Mercurial > hg > xemacs-beta
comparison src/unexelfsgi.c @ 0:376386a54a3c r19-14
Import from CVS: tag r19-14
author | cvs |
---|---|
date | Mon, 13 Aug 2007 08:45:50 +0200 |
parents | |
children | ee648375d8d6 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:376386a54a3c |
---|---|
1 /* Copyright (C) 1985, 1986, 1987, 1988, 1990, 1992 | |
2 Free Software Foundation, Inc. | |
3 | |
4 This file is part of XEmacs. | |
5 | |
6 XEmacs is free software; you can redistribute it and/or modify it | |
7 under the terms of the GNU General Public License as published by the | |
8 Free Software Foundation; either version 2, or (at your option) any | |
9 later version. | |
10 | |
11 XEmacs is distributed in the hope that it will be useful, but WITHOUT | |
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |
14 for more details. | |
15 | |
16 You should have received a copy of the GNU General Public License | |
17 along with XEmacs; see the file COPYING. If not, write to | |
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330, | |
19 Boston, MA 02111-1307, USA. */ | |
20 | |
21 /* Synched up with: FSF 19.31. */ | |
22 | |
23 | |
24 /* | |
25 * unexec.c - Convert a running program into an a.out file. | |
26 * | |
27 * Author: Spencer W. Thomas | |
28 * Computer Science Dept. | |
29 * University of Utah | |
30 * Date: Tue Mar 2 1982 | |
31 * Modified heavily since then. | |
32 * | |
33 * Synopsis: | |
34 * unexec (new_name, a_name, data_start, bss_start, entry_address) | |
35 * char *new_name, *a_name; | |
36 * unsigned data_start, bss_start, entry_address; | |
37 * | |
38 * Takes a snapshot of the program and makes an a.out format file in the | |
39 * file named by the string argument new_name. | |
40 * If a_name is non-NULL, the symbol table will be taken from the given file. | |
41 * On some machines, an existing a_name file is required. | |
42 * | |
43 * The boundaries within the a.out file may be adjusted with the data_start | |
44 * and bss_start arguments. Either or both may be given as 0 for defaults. | |
45 * | |
46 * Data_start gives the boundary between the text segment and the data | |
47 * segment of the program. The text segment can contain shared, read-only | |
48 * program code and literal data, while the data segment is always unshared | |
49 * and unprotected. Data_start gives the lowest unprotected address. | |
50 * The value you specify may be rounded down to a suitable boundary | |
51 * as required by the machine you are using. | |
52 * | |
53 * Specifying zero for data_start means the boundary between text and data | |
54 * should not be the same as when the program was loaded. | |
55 * If NO_REMAP is defined, the argument data_start is ignored and the | |
56 * segment boundaries are never changed. | |
57 * | |
58 * Bss_start indicates how much of the data segment is to be saved in the | |
59 * a.out file and restored when the program is executed. It gives the lowest | |
60 * unsaved address, and is rounded up to a page boundary. The default when 0 | |
61 * is given assumes that the entire data segment is to be stored, including | |
62 * the previous data and bss as well as any additional storage allocated with | |
63 * break (2). | |
64 * | |
65 * The new file is set up to start at entry_address. | |
66 * | |
67 * If you make improvements I'd like to get them too. | |
68 * harpo!utah-cs!thomas, thomas@Utah-20 | |
69 * | |
70 */ | |
71 | |
72 /* Even more heavily modified by james@bigtex.cactus.org of Dell Computer Co. | |
73 * ELF support added. | |
74 * | |
75 * Basic theory: the data space of the running process needs to be | |
76 * dumped to the output file. Normally we would just enlarge the size | |
77 * of .data, scooting everything down. But we can't do that in ELF, | |
78 * because there is often something between the .data space and the | |
79 * .bss space. | |
80 * | |
81 * In the temacs dump below, notice that the Global Offset Table | |
82 * (.got) and the Dynamic link data (.dynamic) come between .data1 and | |
83 * .bss. It does not work to overlap .data with these fields. | |
84 * | |
85 * The solution is to create a new .data segment. This segment is | |
86 * filled with data from the current process. Since the contents of | |
87 * various sections refer to sections by index, the new .data segment | |
88 * is made the last in the table to avoid changing any existing index. | |
89 | |
90 * This is an example of how the section headers are changed. "Addr" | |
91 * is a process virtual address. "Offset" is a file offset. | |
92 | |
93 raid:/nfs/raid/src/dist-18.56/src> dump -h temacs | |
94 | |
95 temacs: | |
96 | |
97 **** SECTION HEADER TABLE **** | |
98 [No] Type Flags Addr Offset Size Name | |
99 Link Info Adralgn Entsize | |
100 | |
101 [1] 1 2 0x80480d4 0xd4 0x13 .interp | |
102 0 0 0x1 0 | |
103 | |
104 [2] 5 2 0x80480e8 0xe8 0x388 .hash | |
105 3 0 0x4 0x4 | |
106 | |
107 [3] 11 2 0x8048470 0x470 0x7f0 .dynsym | |
108 4 1 0x4 0x10 | |
109 | |
110 [4] 3 2 0x8048c60 0xc60 0x3ad .dynstr | |
111 0 0 0x1 0 | |
112 | |
113 [5] 9 2 0x8049010 0x1010 0x338 .rel.plt | |
114 3 7 0x4 0x8 | |
115 | |
116 [6] 1 6 0x8049348 0x1348 0x3 .init | |
117 0 0 0x4 0 | |
118 | |
119 [7] 1 6 0x804934c 0x134c 0x680 .plt | |
120 0 0 0x4 0x4 | |
121 | |
122 [8] 1 6 0x80499cc 0x19cc 0x3c56f .text | |
123 0 0 0x4 0 | |
124 | |
125 [9] 1 6 0x8085f3c 0x3df3c 0x3 .fini | |
126 0 0 0x4 0 | |
127 | |
128 [10] 1 2 0x8085f40 0x3df40 0x69c .rodata | |
129 0 0 0x4 0 | |
130 | |
131 [11] 1 2 0x80865dc 0x3e5dc 0xd51 .rodata1 | |
132 0 0 0x4 0 | |
133 | |
134 [12] 1 3 0x8088330 0x3f330 0x20afc .data | |
135 0 0 0x4 0 | |
136 | |
137 [13] 1 3 0x80a8e2c 0x5fe2c 0x89d .data1 | |
138 0 0 0x4 0 | |
139 | |
140 [14] 1 3 0x80a96cc 0x606cc 0x1a8 .got | |
141 0 0 0x4 0x4 | |
142 | |
143 [15] 6 3 0x80a9874 0x60874 0x80 .dynamic | |
144 4 0 0x4 0x8 | |
145 | |
146 [16] 8 3 0x80a98f4 0x608f4 0x449c .bss | |
147 0 0 0x4 0 | |
148 | |
149 [17] 2 0 0 0x608f4 0x9b90 .symtab | |
150 18 371 0x4 0x10 | |
151 | |
152 [18] 3 0 0 0x6a484 0x8526 .strtab | |
153 0 0 0x1 0 | |
154 | |
155 [19] 3 0 0 0x729aa 0x93 .shstrtab | |
156 0 0 0x1 0 | |
157 | |
158 [20] 1 0 0 0x72a3d 0x68b7 .comment | |
159 0 0 0x1 0 | |
160 | |
161 raid:/nfs/raid/src/dist-18.56/src> dump -h xemacs | |
162 | |
163 xemacs: | |
164 | |
165 **** SECTION HEADER TABLE **** | |
166 [No] Type Flags Addr Offset Size Name | |
167 Link Info Adralgn Entsize | |
168 | |
169 [1] 1 2 0x80480d4 0xd4 0x13 .interp | |
170 0 0 0x1 0 | |
171 | |
172 [2] 5 2 0x80480e8 0xe8 0x388 .hash | |
173 3 0 0x4 0x4 | |
174 | |
175 [3] 11 2 0x8048470 0x470 0x7f0 .dynsym | |
176 4 1 0x4 0x10 | |
177 | |
178 [4] 3 2 0x8048c60 0xc60 0x3ad .dynstr | |
179 0 0 0x1 0 | |
180 | |
181 [5] 9 2 0x8049010 0x1010 0x338 .rel.plt | |
182 3 7 0x4 0x8 | |
183 | |
184 [6] 1 6 0x8049348 0x1348 0x3 .init | |
185 0 0 0x4 0 | |
186 | |
187 [7] 1 6 0x804934c 0x134c 0x680 .plt | |
188 0 0 0x4 0x4 | |
189 | |
190 [8] 1 6 0x80499cc 0x19cc 0x3c56f .text | |
191 0 0 0x4 0 | |
192 | |
193 [9] 1 6 0x8085f3c 0x3df3c 0x3 .fini | |
194 0 0 0x4 0 | |
195 | |
196 [10] 1 2 0x8085f40 0x3df40 0x69c .rodata | |
197 0 0 0x4 0 | |
198 | |
199 [11] 1 2 0x80865dc 0x3e5dc 0xd51 .rodata1 | |
200 0 0 0x4 0 | |
201 | |
202 [12] 1 3 0x8088330 0x3f330 0x20afc .data | |
203 0 0 0x4 0 | |
204 | |
205 [13] 1 3 0x80a8e2c 0x5fe2c 0x89d .data1 | |
206 0 0 0x4 0 | |
207 | |
208 [14] 1 3 0x80a96cc 0x606cc 0x1a8 .got | |
209 0 0 0x4 0x4 | |
210 | |
211 [15] 6 3 0x80a9874 0x60874 0x80 .dynamic | |
212 4 0 0x4 0x8 | |
213 | |
214 [16] 8 3 0x80c6800 0x7d800 0 .bss | |
215 0 0 0x4 0 | |
216 | |
217 [17] 2 0 0 0x7d800 0x9b90 .symtab | |
218 18 371 0x4 0x10 | |
219 | |
220 [18] 3 0 0 0x87390 0x8526 .strtab | |
221 0 0 0x1 0 | |
222 | |
223 [19] 3 0 0 0x8f8b6 0x93 .shstrtab | |
224 0 0 0x1 0 | |
225 | |
226 [20] 1 0 0 0x8f949 0x68b7 .comment | |
227 0 0 0x1 0 | |
228 | |
229 [21] 1 3 0x80a98f4 0x608f4 0x1cf0c .data | |
230 0 0 0x4 0 | |
231 | |
232 * This is an example of how the file header is changed. "Shoff" is | |
233 * the section header offset within the file. Since that table is | |
234 * after the new .data section, it is moved. "Shnum" is the number of | |
235 * sections, which we increment. | |
236 * | |
237 * "Phoff" is the file offset to the program header. "Phentsize" and | |
238 * "Shentsz" are the program and section header entries sizes respectively. | |
239 * These can be larger than the apparent struct sizes. | |
240 | |
241 raid:/nfs/raid/src/dist-18.56/src> dump -f temacs | |
242 | |
243 temacs: | |
244 | |
245 **** ELF HEADER **** | |
246 Class Data Type Machine Version | |
247 Entry Phoff Shoff Flags Ehsize | |
248 Phentsize Phnum Shentsz Shnum Shstrndx | |
249 | |
250 1 1 2 3 1 | |
251 0x80499cc 0x34 0x792f4 0 0x34 | |
252 0x20 5 0x28 21 19 | |
253 | |
254 raid:/nfs/raid/src/dist-18.56/src> dump -f xemacs | |
255 | |
256 xemacs: | |
257 | |
258 **** ELF HEADER **** | |
259 Class Data Type Machine Version | |
260 Entry Phoff Shoff Flags Ehsize | |
261 Phentsize Phnum Shentsz Shnum Shstrndx | |
262 | |
263 1 1 2 3 1 | |
264 0x80499cc 0x34 0x96200 0 0x34 | |
265 0x20 5 0x28 22 19 | |
266 | |
267 * These are the program headers. "Offset" is the file offset to the | |
268 * segment. "Vaddr" is the memory load address. "Filesz" is the | |
269 * segment size as it appears in the file, and "Memsz" is the size in | |
270 * memory. Below, the third segment is the code and the fourth is the | |
271 * data: the difference between Filesz and Memsz is .bss | |
272 | |
273 raid:/nfs/raid/src/dist-18.56/src> dump -o temacs | |
274 | |
275 temacs: | |
276 ***** PROGRAM EXECUTION HEADER ***** | |
277 Type Offset Vaddr Paddr | |
278 Filesz Memsz Flags Align | |
279 | |
280 6 0x34 0x8048034 0 | |
281 0xa0 0xa0 5 0 | |
282 | |
283 3 0xd4 0 0 | |
284 0x13 0 4 0 | |
285 | |
286 1 0x34 0x8048034 0 | |
287 0x3f2f9 0x3f2f9 5 0x1000 | |
288 | |
289 1 0x3f330 0x8088330 0 | |
290 0x215c4 0x25a60 7 0x1000 | |
291 | |
292 2 0x60874 0x80a9874 0 | |
293 0x80 0 7 0 | |
294 | |
295 raid:/nfs/raid/src/dist-18.56/src> dump -o xemacs | |
296 | |
297 xemacs: | |
298 ***** PROGRAM EXECUTION HEADER ***** | |
299 Type Offset Vaddr Paddr | |
300 Filesz Memsz Flags Align | |
301 | |
302 6 0x34 0x8048034 0 | |
303 0xa0 0xa0 5 0 | |
304 | |
305 3 0xd4 0 0 | |
306 0x13 0 4 0 | |
307 | |
308 1 0x34 0x8048034 0 | |
309 0x3f2f9 0x3f2f9 5 0x1000 | |
310 | |
311 1 0x3f330 0x8088330 0 | |
312 0x3e4d0 0x3e4d0 7 0x1000 | |
313 | |
314 2 0x60874 0x80a9874 0 | |
315 0x80 0 7 0 | |
316 | |
317 | |
318 */ | |
319 | |
320 /* Modified by wtien@urbana.mcd.mot.com of Motorola Inc. | |
321 * | |
322 * The above mechanism does not work if the unexeced ELF file is being | |
323 * re-layout by other applications (such as `strip'). All the applications | |
324 * that re-layout the internal of ELF will layout all sections in ascending | |
325 * order of their file offsets. After the re-layout, the data2 section will | |
326 * still be the LAST section in the section header vector, but its file offset | |
327 * is now being pushed far away down, and causes part of it not to be mapped | |
328 * in (ie. not covered by the load segment entry in PHDR vector), therefore | |
329 * causes the new binary to fail. | |
330 * | |
331 * The solution is to modify the unexec algorithm to insert the new data2 | |
332 * section header right before the new bss section header, so their file | |
333 * offsets will be in the ascending order. Since some of the section's (all | |
334 * sections AFTER the bss section) indexes are now changed, we also need to | |
335 * modify some fields to make them point to the right sections. This is done | |
336 * by macro PATCH_INDEX. All the fields that need to be patched are: | |
337 * | |
338 * 1. ELF header e_shstrndx field. | |
339 * 2. section header sh_link and sh_info field. | |
340 * 3. symbol table entry st_shndx field. | |
341 * | |
342 * The above example now should look like: | |
343 | |
344 **** SECTION HEADER TABLE **** | |
345 [No] Type Flags Addr Offset Size Name | |
346 Link Info Adralgn Entsize | |
347 | |
348 [1] 1 2 0x80480d4 0xd4 0x13 .interp | |
349 0 0 0x1 0 | |
350 | |
351 [2] 5 2 0x80480e8 0xe8 0x388 .hash | |
352 3 0 0x4 0x4 | |
353 | |
354 [3] 11 2 0x8048470 0x470 0x7f0 .dynsym | |
355 4 1 0x4 0x10 | |
356 | |
357 [4] 3 2 0x8048c60 0xc60 0x3ad .dynstr | |
358 0 0 0x1 0 | |
359 | |
360 [5] 9 2 0x8049010 0x1010 0x338 .rel.plt | |
361 3 7 0x4 0x8 | |
362 | |
363 [6] 1 6 0x8049348 0x1348 0x3 .init | |
364 0 0 0x4 0 | |
365 | |
366 [7] 1 6 0x804934c 0x134c 0x680 .plt | |
367 0 0 0x4 0x4 | |
368 | |
369 [8] 1 6 0x80499cc 0x19cc 0x3c56f .text | |
370 0 0 0x4 0 | |
371 | |
372 [9] 1 6 0x8085f3c 0x3df3c 0x3 .fini | |
373 0 0 0x4 0 | |
374 | |
375 [10] 1 2 0x8085f40 0x3df40 0x69c .rodata | |
376 0 0 0x4 0 | |
377 | |
378 [11] 1 2 0x80865dc 0x3e5dc 0xd51 .rodata1 | |
379 0 0 0x4 0 | |
380 | |
381 [12] 1 3 0x8088330 0x3f330 0x20afc .data | |
382 0 0 0x4 0 | |
383 | |
384 [13] 1 3 0x80a8e2c 0x5fe2c 0x89d .data1 | |
385 0 0 0x4 0 | |
386 | |
387 [14] 1 3 0x80a96cc 0x606cc 0x1a8 .got | |
388 0 0 0x4 0x4 | |
389 | |
390 [15] 6 3 0x80a9874 0x60874 0x80 .dynamic | |
391 4 0 0x4 0x8 | |
392 | |
393 [16] 1 3 0x80a98f4 0x608f4 0x1cf0c .data | |
394 0 0 0x4 0 | |
395 | |
396 [17] 8 3 0x80c6800 0x7d800 0 .bss | |
397 0 0 0x4 0 | |
398 | |
399 [18] 2 0 0 0x7d800 0x9b90 .symtab | |
400 19 371 0x4 0x10 | |
401 | |
402 [19] 3 0 0 0x87390 0x8526 .strtab | |
403 0 0 0x1 0 | |
404 | |
405 [20] 3 0 0 0x8f8b6 0x93 .shstrtab | |
406 0 0 0x1 0 | |
407 | |
408 [21] 1 0 0 0x8f949 0x68b7 .comment | |
409 0 0 0x1 0 | |
410 | |
411 */ | |
412 | |
413 /* More mods, by Jack Repenning <jackr@sgi.com>, Fri Aug 11 15:45:52 1995 | |
414 | |
415 Same algorithm as immediately above. However, the detailed | |
416 calculations of the various locations needed significant | |
417 overhaul. | |
418 | |
419 At the point of the old .bss, the file offsets and the memory | |
420 addresses do distinct, slightly snaky things: | |
421 | |
422 offset of .bss is meaningless and unpredictable | |
423 addr of .bss is meaningful | |
424 alignment of .bss is important to addr, so there may be a small | |
425 gap in address range before start of bss | |
426 offset of next section is rounded up modulo 0x1000 | |
427 the hole so-introduced is zero-filled, so it can be mapped in as | |
428 the first partial-page of bss (the rest of the bss is mapped from | |
429 /dev/zero) | |
430 I suppose you could view this not as a hole, but as the beginning | |
431 of the bss, actually present in the file. But you should not | |
432 push that worldview too far, as the linker still knows that the | |
433 "offset" claimed for the bss is unused, and seems not always | |
434 careful about setting it. | |
435 | |
436 We are doing all our tricks at this same rather complicated | |
437 location (isn't life fun?): | |
438 | |
439 insert a new data section to contain now-initialized old bss and | |
440 heap | |
441 define a zero-length bss just so there is one | |
442 | |
443 The offset of the new data section is dictated by its current | |
444 address (which, of course, we want also to be its addr): the | |
445 loader maps in the whole file region containing old data, rodata, | |
446 got, and new data as a single mapped segment, starting at the | |
447 address of the first chunk; the rest have to be laid out in the | |
448 file such that the map into the right spots. That is: | |
449 | |
450 offset(newdata) == | |
451 addrInRunningMemory(newdata)-aIRM(olddata) | |
452 + offset(oldData) | |
453 | |
454 This would not necessarily match the oldbss offset, even if it | |
455 were carefully calculated! We must compute this. | |
456 | |
457 The linker that built temacs has also already arranged that | |
458 olddata is properly page-aligned (not necessarily beginning on a | |
459 page, but rather that a page's worth of the low bits of addr and | |
460 offset match). We preserve this. | |
461 | |
462 addr(bss) is alignment-constrained from the end of the new data. | |
463 Since we base endof(newdata) on sbrk(), we have a page boundary | |
464 (in both offset and addr) and meet any alignment constraint, | |
465 needing no alignment adjustment of this location and no | |
466 mini-hole. Or, if you like, we've allowed sbrk() to "compute" | |
467 the mini-hole size for us. | |
468 | |
469 That puts newbss beginning on a page boundary, both in offset and | |
470 addr. (offset(bss) is still meaningless, but what the heck, | |
471 we'll fix it up.) | |
472 | |
473 Since newbss has zero length, and its offset (however | |
474 meaningless) is page aligned, we place the next section exactly | |
475 there, with no hole needed to restore page alignment. | |
476 | |
477 So, the shift for all sections beyond the playing field is: | |
478 | |
479 new_bss_addr - roundup(old_bss_addr,0x1000) | |
480 | |
481 */ | |
482 | |
483 | |
484 #include <sys/types.h> | |
485 #include <stdio.h> | |
486 #include <sys/stat.h> | |
487 #include <memory.h> | |
488 #include <string.h> | |
489 #include <errno.h> | |
490 #include <unistd.h> | |
491 #include <fcntl.h> | |
492 #include <elf.h> | |
493 #include <sym.h> /* for HDRR declaration */ | |
494 #include <sys/mman.h> | |
495 | |
496 #ifndef emacs | |
497 #define fatal(a, b, c) fprintf(stderr, a, b, c), exit(1) | |
498 #else | |
499 extern void fatal(char *, ...); | |
500 #endif | |
501 | |
502 /* Get the address of a particular section or program header entry, | |
503 * accounting for the size of the entries. | |
504 */ | |
505 | |
506 #define OLD_SECTION_H(n) \ | |
507 (*(Elf32_Shdr *) ((byte *) old_section_h + old_file_h->e_shentsize * (n))) | |
508 #define NEW_SECTION_H(n) \ | |
509 (*(Elf32_Shdr *) ((byte *) new_section_h + new_file_h->e_shentsize * (n))) | |
510 #define OLD_PROGRAM_H(n) \ | |
511 (*(Elf32_Phdr *) ((byte *) old_program_h + old_file_h->e_phentsize * (n))) | |
512 #define NEW_PROGRAM_H(n) \ | |
513 (*(Elf32_Phdr *) ((byte *) new_program_h + new_file_h->e_phentsize * (n))) | |
514 | |
515 #define PATCH_INDEX(n) \ | |
516 do { \ | |
517 if ((n) >= old_bss_index) \ | |
518 (n)++; } while (0) | |
519 typedef unsigned char byte; | |
520 | |
521 /* Round X up to a multiple of Y. */ | |
522 | |
523 int | |
524 round_up (x, y) | |
525 int x, y; | |
526 { | |
527 int rem = x % y; | |
528 if (rem == 0) | |
529 return x; | |
530 return x - rem + y; | |
531 } | |
532 | |
533 /* Return the index of the section named NAME. | |
534 SECTION_NAMES, FILE_NAME and FILE_H give information | |
535 about the file we are looking in. | |
536 | |
537 If we don't find the section NAME, that is a fatal error | |
538 if NOERROR is 0; we return -1 if NOERROR is nonzero. */ | |
539 | |
540 static int | |
541 find_section (name, section_names, file_name, old_file_h, old_section_h, noerror) | |
542 char *name; | |
543 char *section_names; | |
544 char *file_name; | |
545 Elf32_Ehdr *old_file_h; | |
546 Elf32_Shdr *old_section_h; | |
547 int noerror; | |
548 { | |
549 int idx; | |
550 | |
551 for (idx = 1; idx < old_file_h->e_shnum; idx++) | |
552 { | |
553 #ifdef DEBUG | |
554 fprintf (stderr, "Looking for %s - found %s\n", name, | |
555 section_names + OLD_SECTION_H (idx).sh_name); | |
556 #endif | |
557 if (!strcmp (section_names + OLD_SECTION_H (idx).sh_name, | |
558 name)) | |
559 break; | |
560 } | |
561 if (idx == old_file_h->e_shnum) | |
562 { | |
563 if (noerror) | |
564 return -1; | |
565 else | |
566 fatal ("Can't find .bss in %s.\n", file_name, 0); | |
567 } | |
568 | |
569 return idx; | |
570 } | |
571 | |
572 /* **************************************************************** | |
573 * unexec | |
574 * | |
575 * driving logic. | |
576 * | |
577 * In ELF, this works by replacing the old .bss section with a new | |
578 * .data section, and inserting an empty .bss immediately afterwards. | |
579 * | |
580 */ | |
581 void | |
582 unexec (new_name, old_name, data_start, bss_start, entry_address) | |
583 char *new_name, *old_name; | |
584 unsigned data_start, bss_start, entry_address; | |
585 { | |
586 extern unsigned int bss_end; | |
587 int new_file, old_file, new_file_size; | |
588 | |
589 /* Pointers to the base of the image of the two files. */ | |
590 caddr_t old_base, new_base; | |
591 | |
592 /* Pointers to the file, program and section headers for the old and new | |
593 files. */ | |
594 Elf32_Ehdr *old_file_h, *new_file_h; | |
595 Elf32_Phdr *old_program_h, *new_program_h; | |
596 Elf32_Shdr *old_section_h, *new_section_h; | |
597 | |
598 /* Point to the section name table in the old file. */ | |
599 char *old_section_names; | |
600 | |
601 Elf32_Addr old_bss_addr, new_bss_addr; | |
602 Elf32_Word old_bss_size, new_data2_size; | |
603 Elf32_Off new_data2_offset; | |
604 Elf32_Addr new_data2_addr; | |
605 Elf32_Addr new_offsets_shift; | |
606 | |
607 int n, nn, old_bss_index, old_data_index, new_data2_index; | |
608 int old_mdebug_index; | |
609 struct stat stat_buf; | |
610 | |
611 /* Open the old file & map it into the address space. */ | |
612 | |
613 old_file = open (old_name, O_RDONLY); | |
614 | |
615 if (old_file < 0) | |
616 fatal ("Can't open %s for reading: errno %d\n", old_name, errno); | |
617 | |
618 if (fstat (old_file, &stat_buf) == -1) | |
619 fatal ("Can't fstat(%s): errno %d\n", old_name, errno); | |
620 | |
621 old_base = mmap (0, stat_buf.st_size, PROT_READ, MAP_SHARED, old_file, 0); | |
622 | |
623 if (old_base == (caddr_t) -1) | |
624 fatal ("Can't mmap(%s): errno %d\n", old_name, errno); | |
625 | |
626 #ifdef DEBUG | |
627 fprintf (stderr, "mmap(%s, %x) -> %x\n", old_name, stat_buf.st_size, | |
628 old_base); | |
629 #endif | |
630 | |
631 /* Get pointers to headers & section names. */ | |
632 | |
633 old_file_h = (Elf32_Ehdr *) old_base; | |
634 old_program_h = (Elf32_Phdr *) ((byte *) old_base + old_file_h->e_phoff); | |
635 old_section_h = (Elf32_Shdr *) ((byte *) old_base + old_file_h->e_shoff); | |
636 old_section_names | |
637 = (char *) old_base + OLD_SECTION_H (old_file_h->e_shstrndx).sh_offset; | |
638 | |
639 /* Find the mdebug section, if any. */ | |
640 | |
641 old_mdebug_index = find_section (".mdebug", old_section_names, | |
642 old_name, old_file_h, old_section_h, 1); | |
643 | |
644 /* Find the old .bss section. */ | |
645 | |
646 old_bss_index = find_section (".bss", old_section_names, | |
647 old_name, old_file_h, old_section_h, 0); | |
648 | |
649 /* Find the old .data section. Figure out parameters of | |
650 the new data2 and bss sections. */ | |
651 | |
652 old_data_index = find_section (".data", old_section_names, | |
653 old_name, old_file_h, old_section_h, 0); | |
654 | |
655 old_bss_addr = OLD_SECTION_H (old_bss_index).sh_addr; | |
656 old_bss_size = OLD_SECTION_H (old_bss_index).sh_size; | |
657 #if defined(emacs) || !defined(DEBUG) | |
658 bss_end = (unsigned int) sbrk (0); | |
659 new_bss_addr = (Elf32_Addr) bss_end; | |
660 #else | |
661 new_bss_addr = old_bss_addr + old_bss_size + 0x1234; | |
662 #endif | |
663 new_data2_addr = old_bss_addr; | |
664 new_data2_size = new_bss_addr - old_bss_addr; | |
665 new_data2_offset = OLD_SECTION_H (old_data_index).sh_offset + | |
666 (new_data2_addr - OLD_SECTION_H (old_data_index).sh_addr); | |
667 new_offsets_shift = new_bss_addr - | |
668 ((old_bss_addr & ~0xfff) + ((old_bss_addr & 0xfff) ? 0x1000 : 0)); | |
669 | |
670 #ifdef DEBUG | |
671 fprintf (stderr, "old_bss_index %d\n", old_bss_index); | |
672 fprintf (stderr, "old_bss_addr %x\n", old_bss_addr); | |
673 fprintf (stderr, "old_bss_size %x\n", old_bss_size); | |
674 fprintf (stderr, "new_bss_addr %x\n", new_bss_addr); | |
675 fprintf (stderr, "new_data2_addr %x\n", new_data2_addr); | |
676 fprintf (stderr, "new_data2_size %x\n", new_data2_size); | |
677 fprintf (stderr, "new_data2_offset %x\n", new_data2_offset); | |
678 fprintf (stderr, "new_offsets_shift %x\n", new_offsets_shift); | |
679 #endif | |
680 | |
681 if ((unsigned) new_bss_addr < (unsigned) old_bss_addr + old_bss_size) | |
682 fatal (".bss shrank when undumping???\n", 0, 0); | |
683 | |
684 /* Set the output file to the right size and mmap it. Set | |
685 pointers to various interesting objects. stat_buf still has | |
686 old_file data. */ | |
687 | |
688 new_file = open (new_name, O_RDWR | O_CREAT, 0666); | |
689 if (new_file < 0) | |
690 fatal ("Can't creat (%s): errno %d\n", new_name, errno); | |
691 | |
692 new_file_size = stat_buf.st_size /* old file size */ | |
693 + old_file_h->e_shentsize /* one new section header */ | |
694 + new_offsets_shift; /* trailing section shift */ | |
695 | |
696 if (ftruncate (new_file, new_file_size)) | |
697 fatal ("Can't ftruncate (%s): errno %d\n", new_name, errno); | |
698 | |
699 new_base = mmap (0, new_file_size, PROT_READ | PROT_WRITE, MAP_SHARED, | |
700 new_file, 0); | |
701 | |
702 if (new_base == (caddr_t) -1) | |
703 fatal ("Can't mmap (%s): errno %d\n", new_name, errno); | |
704 | |
705 new_file_h = (Elf32_Ehdr *) new_base; | |
706 new_program_h = (Elf32_Phdr *) ((byte *) new_base + old_file_h->e_phoff); | |
707 new_section_h | |
708 = (Elf32_Shdr *) ((byte *) new_base + old_file_h->e_shoff | |
709 + new_offsets_shift); | |
710 | |
711 /* Make our new file, program and section headers as copies of the | |
712 originals. */ | |
713 | |
714 memcpy (new_file_h, old_file_h, old_file_h->e_ehsize); | |
715 memcpy (new_program_h, old_program_h, | |
716 old_file_h->e_phnum * old_file_h->e_phentsize); | |
717 | |
718 /* Modify the e_shstrndx if necessary. */ | |
719 PATCH_INDEX (new_file_h->e_shstrndx); | |
720 | |
721 /* Fix up file header. We'll add one section. Section header is | |
722 further away now. */ | |
723 | |
724 new_file_h->e_shoff += new_offsets_shift; | |
725 new_file_h->e_shnum += 1; | |
726 | |
727 #ifdef DEBUG | |
728 fprintf (stderr, "Old section offset %x\n", old_file_h->e_shoff); | |
729 fprintf (stderr, "Old section count %d\n", old_file_h->e_shnum); | |
730 fprintf (stderr, "New section offset %x\n", new_file_h->e_shoff); | |
731 fprintf (stderr, "New section count %d\n", new_file_h->e_shnum); | |
732 #endif | |
733 | |
734 /* Fix up a new program header. Extend the writable data segment so | |
735 that the bss area is covered too. Find that segment by looking | |
736 for a segment that ends just before the .bss area. Make sure | |
737 that no segments are above the new .data2. Put a loop at the end | |
738 to adjust the offset and address of any segment that is above | |
739 data2, just in case we decide to allow this later. */ | |
740 | |
741 for (n = new_file_h->e_phnum - 1; n >= 0; n--) | |
742 { | |
743 /* Compute maximum of all requirements for alignment of section. */ | |
744 int alignment = (NEW_PROGRAM_H (n)).p_align; | |
745 if ((OLD_SECTION_H (old_bss_index)).sh_addralign > alignment) | |
746 alignment = OLD_SECTION_H (old_bss_index).sh_addralign; | |
747 | |
748 /* Supposedly this condition is okay for the SGI. */ | |
749 #if 0 | |
750 if (NEW_PROGRAM_H (n).p_vaddr + NEW_PROGRAM_H (n).p_filesz > old_bss_addr) | |
751 fatal ("Program segment above .bss in %s\n", old_name, 0); | |
752 #endif | |
753 | |
754 if (NEW_PROGRAM_H (n).p_type == PT_LOAD | |
755 && (round_up ((NEW_PROGRAM_H (n)).p_vaddr | |
756 + (NEW_PROGRAM_H (n)).p_filesz, | |
757 alignment) | |
758 == round_up (old_bss_addr, alignment))) | |
759 break; | |
760 } | |
761 if (n < 0) | |
762 fatal ("Couldn't find segment next to .bss in %s\n", old_name, 0); | |
763 | |
764 NEW_PROGRAM_H (n).p_filesz += new_offsets_shift; | |
765 NEW_PROGRAM_H (n).p_memsz = NEW_PROGRAM_H (n).p_filesz; | |
766 | |
767 #if 1 /* Maybe allow section after data2 - does this ever happen? */ | |
768 for (n = new_file_h->e_phnum - 1; n >= 0; n--) | |
769 { | |
770 if (NEW_PROGRAM_H (n).p_vaddr | |
771 && NEW_PROGRAM_H (n).p_vaddr >= new_data2_addr) | |
772 NEW_PROGRAM_H (n).p_vaddr += new_offsets_shift - old_bss_size; | |
773 | |
774 if (NEW_PROGRAM_H (n).p_offset >= new_data2_offset) | |
775 NEW_PROGRAM_H (n).p_offset += new_offsets_shift; | |
776 } | |
777 #endif | |
778 | |
779 /* Fix up section headers based on new .data2 section. Any section | |
780 whose offset or virtual address is after the new .data2 section | |
781 gets its value adjusted. .bss size becomes zero and new address | |
782 is set. data2 section header gets added by copying the existing | |
783 .data header and modifying the offset, address and size. */ | |
784 for (old_data_index = 1; old_data_index < old_file_h->e_shnum; | |
785 old_data_index++) | |
786 if (!strcmp (old_section_names + OLD_SECTION_H (old_data_index).sh_name, | |
787 ".data")) | |
788 break; | |
789 if (old_data_index == old_file_h->e_shnum) | |
790 fatal ("Can't find .data in %s.\n", old_name, 0); | |
791 | |
792 /* Walk through all section headers, insert the new data2 section right | |
793 before the new bss section. */ | |
794 for (n = 1, nn = 1; n < old_file_h->e_shnum; n++, nn++) | |
795 { | |
796 caddr_t src; | |
797 | |
798 /* XEmacs change: */ | |
799 if (n < old_bss_index) | |
800 { | |
801 memcpy (&NEW_SECTION_H (nn), &OLD_SECTION_H (n), | |
802 old_file_h->e_shentsize); | |
803 | |
804 } | |
805 else if (n == old_bss_index) | |
806 { | |
807 | |
808 /* If it is bss section, insert the new data2 section before it. */ | |
809 /* Steal the data section header for this data2 section. */ | |
810 memcpy (&NEW_SECTION_H (nn), &OLD_SECTION_H (old_data_index), | |
811 new_file_h->e_shentsize); | |
812 | |
813 NEW_SECTION_H (nn).sh_addr = new_data2_addr; | |
814 NEW_SECTION_H (nn).sh_offset = new_data2_offset; | |
815 NEW_SECTION_H (nn).sh_size = new_data2_size; | |
816 /* Use the bss section's alignment. This will assure that the | |
817 new data2 section always be placed in the same spot as the old | |
818 bss section by any other application. */ | |
819 NEW_SECTION_H (nn).sh_addralign = OLD_SECTION_H (n).sh_addralign; | |
820 | |
821 /* Now copy over what we have in the memory now. */ | |
822 memcpy (NEW_SECTION_H (nn).sh_offset + new_base, | |
823 (caddr_t) OLD_SECTION_H (n).sh_addr, | |
824 new_data2_size); | |
825 nn++; | |
826 memcpy (&NEW_SECTION_H (nn), &OLD_SECTION_H (n), | |
827 old_file_h->e_shentsize); | |
828 | |
829 /* The new bss section's size is zero, and its file offset and virtual | |
830 address should be off by NEW_OFFSETS_SHIFT. */ | |
831 NEW_SECTION_H (nn).sh_offset += new_offsets_shift; | |
832 NEW_SECTION_H (nn).sh_addr = new_bss_addr; | |
833 /* Let the new bss section address alignment be the same as the | |
834 section address alignment followed the old bss section, so | |
835 this section will be placed in exactly the same place. */ | |
836 NEW_SECTION_H (nn).sh_addralign = OLD_SECTION_H (nn).sh_addralign; | |
837 NEW_SECTION_H (nn).sh_size = 0; | |
838 } | |
839 else /* n > old_bss_index */ | |
840 memcpy (&NEW_SECTION_H (nn), &OLD_SECTION_H (n), | |
841 old_file_h->e_shentsize); | |
842 | |
843 /* Any section that was original placed AFTER the bss | |
844 section must now be adjusted by NEW_OFFSETS_SHIFT. */ | |
845 | |
846 if (NEW_SECTION_H (nn).sh_offset >= new_data2_offset) | |
847 NEW_SECTION_H (nn).sh_offset += new_offsets_shift; | |
848 | |
849 /* If any section hdr refers to the section after the new .data | |
850 section, make it refer to next one because we have inserted | |
851 a new section in between. */ | |
852 | |
853 PATCH_INDEX (NEW_SECTION_H (nn).sh_link); | |
854 /* For symbol tables, info is a symbol table index, | |
855 so don't change it. */ | |
856 if (NEW_SECTION_H (nn).sh_type != SHT_SYMTAB | |
857 && NEW_SECTION_H (nn).sh_type != SHT_DYNSYM) | |
858 PATCH_INDEX (NEW_SECTION_H (nn).sh_info); | |
859 | |
860 /* Now, start to copy the content of sections. */ | |
861 if (NEW_SECTION_H (nn).sh_type == SHT_NULL | |
862 || NEW_SECTION_H (nn).sh_type == SHT_NOBITS) | |
863 continue; | |
864 | |
865 /* Write out the sections. .data and .data1 (and data2, called | |
866 ".data" in the strings table) get copied from the current process | |
867 instead of the old file. */ | |
868 if (!strcmp (old_section_names + NEW_SECTION_H (n).sh_name, ".data") | |
869 || !strcmp (old_section_names + NEW_SECTION_H (n).sh_name, ".data1") | |
870 || !strcmp (old_section_names + NEW_SECTION_H (n).sh_name, ".got")) | |
871 src = (caddr_t) OLD_SECTION_H (n).sh_addr; | |
872 else | |
873 src = old_base + OLD_SECTION_H (n).sh_offset; | |
874 | |
875 memcpy (NEW_SECTION_H (nn).sh_offset + new_base, src, | |
876 NEW_SECTION_H (nn).sh_size); | |
877 | |
878 /* Adjust the HDRR offsets in .mdebug and copy the | |
879 line data if it's in its usual 'hole' in the object. | |
880 Makes the new file debuggable with dbx. | |
881 patches up two problems: the absolute file offsets | |
882 in the HDRR record of .mdebug (see /usr/include/syms.h), and | |
883 the ld bug that gets the line table in a hole in the | |
884 elf file rather than in the .mdebug section proper. | |
885 David Anderson. davea@sgi.com Jan 16,1994. */ | |
886 if (n == old_mdebug_index) | |
887 { | |
888 #define MDEBUGADJUST(__ct,__fileaddr) \ | |
889 if (n_phdrr->__ct > 0) \ | |
890 { \ | |
891 n_phdrr->__fileaddr += movement; \ | |
892 } | |
893 | |
894 HDRR * o_phdrr = (HDRR *)((byte *)old_base + OLD_SECTION_H (n).sh_offset); | |
895 HDRR * n_phdrr = (HDRR *)((byte *)new_base + NEW_SECTION_H (nn).sh_offset); | |
896 unsigned movement = new_offsets_shift; | |
897 | |
898 MDEBUGADJUST (idnMax, cbDnOffset); | |
899 MDEBUGADJUST (ipdMax, cbPdOffset); | |
900 MDEBUGADJUST (isymMax, cbSymOffset); | |
901 MDEBUGADJUST (ioptMax, cbOptOffset); | |
902 MDEBUGADJUST (iauxMax, cbAuxOffset); | |
903 MDEBUGADJUST (issMax, cbSsOffset); | |
904 MDEBUGADJUST (issExtMax, cbSsExtOffset); | |
905 MDEBUGADJUST (ifdMax, cbFdOffset); | |
906 MDEBUGADJUST (crfd, cbRfdOffset); | |
907 MDEBUGADJUST (iextMax, cbExtOffset); | |
908 /* The Line Section, being possible off in a hole of the object, | |
909 requires special handling. */ | |
910 if (n_phdrr->cbLine > 0) | |
911 { | |
912 if (o_phdrr->cbLineOffset > (OLD_SECTION_H (n).sh_offset | |
913 + OLD_SECTION_H (n).sh_size)) | |
914 { | |
915 /* line data is in a hole in elf. do special copy and adjust | |
916 for this ld mistake. | |
917 */ | |
918 n_phdrr->cbLineOffset += movement; | |
919 | |
920 memcpy (n_phdrr->cbLineOffset + new_base, | |
921 o_phdrr->cbLineOffset + old_base, n_phdrr->cbLine); | |
922 } | |
923 else | |
924 { | |
925 /* somehow line data is in .mdebug as it is supposed to be. */ | |
926 MDEBUGADJUST (cbLine, cbLineOffset); | |
927 } | |
928 } | |
929 } | |
930 | |
931 /* If it is the symbol table, its st_shndx field needs to be patched. */ | |
932 if (NEW_SECTION_H (nn).sh_type == SHT_SYMTAB | |
933 || NEW_SECTION_H (nn).sh_type == SHT_DYNSYM) | |
934 { | |
935 Elf32_Shdr *spt = &NEW_SECTION_H (nn); | |
936 unsigned int num = spt->sh_size / spt->sh_entsize; | |
937 Elf32_Sym * sym = (Elf32_Sym *) (NEW_SECTION_H (nn).sh_offset | |
938 + new_base); | |
939 for (; num--; sym++) | |
940 { | |
941 if (sym->st_shndx == SHN_UNDEF | |
942 || sym->st_shndx == SHN_ABS | |
943 || sym->st_shndx == SHN_COMMON) | |
944 continue; | |
945 | |
946 PATCH_INDEX (sym->st_shndx); | |
947 } | |
948 } | |
949 } | |
950 | |
951 /* Close the files and make the new file executable. */ | |
952 | |
953 if (close (old_file)) | |
954 fatal ("Can't close (%s): errno %d\n", old_name, errno); | |
955 | |
956 if (close (new_file)) | |
957 fatal ("Can't close (%s): errno %d\n", new_name, errno); | |
958 | |
959 if (stat (new_name, &stat_buf) == -1) | |
960 fatal ("Can't stat (%s): errno %d\n", new_name, errno); | |
961 | |
962 n = umask (777); | |
963 umask (n); | |
964 stat_buf.st_mode |= 0111 & ~n; | |
965 if (chmod (new_name, stat_buf.st_mode) == -1) | |
966 fatal ("Can't chmod (%s): errno %d\n", new_name, errno); | |
967 } |