Mercurial > hg > xemacs-beta
comparison lisp/cl-extra.el @ 428:3ecd8885ac67 r21-2-22
Import from CVS: tag r21-2-22
author | cvs |
---|---|
date | Mon, 13 Aug 2007 11:28:15 +0200 |
parents | |
children | 8de8e3f6228a |
comparison
equal
deleted
inserted
replaced
427:0a0253eac470 | 428:3ecd8885ac67 |
---|---|
1 ;;; cl-extra.el --- Common Lisp extensions for GNU Emacs Lisp (part two) | |
2 | |
3 ;; Copyright (C) 1993 Free Software Foundation, Inc. | |
4 | |
5 ;; Author: Dave Gillespie <daveg@synaptics.com> | |
6 ;; Maintainer: XEmacs Development Team | |
7 ;; Version: 2.02 | |
8 ;; Keywords: extensions, dumped | |
9 | |
10 ;; This file is part of XEmacs. | |
11 | |
12 ;; XEmacs is free software; you can redistribute it and/or modify it | |
13 ;; under the terms of the GNU General Public License as published by | |
14 ;; the Free Software Foundation; either version 2, or (at your option) | |
15 ;; any later version. | |
16 | |
17 ;; XEmacs is distributed in the hope that it will be useful, but | |
18 ;; WITHOUT ANY WARRANTY; without even the implied warranty of | |
19 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
20 ;; General Public License for more details. | |
21 | |
22 ;; You should have received a copy of the GNU General Public License | |
23 ;; along with XEmacs; see the file COPYING. If not, write to the Free | |
24 ;; Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA | |
25 ;; 02111-1307, USA. | |
26 | |
27 ;;; Synched up with: FSF 19.34. | |
28 | |
29 ;;; Commentary: | |
30 | |
31 ;; This file is dumped with XEmacs. | |
32 | |
33 ;; These are extensions to Emacs Lisp that provide a degree of | |
34 ;; Common Lisp compatibility, beyond what is already built-in | |
35 ;; in Emacs Lisp. | |
36 ;; | |
37 ;; This package was written by Dave Gillespie; it is a complete | |
38 ;; rewrite of Cesar Quiroz's original cl.el package of December 1986. | |
39 ;; | |
40 ;; This package works with Emacs 18, Emacs 19, and XEmacs/Lucid Emacs 19. | |
41 ;; | |
42 ;; Bug reports, comments, and suggestions are welcome! | |
43 | |
44 ;; This file contains portions of the Common Lisp extensions | |
45 ;; package which are autoloaded since they are relatively obscure. | |
46 | |
47 ;; See cl.el for Change Log. | |
48 | |
49 | |
50 ;;; Code: | |
51 (eval-when-compile | |
52 (require 'obsolete)) | |
53 | |
54 (or (memq 'cl-19 features) | |
55 (error "Tried to load `cl-extra' before `cl'!")) | |
56 | |
57 | |
58 ;;; We define these here so that this file can compile without having | |
59 ;;; loaded the cl.el file already. | |
60 | |
61 (defmacro cl-push (x place) (list 'setq place (list 'cons x place))) | |
62 (defmacro cl-pop (place) | |
63 (list 'car (list 'prog1 place (list 'setq place (list 'cdr place))))) | |
64 | |
65 (defvar cl-emacs-type) | |
66 | |
67 | |
68 ;;; Type coercion. | |
69 | |
70 (defun coerce (x type) | |
71 "Coerce OBJECT to type TYPE. | |
72 TYPE is a Common Lisp type specifier." | |
73 (cond ((eq type 'list) (if (listp x) x (append x nil))) | |
74 ((eq type 'vector) (if (vectorp x) x (vconcat x))) | |
75 ((eq type 'string) (if (stringp x) x (concat x))) | |
76 ((eq type 'array) (if (arrayp x) x (vconcat x))) | |
77 ((and (eq type 'character) (stringp x) (= (length x) 1)) (aref x 0)) | |
78 ((and (eq type 'character) (symbolp x)) (coerce (symbol-name x) type)) | |
79 ((and (eq type 'character) (numberp x) (char-or-char-int-p x) | |
80 (int-char x))) | |
81 ((eq type 'float) (float x)) | |
82 ((eq type 'bit-vector) (if (bit-vector-p x) x | |
83 (apply 'bit-vector (append x nil)))) | |
84 ((eq type 'weak-list) | |
85 (if (weak-list-p x) x | |
86 (let ((wl (make-weak-list))) | |
87 (set-weak-list-list wl (if (listp x) x (append x nil))) | |
88 wl))) | |
89 ((typep x type) x) | |
90 (t (error "Can't coerce %s to type %s" x type)))) | |
91 | |
92 | |
93 ;;; Predicates. | |
94 | |
95 (defun equalp (x y) | |
96 "Return t if two Lisp objects have similar structures and contents. | |
97 This is like `equal', except that it accepts numerically equal | |
98 numbers of different types (float vs. integer), and also compares | |
99 strings case-insensitively." | |
100 (cond ((eq x y) t) | |
101 ((stringp x) | |
102 (and (stringp y) (= (length x) (length y)) | |
103 (or (string-equal x y) | |
104 (string-equal (downcase x) (downcase y))))) ; lazy but simple! | |
105 ((characterp x) | |
106 (and (characterp y) | |
107 (or (char-equal x y) | |
108 (char-equal (downcase x) (downcase y))))) | |
109 ((numberp x) | |
110 (and (numberp y) (= x y))) | |
111 ((consp x) | |
112 ;; XEmacs change | |
113 (while (and (consp x) (consp y) (equalp (car x) (car y))) | |
114 (cl-pop x) (cl-pop y)) | |
115 (and (not (consp x)) (equalp x y))) | |
116 ((vectorp x) | |
117 (and (vectorp y) (= (length x) (length y)) | |
118 (let ((i (length x))) | |
119 (while (and (>= (setq i (1- i)) 0) | |
120 (equalp (aref x i) (aref y i)))) | |
121 (< i 0)))) | |
122 (t (equal x y)))) | |
123 | |
124 | |
125 ;;; Control structures. | |
126 | |
127 (defun cl-mapcar-many (cl-func cl-seqs) | |
128 (if (cdr (cdr cl-seqs)) | |
129 (let* ((cl-res nil) | |
130 (cl-n (apply 'min (mapcar 'length cl-seqs))) | |
131 (cl-i 0) | |
132 (cl-args (copy-sequence cl-seqs)) | |
133 cl-p1 cl-p2) | |
134 (setq cl-seqs (copy-sequence cl-seqs)) | |
135 (while (< cl-i cl-n) | |
136 (setq cl-p1 cl-seqs cl-p2 cl-args) | |
137 (while cl-p1 | |
138 (setcar cl-p2 | |
139 (if (consp (car cl-p1)) | |
140 (prog1 (car (car cl-p1)) | |
141 (setcar cl-p1 (cdr (car cl-p1)))) | |
142 (aref (car cl-p1) cl-i))) | |
143 (setq cl-p1 (cdr cl-p1) cl-p2 (cdr cl-p2))) | |
144 (cl-push (apply cl-func cl-args) cl-res) | |
145 (setq cl-i (1+ cl-i))) | |
146 (nreverse cl-res)) | |
147 (let ((cl-res nil) | |
148 (cl-x (car cl-seqs)) | |
149 (cl-y (nth 1 cl-seqs))) | |
150 (let ((cl-n (min (length cl-x) (length cl-y))) | |
151 (cl-i -1)) | |
152 (while (< (setq cl-i (1+ cl-i)) cl-n) | |
153 (cl-push (funcall cl-func | |
154 (if (consp cl-x) (cl-pop cl-x) (aref cl-x cl-i)) | |
155 (if (consp cl-y) (cl-pop cl-y) (aref cl-y cl-i))) | |
156 cl-res))) | |
157 (nreverse cl-res)))) | |
158 | |
159 (defun map (cl-type cl-func cl-seq &rest cl-rest) | |
160 "Map a function across one or more sequences, returning a sequence. | |
161 TYPE is the sequence type to return, FUNC is the function, and SEQS | |
162 are the argument sequences." | |
163 (let ((cl-res (apply 'mapcar* cl-func cl-seq cl-rest))) | |
164 (and cl-type (coerce cl-res cl-type)))) | |
165 | |
166 (defun maplist (cl-func cl-list &rest cl-rest) | |
167 "Map FUNC to each sublist of LIST or LISTS. | |
168 Like `mapcar', except applies to lists and their cdr's rather than to | |
169 the elements themselves." | |
170 (if cl-rest | |
171 (let ((cl-res nil) | |
172 (cl-args (cons cl-list (copy-sequence cl-rest))) | |
173 cl-p) | |
174 (while (not (memq nil cl-args)) | |
175 (cl-push (apply cl-func cl-args) cl-res) | |
176 (setq cl-p cl-args) | |
177 (while cl-p (setcar cl-p (cdr (cl-pop cl-p)) ))) | |
178 (nreverse cl-res)) | |
179 (let ((cl-res nil)) | |
180 (while cl-list | |
181 (cl-push (funcall cl-func cl-list) cl-res) | |
182 (setq cl-list (cdr cl-list))) | |
183 (nreverse cl-res)))) | |
184 | |
185 | |
186 (defun mapc (cl-func cl-seq &rest cl-rest) | |
187 "Like `mapcar', but does not accumulate values returned by the function." | |
188 (if cl-rest | |
189 (apply 'map nil cl-func cl-seq cl-rest) | |
190 ;; XEmacs change: in the simplest case we call mapc-internal, | |
191 ;; which really doesn't accumulate any results. | |
192 (mapc-internal cl-func cl-seq)) | |
193 cl-seq) | |
194 | |
195 (defun mapl (cl-func cl-list &rest cl-rest) | |
196 "Like `maplist', but does not accumulate values returned by the function." | |
197 (if cl-rest | |
198 (apply 'maplist cl-func cl-list cl-rest) | |
199 (let ((cl-p cl-list)) | |
200 (while cl-p (funcall cl-func cl-p) (setq cl-p (cdr cl-p))))) | |
201 cl-list) | |
202 | |
203 (defun mapcan (cl-func cl-seq &rest cl-rest) | |
204 "Like `mapcar', but nconc's together the values returned by the function." | |
205 (apply 'nconc (apply 'mapcar* cl-func cl-seq cl-rest))) | |
206 | |
207 (defun mapcon (cl-func cl-list &rest cl-rest) | |
208 "Like `maplist', but nconc's together the values returned by the function." | |
209 (apply 'nconc (apply 'maplist cl-func cl-list cl-rest))) | |
210 | |
211 (defun some (cl-pred cl-seq &rest cl-rest) | |
212 "Return true if PREDICATE is true of any element of SEQ or SEQs. | |
213 If so, return the true (non-nil) value returned by PREDICATE." | |
214 (if (or cl-rest (nlistp cl-seq)) | |
215 (catch 'cl-some | |
216 (apply 'map nil | |
217 (function (lambda (&rest cl-x) | |
218 (let ((cl-res (apply cl-pred cl-x))) | |
219 (if cl-res (throw 'cl-some cl-res))))) | |
220 cl-seq cl-rest) nil) | |
221 (let ((cl-x nil)) | |
222 (while (and cl-seq (not (setq cl-x (funcall cl-pred (cl-pop cl-seq)))))) | |
223 cl-x))) | |
224 | |
225 (defun every (cl-pred cl-seq &rest cl-rest) | |
226 "Return true if PREDICATE is true of every element of SEQ or SEQs." | |
227 (if (or cl-rest (nlistp cl-seq)) | |
228 (catch 'cl-every | |
229 (apply 'map nil | |
230 (function (lambda (&rest cl-x) | |
231 (or (apply cl-pred cl-x) (throw 'cl-every nil)))) | |
232 cl-seq cl-rest) t) | |
233 (while (and cl-seq (funcall cl-pred (car cl-seq))) | |
234 (setq cl-seq (cdr cl-seq))) | |
235 (null cl-seq))) | |
236 | |
237 (defun notany (cl-pred cl-seq &rest cl-rest) | |
238 "Return true if PREDICATE is false of every element of SEQ or SEQs." | |
239 (not (apply 'some cl-pred cl-seq cl-rest))) | |
240 | |
241 (defun notevery (cl-pred cl-seq &rest cl-rest) | |
242 "Return true if PREDICATE is false of some element of SEQ or SEQs." | |
243 (not (apply 'every cl-pred cl-seq cl-rest))) | |
244 | |
245 ;;; Support for `loop'. | |
246 (defun cl-map-keymap (cl-func cl-map) | |
247 (while (symbolp cl-map) (setq cl-map (symbol-function cl-map))) | |
248 (if (eq cl-emacs-type 'lucid) (funcall 'map-keymap cl-func cl-map) | |
249 (if (listp cl-map) | |
250 (let ((cl-p cl-map)) | |
251 (while (consp (setq cl-p (cdr cl-p))) | |
252 (cond ((consp (car cl-p)) | |
253 (funcall cl-func (car (car cl-p)) (cdr (car cl-p)))) | |
254 ((vectorp (car cl-p)) | |
255 (cl-map-keymap cl-func (car cl-p))) | |
256 ((eq (car cl-p) 'keymap) | |
257 (setq cl-p nil))))) | |
258 (let ((cl-i -1)) | |
259 (while (< (setq cl-i (1+ cl-i)) (length cl-map)) | |
260 (if (aref cl-map cl-i) | |
261 (funcall cl-func cl-i (aref cl-map cl-i)))))))) | |
262 | |
263 (defun cl-map-keymap-recursively (cl-func-rec cl-map &optional cl-base) | |
264 (or cl-base | |
265 (setq cl-base (copy-sequence (if (eq cl-emacs-type 18) "0" [0])))) | |
266 (cl-map-keymap | |
267 (function | |
268 (lambda (cl-key cl-bind) | |
269 (aset cl-base (1- (length cl-base)) cl-key) | |
270 (if (keymapp cl-bind) | |
271 (cl-map-keymap-recursively | |
272 cl-func-rec cl-bind | |
273 (funcall (if (eq cl-emacs-type 18) 'concat 'vconcat) | |
274 cl-base (list 0))) | |
275 (funcall cl-func-rec cl-base cl-bind)))) | |
276 cl-map)) | |
277 | |
278 (defun cl-map-intervals (cl-func &optional cl-what cl-prop cl-start cl-end) | |
279 (or cl-what (setq cl-what (current-buffer))) | |
280 (if (bufferp cl-what) | |
281 (let (cl-mark cl-mark2 (cl-next t) cl-next2) | |
282 (save-excursion | |
283 (set-buffer cl-what) | |
284 (setq cl-mark (copy-marker (or cl-start (point-min)))) | |
285 (setq cl-mark2 (and cl-end (copy-marker cl-end)))) | |
286 (while (and cl-next (or (not cl-mark2) (< cl-mark cl-mark2))) | |
287 (setq cl-next (and (fboundp 'next-property-change) | |
288 (if cl-prop (next-single-property-change | |
289 cl-mark cl-prop cl-what) | |
290 (next-property-change cl-mark cl-what))) | |
291 cl-next2 (or cl-next (save-excursion | |
292 (set-buffer cl-what) (point-max)))) | |
293 (funcall cl-func (prog1 (marker-position cl-mark) | |
294 (set-marker cl-mark cl-next2)) | |
295 (if cl-mark2 (min cl-next2 cl-mark2) cl-next2))) | |
296 (set-marker cl-mark nil) (if cl-mark2 (set-marker cl-mark2 nil))) | |
297 (or cl-start (setq cl-start 0)) | |
298 (or cl-end (setq cl-end (length cl-what))) | |
299 (while (< cl-start cl-end) | |
300 (let ((cl-next (or (and (fboundp 'next-property-change) | |
301 (if cl-prop (next-single-property-change | |
302 cl-start cl-prop cl-what) | |
303 (next-property-change cl-start cl-what))) | |
304 cl-end))) | |
305 (funcall cl-func cl-start (min cl-next cl-end)) | |
306 (setq cl-start cl-next))))) | |
307 | |
308 (defun cl-map-overlays (cl-func &optional cl-buffer cl-start cl-end cl-arg) | |
309 (or cl-buffer (setq cl-buffer (current-buffer))) | |
310 (if (fboundp 'overlay-lists) | |
311 | |
312 ;; This is the preferred algorithm, though overlay-lists is undocumented. | |
313 (let (cl-ovl) | |
314 (save-excursion | |
315 (set-buffer cl-buffer) | |
316 (setq cl-ovl (overlay-lists)) | |
317 (if cl-start (setq cl-start (copy-marker cl-start))) | |
318 (if cl-end (setq cl-end (copy-marker cl-end)))) | |
319 (setq cl-ovl (nconc (car cl-ovl) (cdr cl-ovl))) | |
320 (while (and cl-ovl | |
321 (or (not (overlay-start (car cl-ovl))) | |
322 (and cl-end (>= (overlay-start (car cl-ovl)) cl-end)) | |
323 (and cl-start (<= (overlay-end (car cl-ovl)) cl-start)) | |
324 (not (funcall cl-func (car cl-ovl) cl-arg)))) | |
325 (setq cl-ovl (cdr cl-ovl))) | |
326 (if cl-start (set-marker cl-start nil)) | |
327 (if cl-end (set-marker cl-end nil))) | |
328 | |
329 ;; This alternate algorithm fails to find zero-length overlays. | |
330 (let ((cl-mark (save-excursion (set-buffer cl-buffer) | |
331 (copy-marker (or cl-start (point-min))))) | |
332 (cl-mark2 (and cl-end (save-excursion (set-buffer cl-buffer) | |
333 (copy-marker cl-end)))) | |
334 cl-pos cl-ovl) | |
335 (while (save-excursion | |
336 (and (setq cl-pos (marker-position cl-mark)) | |
337 (< cl-pos (or cl-mark2 (point-max))) | |
338 (progn | |
339 (set-buffer cl-buffer) | |
340 (setq cl-ovl (overlays-at cl-pos)) | |
341 (set-marker cl-mark (next-overlay-change cl-pos))))) | |
342 (while (and cl-ovl | |
343 (or (/= (overlay-start (car cl-ovl)) cl-pos) | |
344 (not (and (funcall cl-func (car cl-ovl) cl-arg) | |
345 (set-marker cl-mark nil))))) | |
346 (setq cl-ovl (cdr cl-ovl)))) | |
347 (set-marker cl-mark nil) (if cl-mark2 (set-marker cl-mark2 nil))))) | |
348 | |
349 ;;; Support for `setf'. | |
350 (defun cl-set-frame-visible-p (frame val) | |
351 (cond ((null val) (make-frame-invisible frame)) | |
352 ((eq val 'icon) (iconify-frame frame)) | |
353 (t (make-frame-visible frame))) | |
354 val) | |
355 | |
356 ;;; Support for `progv'. | |
357 (defvar cl-progv-save) | |
358 (defun cl-progv-before (syms values) | |
359 (while syms | |
360 (cl-push (if (boundp (car syms)) | |
361 (cons (car syms) (symbol-value (car syms))) | |
362 (car syms)) cl-progv-save) | |
363 (if values | |
364 (set (cl-pop syms) (cl-pop values)) | |
365 (makunbound (cl-pop syms))))) | |
366 | |
367 (defun cl-progv-after () | |
368 (while cl-progv-save | |
369 (if (consp (car cl-progv-save)) | |
370 (set (car (car cl-progv-save)) (cdr (car cl-progv-save))) | |
371 (makunbound (car cl-progv-save))) | |
372 (cl-pop cl-progv-save))) | |
373 | |
374 | |
375 ;;; Numbers. | |
376 | |
377 (defun gcd (&rest args) | |
378 "Return the greatest common divisor of the arguments." | |
379 (let ((a (abs (or (cl-pop args) 0)))) | |
380 (while args | |
381 (let ((b (abs (cl-pop args)))) | |
382 (while (> b 0) (setq b (% a (setq a b)))))) | |
383 a)) | |
384 | |
385 (defun lcm (&rest args) | |
386 "Return the least common multiple of the arguments." | |
387 (if (memq 0 args) | |
388 0 | |
389 (let ((a (abs (or (cl-pop args) 1)))) | |
390 (while args | |
391 (let ((b (abs (cl-pop args)))) | |
392 (setq a (* (/ a (gcd a b)) b)))) | |
393 a))) | |
394 | |
395 (defun isqrt (a) | |
396 "Return the integer square root of the argument." | |
397 (if (and (integerp a) (> a 0)) | |
398 ;; XEmacs change | |
399 (let ((g (cond ((>= a 1000000) 10000) ((>= a 10000) 1000) | |
400 ((>= a 100) 100) (t 10))) | |
401 g2) | |
402 (while (< (setq g2 (/ (+ g (/ a g)) 2)) g) | |
403 (setq g g2)) | |
404 g) | |
405 (if (eq a 0) 0 (signal 'arith-error nil)))) | |
406 | |
407 (defun cl-expt (x y) | |
408 "Return X raised to the power of Y. Works only for integer arguments." | |
409 (if (<= y 0) (if (= y 0) 1 (if (memq x '(-1 1)) (cl-expt x (- y)) 0)) | |
410 (* (if (= (% y 2) 0) 1 x) (cl-expt (* x x) (/ y 2))))) | |
411 (or (and (fboundp 'expt) (subrp (symbol-function 'expt))) | |
412 (defalias 'expt 'cl-expt)) | |
413 | |
414 (defun floor* (x &optional y) | |
415 "Return a list of the floor of X and the fractional part of X. | |
416 With two arguments, return floor and remainder of their quotient." | |
417 (let ((q (floor x y))) | |
418 (list q (- x (if y (* y q) q))))) | |
419 | |
420 (defun ceiling* (x &optional y) | |
421 "Return a list of the ceiling of X and the fractional part of X. | |
422 With two arguments, return ceiling and remainder of their quotient." | |
423 (let ((res (floor* x y))) | |
424 (if (= (car (cdr res)) 0) res | |
425 (list (1+ (car res)) (- (car (cdr res)) (or y 1)))))) | |
426 | |
427 (defun truncate* (x &optional y) | |
428 "Return a list of the integer part of X and the fractional part of X. | |
429 With two arguments, return truncation and remainder of their quotient." | |
430 (if (eq (>= x 0) (or (null y) (>= y 0))) | |
431 (floor* x y) (ceiling* x y))) | |
432 | |
433 (defun round* (x &optional y) | |
434 "Return a list of X rounded to the nearest integer and the remainder. | |
435 With two arguments, return rounding and remainder of their quotient." | |
436 (if y | |
437 (if (and (integerp x) (integerp y)) | |
438 (let* ((hy (/ y 2)) | |
439 (res (floor* (+ x hy) y))) | |
440 (if (and (= (car (cdr res)) 0) | |
441 (= (+ hy hy) y) | |
442 (/= (% (car res) 2) 0)) | |
443 (list (1- (car res)) hy) | |
444 (list (car res) (- (car (cdr res)) hy)))) | |
445 (let ((q (round (/ x y)))) | |
446 (list q (- x (* q y))))) | |
447 (if (integerp x) (list x 0) | |
448 (let ((q (round x))) | |
449 (list q (- x q)))))) | |
450 | |
451 (defun mod* (x y) | |
452 "The remainder of X divided by Y, with the same sign as Y." | |
453 (nth 1 (floor* x y))) | |
454 | |
455 (defun rem* (x y) | |
456 "The remainder of X divided by Y, with the same sign as X." | |
457 (nth 1 (truncate* x y))) | |
458 | |
459 (defun signum (a) | |
460 "Return 1 if A is positive, -1 if negative, 0 if zero." | |
461 (cond ((> a 0) 1) ((< a 0) -1) (t 0))) | |
462 | |
463 | |
464 ;; Random numbers. | |
465 | |
466 (defvar *random-state*) | |
467 (defun random* (lim &optional state) | |
468 "Return a random nonnegative number less than LIM, an integer or float. | |
469 Optional second arg STATE is a random-state object." | |
470 (or state (setq state *random-state*)) | |
471 ;; Inspired by "ran3" from Numerical Recipes. Additive congruential method. | |
472 (let ((vec (aref state 3))) | |
473 (if (integerp vec) | |
474 (let ((i 0) (j (- 1357335 (% (abs vec) 1357333))) (k 1)) | |
475 (aset state 3 (setq vec (make-vector 55 nil))) | |
476 (aset vec 0 j) | |
477 (while (> (setq i (% (+ i 21) 55)) 0) | |
478 (aset vec i (setq j (prog1 k (setq k (- j k)))))) | |
479 (while (< (setq i (1+ i)) 200) (random* 2 state)))) | |
480 (let* ((i (aset state 1 (% (1+ (aref state 1)) 55))) | |
481 (j (aset state 2 (% (1+ (aref state 2)) 55))) | |
482 (n (logand 8388607 (aset vec i (- (aref vec i) (aref vec j)))))) | |
483 (if (integerp lim) | |
484 (if (<= lim 512) (% n lim) | |
485 (if (> lim 8388607) (setq n (+ (lsh n 9) (random* 512 state)))) | |
486 (let ((mask 1023)) | |
487 (while (< mask (1- lim)) (setq mask (1+ (+ mask mask)))) | |
488 (if (< (setq n (logand n mask)) lim) n (random* lim state)))) | |
489 (* (/ n '8388608e0) lim))))) | |
490 | |
491 (defun make-random-state (&optional state) | |
492 "Return a copy of random-state STATE, or of `*random-state*' if omitted. | |
493 If STATE is t, return a new state object seeded from the time of day." | |
494 (cond ((null state) (make-random-state *random-state*)) | |
495 ((vectorp state) (cl-copy-tree state t)) | |
496 ((integerp state) (vector 'cl-random-state-tag -1 30 state)) | |
497 (t (make-random-state (cl-random-time))))) | |
498 | |
499 (defun random-state-p (object) | |
500 "Return t if OBJECT is a random-state object." | |
501 (and (vectorp object) (= (length object) 4) | |
502 (eq (aref object 0) 'cl-random-state-tag))) | |
503 | |
504 | |
505 ;; Implementation limits. | |
506 | |
507 (defun cl-finite-do (func a b) | |
508 (condition-case nil | |
509 (let ((res (funcall func a b))) ; check for IEEE infinity | |
510 (and (numberp res) (/= res (/ res 2)) res)) | |
511 (arith-error nil))) | |
512 | |
513 (defvar most-positive-float) | |
514 (defvar most-negative-float) | |
515 (defvar least-positive-float) | |
516 (defvar least-negative-float) | |
517 (defvar least-positive-normalized-float) | |
518 (defvar least-negative-normalized-float) | |
519 (defvar float-epsilon) | |
520 (defvar float-negative-epsilon) | |
521 | |
522 (defun cl-float-limits () | |
523 (or most-positive-float (not (numberp '2e1)) | |
524 (let ((x '2e0) y z) | |
525 ;; Find maximum exponent (first two loops are optimizations) | |
526 (while (cl-finite-do '* x x) (setq x (* x x))) | |
527 (while (cl-finite-do '* x (/ x 2)) (setq x (* x (/ x 2)))) | |
528 (while (cl-finite-do '+ x x) (setq x (+ x x))) | |
529 (setq z x y (/ x 2)) | |
530 ;; Now fill in 1's in the mantissa. | |
531 (while (and (cl-finite-do '+ x y) (/= (+ x y) x)) | |
532 (setq x (+ x y) y (/ y 2))) | |
533 (setq most-positive-float x | |
534 most-negative-float (- x)) | |
535 ;; Divide down until mantissa starts rounding. | |
536 (setq x (/ x z) y (/ 16 z) x (* x y)) | |
537 (while (condition-case nil (and (= x (* (/ x 2) 2)) (> (/ y 2) 0)) | |
538 (arith-error nil)) | |
539 (setq x (/ x 2) y (/ y 2))) | |
540 (setq least-positive-normalized-float y | |
541 least-negative-normalized-float (- y)) | |
542 ;; Divide down until value underflows to zero. | |
543 (setq x (/ 1 z) y x) | |
544 (while (condition-case nil (> (/ x 2) 0) (arith-error nil)) | |
545 (setq x (/ x 2))) | |
546 (setq least-positive-float x | |
547 least-negative-float (- x)) | |
548 (setq x '1e0) | |
549 (while (/= (+ '1e0 x) '1e0) (setq x (/ x 2))) | |
550 (setq float-epsilon (* x 2)) | |
551 (setq x '1e0) | |
552 (while (/= (- '1e0 x) '1e0) (setq x (/ x 2))) | |
553 (setq float-negative-epsilon (* x 2)))) | |
554 nil) | |
555 | |
556 | |
557 ;;; Sequence functions. | |
558 | |
559 ;XEmacs -- our built-in is more powerful. | |
560 ;(defun subseq (seq start &optional end) | |
561 ; "Return the subsequence of SEQ from START to END. | |
562 ;If END is omitted, it defaults to the length of the sequence. | |
563 ;If START or END is negative, it counts from the end." | |
564 ; (if (stringp seq) (substring seq start end) | |
565 ; (let (len) | |
566 ; (and end (< end 0) (setq end (+ end (setq len (length seq))))) | |
567 ; (if (< start 0) (setq start (+ start (or len (setq len (length seq)))))) | |
568 ; (cond ((listp seq) | |
569 ; (if (> start 0) (setq seq (nthcdr start seq))) | |
570 ; (if end | |
571 ; (let ((res nil)) | |
572 ; (while (>= (setq end (1- end)) start) | |
573 ; (cl-push (cl-pop seq) res)) | |
574 ; (nreverse res)) | |
575 ; (copy-sequence seq))) | |
576 ; (t | |
577 ; (or end (setq end (or len (length seq)))) | |
578 ; (let ((res (make-vector (max (- end start) 0) nil)) | |
579 ; (i 0)) | |
580 ; (while (< start end) | |
581 ; (aset res i (aref seq start)) | |
582 ; (setq i (1+ i) start (1+ start))) | |
583 ; res)))))) | |
584 | |
585 (defun concatenate (type &rest seqs) | |
586 "Concatenate, into a sequence of type TYPE, the argument SEQUENCES." | |
587 (case type | |
588 (vector (apply 'vconcat seqs)) | |
589 (string (apply 'concat seqs)) | |
590 (list (apply 'append (append seqs '(nil)))) | |
591 (t (error "Not a sequence type name: %s" type)))) | |
592 | |
593 ;;; List functions. | |
594 | |
595 (defun revappend (x y) | |
596 "Equivalent to (append (reverse X) Y)." | |
597 (nconc (reverse x) y)) | |
598 | |
599 (defun nreconc (x y) | |
600 "Equivalent to (nconc (nreverse X) Y)." | |
601 (nconc (nreverse x) y)) | |
602 | |
603 (defun list-length (x) | |
604 "Return the length of a list. Return nil if list is circular." | |
605 (let ((n 0) (fast x) (slow x)) | |
606 (while (and (cdr fast) (not (and (eq fast slow) (> n 0)))) | |
607 (setq n (+ n 2) fast (cdr (cdr fast)) slow (cdr slow))) | |
608 (if fast (if (cdr fast) nil (1+ n)) n))) | |
609 | |
610 (defun tailp (sublist list) | |
611 "Return true if SUBLIST is a tail of LIST." | |
612 (while (and (consp list) (not (eq sublist list))) | |
613 (setq list (cdr list))) | |
614 (if (numberp sublist) (equal sublist list) (eq sublist list))) | |
615 | |
616 (defun cl-copy-tree (tree &optional vecp) | |
617 "Make a copy of TREE. | |
618 If TREE is a cons cell, this recursively copies both its car and its cdr. | |
619 Contrast to copy-sequence, which copies only along the cdrs. With second | |
620 argument VECP, this copies vectors as well as conses." | |
621 (if (consp tree) | |
622 (let ((p (setq tree (copy-list tree)))) | |
623 (while (consp p) | |
624 (if (or (consp (car p)) (and vecp (vectorp (car p)))) | |
625 (setcar p (cl-copy-tree (car p) vecp))) | |
626 (or (listp (cdr p)) (setcdr p (cl-copy-tree (cdr p) vecp))) | |
627 (cl-pop p))) | |
628 (if (and vecp (vectorp tree)) | |
629 (let ((i (length (setq tree (copy-sequence tree))))) | |
630 (while (>= (setq i (1- i)) 0) | |
631 (aset tree i (cl-copy-tree (aref tree i) vecp)))))) | |
632 tree) | |
633 (or (and (fboundp 'copy-tree) (subrp (symbol-function 'copy-tree))) | |
634 (defalias 'copy-tree 'cl-copy-tree)) | |
635 | |
636 | |
637 ;;; Property lists. | |
638 | |
639 ;; XEmacs: our `get' groks DEFAULT. | |
640 (defalias 'get* 'get) | |
641 | |
642 (defun getf (plist tag &optional def) | |
643 "Search PROPLIST for property PROPNAME; return its value or DEFAULT. | |
644 PROPLIST is a list of the sort returned by `symbol-plist'." | |
645 (setplist '--cl-getf-symbol-- plist) | |
646 (or (get '--cl-getf-symbol-- tag) | |
647 (and def (get* '--cl-getf-symbol-- tag def)))) | |
648 | |
649 (defun cl-set-getf (plist tag val) | |
650 (let ((p plist)) | |
651 (while (and p (not (eq (car p) tag))) (setq p (cdr (cdr p)))) | |
652 (if p (progn (setcar (cdr p) val) plist) (list* tag val plist)))) | |
653 | |
654 (defun cl-do-remf (plist tag) | |
655 (let ((p (cdr plist))) | |
656 (while (and (cdr p) (not (eq (car (cdr p)) tag))) (setq p (cdr (cdr p)))) | |
657 (and (cdr p) (progn (setcdr p (cdr (cdr (cdr p)))) t)))) | |
658 | |
659 (defun cl-remprop (sym tag) | |
660 "Remove from SYMBOL's plist the property PROP and its value." | |
661 (let ((plist (symbol-plist sym))) | |
662 (if (and plist (eq tag (car plist))) | |
663 (progn (setplist sym (cdr (cdr plist))) t) | |
664 (cl-do-remf plist tag)))) | |
665 (or (and (fboundp 'remprop) (subrp (symbol-function 'remprop))) | |
666 (defalias 'remprop 'cl-remprop)) | |
667 | |
668 | |
669 | |
670 ;;; Hash tables. | |
671 | |
672 ;; The `regular' Common Lisp hash-table stuff has been moved into C. | |
673 ;; Only backward compatibility stuff remains here. | |
674 (defun make-hashtable (size &optional test) | |
675 (make-hash-table :test test :size size)) | |
676 (defun make-weak-hashtable (size &optional test) | |
677 (make-hash-table :test test :size size :weakness t)) | |
678 (defun make-key-weak-hashtable (size &optional test) | |
679 (make-hash-table :test test :size size :weakness 'key)) | |
680 (defun make-value-weak-hashtable (size &optional test) | |
681 (make-hash-table :test test :size size :weakness 'value)) | |
682 | |
683 (define-obsolete-function-alias 'hashtablep 'hash-table-p) | |
684 (define-obsolete-function-alias 'hashtable-fullness 'hash-table-count) | |
685 (define-obsolete-function-alias 'hashtable-test-function 'hash-table-test) | |
686 (define-obsolete-function-alias 'hashtable-type 'hash-table-type) | |
687 (define-obsolete-function-alias 'hashtable-size 'hash-table-size) | |
688 (define-obsolete-function-alias 'copy-hashtable 'copy-hash-table) | |
689 | |
690 (make-obsolete 'make-hashtable 'make-hash-table) | |
691 (make-obsolete 'make-weak-hashtable 'make-hash-table) | |
692 (make-obsolete 'make-key-weak-hashtable 'make-hash-table) | |
693 (make-obsolete 'make-value-weak-hashtable 'make-hash-table) | |
694 (make-obsolete 'hash-table-type 'hash-table-weakness) | |
695 | |
696 (when (fboundp 'x-keysym-hash-table) | |
697 (make-obsolete 'x-keysym-hashtable 'x-keysym-hash-table)) | |
698 | |
699 ;; Compatibility stuff for old kludgy cl.el hash table implementation | |
700 (defvar cl-builtin-gethash (symbol-function 'gethash)) | |
701 (defvar cl-builtin-remhash (symbol-function 'remhash)) | |
702 (defvar cl-builtin-clrhash (symbol-function 'clrhash)) | |
703 (defvar cl-builtin-maphash (symbol-function 'maphash)) | |
704 | |
705 (defalias 'cl-gethash 'gethash) | |
706 (defalias 'cl-puthash 'puthash) | |
707 (defalias 'cl-remhash 'remhash) | |
708 (defalias 'cl-clrhash 'clrhash) | |
709 (defalias 'cl-maphash 'maphash) | |
710 | |
711 ;;; Some debugging aids. | |
712 | |
713 (defun cl-prettyprint (form) | |
714 "Insert a pretty-printed rendition of a Lisp FORM in current buffer." | |
715 (let ((pt (point)) last) | |
716 (insert "\n" (prin1-to-string form) "\n") | |
717 (setq last (point)) | |
718 (goto-char (1+ pt)) | |
719 (while (search-forward "(quote " last t) | |
720 (delete-backward-char 7) | |
721 (insert "'") | |
722 (forward-sexp) | |
723 (delete-char 1)) | |
724 (goto-char (1+ pt)) | |
725 (cl-do-prettyprint))) | |
726 | |
727 (defun cl-do-prettyprint () | |
728 (skip-chars-forward " ") | |
729 (if (looking-at "(") | |
730 (let ((skip (or (looking-at "((") (looking-at "(prog") | |
731 (looking-at "(unwind-protect ") | |
732 (looking-at "(function (") | |
733 (looking-at "(cl-block-wrapper "))) | |
734 (two (or (looking-at "(defun ") (looking-at "(defmacro "))) | |
735 (let (or (looking-at "(let\\*? ") (looking-at "(while "))) | |
736 (set (looking-at "(p?set[qf] "))) | |
737 (if (or skip let | |
738 (progn | |
739 (forward-sexp) | |
740 (and (>= (current-column) 78) (progn (backward-sexp) t)))) | |
741 (let ((nl t)) | |
742 (forward-char 1) | |
743 (cl-do-prettyprint) | |
744 (or skip (looking-at ")") (cl-do-prettyprint)) | |
745 (or (not two) (looking-at ")") (cl-do-prettyprint)) | |
746 (while (not (looking-at ")")) | |
747 (if set (setq nl (not nl))) | |
748 (if nl (insert "\n")) | |
749 (lisp-indent-line) | |
750 (cl-do-prettyprint)) | |
751 (forward-char 1)))) | |
752 (forward-sexp))) | |
753 | |
754 (defvar cl-macroexpand-cmacs nil) | |
755 (defvar cl-closure-vars nil) | |
756 | |
757 (defun cl-macroexpand-all (form &optional env) | |
758 "Expand all macro calls through a Lisp FORM. | |
759 This also does some trivial optimizations to make the form prettier." | |
760 (while (or (not (eq form (setq form (macroexpand form env)))) | |
761 (and cl-macroexpand-cmacs | |
762 (not (eq form (setq form (compiler-macroexpand form))))))) | |
763 (cond ((not (consp form)) form) | |
764 ((memq (car form) '(let let*)) | |
765 (if (null (nth 1 form)) | |
766 (cl-macroexpand-all (cons 'progn (cddr form)) env) | |
767 (let ((letf nil) (res nil) (lets (cadr form))) | |
768 (while lets | |
769 (cl-push (if (consp (car lets)) | |
770 (let ((exp (cl-macroexpand-all (caar lets) env))) | |
771 (or (symbolp exp) (setq letf t)) | |
772 (cons exp (cl-macroexpand-body (cdar lets) env))) | |
773 (let ((exp (cl-macroexpand-all (car lets) env))) | |
774 (if (symbolp exp) exp | |
775 (setq letf t) (list exp nil)))) res) | |
776 (setq lets (cdr lets))) | |
777 (list* (if letf (if (eq (car form) 'let) 'letf 'letf*) (car form)) | |
778 (nreverse res) (cl-macroexpand-body (cddr form) env))))) | |
779 ((eq (car form) 'cond) | |
780 (cons (car form) | |
781 (mapcar (function (lambda (x) (cl-macroexpand-body x env))) | |
782 (cdr form)))) | |
783 ((eq (car form) 'condition-case) | |
784 (list* (car form) (nth 1 form) (cl-macroexpand-all (nth 2 form) env) | |
785 (mapcar (function | |
786 (lambda (x) | |
787 (cons (car x) (cl-macroexpand-body (cdr x) env)))) | |
788 (cdddr form)))) | |
789 ((memq (car form) '(quote function)) | |
790 (if (eq (car-safe (nth 1 form)) 'lambda) | |
791 (let ((body (cl-macroexpand-body (cddadr form) env))) | |
792 (if (and cl-closure-vars (eq (car form) 'function) | |
793 (cl-expr-contains-any body cl-closure-vars)) | |
794 (let* ((new (mapcar 'gensym cl-closure-vars)) | |
795 (sub (pairlis cl-closure-vars new)) (decls nil)) | |
796 (while (or (stringp (car body)) | |
797 (eq (car-safe (car body)) 'interactive)) | |
798 (cl-push (list 'quote (cl-pop body)) decls)) | |
799 (put (car (last cl-closure-vars)) 'used t) | |
800 (append | |
801 (list 'list '(quote lambda) '(quote (&rest --cl-rest--))) | |
802 (sublis sub (nreverse decls)) | |
803 (list | |
804 (list* 'list '(quote apply) | |
805 (list 'list '(quote quote) | |
806 (list 'function | |
807 (list* 'lambda | |
808 (append new (cadadr form)) | |
809 (sublis sub body)))) | |
810 (nconc (mapcar (function | |
811 (lambda (x) | |
812 (list 'list '(quote quote) x))) | |
813 cl-closure-vars) | |
814 '((quote --cl-rest--))))))) | |
815 (list (car form) (list* 'lambda (cadadr form) body)))) | |
816 (let ((found (assq (cadr form) env))) | |
817 (if (eq (cadr (caddr found)) 'cl-labels-args) | |
818 (cl-macroexpand-all (cadr (caddr (cadddr found))) env) | |
819 form)))) | |
820 ((memq (car form) '(defun defmacro)) | |
821 (list* (car form) (nth 1 form) (cl-macroexpand-body (cddr form) env))) | |
822 ((and (eq (car form) 'progn) (not (cddr form))) | |
823 (cl-macroexpand-all (nth 1 form) env)) | |
824 ((eq (car form) 'setq) | |
825 (let* ((args (cl-macroexpand-body (cdr form) env)) (p args)) | |
826 (while (and p (symbolp (car p))) (setq p (cddr p))) | |
827 (if p (cl-macroexpand-all (cons 'setf args)) (cons 'setq args)))) | |
828 (t (cons (car form) (cl-macroexpand-body (cdr form) env))))) | |
829 | |
830 (defun cl-macroexpand-body (body &optional env) | |
831 (mapcar (function (lambda (x) (cl-macroexpand-all x env))) body)) | |
832 | |
833 (defun cl-prettyexpand (form &optional full) | |
834 (message "Expanding...") | |
835 (let ((cl-macroexpand-cmacs full) (cl-compiling-file full) | |
836 (byte-compile-macro-environment nil)) | |
837 (setq form (cl-macroexpand-all form | |
838 (and (not full) '((block) (eval-when))))) | |
839 (message "Formatting...") | |
840 (prog1 (cl-prettyprint form) | |
841 (message "")))) | |
842 | |
843 | |
844 | |
845 (run-hooks 'cl-extra-load-hook) | |
846 | |
847 (provide 'cl-extra) | |
848 | |
849 ;;; cl-extra.el ends here |