h" | |
54 #include "glyphs.h" | |
55 #include "opaque.h" | |
56 #include "redisplay.h" | |
57 #include "specifier.h" | |
58 #include "sysfile.h" | |
59 #include "window.h" | |
60 #include "console-stream.h" | |
61 | |
62 #ifdef DOUG_LEA_MALLOC | |
63 #include <malloc.h> | |
64 #endif | |
65 | |
66 #ifdef HAVE_MMAP | |
67 #include <unistd.h> | |
68 #include <sys/mman.h> | |
69 #endif | |
70 | |
71 #ifdef PDUMP | |
72 typedef struct | |
73 { | |
74 const struct lrecord_description *desc; | |
75 int count; | |
76 } pdump_reloc_table; | |
77 | |
78 static char *pdump_rt_list = 0; | |
79 #endif | |
80 | |
81 EXFUN (Fgarbage_collect, 0); | |
82 | |
83 /* Return the true size of a struct with a variable-length array field. */ | |
84 #define STRETCHY_STRUCT_SIZEOF(stretchy_struct_type, \ | |
85 stretchy_array_field, \ | |
86 stretchy_array_length) \ | |
87 (offsetof (stretchy_struct_type, stretchy_array_field) + \ | |
88 (offsetof (stretchy_struct_type, stretchy_array_field[1]) - \ | |
89 offsetof (stretchy_struct_type, stretchy_array_field[0])) * \ | |
90 (stretchy_array_length)) | |
91 | |
92 #if 0 /* this is _way_ too slow to be part of the standard debug options */ | |
93 #if defined(DEBUG_XEMACS) && defined(MULE) | |
94 #define VERIFY_STRING_CHARS_INTEGRITY | |
95 #endif | |
96 #endif | |
97 | |
98 /* Define this to use malloc/free with no freelist for all datatypes, | |
99 the hope being that some debugging tools may help detect | |
100 freed memory references */ | |
101 #ifdef USE_DEBUG_MALLOC /* Taking the above comment at face value -slb */ | |
102 #include <dmalloc.h> | |
103 #define ALLOC_NO_POOLS | |
104 #endif | |
105 | |
106 #ifdef DEBUG_XEMACS | |
107 static int debug_allocation; | |
108 static int debug_allocation_backtrace_length; | |
109 #endif | |
110 | |
111 /* Number of bytes of consing done since the last gc */ | |
112 EMACS_INT consing_since_gc; | |
113 #define INCREMENT_CONS_COUNTER_1(size) (consing_since_gc += (size)) | |
114 | |
115 #define debug_allocation_backtrace() \ | |
116 do { \ | |
117 if (debug_allocation_backtrace_length > 0) \ | |
118 debug_short_backtrace (debug_allocation_backtrace_length); \ | |
119 } while (0) | |
120 | |
121 #ifdef DEBUG_XEMACS | |
122 #define INCREMENT_CONS_COUNTER(foosize, type) \ | |
123 do { \ | |
124 if (debug_allocation) \ | |
125 { \ | |
126 stderr_out ("allocating %s (size %ld)\n", type, (long)foosize); \ | |
127 debug_allocation_backtrace (); \ | |
128 } \ | |
129 INCREMENT_CONS_COUNTER_1 (foosize); \ | |
130 } while (0) | |
131 #define NOSEEUM_INCREMENT_CONS_COUNTER(foosize, type) \ | |
132 do { \ | |
133 if (debug_allocation > 1) \ | |
134 { \ | |
135 stderr_out ("allocating noseeum %s (size %ld)\n", type, (long)foosize); \ | |
136 debug_allocation_backtrace (); \ | |
137 } \ | |
138 INCREMENT_CONS_COUNTER_1 (foosize); \ | |
139 } while (0) | |
140 #else | |
141 #define INCREMENT_CONS_COUNTER(size, type) INCREMENT_CONS_COUNTER_1 (size) | |
142 #define NOSEEUM_INCREMENT_CONS_COUNTER(size, type) \ | |
143 INCREMENT_CONS_COUNTER_1 (size) | |
144 #endif | |
145 | |
146 #define DECREMENT_CONS_COUNTER(size) do { \ | |
147 consing_since_gc -= (size); \ | |
148 if (consing_since_gc < 0) \ | |
149 consing_since_gc = 0; \ | |
150 } while (0) | |
151 | |
152 /* Number of bytes of consing since gc before another gc should be done. */ | |
153 EMACS_INT gc_cons_threshold; | |
154 | |
155 /* Nonzero during gc */ | |
156 int gc_in_progress; | |
157 | |
158 /* Number of times GC has happened at this level or below. | |
159 * Level 0 is most volatile, contrary to usual convention. | |
160 * (Of course, there's only one level at present) */ | |
161 EMACS_INT gc_generation_number[1]; | |
162 | |
163 /* This is just for use by the printer, to allow things to print uniquely */ | |
164 static int lrecord_uid_counter; | |
165 | |
166 /* Nonzero when calling certain hooks or doing other things where | |
167 a GC would be bad */ | |
168 int gc_currently_forbidden; | |
169 | |
170 /* Hooks. */ | |
171 Lisp_Object Vpre_gc_hook, Qpre_gc_hook; | |
172 Lisp_Object Vpost_gc_hook, Qpost_gc_hook; | |
173 | |
174 /* "Garbage collecting" */ | |
175 Lisp_Object Vgc_message; | |
176 Lisp_Object Vgc_pointer_glyph; | |
177 static CONST char gc_default_message[] = "Garbage collecting"; | |
178 Lisp_Object Qgarbage_collecting; | |
179 | |
180 #ifndef VIRT_ADDR_VARIES | |
181 extern | |
182 #endif /* VIRT_ADDR_VARIES */ | |
183 EMACS_INT malloc_sbrk_used; | |
184 | |
185 #ifndef VIRT_ADDR_VARIES | |
186 extern | |
187 #endif /* VIRT_ADDR_VARIES */ | |
188 EMACS_INT malloc_sbrk_unused; | |
189 | |
190 /* Non-zero means we're in the process of doing the dump */ | |
191 int purify_flag; | |
192 | |
193 #ifdef ERROR_CHECK_TYPECHECK | |
194 | |
195 Error_behavior ERROR_ME, ERROR_ME_NOT, ERROR_ME_WARN; | |
196 | |
197 #endif | |
198 | |
199 int | |
200 c_readonly (Lisp_Object obj) | |
201 { | |
202 return POINTER_TYPE_P (XTYPE (obj)) && C_READONLY (obj); | |
203 } | |
204 | |
205 int | |
206 lisp_readonly (Lisp_Object obj) | |
207 { | |
208 return POINTER_TYPE_P (XTYPE (obj)) && LISP_READONLY (obj); | |
209 } | |
210 | |
211 | |
212 /* Maximum amount of C stack to save when a GC happens. */ | |
213 | |
214 #ifndef MAX_SAVE_STACK | |
215 #define MAX_SAVE_STACK 0 /* 16000 */ | |
216 #endif | |
217 | |
218 /* Non-zero means ignore malloc warnings. Set during initialization. */ | |
219 int ignore_malloc_warnings; | |
220 | |
221 | |
222 static void *breathing_space; | |
223 | |
224 void | |
225 release_breathing_space (void) | |
226 { | |
227 if (breathing_space) | |
228 { | |
229 void *tmp = breathing_space; | |
230 breathing_space = 0; | |
231 xfree (tmp); | |
232 } | |
233 } | |
234 | |
235 /* malloc calls this if it finds we are near exhausting storage */ | |
236 void | |
237 malloc_warning (CONST char *str) | |
238 { | |
239 if (ignore_malloc_warnings) | |
240 return; | |
241 | |
242 warn_when_safe | |
243 (Qmemory, Qcritical, | |
244 "%s\n" | |
245 "Killing some buffers may delay running out of memory.\n" | |
246 "However, certainly by the time you receive the 95%% warning,\n" | |
247 "you should clean up, kill this Emacs, and start a new one.", | |
248 str); | |
249 } | |
250 | |
251 /* Called if malloc returns zero */ | |
252 DOESNT_RETURN | |
253 memory_full (void) | |
254 { | |
255 /* Force a GC next time eval is called. | |
256 It's better to loop garbage-collecting (we might reclaim enough | |
257 to win) than to loop beeping and barfing "Memory exhausted" | |
258 */ | |
259 consing_since_gc = gc_cons_threshold + 1; | |
260 release_breathing_space (); | |
261 | |
262 /* Flush some histories which might conceivably contain garbalogical | |
263 inhibitors. */ | |
264 if (!NILP (Fboundp (Qvalues))) | |
265 Fset (Qvalues, Qnil); | |
266 Vcommand_history = Qnil; | |
267 | |
268 error ("Memory exhausted"); | |
269 } | |
270 | |
271 /* like malloc and realloc but check for no memory left, and block input. */ | |
272 | |
273 #ifdef xmalloc | |
274 #undef xmalloc | |
275 #endif | |
276 | |
277 void * | |
278 xmalloc (size_t size) | |
279 { | |
280 void *val = malloc (size); | |
281 | |
282 if (!val && (size != 0)) memory_full (); | |
283 return val; | |
284 } | |
285 | |
286 #ifdef xcalloc | |
287 #undef xcalloc | |
288 #endif | |
289 | |
290 static void * | |
291 xcalloc (size_t nelem, size_t elsize) | |
292 { | |
293 void *val = calloc (nelem, elsize); | |
294 | |
295 if (!val && (nelem != 0)) memory_full (); | |
296 return val; | |
297 } | |
298 | |
299 void * | |
300 xmalloc_and_zero (size_t size) | |
301 { | |
302 return xcalloc (size, sizeof (char)); | |
303 } | |
304 | |
305 #ifdef xrealloc | |
306 #undef xrealloc | |
307 #endif | |
308 | |
309 void * | |
310 xrealloc (void *block, size_t size) | |
311 { | |
312 /* We must call malloc explicitly when BLOCK is 0, since some | |
313 reallocs don't do this. */ | |
314 void *val = block ? realloc (block, size) : malloc (size); | |
315 | |
316 if (!val && (size != 0)) memory_full (); | |
317 return val; | |
318 } | |
319 | |
320 void | |
321 #ifdef ERROR_CHECK_MALLOC | |
322 xfree_1 (void *block) | |
323 #else | |
324 xfree (void *block) | |
325 #endif | |
326 { | |
327 #ifdef ERROR_CHECK_MALLOC | |
328 /* Unbelievably, calling free() on 0xDEADBEEF doesn't cause an | |
329 error until much later on for many system mallocs, such as | |
330 the one that comes with Solaris 2.3. FMH!! */ | |
331 assert (block != (void *) 0xDEADBEEF); | |
332 assert (block); | |
333 #endif /* ERROR_CHECK_MALLOC */ | |
334 free (block); | |
335 } | |
336 | |
337 #ifdef ERROR_CHECK_GC | |
338 | |
339 #if SIZEOF_INT == 4 | |
340 typedef unsigned int four_byte_t; | |
341 #elif SIZEOF_LONG == 4 | |
342 typedef unsigned long four_byte_t; | |
343 #elif SIZEOF_SHORT == 4 | |
344 typedef unsigned short four_byte_t; | |
345 #else | |
346 What kind of strange-ass system are we running on? | |
347 #endif | |
348 | |
349 static void | |
350 deadbeef_memory (void *ptr, size_t size) | |
351 { | |
352 four_byte_t *ptr4 = (four_byte_t *) ptr; | |
353 size_t beefs = size >> 2; | |
354 | |
355 /* In practice, size will always be a multiple of four. */ | |
356 while (beefs--) | |
357 (*ptr4++) = 0xDEADBEEF; | |
358 } | |
359 | |
360 #else /* !ERROR_CHECK_GC */ | |
361 | |
362 | |
363 #define deadbeef_memory(ptr, size) | |
364 | |
365 #endif /* !ERROR_CHECK_GC */ | |
366 | |
367 #ifdef xstrdup | |
368 #undef xstrdup | |
369 #endif | |
370 | |
371 char * | |
372 xstrdup (CONST char *str) | |
373 { | |
374 int len = strlen (str) + 1; /* for stupid terminating 0 */ | |
375 | |
376 void *val = xmalloc (len); | |
377 if (val == 0) return 0; | |
378 return (char *) memcpy (val, str, len); | |
379 } | |
380 | |
381 #ifdef NEED_STRDUP | |
382 char * | |
383 strdup (CONST char *s) | |
384 { | |
385 return xstrdup (s); | |
386 } | |
387 #endif /* NEED_STRDUP */ | |
388 | |
389 | |
390 static void * | |
391 allocate_lisp_storage (size_t size) | |
392 { | |
393 return xmalloc (size); | |
394 } | |
395 | |
396 | |
397 /* lrecords are chained together through their "next.v" field. | |
398 * After doing the mark phase, the GC will walk this linked | |
399 * list and free any record which hasn't been marked. | |
400 */ | |
401 static struct lcrecord_header *all_lcrecords; | |
402 | |
403 void * | |
404 alloc_lcrecord (size_t size, CONST struct lrecord_implementation *implementation) | |
405 { | |
406 struct lcrecord_header *lcheader; | |
407 | |
408 #ifdef ERROR_CHECK_GC | |
409 if (implementation->static_size == 0) | |
410 assert (implementation->size_in_bytes_method); | |
411 else | |
412 assert (implementation->static_size == size); | |
413 #endif | |
414 | |
415 lcheader = (struct lcrecord_header *) allocate_lisp_storage (size); | |
416 set_lheader_implementation (&(lcheader->lheader), implementation); | |
417 lcheader->next = all_lcrecords; | |
418 #if 1 /* mly prefers to see small ID numbers */ | |
419 lcheader->uid = lrecord_uid_counter++; | |
420 #else /* jwz prefers to see real addrs */ | |
421 lcheader->uid = (int) &lcheader; | |
422 #endif | |
423 lcheader->free = 0; | |
424 all_lcrecords = lcheader; | |
425 INCREMENT_CONS_COUNTER (size, implementation->name); | |
426 return lcheader; | |
427 } | |
428 | |
429 #if 0 /* Presently unused */ | |
430 /* Very, very poor man's EGC? | |
431 * This may be slow and thrash pages all over the place. | |
432 * Only call it if you really feel you must (and if the | |
433 * lrecord was fairly recently allocated). | |
434 * Otherwise, just let the GC do its job -- that's what it's there for | |
435 */ | |
436 void | |
437 free_lcrecord (struct lcrecord_header *lcrecord) | |
438 { | |
439 if (all_lcrecords == lcrecord) | |
440 { | |
441 all_lcrecords = lcrecord->next; | |
442 } | |
443 else | |
444 { | |
445 struct lrecord_header *header = all_lcrecords; | |
446 for (;;) | |
447 { | |
448 struct lrecord_header *next = header->next; | |
449 if (next == lcrecord) | |
450 { | |
451 header->next = lrecord->next; | |
452 break; | |
453 } | |
454 else if (next == 0) | |
455 abort (); | |
456 else | |
457 header = next; | |
458 } | |
459 } | |
460 if (lrecord->implementation->finalizer) | |
461 lrecord->implementation->finalizer (lrecord, 0); | |
462 xfree (lrecord); | |
463 return; | |
464 } | |
465 #endif /* Unused */ | |
466 | |
467 | |
468 static void | |
469 disksave_object_finalization_1 (void) | |
470 { | |
471 struct lcrecord_header *header; | |
472 | |
473 for (header = all_lcrecords; header; header = header->next) | |
474 { | |
475 if (LHEADER_IMPLEMENTATION(&header->lheader)->finalizer && | |
476 !header->free) | |
477 ((LHEADER_IMPLEMENTATION(&header->lheader)->finalizer) | |
478 (header, 1)); | |
479 } | |
480 } | |
481 | |
482 /* Semi-kludge -- lrecord_symbol_value_forward objects get stuck | |
483 in CONST space and you get SEGV's if you attempt to mark them. | |
484 This sits in lheader->implementation->marker. */ | |
485 | |
486 Lisp_Object | |
487 this_one_is_unmarkable (Lisp_Object obj) | |
488 { | |
489 abort (); | |
490 return Qnil; | |
491 } | |
492 | |
493 | |
494 /************************************************************************/ | |
495 /* Debugger support */ | |
496 /************************************************************************/ | |
497 /* Give gdb/dbx enough information to decode Lisp Objects. We make | |
498 sure certain symbols are always defined, so gdb doesn't complain | |
499 about expressions in src/gdbinit. See src/gdbinit or src/dbxrc to | |
500 see how this is used. */ | |
501 | |
502 EMACS_UINT dbg_valmask = ((1UL << VALBITS) - 1) << GCBITS; | |
503 EMACS_UINT dbg_typemask = (1UL << GCTYPEBITS) - 1; | |
504 | |
505 #ifdef USE_UNION_TYPE | |
506 unsigned char dbg_USE_UNION_TYPE = 1; | |
507 #else | |
508 unsigned char dbg_USE_UNION_TYPE = 0; | |
509 #endif | |
510 | |
511 unsigned char Lisp_Type_Int = 100; | |
512 unsigned char Lisp_Type_Cons = 101; | |
513 unsigned char Lisp_Type_String = 102; | |
514 unsigned char Lisp_Type_Vector = 103; | |
515 unsigned char Lisp_Type_Symbol = 104; | |
516 | |
517 #ifndef MULE | |
518 unsigned char lrecord_char_table_entry; | |
519 unsigned char lrecord_charset; | |
520 #ifndef FILE_CODING | |
521 unsigned char lrecord_coding_system; | |
522 #endif | |
523 #endif | |
524 | |
525 #ifndef HAVE_TOOLBARS | |
526 unsigned char lrecord_toolbar_button; | |
527 #endif | |
528 | |
529 #ifndef TOOLTALK | |
530 unsigned char lrecord_tooltalk_message; | |
531 unsigned char lrecord_tooltalk_pattern; | |
532 #endif | |
533 | |
534 #ifndef HAVE_DATABASE | |
535 unsigned char lrecord_database; | |
536 #endif | |
537 | |
538 unsigned char dbg_valbits = VALBITS; | |
539 unsigned char dbg_gctypebits = GCTYPEBITS; | |
540 | |
541 /* Macros turned into functions for ease of debugging. | |
542 Debuggers don't know about macros! */ | |
543 int dbg_eq (Lisp_Object obj1, Lisp_Object obj2); | |
544 int | |
545 dbg_eq (Lisp_Object obj1, Lisp_Object obj2) | |
546 { | |
547 return EQ (obj1, obj2); | |
548 } | |
549 | |
550 | |
551 /************************************************************************/ | |
552 /* Fixed-size type macros */ | |
553 /************************************************************************/ | |
554 | |
555 /* For fixed-size types that are commonly used, we malloc() large blocks | |
556 of memory at a time and subdivide them into chunks of the correct | |
557 size for an object of that type. This is more efficient than | |
558 malloc()ing each object separately because we save on malloc() time | |
559 and overhead due to the fewer number of malloc()ed blocks, and | |
560 also because we don't need any extra pointers within each object | |
561 to keep them threaded together for GC purposes. For less common | |
562 (and frequently large-size) types, we use lcrecords, which are | |
563 malloc()ed individually and chained together through a pointer | |
564 in the lcrecord header. lcrecords do not need to be fixed-size | |
565 (i.e. two objects of the same type need not have the same size; | |
566 however, the size of a particular object cannot vary dynamically). | |
567 It is also much easier to create a new lcrecord type because no | |
568 additional code needs to be added to alloc.c. Finally, lcrecords | |
569 may be more efficient when there are only a small number of them. | |
570 | |
571 The types that are stored in these large blocks (or "frob blocks") | |
572 are cons, float, compiled-function, symbol, marker, extent, event, | |
573 and string. | |
574 | |
575 Note that strings are special in that they are actually stored in | |
576 two parts: a structure containing information about the string, and | |
577 the actual data associated with the string. The former structure | |
578 (a struct Lisp_String) is a fixed-size structure and is managed the | |
579 same way as all the other such types. This structure contains a | |
580 pointer to the actual string data, which is stored in structures of | |
581 type struct string_chars_block. Each string_chars_block consists | |
582 of a pointer to a struct Lisp_String, followed by the data for that | |
583 string, followed by another pointer to a struct Lisp_String, | |
584 followed by the data for that string, etc. At GC time, the data in | |
585 these blocks is compacted by searching sequentially through all the | |
586 blocks and compressing out any holes created by unmarked strings. | |
587 Strings that are more than a certain size (bigger than the size of | |
588 a string_chars_block, although something like half as big might | |
589 make more sense) are malloc()ed separately and not stored in | |
590 string_chars_blocks. Furthermore, no one string stretches across | |
591 two string_chars_blocks. | |
592 | |
593 Vectors are each malloc()ed separately, similar to lcrecords. | |
594 | |
595 In the following discussion, we use conses, but it applies equally | |
596 well to the other fixed-size types. | |
597 | |
598 We store cons cells inside of cons_blocks, allocating a new | |
599 cons_block with malloc() whenever necessary. Cons cells reclaimed | |
600 by GC are put on a free list to be reallocated before allocating | |
601 any new cons cells from the latest cons_block. Each cons_block is | |
602 just under 2^n - MALLOC_OVERHEAD bytes long, since malloc (at least | |
603 the versions in malloc.c and gmalloc.c) really allocates in units | |
604 of powers of two and uses 4 bytes for its own overhead. | |
605 | |
606 What GC actually does is to search through all the cons_blocks, | |
607 from the most recently allocated to the oldest, and put all | |
608 cons cells that are not marked (whether or not they're already | |
609 free) on a cons_free_list. The cons_free_list is a stack, and | |
610 so the cons cells in the oldest-allocated cons_block end up | |
611 at the head of the stack and are the first to be reallocated. | |
612 If any cons_block is entirely free, it is freed with free() | |
613 and its cons cells removed from the cons_free_list. Because | |
614 the cons_free_list ends up basically in memory order, we have | |
615 a high locality of reference (assuming a reasonable turnover | |
616 of allocating and freeing) and have a reasonable probability | |
617 of entirely freeing up cons_blocks that have been more recently | |
618 allocated. This stage is called the "sweep stage" of GC, and | |
619 is executed after the "mark stage", which involves starting | |
620 from all places that are known to point to in-use Lisp objects | |
621 (e.g. the obarray, where are all symbols are stored; the | |
622 current catches and condition-cases; the backtrace list of | |
623 currently executing functions; the gcpro list; etc.) and | |
624 recursively marking all objects that are accessible. | |
625 | |
626 At the beginning of the sweep stage, the conses in the cons | |
627 blocks are in one of three states: in use and marked, in use | |
628 but not marked, and not in use (already freed). Any conses | |
629 that are marked have been marked in the mark stage just | |
630 executed, because as part of the sweep stage we unmark any | |
631 marked objects. The way we tell whether or not a cons cell | |
632 is in use is through the FREE_STRUCT_P macro. This basically | |
633 looks at the first 4 bytes (or however many bytes a pointer | |
634 fits in) to see if all the bits in those bytes are 1. The | |
635 resulting value (0xFFFFFFFF) is not a valid pointer and is | |
636 not a valid Lisp_Object. All current fixed-size types have | |
637 a pointer or Lisp_Object as their first element with the | |
638 exception of strings; they have a size value, which can | |
639 never be less than zero, and so 0xFFFFFFFF is invalid for | |
640 strings as well. Now assuming that a cons cell is in use, | |
641 the way we tell whether or not it is marked is to look at | |
642 the mark bit of its car (each Lisp_Object has one bit | |
643 reserved as a mark bit, in case it's needed). Note that | |
644 different types of objects use different fields to indicate | |
645 whether the object is marked, but the principle is the same. | |
646 | |
647 Conses on the free_cons_list are threaded through a pointer | |
648 stored in the bytes directly after the bytes that are set | |
649 to 0xFFFFFFFF (we cannot overwrite these because the cons | |
650 is still in a cons_block and needs to remain marked as | |
651 not in use for the next time that GC happens). This | |
652 implies that all fixed-size types must be at least big | |
653 enough to store two pointers, which is indeed the case | |
654 for all current fixed-size types. | |
655 | |
656 Some types of objects need additional "finalization" done | |
657 when an object is converted from in use to not in use; | |
658 this is the purpose of the ADDITIONAL_FREE_type macro. | |
659 For example, markers need to be removed from the chain | |
660 of markers that is kept in each buffer. This is because | |
661 markers in a buffer automatically disappear if the marker | |
662 is no longer referenced anywhere (the same does not | |
663 apply to extents, however). | |
664 | |
665 WARNING: Things are in an extremely bizarre state when | |
666 the ADDITIONAL_FREE_type macros are called, so beware! | |
667 | |
668 When ERROR_CHECK_GC is defined, we do things differently | |
669 so as to maximize our chances of catching places where | |
670 there is insufficient GCPROing. The thing we want to | |
671 avoid is having an object that we're using but didn't | |
672 GCPRO get freed by GC and then reallocated while we're | |
673 in the process of using it -- this will result in something | |
674 seemingly unrelated getting trashed, and is extremely | |
675 difficult to track down. If the object gets freed but | |
676 not reallocated, we can usually catch this because we | |
677 set all bytes of a freed object to 0xDEADBEEF. (The | |
678 first four bytes, however, are 0xFFFFFFFF, and the next | |
679 four are a pointer used to chain freed objects together; | |
680 we play some tricks with this pointer to make it more | |
681 bogus, so crashes are more likely to occur right away.) | |
682 | |
683 We want freed objects to stay free as long as possible, | |
684 so instead of doing what we do above, we maintain the | |
685 free objects in a first-in first-out queue. We also | |
686 don't recompute the free list each GC, unlike above; | |
687 this ensures that the queue ordering is preserved. | |
688 [This means that we are likely to have worse locality | |
689 of reference, and that we can never free a frob block | |
690 once it's allocated. (Even if we know that all cells | |
691 in it are free, there's no easy way to remove all those | |
692 cells from the free list because the objects on the | |
693 free list are unlikely to be in memory order.)] | |
694 Furthermore, we never take objects off the free list | |
695 unless there's a large number (usually 1000, but | |
696 varies depending on type) of them already on the list. | |
697 This way, we ensure that an object that gets freed will | |
698 remain free for the next 1000 (or whatever) times that | |
699 an object of that type is allocated. | |
700 */ | |
701 | |
702 #ifndef MALLOC_OVERHEAD | |
703 #ifdef GNU_MALLOC | |
704 #define MALLOC_OVERHEAD 0 | |
705 #elif defined (rcheck) | |
706 #define MALLOC_OVERHEAD 20 | |
707 #else | |
708 #define MALLOC_OVERHEAD 8 | |
709 #endif | |
710 #endif /* MALLOC_OVERHEAD */ | |
711 | |
712 #if !defined(HAVE_MMAP) || defined(DOUG_LEA_MALLOC) | |
713 /* If we released our reserve (due to running out of memory), | |
714 and we have a fair amount free once again, | |
715 try to set aside another reserve in case we run out once more. | |
716 | |
717 This is called when a relocatable block is freed in ralloc.c. */ | |
718 void refill_memory_reserve (void); | |
719 void | |
720 refill_memory_reserve () | |
721 { | |
722 if (breathing_space == 0) | |
723 breathing_space = (char *) malloc (4096 - MALLOC_OVERHEAD); | |
724 } | |
725 #endif | |
726 | |
727 #ifdef ALLOC_NO_POOLS | |
728 # define TYPE_ALLOC_SIZE(type, structtype) 1 | |
729 #else | |
730 # define TYPE_ALLOC_SIZE(type, structtype) \ | |
731 ((2048 - MALLOC_OVERHEAD - sizeof (struct type##_block *)) \ | |
732 / sizeof (structtype)) | |
733 #endif /* ALLOC_NO_POOLS */ | |
734 | |
735 #define DECLARE_FIXED_TYPE_ALLOC(type, structtype) \ | |
736 \ | |
737 struct type##_block \ | |
738 { \ | |
739 struct type##_block *prev; \ | |
740 structtype block[TYPE_ALLOC_SIZE (type, structtype)]; \ | |
741 }; \ | |
742 \ | |
743 static struct type##_block *current_##type##_block; \ | |
744 static int current_##type##_block_index; \ | |
745 \ | |
746 static structtype *type##_free_list; \ | |
747 static structtype *type##_free_list_tail; \ | |
748 \ | |
749 static void \ | |
750 init_##type##_alloc (void) \ | |
751 { \ | |
752 current_##type##_block = 0; \ | |
753 current_##type##_block_index = \ | |
754 countof (current_##type##_block->block); \ | |
755 type##_free_list = 0; \ | |
756 type##_free_list_tail = 0; \ | |
757 } \ | |
758 \ | |
759 static int gc_count_num_##type##_in_use; \ | |
760 static int gc_count_num_##type##_freelist | |
761 | |
762 #define ALLOCATE_FIXED_TYPE_FROM_BLOCK(type, result) do { \ | |
763 if (current_##type##_block_index \ | |
764 == countof (current_##type##_block->block)) \ | |
765 { \ | |
766 struct type##_block *AFTFB_new = (struct type##_block *) \ | |
767 allocate_lisp_storage (sizeof (struct type##_block)); \ | |
768 AFTFB_new->prev = current_##type##_block; \ | |
769 current_##type##_block = AFTFB_new; \ | |
770 current_##type##_block_index = 0; \ | |
771 } \ | |
772 (result) = \ | |
773 &(current_##type##_block->block[current_##type##_block_index++]); \ | |
774 } while (0) | |
775 | |
776 /* Allocate an instance of a type that is stored in blocks. | |
777 TYPE is the "name" of the type, STRUCTTYPE is the corresponding | |
778 structure type. */ | |
779 | |
780 #ifdef ERROR_CHECK_GC | |
781 | |
782 /* Note: if you get crashes in this function, suspect incorrect calls | |
783 to free_cons() and friends. This happened once because the cons | |
784 cell was not GC-protected and was getting collected before | |
785 free_cons() was called. */ | |
786 | |
787 #define ALLOCATE_FIXED_TYPE_1(type, structtype, result) \ | |
788 do \ | |
789 { \ | |
790 if (gc_count_num_##type##_freelist > \ | |
791 MINIMUM_ALLOWED_FIXED_TYPE_CELLS_##type) \ | |
792 { \ | |
793 result = type##_free_list; \ | |
794 /* Before actually using the chain pointer, we complement all its \ | |
795 bits; see FREE_FIXED_TYPE(). */ \ | |
796 type##_free_list = \ | |
797 (structtype *) ~(unsigned long) \ | |
798 (* (structtype **) ((char *) result + sizeof (void *))); \ | |
799 gc_count_num_##type##_freelist--; \ | |
800 } \ | |
801 else \ | |
802 ALLOCATE_FIXED_TYPE_FROM_BLOCK (type, result); \ | |
803 MARK_STRUCT_AS_NOT_FREE (result); \ | |
804 } while (0) | |
805 | |
806 #else /* !ERROR_CHECK_GC */ | |
807 | |
808 #define ALLOCATE_FIXED_TYPE_1(type, structtype, result) \ | |
809 do \ | |
810 { \ | |
811 if (type##_free_list) \ | |
812 { \ | |
813 result = type##_free_list; \ | |
814 type##_free_list = \ | |
815 * (structtype **) ((char *) result + sizeof (void *)); \ | |
816 } \ | |
817 else \ | |
818 ALLOCATE_FIXED_TYPE_FROM_BLOCK (type, result); \ | |
819 MARK_STRUCT_AS_NOT_FREE (result); \ | |
820 } while (0) | |
821 | |
822 #endif /* !ERROR_CHECK_GC */ | |
823 | |
824 #define ALLOCATE_FIXED_TYPE(type, structtype, result) \ | |
825 do \ | |
826 { \ | |
827 ALLOCATE_FIXED_TYPE_1 (type, structtype, result); \ | |
828 INCREMENT_CONS_COUNTER (sizeof (structtype), #type); \ | |
829 } while (0) | |
830 | |
831 #define NOSEEUM_ALLOCATE_FIXED_TYPE(type, structtype, result) \ | |
832 do \ | |
833 { \ | |
834 ALLOCATE_FIXED_TYPE_1 (type, structtype, result); \ | |
835 NOSEEUM_INCREMENT_CONS_COUNTER (sizeof (structtype), #type); \ | |
836 } while (0) | |
837 | |
838 /* INVALID_POINTER_VALUE should be a value that is invalid as a pointer | |
839 to a Lisp object and invalid as an actual Lisp_Object value. We have | |
840 to make sure that this value cannot be an integer in Lisp_Object form. | |
841 0xFFFFFFFF could be so on a 64-bit system, so we extend it to 64 bits. | |
842 On a 32-bit system, the type bits will be non-zero, making the value | |
843 be a pointer, and the pointer will be misaligned. | |
844 | |
845 Even if Emacs is run on some weirdo system that allows and allocates | |
846 byte-aligned pointers, this pointer is at the very top of the address | |
847 space and so it's almost inconceivable that it could ever be valid. */ | |
848 | |
849 #if INTBITS == 32 | |
850 # define INVALID_POINTER_VALUE 0xFFFFFFFF | |
851 #elif INTBITS == 48 | |
852 # define INVALID_POINTER_VALUE 0xFFFFFFFFFFFF | |
853 #elif INTBITS == 64 | |
854 # define INVALID_POINTER_VALUE 0xFFFFFFFFFFFFFFFF | |
855 #else | |
856 You have some weird system and need to supply a reasonable value here. | |
857 #endif | |
858 | |
859 #define FREE_STRUCT_P(ptr) \ | |
860 (* (void **) ptr == (void *) INVALID_POINTER_VALUE) | |
861 #define MARK_STRUCT_AS_FREE(ptr) \ | |
862 (* (void **) ptr = (void *) INVALID_POINTER_VALUE) | |
863 #define MARK_STRUCT_AS_NOT_FREE(ptr) \ | |
864 (* (void **) ptr = 0) | |
865 | |
866 #ifdef ERROR_CHECK_GC | |
867 | |
868 #define PUT_FIXED_TYPE_ON_FREE_LIST(type, structtype, ptr) \ | |
869 do { if (type##_free_list_tail) \ | |
870 { \ | |
871 /* When we store the chain pointer, we complement all \ | |
872 its bits; this should significantly increase its \ | |
873 bogosity in case someone tries to use the value, and \ | |
874 should make us dump faster if someone stores something \ | |
875 over the pointer because when it gets un-complemented in \ | |
876 ALLOCATED_FIXED_TYPE(), the resulting pointer will be \ | |
877 extremely bogus. */ \ | |
878 * (structtype **) \ | |
879 ((char *) type##_free_list_tail + sizeof (void *)) = \ | |
880 (structtype *) ~(unsigned long) ptr; \ | |
881 } \ | |
882 else \ | |
883 type##_free_list = ptr; \ | |
884 type##_free_list_tail = ptr; \ | |
885 } while (0) | |
886 | |
887 #else /* !ERROR_CHECK_GC */ | |
888 | |
889 #define PUT_FIXED_TYPE_ON_FREE_LIST(type, structtype, ptr) \ | |
890 do { * (structtype **) ((char *) (ptr) + sizeof (void *)) = \ | |
891 type##_free_list; \ | |
892 type##_free_list = (ptr); \ | |
893 } while (0) | |
894 | |
895 #endif /* !ERROR_CHECK_GC */ | |
896 | |
897 /* TYPE and STRUCTTYPE are the same as in ALLOCATE_FIXED_TYPE(). */ | |
898 | |
899 #define FREE_FIXED_TYPE(type, structtype, ptr) do { \ | |
900 structtype *FFT_ptr = (ptr); \ | |
901 ADDITIONAL_FREE_##type (FFT_ptr); \ | |
902 deadbeef_memory (FFT_ptr, sizeof (structtype)); \ | |
903 PUT_FIXED_TYPE_ON_FREE_LIST (type, structtype, FFT_ptr); \ | |
904 MARK_STRUCT_AS_FREE (FFT_ptr); \ | |
905 } while (0) | |
906 | |
907 /* Like FREE_FIXED_TYPE() but used when we are explicitly | |
908 freeing a structure through free_cons(), free_marker(), etc. | |
909 rather than through the normal process of sweeping. | |
910 We attempt to undo the changes made to the allocation counters | |
911 as a result of this structure being allocated. This is not | |
912 completely necessary but helps keep things saner: e.g. this way, | |
913 repeatedly allocating and freeing a cons will not result in | |
914 the consing-since-gc counter advancing, which would cause a GC | |
915 and somewhat defeat the purpose of explicitly freeing. */ | |
916 | |
917 #define FREE_FIXED_TYPE_WHEN_NOT_IN_GC(type, structtype, ptr) \ | |
918 do { FREE_FIXED_TYPE (type, structtype, ptr); \ | |
919 DECREMENT_CONS_COUNTER (sizeof (structtype)); \ | |
920 gc_count_num_##type##_freelist++; \ | |
921 } while (0) | |
922 | |
923 | |
924 | |
925 /************************************************************************/ | |
926 /* Cons allocation */ | |
927 /************************************************************************/ | |
928 | |
929 DECLARE_FIXED_TYPE_ALLOC (cons, struct Lisp_Cons); | |
930 /* conses are used and freed so often that we set this really high */ | |
931 /* #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_cons 20000 */ | |
932 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_cons 2000 | |
933 | |
934 static Lisp_Object | |
935 mark_cons (Lisp_Object obj) | |
936 { | |
937 if (NILP (XCDR (obj))) | |
938 return XCAR (obj); | |
939 | |
940 mark_object (XCAR (obj)); | |
941 return XCDR (obj); | |
942 } | |
943 | |
944 static int | |
945 cons_equal (Lisp_Object ob1, Lisp_Object ob2, int depth) | |
946 { | |
947 while (internal_equal (XCAR (ob1), XCAR (ob2), depth + 1)) | |
948 { | |
949 ob1 = XCDR (ob1); | |
950 ob2 = XCDR (ob2); | |
951 if (! CONSP (ob1) || ! CONSP (ob2)) | |
952 return internal_equal (ob1, ob2, depth + 1); | |
953 } | |
954 return 0; | |
955 } | |
956 | |
957 static const struct lrecord_description cons_description[] = { | |
958 { XD_LISP_OBJECT, offsetof(struct Lisp_Cons, car), 2 }, | |
959 { XD_END } | |
960 }; | |
961 | |
962 DEFINE_BASIC_LRECORD_IMPLEMENTATION ("cons", cons, | |
963 mark_cons, print_cons, 0, | |
964 cons_equal, | |
965 /* | |
966 * No `hash' method needed. | |
967 * internal_hash knows how to | |
968 * handle conses. | |
969 */ | |
970 0, | |
971 cons_description, | |
972 struct Lisp_Cons); | |
973 | |
974 DEFUN ("cons", Fcons, 2, 2, 0, /* | |
975 Create a new cons, give it CAR and CDR as components, and return it. | |
976 */ | |
977 (car, cdr)) | |
978 { | |
979 /* This cannot GC. */ | |
980 Lisp_Object val; | |
981 struct Lisp_Cons *c; | |
982 | |
983 ALLOCATE_FIXED_TYPE (cons, struct Lisp_Cons, c); | |
984 set_lheader_implementation (&(c->lheader), &lrecord_cons); | |
985 XSETCONS (val, c); | |
986 c->car = car; | |
987 c->cdr = cdr; | |
988 return val; | |
989 } | |
990 | |
991 /* This is identical to Fcons() but it used for conses that we're | |
992 going to free later, and is useful when trying to track down | |
993 "real" consing. */ | |
994 Lisp_Object | |
995 noseeum_cons (Lisp_Object car, Lisp_Object cdr) | |
996 { | |
997 Lisp_Object val; | |
998 struct Lisp_Cons *c; | |
999 | |
1000 NOSEEUM_ALLOCATE_FIXED_TYPE (cons, struct Lisp_Cons, c); | |
1001 set_lheader_implementation (&(c->lheader), &lrecord_cons); | |
1002 XSETCONS (val, c); | |
1003 XCAR (val) = car; | |
1004 XCDR (val) = cdr; | |
1005 return val; | |
1006 } | |
1007 | |
1008 DEFUN ("list", Flist, 0, MANY, 0, /* | |
1009 Return a newly created list with specified arguments as elements. | |
1010 Any number of arguments, even zero arguments, are allowed. | |
1011 */ | |
1012 (int nargs, Lisp_Object *args)) | |
1013 { | |
1014 Lisp_Object val = Qnil; | |
1015 Lisp_Object *argp = args + nargs; | |
1016 | |
1017 while (argp > args) | |
1018 val = Fcons (*--argp, val); | |
1019 return val; | |
1020 } | |
1021 | |
1022 Lisp_Object | |
1023 list1 (Lisp_Object obj0) | |
1024 { | |
1025 /* This cannot GC. */ | |
1026 return Fcons (obj0, Qnil); | |
1027 } | |
1028 | |
1029 Lisp_Object | |
1030 list2 (Lisp_Object obj0, Lisp_Object obj1) | |
1031 { | |
1032 /* This cannot GC. */ | |
1033 return Fcons (obj0, Fcons (obj1, Qnil)); | |
1034 } | |
1035 | |
1036 Lisp_Object | |
1037 list3 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2) | |
1038 { | |
1039 /* This cannot GC. */ | |
1040 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Qnil))); | |
1041 } | |
1042 | |
1043 Lisp_Object | |
1044 cons3 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2) | |
1045 { | |
1046 /* This cannot GC. */ | |
1047 return Fcons (obj0, Fcons (obj1, obj2)); | |
1048 } | |
1049 | |
1050 Lisp_Object | |
1051 acons (Lisp_Object key, Lisp_Object value, Lisp_Object alist) | |
1052 { | |
1053 return Fcons (Fcons (key, value), alist); | |
1054 } | |
1055 | |
1056 Lisp_Object | |
1057 list4 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, Lisp_Object obj3) | |
1058 { | |
1059 /* This cannot GC. */ | |
1060 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Fcons (obj3, Qnil)))); | |
1061 } | |
1062 | |
1063 Lisp_Object | |
1064 list5 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, Lisp_Object obj3, | |
1065 Lisp_Object obj4) | |
1066 { | |
1067 /* This cannot GC. */ | |
1068 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Fcons (obj3, Fcons (obj4, Qnil))))); | |
1069 } | |
1070 | |
1071 Lisp_Object | |
1072 list6 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, Lisp_Object obj3, | |
1073 Lisp_Object obj4, Lisp_Object obj5) | |
1074 { | |
1075 /* This cannot GC. */ | |
1076 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Fcons (obj3, Fcons (obj4, Fcons (obj5, Qnil)))))); | |
1077 } | |
1078 | |
1079 DEFUN ("make-list", Fmake_list, 2, 2, 0, /* | |
1080 Return a new list of length LENGTH, with each element being INIT. | |
1081 */ | |
1082 (length, init)) | |
1083 { | |
1084 CHECK_NATNUM (length); | |
1085 | |
1086 { | |
1087 Lisp_Object val = Qnil; | |
1088 size_t size = XINT (length); | |
1089 | |
1090 while (size--) | |
1091 val = Fcons (init, val); | |
1092 return val; | |
1093 } | |
1094 } | |
1095 | |
1096 | |
1097 /************************************************************************/ | |
1098 /* Float allocation */ | |
1099 /************************************************************************/ | |
1100 | |
1101 #ifdef LISP_FLOAT_TYPE | |
1102 | |
1103 DECLARE_FIXED_TYPE_ALLOC (float, struct Lisp_Float); | |
1104 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_float 1000 | |
1105 | |
1106 Lisp_Object | |
1107 make_float (double float_value) | |
1108 { | |
1109 Lisp_Object val; | |
1110 struct Lisp_Float *f; | |
1111 | |
1112 ALLOCATE_FIXED_TYPE (float, struct Lisp_Float, f); | |
1113 set_lheader_implementation (&(f->lheader), &lrecord_float); | |
1114 float_data (f) = float_value; | |
1115 XSETFLOAT (val, f); | |
1116 return val; | |
1117 } | |
1118 | |
1119 #endif /* LISP_FLOAT_TYPE */ | |
1120 | |
1121 | |
1122 /************************************************************************/ | |
1123 /* Vector allocation */ | |
1124 /************************************************************************/ | |
1125 | |
1126 static Lisp_Object | |
1127 mark_vector (Lisp_Object obj) | |
1128 { | |
1129 Lisp_Vector *ptr = XVECTOR (obj); | |
1130 int len = vector_length (ptr); | |
1131 int i; | |
1132 | |
1133 for (i = 0; i < len - 1; i++) | |
1134 mark_object (ptr->contents[i]); | |
1135 return (len > 0) ? ptr->contents[len - 1] : Qnil; | |
1136 } | |
1137 | |
1138 static size_t | |
1139 size_vector (CONST void *lheader) | |
1140 { | |
1141 return STRETCHY_STRUCT_SIZEOF (Lisp_Vector, contents, | |
1142 ((Lisp_Vector *) lheader)->size); | |
1143 } | |
1144 | |
1145 static int | |
1146 vector_equal (Lisp_Object obj1, Lisp_Object obj2, int depth) | |
1147 { | |
1148 int len = XVECTOR_LENGTH (obj1); | |
1149 if (len != XVECTOR_LENGTH (obj2)) | |
1150 return 0; | |
1151 | |
1152 { | |
1153 Lisp_Object *ptr1 = XVECTOR_DATA (obj1); | |
1154 Lisp_Object *ptr2 = XVECTOR_DATA (obj2); | |
1155 while (len--) | |
1156 if (!internal_equal (*ptr1++, *ptr2++, depth + 1)) | |
1157 return 0; | |
1158 } | |
1159 return 1; | |
1160 } | |
1161 | |
1162 static const struct lrecord_description vector_description[] = { | |
1163 { XD_LONG, offsetof(struct Lisp_Vector, size) }, | |
1164 { XD_LISP_OBJECT, offsetof(struct Lisp_Vector, contents), XD_INDIRECT(0, 0) }, | |
1165 { XD_END } | |
1166 }; | |
1167 | |
1168 DEFINE_LRECORD_SEQUENCE_IMPLEMENTATION("vector", vector, | |
1169 mark_vector, print_vector, 0, | |
1170 vector_equal, | |
1171 /* | |
1172 * No `hash' method needed for | |
1173 * vectors. internal_hash | |
1174 * knows how to handle vectors. | |
1175 */ | |
1176 0, | |
1177 vector_description, | |
1178 size_vector, Lisp_Vector); | |
1179 | |
1180 /* #### should allocate `small' vectors from a frob-block */ | |
1181 static Lisp_Vector * | |
1182 make_vector_internal (size_t sizei) | |
1183 { | |
1184 /* no vector_next */ | |
1185 size_t sizem = STRETCHY_STRUCT_SIZEOF (Lisp_Vector, contents, sizei); | |
1186 Lisp_Vector *p = (Lisp_Vector *) alloc_lcrecord (sizem, &lrecord_vector); | |
1187 | |
1188 p->size = sizei; | |
1189 return p; | |
1190 } | |
1191 | |
1192 Lisp_Object | |
1193 make_vector (size_t length, Lisp_Object init) | |
1194 { | |
1195 Lisp_Vector *vecp = make_vector_internal (length); | |
1196 Lisp_Object *p = vector_data (vecp); | |
1197 | |
1198 while (length--) | |
1199 *p++ = init; | |
1200 | |
1201 { | |
1202 Lisp_Object vector; | |
1203 XSETVECTOR (vector, vecp); | |
1204 return vector; | |
1205 } | |
1206 } | |
1207 | |
1208 DEFUN ("make-vector", Fmake_vector, 2, 2, 0, /* | |
1209 Return a new vector of length LENGTH, with each element being INIT. | |
1210 See also the function `vector'. | |
1211 */ | |
1212 (length, init)) | |
1213 { | |
1214 CONCHECK_NATNUM (length); | |
1215 return make_vector (XINT (length), init); | |
1216 } | |
1217 | |
1218 DEFUN ("vector", Fvector, 0, MANY, 0, /* | |
1219 Return a newly created vector with specified arguments as elements. | |
1220 Any number of arguments, even zero arguments, are allowed. | |
1221 */ | |
1222 (int nargs, Lisp_Object *args)) | |
1223 { | |
1224 Lisp_Vector *vecp = make_vector_internal (nargs); | |
1225 Lisp_Object *p = vector_data (vecp); | |
1226 | |
1227 while (nargs--) | |
1228 *p++ = *args++; | |
1229 | |
1230 { | |
1231 Lisp_Object vector; | |
1232 XSETVECTOR (vector, vecp); | |
1233 return vector; | |
1234 } | |
1235 } | |
1236 | |
1237 Lisp_Object | |
1238 vector1 (Lisp_Object obj0) | |
1239 { | |
1240 return Fvector (1, &obj0); | |
1241 } | |
1242 | |
1243 Lisp_Object | |
1244 vector2 (Lisp_Object obj0, Lisp_Object obj1) | |
1245 { | |
1246 Lisp_Object args[2]; | |
1247 args[0] = obj0; | |
1248 args[1] = obj1; | |
1249 return Fvector (2, args); | |
1250 } | |
1251 | |
1252 Lisp_Object | |
1253 vector3 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2) | |
1254 { | |
1255 Lisp_Object args[3]; | |
1256 args[0] = obj0; | |
1257 args[1] = obj1; | |
1258 args[2] = obj2; | |
1259 return Fvector (3, args); | |
1260 } | |
1261 | |
1262 #if 0 /* currently unused */ | |
1263 | |
1264 Lisp_Object | |
1265 vector4 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, | |
1266 Lisp_Object obj3) | |
1267 { | |
1268 Lisp_Object args[4]; | |
1269 args[0] = obj0; | |
1270 args[1] = obj1; | |
1271 args[2] = obj2; | |
1272 args[3] = obj3; | |
1273 return Fvector (4, args); | |
1274 } | |
1275 | |
1276 Lisp_Object | |
1277 vector5 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, | |
1278 Lisp_Object obj3, Lisp_Object obj4) | |
1279 { | |
1280 Lisp_Object args[5]; | |
1281 args[0] = obj0; | |
1282 args[1] = obj1; | |
1283 args[2] = obj2; | |
1284 args[3] = obj3; | |
1285 args[4] = obj4; | |
1286 return Fvector (5, args); | |
1287 } | |
1288 | |
1289 Lisp_Object | |
1290 vector6 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, | |
1291 Lisp_Object obj3, Lisp_Object obj4, Lisp_Object obj5) | |
1292 { | |
1293 Lisp_Object args[6]; | |
1294 args[0] = obj0; | |
1295 args[1] = obj1; | |
1296 args[2] = obj2; | |
1297 args[3] = obj3; | |
1298 args[4] = obj4; | |
1299 args[5] = obj5; | |
1300 return Fvector (6, args); | |
1301 } | |
1302 | |
1303 Lisp_Object | |
1304 vector7 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, | |
1305 Lisp_Object obj3, Lisp_Object obj4, Lisp_Object obj5, | |
1306 Lisp_Object obj6) | |
1307 { | |
1308 Lisp_Object args[7]; | |
1309 args[0] = obj0; | |
1310 args[1] = obj1; | |
1311 args[2] = obj2; | |
1312 args[3] = obj3; | |
1313 args[4] = obj4; | |
1314 args[5] = obj5; | |
1315 args[6] = obj6; | |
1316 return Fvector (7, args); | |
1317 } | |
1318 | |
1319 Lisp_Object | |
1320 vector8 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, | |
1321 Lisp_Object obj3, Lisp_Object obj4, Lisp_Object obj5, | |
1322 Lisp_Object obj6, Lisp_Object obj7) | |
1323 { | |
1324 Lisp_Object args[8]; | |
1325 args[0] = obj0; | |
1326 args[1] = obj1; | |
1327 args[2] = obj2; | |
1328 args[3] = obj3; | |
1329 args[4] = obj4; | |
1330 args[5] = obj5; | |
1331 args[6] = obj6; | |
1332 args[7] = obj7; | |
1333 return Fvector (8, args); | |
1334 } | |
1335 #endif /* unused */ | |
1336 | |
1337 /************************************************************************/ | |
1338 /* Bit Vector allocation */ | |
1339 /************************************************************************/ | |
1340 | |
1341 static Lisp_Object all_bit_vectors; | |
1342 | |
1343 /* #### should allocate `small' bit vectors from a frob-block */ | |
1344 static struct Lisp_Bit_Vector * | |
1345 make_bit_vector_internal (size_t sizei) | |
1346 { | |
1347 size_t num_longs = BIT_VECTOR_LONG_STORAGE (sizei); | |
1348 size_t sizem = STRETCHY_STRUCT_SIZEOF (Lisp_Bit_Vector, bits, num_longs); | |
1349 Lisp_Bit_Vector *p = (Lisp_Bit_Vector *) allocate_lisp_storage (sizem); | |
1350 set_lheader_implementation (&(p->lheader), &lrecord_bit_vector); | |
1351 | |
1352 INCREMENT_CONS_COUNTER (sizem, "bit-vector"); | |
1353 | |
1354 bit_vector_length (p) = sizei; | |
1355 bit_vector_next (p) = all_bit_vectors; | |
1356 /* make sure the extra bits in the last long are 0; the calling | |
1357 functions might not set them. */ | |
1358 p->bits[num_longs - 1] = 0; | |
1359 XSETBIT_VECTOR (all_bit_vectors, p); | |
1360 return p; | |
1361 } | |
1362 | |
1363 Lisp_Object | |
1364 make_bit_vector (size_t length, Lisp_Object init) | |
1365 { | |
1366 struct Lisp_Bit_Vector *p = make_bit_vector_internal (length); | |
1367 size_t num_longs = BIT_VECTOR_LONG_STORAGE (length); | |
1368 | |
1369 CHECK_BIT (init); | |
1370 | |
1371 if (ZEROP (init)) | |
1372 memset (p->bits, 0, num_longs * sizeof (long)); | |
1373 else | |
1374 { | |
1375 size_t bits_in_last = length & (LONGBITS_POWER_OF_2 - 1); | |
1376 memset (p->bits, ~0, num_longs * sizeof (long)); | |
1377 /* But we have to make sure that the unused bits in the | |
1378 last long are 0, so that equal/hash is easy. */ | |
1379 if (bits_in_last) | |
1380 p->bits[num_longs - 1] &= (1 << bits_in_last) - 1; | |
1381 } | |
1382 | |
1383 { | |
1384 Lisp_Object bit_vector; | |
1385 XSETBIT_VECTOR (bit_vector, p); | |
1386 return bit_vector; | |
1387 } | |
1388 } | |
1389 | |
1390 Lisp_Object | |
1391 make_bit_vector_from_byte_vector (unsigned char *bytevec, size_t length) | |
1392 { | |
1393 int i; | |
1394 Lisp_Bit_Vector *p = make_bit_vector_internal (length); | |
1395 | |
1396 for (i = 0; i < length; i++) | |
1397 set_bit_vector_bit (p, i, bytevec[i]); | |
1398 | |
1399 { | |
1400 Lisp_Object bit_vector; | |
1401 XSETBIT_VECTOR (bit_vector, p); | |
1402 return bit_vector; | |
1403 } | |
1404 } | |
1405 | |
1406 DEFUN ("make-bit-vector", Fmake_bit_vector, 2, 2, 0, /* | |
1407 Return a new bit vector of length LENGTH. with each bit being INIT. | |
1408 Each element is set to INIT. See also the function `bit-vector'. | |
1409 */ | |
1410 (length, init)) | |
1411 { | |
1412 CONCHECK_NATNUM (length); | |
1413 | |
1414 return make_bit_vector (XINT (length), init); | |
1415 } | |
1416 | |
1417 DEFUN ("bit-vector", Fbit_vector, 0, MANY, 0, /* | |
1418 Return a newly created bit vector with specified arguments as elements. | |
1419 Any number of arguments, even zero arguments, are allowed. | |
1420 */ | |
1421 (int nargs, Lisp_Object *args)) | |
1422 { | |
1423 int i; | |
1424 Lisp_Bit_Vector *p = make_bit_vector_internal (nargs); | |
1425 | |
1426 for (i = 0; i < nargs; i++) | |
1427 { | |
1428 CHECK_BIT (args[i]); | |
1429 set_bit_vector_bit (p, i, !ZEROP (args[i])); | |
1430 } | |
1431 | |
1432 { | |
1433 Lisp_Object bit_vector; | |
1434 XSETBIT_VECTOR (bit_vector, p); | |
1435 return bit_vector; | |
1436 } | |
1437 } | |
1438 | |
1439 | |
1440 /************************************************************************/ | |
1441 /* Compiled-function allocation */ | |
1442 /************************************************************************/ | |
1443 | |
1444 DECLARE_FIXED_TYPE_ALLOC (compiled_function, Lisp_Compiled_Function); | |
1445 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_compiled_function 1000 | |
1446 | |
1447 static Lisp_Object | |
1448 make_compiled_function (void) | |
1449 { | |
1450 Lisp_Compiled_Function *f; | |
1451 Lisp_Object fun; | |
1452 | |
1453 ALLOCATE_FIXED_TYPE (compiled_function, Lisp_Compiled_Function, f); | |
1454 set_lheader_implementation (&(f->lheader), &lrecord_compiled_function); | |
1455 | |
1456 f->stack_depth = 0; | |
1457 f->specpdl_depth = 0; | |
1458 f->flags.documentationp = 0; | |
1459 f->flags.interactivep = 0; | |
1460 f->flags.domainp = 0; /* I18N3 */ | |
1461 f->instructions = Qzero; | |
1462 f->constants = Qzero; | |
1463 f->arglist = Qnil; | |
1464 f->doc_and_interactive = Qnil; | |
1465 #ifdef COMPILED_FUNCTION_ANNOTATION_HACK | |
1466 f->annotated = Qnil; | |
1467 #endif | |
1468 XSETCOMPILED_FUNCTION (fun, f); | |
1469 return fun; | |
1470 } | |
1471 | |
1472 DEFUN ("make-byte-code", Fmake_byte_code, 4, MANY, 0, /* | |
1473 Return a new compiled-function object. | |
1474 Usage: (arglist instructions constants stack-depth | |
1475 &optional doc-string interactive) | |
1476 Note that, unlike all other emacs-lisp functions, calling this with five | |
1477 arguments is NOT the same as calling it with six arguments, the last of | |
1478 which is nil. If the INTERACTIVE arg is specified as nil, then that means | |
1479 that this function was defined with `(interactive)'. If the arg is not | |
1480 specified, then that means the function is not interactive. | |
1481 This is terrible behavior which is retained for compatibility with old | |
1482 `.elc' files which expect these semantics. | |
1483 */ | |
1484 (int nargs, Lisp_Object *args)) | |
1485 { | |
1486 /* In a non-insane world this function would have this arglist... | |
1487 (arglist instructions constants stack_depth &optional doc_string interactive) | |
1488 */ | |
1489 Lisp_Object fun = make_compiled_function (); | |
1490 Lisp_Compiled_Function *f = XCOMPILED_FUNCTION (fun); | |
1491 | |
1492 Lisp_Object arglist = args[0]; | |
1493 Lisp_Object instructions = args[1]; | |
1494 Lisp_Object constants = args[2]; | |
1495 Lisp_Object stack_depth = args[3]; | |
1496 Lisp_Object doc_string = (nargs > 4) ? args[4] : Qnil; | |
1497 Lisp_Object interactive = (nargs > 5) ? args[5] : Qunbound; | |
1498 | |
1499 if (nargs < 4 || nargs > 6) | |
1500 return Fsignal (Qwrong_number_of_arguments, | |
1501 list2 (intern ("make-byte-code"), make_int (nargs))); | |
1502 | |
1503 /* Check for valid formal parameter list now, to allow us to use | |
1504 SPECBIND_FAST_UNSAFE() later in funcall_compiled_function(). */ | |
1505 { | |
1506 Lisp_Object symbol, tail; | |
1507 EXTERNAL_LIST_LOOP_3 (symbol, arglist, tail) | |
1508 { | |
1509 CHECK_SYMBOL (symbol); | |
1510 if (EQ (symbol, Qt) || | |
1511 EQ (symbol, Qnil) || | |
1512 SYMBOL_IS_KEYWORD (symbol)) | |
1513 signal_simple_error_2 | |
1514 ("Invalid constant symbol in formal parameter list", | |
1515 symbol, arglist); | |
1516 } | |
1517 } | |
1518 f->arglist = arglist; | |
1519 | |
1520 /* `instructions' is a string or a cons (string . int) for a | |
1521 lazy-loaded function. */ | |
1522 if (CONSP (instructions)) | |
1523 { | |
1524 CHECK_STRING (XCAR (instructions)); | |
1525 CHECK_INT (XCDR (instructions)); | |
1526 } | |
1527 else | |
1528 { | |
1529 CHECK_STRING (instructions); | |
1530 } | |
1531 f->instructions = instructions; | |
1532 | |
1533 if (!NILP (constants)) | |
1534 CHECK_VECTOR (constants); | |
1535 f->constants = constants; | |
1536 | |
1537 CHECK_NATNUM (stack_depth); | |
1538 f->stack_depth = XINT (stack_depth); | |
1539 | |
1540 #ifdef COMPILED_FUNCTION_ANNOTATION_HACK | |
1541 if (!NILP (Vcurrent_compiled_function_annotation)) | |
1542 f->annotated = Fcopy (Vcurrent_compiled_function_annotation); | |
1543 else if (!NILP (Vload_file_name_internal_the_purecopy)) | |
1544 f->annotated = Vload_file_name_internal_the_purecopy; | |
1545 else if (!NILP (Vload_file_name_internal)) | |
1546 { | |
1547 struct gcpro gcpro1; | |
1548 GCPRO1 (fun); /* don't let fun get reaped */ | |
1549 Vload_file_name_internal_the_purecopy = | |
1550 Ffile_name_nondirectory (Vload_file_name_internal); | |
1551 f->annotated = Vload_file_name_internal_the_purecopy; | |
1552 UNGCPRO; | |
1553 } | |
1554 #endif /* COMPILED_FUNCTION_ANNOTATION_HACK */ | |
1555 | |
1556 /* doc_string may be nil, string, int, or a cons (string . int). | |
1557 interactive may be list or string (or unbound). */ | |
1558 f->doc_and_interactive = Qunbound; | |
1559 #ifdef I18N3 | |
1560 if ((f->flags.domainp = !NILP (Vfile_domain)) != 0) | |
1561 f->doc_and_interactive = Vfile_domain; | |
1562 #endif | |
1563 if ((f->flags.interactivep = !UNBOUNDP (interactive)) != 0) | |
1564 { | |
1565 f->doc_and_interactive | |
1566 = (UNBOUNDP (f->doc_and_interactive) ? interactive : | |
1567 Fcons (interactive, f->doc_and_interactive)); | |
1568 } | |
1569 if ((f->flags.documentationp = !NILP (doc_string)) != 0) | |
1570 { | |
1571 f->doc_and_interactive | |
1572 = (UNBOUNDP (f->doc_and_interactive) ? doc_string : | |
1573 Fcons (doc_string, f->doc_and_interactive)); | |
1574 } | |
1575 if (UNBOUNDP (f->doc_and_interactive)) | |
1576 f->doc_and_interactive = Qnil; | |
1577 | |
1578 return fun; | |
1579 } | |
1580 | |
1581 | |
1582 /************************************************************************/ | |
1583 /* Symbol allocation */ | |
1584 /************************************************************************/ | |
1585 | |
1586 DECLARE_FIXED_TYPE_ALLOC (symbol, struct Lisp_Symbol); | |
1587 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_symbol 1000 | |
1588 | |
1589 DEFUN ("make-symbol", Fmake_symbol, 1, 1, 0, /* | |
1590 Return a newly allocated uninterned symbol whose name is NAME. | |
1591 Its value and function definition are void, and its property list is nil. | |
1592 */ | |
1593 (name)) | |
1594 { | |
1595 Lisp_Object val; | |
1596 struct Lisp_Symbol *p; | |
1597 | |
1598 CHECK_STRING (name); | |
1599 | |
1600 ALLOCATE_FIXED_TYPE (symbol, struct Lisp_Symbol, p); | |
1601 set_lheader_implementation (&(p->lheader), &lrecord_symbol); | |
1602 p->name = XSTRING (name); | |
1603 p->plist = Qnil; | |
1604 p->value = Qunbound; | |
1605 p->function = Qunbound; | |
1606 symbol_next (p) = 0; | |
1607 XSETSYMBOL (val, p); | |
1608 return val; | |
1609 } | |
1610 | |
1611 | |
1612 /************************************************************************/ | |
1613 /* Extent allocation */ | |
1614 /************************************************************************/ | |
1615 | |
1616 DECLARE_FIXED_TYPE_ALLOC (extent, struct extent); | |
1617 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_extent 1000 | |
1618 | |
1619 struct extent * | |
1620 allocate_extent (void) | |
1621 { | |
1622 struct extent *e; | |
1623 | |
1624 ALLOCATE_FIXED_TYPE (extent, struct extent, e); | |
1625 set_lheader_implementation (&(e->lheader), &lrecord_extent); | |
1626 extent_object (e) = Qnil; | |
1627 set_extent_start (e, -1); | |
1628 set_extent_end (e, -1); | |
1629 e->plist = Qnil; | |
1630 | |
1631 xzero (e->flags); | |
1632 | |
1633 extent_face (e) = Qnil; | |
1634 e->flags.end_open = 1; /* default is for endpoints to behave like markers */ | |
1635 e->flags.detachable = 1; | |
1636 | |
1637 return e; | |
1638 } | |
1639 | |
1640 | |
1641 /************************************************************************/ | |
1642 /* Event allocation */ | |
1643 /************************************************************************/ | |
1644 | |
1645 DECLARE_FIXED_TYPE_ALLOC (event, struct Lisp_Event); | |
1646 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_event 1000 | |
1647 | |
1648 Lisp_Object | |
1649 allocate_event (void) | |
1650 { | |
1651 Lisp_Object val; | |
1652 struct Lisp_Event *e; | |
1653 | |
1654 ALLOCATE_FIXED_TYPE (event, struct Lisp_Event, e); | |
1655 set_lheader_implementation (&(e->lheader), &lrecord_event); | |
1656 | |
1657 XSETEVENT (val, e); | |
1658 return val; | |
1659 } | |
1660 | |
1661 | |
1662 /************************************************************************/ | |
1663 /* Marker allocation */ | |
1664 /************************************************************************/ | |
1665 | |
1666 DECLARE_FIXED_TYPE_ALLOC (marker, struct Lisp_Marker); | |
1667 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_marker 1000 | |
1668 | |
1669 DEFUN ("make-marker", Fmake_marker, 0, 0, 0, /* | |
1670 Return a new marker which does not point at any place. | |
1671 */ | |
1672 ()) | |
1673 { | |
1674 Lisp_Object val; | |
1675 struct Lisp_Marker *p; | |
1676 | |
1677 ALLOCATE_FIXED_TYPE (marker, struct Lisp_Marker, p); | |
1678 set_lheader_implementation (&(p->lheader), &lrecord_marker); | |
1679 p->buffer = 0; | |
1680 p->memind = 0; | |
1681 marker_next (p) = 0; | |
1682 marker_prev (p) = 0; | |
1683 p->insertion_type = 0; | |
1684 XSETMARKER (val, p); | |
1685 return val; | |
1686 } | |
1687 | |
1688 Lisp_Object | |
1689 noseeum_make_marker (void) | |
1690 { | |
1691 Lisp_Object val; | |
1692 struct Lisp_Marker *p; | |
1693 | |
1694 NOSEEUM_ALLOCATE_FIXED_TYPE (marker, struct Lisp_Marker, p); | |
1695 set_lheader_implementation (&(p->lheader), &lrecord_marker); | |
1696 p->buffer = 0; | |
1697 p->memind = 0; | |
1698 marker_next (p) = 0; | |
1699 marker_prev (p) = 0; | |
1700 p->insertion_type = 0; | |
1701 XSETMARKER (val, p); | |
1702 return val; | |
1703 } | |
1704 | |
1705 | |
1706 /************************************************************************/ | |
1707 /* String allocation */ | |
1708 /************************************************************************/ | |
1709 | |
1710 /* The data for "short" strings generally resides inside of structs of type | |
1711 string_chars_block. The Lisp_String structure is allocated just like any | |
1712 other Lisp object (except for vectors), and these are freelisted when | |
1713 they get garbage collected. The data for short strings get compacted, | |
1714 but the data for large strings do not. | |
1715 | |
1716 Previously Lisp_String structures were relocated, but this caused a lot | |
1717 of bus-errors because the C code didn't include enough GCPRO's for | |
1718 strings (since EVERY REFERENCE to a short string needed to be GCPRO'd so | |
1719 that the reference would get relocated). | |
1720 | |
1721 This new method makes things somewhat bigger, but it is MUCH safer. */ | |
1722 | |
1723 DECLARE_FIXED_TYPE_ALLOC (string, struct Lisp_String); | |
1724 /* strings are used and freed quite often */ | |
1725 /* #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_string 10000 */ | |
1726 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_string 1000 | |
1727 | |
1728 static Lisp_Object | |
1729 mark_string (Lisp_Object obj) | |
1730 { | |
1731 struct Lisp_String *ptr = XSTRING (obj); | |
1732 | |
1733 if (CONSP (ptr->plist) && EXTENT_INFOP (XCAR (ptr->plist))) | |
1734 flush_cached_extent_info (XCAR (ptr->plist)); | |
1735 return ptr->plist; | |
1736 } | |
1737 | |
1738 static int | |
1739 string_equal (Lisp_Object obj1, Lisp_Object obj2, int depth) | |
1740 { | |
1741 Bytecount len; | |
1742 return (((len = XSTRING_LENGTH (obj1)) == XSTRING_LENGTH (obj2)) && | |
1743 !memcmp (XSTRING_DATA (obj1), XSTRING_DATA (obj2), len)); | |
1744 } | |
1745 | |
1746 static const struct lrecord_description string_description[] = { | |
1747 { XD_BYTECOUNT, offsetof(Lisp_String, size) }, | |
1748 { XD_OPAQUE_DATA_PTR, offsetof(Lisp_String, data), XD_INDIRECT(0, 1) }, | |
1749 { XD_LISP_OBJECT, offsetof(Lisp_String, plist), 1 }, | |
1750 { XD_END } | |
1751 }; | |
1752 | |
1753 DEFINE_BASIC_LRECORD_IMPLEMENTATION ("string", string, | |
1754 mark_string, print_string, | |
1755 /* | |
1756 * No `finalize', or `hash' methods. | |
1757 * internal_hash already knows how | |
1758 * to hash strings and finalization | |
1759 * is done with the | |
1760 * ADDITIONAL_FREE_string macro, | |
1761 * which is the standard way to do | |
1762 * finalization when using | |
1763 * SWEEP_FIXED_TYPE_BLOCK(). | |
1764 */ | |
1765 0, string_equal, 0, | |
1766 string_description, | |
1767 struct Lisp_String); | |
1768 | |
1769 /* String blocks contain this many useful bytes. */ | |
1770 #define STRING_CHARS_BLOCK_SIZE \ | |
1771 ((Bytecount) (8192 - MALLOC_OVERHEAD - \ | |
1772 ((2 * sizeof (struct string_chars_block *)) \ | |
1773 + sizeof (EMACS_INT)))) | |
1774 /* Block header for small strings. */ | |
1775 struct string_chars_block | |
1776 { | |
1777 EMACS_INT pos; | |
1778 struct string_chars_block *next; | |
1779 struct string_chars_block *prev; | |
1780 /* Contents of string_chars_block->string_chars are interleaved | |
1781 string_chars structures (see below) and the actual string data */ | |
1782 unsigned char string_chars[STRING_CHARS_BLOCK_SIZE]; | |
1783 }; | |
1784 | |
1785 static struct string_chars_block *first_string_chars_block; | |
1786 static struct string_chars_block *current_string_chars_block; | |
1787 | |
1788 /* If SIZE is the length of a string, this returns how many bytes | |
1789 * the string occupies in string_chars_block->string_chars | |
1790 * (including alignment padding). | |
1791 */ | |
1792 #define STRING_FULLSIZE(s) \ | |
1793 ALIGN_SIZE (((s) + 1 + sizeof (struct Lisp_String *)),\ | |
1794 ALIGNOF (struct Lisp_String *)) | |
1795 | |
1796 #define BIG_STRING_FULLSIZE_P(fullsize) ((fullsize) >= STRING_CHARS_BLOCK_SIZE) | |
1797 #define BIG_STRING_SIZE_P(size) (BIG_STRING_FULLSIZE_P (STRING_FULLSIZE(size))) | |
1798 | |
1799 #define CHARS_TO_STRING_CHAR(x) \ | |
1800 ((struct string_chars *) \ | |
1801 (((char *) (x)) - (slot_offset (struct string_chars, chars[0])))) | |
1802 | |
1803 | |
1804 struct string_chars | |
1805 { | |
1806 struct Lisp_String *string; | |
1807 unsigned char chars[1]; | |
1808 }; | |
1809 | |
1810 struct unused_string_chars | |
1811 { | |
1812 struct Lisp_String *string; | |
1813 EMACS_INT fullsize; | |
1814 }; | |
1815 | |
1816 static void | |
1817 init_string_chars_alloc (void) | |
1818 { | |
1819 first_string_chars_block = xnew (struct string_chars_block); | |
1820 first_string_chars_block->prev = 0; | |
1821 first_string_chars_block->next = 0; | |
1822 first_string_chars_block->pos = 0; | |
1823 current_string_chars_block = first_string_chars_block; | |
1824 } | |
1825 | |
1826 static struct string_chars * | |
1827 allocate_string_chars_struct (struct Lisp_String *string_it_goes_with, | |
1828 EMACS_INT fullsize) | |
1829 { | |
1830 struct string_chars *s_chars; | |
1831 | |
1832 /* Allocate the string's actual data */ | |
1833 if (BIG_STRING_FULLSIZE_P (fullsize)) | |
1834 { | |
1835 s_chars = (struct string_chars *) xmalloc (fullsize); | |
1836 } | |
1837 else if (fullsize <= | |
1838 (countof (current_string_chars_block->string_chars) | |
1839 - current_string_chars_block->pos)) | |
1840 { | |
1841 /* This string can fit in the current string chars block */ | |
1842 s_chars = (struct string_chars *) | |
1843 (current_string_chars_block->string_chars | |
1844 + current_string_chars_block->pos); | |
1845 current_string_chars_block->pos += fullsize; | |
1846 } | |
1847 else | |
1848 { | |
1849 /* Make a new current string chars block */ | |
1850 struct string_chars_block *new_scb = xnew (struct string_chars_block); | |
1851 | |
1852 current_string_chars_block->next = new_scb; | |
1853 new_scb->prev = current_string_chars_block; | |
1854 new_scb->next = 0; | |
1855 current_string_chars_block = new_scb; | |
1856 new_scb->pos = fullsize; | |
1857 s_chars = (struct string_chars *) | |
1858 current_string_chars_block->string_chars; | |
1859 } | |
1860 | |
1861 s_chars->string = string_it_goes_with; | |
1862 | |
1863 INCREMENT_CONS_COUNTER (fullsize, "string chars"); | |
1864 | |
1865 return s_chars; | |
1866 } | |
1867 | |
1868 Lisp_Object | |
1869 make_uninit_string (Bytecount length) | |
1870 { | |
1871 struct Lisp_String *s; | |
1872 struct string_chars *s_chars; | |
1873 EMACS_INT fullsize = STRING_FULLSIZE (length); | |
1874 Lisp_Object val; | |
1875 | |
1876 if ((length < 0) || (fullsize <= 0)) | |
1877 abort (); | |
1878 | |
1879 /* Allocate the string header */ | |
1880 ALLOCATE_FIXED_TYPE (string, struct Lisp_String, s); | |
1881 set_lheader_implementation (&(s->lheader), &lrecord_string); | |
1882 | |
1883 s_chars = allocate_string_chars_struct (s, fullsize); | |
1884 | |
1885 set_string_data (s, &(s_chars->chars[0])); | |
1886 set_string_length (s, length); | |
1887 s->plist = Qnil; | |
1888 | |
1889 set_string_byte (s, length, 0); | |
1890 | |
1891 XSETSTRING (val, s); | |
1892 return val; | |
1893 } | |
1894 | |
1895 #ifdef VERIFY_STRING_CHARS_INTEGRITY | |
1896 static void verify_string_chars_integrity (void); | |
1897 #endif | |
1898 | |
1899 /* Resize the string S so that DELTA bytes can be inserted starting | |
1900 at POS. If DELTA < 0, it means deletion starting at POS. If | |
1901 POS < 0, resize the string but don't copy any characters. Use | |
1902 this if you're planning on completely overwriting the string. | |
1903 */ | |
1904 | |
1905 void | |
1906 resize_string (struct Lisp_String *s, Bytecount pos, Bytecount delta) | |
1907 { | |
1908 #ifdef VERIFY_STRING_CHARS_INTEGRITY | |
1909 verify_string_chars_integrity (); | |
1910 #endif | |
1911 | |
1912 #ifdef ERROR_CHECK_BUFPOS | |
1913 if (pos >= 0) | |
1914 { | |
1915 assert (pos <= string_length (s)); | |
1916 if (delta < 0) | |
1917 assert (pos + (-delta) <= string_length (s)); | |
1918 } | |
1919 else | |
1920 { | |
1921 if (delta < 0) | |
1922 assert ((-delta) <= string_length (s)); | |
1923 } | |
1924 #endif /* ERROR_CHECK_BUFPOS */ | |
1925 | |
1926 if (pos >= 0 && delta < 0) | |
1927 /* If DELTA < 0, the functions below will delete the characters | |
1928 before POS. We want to delete characters *after* POS, however, | |
1929 so convert this to the appropriate form. */ | |
1930 pos += -delta; | |
1931 | |
1932 if (delta == 0) | |
1933 /* simplest case: no size change. */ | |
1934 return; | |
1935 else | |
1936 { | |
1937 Bytecount oldfullsize = STRING_FULLSIZE (string_length (s)); | |
1938 Bytecount newfullsize = STRING_FULLSIZE (string_length (s) + delta); | |
1939 | |
1940 if (oldfullsize == newfullsize) | |
1941 { | |
1942 /* next simplest case; size change but the necessary | |
1943 allocation size won't change (up or down; code somewhere | |
1944 depends on there not being any unused allocation space, | |
1945 modulo any alignment constraints). */ | |
1946 if (pos >= 0) | |
1947 { | |
1948 Bufbyte *addroff = pos + string_data (s); | |
1949 | |
1950 memmove (addroff + delta, addroff, | |
1951 /* +1 due to zero-termination. */ | |
1952 string_length (s) + 1 - pos); | |
1953 } | |
1954 } | |
1955 else if (BIG_STRING_FULLSIZE_P (oldfullsize) && | |
1956 BIG_STRING_FULLSIZE_P (newfullsize)) | |
1957 { | |
1958 /* next simplest case; the string is big enough to be malloc()ed | |
1959 itself, so we just realloc. | |
1960 | |
1961 It's important not to let the string get below the threshold | |
1962 for making big strings and still remain malloc()ed; if that | |
1963 were the case, repeated calls to this function on the same | |
1964 string could result in memory leakage. */ | |
1965 set_string_data (s, (Bufbyte *) xrealloc (string_data (s), | |
1966 newfullsize)); | |
1967 if (pos >= 0) | |
1968 { | |
1969 Bufbyte *addroff = pos + string_data (s); | |
1970 | |
1971 memmove (addroff + delta, addroff, | |
1972 /* +1 due to zero-termination. */ | |
1973 string_length (s) + 1 - pos); | |
1974 } | |
1975 } | |
1976 else | |
1977 { | |
1978 /* worst case. We make a new string_chars struct and copy | |
1979 the string's data into it, inserting/deleting the delta | |
1980 in the process. The old string data will either get | |
1981 freed by us (if it was malloc()ed) or will be reclaimed | |
1982 in the normal course of garbage collection. */ | |
1983 struct string_chars *s_chars = | |
1984 allocate_string_chars_struct (s, newfullsize); | |
1985 Bufbyte *new_addr = &(s_chars->chars[0]); | |
1986 Bufbyte *old_addr = string_data (s); | |
1987 if (pos >= 0) | |
1988 { | |
1989 memcpy (new_addr, old_addr, pos); | |
1990 memcpy (new_addr + pos + delta, old_addr + pos, | |
1991 string_length (s) + 1 - pos); | |
1992 } | |
1993 set_string_data (s, new_addr); | |
1994 if (BIG_STRING_FULLSIZE_P (oldfullsize)) | |
1995 xfree (old_addr); | |
1996 else | |
1997 { | |
1998 /* We need to mark this chunk of the string_chars_block | |
1999 as unused so that compact_string_chars() doesn't | |
2000 freak. */ | |
2001 struct string_chars *old_s_chars = | |
2002 (struct string_chars *) ((char *) old_addr - | |
2003 sizeof (struct Lisp_String *)); | |
2004 /* Sanity check to make sure we aren't hosed by strange | |
2005 alignment/padding. */ | |
2006 assert (old_s_chars->string == s); | |
2007 MARK_STRUCT_AS_FREE (old_s_chars); | |
2008 ((struct unused_string_chars *) old_s_chars)->fullsize = | |
2009 oldfullsize; | |
2010 } | |
2011 } | |
2012 | |
2013 set_string_length (s, string_length (s) + delta); | |
2014 /* If pos < 0, the string won't be zero-terminated. | |
2015 Terminate now just to make sure. */ | |
2016 string_data (s)[string_length (s)] = '\0'; | |
2017 | |
2018 if (pos >= 0) | |
2019 { | |
2020 Lisp_Object string; | |
2021 | |
2022 XSETSTRING (string, s); | |
2023 /* We also have to adjust all of the extent indices after the | |
2024 place we did the change. We say "pos - 1" because | |
2025 adjust_extents() is exclusive of the starting position | |
2026 passed to it. */ | |
2027 adjust_extents (string, pos - 1, string_length (s), | |
2028 delta); | |
2029 } | |
2030 } | |
2031 | |
2032 #ifdef VERIFY_STRING_CHARS_INTEGRITY | |
2033 verify_string_chars_integrity (); | |
2034 #endif | |
2035 } | |
2036 | |
2037 #ifdef MULE | |
2038 | |
2039 void | |
2040 set_string_char (struct Lisp_String *s, Charcount i, Emchar c) | |
2041 { | |
2042 Bufbyte newstr[MAX_EMCHAR_LEN]; | |
2043 Bytecount bytoff = charcount_to_bytecount (string_data (s), i); | |
2044 Bytecount oldlen = charcount_to_bytecount (string_data (s) + bytoff, 1); | |
2045 Bytecount newlen = set_charptr_emchar (newstr, c); | |
2046 | |
2047 if (oldlen != newlen) | |
2048 resize_string (s, bytoff, newlen - oldlen); | |
2049 /* Remember, string_data (s) might have changed so we can't cache it. */ | |
2050 memcpy (string_data (s) + bytoff, newstr, newlen); | |
2051 } | |
2052 | |
2053 #endif /* MULE */ | |
2054 | |
2055 DEFUN ("make-string", Fmake_string, 2, 2, 0, /* | |
2056 Return a new string of length LENGTH, with each character being INIT. | |
2057 LENGTH must be an integer and INIT must be a character. | |
2058 */ | |
2059 (length, init)) | |
2060 { | |
2061 CHECK_NATNUM (length); | |
2062 CHECK_CHAR_COERCE_INT (init); | |
2063 { | |
2064 Bufbyte init_str[MAX_EMCHAR_LEN]; | |
2065 int len = set_charptr_emchar (init_str, XCHAR (init)); | |
2066 Lisp_Object val = make_uninit_string (len * XINT (length)); | |
2067 | |
2068 if (len == 1) | |
2069 /* Optimize the single-byte case */ | |
2070 memset (XSTRING_DATA (val), XCHAR (init), XSTRING_LENGTH (val)); | |
2071 else | |
2072 { | |
2073 size_t i; | |
2074 Bufbyte *ptr = XSTRING_DATA (val); | |
2075 | |
2076 for (i = XINT (length); i; i--) | |
2077 { | |
2078 Bufbyte *init_ptr = init_str; | |
2079 switch (len) | |
2080 { | |
2081 case 4: *ptr++ = *init_ptr++; | |
2082 case 3: *ptr++ = *init_ptr++; | |
2083 case 2: *ptr++ = *init_ptr++; | |
2084 case 1: *ptr++ = *init_ptr++; | |
2085 } | |
2086 } | |
2087 } | |
2088 return val; | |
2089 } | |
2090 } | |
2091 | |
2092 DEFUN ("string", Fstring, 0, MANY, 0, /* | |
2093 Concatenate all the argument characters and make the result a string. | |
2094 */ | |
2095 (int nargs, Lisp_Object *args)) | |
2096 { | |
2097 Bufbyte *storage = alloca_array (Bufbyte, nargs * MAX_EMCHAR_LEN); | |
2098 Bufbyte *p = storage; | |
2099 | |
2100 for (; nargs; nargs--, args++) | |
2101 { | |
2102 Lisp_Object lisp_char = *args; | |
2103 CHECK_CHAR_COERCE_INT (lisp_char); | |
2104 p += set_charptr_emchar (p, XCHAR (lisp_char)); | |
2105 } | |
2106 return make_string (storage, p - storage); | |
2107 } | |
2108 | |
2109 | |
2110 /* Take some raw memory, which MUST already be in internal format, | |
2111 and package it up into a Lisp string. */ | |
2112 Lisp_Object | |
2113 make_string (CONST Bufbyte *contents, Bytecount length) | |
2114 { | |
2115 Lisp_Object val; | |
2116 | |
2117 /* Make sure we find out about bad make_string's when they happen */ | |
2118 #if defined (ERROR_CHECK_BUFPOS) && defined (MULE) | |
2119 bytecount_to_charcount (contents, length); /* Just for the assertions */ | |
2120 #endif | |
2121 | |
2122 val = make_uninit_string (length); | |
2123 memcpy (XSTRING_DATA (val), contents, length); | |
2124 return val; | |
2125 } | |
2126 | |
2127 /* Take some raw memory, encoded in some external data format, | |
2128 and convert it into a Lisp string. */ | |
2129 Lisp_Object | |
2130 make_ext_string (CONST Extbyte *contents, EMACS_INT length, | |
2131 enum external_data_format fmt) | |
2132 { | |
2133 Bufbyte *intstr; | |
2134 Bytecount intlen; | |
2135 | |
2136 GET_CHARPTR_INT_DATA_ALLOCA (contents, length, fmt, intstr, intlen); | |
2137 return make_string (intstr, intlen); | |
2138 } | |
2139 | |
2140 Lisp_Object | |
2141 build_string (CONST char *str) | |
2142 { | |
2143 /* Some strlen's crash and burn if passed null. */ | |
2144 return make_string ((CONST Bufbyte *) str, (str ? strlen(str) : 0)); | |
2145 } | |
2146 | |
2147 Lisp_Object | |
2148 build_ext_string (CONST char *str, enum external_data_format fmt) | |
2149 { | |
2150 /* Some strlen's crash and burn if passed null. */ | |
2151 return make_ext_string ((CONST Extbyte *) str, (str ? strlen(str) : 0), fmt); | |
2152 } | |
2153 | |
2154 Lisp_Object | |
2155 build_translated_string (CONST char *str) | |
2156 { | |
2157 return build_string (GETTEXT (str)); | |
2158 } | |
2159 | |
2160 Lisp_Object | |
2161 make_string_nocopy (CONST Bufbyte *contents, Bytecount length) | |
2162 { | |
2163 struct Lisp_String *s; | |
2164 Lisp_Object val; | |
2165 | |
2166 /* Make sure we find out about bad make_string_nocopy's when they happen */ | |
2167 #if defined (ERROR_CHECK_BUFPOS) && defined (MULE) | |
2168 bytecount_to_charcount (contents, length); /* Just for the assertions */ | |
2169 #endif | |
2170 | |
2171 /* Allocate the string header */ | |
2172 ALLOCATE_FIXED_TYPE (string, struct Lisp_String, s); | |
2173 set_lheader_implementation (&(s->lheader), &lrecord_string); | |
2174 SET_C_READONLY_RECORD_HEADER (&s->lheader); | |
2175 s->plist = Qnil; | |
2176 set_string_data (s, (Bufbyte *)contents); | |
2177 set_string_length (s, length); | |
2178 | |
2179 XSETSTRING (val, s); | |
2180 return val; | |
2181 } | |
2182 | |
2183 | |
2184 /************************************************************************/ | |
2185 /* lcrecord lists */ | |
2186 /************************************************************************/ | |
2187 | |
2188 /* Lcrecord lists are used to manage the allocation of particular | |
2189 sorts of lcrecords, to avoid calling alloc_lcrecord() (and thus | |
2190 malloc() and garbage-collection junk) as much as possible. | |
2191 It is similar to the Blocktype class. | |
2192 | |
2193 It works like this: | |
2194 | |
2195 1) Create an lcrecord-list object using make_lcrecord_list(). | |
2196 This is often done at initialization. Remember to staticpro_nodump | |
2197 this object! The arguments to make_lcrecord_list() are the | |
2198 same as would be passed to alloc_lcrecord(). | |
2199 2) Instead of calling alloc_lcrecord(), call allocate_managed_lcrecord() | |
2200 and pass the lcrecord-list earlier created. | |
2201 3) When done with the lcrecord, call free_managed_lcrecord(). | |
2202 The standard freeing caveats apply: ** make sure there are no | |
2203 pointers to the object anywhere! ** | |
2204 4) Calling free_managed_lcrecord() is just like kissing the | |
2205 lcrecord goodbye as if it were garbage-collected. This means: | |
2206 -- the contents of the freed lcrecord are undefined, and the | |
2207 contents of something produced by allocate_managed_lcrecord() | |
2208 are undefined, just like for alloc_lcrecord(). | |
2209 -- the mark method for the lcrecord's type will *NEVER* be called | |
2210 on freed lcrecords. | |
2211 -- the finalize method for the lcrecord's type will be called | |
2212 at the time that free_managed_lcrecord() is called. | |
2213 | |
2214 */ | |
2215 | |
2216 static Lisp_Object | |
2217 mark_lcrecord_list (Lisp_Object obj) | |
2218 { | |
2219 struct lcrecord_list *list = XLCRECORD_LIST (obj); | |
2220 Lisp_Object chain = list->free; | |
2221 | |
2222 while (!NILP (chain)) | |
2223 { | |
2224 struct lrecord_header *lheader = XRECORD_LHEADER (chain); | |
2225 struct free_lcrecord_header *free_header = | |
2226 (struct free_lcrecord_header *) lheader; | |
2227 | |
2228 #ifdef ERROR_CHECK_GC | |
2229 CONST struct lrecord_implementation *implementation | |
2230 = LHEADER_IMPLEMENTATION(lheader); | |
2231 | |
2232 /* There should be no other pointers to the free list. */ | |
2233 assert (!MARKED_RECORD_HEADER_P (lheader)); | |
2234 /* Only lcrecords should be here. */ | |
2235 assert (!implementation->basic_p); | |
2236 /* Only free lcrecords should be here. */ | |
2237 assert (free_header->lcheader.free); | |
2238 /* The type of the lcrecord must be right. */ | |
2239 assert (implementation == list->implementation); | |
2240 /* So must the size. */ | |
2241 assert (implementation->static_size == 0 | |
2242 || implementation->static_size == list->size); | |
2243 #endif /* ERROR_CHECK_GC */ | |
2244 | |
2245 MARK_RECORD_HEADER (lheader); | |
2246 chain = free_header->chain; | |
2247 } | |
2248 | |
2249 return Qnil; | |
2250 } | |
2251 | |
2252 DEFINE_LRECORD_IMPLEMENTATION ("lcrecord-list", lcrecord_list, | |
2253 mark_lcrecord_list, internal_object_printer, | |
2254 0, 0, 0, 0, struct lcrecord_list); | |
2255 Lisp_Object | |
2256 make_lcrecord_list (size_t size, | |
2257 CONST struct lrecord_implementation *implementation) | |
2258 { | |
2259 struct lcrecord_list *p = alloc_lcrecord_type (struct lcrecord_list, | |
2260 &lrecord_lcrecord_list); | |
2261 Lisp_Object val; | |
2262 | |
2263 p->implementation = implementation; | |
2264 p->size = size; | |
2265 p->free = Qnil; | |
2266 XSETLCRECORD_LIST (val, p); | |
2267 return val; | |
2268 } | |
2269 | |
2270 Lisp_Object | |
2271 allocate_managed_lcrecord (Lisp_Object lcrecord_list) | |
2272 { | |
2273 struct lcrecord_list *list = XLCRECORD_LIST (lcrecord_list); | |
2274 if (!NILP (list->free)) | |
2275 { | |
2276 Lisp_Object val = list->free; | |
2277 struct free_lcrecord_header *free_header = | |
2278 (struct free_lcrecord_header *) XPNTR (val); | |
2279 | |
2280 #ifdef ERROR_CHECK_GC | |
2281 struct lrecord_header *lheader = | |
2282 (struct lrecord_header *) free_header; | |
2283 CONST struct lrecord_implementation *implementation | |
2284 = LHEADER_IMPLEMENTATION (lheader); | |
2285 | |
2286 /* There should be no other pointers to the free list. */ | |
2287 assert (!MARKED_RECORD_HEADER_P (lheader)); | |
2288 /* Only lcrecords should be here. */ | |
2289 assert (!implementation->basic_p); | |
2290 /* Only free lcrecords should be here. */ | |
2291 assert (free_header->lcheader.free); | |
2292 /* The type of the lcrecord must be right. */ | |
2293 assert (implementation == list->implementation); | |
2294 /* So must the size. */ | |
2295 assert (implementation->static_size == 0 | |
2296 || implementation->static_size == list->size); | |
2297 #endif /* ERROR_CHECK_GC */ | |
2298 list->free = free_header->chain; | |
2299 free_header->lcheader.free = 0; | |
2300 return val; | |
2301 } | |
2302 else | |
2303 { | |
2304 Lisp_Object val; | |
2305 | |
2306 XSETOBJ (val, Lisp_Type_Record, | |
2307 alloc_lcrecord (list->size, list->implementation)); | |
2308 return val; | |
2309 } | |
2310 } | |
2311 | |
2312 void | |
2313 free_managed_lcrecord (Lisp_Object lcrecord_list, Lisp_Object lcrecord) | |
2314 { | |
2315 struct lcrecord_list *list = XLCRECORD_LIST (lcrecord_list); | |
2316 struct free_lcrecord_header *free_header = | |
2317 (struct free_lcrecord_header *) XPNTR (lcrecord); | |
2318 struct lrecord_header *lheader = | |
2319 (struct lrecord_header *) free_header; | |
2320 CONST struct lrecord_implementation *implementation | |
2321 = LHEADER_IMPLEMENTATION (lheader); | |
2322 | |
2323 #ifdef ERROR_CHECK_GC | |
2324 /* Make sure the size is correct. This will catch, for example, | |
2325 putting a window configuration on the wrong free list. */ | |
2326 if (implementation->size_in_bytes_method) | |
2327 assert (implementation->size_in_bytes_method (lheader) == list->size); | |
2328 else | |
2329 assert (implementation->static_size == list->size); | |
2330 #endif /* ERROR_CHECK_GC */ | |
2331 | |
2332 if (implementation->finalizer) | |
2333 implementation->finalizer (lheader, 0); | |
2334 free_header->chain = list->free; | |
2335 free_header->lcheader.free = 1; | |
2336 list->free = lcrecord; | |
2337 } | |
2338 | |
2339 | |
2340 | |
2341 | |
2342 DEFUN ("purecopy", Fpurecopy, 1, 1, 0, /* | |
2343 Kept for compatibility, returns its argument. | |
2344 Old: | |
2345 Make a copy of OBJECT in pure storage. | |
2346 Recursively copies contents of vectors and cons cells. | |
2347 Does not copy symbols. | |
2348 */ | |
2349 (obj)) | |
2350 { | |
2351 return obj; | |
2352 } | |
2353 | |
2354 | |
2355 | |
2356 /************************************************************************/ | |
2357 /* Garbage Collection */ | |
2358 /************************************************************************/ | |
2359 | |
2360 /* This will be used more extensively In The Future */ | |
2361 static int last_lrecord_type_index_assigned; | |
2362 | |
2363 CONST struct lrecord_implementation *lrecord_implementations_table[128]; | |
2364 #define max_lrecord_type (countof (lrecord_implementations_table) - 1) | |
2365 | |
2366 struct gcpro *gcprolist; | |
2367 | |
2368 /* 415 used Mly 29-Jun-93 */ | |
2369 /* 1327 used slb 28-Feb-98 */ | |
2370 /* 1328 used og 03-Oct-99 (moving slowly, heh?) */ | |
2371 #ifdef HAVE_SHLIB | |
2372 #define NSTATICS 4000 | |
2373 #else | |
2374 #define NSTATICS 2000 | |
2375 #endif | |
2376 /* Not "static" because of linker lossage on some systems */ | |
2377 Lisp_Object *staticvec[NSTATICS] | |
2378 /* Force it into data space! */ | |
2379 = {0}; | |
2380 static int staticidx; | |
2381 | |
2382 /* Put an entry in staticvec, pointing at the variable whose address is given | |
2383 */ | |
2384 void | |
2385 staticpro (Lisp_Object *varaddress) | |
2386 { | |
2387 if (staticidx >= countof (staticvec)) | |
2388 /* #### This is now a dubious abort() since this routine may be called */ | |
2389 /* by Lisp attempting to load a DLL. */ | |
2390 abort (); | |
2391 staticvec[staticidx++] = varaddress; | |
2392 } | |
2393 | |
2394 /* Not "static" because of linker lossage on some systems */ | |
2395 Lisp_Object *staticvec_nodump[200] | |
2396 /* Force it into data space! */ | |
2397 = {0}; | |
2398 static int staticidx_nodump; | |
2399 | |
2400 /* Put an entry in staticvec_nodump, pointing at the variable whose address is given | |
2401 */ | |
2402 void | |
2403 staticpro_nodump (Lisp_Object *varaddress) | |
2404 { | |
2405 if (staticidx_nodump >= countof (staticvec_nodump)) | |
2406 /* #### This is now a dubious abort() since this routine may be called */ | |
2407 /* by Lisp attempting to load a DLL. */ | |
2408 abort (); | |
2409 staticvec_nodump[staticidx_nodump++] = varaddress; | |
2410 } | |
2411 | |
2412 /* Not "static" because of linker lossage on some systems */ | |
2413 struct { | |
2414 void *data; | |
2415 const struct struct_description *desc; | |
2416 } dumpstructvec[200]; | |
2417 | |
2418 static int dumpstructidx; | |
2419 | |
2420 /* Put an entry in dumpstructvec, pointing at the variable whose address is given | |
2421 */ | |
2422 void | |
2423 dumpstruct (void *varaddress, const struct struct_description *desc) | |
2424 { | |
2425 if (dumpstructidx >= countof (dumpstructvec)) | |
2426 abort (); | |
2427 dumpstructvec[dumpstructidx].data = varaddress; | |
2428 dumpstructvec[dumpstructidx].desc = desc; | |
2429 dumpstructidx++; | |
2430 } | |
2431 | |
2432 Lisp_Object *pdump_wirevec[50]; | |
2433 static int pdump_wireidx; | |
2434 | |
2435 /* Put an entry in pdump_wirevec, pointing at the variable whose address is given | |
2436 */ | |
2437 void | |
2438 pdump_wire (Lisp_Object *varaddress) | |
2439 { | |
2440 if (pdump_wireidx >= countof (pdump_wirevec)) | |
2441 abort (); | |
2442 pdump_wirevec[pdump_wireidx++] = varaddress; | |
2443 } | |
2444 | |
2445 | |
2446 Lisp_Object *pdump_wirevec_list[50]; | |
2447 static int pdump_wireidx_list; | |
2448 | |
2449 /* Put an entry in pdump_wirevec_list, pointing at the variable whose address is given | |
2450 */ | |
2451 void | |
2452 pdump_wire_list (Lisp_Object *varaddress) | |
2453 { | |
2454 if (pdump_wireidx_list >= countof (pdump_wirevec_list)) | |
2455 abort (); | |
2456 pdump_wirevec_list[pdump_wireidx_list++] = varaddress; | |
2457 } | |
2458 | |
2459 | |
2460 /* Mark reference to a Lisp_Object. If the object referred to has not been | |
2461 seen yet, recursively mark all the references contained in it. */ | |
2462 | |
2463 void | |
2464 mark_object (Lisp_Object obj) | |
2465 { | |
2466 tail_recurse: | |
2467 | |
2468 #ifdef ERROR_CHECK_GC | |
2469 assert (! (EQ (obj, Qnull_pointer))); | |
2470 #endif | |
2471 /* Checks we used to perform */ | |
2472 /* if (EQ (obj, Qnull_pointer)) return; */ | |
2473 /* if (!POINTER_TYPE_P (XGCTYPE (obj))) return; */ | |
2474 /* if (PURIFIED (XPNTR (obj))) return; */ | |
2475 | |
2476 if (XTYPE (obj) == Lisp_Type_Record) | |
2477 { | |
2478 struct lrecord_header *lheader = XRECORD_LHEADER (obj); | |
2479 #if defined (ERROR_CHECK_GC) | |
2480 assert (lheader->type <= last_lrecord_type_index_assigned); | |
2481 #endif | |
2482 if (C_READONLY_RECORD_HEADER_P (lheader)) | |
2483 return; | |
2484 | |
2485 if (! MARKED_RECORD_HEADER_P (lheader) && | |
2486 ! UNMARKABLE_RECORD_HEADER_P (lheader)) | |
2487 { | |
2488 CONST struct lrecord_implementation *implementation = | |
2489 LHEADER_IMPLEMENTATION (lheader); | |
2490 MARK_RECORD_HEADER (lheader); | |
2491 #ifdef ERROR_CHECK_GC | |
2492 if (!implementation->basic_p) | |
2493 assert (! ((struct lcrecord_header *) lheader)->free); | |
2494 #endif | |
2495 if (implementation->marker) | |
2496 { | |
2497 obj = implementation->marker (obj); | |
2498 if (!NILP (obj)) goto tail_recurse; | |
2499 } | |
2500 } | |
2501 } | |
2502 } | |
2503 | |
2504 /* mark all of the conses in a list and mark the final cdr; but | |
2505 DO NOT mark the cars. | |
2506 | |
2507 Use only for internal lists! There should never be other pointers | |
2508 to the cons cells, because if so, the cars will remain unmarked | |
2509 even when they maybe should be marked. */ | |
2510 void | |
2511 mark_conses_in_list (Lisp_Object obj) | |
2512 { | |
2513 Lisp_Object rest; | |
2514 | |
2515 for (rest = obj; CONSP (rest); rest = XCDR (rest)) | |
2516 { | |
2517 if (CONS_MARKED_P (XCONS (rest))) | |
2518 return; | |
2519 MARK_CONS (XCONS (rest)); | |
2520 } | |
2521 | |
2522 mark_object (rest); | |
2523 } | |
2524 | |
2525 | |
2526 /* Find all structures not marked, and free them. */ | |
2527 | |
2528 static int gc_count_num_bit_vector_used, gc_count_bit_vector_total_size; | |
2529 static int gc_count_bit_vector_storage; | |
2530 static int gc_count_num_short_string_in_use; | |
2531 static int gc_count_string_total_size; | |
2532 static int gc_count_short_string_total_size; | |
2533 | |
2534 /* static int gc_count_total_records_used, gc_count_records_total_size; */ | |
2535 | |
2536 | |
2537 int | |
2538 lrecord_type_index (CONST struct lrecord_implementation *implementation) | |
2539 { | |
2540 int type_index = *(implementation->lrecord_type_index); | |
2541 /* Have to do this circuitous validation test because of problems | |
2542 dumping out initialized variables (ie can't set xxx_type_index to -1 | |
2543 because that would make xxx_type_index read-only in a dumped emacs. */ | |
2544 if (type_index < 0 || type_index > max_lrecord_type | |
2545 || lrecord_implementations_table[type_index] != implementation) | |
2546 { | |
2547 assert (last_lrecord_type_index_assigned < max_lrecord_type); | |
2548 type_index = ++last_lrecord_type_index_assigned; | |
2549 lrecord_implementations_table[type_index] = implementation; | |
2550 *(implementation->lrecord_type_index) = type_index; | |
2551 } | |
2552 return type_index; | |
2553 } | |
2554 | |
2555 /* stats on lcrecords in use - kinda kludgy */ | |
2556 | |
2557 static struct | |
2558 { | |
2559 int instances_in_use; | |
2560 int bytes_in_use; | |
2561 int instances_freed; | |
2562 int bytes_freed; | |
2563 int instances_on_free_list; | |
2564 } lcrecord_stats [countof (lrecord_implementations_table)]; | |
2565 | |
2566 static void | |
2567 tick_lcrecord_stats (CONST struct lrecord_header *h, int free_p) | |
2568 { | |
2569 CONST struct lrecord_implementation *implementation = | |
2570 LHEADER_IMPLEMENTATION (h); | |
2571 int type_index = lrecord_type_index (implementation); | |
2572 | |
2573 if (((struct lcrecord_header *) h)->free) | |
2574 { | |
2575 assert (!free_p); | |
2576 lcrecord_stats[type_index].instances_on_free_list++; | |
2577 } | |
2578 else | |
2579 { | |
2580 size_t sz = (implementation->size_in_bytes_method | |
2581 ? implementation->size_in_bytes_method (h) | |
2582 : implementation->static_size); | |
2583 | |
2584 if (free_p) | |
2585 { | |
2586 lcrecord_stats[type_index].instances_freed++; | |
2587 lcrecord_stats[type_index].bytes_freed += sz; | |
2588 } | |
2589 else | |
2590 { | |
2591 lcrecord_stats[type_index].instances_in_use++; | |
2592 lcrecord_stats[type_index].bytes_in_use += sz; | |
2593 } | |
2594 } | |
2595 } | |
2596 | |
2597 | |
2598 /* Free all unmarked records */ | |
2599 static void | |
2600 sweep_lcrecords_1 (struct lcrecord_header **prev, int *used) | |
2601 { | |
2602 struct lcrecord_header *header; | |
2603 int num_used = 0; | |
2604 /* int total_size = 0; */ | |
2605 | |
2606 xzero (lcrecord_stats); /* Reset all statistics to 0. */ | |
2607 | |
2608 /* First go through and call all the finalize methods. | |
2609 Then go through and free the objects. There used to | |
2610 be only one loop here, with the call to the finalizer | |
2611 occurring directly before the xfree() below. That | |
2612 is marginally faster but much less safe -- if the | |
2613 finalize method for an object needs to reference any | |
2614 other objects contained within it (and many do), | |
2615 we could easily be screwed by having already freed that | |
2616 other object. */ | |
2617 | |
2618 for (header = *prev; header; header = header->next) | |
2619 { | |
2620 struct lrecord_header *h = &(header->lheader); | |
2621 if (!C_READONLY_RECORD_HEADER_P(h) | |
2622 && !MARKED_RECORD_HEADER_P (h) | |
2623 && ! (header->free)) | |
2624 { | |
2625 if (LHEADER_IMPLEMENTATION (h)->finalizer) | |
2626 LHEADER_IMPLEMENTATION (h)->finalizer (h, 0); | |
2627 } | |
2628 } | |
2629 | |
2630 for (header = *prev; header; ) | |
2631 { | |
2632 struct lrecord_header *h = &(header->lheader); | |
2633 if (C_READONLY_RECORD_HEADER_P(h) || MARKED_RECORD_HEADER_P (h)) | |
2634 { | |
2635 if (MARKED_RECORD_HEADER_P (h)) | |
2636 UNMARK_RECORD_HEADER (h); | |
2637 num_used++; | |
2638 /* total_size += n->implementation->size_in_bytes (h);*/ | |
2639 /* ### May modify header->next on a C_READONLY lcrecord */ | |
2640 prev = &(header->next); | |
2641 header = *prev; | |
2642 tick_lcrecord_stats (h, 0); | |
2643 } | |
2644 else | |
2645 { | |
2646 struct lcrecord_header *next = header->next; | |
2647 *prev = next; | |
2648 tick_lcrecord_stats (h, 1); | |
2649 /* used to call finalizer right here. */ | |
2650 xfree (header); | |
2651 header = next; | |
2652 } | |
2653 } | |
2654 *used = num_used; | |
2655 /* *total = total_size; */ | |
2656 } | |
2657 | |
2658 | |
2659 static void | |
2660 sweep_bit_vectors_1 (Lisp_Object *prev, | |
2661 int *used, int *total, int *storage) | |
2662 { | |
2663 Lisp_Object bit_vector; | |
2664 int num_used = 0; | |
2665 int total_size = 0; | |
2666 int total_storage = 0; | |
2667 | |
2668 /* BIT_VECTORP fails because the objects are marked, which changes | |
2669 their implementation */ | |
2670 for (bit_vector = *prev; !EQ (bit_vector, Qzero); ) | |
2671 { | |
2672 Lisp_Bit_Vector *v = XBIT_VECTOR (bit_vector); | |
2673 int len = v->size; | |
2674 if (C_READONLY_RECORD_HEADER_P(&(v->lheader)) || MARKED_RECORD_P (bit_vector)) | |
2675 { | |
2676 if (MARKED_RECORD_P (bit_vector)) | |
2677 UNMARK_RECORD_HEADER (&(v->lheader)); | |
2678 total_size += len; | |
2679 total_storage += | |
2680 MALLOC_OVERHEAD + | |
2681 STRETCHY_STRUCT_SIZEOF (Lisp_Bit_Vector, bits, | |
2682 BIT_VECTOR_LONG_STORAGE (len)); | |
2683 num_used++; | |
2684 /* ### May modify next on a C_READONLY bitvector */ | |
2685 prev = &(bit_vector_next (v)); | |
2686 bit_vector = *prev; | |
2687 } | |
2688 else | |
2689 { | |
2690 Lisp_Object next = bit_vector_next (v); | |
2691 *prev = next; | |
2692 xfree (v); | |
2693 bit_vector = next; | |
2694 } | |
2695 } | |
2696 *used = num_used; | |
2697 *total = total_size; | |
2698 *storage = total_storage; | |
2699 } | |
2700 | |
2701 /* And the Lord said: Thou shalt use the `c-backslash-region' command | |
2702 to make macros prettier. */ | |
2703 | |
2704 #ifdef ERROR_CHECK_GC | |
2705 | |
2706 #define SWEEP_FIXED_TYPE_BLOCK(typename, obj_type) \ | |
2707 do { \ | |
2708 struct typename##_block *SFTB_current; \ | |
2709 struct typename##_block **SFTB_prev; \ | |
2710 int SFTB_limit; \ | |
2711 int num_free = 0, num_used = 0; \ | |
2712 \ | |
2713 for (SFTB_prev = ¤t_##typename##_block, \ | |
2714 SFTB_current = current_##typename##_block, \ | |
2715 SFTB_limit = current_##typename##_block_index; \ | |
2716 SFTB_current; \ | |
2717 ) \ | |
2718 { \ | |
2719 int SFTB_iii; \ | |
2720 \ | |
2721 for (SFTB_iii = 0; SFTB_iii < SFTB_limit; SFTB_iii++) \ | |
2722 { \ | |
2723 obj_type *SFTB_victim = &(SFTB_current->block[SFTB_iii]); \ | |
2724 \ | |
2725 if (FREE_STRUCT_P (SFTB_victim)) \ | |
2726 { \ | |
2727 num_free++; \ | |
2728 } \ | |
2729 else if (C_READONLY_RECORD_HEADER_P (&SFTB_victim->lheader)) \ | |
2730 { \ | |
2731 num_used++; \ | |
2732 } \ | |
2733 else if (!MARKED_RECORD_HEADER_P (&SFTB_victim->lheader)) \ | |
2734 { \ | |
2735 num_free++; \ | |
2736 FREE_FIXED_TYPE (typename, obj_type, SFTB_victim); \ | |
2737 } \ | |
2738 else \ | |
2739 { \ | |
2740 num_used++; \ | |
2741 UNMARK_##typename (SFTB_victim); \ | |
2742 } \ | |
2743 } \ | |
2744 SFTB_prev = &(SFTB_current->prev); \ | |
2745 SFTB_current = SFTB_current->prev; \ | |
2746 SFTB_limit = countof (current_##typename##_block->block); \ | |
2747 } \ | |
2748 \ | |
2749 gc_count_num_##typename##_in_use = num_used; \ | |
2750 gc_count_num_##typename##_freelist = num_free; \ | |
2751 } while (0) | |
2752 | |
2753 #else /* !ERROR_CHECK_GC */ | |
2754 | |
2755 #define SWEEP_FIXED_TYPE_BLOCK(typename, obj_type) \ | |
2756 do { \ | |
2757 struct typename##_block *SFTB_current; \ | |
2758 struct typename##_block **SFTB_prev; \ | |
2759 int SFTB_limit; \ | |
2760 int num_free = 0, num_used = 0; \ | |
2761 \ | |
2762 typename##_free_list = 0; \ | |
2763 \ | |
2764 for (SFTB_prev = ¤t_##typename##_block, \ | |
2765 SFTB_current = current_##typename##_block, \ | |
2766 SFTB_limit = current_##typename##_block_index; \ | |
2767 SFTB_current; \ | |
2768 ) \ | |
2769 { \ | |
2770 int SFTB_iii; \ | |
2771 int SFTB_empty = 1; \ | |
2772 obj_type *SFTB_old_free_list = typename##_free_list; \ | |
2773 \ | |
2774 for (SFTB_iii = 0; SFTB_iii < SFTB_limit; SFTB_iii++) \ | |
2775 { \ | |
2776 obj_type *SFTB_victim = &(SFTB_current->block[SFTB_iii]); \ | |
2777 \ | |
2778 if (FREE_STRUCT_P (SFTB_victim)) \ | |
2779 { \ | |
2780 num_free++; \ | |
2781 PUT_FIXED_TYPE_ON_FREE_LIST (typename, obj_type, SFTB_victim); \ | |
2782 } \ | |
2783 else if (C_READONLY_RECORD_HEADER_P (&SFTB_victim->lheader)) \ | |
2784 { \ | |
2785 SFTB_empty = 0; \ | |
2786 num_used++; \ | |
2787 } \ | |
2788 else if (!MARKED_RECORD_HEADER_P (&SFTB_victim->lheader)) \ | |
2789 { \ | |
2790 num_free++; \ | |
2791 FREE_FIXED_TYPE (typename, obj_type, SFTB_victim); \ | |
2792 } \ | |
2793 else \ | |
2794 { \ | |
2795 SFTB_empty = 0; \ | |
2796 num_used++; \ | |
2797 UNMARK_##typename (SFTB_victim); \ | |
2798 } \ | |
2799 } \ | |
2800 if (!SFTB_empty) \ | |
2801 { \ | |
2802 SFTB_prev = &(SFTB_current->prev); \ | |
2803 SFTB_current = SFTB_current->prev; \ | |
2804 } \ | |
2805 else if (SFTB_current == current_##typename##_block \ | |
2806 && !SFTB_current->prev) \ | |
2807 { \ | |
2808 /* No real point in freeing sole allocation block */ \ | |
2809 break; \ | |
2810 } \ | |
2811 else \ | |
2812 { \ | |
2813 struct typename##_block *SFTB_victim_block = SFTB_current; \ | |
2814 if (SFTB_victim_block == current_##typename##_block) \ | |
2815 current_##typename##_block_index \ | |
2816 = countof (current_##typename##_block->block); \ | |
2817 SFTB_current = SFTB_current->prev; \ | |
2818 { \ | |
2819 *SFTB_prev = SFTB_current; \ | |
2820 xfree (SFTB_victim_block); \ | |
2821 /* Restore free list to what it was before victim was swept */ \ | |
2822 typename##_free_list = SFTB_old_free_list; \ | |
2823 num_free -= SFTB_limit; \ | |
2824 } \ | |
2825 } \ | |
2826 SFTB_limit = countof (current_##typename##_block->block); \ | |
2827 } \ | |
2828 \ | |
2829 gc_count_num_##typename##_in_use = num_used; \ | |
2830 gc_count_num_##typename##_freelist = num_free; \ | |
2831 } while (0) | |
2832 | |
2833 #endif /* !ERROR_CHECK_GC */ | |
2834 | |
2835 | |
2836 | |
2837 | |
2838 static void | |
2839 sweep_conses (void) | |
2840 { | |
2841 #define UNMARK_cons(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
2842 #define ADDITIONAL_FREE_cons(ptr) | |
2843 | |
2844 SWEEP_FIXED_TYPE_BLOCK (cons, struct Lisp_Cons); | |
2845 } | |
2846 | |
2847 /* Explicitly free a cons cell. */ | |
2848 void | |
2849 free_cons (struct Lisp_Cons *ptr) | |
2850 { | |
2851 #ifdef ERROR_CHECK_GC | |
2852 /* If the CAR is not an int, then it will be a pointer, which will | |
2853 always be four-byte aligned. If this cons cell has already been | |
2854 placed on the free list, however, its car will probably contain | |
2855 a chain pointer to the next cons on the list, which has cleverly | |
2856 had all its 0's and 1's inverted. This allows for a quick | |
2857 check to make sure we're not freeing something already freed. */ | |
2858 if (POINTER_TYPE_P (XTYPE (ptr->car))) | |
2859 ASSERT_VALID_POINTER (XPNTR (ptr->car)); | |
2860 #endif /* ERROR_CHECK_GC */ | |
2861 | |
2862 #ifndef ALLOC_NO_POOLS | |
2863 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (cons, struct Lisp_Cons, ptr); | |
2864 #endif /* ALLOC_NO_POOLS */ | |
2865 } | |
2866 | |
2867 /* explicitly free a list. You **must make sure** that you have | |
2868 created all the cons cells that make up this list and that there | |
2869 are no pointers to any of these cons cells anywhere else. If there | |
2870 are, you will lose. */ | |
2871 | |
2872 void | |
2873 free_list (Lisp_Object list) | |
2874 { | |
2875 Lisp_Object rest, next; | |
2876 | |
2877 for (rest = list; !NILP (rest); rest = next) | |
2878 { | |
2879 next = XCDR (rest); | |
2880 free_cons (XCONS (rest)); | |
2881 } | |
2882 } | |
2883 | |
2884 /* explicitly free an alist. You **must make sure** that you have | |
2885 created all the cons cells that make up this alist and that there | |
2886 are no pointers to any of these cons cells anywhere else. If there | |
2887 are, you will lose. */ | |
2888 | |
2889 void | |
2890 free_alist (Lisp_Object alist) | |
2891 { | |
2892 Lisp_Object rest, next; | |
2893 | |
2894 for (rest = alist; !NILP (rest); rest = next) | |
2895 { | |
2896 next = XCDR (rest); | |
2897 free_cons (XCONS (XCAR (rest))); | |
2898 free_cons (XCONS (rest)); | |
2899 } | |
2900 } | |
2901 | |
2902 static void | |
2903 sweep_compiled_functions (void) | |
2904 { | |
2905 #define UNMARK_compiled_function(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
2906 #define ADDITIONAL_FREE_compiled_function(ptr) | |
2907 | |
2908 SWEEP_FIXED_TYPE_BLOCK (compiled_function, Lisp_Compiled_Function); | |
2909 } | |
2910 | |
2911 | |
2912 #ifdef LISP_FLOAT_TYPE | |
2913 static void | |
2914 sweep_floats (void) | |
2915 { | |
2916 #define UNMARK_float(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
2917 #define ADDITIONAL_FREE_float(ptr) | |
2918 | |
2919 SWEEP_FIXED_TYPE_BLOCK (float, struct Lisp_Float); | |
2920 } | |
2921 #endif /* LISP_FLOAT_TYPE */ | |
2922 | |
2923 static void | |
2924 sweep_symbols (void) | |
2925 { | |
2926 #define UNMARK_symbol(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
2927 #define ADDITIONAL_FREE_symbol(ptr) | |
2928 | |
2929 SWEEP_FIXED_TYPE_BLOCK (symbol, struct Lisp_Symbol); | |
2930 } | |
2931 | |
2932 static void | |
2933 sweep_extents (void) | |
2934 { | |
2935 #define UNMARK_extent(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
2936 #define ADDITIONAL_FREE_extent(ptr) | |
2937 | |
2938 SWEEP_FIXED_TYPE_BLOCK (extent, struct extent); | |
2939 } | |
2940 | |
2941 static void | |
2942 sweep_events (void) | |
2943 { | |
2944 #define UNMARK_event(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
2945 #define ADDITIONAL_FREE_event(ptr) | |
2946 | |
2947 SWEEP_FIXED_TYPE_BLOCK (event, struct Lisp_Event); | |
2948 } | |
2949 | |
2950 static void | |
2951 sweep_markers (void) | |
2952 { | |
2953 #define UNMARK_marker(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
2954 #define ADDITIONAL_FREE_marker(ptr) \ | |
2955 do { Lisp_Object tem; \ | |
2956 XSETMARKER (tem, ptr); \ | |
2957 unchain_marker (tem); \ | |
2958 } while (0) | |
2959 | |
2960 SWEEP_FIXED_TYPE_BLOCK (marker, struct Lisp_Marker); | |
2961 } | |
2962 | |
2963 /* Explicitly free a marker. */ | |
2964 void | |
2965 free_marker (struct Lisp_Marker *ptr) | |
2966 { | |
2967 #ifdef ERROR_CHECK_GC | |
2968 /* Perhaps this will catch freeing an already-freed marker. */ | |
2969 Lisp_Object temmy; | |
2970 XSETMARKER (temmy, ptr); | |
2971 assert (MARKERP (temmy)); | |
2972 #endif /* ERROR_CHECK_GC */ | |
2973 | |
2974 #ifndef ALLOC_NO_POOLS | |
2975 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (marker, struct Lisp_Marker, ptr); | |
2976 #endif /* ALLOC_NO_POOLS */ | |
2977 } | |
2978 | |
2979 | |
2980 #if defined (MULE) && defined (VERIFY_STRING_CHARS_INTEGRITY) | |
2981 | |
2982 static void | |
2983 verify_string_chars_integrity (void) | |
2984 { | |
2985 struct string_chars_block *sb; | |
2986 | |
2987 /* Scan each existing string block sequentially, string by string. */ | |
2988 for (sb = first_string_chars_block; sb; sb = sb->next) | |
2989 { | |
2990 int pos = 0; | |
2991 /* POS is the index of the next string in the block. */ | |
2992 while (pos < sb->pos) | |
2993 { | |
2994 struct string_chars *s_chars = | |
2995 (struct string_chars *) &(sb->string_chars[pos]); | |
2996 struct Lisp_String *string; | |
2997 int size; | |
2998 int fullsize; | |
2999 | |
3000 /* If the string_chars struct is marked as free (i.e. the STRING | |
3001 pointer is 0xFFFFFFFF) then this is an unused chunk of string | |
3002 storage. (See below.) */ | |
3003 | |
3004 if (FREE_STRUCT_P (s_chars)) | |
3005 { | |
3006 fullsize = ((struct unused_string_chars *) s_chars)->fullsize; | |
3007 pos += fullsize; | |
3008 continue; | |
3009 } | |
3010 | |
3011 string = s_chars->string; | |
3012 /* Must be 32-bit aligned. */ | |
3013 assert ((((int) string) & 3) == 0); | |
3014 | |
3015 size = string_length (string); | |
3016 fullsize = STRING_FULLSIZE (size); | |
3017 | |
3018 assert (!BIG_STRING_FULLSIZE_P (fullsize)); | |
3019 assert (string_data (string) == s_chars->chars); | |
3020 pos += fullsize; | |
3021 } | |
3022 assert (pos == sb->pos); | |
3023 } | |
3024 } | |
3025 | |
3026 #endif /* MULE && ERROR_CHECK_GC */ | |
3027 | |
3028 /* Compactify string chars, relocating the reference to each -- | |
3029 free any empty string_chars_block we see. */ | |
3030 static void | |
3031 compact_string_chars (void) | |
3032 { | |
3033 struct string_chars_block *to_sb = first_string_chars_block; | |
3034 int to_pos = 0; | |
3035 struct string_chars_block *from_sb; | |
3036 | |
3037 /* Scan each existing string block sequentially, string by string. */ | |
3038 for (from_sb = first_string_chars_block; from_sb; from_sb = from_sb->next) | |
3039 { | |
3040 int from_pos = 0; | |
3041 /* FROM_POS is the index of the next string in the block. */ | |
3042 while (from_pos < from_sb->pos) | |
3043 { | |
3044 struct string_chars *from_s_chars = | |
3045 (struct string_chars *) &(from_sb->string_chars[from_pos]); | |
3046 struct string_chars *to_s_chars; | |
3047 struct Lisp_String *string; | |
3048 int size; | |
3049 int fullsize; | |
3050 | |
3051 /* If the string_chars struct is marked as free (i.e. the STRING | |
3052 pointer is 0xFFFFFFFF) then this is an unused chunk of string | |
3053 storage. This happens under Mule when a string's size changes | |
3054 in such a way that its fullsize changes. (Strings can change | |
3055 size because a different-length character can be substituted | |
3056 for another character.) In this case, after the bogus string | |
3057 pointer is the "fullsize" of this entry, i.e. how many bytes | |
3058 to skip. */ | |
3059 | |
3060 if (FREE_STRUCT_P (from_s_chars)) | |
3061 { | |
3062 fullsize = ((struct unused_string_chars *) from_s_chars)->fullsize; | |
3063 from_pos += fullsize; | |
3064 continue; | |
3065 } | |
3066 | |
3067 string = from_s_chars->string; | |
3068 assert (!(FREE_STRUCT_P (string))); | |
3069 | |
3070 size = string_length (string); | |
3071 fullsize = STRING_FULLSIZE (size); | |
3072 | |
3073 if (BIG_STRING_FULLSIZE_P (fullsize)) | |
3074 abort (); | |
3075 | |
3076 /* Just skip it if it isn't marked. */ | |
3077 if (! MARKED_RECORD_HEADER_P (&(string->lheader))) | |
3078 { | |
3079 from_pos += fullsize; | |
3080 continue; | |
3081 } | |
3082 | |
3083 /* If it won't fit in what's left of TO_SB, close TO_SB out | |
3084 and go on to the next string_chars_block. We know that TO_SB | |
3085 cannot advance past FROM_SB here since FROM_SB is large enough | |
3086 to currently contain this string. */ | |
3087 if ((to_pos + fullsize) > countof (to_sb->string_chars)) | |
3088 { | |
3089 to_sb->pos = to_pos; | |
3090 to_sb = to_sb->next; | |
3091 to_pos = 0; | |
3092 } | |
3093 | |
3094 /* Compute new address of this string | |
3095 and update TO_POS for the space being used. */ | |
3096 to_s_chars = (struct string_chars *) &(to_sb->string_chars[to_pos]); | |
3097 | |
3098 /* Copy the string_chars to the new place. */ | |
3099 if (from_s_chars != to_s_chars) | |
3100 memmove (to_s_chars, from_s_chars, fullsize); | |
3101 | |
3102 /* Relocate FROM_S_CHARS's reference */ | |
3103 set_string_data (string, &(to_s_chars->chars[0])); | |
3104 | |
3105 from_pos += fullsize; | |
3106 to_pos += fullsize; | |
3107 } | |
3108 } | |
3109 | |
3110 /* Set current to the last string chars block still used and | |
3111 free any that follow. */ | |
3112 { | |
3113 struct string_chars_block *victim; | |
3114 | |
3115 for (victim = to_sb->next; victim; ) | |
3116 { | |
3117 struct string_chars_block *next = victim->next; | |
3118 xfree (victim); | |
3119 victim = next; | |
3120 } | |
3121 | |
3122 current_string_chars_block = to_sb; | |
3123 current_string_chars_block->pos = to_pos; | |
3124 current_string_chars_block->next = 0; | |
3125 } | |
3126 } | |
3127 | |
3128 #if 1 /* Hack to debug missing purecopy's */ | |
3129 static int debug_string_purity; | |
3130 | |
3131 static void | |
3132 debug_string_purity_print (struct Lisp_String *p) | |
3133 { | |
3134 Charcount i; | |
3135 Charcount s = string_char_length (p); | |
3136 putc ('\"', stderr); | |
3137 for (i = 0; i < s; i++) | |
3138 { | |
3139 Emchar ch = string_char (p, i); | |
3140 if (ch < 32 || ch >= 126) | |
3141 stderr_out ("\\%03o", ch); | |
3142 else if (ch == '\\' || ch == '\"') | |
3143 stderr_out ("\\%c", ch); | |
3144 else | |
3145 stderr_out ("%c", ch); | |
3146 } | |
3147 stderr_out ("\"\n"); | |
3148 } | |
3149 #endif /* 1 */ | |
3150 | |
3151 | |
3152 static void | |
3153 sweep_strings (void) | |
3154 { | |
3155 int num_small_used = 0, num_small_bytes = 0, num_bytes = 0; | |
3156 int debug = debug_string_purity; | |
3157 | |
3158 #define UNMARK_string(ptr) \ | |
3159 do { struct Lisp_String *p = (ptr); \ | |
3160 int size = string_length (p); \ | |
3161 UNMARK_RECORD_HEADER (&(p->lheader)); \ | |
3162 num_bytes += size; \ | |
3163 if (!BIG_STRING_SIZE_P (size)) \ | |
3164 { num_small_bytes += size; \ | |
3165 num_small_used++; \ | |
3166 } \ | |
3167 if (debug) debug_string_purity_print (p); \ | |
3168 } while (0) | |
3169 #define ADDITIONAL_FREE_string(p) \ | |
3170 do { int size = string_length (p); \ | |
3171 if (BIG_STRING_SIZE_P (size)) \ | |
3172 xfree_1 (CHARS_TO_STRING_CHAR (string_data (p))); \ | |
3173 } while (0) | |
3174 | |
3175 SWEEP_FIXED_TYPE_BLOCK (string, struct Lisp_String); | |
3176 | |
3177 gc_count_num_short_string_in_use = num_small_used; | |
3178 gc_count_string_total_size = num_bytes; | |
3179 gc_count_short_string_total_size = num_small_bytes; | |
3180 } | |
3181 | |
3182 | |
3183 /* I hate duplicating all this crap! */ | |
3184 int | |
3185 marked_p (Lisp_Object obj) | |
3186 { | |
3187 #ifdef ERROR_CHECK_GC | |
3188 assert (! (EQ (obj, Qnull_pointer))); | |
3189 #endif | |
3190 /* Checks we used to perform. */ | |
3191 /* if (EQ (obj, Qnull_pointer)) return 1; */ | |
3192 /* if (!POINTER_TYPE_P (XGCTYPE (obj))) return 1; */ | |
3193 /* if (PURIFIED (XPNTR (obj))) return 1; */ | |
3194 | |
3195 if (XTYPE (obj) == Lisp_Type_Record) | |
3196 { | |
3197 struct lrecord_header *lheader = XRECORD_LHEADER (obj); | |
3198 #if defined (ERROR_CHECK_GC) | |
3199 assert (lheader->type <= last_lrecord_type_index_assigned); | |
3200 #endif | |
3201 return C_READONLY_RECORD_HEADER_P (lheader) || MARKED_RECORD_HEADER_P (lheader); | |
3202 } | |
3203 return 1; | |
3204 } | |
3205 | |
3206 static void | |
3207 gc_sweep (void) | |
3208 { | |
3209 /* Free all unmarked records. Do this at the very beginning, | |
3210 before anything else, so that the finalize methods can safely | |
3211 examine items in the objects. sweep_lcrecords_1() makes | |
3212 sure to call all the finalize methods *before* freeing anything, | |
3213 to complete the safety. */ | |
3214 { | |
3215 int ignored; | |
3216 sweep_lcrecords_1 (&all_lcrecords, &ignored); | |
3217 } | |
3218 | |
3219 compact_string_chars (); | |
3220 | |
3221 /* Finalize methods below (called through the ADDITIONAL_FREE_foo | |
3222 macros) must be *extremely* careful to make sure they're not | |
3223 referencing freed objects. The only two existing finalize | |
3224 methods (for strings and markers) pass muster -- the string | |
3225 finalizer doesn't look at anything but its own specially- | |
3226 created block, and the marker finalizer only looks at live | |
3227 buffers (which will never be freed) and at the markers before | |
3228 and after it in the chain (which, by induction, will never be | |
3229 freed because if so, they would have already removed themselves | |
3230 from the chain). */ | |
3231 | |
3232 /* Put all unmarked strings on free list, free'ing the string chars | |
3233 of large unmarked strings */ | |
3234 sweep_strings (); | |
3235 | |
3236 /* Put all unmarked conses on free list */ | |
3237 sweep_conses (); | |
3238 | |
3239 /* Free all unmarked bit vectors */ | |
3240 sweep_bit_vectors_1 (&all_bit_vectors, | |
3241 &gc_count_num_bit_vector_used, | |
3242 &gc_count_bit_vector_total_size, | |
3243 &gc_count_bit_vector_storage); | |
3244 | |
3245 /* Free all unmarked compiled-function objects */ | |
3246 sweep_compiled_functions (); | |
3247 | |
3248 #ifdef LISP_FLOAT_TYPE | |
3249 /* Put all unmarked floats on free list */ | |
3250 sweep_floats (); | |
3251 #endif | |
3252 | |
3253 /* Put all unmarked symbols on free list */ | |
3254 sweep_symbols (); | |
3255 | |
3256 /* Put all unmarked extents on free list */ | |
3257 sweep_extents (); | |
3258 | |
3259 /* Put all unmarked markers on free list. | |
3260 Dechain each one first from the buffer into which it points. */ | |
3261 sweep_markers (); | |
3262 | |
3263 sweep_events (); | |
3264 | |
3265 #ifdef PDUMP | |
3266 /* Unmark all dumped objects */ | |
3267 { | |
3268 int i; | |
3269 char *p = pdump_rt_list; | |
3270 if(p) | |
3271 for(;;) | |
3272 { | |
3273 pdump_reloc_table *rt = (pdump_reloc_table *)p; | |
3274 p += sizeof (pdump_reloc_table); | |
3275 if (rt->desc) { | |
3276 for (i=0; i<rt->count; i++) | |
3277 { | |
3278 UNMARK_RECORD_HEADER ((struct lrecord_header *)(*(EMACS_INT *)p)); | |
3279 p += sizeof (EMACS_INT); | |
3280 } | |
3281 } else | |
3282 break; | |
3283 } | |
3284 } | |
3285 #endif | |
3286 } | |
3287 | |
3288 /* Clearing for disksave. */ | |
3289 | |
3290 void | |
3291 disksave_object_finalization (void) | |
3292 { | |
3293 /* It's important that certain information from the environment not get | |
3294 dumped with the executable (pathnames, environment variables, etc.). | |
3295 To make it easier to tell when this has happened with strings(1) we | |
3296 clear some known-to-be-garbage blocks of memory, so that leftover | |
3297 results of old evaluation don't look like potential problems. | |
3298 But first we set some notable variables to nil and do one more GC, | |
3299 to turn those strings into garbage. | |
3300 */ | |
3301 | |
3302 /* Yeah, this list is pretty ad-hoc... */ | |
3303 Vprocess_environment = Qnil; | |
3304 Vexec_directory = Qnil; | |
3305 Vdata_directory = Qnil; | |
3306 Vsite_directory = Qnil; | |
3307 Vdoc_directory = Qnil; | |
3308 Vconfigure_info_directory = Qnil; | |
3309 Vexec_path = Qnil; | |
3310 Vload_path = Qnil; | |
3311 /* Vdump_load_path = Qnil; */ | |
3312 /* Release hash tables for locate_file */ | |
3313 Flocate_file_clear_hashing (Qt); | |
3314 uncache_home_directory(); | |
3315 | |
3316 #if defined(LOADHIST) && !(defined(LOADHIST_DUMPED) || \ | |
3317 defined(LOADHIST_BUILTIN)) | |
3318 Vload_history = Qnil; | |
3319 #endif | |
3320 Vshell_file_name = Qnil; | |
3321 | |
3322 garbage_collect_1 (); | |
3323 | |
3324 /* Run the disksave finalization methods of all live objects. */ | |
3325 disksave_object_finalization_1 (); | |
3326 | |
3327 /* Zero out the uninitialized (really, unused) part of the containers | |
3328 for the live strings. */ | |
3329 { | |
3330 struct string_chars_block *scb; | |
3331 for (scb = first_string_chars_block; scb; scb = scb->next) | |
3332 { | |
3333 int count = sizeof (scb->string_chars) - scb->pos; | |
3334 | |
3335 assert (count >= 0 && count < STRING_CHARS_BLOCK_SIZE); | |
3336 if (count != 0) { | |
3337 /* from the block's fill ptr to the end */ | |
3338 memset ((scb->string_chars + scb->pos), 0, count); | |
3339 } | |
3340 } | |
3341 } | |
3342 | |
3343 /* There, that ought to be enough... */ | |
3344 | |
3345 } | |
3346 | |
3347 | |
3348 Lisp_Object | |
3349 restore_gc_inhibit (Lisp_Object val) | |
3350 { | |
3351 gc_currently_forbidden = XINT (val); | |
3352 return val; | |
3353 } | |
3354 | |
3355 /* Maybe we want to use this when doing a "panic" gc after memory_full()? */ | |
3356 static int gc_hooks_inhibited; | |
3357 | |
3358 | |
3359 void | |
3360 garbage_collect_1 (void) | |
3361 { | |
3362 #if MAX_SAVE_STACK > 0 | |
3363 char stack_top_variable; | |
3364 extern char *stack_bottom; | |
3365 #endif | |
3366 struct frame *f; | |
3367 int speccount; | |
3368 int cursor_changed; | |
3369 Lisp_Object pre_gc_cursor; | |
3370 struct gcpro gcpro1; | |
3371 | |
3372 if (gc_in_progress | |
3373 || gc_currently_forbidden | |
3374 || in_display | |
3375 || preparing_for_armageddon) | |
3376 return; | |
3377 | |
3378 /* We used to call selected_frame() here. | |
3379 | |
3380 The following functions cannot be called inside GC | |
3381 so we move to after the above tests. */ | |
3382 { | |
3383 Lisp_Object frame; | |
3384 Lisp_Object device = Fselected_device (Qnil); | |
3385 if (NILP (device)) /* Could happen during startup, eg. if always_gc */ | |
3386 return; | |
3387 frame = DEVICE_SELECTED_FRAME (XDEVICE (device)); | |
3388 if (NILP (frame)) | |
3389 signal_simple_error ("No frames exist on device", device); | |
3390 f = XFRAME (frame); | |
3391 } | |
3392 | |
3393 pre_gc_cursor = Qnil; | |
3394 cursor_changed = 0; | |
3395 | |
3396 GCPRO1 (pre_gc_cursor); | |
3397 | |
3398 /* Very important to prevent GC during any of the following | |
3399 stuff that might run Lisp code; otherwise, we'll likely | |
3400 have infinite GC recursion. */ | |
3401 speccount = specpdl_depth (); | |
3402 record_unwind_protect (restore_gc_inhibit, | |
3403 make_int (gc_currently_forbidden)); | |
3404 gc_currently_forbidden = 1; | |
3405 | |
3406 if (!gc_hooks_inhibited) | |
3407 run_hook_trapping_errors ("Error in pre-gc-hook", Qpre_gc_hook); | |
3408 | |
3409 /* Now show the GC cursor/message. */ | |
3410 if (!noninteractive) | |
3411 { | |
3412 if (FRAME_WIN_P (f)) | |
3413 { | |
3414 Lisp_Object frame = make_frame (f); | |
3415 Lisp_Object cursor = glyph_image_instance (Vgc_pointer_glyph, | |
3416 FRAME_SELECTED_WINDOW (f), | |
3417 ERROR_ME_NOT, 1); | |
3418 pre_gc_cursor = f->pointer; | |
3419 if (POINTER_IMAGE_INSTANCEP (cursor) | |
3420 /* don't change if we don't know how to change back. */ | |
3421 && POINTER_IMAGE_INSTANCEP (pre_gc_cursor)) | |
3422 { | |
3423 cursor_changed = 1; | |
3424 Fset_frame_pointer (frame, cursor); | |
3425 } | |
3426 } | |
3427 | |
3428 /* Don't print messages to the stream device. */ | |
3429 if (!cursor_changed && !FRAME_STREAM_P (f)) | |
3430 { | |
3431 char *msg = (STRINGP (Vgc_message) | |
3432 ? GETTEXT ((char *) XSTRING_DATA (Vgc_message)) | |
3433 : 0); | |
3434 Lisp_Object args[2], whole_msg; | |
3435 args[0] = build_string (msg ? msg : | |
3436 GETTEXT ((CONST char *) gc_default_message)); | |
3437 args[1] = build_string ("..."); | |
3438 whole_msg = Fconcat (2, args); | |
3439 echo_area_message (f, (Bufbyte *) 0, whole_msg, 0, -1, | |
3440 Qgarbage_collecting); | |
3441 } | |
3442 } | |
3443 | |
3444 /***** Now we actually start the garbage collection. */ | |
3445 | |
3446 gc_in_progress = 1; | |
3447 | |
3448 gc_generation_number[0]++; | |
3449 | |
3450 #if MAX_SAVE_STACK > 0 | |
3451 | |
3452 /* Save a copy of the contents of the stack, for debugging. */ | |
3453 if (!purify_flag) | |
3454 { | |
3455 /* Static buffer in which we save a copy of the C stack at each GC. */ | |
3456 static char *stack_copy; | |
3457 static size_t stack_copy_size; | |
3458 | |
3459 ptrdiff_t stack_diff = &stack_top_variable - stack_bottom; | |
3460 size_t stack_size = (stack_diff > 0 ? stack_diff : -stack_diff); | |
3461 if (stack_size < MAX_SAVE_STACK) | |
3462 { | |
3463 if (stack_copy_size < stack_size) | |
3464 { | |
3465 stack_copy = (char *) xrealloc (stack_copy, stack_size); | |
3466 stack_copy_size = stack_size; | |
3467 } | |
3468 | |
3469 memcpy (stack_copy, | |
3470 stack_diff > 0 ? stack_bottom : &stack_top_variable, | |
3471 stack_size); | |
3472 } | |
3473 } | |
3474 #endif /* MAX_SAVE_STACK > 0 */ | |
3475 | |
3476 /* Do some totally ad-hoc resource clearing. */ | |
3477 /* #### generalize this? */ | |
3478 clear_event_resource (); | |
3479 cleanup_specifiers (); | |
3480 | |
3481 /* Mark all the special slots that serve as the roots of accessibility. */ | |
3482 | |
3483 { /* staticpro() */ | |
3484 int i; | |
3485 for (i = 0; i < staticidx; i++) | |
3486 mark_object (*(staticvec[i])); | |
3487 for (i = 0; i < staticidx_nodump; i++) | |
3488 mark_object (*(staticvec_nodump[i])); | |
3489 } | |
3490 | |
3491 { /* GCPRO() */ | |
3492 struct gcpro *tail; | |
3493 int i; | |
3494 for (tail = gcprolist; tail; tail = tail->next) | |
3495 for (i = 0; i < tail->nvars; i++) | |
3496 mark_object (tail->var[i]); | |
3497 } | |
3498 | |
3499 { /* specbind() */ | |
3500 struct specbinding *bind; | |
3501 for (bind = specpdl; bind != specpdl_ptr; bind++) | |
3502 { | |
3503 mark_object (bind->symbol); | |
3504 mark_object (bind->old_value); | |
3505 } | |
3506 } | |
3507 | |
3508 { | |
3509 struct catchtag *catch; | |
3510 for (catch = catchlist; catch; catch = catch->next) | |
3511 { | |
3512 mark_object (catch->tag); | |
3513 mark_object (catch->val); | |
3514 } | |
3515 } | |
3516 | |
3517 { | |
3518 struct backtrace *backlist; | |
3519 for (backlist = backtrace_list; backlist; backlist = backlist->next) | |
3520 { | |
3521 int nargs = backlist->nargs; | |
3522 int i; | |
3523 | |
3524 mark_object (*backlist->function); | |
3525 if (nargs == UNEVALLED || nargs == MANY) | |
3526 mark_object (backlist->args[0]); | |
3527 else | |
3528 for (i = 0; i < nargs; i++) | |
3529 mark_object (backlist->args[i]); | |
3530 } | |
3531 } | |
3532 | |
3533 mark_redisplay (); | |
3534 mark_profiling_info (); | |
3535 | |
3536 /* OK, now do the after-mark stuff. This is for things that | |
3537 are only marked when something else is marked (e.g. weak hash tables). | |
3538 There may be complex dependencies between such objects -- e.g. | |
3539 a weak hash table might be unmarked, but after processing a later | |
3540 weak hash table, the former one might get marked. So we have to | |
3541 iterate until nothing more gets marked. */ | |
3542 | |
3543 while (finish_marking_weak_hash_tables () > 0 || | |
3544 finish_marking_weak_lists () > 0) | |
3545 ; | |
3546 | |
3547 /* And prune (this needs to be called after everything else has been | |
3548 marked and before we do any sweeping). */ | |
3549 /* #### this is somewhat ad-hoc and should probably be an object | |
3550 method */ | |
3551 prune_weak_hash_tables (); | |
3552 prune_weak_lists (); | |
3553 prune_specifiers (); | |
3554 prune_syntax_tables (); | |
3555 | |
3556 gc_sweep (); | |
3557 | |
3558 consing_since_gc = 0; | |
3559 #ifndef DEBUG_XEMACS | |
3560 /* Allow you to set it really fucking low if you really want ... */ | |
3561 if (gc_cons_threshold < 10000) | |
3562 gc_cons_threshold = 10000; | |
3563 #endif | |
3564 | |
3565 gc_in_progress = 0; | |
3566 | |
3567 /******* End of garbage collection ********/ | |
3568 | |
3569 run_hook_trapping_errors ("Error in post-gc-hook", Qpost_gc_hook); | |
3570 | |
3571 /* Now remove the GC cursor/message */ | |
3572 if (!noninteractive) | |
3573 { | |
3574 if (cursor_changed) | |
3575 Fset_frame_pointer (make_frame (f), pre_gc_cursor); | |
3576 else if (!FRAME_STREAM_P (f)) | |
3577 { | |
3578 char *msg = (STRINGP (Vgc_message) | |
3579 ? GETTEXT ((char *) XSTRING_DATA (Vgc_message)) | |
3580 : 0); | |
3581 | |
3582 /* Show "...done" only if the echo area would otherwise be empty. */ | |
3583 if (NILP (clear_echo_area (selected_frame (), | |
3584 Qgarbage_collecting, 0))) | |
3585 { | |
3586 Lisp_Object args[2], whole_msg; | |
3587 args[0] = build_string (msg ? msg : | |
3588 GETTEXT ((CONST char *) | |
3589 gc_default_message)); | |
3590 args[1] = build_string ("... done"); | |
3591 whole_msg = Fconcat (2, args); | |
3592 echo_area_message (selected_frame (), (Bufbyte *) 0, | |
3593 whole_msg, 0, -1, | |
3594 Qgarbage_collecting); | |
3595 } | |
3596 } | |
3597 } | |
3598 | |
3599 /* now stop inhibiting GC */ | |
3600 unbind_to (speccount, Qnil); | |
3601 | |
3602 if (!breathing_space) | |
3603 { | |
3604 breathing_space = malloc (4096 - MALLOC_OVERHEAD); | |
3605 } | |
3606 | |
3607 UNGCPRO; | |
3608 return; | |
3609 } | |
3610 | |
3611 /* Debugging aids. */ | |
3612 | |
3613 static Lisp_Object | |
3614 gc_plist_hack (CONST char *name, int value, Lisp_Object tail) | |
3615 { | |
3616 /* C doesn't have local functions (or closures, or GC, or readable syntax, | |
3617 or portable numeric datatypes, or bit-vectors, or characters, or | |
3618 arrays, or exceptions, or ...) */ | |
3619 return cons3 (intern (name), make_int (value), tail); | |
3620 } | |
3621 | |
3622 #define HACK_O_MATIC(type, name, pl) do { \ | |
3623 int s = 0; \ | |
3624 struct type##_block *x = current_##type##_block; \ | |
3625 while (x) { s += sizeof (*x) + MALLOC_OVERHEAD; x = x->prev; } \ | |
3626 (pl) = gc_plist_hack ((name), s, (pl)); \ | |
3627 } while (0) | |
3628 | |
3629 DEFUN ("garbage-collect", Fgarbage_collect, 0, 0, "", /* | |
3630 Reclaim storage for Lisp objects no longer needed. | |
3631 Return info on amount of space in use: | |
3632 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS) | |
3633 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS | |
3634 PLIST) | |
3635 where `PLIST' is a list of alternating keyword/value pairs providing | |
3636 more detailed information. | |
3637 Garbage collection happens automatically if you cons more than | |
3638 `gc-cons-threshold' bytes of Lisp data since previous garbage collection. | |
3639 */ | |
3640 ()) | |
3641 { | |
3642 Lisp_Object pl = Qnil; | |
3643 int i; | |
3644 int gc_count_vector_total_size = 0; | |
3645 | |
3646 garbage_collect_1 (); | |
3647 | |
3648 for (i = 0; i <= last_lrecord_type_index_assigned; i++) | |
3649 { | |
3650 if (lcrecord_stats[i].bytes_in_use != 0 | |
3651 || lcrecord_stats[i].bytes_freed != 0 | |
3652 || lcrecord_stats[i].instances_on_free_list != 0) | |
3653 { | |
3654 char buf [255]; | |
3655 CONST char *name = lrecord_implementations_table[i]->name; | |
3656 int len = strlen (name); | |
3657 /* save this for the FSFmacs-compatible part of the summary */ | |
3658 if (i == *lrecord_vector.lrecord_type_index) | |
3659 gc_count_vector_total_size = | |
3660 lcrecord_stats[i].bytes_in_use + lcrecord_stats[i].bytes_freed; | |
3661 | |
3662 sprintf (buf, "%s-storage", name); | |
3663 pl = gc_plist_hack (buf, lcrecord_stats[i].bytes_in_use, pl); | |
3664 /* Okay, simple pluralization check for `symbol-value-varalias' */ | |
3665 if (name[len-1] == 's') | |
3666 sprintf (buf, "%ses-freed", name); | |
3667 else | |
3668 sprintf (buf, "%ss-freed", name); | |
3669 if (lcrecord_stats[i].instances_freed != 0) | |
3670 pl = gc_plist_hack (buf, lcrecord_stats[i].instances_freed, pl); | |
3671 if (name[len-1] == 's') | |
3672 sprintf (buf, "%ses-on-free-list", name); | |
3673 else | |
3674 sprintf (buf, "%ss-on-free-list", name); | |
3675 if (lcrecord_stats[i].instances_on_free_list != 0) | |
3676 pl = gc_plist_hack (buf, lcrecord_stats[i].instances_on_free_list, | |
3677 pl); | |
3678 if (name[len-1] == 's') | |
3679 sprintf (buf, "%ses-used", name); | |
3680 else | |
3681 sprintf (buf, "%ss-used", name); | |
3682 pl = gc_plist_hack (buf, lcrecord_stats[i].instances_in_use, pl); | |
3683 } | |
3684 } | |
3685 | |
3686 HACK_O_MATIC (extent, "extent-storage", pl); | |
3687 pl = gc_plist_hack ("extents-free", gc_count_num_extent_freelist, pl); | |
3688 pl = gc_plist_hack ("extents-used", gc_count_num_extent_in_use, pl); | |
3689 HACK_O_MATIC (event, "event-storage", pl); | |
3690 pl = gc_plist_hack ("events-free", gc_count_num_event_freelist, pl); | |
3691 pl = gc_plist_hack ("events-used", gc_count_num_event_in_use, pl); | |
3692 HACK_O_MATIC (marker, "marker-storage", pl); | |
3693 pl = gc_plist_hack ("markers-free", gc_count_num_marker_freelist, pl); | |
3694 pl = gc_plist_hack ("markers-used", gc_count_num_marker_in_use, pl); | |
3695 #ifdef LISP_FLOAT_TYPE | |
3696 HACK_O_MATIC (float, "float-storage", pl); | |
3697 pl = gc_plist_hack ("floats-free", gc_count_num_float_freelist, pl); | |
3698 pl = gc_plist_hack ("floats-used", gc_count_num_float_in_use, pl); | |
3699 #endif /* LISP_FLOAT_TYPE */ | |
3700 HACK_O_MATIC (string, "string-header-storage", pl); | |
3701 pl = gc_plist_hack ("long-strings-total-length", | |
3702 gc_count_string_total_size | |
3703 - gc_count_short_string_total_size, pl); | |
3704 HACK_O_MATIC (string_chars, "short-string-storage", pl); | |
3705 pl = gc_plist_hack ("short-strings-total-length", | |
3706 gc_count_short_string_total_size, pl); | |
3707 pl = gc_plist_hack ("strings-free", gc_count_num_string_freelist, pl); | |
3708 pl = gc_plist_hack ("long-strings-used", | |
3709 gc_count_num_string_in_use | |
3710 - gc_count_num_short_string_in_use, pl); | |
3711 pl = gc_plist_hack ("short-strings-used", | |
3712 gc_count_num_short_string_in_use, pl); | |
3713 | |
3714 HACK_O_MATIC (compiled_function, "compiled-function-storage", pl); | |
3715 pl = gc_plist_hack ("compiled-functions-free", | |
3716 gc_count_num_compiled_function_freelist, pl); | |
3717 pl = gc_plist_hack ("compiled-functions-used", | |
3718 gc_count_num_compiled_function_in_use, pl); | |
3719 | |
3720 pl = gc_plist_hack ("bit-vector-storage", gc_count_bit_vector_storage, pl); | |
3721 pl = gc_plist_hack ("bit-vectors-total-length", | |
3722 gc_count_bit_vector_total_size, pl); | |
3723 pl = gc_plist_hack ("bit-vectors-used", gc_count_num_bit_vector_used, pl); | |
3724 | |
3725 HACK_O_MATIC (symbol, "symbol-storage", pl); | |
3726 pl = gc_plist_hack ("symbols-free", gc_count_num_symbol_freelist, pl); | |
3727 pl = gc_plist_hack ("symbols-used", gc_count_num_symbol_in_use, pl); | |
3728 | |
3729 HACK_O_MATIC (cons, "cons-storage", pl); | |
3730 pl = gc_plist_hack ("conses-free", gc_count_num_cons_freelist, pl); | |
3731 pl = gc_plist_hack ("conses-used", gc_count_num_cons_in_use, pl); | |
3732 | |
3733 /* The things we do for backwards-compatibility */ | |
3734 return | |
3735 list6 (Fcons (make_int (gc_count_num_cons_in_use), | |
3736 make_int (gc_count_num_cons_freelist)), | |
3737 Fcons (make_int (gc_count_num_symbol_in_use), | |
3738 make_int (gc_count_num_symbol_freelist)), | |
3739 Fcons (make_int (gc_count_num_marker_in_use), | |
3740 make_int (gc_count_num_marker_freelist)), | |
3741 make_int (gc_count_string_total_size), | |
3742 make_int (gc_count_vector_total_size), | |
3743 pl); | |
3744 } | |
3745 #undef HACK_O_MATIC | |
3746 | |
3747 DEFUN ("consing-since-gc", Fconsing_since_gc, 0, 0, "", /* | |
3748 Return the number of bytes consed since the last garbage collection. | |
3749 \"Consed\" is a misnomer in that this actually counts allocation | |
3750 of all different kinds of objects, not just conses. | |
3751 | |
3752 If this value exceeds `gc-cons-threshold', a garbage collection happens. | |
3753 */ | |
3754 ()) | |
3755 { | |
3756 return make_int (consing_since_gc); | |
3757 } | |
3758 | |
3759 DEFUN ("memory-limit", Fmemory_limit, 0, 0, "", /* | |
3760 Return the address of the last byte Emacs has allocated, divided by 1024. | |
3761 This may be helpful in debugging Emacs's memory usage. | |
3762 The value is divided by 1024 to make sure it will fit in a lisp integer. | |
3763 */ | |
3764 ()) | |
3765 { | |
3766 return make_int ((EMACS_INT) sbrk (0) / 1024); | |
3767 } | |
3768 | |
3769 | |
3770 | |
3771 int | |
3772 object_dead_p (Lisp_Object obj) | |
3773 { | |
3774 return ((BUFFERP (obj) && !BUFFER_LIVE_P (XBUFFER (obj))) || | |
3775 (FRAMEP (obj) && !FRAME_LIVE_P (XFRAME (obj))) || | |
3776 (WINDOWP (obj) && !WINDOW_LIVE_P (XWINDOW (obj))) || | |
3777 (DEVICEP (obj) && !DEVICE_LIVE_P (XDEVICE (obj))) || | |
3778 (CONSOLEP (obj) && !CONSOLE_LIVE_P (XCONSOLE (obj))) || | |
3779 (EVENTP (obj) && !EVENT_LIVE_P (XEVENT (obj))) || | |
3780 (EXTENTP (obj) && !EXTENT_LIVE_P (XEXTENT (obj)))); | |
3781 } | |
3782 | |
3783 #ifdef MEMORY_USAGE_STATS | |
3784 | |
3785 /* Attempt to determine the actual amount of space that is used for | |
3786 the block allocated starting at PTR, supposedly of size "CLAIMED_SIZE". | |
3787 | |
3788 It seems that the following holds: | |
3789 | |
3790 1. When using the old allocator (malloc.c): | |
3791 | |
3792 -- blocks are always allocated in chunks of powers of two. For | |
3793 each block, there is an overhead of 8 bytes if rcheck is not | |
3794 defined, 20 bytes if it is defined. In other words, a | |
3795 one-byte allocation needs 8 bytes of overhead for a total of | |
3796 9 bytes, and needs to have 16 bytes of memory chunked out for | |
3797 it. | |
3798 | |
3799 2. When using the new allocator (gmalloc.c): | |
3800 | |
3801 -- blocks are always allocated in chunks of powers of two up | |
3802 to 4096 bytes. Larger blocks are allocated in chunks of | |
3803 an integral multiple of 4096 bytes. The minimum block | |
3804 size is 2*sizeof (void *), or 16 bytes if SUNOS_LOCALTIME_BUG | |
3805 is defined. There is no per-block overhead, but there | |
3806 is an overhead of 3*sizeof (size_t) for each 4096 bytes | |
3807 allocated. | |
3808 | |
3809 3. When using the system malloc, anything goes, but they are | |
3810 generally slower and more space-efficient than the GNU | |
3811 allocators. One possibly reasonable assumption to make | |
3812 for want of better data is that sizeof (void *), or maybe | |
3813 2 * sizeof (void *), is required as overhead and that | |
3814 blocks are allocated in the minimum required size except | |
3815 that some minimum block size is imposed (e.g. 16 bytes). */ | |
3816 | |
3817 size_t | |
3818 malloced_storage_size (void *ptr, size_t claimed_size, | |
3819 struct overhead_stats *stats) | |
3820 { | |
3821 size_t orig_claimed_size = claimed_size; | |
3822 | |
3823 #ifdef GNU_MALLOC | |
3824 | |
3825 if (claimed_size < 2 * sizeof (void *)) | |
3826 claimed_size = 2 * sizeof (void *); | |
3827 # ifdef SUNOS_LOCALTIME_BUG | |
3828 if (claimed_size < 16) | |
3829 claimed_size = 16; | |
3830 # endif | |
3831 if (claimed_size < 4096) | |
3832 { | |
3833 int log = 1; | |
3834 | |
3835 /* compute the log base two, more or less, then use it to compute | |
3836 the block size needed. */ | |
3837 claimed_size--; | |
3838 /* It's big, it's heavy, it's wood! */ | |
3839 while ((claimed_size /= 2) != 0) | |
3840 ++log; | |
3841 claimed_size = 1; | |
3842 /* It's better than bad, it's good! */ | |
3843 while (log > 0) | |
3844 { | |
3845 claimed_size *= 2; | |
3846 log--; | |
3847 } | |
3848 /* We have to come up with some average about the amount of | |
3849 blocks used. */ | |
3850 if ((size_t) (rand () & 4095) < claimed_size) | |
3851 claimed_size += 3 * sizeof (void *); | |
3852 } | |
3853 else | |
3854 { | |
3855 claimed_size += 4095; | |
3856 claimed_size &= ~4095; | |
3857 claimed_size += (claimed_size / 4096) * 3 * sizeof (size_t); | |
3858 } | |
3859 | |
3860 #elif defined (SYSTEM_MALLOC) | |
3861 | |
3862 if (claimed_size < 16) | |
3863 claimed_size = 16; | |
3864 claimed_size += 2 * sizeof (void *); | |
3865 | |
3866 #else /* old GNU allocator */ | |
3867 | |
3868 # ifdef rcheck /* #### may not be defined here */ | |
3869 claimed_size += 20; | |
3870 # else | |
3871 claimed_size += 8; | |
3872 # endif | |
3873 { | |
3874 int log = 1; | |
3875 | |
3876 /* compute the log base two, more or less, then use it to compute | |
3877 the block size needed. */ | |
3878 claimed_size--; | |
3879 /* It's big, it's heavy, it's wood! */ | |
3880 while ((claimed_size /= 2) != 0) | |
3881 ++log; | |
3882 claimed_size = 1; | |
3883 /* It's better than bad, it's good! */ | |
3884 while (log > 0) | |
3885 { | |
3886 claimed_size *= 2; | |
3887 log--; | |
3888 } | |
3889 } | |
3890 | |
3891 #endif /* old GNU allocator */ | |
3892 | |
3893 if (stats) | |
3894 { | |
3895 stats->was_requested += orig_claimed_size; | |
3896 stats->malloc_overhead += claimed_size - orig_claimed_size; | |
3897 } | |
3898 return claimed_size; | |
3899 } | |
3900 | |
3901 size_t | |
3902 fixed_type_block_overhead (size_t size) | |
3903 { | |
3904 size_t per_block = TYPE_ALLOC_SIZE (cons, unsigned char); | |
3905 size_t overhead = 0; | |
3906 size_t storage_size = malloced_storage_size (0, per_block, 0); | |
3907 while (size >= per_block) | |
3908 { | |
3909 size -= per_block; | |
3910 overhead += sizeof (void *) + per_block - storage_size; | |
3911 } | |
3912 if (rand () % per_block < size) | |
3913 overhead += sizeof (void *) + per_block - storage_size; | |
3914 return overhead; | |
3915 } | |
3916 | |
3917 #endif /* MEMORY_USAGE_STATS */ | |
3918 | |
3919 | |
3920 /* Initialization */ | |
3921 void | |
3922 reinit_alloc_once_early (void) | |
3923 { | |
3924 gc_generation_number[0] = 0; | |
3925 breathing_space = 0; | |
3926 XSETINT (all_bit_vectors, 0); /* Qzero may not be set yet. */ | |
3927 XSETINT (Vgc_message, 0); | |
3928 all_lcrecords = 0; | |
3929 ignore_malloc_warnings = 1; | |
3930 #ifdef DOUG_LEA_MALLOC | |
3931 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */ | |
3932 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */ | |
3933 #if 0 /* Moved to emacs.c */ | |
3934 mallopt (M_MMAP_MAX, 64); /* max. number of mmap'ed areas */ | |
3935 #endif | |
3936 #endif | |
3937 init_string_alloc (); | |
3938 init_string_chars_alloc (); | |
3939 init_cons_alloc (); | |
3940 init_symbol_alloc (); | |
3941 init_compiled_function_alloc (); | |
3942 #ifdef LISP_FLOAT_TYPE | |
3943 init_float_alloc (); | |
3944 #endif /* LISP_FLOAT_TYPE */ | |
3945 init_marker_alloc (); | |
3946 init_extent_alloc (); | |
3947 init_event_alloc (); | |
3948 | |
3949 ignore_malloc_warnings = 0; | |
3950 | |
3951 staticidx_nodump = 0; | |
3952 dumpstructidx = 0; | |
3953 pdump_wireidx = 0; | |
3954 | |
3955 consing_since_gc = 0; | |
3956 #if 1 | |
3957 gc_cons_threshold = 500000; /* XEmacs change */ | |
3958 #else | |
3959 gc_cons_threshold = 15000; /* debugging */ | |
3960 #endif | |
3961 #ifdef VIRT_ADDR_VARIES | |
3962 malloc_sbrk_unused = 1<<22; /* A large number */ | |
3963 malloc_sbrk_used = 100000; /* as reasonable as any number */ | |
3964 #endif /* VIRT_ADDR_VARIES */ | |
3965 lrecord_uid_counter = 259; | |
3966 debug_string_purity = 0; | |
3967 gcprolist = 0; | |
3968 | |
3969 gc_currently_forbidden = 0; | |
3970 gc_hooks_inhibited = 0; | |
3971 | |
3972 #ifdef ERROR_CHECK_TYPECHECK | |
3973 ERROR_ME.really_unlikely_name_to_have_accidentally_in_a_non_errb_structure = | |
3974 666; | |
3975 ERROR_ME_NOT. | |
3976 really_unlikely_name_to_have_accidentally_in_a_non_errb_structure = 42; | |
3977 ERROR_ME_WARN. | |
3978 really_unlikely_name_to_have_accidentally_in_a_non_errb_structure = | |
3979 3333632; | |
3980 #endif /* ERROR_CHECK_TYPECHECK */ | |
3981 } | |
3982 | |
3983 void | |
3984 init_alloc_once_early (void) | |
3985 { | |
3986 int iii; | |
3987 | |
3988 reinit_alloc_once_early (); | |
3989 | |
3990 last_lrecord_type_index_assigned = -1; | |
3991 for (iii = 0; iii < countof (lrecord_implementations_table); iii++) | |
3992 { | |
3993 lrecord_implementations_table[iii] = 0; | |
3994 } | |
3995 | |
3996 /* | |
3997 * All the staticly | |
3998 * defined subr lrecords were initialized with lheader->type == 0. | |
3999 * See subr_lheader_initializer in lisp.h. Force type index 0 to be | |
4000 * assigned to lrecord_subr so that those predefined indexes match | |
4001 * reality. | |
4002 */ | |
4003 lrecord_type_index (&lrecord_subr); | |
4004 assert (*(lrecord_subr.lrecord_type_index) == 0); | |
4005 /* | |
4006 * The same is true for symbol_value_forward objects, except the | |
4007 * type is 1. | |
4008 */ | |
4009 lrecord_type_index (&lrecord_symbol_value_forward); | |
4010 assert (*(lrecord_symbol_value_forward.lrecord_type_index) == 1); | |
4011 | |
4012 staticidx = 0; | |
4013 } | |
4014 | |
4015 int pure_bytes_used = 0; | |
4016 | |
4017 void | |
4018 reinit_alloc (void) | |
4019 { | |
4020 gcprolist = 0; | |
4021 } | |
4022 | |
4023 void | |
4024 syms_of_alloc (void) | |
4025 { | |
4026 defsymbol (&Qpre_gc_hook, "pre-gc-hook"); | |
4027 defsymbol (&Qpost_gc_hook, "post-gc-hook"); | |
4028 defsymbol (&Qgarbage_collecting, "garbage-collecting"); | |
4029 | |
4030 DEFSUBR (Fcons); | |
4031 DEFSUBR (Flist); | |
4032 DEFSUBR (Fvector); | |
4033 DEFSUBR (Fbit_vector); | |
4034 DEFSUBR (Fmake_byte_code); | |
4035 DEFSUBR (Fmake_list); | |
4036 DEFSUBR (Fmake_vector); | |
4037 DEFSUBR (Fmake_bit_vector); | |
4038 DEFSUBR (Fmake_string); | |
4039 DEFSUBR (Fstring); | |
4040 DEFSUBR (Fmake_symbol); | |
4041 DEFSUBR (Fmake_marker); | |
4042 DEFSUBR (Fpurecopy); | |
4043 DEFSUBR (Fgarbage_collect); | |
4044 DEFSUBR (Fmemory_limit); | |
4045 DEFSUBR (Fconsing_since_gc); | |
4046 } | |
4047 | |
4048 void | |
4049 vars_of_alloc (void) | |
4050 { | |
4051 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold /* | |
4052 *Number of bytes of consing between garbage collections. | |
4053 \"Consing\" is a misnomer in that this actually counts allocation | |
4054 of all different kinds of objects, not just conses. | |
4055 Garbage collection can happen automatically once this many bytes have been | |
4056 allocated since the last garbage collection. All data types count. | |
4057 | |
4058 Garbage collection happens automatically when `eval' or `funcall' are | |
4059 called. (Note that `funcall' is called implicitly as part of evaluation.) | |
4060 By binding this temporarily to a large number, you can effectively | |
4061 prevent garbage collection during a part of the program. | |
4062 | |
4063 See also `consing-since-gc'. | |
4064 */ ); | |
4065 | |
4066 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used /* | |
4067 Number of bytes of sharable Lisp data allocated so far. | |
4068 */ ); | |
4069 | |
4070 #if 0 | |
4071 DEFVAR_INT ("data-bytes-used", &malloc_sbrk_used /* | |
4072 Number of bytes of unshared memory allocated in this session. | |
4073 */ ); | |
4074 | |
4075 DEFVAR_INT ("data-bytes-free", &malloc_sbrk_unused /* | |
4076 Number of bytes of unshared memory remaining available in this session. | |
4077 */ ); | |
4078 #endif | |
4079 | |
4080 #ifdef DEBUG_XEMACS | |
4081 DEFVAR_INT ("debug-allocation", &debug_allocation /* | |
4082 If non-zero, print out information to stderr about all objects allocated. | |
4083 See also `debug-allocation-backtrace-length'. | |
4084 */ ); | |
4085 debug_allocation = 0; | |
4086 | |
4087 DEFVAR_INT ("debug-allocation-backtrace-length", | |
4088 &debug_allocation_backtrace_length /* | |
4089 Length (in stack frames) of short backtrace printed out by `debug-allocation'. | |
4090 */ ); | |
4091 debug_allocation_backtrace_length = 2; | |
4092 #endif | |
4093 | |
4094 DEFVAR_BOOL ("purify-flag", &purify_flag /* | |
4095 Non-nil means loading Lisp code in order to dump an executable. | |
4096 This means that certain objects should be allocated in readonly space. | |
4097 */ ); | |
4098 | |
4099 DEFVAR_LISP ("pre-gc-hook", &Vpre_gc_hook /* | |
4100 Function or functions to be run just before each garbage collection. | |
4101 Interrupts, garbage collection, and errors are inhibited while this hook | |
4102 runs, so be extremely careful in what you add here. In particular, avoid | |
4103 consing, and do not interact with the user. | |
4104 */ ); | |
4105 Vpre_gc_hook = Qnil; | |
4106 | |
4107 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook /* | |
4108 Function or functions to be run just after each garbage collection. | |
4109 Interrupts, garbage collection, and errors are inhibited while this hook | |
4110 runs, so be extremely careful in what you add here. In particular, avoid | |
4111 consing, and do not interact with the user. | |
4112 */ ); | |
4113 Vpost_gc_hook = Qnil; | |
4114 | |
4115 DEFVAR_LISP ("gc-message", &Vgc_message /* | |
4116 String to print to indicate that a garbage collection is in progress. | |
4117 This is printed in the echo area. If the selected frame is on a | |
4118 window system and `gc-pointer-glyph' specifies a value (i.e. a pointer | |
4119 image instance) in the domain of the selected frame, the mouse pointer | |
4120 will change instead of this message being printed. | |
4121 */ ); | |
4122 Vgc_message = build_string (gc_default_message); | |
4123 | |
4124 DEFVAR_LISP ("gc-pointer-glyph", &Vgc_pointer_glyph /* | |
4125 Pointer glyph used to indicate that a garbage collection is in progress. | |
4126 If the selected window is on a window system and this glyph specifies a | |
4127 value (i.e. a pointer image instance) in the domain of the selected | |
4128 window, the pointer will be changed as specified during garbage collection. | |
4129 Otherwise, a message will be printed in the echo area, as controlled | |
4130 by `gc-message'. | |
4131 */ ); | |
4132 } | |
4133 | |
4134 void | |
4135 complex_vars_of_alloc (void) | |
4136 { | |
4137 Vgc_pointer_glyph = Fmake_glyph_internal (Qpointer); | |
4138 } | |
4139 | |
4140 | |
4141 #ifdef PDUMP | |
4142 | |
4143 /* The structure of the file | |
4144 * | |
4145 * 0 - header | |
4146 * 256 - dumped objects | |
4147 * stab_offset - nb_staticpro*(Lisp_Object *) from staticvec | |
4148 * - nb_staticpro*(relocated Lisp_Object) pointed to by staticpro | |
4149 * - nb_structdmp*pair(void *, adr) for pointers to structures | |
4150 * - lrecord_implementations_table[] | |
4151 * - relocation table | |
4152 * - wired variable address/value couples with the count preceding the list | |
4153 */ | |
4154 typedef struct | |
4155 { | |
4156 char signature[8]; | |
4157 EMACS_UINT stab_offset; | |
4158 EMACS_UINT reloc_address; | |
4159 int nb_staticpro; | |
4160 int nb_structdmp; | |
4161 int last_type; | |
4162 } dump_header; | |
4163 | |
4164 char *pdump_start, *pdump_end; | |
4165 | |
4166 static const unsigned char align_table[256] = | |
4167 { | |
4168 8, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, | |
4169 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, | |
4170 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, | |
4171 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, | |
4172 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, | |
4173 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, | |
4174 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, | |
4175 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, | |
4176 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, | |
4177 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, | |
4178 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, | |
4179 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, | |
4180 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, | |
4181 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, | |
4182 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, | |
4183 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0 | |
4184 }; | |
4185 | |
4186 typedef struct pdump_entry_list_elmt | |
4187 { | |
4188 struct pdump_entry_list_elmt *next; | |
4189 const void *obj; | |
4190 size_t size; | |
4191 int count; | |
4192 int is_lrecord; | |
4193 EMACS_INT save_offset; | |
4194 } pdump_entry_list_elmt; | |
4195 | |
4196 typedef struct | |
4197 { | |
4198 pdump_entry_list_elmt *first; | |
4199 int align; | |
4200 int count; | |
4201 } pdump_entry_list; | |
4202 | |
4203 typedef struct pdump_struct_list_elmt | |
4204 { | |
4205 pdump_entry_list list; | |
4206 const struct struct_description *sdesc; | |
4207 } pdump_struct_list_elmt; | |
4208 | |
4209 typedef struct | |
4210 { | |
4211 pdump_struct_list_elmt *list; | |
4212 int count; | |
4213 int size; | |
4214 } pdump_struct_list; | |
4215 | |
4216 static pdump_entry_list pdump_object_table[256]; | |
4217 static pdump_entry_list pdump_opaque_data_list; | |
4218 static pdump_struct_list pdump_struct_table; | |
4219 static pdump_entry_list_elmt *pdump_qnil; | |
4220 | |
4221 static int pdump_alert_undump_object[256]; | |
4222 | |
4223 static unsigned long cur_offset; | |
4224 static size_t max_size; | |
4225 static int pdump_fd; | |
4226 static void *pdump_buf; | |
4227 | |
4228 #define PDUMP_HASHSIZE 200001 | |
4229 | |
4230 static pdump_entry_list_elmt **pdump_hash; | |
4231 | |
4232 /* Since most pointers are eight bytes aligned, the >>3 allows for a better hash */ | |
4233 static int | |
4234 pdump_make_hash (const void *obj) | |
4235 { | |
4236 return ((unsigned long)(obj)>>3) % PDUMP_HASHSIZE; | |
4237 } | |
4238 | |
4239 static pdump_entry_list_elmt * | |
4240 pdump_get_entry (const void *obj) | |
4241 { | |
4242 int pos = pdump_make_hash(obj); | |
4243 pdump_entry_list_elmt *e; | |
4244 while ((e = pdump_hash[pos]) != 0) | |
4245 { | |
4246 if (e->obj == obj) | |
4247 return e; | |
4248 | |
4249 pos++; | |
4250 if (pos == PDUMP_HASHSIZE) | |
4251 pos = 0; | |
4252 } | |
4253 return 0; | |
4254 } | |
4255 | |
4256 static void | |
4257 pdump_add_entry (pdump_entry_list *list, const void *obj, size_t size, int count, int is_lrecord) | |
4258 { | |
4259 pdump_entry_list_elmt *e; | |
4260 int align; | |
4261 int pos = pdump_make_hash (obj); | |
4262 | |
4263 while ((e = pdump_hash[pos]) != 0) | |
4264 { | |
4265 if (e->obj == obj) | |
4266 return; | |
4267 | |
4268 pos++; | |
4269 if (pos == PDUMP_HASHSIZE) | |
4270 pos = 0; | |
4271 } | |
4272 | |
4273 e = malloc (sizeof (pdump_entry_list_elmt)); | |
4274 | |
4275 e->next = list->first; | |
4276 e->obj = obj; | |
4277 e->size = size; | |
4278 e->count = count; | |
4279 e->is_lrecord = is_lrecord; | |
4280 list->first = e; | |
4281 | |
4282 list->count += count; | |
4283 pdump_hash[pos] = e; | |
4284 | |
4285 align = align_table[size & 255]; | |
4286 if (align<2 && is_lrecord) | |
4287 align = 2; | |
4288 | |
4289 if(align < list->align) | |
4290 list->align = align; | |
4291 } | |
4292 | |
4293 static pdump_entry_list * | |
4294 pdump_get_entry_list(const struct struct_description *sdesc) | |
4295 { | |
4296 int i; | |
4297 for(i=0; i<pdump_struct_table.count; i++) | |
4298 if (pdump_struct_table.list[i].sdesc == sdesc) | |
4299 return &pdump_struct_table.list[i].list; | |
4300 | |
4301 if (pdump_struct_table.size <= pdump_struct_table.count) | |
4302 { | |
4303 if (pdump_struct_table.size == -1) | |
4304 pdump_struct_table.size = 10; | |
4305 else | |
4306 pdump_struct_table.size = pdump_struct_table.size * 2; | |
4307 pdump_struct_table.list = xrealloc (pdump_struct_table.list, | |
4308 pdump_struct_table.size*sizeof (pdump_struct_list_elmt)); | |
4309 } | |
4310 pdump_struct_table.list[pdump_struct_table.count].list.first = 0; | |
4311 pdump_struct_table.list[pdump_struct_table.count].list.align = 8; | |
4312 pdump_struct_table.list[pdump_struct_table.count].list.count = 0; | |
4313 pdump_struct_table.list[pdump_struct_table.count].sdesc = sdesc; | |
4314 | |
4315 return &pdump_struct_table.list[pdump_struct_table.count++].list; | |
4316 } | |
4317 | |
4318 static struct { | |
4319 Lisp_Object obj; | |
4320 int position; | |
4321 int offset; | |
4322 } backtrace[65536]; | |
4323 | |
4324 static int depth; | |
4325 | |
4326 static void pdump_backtrace (void) | |
4327 { | |
4328 int i; | |
4329 fprintf (stderr, "pdump backtrace :\n"); | |
4330 for (i=0;i<depth;i++) | |
4331 { | |
4332 if (!backtrace[i].obj) | |
4333 fprintf (stderr, " - ind. (%d, %d)\n", backtrace[i].position, backtrace[i].offset); | |
4334 else | |
4335 { | |
4336 fprintf (stderr, " - %s (%d, %d)\n", | |
4337 XRECORD_LHEADER_IMPLEMENTATION (backtrace[i].obj)->name, | |
4338 backtrace[i].position, | |
4339 backtrace[i].offset); | |
4340 } | |
4341 } | |
4342 } | |
4343 | |
4344 static void pdump_register_object (Lisp_Object obj); | |
4345 static void pdump_register_struct (const void *data, const struct struct_description *sdesc, int count); | |
4346 | |
4347 static EMACS_INT | |
4348 pdump_get_indirect_count (EMACS_INT code, const struct lrecord_description *idesc, const void *idata) | |
4349 { | |
4350 EMACS_INT count; | |
4351 const void *irdata; | |
4352 | |
4353 int line = XD_INDIRECT_VAL (code); | |
4354 int delta = XD_INDIRECT_DELTA (code); | |
4355 | |
4356 irdata = ((char *)idata) + idesc[line].offset; | |
4357 switch (idesc[line].type) { | |
4358 case XD_SIZE_T: | |
4359 count = *(size_t *)irdata; | |
4360 break; | |
4361 case XD_INT: | |
4362 count = *(int *)irdata; | |
4363 break; | |
4364 case XD_LONG: | |
4365 count = *(long *)irdata; | |
4366 break; | |
4367 case XD_BYTECOUNT: | |
4368 count = *(Bytecount *)irdata; | |
4369 break; | |
4370 default: | |
4371 fprintf (stderr, "Unsupported count type : %d (line = %d, code=%ld)\n", idesc[line].type, line, (long)code); | |
4372 pdump_backtrace (); | |
4373 abort (); | |
4374 } | |
4375 count += delta; | |
4376 return count; | |
4377 } | |
4378 | |
4379 static void | |
4380 pdump_register_sub (const void *data, const struct lrecord_description *desc, int me) | |
4381 { | |
4382 int pos; | |
4383 const void *rdata; | |
4384 | |
4385 restart: | |
4386 for (pos = 0; desc[pos].type != XD_END; pos++) | |
4387 { | |
4388 backtrace[me].position = pos; | |
4389 backtrace[me].offset = desc[pos].offset; | |
4390 | |
4391 rdata = ((const char *)data) + desc[pos].offset; | |
4392 switch(desc[pos].type) | |
4393 { | |
4394 case XD_SPECIFIER_END: | |
4395 pos = 0; | |
4396 desc = ((const struct Lisp_Specifier *)data)->methods->extra_description; | |
4397 goto restart; | |
4398 case XD_SIZE_T: | |
4399 case XD_INT: | |
4400 case XD_LONG: | |
4401 case XD_BYTECOUNT: | |
4402 case XD_LO_RESET_NIL: | |
4403 case XD_INT_RESET: | |
4404 case XD_LO_LINK: | |
4405 break; | |
4406 case XD_OPAQUE_DATA_PTR: | |
4407 { | |
4408 EMACS_INT count = desc[pos].data1; | |
4409 if (XD_IS_INDIRECT(count)) | |
4410 count = pdump_get_indirect_count (count, desc, data); | |
4411 | |
4412 pdump_add_entry (&pdump_opaque_data_list, | |
4413 *(void **)rdata, | |
4414 count, | |
4415 1, | |
4416 0); | |
4417 break; | |
4418 } | |
4419 case XD_C_STRING: | |
4420 { | |
4421 const char *str = *(const char **)rdata; | |
4422 if (str) | |
4423 pdump_add_entry (&pdump_opaque_data_list, str, strlen (str)+1, 1, 0); | |
4424 break; | |
4425 } | |
4426 case XD_DOC_STRING: | |
4427 { | |
4428 const char *str = *(const char **)rdata; | |
4429 if ((EMACS_INT)str > 0) | |
4430 pdump_add_entry (&pdump_opaque_data_list, str, strlen (str)+1, 1, 0); | |
4431 break; | |
4432 } | |
4433 case XD_LISP_OBJECT: | |
4434 { | |
4435 EMACS_INT count = desc[pos].data1; | |
4436 int i; | |
4437 if (XD_IS_INDIRECT (count)) | |
4438 count = pdump_get_indirect_count (count, desc, data); | |
4439 | |
4440 for(i=0;i<count;i++) { | |
4441 const Lisp_Object *pobj = ((const Lisp_Object *)rdata) + i; | |
4442 Lisp_Object dobj = *pobj; | |
4443 | |
4444 backtrace[me].offset = (const char *)pobj - (const char *)data; | |
4445 pdump_register_object (dobj); | |
4446 } | |
4447 break; | |
4448 } | |
4449 case XD_STRUCT_PTR: | |
4450 { | |
4451 EMACS_INT count = desc[pos].data1; | |
4452 const struct struct_description *sdesc = desc[pos].data2; | |
4453 const char *dobj = *(const char **)rdata; | |
4454 if (dobj) { | |
4455 if (XD_IS_INDIRECT (count)) | |
4456 count = pdump_get_indirect_count (count, desc, data); | |
4457 | |
4458 pdump_register_struct (dobj, sdesc, count); | |
4459 } | |
4460 break; | |
4461 } | |
4462 default: | |
4463 fprintf (stderr, "Unsupported dump type : %d\n", desc[pos].type); | |
4464 pdump_backtrace (); | |
4465 abort (); | |
4466 }; | |
4467 } | |
4468 } | |
4469 | |
4470 static void | |
4471 pdump_register_object (Lisp_Object obj) | |
4472 { | |
4473 if (!obj || | |
4474 !POINTER_TYPE_P (XTYPE (obj)) || | |
4475 pdump_get_entry (XRECORD_LHEADER (obj))) | |
4476 return; | |
4477 | |
4478 if (XRECORD_LHEADER_IMPLEMENTATION (obj)->description) | |
4479 { | |
4480 int me = depth++; | |
4481 if (me>65536) | |
4482 { | |
4483 fprintf (stderr, "Backtrace overflow, loop ?\n"); | |
4484 abort (); | |
4485 } | |
4486 backtrace[me].obj = obj; | |
4487 backtrace[me].position = 0; | |
4488 backtrace[me].offset = 0; | |
4489 | |
4490 pdump_add_entry (pdump_object_table + XRECORD_LHEADER (obj)->type, | |
4491 XRECORD_LHEADER (obj), | |
4492 XRECORD_LHEADER_IMPLEMENTATION (obj)->static_size ? | |
4493 XRECORD_LHEADER_IMPLEMENTATION (obj)->static_size : | |
4494 XRECORD_LHEADER_IMPLEMENTATION (obj)->size_in_bytes_method (XRECORD_LHEADER (obj)), | |
4495 1, | |
4496 1); | |
4497 pdump_register_sub (XRECORD_LHEADER (obj), | |
4498 XRECORD_LHEADER_IMPLEMENTATION (obj)->description, | |
4499 me); | |
4500 --depth; | |
4501 } | |
4502 else | |
4503 { | |
4504 pdump_alert_undump_object[XRECORD_LHEADER (obj)->type]++; | |
4505 fprintf (stderr, "Undumpable object type : %s\n", XRECORD_LHEADER_IMPLEMENTATION (obj)->name); | |
4506 pdump_backtrace (); | |
4507 } | |
4508 } | |
4509 | |
4510 static void | |
4511 pdump_register_struct (const void *data, const struct struct_description *sdesc, int count) | |
4512 { | |
4513 if (data && !pdump_get_entry (data)) | |
4514 { | |
4515 int me = depth++; | |
4516 int i; | |
4517 if (me>65536) | |
4518 { | |
4519 fprintf (stderr, "Backtrace overflow, loop ?\n"); | |
4520 abort (); | |
4521 } | |
4522 backtrace[me].obj = 0; | |
4523 backtrace[me].position = 0; | |
4524 backtrace[me].offset = 0; | |
4525 | |
4526 pdump_add_entry (pdump_get_entry_list (sdesc), | |
4527 data, | |
4528 sdesc->size, | |
4529 count, | |
4530 0); | |
4531 for (i=0; i<count; i++) | |
4532 { | |
4533 pdump_register_sub (((char *)data) + sdesc->size*i, | |
4534 sdesc->description, | |
4535 me); | |
4536 } | |
4537 --depth; | |
4538 } | |
4539 } | |
4540 | |
4541 static void | |
4542 pdump_dump_data (pdump_entry_list_elmt *elmt, const struct lrecord_description *desc) | |
4543 { | |
4544 size_t size = elmt->size; | |
4545 int count = elmt->count; | |
4546 if (desc) | |
4547 { | |
4548 int pos, i; | |
4549 void *rdata; | |
4550 memcpy (pdump_buf, elmt->obj, size*count); | |
4551 | |
4552 for (i=0; i<count; i++) | |
4553 { | |
4554 char *cur = ((char *)pdump_buf) + i*size; | |
4555 restart: | |
4556 for (pos = 0; desc[pos].type != XD_END; pos++) | |
4557 { | |
4558 rdata = cur + desc[pos].offset; | |
4559 switch (desc[pos].type) | |
4560 { | |
4561 case XD_SPECIFIER_END: | |
4562 pos = 0; | |
4563 desc = ((const struct Lisp_Specifier *)(elmt->obj))->methods->extra_description; | |
4564 goto restart; | |
4565 case XD_SIZE_T: | |
4566 case XD_INT: | |
4567 case XD_LONG: | |
4568 case XD_BYTECOUNT: | |
4569 break; | |
4570 case XD_LO_RESET_NIL: | |
4571 { | |
4572 EMACS_INT count = desc[pos].data1; | |
4573 int i; | |
4574 if (XD_IS_INDIRECT (count)) | |
4575 count = pdump_get_indirect_count (count, desc, elmt->obj); | |
4576 for (i=0; i<count; i++) | |
4577 ((EMACS_INT *)rdata)[i] = pdump_qnil->save_offset; | |
4578 break; | |
4579 } | |
4580 case XD_INT_RESET: | |
4581 { | |
4582 EMACS_INT val = desc[pos].data1; | |
4583 if (XD_IS_INDIRECT (val)) | |
4584 val = pdump_get_indirect_count (val, desc, elmt->obj); | |
4585 *(int *)rdata = val; | |
4586 break; | |
4587 } | |
4588 case XD_OPAQUE_DATA_PTR: | |
4589 case XD_C_STRING: | |
4590 case XD_STRUCT_PTR: | |
4591 { | |
4592 void *ptr = *(void **)rdata; | |
4593 if (ptr) | |
4594 *(EMACS_INT *)rdata = pdump_get_entry (ptr)->save_offset; | |
4595 break; | |
4596 } | |
4597 case XD_LO_LINK: | |
4598 { | |
4599 Lisp_Object obj = *(Lisp_Object *)rdata; | |
4600 pdump_entry_list_elmt *elmt1; | |
4601 for(;;) | |
4602 { | |
4603 elmt1 = pdump_get_entry (XRECORD_LHEADER(obj)); | |
4604 if (elmt1) | |
4605 break; | |
4606 obj = *(Lisp_Object *)(desc[pos].offset + (char *)(XRECORD_LHEADER (obj))); | |
4607 } | |
4608 *(EMACS_INT *)rdata = elmt1->save_offset; | |
4609 break; | |
4610 } | |
4611 case XD_LISP_OBJECT: | |
4612 { | |
4613 EMACS_INT count = desc[pos].data1; | |
4614 int i; | |
4615 if (XD_IS_INDIRECT (count)) | |
4616 count = pdump_get_indirect_count (count, desc, elmt->obj); | |
4617 | |
4618 for(i=0; i<count; i++) | |
4619 { | |
4620 Lisp_Object *pobj = ((Lisp_Object *)rdata) + i; | |
4621 Lisp_Object dobj = *pobj; | |
4622 if (dobj && POINTER_TYPE_P (XTYPE (dobj))) | |
4623 *pobj = pdump_get_entry (XRECORD_LHEADER (dobj))->save_offset; | |
4624 } | |
4625 break; | |
4626 } | |
4627 case XD_DOC_STRING: | |
4628 { | |
4629 EMACS_INT str = *(EMACS_INT *)rdata; | |
4630 if (str > 0) | |
4631 *(EMACS_INT *)rdata = pdump_get_entry ((void *)str)->save_offset; | |
4632 break; | |
4633 } | |
4634 default: | |
4635 fprintf (stderr, "Unsupported dump type : %d\n", desc[pos].type); | |
4636 abort (); | |
4637 }; | |
4638 } | |
4639 } | |
4640 } | |
4641 write (pdump_fd, desc ? pdump_buf : elmt->obj, size*count); | |
4642 if (elmt->is_lrecord && ((size*count) & 3)) | |
4643 write (pdump_fd, "\0\0\0", 4-((size*count) & 3)); | |
4644 } | |
4645 | |
4646 static void | |
4647 pdump_reloc_one (void *data, EMACS_INT delta, const struct lrecord_description *desc) | |
4648 { | |
4649 int pos; | |
4650 void *rdata; | |
4651 | |
4652 restart: | |
4653 for (pos = 0; desc[pos].type != XD_END; pos++) | |
4654 { | |
4655 rdata = ((char *)data) + desc[pos].offset; | |
4656 switch (desc[pos].type) { | |
4657 case XD_SPECIFIER_END: | |
4658 pos = 0; | |
4659 desc = ((const struct Lisp_Specifier *)data)->methods->extra_description; | |
4660 goto restart; | |
4661 case XD_SIZE_T: | |
4662 case XD_INT: | |
4663 case XD_LONG: | |
4664 case XD_BYTECOUNT: | |
4665 case XD_INT_RESET: | |
4666 break; | |
4667 case XD_OPAQUE_DATA_PTR: | |
4668 case XD_C_STRING: | |
4669 case XD_STRUCT_PTR: | |
4670 case XD_LO_LINK: | |
4671 { | |
4672 EMACS_INT ptr = *(EMACS_INT *)rdata; | |
4673 if (ptr) | |
4674 *(EMACS_INT *)rdata = ptr+delta; | |
4675 break; | |
4676 } | |
4677 case XD_LISP_OBJECT: | |
4678 case XD_LO_RESET_NIL: | |
4679 { | |
4680 EMACS_INT count = desc[pos].data1; | |
4681 int i; | |
4682 if (XD_IS_INDIRECT (count)) | |
4683 count = pdump_get_indirect_count (count, desc, data); | |
4684 | |
4685 for (i=0; i<count; i++) | |
4686 { | |
4687 Lisp_Object *pobj = ((Lisp_Object *)rdata) + i; | |
4688 Lisp_Object dobj = *pobj; | |
4689 if (dobj && POINTER_TYPE_P (XTYPE (dobj))) | |
4690 *pobj = dobj + delta; | |
4691 } | |
4692 break; | |
4693 } | |
4694 case XD_DOC_STRING: | |
4695 { | |
4696 EMACS_INT str = *(EMACS_INT *)rdata; | |
4697 if (str > 0) | |
4698 *(EMACS_INT *)rdata = str + delta; | |
4699 break; | |
4700 } | |
4701 default: | |
4702 fprintf (stderr, "Unsupported dump type : %d\n", desc[pos].type); | |
4703 abort (); | |
4704 }; | |
4705 } | |
4706 } | |
4707 | |
4708 static void | |
4709 pdump_allocate_offset (pdump_entry_list_elmt *elmt, const struct lrecord_description *desc) | |
4710 { | |
4711 size_t size = (elmt->is_lrecord ? (elmt->size + 3) & ~3 : elmt->size)*elmt->count; | |
4712 elmt->save_offset = cur_offset; | |
4713 if (size>max_size) | |
4714 max_size = size; | |
4715 cur_offset += size; | |
4716 } | |
4717 | |
4718 static void | |
4719 pdump_scan_by_alignement (void (*f)(pdump_entry_list_elmt *, const struct lrecord_description *)) | |
4720 { | |
4721 int align, i; | |
4722 const struct lrecord_description *idesc; | |
4723 pdump_entry_list_elmt *elmt; | |
4724 for (align=8; align>=0; align--) | |
4725 { | |
4726 for (i=0; i<=last_lrecord_type_index_assigned; i++) | |
4727 if (pdump_object_table[i].align == align) | |
4728 { | |
4729 elmt = pdump_object_table[i].first; | |
4730 if (!elmt) | |
4731 continue; | |
4732 idesc = lrecord_implementations_table[i]->description; | |
4733 while (elmt) | |
4734 { | |
4735 f (elmt, idesc); | |
4736 elmt = elmt->next; | |
4737 } | |
4738 } | |
4739 | |
4740 for (i=0; i<pdump_struct_table.count; i++) | |
4741 if (pdump_struct_table.list[i].list.align == align) { | |
4742 elmt = pdump_struct_table.list[i].list.first; | |
4743 idesc = pdump_struct_table.list[i].sdesc->description; | |
4744 while (elmt) | |
4745 { | |
4746 f (elmt, idesc); | |
4747 elmt = elmt->next; | |
4748 } | |
4749 } | |
4750 | |
4751 elmt = pdump_opaque_data_list.first; | |
4752 while (elmt) | |
4753 { | |
4754 if (align_table[elmt->size & 255] == align) | |
4755 f (elmt, 0); | |
4756 elmt = elmt->next; | |
4757 } | |
4758 } | |
4759 } | |
4760 | |
4761 static void | |
4762 pdump_dump_staticvec (void) | |
4763 { | |
4764 Lisp_Object *reloc = malloc (staticidx*sizeof (Lisp_Object)); | |
4765 int i; | |
4766 write (pdump_fd, staticvec, staticidx*sizeof (Lisp_Object *)); | |
4767 | |
4768 for(i=0; i<staticidx; i++) | |
4769 { | |
4770 Lisp_Object obj = *staticvec[i]; | |
4771 if (obj && POINTER_TYPE_P (XTYPE (obj))) | |
4772 reloc[i] = pdump_get_entry (XRECORD_LHEADER (obj))->save_offset; | |
4773 else | |
4774 reloc[i] = obj; | |
4775 } | |
4776 write (pdump_fd, reloc, staticidx*sizeof (Lisp_Object)); | |
4777 free (reloc); | |
4778 } | |
4779 | |
4780 static void | |
4781 pdump_dump_structvec (void) | |
4782 { | |
4783 int i; | |
4784 for (i=0; i<dumpstructidx; i++) | |
4785 { | |
4786 EMACS_INT adr; | |
4787 write (pdump_fd, &(dumpstructvec[i].data), sizeof (void *)); | |
4788 adr = pdump_get_entry (*(void **)(dumpstructvec[i].data))->save_offset; | |
4789 write (pdump_fd, &adr, sizeof (adr)); | |
4790 } | |
4791 } | |
4792 | |
4793 static void | |
4794 pdump_dump_itable (void) | |
4795 { | |
4796 write (pdump_fd, lrecord_implementations_table, sizeof (lrecord_implementations_table)); | |
4797 } | |
4798 | |
4799 static void | |
4800 pdump_dump_rtables (void) | |
4801 { | |
4802 int i, j; | |
4803 pdump_entry_list_elmt *elmt; | |
4804 pdump_reloc_table rt; | |
4805 | |
4806 for (i=0; i<=last_lrecord_type_index_assigned; i++) | |
4807 { | |
4808 elmt = pdump_object_table[i].first; | |
4809 if(!elmt) | |
4810 continue; | |
4811 rt.desc = lrecord_implementations_table[i]->description; | |
4812 rt.count = pdump_object_table[i].count; | |
4813 write (pdump_fd, &rt, sizeof (rt)); | |
4814 while (elmt) | |
4815 { | |
4816 EMACS_INT rdata = pdump_get_entry (XRECORD_LHEADER (elmt->obj))->save_offset; | |
4817 write (pdump_fd, &rdata, sizeof (rdata)); | |
4818 elmt = elmt->next; | |
4819 } | |
4820 } | |
4821 | |
4822 rt.desc = 0; | |
4823 rt.count = 0; | |
4824 write (pdump_fd, &rt, sizeof (rt)); | |
4825 | |
4826 for (i=0; i<pdump_struct_table.count; i++) | |
4827 { | |
4828 elmt = pdump_struct_table.list[i].list.first; | |
4829 rt.desc = pdump_struct_table.list[i].sdesc->description; | |
4830 rt.count = pdump_struct_table.list[i].list.count; | |
4831 write (pdump_fd, &rt, sizeof (rt)); | |
4832 while (elmt) | |
4833 { | |
4834 EMACS_INT rdata = pdump_get_entry (XRECORD_LHEADER (elmt->obj))->save_offset; | |
4835 for (j=0; j<elmt->count; j++) { | |
4836 write (pdump_fd, &rdata, sizeof (rdata)); | |
4837 rdata += elmt->size; | |
4838 } | |
4839 elmt = elmt->next; | |
4840 } | |
4841 } | |
4842 rt.desc = 0; | |
4843 rt.count = 0; | |
4844 write (pdump_fd, &rt, sizeof (rt)); | |
4845 } | |
4846 | |
4847 static void | |
4848 pdump_dump_wired (void) | |
4849 { | |
4850 EMACS_INT count = pdump_wireidx + pdump_wireidx_list; | |
4851 int i; | |
4852 | |
4853 write (pdump_fd, &count, sizeof (count)); | |
4854 | |
4855 for (i=0; i<pdump_wireidx; i++) | |
4856 { | |
4857 Lisp_Object obj = pdump_get_entry (XRECORD_LHEADER (*(pdump_wirevec[i])))->save_offset; | |
4858 write (pdump_fd, &pdump_wirevec[i], sizeof (pdump_wirevec[i])); | |
4859 write (pdump_fd, &obj, sizeof (obj)); | |
4860 } | |
4861 | |
4862 for (i=0; i<pdump_wireidx_list; i++) | |
4863 { | |
4864 Lisp_Object obj = *(pdump_wirevec_list[i]); | |
4865 pdump_entry_list_elmt *elmt; | |
4866 EMACS_INT res; | |
4867 | |
4868 for(;;) | |
4869 { | |
4870 const struct lrecord_description *desc; | |
4871 int pos; | |
4872 elmt = pdump_get_entry (XRECORD_LHEADER (obj)); | |
4873 if (elmt) | |
4874 break; | |
4875 desc = XRECORD_LHEADER_IMPLEMENTATION (obj)->description; | |
4876 for (pos = 0; desc[pos].type != XD_LO_LINK; pos++) | |
4877 if (desc[pos].type == XD_END) | |
4878 abort (); | |
4879 | |
4880 obj = *(Lisp_Object *)(desc[pos].offset + (char *)(XRECORD_LHEADER (obj))); | |
4881 } | |
4882 res = elmt->save_offset; | |
4883 | |
4884 write (pdump_fd, &pdump_wirevec_list[i], sizeof (pdump_wirevec_list[i])); | |
4885 write (pdump_fd, &res, sizeof (res)); | |
4886 } | |
4887 } | |
4888 | |
4889 void | |
4890 pdump (void) | |
4891 { | |
4892 int i; | |
4893 Lisp_Object t_console, t_device, t_frame; | |
4894 int none; | |
4895 dump_header hd; | |
4896 | |
4897 /* These appear in a DEFVAR_LISP, which does a staticpro() */ | |
4898 t_console = Vterminal_console; | |
4899 t_frame = Vterminal_frame; | |
4900 t_device = Vterminal_device; | |
4901 | |
4902 Vterminal_console = Qnil; | |
4903 Vterminal_frame = Qnil; | |
4904 Vterminal_device = Qnil; | |
4905 | |
4906 pdump_hash = malloc (PDUMP_HASHSIZE*sizeof (pdump_entry_list_elmt *)); | |
4907 memset (pdump_hash, 0, PDUMP_HASHSIZE*sizeof (pdump_entry_list_elmt *)); | |
4908 | |
4909 for (i=0; i<=last_lrecord_type_index_assigned; i++) | |
4910 { | |
4911 pdump_object_table[i].first = 0; | |
4912 pdump_object_table[i].align = 8; | |
4913 pdump_object_table[i].count = 0; | |
4914 pdump_alert_undump_object[i] = 0; | |
4915 } | |
4916 pdump_struct_table.count = 0; | |
4917 pdump_struct_table.size = -1; | |
4918 | |
4919 pdump_opaque_data_list.first = 0; | |
4920 pdump_opaque_data_list.align = 8; | |
4921 pdump_opaque_data_list.count = 0; | |
4922 depth = 0; | |
4923 | |
4924 for (i=0; i<staticidx; i++) | |
4925 pdump_register_object (*staticvec[i]); | |
4926 for (i=0; i<pdump_wireidx; i++) | |
4927 pdump_register_object (*pdump_wirevec[i]); | |
4928 | |
4929 none = 1; | |
4930 for(i=0;i<=last_lrecord_type_index_assigned;i++) | |
4931 if (pdump_alert_undump_object[i]) | |
4932 { | |
4933 if (none) | |
4934 printf ("Undumpable types list :\n"); | |
4935 none = 0; | |
4936 printf (" - %s (%d)\n", lrecord_implementations_table[i]->name, pdump_alert_undump_object[i]); | |
4937 } | |
4938 if (!none) | |
4939 return; | |
4940 | |
4941 for (i=0; i<dumpstructidx; i++) | |
4942 pdump_register_struct (*(void **)(dumpstructvec[i].data), dumpstructvec[i].desc, 1); | |
4943 | |
4944 memcpy (hd.signature, "XEmacsDP", 8); | |
4945 hd.reloc_address = 0; | |
4946 hd.nb_staticpro = staticidx; | |
4947 hd.nb_structdmp = dumpstructidx; | |
4948 hd.last_type = last_lrecord_type_index_assigned; | |
4949 | |
4950 cur_offset = 256; | |
4951 max_size = 0; | |
4952 | |
4953 pdump_scan_by_alignement (pdump_allocate_offset); | |
4954 pdump_qnil = pdump_get_entry (XRECORD_LHEADER (Qnil)); | |
4955 | |
4956 pdump_buf = malloc (max_size); | |
4957 pdump_fd = open ("xemacs.dmp", O_WRONLY|O_CREAT|O_TRUNC, 0666); | |
4958 hd.stab_offset = (cur_offset + 3) & ~3; | |
4959 | |
4960 write (pdump_fd, &hd, sizeof (hd)); | |
4961 lseek (pdump_fd, 256, SEEK_SET); | |
4962 | |
4963 pdump_scan_by_alignement (pdump_dump_data); | |
4964 | |
4965 lseek (pdump_fd, hd.stab_offset, SEEK_SET); | |
4966 | |
4967 pdump_dump_staticvec (); | |
4968 pdump_dump_structvec (); | |
4969 pdump_dump_itable (); | |
4970 pdump_dump_rtables (); | |
4971 pdump_dump_wired (); | |
4972 | |
4973 close (pdump_fd); | |
4974 free (pdump_buf); | |
4975 | |
4976 free (pdump_hash); | |
4977 | |
4978 Vterminal_console = t_console; | |
4979 Vterminal_frame = t_frame; | |
4980 Vterminal_device = t_device; | |
4981 } | |
4982 | |
4983 int | |
4984 pdump_load (void) | |
4985 { | |
4986 size_t length; | |
4987 int i; | |
4988 char *p; | |
4989 EMACS_INT delta; | |
4990 EMACS_INT count; | |
4991 | |
4992 pdump_start = pdump_end = 0; | |
4993 | |
4994 pdump_fd = open ("xemacs.dmp", O_RDONLY); | |
4995 if (pdump_fd<0) | |
4996 return 0; | |
4997 | |
4998 length = lseek (pdump_fd, 0, SEEK_END); | |
4999 lseek (pdump_fd, 0, SEEK_SET); | |
5000 | |
5001 #ifdef HAVE_MMAP | |
5002 pdump_start = mmap (0, length, PROT_READ|PROT_WRITE, MAP_PRIVATE, pdump_fd, 0); | |
5003 if (pdump_start == MAP_FAILED) | |
5004 pdump_start = 0; | |
5005 #endif | |
5006 | |
5007 if (!pdump_start) | |
5008 { | |
5009 pdump_start = (void *)((((unsigned long)(malloc(length+255))) + 255) & ~255); | |
5010 read(pdump_fd, pdump_start, length); | |
5011 } | |
5012 | |
5013 close (pdump_fd); | |
5014 | |
5015 pdump_end = pdump_start + length; | |
5016 | |
5017 staticidx = ((dump_header *)(pdump_start))->nb_staticpro; | |
5018 last_lrecord_type_index_assigned = ((dump_header *)(pdump_start))->last_type; | |
5019 delta = ((EMACS_INT)pdump_start) - ((dump_header *)pdump_start)->reloc_address; | |
5020 p = pdump_start + ((dump_header *)pdump_start)->stab_offset; | |
5021 | |
5022 /* Put back the staticvec in place */ | |
5023 memcpy (staticvec, p, staticidx*sizeof (Lisp_Object *)); | |
5024 p += staticidx*sizeof (Lisp_Object *); | |
5025 for (i=0; i<staticidx; i++) | |
5026 { | |
5027 Lisp_Object obj = *(Lisp_Object *)p; | |
5028 p += sizeof (Lisp_Object); | |
5029 if (obj && POINTER_TYPE_P (XTYPE (obj))) | |
5030 obj += delta; | |
5031 *staticvec[i] = obj; | |
5032 } | |
5033 | |
5034 /* Put back the dumpstructs */ | |
5035 for (i=0; i<((dump_header *)pdump_start)->nb_structdmp; i++) | |
5036 { | |
5037 void **adr = *(void **)p; | |
5038 p += sizeof (void *); | |
5039 *adr = (void *)((*(EMACS_INT *)p) + delta); | |
5040 p += sizeof (EMACS_INT); | |
5041 } | |
5042 | |
5043 /* Put back the lrecord_implementations_table */ | |
5044 memcpy (lrecord_implementations_table, p, sizeof (lrecord_implementations_table)); | |
5045 p += sizeof (lrecord_implementations_table); | |
5046 | |
5047 /* Give back their numbers to the lrecord implementations */ | |
5048 for (i=0; i<sizeof(lrecord_implementations_table)/sizeof(lrecord_implementations_table[0]); i++) | |
5049 if (lrecord_implementations_table[i]) | |
5050 { | |
5051 *(lrecord_implementations_table[i]->lrecord_type_index) = i; | |
5052 last_lrecord_type_index_assigned = i; | |
5053 } | |
5054 | |
5055 /* Do the relocations */ | |
5056 pdump_rt_list = p; | |
5057 count = 2; | |
5058 for(;;) | |
5059 { | |
5060 pdump_reloc_table *rt = (pdump_reloc_table *)p; | |
5061 p += sizeof (pdump_reloc_table); | |
5062 if (rt->desc) { | |
5063 for (i=0; i<rt->count; i++) | |
5064 { | |
5065 EMACS_INT adr = delta + *(EMACS_INT *)p; | |
5066 *(EMACS_INT *)p = adr; | |
5067 pdump_reloc_one ((void *)adr, delta, rt->desc); | |
5068 p += sizeof (EMACS_INT); | |
5069 } | |
5070 } else | |
5071 if(!(--count)) | |
5072 break; | |
5073 } | |
5074 | |
5075 /* Put the pdump_wire variables in place */ | |
5076 count = *(EMACS_INT *)p; | |
5077 p += sizeof(EMACS_INT); | |
5078 | |
5079 for (i=0; i<count; i++) | |
5080 { | |
5081 Lisp_Object *var, obj; | |
5082 var = *(Lisp_Object **)p; | |
5083 p += sizeof (Lisp_Object *); | |
5084 | |
5085 obj = *(Lisp_Object *)p; | |
5086 p += sizeof (Lisp_Object); | |
5087 | |
5088 if (obj && POINTER_TYPE_P (XTYPE (obj))) | |
5089 obj += delta; | |
5090 *var = obj; | |
5091 } | |
5092 | |
5093 /* Final cleanups */ | |
5094 /* reorganize hash tables */ | |
5095 p = pdump_rt_list; | |
5096 for(;;) | |
5097 { | |
5098 pdump_reloc_table *rt = (pdump_reloc_table *)p; | |
5099 p += sizeof (pdump_reloc_table); | |
5100 if (!rt->desc) | |
5101 break; | |
5102 if (rt->desc == hash_table_description) | |
5103 { | |
5104 for (i=0; i<rt->count; i++) | |
5105 { | |
5106 struct Lisp_Hash_Table *ht = XHASH_TABLE (*(EMACS_INT *)p); | |
5107 reorganize_hash_table (ht); | |
5108 p += sizeof (EMACS_INT); | |
5109 } | |
5110 break; | |
5111 } else | |
5112 p += sizeof (EMACS_INT)*rt->count; | |
5113 } | |
5114 return 1; | |
5115 } | |
5116 | |
5117 #endif |