Mercurial > hg > xemacs-beta
comparison src/event-Xt.c @ 0:376386a54a3c r19-14
Import from CVS: tag r19-14
author | cvs |
---|---|
date | Mon, 13 Aug 2007 08:45:50 +0200 |
parents | |
children | ac2d302a0011 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:376386a54a3c |
---|---|
1 /* The event_stream interface for X11 with Xt, and/or tty frames. | |
2 Copyright (C) 1991, 1992, 1993, 1994, 1995 Free Software Foundation, Inc. | |
3 Copyright (C) 1995 Sun Microsystems, Inc. | |
4 Copyright (C) 1996 Ben Wing. | |
5 | |
6 This file is part of XEmacs. | |
7 | |
8 XEmacs is free software; you can redistribute it and/or modify it | |
9 under the terms of the GNU General Public License as published by the | |
10 Free Software Foundation; either version 2, or (at your option) any | |
11 later version. | |
12 | |
13 XEmacs is distributed in the hope that it will be useful, but WITHOUT | |
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |
16 for more details. | |
17 | |
18 You should have received a copy of the GNU General Public License | |
19 along with XEmacs; see the file COPYING. If not, write to | |
20 the Free Software Foundation, Inc., 59 Temple Place - Suite 330, | |
21 Boston, MA 02111-1307, USA. */ | |
22 | |
23 /* Synched up with: Not in FSF. */ | |
24 | |
25 #include <config.h> | |
26 #include "lisp.h" | |
27 | |
28 #include "console-x.h" | |
29 #include "lwlib.h" | |
30 #include "EmacsFrame.h" | |
31 | |
32 #include "blocktype.h" | |
33 #include "buffer.h" | |
34 #include "commands.h" | |
35 #include "console.h" | |
36 #include "console-tty.h" | |
37 #include "events.h" | |
38 #include "frame.h" | |
39 #include "objects-x.h" | |
40 #include "process.h" | |
41 #include "redisplay.h" | |
42 | |
43 #include "systime.h" | |
44 #include "sysproc.h" /* for MAXDESC */ | |
45 | |
46 #include "xintrinsicp.h" /* CoreP.h needs this */ | |
47 #include <X11/CoreP.h> /* Numerous places access the fields of | |
48 a core widget directly. We could | |
49 use XtVaGetValues(), but ... */ | |
50 | |
51 static struct event_stream *Xt_event_stream; | |
52 | |
53 /* With the new event model, all events go through XtDispatchEvent() | |
54 and are picked up by an event handler that is added to each frame | |
55 widget. (This is how it's supposed to be.) In the old method, | |
56 Emacs sucks out events directly from XtNextEvent() and only | |
57 dispatches the events that it doesn't need to deal with. This | |
58 old way has lots of corresponding junk that is no longer | |
59 necessary: lwlib extensions, synthetic XAnyEvents, unnecessary | |
60 magic events, etc. */ | |
61 | |
62 /* The one and only one application context that Emacs uses. */ | |
63 XtAppContext Xt_app_con; | |
64 | |
65 /* Do we accept events sent by other clients? */ | |
66 int x_allow_sendevents; | |
67 | |
68 int modifier_keys_are_sticky; | |
69 | |
70 #ifdef DEBUG_XEMACS | |
71 int x_debug_events; | |
72 #endif | |
73 | |
74 static int process_events_occurred; | |
75 static int tty_events_occurred; | |
76 | |
77 /* Mask of bits indicating the descriptors that we wait for input on */ | |
78 extern SELECT_TYPE input_wait_mask, process_only_mask, tty_only_mask; | |
79 | |
80 static CONST String x_fallback_resources[] = | |
81 { | |
82 /* This file is automatically generated from the app-defaults file | |
83 in ../etc/Emacs.ad. These resources are consulted only if no | |
84 app-defaults file is found at all. | |
85 */ | |
86 #include "Emacs.ad.h" | |
87 0 | |
88 }; | |
89 | |
90 void emacs_Xt_mapping_action (Widget w, XEvent *event); | |
91 void debug_process_finalization (struct Lisp_Process *p); | |
92 Lisp_Object dequeue_Xt_dispatch_event (void); | |
93 void emacs_Xt_event_handler (Widget wid, XtPointer closure, XEvent *event, | |
94 Boolean *continue_to_dispatch); | |
95 | |
96 #ifdef EPOCH | |
97 void dispatch_epoch_event (struct frame *f, XEvent *event, Lisp_Object type); | |
98 #endif | |
99 | |
100 static int last_quit_check_signal_tick_count; | |
101 | |
102 Lisp_Object Qkey_mapping; | |
103 | |
104 | |
105 /************************************************************************/ | |
106 /* keymap handling */ | |
107 /************************************************************************/ | |
108 | |
109 /* X bogusly doesn't define the interpretations of any bits besides | |
110 ModControl, ModShift, and ModLock; so the Interclient Communication | |
111 Conventions Manual says that we have to bend over backwards to figure | |
112 out what the other modifier bits mean. According to ICCCM: | |
113 | |
114 - Any keycode which is assigned ModControl is a "control" key. | |
115 | |
116 - Any modifier bit which is assigned to a keycode which generates Meta_L | |
117 or Meta_R is the modifier bit meaning "meta". Likewise for Super, Hyper, | |
118 etc. | |
119 | |
120 - Any keypress event which contains ModControl in its state should be | |
121 interpreted as a "control" character. | |
122 | |
123 - Any keypress event which contains a modifier bit in its state which is | |
124 generated by a keycode whose corresponding keysym is Meta_L or Meta_R | |
125 should be interpreted as a "meta" character. Likewise for Super, Hyper, | |
126 etc. | |
127 | |
128 - It is illegal for a keysym to be associated with more than one modifier | |
129 bit. | |
130 | |
131 This means that the only thing that emacs can reasonably interpret as a | |
132 "meta" key is a key whose keysym is Meta_L or Meta_R, and which generates | |
133 one of the modifier bits Mod1-Mod5. | |
134 | |
135 Unfortunately, many keyboards don't have Meta keys in their default | |
136 configuration. So, if there are no Meta keys, but there are "Alt" keys, | |
137 emacs will interpret Alt as Meta. If there are both Meta and Alt keys, | |
138 then the Meta keys mean "Meta", and the Alt keys mean "Alt" (it used to | |
139 mean "Symbol," but that just confused the hell out of way too many people). | |
140 | |
141 This works with the default configurations of the 19 keyboard-types I've | |
142 checked. | |
143 | |
144 Emacs detects keyboard configurations which violate the above rules, and | |
145 prints an error message on the standard-error-output. (Perhaps it should | |
146 use a pop-up-window instead.) | |
147 */ | |
148 | |
149 static void | |
150 x_reset_key_mapping (struct device *d) | |
151 { | |
152 Display *display = DEVICE_X_DISPLAY (d); | |
153 struct x_device *xd = DEVICE_X_DATA (d); | |
154 int max_code; | |
155 if (xd->x_keysym_map) | |
156 XFree ((char *) xd->x_keysym_map); | |
157 XDisplayKeycodes (display, &xd->x_keysym_map_min_code, | |
158 &max_code); | |
159 xd->x_keysym_map = | |
160 XGetKeyboardMapping (display, xd->x_keysym_map_min_code, | |
161 max_code - xd->x_keysym_map_min_code + 1, | |
162 &xd->x_keysym_map_keysyms_per_code); | |
163 } | |
164 | |
165 static CONST char * | |
166 index_to_name (int indice) | |
167 { | |
168 return ((indice == ShiftMapIndex ? "ModShift" | |
169 : (indice == LockMapIndex ? "ModLock" | |
170 : (indice == ControlMapIndex ? "ModControl" | |
171 : (indice == Mod1MapIndex ? "Mod1" | |
172 : (indice == Mod2MapIndex ? "Mod2" | |
173 : (indice == Mod3MapIndex ? "Mod3" | |
174 : (indice == Mod4MapIndex ? "Mod4" | |
175 : (indice == Mod5MapIndex ? "Mod5" | |
176 : "???"))))))))); | |
177 } | |
178 | |
179 /* Boy, I really wish C had local functions... */ | |
180 struct c_doesnt_have_closures /* #### not yet used */ | |
181 { | |
182 int warned_about_overlapping_modifiers; | |
183 int warned_about_predefined_modifiers; | |
184 int warned_about_duplicate_modifiers; | |
185 int meta_bit; | |
186 int hyper_bit; | |
187 int super_bit; | |
188 int alt_bit; | |
189 int mode_bit; | |
190 }; | |
191 | |
192 static void | |
193 x_reset_modifier_mapping (struct device *d) | |
194 { | |
195 Display *display = DEVICE_X_DISPLAY (d); | |
196 struct x_device *xd = DEVICE_X_DATA (d); | |
197 int modifier_index, modifier_key, column, mkpm; | |
198 int warned_about_overlapping_modifiers = 0; | |
199 int warned_about_predefined_modifiers = 0; | |
200 int warned_about_duplicate_modifiers = 0; | |
201 int meta_bit = 0; | |
202 int hyper_bit = 0; | |
203 int super_bit = 0; | |
204 int alt_bit = 0; | |
205 int mode_bit = 0; | |
206 | |
207 xd->lock_interpretation = 0; | |
208 | |
209 if (xd->x_modifier_keymap) | |
210 XFreeModifiermap (xd->x_modifier_keymap); | |
211 | |
212 x_reset_key_mapping (d); | |
213 | |
214 xd->x_modifier_keymap = XGetModifierMapping (display); | |
215 | |
216 /* Boy, I really wish C had local functions... | |
217 */ | |
218 | |
219 /* The call to warn_when_safe must be on the same line as the string or | |
220 make-msgfile won't pick it up properly (the newline doesn't confuse | |
221 it, but the backslash does). */ | |
222 | |
223 #define modwarn(name,old,other) \ | |
224 warn_when_safe (Qkey_mapping, Qwarning, "XEmacs: %s (0x%x) generates %s, which is generated by %s.", \ | |
225 name, code, index_to_name (old), other), \ | |
226 warned_about_overlapping_modifiers = 1 | |
227 | |
228 #define modbarf(name,other) \ | |
229 warn_when_safe (Qkey_mapping, Qwarning, "XEmacs: %s (0x%x) generates %s, which is nonsensical.", \ | |
230 name, code, other), \ | |
231 warned_about_predefined_modifiers = 1 | |
232 | |
233 #define check_modifier(name,mask) \ | |
234 if ((1<<modifier_index) != mask) \ | |
235 warn_when_safe (Qkey_mapping, Qwarning, "XEmacs: %s (0x%x) generates %s, which is nonsensical.", \ | |
236 name, code, index_to_name (modifier_index)), \ | |
237 warned_about_predefined_modifiers = 1 | |
238 | |
239 #define store_modifier(name,old) \ | |
240 if (old && old != modifier_index) \ | |
241 warn_when_safe (Qkey_mapping, Qwarning, "XEmacs: %s (0x%x) generates both %s and %s, which is nonsensical.",\ | |
242 name, code, index_to_name (old), \ | |
243 index_to_name (modifier_index)), \ | |
244 warned_about_duplicate_modifiers = 1; \ | |
245 if (modifier_index == ShiftMapIndex) modbarf (name,"ModShift"); \ | |
246 else if (modifier_index == LockMapIndex) modbarf (name,"ModLock"); \ | |
247 else if (modifier_index == ControlMapIndex) modbarf (name,"ModControl"); \ | |
248 else if (sym == XK_Mode_switch) \ | |
249 mode_bit = modifier_index; /* Mode_switch is special, see below... */ \ | |
250 else if (modifier_index == meta_bit && old != meta_bit) \ | |
251 modwarn (name, meta_bit, "Meta"); \ | |
252 else if (modifier_index == super_bit && old != super_bit) \ | |
253 modwarn (name, super_bit, "Super"); \ | |
254 else if (modifier_index == hyper_bit && old != hyper_bit) \ | |
255 modwarn (name, hyper_bit, "Hyper"); \ | |
256 else if (modifier_index == alt_bit && old != alt_bit) \ | |
257 modwarn (name, alt_bit, "Alt"); \ | |
258 else \ | |
259 old = modifier_index; | |
260 | |
261 mkpm = xd->x_modifier_keymap->max_keypermod; | |
262 for (modifier_index = 0; modifier_index < 8; modifier_index++) | |
263 for (modifier_key = 0; modifier_key < mkpm; modifier_key++) { | |
264 KeySym last_sym = 0; | |
265 for (column = 0; column < 4; column += 2) { | |
266 KeyCode code = xd->x_modifier_keymap->modifiermap[modifier_index * mkpm | |
267 + modifier_key]; | |
268 KeySym sym = (code ? XKeycodeToKeysym (display, code, column) : 0); | |
269 if (sym == last_sym) continue; | |
270 last_sym = sym; | |
271 switch (sym) { | |
272 case XK_Mode_switch:store_modifier ("Mode_switch", mode_bit); break; | |
273 case XK_Meta_L: store_modifier ("Meta_L", meta_bit); break; | |
274 case XK_Meta_R: store_modifier ("Meta_R", meta_bit); break; | |
275 case XK_Super_L: store_modifier ("Super_L", super_bit); break; | |
276 case XK_Super_R: store_modifier ("Super_R", super_bit); break; | |
277 case XK_Hyper_L: store_modifier ("Hyper_L", hyper_bit); break; | |
278 case XK_Hyper_R: store_modifier ("Hyper_R", hyper_bit); break; | |
279 case XK_Alt_L: store_modifier ("Alt_L", alt_bit); break; | |
280 case XK_Alt_R: store_modifier ("Alt_R", alt_bit); break; | |
281 case XK_Control_L: check_modifier ("Control_L", ControlMask); break; | |
282 case XK_Control_R: check_modifier ("Control_R", ControlMask); break; | |
283 case XK_Shift_L: check_modifier ("Shift_L", ShiftMask); break; | |
284 case XK_Shift_R: check_modifier ("Shift_R", ShiftMask); break; | |
285 case XK_Shift_Lock: check_modifier ("Shift_Lock", LockMask); | |
286 xd->lock_interpretation = XK_Shift_Lock; break; | |
287 case XK_Caps_Lock: check_modifier ("Caps_Lock", LockMask); | |
288 xd->lock_interpretation = XK_Caps_Lock; break; | |
289 | |
290 /* It probably doesn't make any sense for a modifier bit to be | |
291 assigned to a key that is not one of the above, but OpenWindows | |
292 assigns modifier bits to a couple of random function keys for | |
293 no reason that I can discern, so printing a warning here would | |
294 be annoying. | |
295 */ | |
296 } | |
297 } | |
298 } | |
299 #undef store_modifier | |
300 #undef check_modifier | |
301 #undef modwarn | |
302 #undef modbarf | |
303 | |
304 /* If there was no Meta key, then try using the Alt key instead. | |
305 If there is both a Meta key and an Alt key, then the Alt key | |
306 is not disturbed and remains an Alt key. | |
307 */ | |
308 if (! meta_bit && alt_bit) | |
309 meta_bit = alt_bit, alt_bit = 0; | |
310 | |
311 /* mode_bit overrides everything, since it's processed down inside of | |
312 XLookupString() instead of by us. If Meta and Mode_switch both | |
313 generate the same modifier bit (which is an error), then we don't | |
314 interpret that bit as Meta, because we can't make XLookupString() | |
315 not interpret it as Mode_switch; and interpreting it as both would | |
316 be totally wrong. | |
317 */ | |
318 if (mode_bit) | |
319 { | |
320 CONST char *warn = 0; | |
321 if (mode_bit == meta_bit) warn = "Meta", meta_bit = 0; | |
322 else if (mode_bit == hyper_bit) warn = "Hyper", hyper_bit = 0; | |
323 else if (mode_bit == super_bit) warn = "Super", super_bit = 0; | |
324 else if (mode_bit == alt_bit) warn = "Alt", alt_bit = 0; | |
325 if (warn) | |
326 { | |
327 warn_when_safe | |
328 (Qkey_mapping, Qwarning, | |
329 "XEmacs: %s is being used for both Mode_switch and %s.", | |
330 index_to_name (mode_bit), warn), | |
331 warned_about_overlapping_modifiers = 1; | |
332 } | |
333 } | |
334 #undef index_to_name | |
335 | |
336 xd->MetaMask = (meta_bit ? (1 << meta_bit) : 0); | |
337 xd->HyperMask = (hyper_bit ? (1 << hyper_bit) : 0); | |
338 xd->SuperMask = (super_bit ? (1 << super_bit) : 0); | |
339 xd->AltMask = (alt_bit ? (1 << alt_bit) : 0); | |
340 xd->ModeMask = (mode_bit ? (1 << mode_bit) : 0); /* unused */ | |
341 | |
342 | |
343 if (warned_about_overlapping_modifiers) | |
344 warn_when_safe (Qkey_mapping, Qwarning, "\n" | |
345 " Two distinct modifier keys (such as Meta and Hyper) cannot generate\n" | |
346 " the same modifier bit, because Emacs won't be able to tell which\n" | |
347 " modifier was actually held down when some other key is pressed. It\n" | |
348 " won't be able to tell Meta-x and Hyper-x apart, for example. Change\n" | |
349 " one of these keys to use some other modifier bit. If you intend for\n" | |
350 " these keys to have the same behavior, then change them to have the\n" | |
351 " same keysym as well as the same modifier bit."); | |
352 | |
353 if (warned_about_predefined_modifiers) | |
354 warn_when_safe (Qkey_mapping, Qwarning, "\n" | |
355 " The semantics of the modifier bits ModShift, ModLock, and ModControl\n" | |
356 " are predefined. It does not make sense to assign ModControl to any\n" | |
357 " keysym other than Control_L or Control_R, or to assign any modifier\n" | |
358 " bits to the \"control\" keysyms other than ModControl. You can't\n" | |
359 " turn a \"control\" key into a \"meta\" key (or vice versa) by simply\n" | |
360 " assigning the key a different modifier bit. You must also make that\n" | |
361 " key generate an appropriate keysym (Control_L, Meta_L, etc)."); | |
362 | |
363 /* Don\'t need to say anything more for warned_about_duplicate_modifiers. */ | |
364 | |
365 if (warned_about_overlapping_modifiers || warned_about_predefined_modifiers) | |
366 warn_when_safe (Qkey_mapping, Qwarning, "\n" | |
367 " The meanings of the modifier bits Mod1 through Mod5 are determined\n" | |
368 " by the keysyms used to control those bits. Mod1 does NOT always\n" | |
369 " mean Meta, although some non-ICCCM-compliant programs assume that."); | |
370 } | |
371 | |
372 void | |
373 x_init_modifier_mapping (struct device *d) | |
374 { | |
375 DEVICE_X_DATA (d)->x_keysym_map = 0; | |
376 DEVICE_X_DATA (d)->x_modifier_keymap = 0; | |
377 x_reset_modifier_mapping (d); | |
378 } | |
379 | |
380 static int | |
381 x_key_is_modifier_p (KeyCode keycode, struct device *d) | |
382 { | |
383 struct x_device *xd = DEVICE_X_DATA (d); | |
384 KeySym *syms = &xd->x_keysym_map [(keycode - xd->x_keysym_map_min_code) * | |
385 xd->x_keysym_map_keysyms_per_code]; | |
386 int i; | |
387 for (i = 0; i < xd->x_keysym_map_keysyms_per_code; i++) | |
388 if (IsModifierKey (syms [i]) || | |
389 syms [i] == XK_Mode_switch) /* why doesn't IsModifierKey count this? */ | |
390 return 1; | |
391 return 0; | |
392 } | |
393 | |
394 /* key-handling code is always ugly. It just ends up working out | |
395 that way. | |
396 | |
397 Here are some pointers: | |
398 | |
399 -- DOWN_MASK indicates which modifiers should be treated as "down" | |
400 when the corresponding upstroke happens. It gets reset for | |
401 a particular modifier when that modifier goes up, and reset | |
402 for all modifiers when a non-modifier key is pressed. Example: | |
403 | |
404 I press Control-A-Shift and then release Control-A-Shift. | |
405 I want the Shift key to be sticky but not the Control key. | |
406 | |
407 -- LAST_DOWNKEY and RELEASE_TIME are used to keep track of | |
408 auto-repeat -- see below. | |
409 | |
410 -- If a modifier key is sticky, I can unstick it by pressing | |
411 the modifier key again. */ | |
412 | |
413 static void | |
414 x_handle_sticky_modifiers (XEvent *ev, struct device *d) | |
415 { | |
416 struct x_device *xd = DEVICE_X_DATA (d); | |
417 KeyCode keycode = ev->xkey.keycode; | |
418 int type = ev->xany.type; | |
419 int is_modifier = | |
420 (type == KeyPress || type == KeyRelease) && | |
421 x_key_is_modifier_p (keycode, d); | |
422 | |
423 if (!modifier_keys_are_sticky) | |
424 return; | |
425 | |
426 if (!is_modifier) | |
427 { | |
428 if (type == KeyPress && !xd->last_downkey) | |
429 xd->last_downkey = keycode; | |
430 else if (type == ButtonPress || | |
431 (type == KeyPress && xd->last_downkey && | |
432 (keycode != xd->last_downkey || | |
433 ev->xkey.time != xd->release_time))) | |
434 { | |
435 xd->need_to_add_mask = 0; | |
436 xd->last_downkey = 0; | |
437 } | |
438 if (type == KeyPress) | |
439 xd->release_time = 0; | |
440 if (type == KeyPress || type == ButtonPress) | |
441 xd->down_mask = 0; | |
442 | |
443 ev->xkey.state |= xd->need_to_add_mask; | |
444 | |
445 if (type == KeyRelease && keycode == xd->last_downkey) | |
446 /* If I hold press-and-release the Control key and then press | |
447 and hold down the right arrow, I want it to auto-repeat | |
448 Control-Right. On the other hand, if I do the same but | |
449 manually press the Right arrow a bunch of times, I want | |
450 to see one Control-Right and then a bunch of Rights. | |
451 This means that we need to distinguish between an | |
452 auto-repeated key and a key pressed and released a bunch | |
453 of times. | |
454 | |
455 Naturally, the designers of the X spec didn't see fit | |
456 to provide an obvious way to distinguish these cases. | |
457 So we assume that if the release and the next press | |
458 occur at the same time, the key was actually auto- | |
459 repeated. Under Open-Windows, at least, this works. | |
460 */ | |
461 xd->release_time = ev->xkey.time; | |
462 } | |
463 else | |
464 { | |
465 KeySym *syms = &xd->x_keysym_map [(keycode - xd->x_keysym_map_min_code) * | |
466 xd->x_keysym_map_keysyms_per_code]; | |
467 int i; | |
468 | |
469 #define FROB(mask) \ | |
470 do { \ | |
471 if (type == KeyPress) \ | |
472 { \ | |
473 /* If modifier key is already sticky, \ | |
474 then unstick it. Note that we do \ | |
475 not test down_mask to deal with the \ | |
476 unlikely but possible case that the \ | |
477 modifier key auto-repeats. */ \ | |
478 if (xd->need_to_add_mask & mask) \ | |
479 { \ | |
480 xd->need_to_add_mask &= ~mask; \ | |
481 xd->down_mask &= ~mask; \ | |
482 } \ | |
483 else \ | |
484 xd->down_mask |= mask; \ | |
485 } \ | |
486 else \ | |
487 { \ | |
488 if (xd->down_mask & mask) \ | |
489 { \ | |
490 xd->down_mask &= ~mask; \ | |
491 xd->need_to_add_mask |= mask; \ | |
492 } \ | |
493 } \ | |
494 } while (0) | |
495 | |
496 /* If a non-modifier key was pressed in the middle of a bunch | |
497 of modifiers, then it unsticks all the modifiers that were | |
498 previously pressed. We cannot unstick the modifiers until | |
499 now because we want to check for auto-repeat of the | |
500 non-modifier key. */ | |
501 | |
502 if (xd->last_downkey) | |
503 { | |
504 xd->last_downkey = 0; | |
505 xd->need_to_add_mask = 0; | |
506 } | |
507 | |
508 for (i = 0; i < xd->x_keysym_map_keysyms_per_code; i++) | |
509 { | |
510 if (syms[i] == XK_Control_L || syms[i] == XK_Control_R) | |
511 FROB (ControlMask); | |
512 if (syms[i] == XK_Shift_L || syms[i] == XK_Shift_R) | |
513 FROB (ShiftMask); | |
514 if (syms[i] == XK_Meta_L || syms[i] == XK_Meta_R) | |
515 FROB (xd->MetaMask); | |
516 if (syms[i] == XK_Super_L || syms[i] == XK_Super_R) | |
517 FROB (xd->SuperMask); | |
518 if (syms[i] == XK_Hyper_L || syms[i] == XK_Hyper_R) | |
519 FROB (xd->HyperMask); | |
520 if (syms[i] == XK_Alt_L || syms[i] == XK_Alt_R) | |
521 FROB (xd->AltMask); | |
522 } | |
523 } | |
524 #undef FROB | |
525 } | |
526 | |
527 static void | |
528 clear_sticky_modifiers (struct device *d) | |
529 { | |
530 struct x_device *xd = DEVICE_X_DATA (d); | |
531 | |
532 xd->need_to_add_mask = 0; | |
533 xd->last_downkey = 0; | |
534 xd->release_time = 0; | |
535 xd->down_mask = 0; | |
536 } | |
537 | |
538 static int | |
539 keysym_obeys_caps_lock_p (KeySym sym, struct device *d) | |
540 { | |
541 struct x_device *xd = DEVICE_X_DATA (d); | |
542 /* Eeeeevil hack. Don't apply caps-lock to things that aren't alphabetic | |
543 characters, where "alphabetic" means something more than simply A-Z. | |
544 That is, if caps-lock is down, typing ESC doesn't produce Shift-ESC. | |
545 But if shift-lock is down, then it does. | |
546 */ | |
547 if (xd->lock_interpretation == XK_Shift_Lock) | |
548 return 1; | |
549 if (((sym >= XK_A) && (sym <= XK_Z)) || | |
550 ((sym >= XK_a) && (sym <= XK_z)) || | |
551 ((sym >= XK_Agrave) && (sym <= XK_Odiaeresis)) || | |
552 ((sym >= XK_agrave) && (sym <= XK_odiaeresis)) || | |
553 ((sym >= XK_Ooblique) && (sym <= XK_Thorn)) || | |
554 ((sym >= XK_oslash) && (sym <= XK_thorn))) | |
555 return 1; | |
556 else | |
557 return 0; | |
558 } | |
559 | |
560 /* called from EmacsFrame.c (actually from Xt itself) when a | |
561 MappingNotify event is received. For non-obvious reasons, | |
562 our event handler does not see these events, so we need a | |
563 special translation. */ | |
564 void | |
565 emacs_Xt_mapping_action (Widget w, XEvent* event) | |
566 { | |
567 struct device *d = get_device_from_display (event->xany.display); | |
568 #if 0 | |
569 /* nyet. Now this is handled by Xt. */ | |
570 XRefreshKeyboardMapping (&event->xmapping); | |
571 #endif | |
572 /* xmodmap generates about a billion MappingKeyboard events, followed | |
573 by a single MappingModifier event, so it might be worthwhile to | |
574 take extra MappingKeyboard events out of the queue before requesting | |
575 the current keymap from the server. | |
576 */ | |
577 if (event->xmapping.request == MappingKeyboard) | |
578 x_reset_key_mapping (d); | |
579 else if (event->xmapping.request == MappingModifier) | |
580 x_reset_modifier_mapping (d); | |
581 } | |
582 | |
583 | |
584 /************************************************************************/ | |
585 /* X to Emacs event conversion */ | |
586 /************************************************************************/ | |
587 | |
588 #if (defined(sun) || defined(__sun)) && defined(__GNUC__) | |
589 # define SUNOS_GCC_L0_BUG | |
590 #endif | |
591 | |
592 #ifdef SUNOS_GCC_L0_BUG | |
593 static void | |
594 x_to_emacs_keysym_sunos_bug (Lisp_Object *return_value_sunos_bug, /* #### */ | |
595 XEvent *event, int simple_p) | |
596 #else /* !SUNOS_GCC_L0_BUG */ | |
597 static Lisp_Object | |
598 x_to_emacs_keysym (XEvent *event, int simple_p) | |
599 #endif /* !SUNOS_GCC_L0_BUG */ | |
600 /* simple_p means don't try too hard (ASCII only) */ | |
601 { | |
602 char *name; | |
603 KeySym keysym = 0; | |
604 struct device *d = get_device_from_display (event->xany.display); | |
605 /* Apparently it's necessary to specify a dummy here (rather than | |
606 passing in 0) to avoid crashes on German IRIX */ | |
607 char dummy[256]; | |
608 | |
609 #ifdef SUNOS_GCC_L0_BUG | |
610 # define return(lose) \ | |
611 do {*return_value_sunos_bug = (lose); goto return_it; } while (0) | |
612 #endif | |
613 | |
614 /* ### FIX this by replacing with calls to XmbLookupString. | |
615 XLookupString should never be called. --mrb */ | |
616 XLookupString (&event->xkey, dummy, 200, &keysym, 0); | |
617 | |
618 /* &DEVICE_X_X_COMPOSE_STATUS (d)); */ | |
619 | |
620 if (keysym >= XK_exclam && keysym <= XK_asciitilde) | |
621 /* We must assume that the X keysym numbers for the ASCII graphic | |
622 characters are the same as their ASCII codes. */ | |
623 return (make_char (keysym)); | |
624 | |
625 switch (keysym) | |
626 { | |
627 /* These would be handled correctly by the default case, but by | |
628 special-casing them here we don't garbage a string or call intern(). | |
629 */ | |
630 case XK_BackSpace: return (QKbackspace); | |
631 case XK_Tab: return (QKtab); | |
632 case XK_Linefeed: return (QKlinefeed); | |
633 case XK_Return: return (QKreturn); | |
634 case XK_Escape: return (QKescape); | |
635 case XK_space: return (QKspace); | |
636 case XK_Delete: return (QKdelete); | |
637 case 0: return (Qnil); | |
638 /* This kludge prevents bogus Xlib compose conversions. | |
639 Don't ask why. The following case must be removed when we | |
640 switch to using XmbLookupString */ | |
641 case XK_Multi_key: XLookupString (&event->xkey, dummy, 200, &keysym, 0); | |
642 /* Fallthrough!! */ | |
643 default: | |
644 if (simple_p) return (Qnil); | |
645 /* #### without return_value_sunos_bug, %l0 (GCC struct return pointer) | |
646 * #### gets roached (top 8 bits cleared) around this call. | |
647 */ | |
648 /* !!#### not Mule-ized */ | |
649 name = XKeysymToString (keysym); | |
650 if (!name || !name[0]) /* this shouldn't happen... */ | |
651 { | |
652 char buf [255]; | |
653 sprintf (buf, "unknown_keysym_0x%X", (int) keysym); | |
654 return (KEYSYM (buf)); | |
655 } | |
656 /* If it's got a one-character name, that's good enough. */ | |
657 if (!name[1]) return (make_char (name[0])); | |
658 | |
659 /* If it's in the "Keyboard" character set, downcase it. | |
660 The case of those keysyms is too totally random for us to | |
661 force anyone to remember them. | |
662 The case of the other character sets is significant, however. | |
663 */ | |
664 if ((((unsigned int) keysym) & (~0xFF)) == ((unsigned int) 0xFF00)) | |
665 { | |
666 char buf [255]; | |
667 char *s1, *s2; | |
668 for (s1 = name, s2 = buf; *s1; s1++, s2++) | |
669 *s2 = tolower (* (unsigned char *) s1); | |
670 *s2 = 0; | |
671 return (KEYSYM (buf)); | |
672 } | |
673 return (KEYSYM (name)); | |
674 } | |
675 #ifdef SUNOS_GCC_L0_BUG | |
676 # undef return | |
677 return_it: | |
678 return; | |
679 #endif | |
680 } | |
681 | |
682 #ifdef SUNOS_GCC_L0_BUG | |
683 /* #### */ | |
684 static Lisp_Object | |
685 x_to_emacs_keysym (XEvent *event, int simple_p) | |
686 { | |
687 Lisp_Object return_value_sunos_bug; | |
688 x_to_emacs_keysym_sunos_bug (&return_value_sunos_bug, event, simple_p); | |
689 return (return_value_sunos_bug); | |
690 } | |
691 #endif | |
692 | |
693 static void | |
694 set_last_server_timestamp (struct device *d, XEvent *x_event) | |
695 { | |
696 switch (x_event->xany.type) | |
697 { | |
698 case KeyPress: | |
699 case KeyRelease: | |
700 DEVICE_X_LAST_SERVER_TIMESTAMP (d) = x_event->xkey.time; | |
701 break; | |
702 | |
703 case ButtonPress: | |
704 case ButtonRelease: | |
705 DEVICE_X_LAST_SERVER_TIMESTAMP (d) = x_event->xbutton.time; | |
706 break; | |
707 | |
708 case MotionNotify: | |
709 DEVICE_X_LAST_SERVER_TIMESTAMP (d) = x_event->xmotion.time; | |
710 break; | |
711 | |
712 case EnterNotify: | |
713 case LeaveNotify: | |
714 DEVICE_X_LAST_SERVER_TIMESTAMP (d) = x_event->xcrossing.time; | |
715 break; | |
716 | |
717 case PropertyNotify: | |
718 DEVICE_X_LAST_SERVER_TIMESTAMP (d) = x_event->xproperty.time; | |
719 break; | |
720 | |
721 case SelectionClear: | |
722 DEVICE_X_LAST_SERVER_TIMESTAMP (d) = x_event->xselectionclear.time; | |
723 break; | |
724 | |
725 case SelectionRequest: | |
726 DEVICE_X_LAST_SERVER_TIMESTAMP (d) = x_event->xselectionrequest.time; | |
727 break; | |
728 | |
729 case SelectionNotify: | |
730 DEVICE_X_LAST_SERVER_TIMESTAMP (d) = x_event->xselection.time; | |
731 break; | |
732 } | |
733 } | |
734 | |
735 static int | |
736 x_event_to_emacs_event (XEvent *x_event, struct Lisp_Event *emacs_event) | |
737 { | |
738 Display *display = x_event->xany.display; | |
739 struct device *d = get_device_from_display (display); | |
740 struct x_device *xd = DEVICE_X_DATA (d); | |
741 | |
742 set_last_server_timestamp (d, x_event); | |
743 | |
744 switch (x_event->xany.type) | |
745 { | |
746 case KeyRelease: | |
747 x_handle_sticky_modifiers (x_event, d); | |
748 return 0; | |
749 | |
750 case KeyPress: | |
751 case ButtonPress: | |
752 case ButtonRelease: | |
753 { | |
754 unsigned int modifiers = 0; | |
755 int shift_p; | |
756 int lock_p; | |
757 #ifdef EXTERNAL_WIDGET | |
758 struct frame *f = x_any_window_to_frame (d, x_event->xany.window); | |
759 #endif | |
760 | |
761 /* If this is a synthetic KeyPress or Button event, and the user | |
762 has expressed a disinterest in this security hole, then drop | |
763 it on the floor. | |
764 */ | |
765 if (((x_event->xany.type == KeyPress) | |
766 ? x_event->xkey.send_event | |
767 : x_event->xbutton.send_event) | |
768 #ifdef EXTERNAL_WIDGET | |
769 /* ben: events get sent to an ExternalShell using XSendEvent. | |
770 This is not a perfect solution. */ | |
771 && !FRAME_X_EXTERNAL_WINDOW_P (f) | |
772 #endif | |
773 && !x_allow_sendevents) | |
774 return 0; | |
775 | |
776 x_handle_sticky_modifiers (x_event, d); | |
777 | |
778 shift_p = x_event->xkey.state & ShiftMask; | |
779 lock_p = x_event->xkey.state & LockMask; | |
780 | |
781 if (x_event->xany.type == KeyPress) | |
782 DEVICE_X_GLOBAL_MOUSE_TIMESTAMP (d) = x_event->xkey.time; | |
783 else | |
784 DEVICE_X_GLOBAL_MOUSE_TIMESTAMP (d) = x_event->xbutton.time; | |
785 | |
786 /* Ignore the caps-lock key w.r.t. mouse presses and releases. */ | |
787 if (x_event->xany.type != KeyPress) | |
788 lock_p = 0; | |
789 | |
790 if (x_event->xkey.state & ControlMask) modifiers |= MOD_CONTROL; | |
791 if (x_event->xkey.state & xd->MetaMask) modifiers |= MOD_META; | |
792 if (x_event->xkey.state & xd->SuperMask) modifiers |= MOD_SUPER; | |
793 if (x_event->xkey.state & xd->HyperMask) modifiers |= MOD_HYPER; | |
794 if (x_event->xkey.state & xd->AltMask) modifiers |= MOD_ALT; | |
795 | |
796 /* Ignore the caps-lock key if any other modifiers are down; this is | |
797 so that Caps doesn't turn C-x into C-X, which would suck. */ | |
798 if (modifiers) | |
799 { | |
800 x_event->xkey.state &= (~LockMask); | |
801 lock_p = 0; | |
802 } | |
803 | |
804 if (shift_p || lock_p) | |
805 modifiers |= MOD_SHIFT; | |
806 | |
807 DEVICE_X_MOUSE_TIMESTAMP (d) = DEVICE_X_GLOBAL_MOUSE_TIMESTAMP (d); | |
808 | |
809 switch (x_event->xany.type) | |
810 { | |
811 case KeyPress: | |
812 { | |
813 Lisp_Object keysym; | |
814 KeyCode keycode = x_event->xkey.keycode; | |
815 | |
816 if (x_key_is_modifier_p (keycode, d)) /* it's a modifier key */ | |
817 return 0; | |
818 | |
819 /* This used to compute the frame from the given X window | |
820 and store it here, but we really don't care about the | |
821 frame. */ | |
822 emacs_event->channel = DEVICE_CONSOLE (d); | |
823 keysym = x_to_emacs_keysym (x_event, 0); | |
824 | |
825 /* If the emacs keysym is nil, then that means that the | |
826 X keysym was NoSymbol, which probably means that | |
827 we're in the midst of reading a Multi_key sequence, | |
828 or a "dead" key prefix. Ignore it. */ | |
829 if (NILP (keysym)) | |
830 return 0; | |
831 | |
832 /* More caps-lock garbage: caps-lock should *only* add | |
833 the shift modifier to two-case keys (that is, A-Z and | |
834 related characters). So at this point (after looking | |
835 up the keysym) if the keysym isn't a dual-case | |
836 alphabetic, and if the caps lock key was down but the | |
837 shift key wasn't, then turn off the shift modifier. | |
838 Gag barf retch. */ | |
839 /* #### type lossage: assuming equivalence of emacs and | |
840 X keysyms */ | |
841 /* !!#### maybe fix for Mule */ | |
842 if (! (CHAR_OR_CHAR_INTP (keysym) | |
843 && keysym_obeys_caps_lock_p | |
844 ((KeySym) XCHAR_OR_CHAR_INT (keysym), d)) | |
845 && lock_p | |
846 && !shift_p) | |
847 modifiers &= (~MOD_SHIFT); | |
848 | |
849 /* If this key contains two distinct keysyms, that is, | |
850 "shift" generates a different keysym than the | |
851 non-shifted key, then don't apply the shift modifier | |
852 bit: it's implicit. Otherwise, if there would be no | |
853 other way to tell the difference between the shifted | |
854 and unshifted version of this key, apply the shift | |
855 bit. Non-graphics, like Backspace and F1 get the | |
856 shift bit in the modifiers slot. Neither the | |
857 characters "a", "A", "2", nor "@" normally have the | |
858 shift bit set. However, "F1" normally does. */ | |
859 if (modifiers & MOD_SHIFT) | |
860 { | |
861 KeySym top, bot; | |
862 if (x_event->xkey.state & xd->ModeMask) | |
863 bot = XLookupKeysym (&x_event->xkey, 2), | |
864 top = XLookupKeysym (&x_event->xkey, 3); | |
865 else | |
866 bot = XLookupKeysym (&x_event->xkey, 0), | |
867 top = XLookupKeysym (&x_event->xkey, 1); | |
868 if (top && bot && top != bot) | |
869 modifiers &= ~MOD_SHIFT; | |
870 } | |
871 emacs_event->event_type = key_press_event; | |
872 emacs_event->timestamp = x_event->xkey.time; | |
873 emacs_event->event.key.modifiers = modifiers; | |
874 emacs_event->event.key.keysym = keysym; | |
875 break; | |
876 } | |
877 case ButtonPress: | |
878 case ButtonRelease: | |
879 { | |
880 struct frame *frame = | |
881 x_window_to_frame (d, x_event->xbutton.window); | |
882 if (! frame) | |
883 return 0; /* not for us */ | |
884 XSETFRAME (emacs_event->channel, frame); | |
885 } | |
886 | |
887 if (x_event->type == ButtonPress) | |
888 emacs_event->event_type = button_press_event; | |
889 else emacs_event->event_type = button_release_event; | |
890 emacs_event->timestamp = x_event->xbutton.time; | |
891 emacs_event->event.button.modifiers = modifiers; | |
892 emacs_event->event.button.button = x_event->xbutton.button; | |
893 emacs_event->event.button.x = x_event->xbutton.x; | |
894 emacs_event->event.button.y = x_event->xbutton.y; | |
895 break; | |
896 } | |
897 } | |
898 break; | |
899 | |
900 case MotionNotify: | |
901 { | |
902 Window w = x_event->xmotion.window; | |
903 struct frame *frame = x_window_to_frame (d, w); | |
904 XEvent event2; | |
905 | |
906 if (! frame) | |
907 return 0; /* not for us */ | |
908 | |
909 /* We use MotionHintMask, so we will get only one motion event | |
910 until the next time we call XQueryPointer or the user clicks | |
911 the mouse. So call XQueryPointer now (meaning that the event | |
912 will be in sync with the server just before Fnext_event() | |
913 returns). If the mouse is still in motion, then the server | |
914 will immediately generate exactly one more motion event, which | |
915 will be on the queue waiting for us next time around. | |
916 */ | |
917 event2 = *x_event; | |
918 if (XQueryPointer (x_event->xmotion.display, event2.xmotion.window, | |
919 &event2.xmotion.root, &event2.xmotion.subwindow, | |
920 &event2.xmotion.x_root, &event2.xmotion.y_root, | |
921 &event2.xmotion.x, &event2.xmotion.y, | |
922 &event2.xmotion.state)) | |
923 *x_event = event2; | |
924 | |
925 DEVICE_X_MOUSE_TIMESTAMP (d) = x_event->xmotion.time; | |
926 | |
927 XSETFRAME (emacs_event->channel, frame); | |
928 emacs_event->event_type = pointer_motion_event; | |
929 emacs_event->timestamp = x_event->xmotion.time; | |
930 emacs_event->event.motion.x = x_event->xmotion.x; | |
931 emacs_event->event.motion.y = x_event->xmotion.y; | |
932 { | |
933 unsigned int modifiers = 0; | |
934 if (x_event->xmotion.state & ShiftMask) modifiers |= MOD_SHIFT; | |
935 if (x_event->xmotion.state & ControlMask) modifiers |= MOD_CONTROL; | |
936 if (x_event->xmotion.state & xd->MetaMask) modifiers |= MOD_META; | |
937 if (x_event->xmotion.state & xd->SuperMask) modifiers |= MOD_SUPER; | |
938 if (x_event->xmotion.state & xd->HyperMask) modifiers |= MOD_HYPER; | |
939 if (x_event->xmotion.state & xd->AltMask) modifiers |= MOD_ALT; | |
940 /* Currently ignores Shift_Lock but probably shouldn't | |
941 (but it definitely should ignore Caps_Lock). */ | |
942 emacs_event->event.motion.modifiers = modifiers; | |
943 } | |
944 } | |
945 break; | |
946 | |
947 case ClientMessage: | |
948 /* Patch bogus TAKE_FOCUS messages from MWM; CurrentTime is passed as the | |
949 timestamp of the TAKE_FOCUS, which the ICCCM explicitly prohibits. */ | |
950 if (x_event->xclient.message_type == DEVICE_XATOM_WM_PROTOCOLS (d) | |
951 && x_event->xclient.data.l[0] == DEVICE_XATOM_WM_TAKE_FOCUS (d) | |
952 && x_event->xclient.data.l[1] == 0) | |
953 { | |
954 x_event->xclient.data.l[1] = DEVICE_X_LAST_SERVER_TIMESTAMP (d); | |
955 } | |
956 /* fall through */ | |
957 | |
958 default: /* it's a magic event */ | |
959 { | |
960 struct frame *f; | |
961 | |
962 switch (x_event->type) | |
963 { | |
964 /* Note: the number of cases could be reduced to two or | |
965 three by using xany.window, but it's perhaps clearer | |
966 and potentially more robust this way */ | |
967 case SelectionRequest: | |
968 f = x_window_to_frame (d, x_event->xselectionrequest.owner); | |
969 break; | |
970 | |
971 case SelectionClear: | |
972 f = x_window_to_frame (d, x_event->xselectionclear.window); | |
973 break; | |
974 | |
975 case SelectionNotify: | |
976 f = x_window_to_frame (d, x_event->xselection.requestor); | |
977 break; | |
978 | |
979 case PropertyNotify: | |
980 f = x_window_to_frame (d, x_event->xproperty.window); | |
981 break; | |
982 | |
983 case Expose: | |
984 case GraphicsExpose: | |
985 f = x_window_to_frame (d, x_event->xexpose.window); | |
986 break; | |
987 | |
988 case MapNotify: | |
989 case UnmapNotify: | |
990 f = x_any_window_to_frame (d, x_event->xmap.window); | |
991 break; | |
992 | |
993 case EnterNotify: | |
994 case LeaveNotify: | |
995 f = x_any_window_to_frame (d, x_event->xcrossing.window); | |
996 break; | |
997 | |
998 case FocusIn: | |
999 case FocusOut: | |
1000 /* It's curious that we're using x_any_window_to_frame() | |
1001 here. I don't know if this causes problems. */ | |
1002 f = x_any_window_to_frame (d, x_event->xfocus.window); | |
1003 | |
1004 case ClientMessage: | |
1005 f = x_any_window_to_frame (d, x_event->xclient.window); | |
1006 break; | |
1007 | |
1008 case MappingNotify: | |
1009 case VisibilityNotify: | |
1010 f = x_any_window_to_frame (d, x_event->xvisibility.window); | |
1011 break; | |
1012 | |
1013 case ConfigureNotify: | |
1014 f = x_any_window_to_frame (d, x_event->xconfigure.window); | |
1015 break; | |
1016 | |
1017 default: | |
1018 f = x_any_window_to_frame (d, x_event->xany.window); | |
1019 break; | |
1020 } | |
1021 | |
1022 if (!f) | |
1023 return 0; | |
1024 | |
1025 emacs_event->event_type = magic_event; | |
1026 XSETFRAME (emacs_event->channel, f); | |
1027 memcpy ((char *) &emacs_event->event.magic.underlying_x_event, | |
1028 (char *) x_event, | |
1029 sizeof (XEvent)); | |
1030 break; | |
1031 } | |
1032 } | |
1033 return 1; | |
1034 } | |
1035 | |
1036 | |
1037 /************************************************************************/ | |
1038 /* magic-event handling */ | |
1039 /************************************************************************/ | |
1040 | |
1041 static void | |
1042 handle_focus_event_1 (struct frame *f, int in_p) | |
1043 { | |
1044 /* On focus change, clear all memory of sticky modifiers | |
1045 to avoid non-intuitive behavior. */ | |
1046 clear_sticky_modifiers (XDEVICE (FRAME_DEVICE (f))); | |
1047 | |
1048 /* We don't want to handle the focus change now, because we might | |
1049 be in an accept-process-output, sleep-for, or sit-for. So | |
1050 we enqueue it. | |
1051 | |
1052 Actually, we half handle it: we handle it as far as changing the | |
1053 box cursor for redisplay, but we don't call any hooks or do any | |
1054 select-frame stuff until after the sit-for. | |
1055 */ | |
1056 { | |
1057 Lisp_Object frm; | |
1058 Lisp_Object conser; | |
1059 struct gcpro gcpro1; | |
1060 | |
1061 XSETFRAME (frm, f); | |
1062 conser = Fcons (frm, Fcons (FRAME_DEVICE (f), in_p ? Qt : Qnil)); | |
1063 GCPRO1 (conser); | |
1064 emacs_handle_focus_change_preliminary (conser); | |
1065 enqueue_magic_eval_event (emacs_handle_focus_change_final, | |
1066 conser); | |
1067 UNGCPRO; | |
1068 } | |
1069 } | |
1070 | |
1071 /* This is called from the external-widget code */ | |
1072 | |
1073 void emacs_Xt_handle_focus_event (XEvent *event); | |
1074 void | |
1075 emacs_Xt_handle_focus_event (XEvent *event) | |
1076 { | |
1077 /* | |
1078 * It's curious that we're using x_any_window_to_frame() instead | |
1079 * of x_window_to_frame(). I don't know what the impact of this is. | |
1080 */ | |
1081 | |
1082 struct frame *f = | |
1083 x_any_window_to_frame (get_device_from_display (event->xany.display), | |
1084 event->xfocus.window); | |
1085 if (!f) | |
1086 /* focus events are sometimes generated just before | |
1087 a frame is destroyed. */ | |
1088 return; | |
1089 handle_focus_event_1 (f, event->xany.type == FocusIn); | |
1090 } | |
1091 | |
1092 static void | |
1093 handle_map_event (struct frame *f, XEvent *event) | |
1094 { | |
1095 Lisp_Object frame = Qnil; | |
1096 | |
1097 XSETFRAME (frame, f); | |
1098 if (event->xany.type == MapNotify) | |
1099 { | |
1100 XWindowAttributes xwa; | |
1101 | |
1102 /* Bleagh!!!!!! Apparently some window managers (e.g. MWM) | |
1103 send synthetic MapNotify events when a window is first | |
1104 created, EVENT IF IT'S CREATED ICONIFIED OR INVISIBLE. | |
1105 Or something like that. We initially tried a different | |
1106 solution below, but that ran into a different window- | |
1107 manager bug. | |
1108 | |
1109 It seems that the only reliable way is to treat a | |
1110 MapNotify event as a "hint" that the window might or | |
1111 might not be visible, and check explicitly. */ | |
1112 | |
1113 XGetWindowAttributes (event->xany.display, event->xmap.window, | |
1114 &xwa); | |
1115 if (xwa.map_state != IsViewable) | |
1116 { | |
1117 /* Calling Fframe_iconified_p is the only way we have to | |
1118 correctly update FRAME_ICONIFIED_P */ | |
1119 Fframe_iconified_p (frame); | |
1120 return; | |
1121 } | |
1122 | |
1123 FRAME_X_TOTALLY_VISIBLE_P (f) = 1; | |
1124 #if 0 | |
1125 /* Bleagh again!!!! We initially tried the following hack | |
1126 around the MWM problem, but it turns out that TWM | |
1127 has a race condition when you un-iconify, where it maps | |
1128 the window and then tells the server that the window | |
1129 is un-iconified. Usually, XEmacs wakes up between | |
1130 those two occurrences, and thus thinks that un-iconified | |
1131 windows are still iconified. | |
1132 | |
1133 Ah, the joys of X. */ | |
1134 | |
1135 /* By Emacs definition, a frame that is iconified is not | |
1136 visible. Marking a frame as visible will automatically cause | |
1137 frame-iconified-p to return nil, regardless of whether the | |
1138 frame is actually iconified. Therefore, we have to ignore | |
1139 MapNotify events on iconified frames. (It's not obvious | |
1140 to me why these are being sent, but it happens at startup | |
1141 with frames that are initially iconified; perhaps they are | |
1142 synthetic MapNotify events coming from the window manager.) | |
1143 Note that `frame-iconified-p' queries the server | |
1144 to determine whether the frame is currently iconified, | |
1145 rather than consulting some internal (and likely | |
1146 inaccurate) state flag. Therefore, ignoring the MapNotify | |
1147 is correct. */ | |
1148 if (!f->visible && NILP (Fframe_iconified_p (frame))) | |
1149 #endif | |
1150 if (!f->visible) | |
1151 { | |
1152 f->visible = 1; | |
1153 /* This improves the double flicker when uniconifying a frame | |
1154 some. A lot of it is not showing a buffer which has changed | |
1155 while the frame was iconified. To fix it further requires | |
1156 the good 'ol double redisplay structure. */ | |
1157 MARK_FRAME_WINDOWS_STRUCTURE_CHANGED (f); | |
1158 va_run_hook_with_args (Qmap_frame_hook, 1, frame); | |
1159 #ifdef EPOCH | |
1160 dispatch_epoch_event (f, event, Qx_map); | |
1161 #endif | |
1162 } | |
1163 } | |
1164 else | |
1165 { | |
1166 FRAME_X_TOTALLY_VISIBLE_P (f) = 0; | |
1167 if (f->visible) | |
1168 { | |
1169 f->visible = 0; | |
1170 va_run_hook_with_args (Qunmap_frame_hook, 1, frame); | |
1171 #ifdef EPOCH | |
1172 dispatch_epoch_event (f, event, Qx_unmap); | |
1173 #endif | |
1174 } | |
1175 | |
1176 /* Calling Fframe_iconified_p is the only way we have to | |
1177 correctly update FRAME_ICONIFIED_P */ | |
1178 Fframe_iconified_p (frame); | |
1179 } | |
1180 } | |
1181 | |
1182 static void | |
1183 handle_client_message (struct frame *f, XEvent *event) | |
1184 { | |
1185 struct device *d = XDEVICE (FRAME_DEVICE (f)); | |
1186 Lisp_Object frame = Qnil; | |
1187 | |
1188 XSETFRAME (frame, f); | |
1189 | |
1190 if (event->xclient.message_type == DEVICE_XATOM_WM_PROTOCOLS (d) && | |
1191 event->xclient.data.l[0] == DEVICE_XATOM_WM_DELETE_WINDOW (d)) | |
1192 { | |
1193 /* WM_DELETE_WINDOW is a misc-user event, but other ClientMessages, | |
1194 such as WM_TAKE_FOCUS, are eval events. That's because delete-window | |
1195 was probably executed with a mouse click, while the others could | |
1196 have been sent as a result of mouse motion or some other implicit | |
1197 action. (Call this a "heuristic"...) The reason for caring about | |
1198 this is so that clicking on the close-box will make emacs prompt | |
1199 using a dialog box instead of the minibuffer if there are unsaved | |
1200 buffers. | |
1201 */ | |
1202 enqueue_misc_user_event (frame, Qeval, | |
1203 list3 (Qdelete_frame, frame, Qt)); | |
1204 } | |
1205 else if (event->xclient.message_type == DEVICE_XATOM_WM_PROTOCOLS (d) && | |
1206 event->xclient.data.l[0] == DEVICE_XATOM_WM_TAKE_FOCUS (d)) | |
1207 { | |
1208 handle_focus_event_1 (f, 1); | |
1209 #if 0 | |
1210 /* If there is a dialog box up, focus on it. | |
1211 | |
1212 #### Actually, we're raising it too, which is wrong. We should | |
1213 #### just focus on it, but lwlib doesn't currently give us an | |
1214 #### easy way to do that. This should be fixed. | |
1215 */ | |
1216 unsigned long take_focus_timestamp = event->xclient.data.l[1]; | |
1217 Widget widget = lw_raise_all_pop_up_widgets (); | |
1218 if (widget) | |
1219 { | |
1220 /* kludge: raise_all returns bottommost widget, but we really | |
1221 want the topmost. So just raise it for now. */ | |
1222 XMapRaised (XtDisplay (widget), XtWindow (widget)); | |
1223 /* Grab the focus with the timestamp of the TAKE_FOCUS. */ | |
1224 XSetInputFocus (XtDisplay (widget), XtWindow (widget), | |
1225 RevertToParent, take_focus_timestamp); | |
1226 } | |
1227 #endif | |
1228 } | |
1229 #ifdef EPOCH | |
1230 dispatch_epoch_event (f, event, Qx_client_message); | |
1231 #endif | |
1232 } | |
1233 | |
1234 static void | |
1235 emacs_Xt_handle_magic_event (struct Lisp_Event *emacs_event) | |
1236 { | |
1237 /* This function can GC */ | |
1238 XEvent *event = (XEvent *) &emacs_event->event.magic.underlying_x_event; | |
1239 struct frame *f = XFRAME (EVENT_CHANNEL (emacs_event)); | |
1240 | |
1241 if (!FRAME_LIVE_P (f)) | |
1242 return; | |
1243 | |
1244 switch (event->type) | |
1245 { | |
1246 case SelectionRequest: | |
1247 x_handle_selection_request (&event->xselectionrequest); | |
1248 break; | |
1249 | |
1250 case SelectionClear: | |
1251 x_handle_selection_clear (&event->xselectionclear); | |
1252 break; | |
1253 | |
1254 case SelectionNotify: | |
1255 x_handle_selection_notify (&event->xselection); | |
1256 break; | |
1257 | |
1258 case PropertyNotify: | |
1259 x_handle_property_notify (&event->xproperty); | |
1260 #ifdef EPOCH | |
1261 dispatch_epoch_event (f, event, Qx_property_change); | |
1262 #endif | |
1263 break; | |
1264 | |
1265 case Expose: | |
1266 x_redraw_exposed_area (f, event->xexpose.x, event->xexpose.y, | |
1267 event->xexpose.width, event->xexpose.height); | |
1268 break; | |
1269 | |
1270 case GraphicsExpose: /* This occurs when an XCopyArea's source area was | |
1271 obscured or not available. */ | |
1272 x_redraw_exposed_area (f, event->xexpose.x, event->xexpose.y, | |
1273 event->xexpose.width, event->xexpose.height); | |
1274 break; | |
1275 | |
1276 case MapNotify: | |
1277 case UnmapNotify: | |
1278 handle_map_event (f, event); | |
1279 break; | |
1280 | |
1281 case EnterNotify: | |
1282 if (event->xcrossing.detail != NotifyInferior) | |
1283 { | |
1284 Lisp_Object frame; | |
1285 | |
1286 XSETFRAME (frame, f); | |
1287 /* FRAME_X_MOUSE_P (f) = 1; */ | |
1288 va_run_hook_with_args (Qmouse_enter_frame_hook, 1, frame); | |
1289 } | |
1290 break; | |
1291 | |
1292 case LeaveNotify: | |
1293 if (event->xcrossing.detail != NotifyInferior) | |
1294 { | |
1295 Lisp_Object frame; | |
1296 | |
1297 XSETFRAME (frame, f); | |
1298 /* FRAME_X_MOUSE_P (f) = 0; */ | |
1299 va_run_hook_with_args (Qmouse_leave_frame_hook, 1, frame); | |
1300 } | |
1301 break; | |
1302 | |
1303 case FocusIn: | |
1304 case FocusOut: | |
1305 #ifdef EXTERNAL_WIDGET | |
1306 /* External widget lossage: Ben said: | |
1307 YUCK. The only way to make focus changes work properly is to | |
1308 completely ignore all FocusIn/FocusOut events and depend only | |
1309 on notifications from the ExternalClient widget. */ | |
1310 if (FRAME_X_EXTERNAL_WINDOW_P (f)) | |
1311 break; | |
1312 #endif | |
1313 handle_focus_event_1 (f, event->xany.type == FocusIn); | |
1314 break; | |
1315 | |
1316 case ClientMessage: | |
1317 handle_client_message (f, event); | |
1318 break; | |
1319 | |
1320 #if 0 | |
1321 /* this is where we ought to be handling this event, but | |
1322 we don't see it here. --ben */ | |
1323 case MappingNotify: /* The user has run xmodmap */ | |
1324 #endif | |
1325 | |
1326 case VisibilityNotify: /* window visiblity has changed */ | |
1327 if (event->xvisibility.state == VisibilityUnobscured) | |
1328 FRAME_X_TOTALLY_VISIBLE_P (f) = 1; | |
1329 else | |
1330 FRAME_X_TOTALLY_VISIBLE_P (f) = 0; | |
1331 break; | |
1332 | |
1333 case ConfigureNotify: | |
1334 if (event->xconfigure.window != XtWindow (FRAME_X_SHELL_WIDGET (f))) | |
1335 break; | |
1336 FRAME_X_SHELL_WIDGET (f)->core.x = event->xconfigure.x; | |
1337 FRAME_X_SHELL_WIDGET (f)->core.y = event->xconfigure.y; | |
1338 break; | |
1339 | |
1340 default: | |
1341 break; | |
1342 } | |
1343 } | |
1344 | |
1345 | |
1346 /************************************************************************/ | |
1347 /* timeout events */ | |
1348 /************************************************************************/ | |
1349 | |
1350 static int timeout_id_tick; | |
1351 | |
1352 /* Xt interval id's might not fit into an int (they're pointers, as it | |
1353 happens), so we need to provide a conversion list. */ | |
1354 | |
1355 struct Xt_timeout | |
1356 { | |
1357 int id; | |
1358 XtIntervalId interval_id; | |
1359 struct Xt_timeout *next; | |
1360 } *pending_timeouts, *completed_timeouts; | |
1361 | |
1362 struct Xt_timeout_blocktype | |
1363 { | |
1364 Blocktype_declare (struct Xt_timeout); | |
1365 } *the_Xt_timeout_blocktype; | |
1366 | |
1367 /* called by XtAppNextEvent() */ | |
1368 static void | |
1369 Xt_timeout_callback (XtPointer closure, XtIntervalId *id) | |
1370 { | |
1371 struct Xt_timeout *timeout = (struct Xt_timeout *) closure; | |
1372 struct Xt_timeout *t2 = pending_timeouts; | |
1373 /* Remove this one from the list of pending timeouts */ | |
1374 if (t2 == timeout) | |
1375 pending_timeouts = pending_timeouts->next; | |
1376 else | |
1377 { | |
1378 while (t2->next && t2->next != timeout) t2 = t2->next; | |
1379 assert (t2->next); | |
1380 t2->next = t2->next->next; | |
1381 } | |
1382 /* Add this one to the list of completed timeouts */ | |
1383 timeout->next = completed_timeouts; | |
1384 completed_timeouts = timeout; | |
1385 } | |
1386 | |
1387 static int | |
1388 emacs_Xt_add_timeout (EMACS_TIME thyme) | |
1389 { | |
1390 struct Xt_timeout *timeout = Blocktype_alloc (the_Xt_timeout_blocktype); | |
1391 EMACS_TIME current_time; | |
1392 int milliseconds; | |
1393 | |
1394 timeout->id = timeout_id_tick++; | |
1395 timeout->next = pending_timeouts; | |
1396 pending_timeouts = timeout; | |
1397 EMACS_GET_TIME (current_time); | |
1398 EMACS_SUB_TIME (thyme, thyme, current_time); | |
1399 milliseconds = EMACS_SECS (thyme) * 1000 + | |
1400 EMACS_USECS (thyme) / 1000; | |
1401 if (milliseconds < 1) | |
1402 milliseconds = 1; | |
1403 timeout->interval_id = XtAppAddTimeOut (Xt_app_con, milliseconds, | |
1404 Xt_timeout_callback, | |
1405 (XtPointer) timeout); | |
1406 return timeout->id; | |
1407 } | |
1408 | |
1409 static void | |
1410 emacs_Xt_remove_timeout (int id) | |
1411 { | |
1412 struct Xt_timeout *timeout, *t2; | |
1413 | |
1414 /* Find the timeout on the list of pending ones, if it's still there. */ | |
1415 if (!pending_timeouts) return; | |
1416 if (id == pending_timeouts->id) | |
1417 { | |
1418 timeout = pending_timeouts; | |
1419 pending_timeouts = pending_timeouts->next; | |
1420 } | |
1421 else | |
1422 { | |
1423 t2 = pending_timeouts; | |
1424 while (t2->next && t2->next->id != id) t2 = t2->next; | |
1425 if (! t2->next) return; | |
1426 timeout = t2->next; | |
1427 t2->next = t2->next->next; | |
1428 } | |
1429 | |
1430 /* At this point, we've found the thing on the list of pending timeouts, | |
1431 and removed it. | |
1432 */ | |
1433 | |
1434 XtRemoveTimeOut (timeout->interval_id); | |
1435 Blocktype_free (the_Xt_timeout_blocktype, timeout); | |
1436 } | |
1437 | |
1438 static void | |
1439 Xt_timeout_to_emacs_event (struct Lisp_Event *emacs_event) | |
1440 { | |
1441 struct Xt_timeout *timeout = completed_timeouts; | |
1442 assert (timeout); | |
1443 completed_timeouts = completed_timeouts->next; | |
1444 emacs_event->event_type = timeout_event; | |
1445 /* timeout events have nil as channel */ | |
1446 emacs_event->timestamp = 0; /* #### wrong!! */ | |
1447 emacs_event->event.timeout.interval_id = timeout->id; | |
1448 Blocktype_free (the_Xt_timeout_blocktype, timeout); | |
1449 } | |
1450 | |
1451 | |
1452 /************************************************************************/ | |
1453 /* process and tty events */ | |
1454 /************************************************************************/ | |
1455 | |
1456 struct what_is_ready_closure | |
1457 { | |
1458 int fd; | |
1459 Lisp_Object what; | |
1460 XtInputId id; | |
1461 }; | |
1462 | |
1463 static Lisp_Object *filedesc_with_input; | |
1464 static struct what_is_ready_closure **filedesc_to_what_closure; | |
1465 | |
1466 static void | |
1467 init_what_input_once (void) | |
1468 { | |
1469 int i; | |
1470 | |
1471 filedesc_with_input = (Lisp_Object *) | |
1472 xmalloc (MAXDESC * sizeof (Lisp_Object)); | |
1473 filedesc_to_what_closure = (struct what_is_ready_closure **) | |
1474 xmalloc (MAXDESC * sizeof (struct what_is_ready_closure *)); | |
1475 | |
1476 for (i = 0; i < MAXDESC; i++) | |
1477 { | |
1478 filedesc_to_what_closure[i] = 0; | |
1479 filedesc_with_input[i] = Qnil; | |
1480 } | |
1481 | |
1482 process_events_occurred = 0; | |
1483 tty_events_occurred = 0; | |
1484 } | |
1485 | |
1486 static void | |
1487 mark_what_as_being_ready (struct what_is_ready_closure *closure) | |
1488 { | |
1489 if (NILP (filedesc_with_input[closure->fd])) | |
1490 { | |
1491 SELECT_TYPE temp_mask; | |
1492 FD_ZERO (&temp_mask); | |
1493 FD_SET (closure->fd, &temp_mask); | |
1494 /* Check to make sure there's *really* input available. | |
1495 Sometimes things seem to get confused and this gets called | |
1496 for the tty fd when there's really only input available | |
1497 on some process's fd. (It will subsequently get called | |
1498 for that process's fd, so returning without setting any | |
1499 flags will take care of it.) To see the problem, uncomment | |
1500 the stderr_out below, turn NORMAL_QUIT_CHECK_TIMEOUT_MSECS | |
1501 down to 25, do sh -c 'xemacs -nw -q -f shell 2>/tmp/log' | |
1502 and press return repeatedly. (Seen under AIX & Linux.) | |
1503 -dkindred@cs.cmu.edu */ | |
1504 if (!poll_fds_for_input (temp_mask)) | |
1505 { | |
1506 #if 0 | |
1507 stderr_out ("mark_what_as_being_ready: no input available (fd=%d)\n", | |
1508 closure->fd); | |
1509 #endif | |
1510 return; | |
1511 } | |
1512 filedesc_with_input[closure->fd] = closure->what; | |
1513 if (PROCESSP (closure->what)) | |
1514 /* Don't increment this if the current process is already marked | |
1515 * as having input. */ | |
1516 process_events_occurred++; | |
1517 else | |
1518 tty_events_occurred++; | |
1519 } | |
1520 } | |
1521 | |
1522 static void | |
1523 Xt_what_callback (void *closure, int *source, XtInputId *id) | |
1524 { | |
1525 /* If closure is 0, then we got a fake event from a signal handler. | |
1526 The only purpose of this is to make XtAppProcessEvent() stop | |
1527 blocking. */ | |
1528 if (closure) | |
1529 mark_what_as_being_ready ((struct what_is_ready_closure *) closure); | |
1530 else | |
1531 { | |
1532 fake_event_occurred++; | |
1533 drain_signal_event_pipe (); | |
1534 } | |
1535 } | |
1536 | |
1537 static void | |
1538 select_filedesc (int fd, Lisp_Object what) | |
1539 { | |
1540 struct what_is_ready_closure *closure; | |
1541 | |
1542 /* If somebody is trying to select something that's already selected | |
1543 for, then something went wrong. The generic routines ought to | |
1544 detect this and error before here. */ | |
1545 assert (!filedesc_to_what_closure[fd]); | |
1546 | |
1547 closure = (struct what_is_ready_closure *) xmalloc (sizeof (*closure)); | |
1548 closure->fd = fd; | |
1549 closure->what = what; | |
1550 closure->id = | |
1551 XtAppAddInput (Xt_app_con, fd, | |
1552 (XtPointer) (XtInputReadMask /* | XtInputExceptMask */), | |
1553 Xt_what_callback, closure); | |
1554 filedesc_to_what_closure[fd] = closure; | |
1555 } | |
1556 | |
1557 static void | |
1558 unselect_filedesc (int fd) | |
1559 { | |
1560 struct what_is_ready_closure *closure = filedesc_to_what_closure[fd]; | |
1561 | |
1562 assert (closure); | |
1563 if (!NILP (filedesc_with_input[fd])) | |
1564 { | |
1565 /* We are unselecting this process before we have drained the rest of | |
1566 the input from it, probably from status_notify() in the command loop. | |
1567 This can happen like so: | |
1568 | |
1569 - We are waiting in XtAppNextEvent() | |
1570 - Process generates output | |
1571 - Process is marked as being ready | |
1572 - Process dies, SIGCHLD gets generated before we return (!?) | |
1573 It could happen I guess. | |
1574 - sigchld_handler() marks process as dead | |
1575 - Somehow we end up getting a new KeyPress event on the queue | |
1576 at the same time (I'm really so sure how that happens but I'm | |
1577 not sure it can't either so let's assume it can...). | |
1578 - Key events have priority so we return that instead of the proc. | |
1579 - Before dispatching the lisp key event we call status_notify() | |
1580 - Which deselects the process that SIGCHLD marked as dead. | |
1581 | |
1582 Thus we never remove it from _with_input and turn it into a lisp | |
1583 event, so we need to do it here. But this does not mean that we're | |
1584 throwing away the last block of output - status_notify() has already | |
1585 taken care of running the proc filter or whatever. | |
1586 */ | |
1587 filedesc_with_input[fd] = Qnil; | |
1588 if (PROCESSP (closure->what)) | |
1589 { | |
1590 assert (process_events_occurred > 0); | |
1591 process_events_occurred--; | |
1592 } | |
1593 else | |
1594 { | |
1595 assert (tty_events_occurred > 0); | |
1596 tty_events_occurred--; | |
1597 } | |
1598 } | |
1599 XtRemoveInput (closure->id); | |
1600 xfree (closure); | |
1601 filedesc_to_what_closure[fd] = 0; | |
1602 } | |
1603 | |
1604 static void | |
1605 emacs_Xt_select_process (struct Lisp_Process *p) | |
1606 { | |
1607 int infd; | |
1608 Lisp_Object process; | |
1609 | |
1610 infd = event_stream_unixoid_select_process (p); | |
1611 | |
1612 XSETPROCESS (process, p); | |
1613 select_filedesc (infd, process); | |
1614 } | |
1615 | |
1616 static void | |
1617 emacs_Xt_unselect_process (struct Lisp_Process *p) | |
1618 { | |
1619 int infd; | |
1620 | |
1621 infd = event_stream_unixoid_unselect_process (p); | |
1622 | |
1623 unselect_filedesc (infd); | |
1624 } | |
1625 | |
1626 /* This is called from GC when a process object is about to be freed. | |
1627 If we've still got pointers to it in this file, we're gonna lose hard. | |
1628 */ | |
1629 void | |
1630 debug_process_finalization (struct Lisp_Process *p) | |
1631 { | |
1632 #if 0 /* #### */ | |
1633 int i; | |
1634 int infd, outfd; | |
1635 get_process_file_descriptors (p, &infd, &outfd); | |
1636 /* if it still has fds, then it hasn't been killed yet. */ | |
1637 assert (infd < 0); | |
1638 assert (outfd < 0); | |
1639 /* Better not still be in the "with input" table; we know it's got no fds. */ | |
1640 for (i = 0; i < MAXDESC; i++) | |
1641 { | |
1642 Lisp_Object process = filedesc_fds_with_input [i]; | |
1643 assert (!PROCESSP (process) || XPROCESS (process) != p); | |
1644 } | |
1645 #endif | |
1646 } | |
1647 | |
1648 static void | |
1649 Xt_process_to_emacs_event (struct Lisp_Event *emacs_event) | |
1650 { | |
1651 int i; | |
1652 Lisp_Object process; | |
1653 | |
1654 assert (process_events_occurred > 0); | |
1655 for (i = 0; i < MAXDESC; i++) | |
1656 { | |
1657 process = filedesc_with_input[i]; | |
1658 if (PROCESSP (process)) | |
1659 break; | |
1660 } | |
1661 assert (i < MAXDESC); | |
1662 filedesc_with_input[i] = Qnil; | |
1663 process_events_occurred--; | |
1664 /* process events have nil as channel */ | |
1665 emacs_event->event_type = process_event; | |
1666 emacs_event->timestamp = 0; /* #### */ | |
1667 emacs_event->event.process.process = process; | |
1668 } | |
1669 | |
1670 static void | |
1671 emacs_Xt_select_console (struct console *con) | |
1672 { | |
1673 Lisp_Object console = Qnil; | |
1674 int infd; | |
1675 | |
1676 if (CONSOLE_X_P (con)) | |
1677 return; /* X consoles are automatically selected for when we | |
1678 initialize them in Xt */ | |
1679 infd = event_stream_unixoid_select_console (con); | |
1680 XSETCONSOLE (console, con); | |
1681 select_filedesc (infd, console); | |
1682 } | |
1683 | |
1684 static void | |
1685 emacs_Xt_unselect_console (struct console *con) | |
1686 { | |
1687 Lisp_Object console = Qnil; | |
1688 int infd; | |
1689 | |
1690 if (CONSOLE_X_P (con)) | |
1691 return; /* X consoles are automatically selected for when we | |
1692 initialize them in Xt */ | |
1693 infd = event_stream_unixoid_unselect_console (con); | |
1694 XSETCONSOLE (console, con); | |
1695 unselect_filedesc (infd); | |
1696 } | |
1697 | |
1698 /* read an event from a tty, if one is available. Returns non-zero | |
1699 if an event was available. Note that when this function is | |
1700 called, there should always be a tty marked as ready for input. | |
1701 However, the input condition might actually be EOF, so there | |
1702 may not really be any input available. (In this case, | |
1703 read_event_from_tty_or_stream_desc() will arrange for the TTY device | |
1704 to be deleted.) */ | |
1705 | |
1706 static int | |
1707 Xt_tty_to_emacs_event (struct Lisp_Event *emacs_event) | |
1708 { | |
1709 int i; | |
1710 | |
1711 assert (tty_events_occurred > 0); | |
1712 for (i = 0; i < MAXDESC; i++) | |
1713 { | |
1714 Lisp_Object console = filedesc_with_input[i]; | |
1715 if (CONSOLEP (console)) | |
1716 { | |
1717 assert (tty_events_occurred > 0); | |
1718 tty_events_occurred--; | |
1719 filedesc_with_input[i] = Qnil; | |
1720 if (read_event_from_tty_or_stream_desc | |
1721 (emacs_event, XCONSOLE (console), i)) | |
1722 return 1; | |
1723 } | |
1724 } | |
1725 | |
1726 return 0; | |
1727 } | |
1728 | |
1729 | |
1730 /************************************************************************/ | |
1731 /* debugging functions to decipher an event */ | |
1732 /************************************************************************/ | |
1733 | |
1734 #ifdef DEBUG_XEMACS | |
1735 #include "xintrinsicp.h" /* only describe_event() needs this */ | |
1736 #include <X11/Xproto.h> /* only describe_event() needs this */ | |
1737 | |
1738 static void | |
1739 describe_event_window (Window window, Display *display) | |
1740 { | |
1741 struct frame *f; | |
1742 Widget w; | |
1743 stderr_out (" window: 0x%x", (int) window); | |
1744 w = XtWindowToWidget (display, window); | |
1745 if (w) | |
1746 stderr_out (" %s", w->core.widget_class->core_class.class_name); | |
1747 f = x_any_window_to_frame (get_device_from_display (display), window); | |
1748 if (f) { | |
1749 char buf[500]; | |
1750 sprintf (buf, " \"%s\"", string_data (XSTRING (f->name))); | |
1751 write_string_to_stdio_stream (stderr, 0, (Bufbyte *) buf, 0, strlen (buf), | |
1752 FORMAT_DISPLAY); | |
1753 } | |
1754 stderr_out ("\n"); | |
1755 } | |
1756 | |
1757 static CONST char * | |
1758 XEvent_mode_to_string (int mode) | |
1759 { | |
1760 switch (mode) | |
1761 { | |
1762 case NotifyNormal: return "Normal"; | |
1763 case NotifyGrab: return "Grab"; | |
1764 case NotifyUngrab: return "Ungrab"; | |
1765 case NotifyWhileGrabbed: return "WhileGrabbed"; | |
1766 default: | |
1767 return "???"; | |
1768 } | |
1769 } | |
1770 | |
1771 static CONST char * | |
1772 XEvent_detail_to_string (int detail) | |
1773 { | |
1774 switch (detail) | |
1775 { | |
1776 case NotifyAncestor: return "Ancestor"; | |
1777 case NotifyInferior: return "Inferior"; | |
1778 case NotifyNonlinear: return "Nonlinear"; | |
1779 case NotifyNonlinearVirtual: return "NonlinearVirtual"; | |
1780 case NotifyPointer: return "Pointer"; | |
1781 case NotifyPointerRoot: return "PointerRoot"; | |
1782 case NotifyDetailNone: return "DetailNone"; | |
1783 default: | |
1784 return "???"; | |
1785 } | |
1786 } | |
1787 | |
1788 static CONST char * | |
1789 XEvent_visibility_to_string (int state) | |
1790 { | |
1791 switch (state) | |
1792 { | |
1793 case VisibilityFullyObscured: return "FullyObscured"; | |
1794 case VisibilityPartiallyObscured: return "PartiallyObscured"; | |
1795 case VisibilityUnobscured: return "Unobscured"; | |
1796 default: | |
1797 return "???"; | |
1798 } | |
1799 } | |
1800 | |
1801 static void | |
1802 describe_event (XEvent *event) | |
1803 { | |
1804 char buf[100]; | |
1805 struct device *d = get_device_from_display (event->xany.display); | |
1806 | |
1807 sprintf (buf, "%s%s", x_event_name (event->type), | |
1808 event->xany.send_event ? " (send)" : ""); | |
1809 stderr_out ("%-30s", buf); | |
1810 switch (event->type) | |
1811 { | |
1812 case FocusIn: | |
1813 case FocusOut: | |
1814 { | |
1815 XFocusChangeEvent *ev = &event->xfocus; | |
1816 describe_event_window (ev->window, ev->display); | |
1817 stderr_out (" mode: %s\n", XEvent_mode_to_string (ev->mode)); | |
1818 stderr_out (" detail: %s\n", XEvent_detail_to_string(ev->detail)); | |
1819 break; | |
1820 } | |
1821 | |
1822 case KeyPress: | |
1823 { | |
1824 Lisp_Object keysym; | |
1825 XKeyEvent *ev = &event->xkey; | |
1826 unsigned int state = ev->state; | |
1827 | |
1828 describe_event_window (ev->window, ev->display); | |
1829 stderr_out (" subwindow: %ld\n", ev->subwindow); | |
1830 stderr_out (" state: "); | |
1831 if (state & ShiftMask) stderr_out ("Shift "); | |
1832 if (state & LockMask) stderr_out ("Lock "); | |
1833 if (state & ControlMask) stderr_out ("Control "); | |
1834 if (state & Mod1Mask) stderr_out ("Mod1 "); | |
1835 if (state & Mod2Mask) stderr_out ("Mod2 "); | |
1836 if (state & Mod3Mask) stderr_out ("Mod3 "); | |
1837 if (state & Mod4Mask) stderr_out ("Mod4 "); | |
1838 if (state & Mod5Mask) stderr_out ("Mod5 "); | |
1839 #if 0 /* Apparently these don't exist? */ | |
1840 if (state & MetaMask) stderr_out ("Meta "); | |
1841 if (state & SuperMask) stderr_out ("Super "); | |
1842 if (state & HyperMask) stderr_out ("Hyper "); | |
1843 if (state & AltMask) stderr_out ("Alt "); | |
1844 if (state & ModeMask) stderr_out ("Mode_switch "); | |
1845 #endif | |
1846 | |
1847 if (! state) | |
1848 stderr_out ("vanilla\n"); | |
1849 else | |
1850 stderr_out ("\n"); | |
1851 if (x_key_is_modifier_p (ev->keycode, d)) | |
1852 stderr_out (" Modifier key"); | |
1853 stderr_out (" keycode: 0x%x\n", ev->keycode); | |
1854 keysym = x_to_emacs_keysym (event, 0); | |
1855 if (CHAR_OR_CHAR_INTP (keysym)) | |
1856 { | |
1857 if (XCHAR_OR_CHAR_INT (keysym) > 32 | |
1858 && XCHAR_OR_CHAR_INT (keysym) < 127) | |
1859 stderr_out (" keysym: %c\n", XCHAR_OR_CHAR_INT (keysym)); | |
1860 else | |
1861 stderr_out (" keysym: %d\n", XCHAR_OR_CHAR_INT (keysym)); | |
1862 } | |
1863 else | |
1864 stderr_out (" keysym: %s\n", string_data (XSYMBOL (keysym)->name)); | |
1865 } | |
1866 break; | |
1867 | |
1868 case Expose: | |
1869 if (x_debug_events > 1) | |
1870 { | |
1871 XExposeEvent *ev = &event->xexpose; | |
1872 describe_event_window (ev->window, ev->display); | |
1873 stderr_out (" region: %d %d %d %d\n", ev->x, ev->y, | |
1874 ev->width, ev->height); | |
1875 stderr_out (" count: %d\n", ev->count); | |
1876 } | |
1877 else | |
1878 stderr_out ("\n"); | |
1879 break; | |
1880 | |
1881 case GraphicsExpose: | |
1882 if (x_debug_events > 1) | |
1883 { | |
1884 XGraphicsExposeEvent *ev = &event->xgraphicsexpose; | |
1885 describe_event_window (ev->drawable, ev->display); | |
1886 stderr_out (" major: %s\n", | |
1887 (ev ->major_code == X_CopyArea ? "CopyArea" : | |
1888 (ev->major_code == X_CopyPlane ? "CopyPlane" : "?"))); | |
1889 stderr_out (" region: %d %d %d %d\n", ev->x, ev->y, | |
1890 ev->width, ev->height); | |
1891 stderr_out (" count: %d\n", ev->count); | |
1892 } | |
1893 else | |
1894 stderr_out ("\n"); | |
1895 break; | |
1896 | |
1897 case EnterNotify: | |
1898 case LeaveNotify: | |
1899 if (x_debug_events > 1) | |
1900 { | |
1901 XCrossingEvent *ev = &event->xcrossing; | |
1902 describe_event_window (ev->window, ev->display); | |
1903 #if 0 | |
1904 stderr_out(" subwindow: 0x%x\n", ev->subwindow); | |
1905 stderr_out(" pos: %d %d\n", ev->x, ev->y); | |
1906 stderr_out(" root pos: %d %d\n", ev->x_root, ev->y_root); | |
1907 #endif | |
1908 stderr_out(" mode: %s\n", XEvent_mode_to_string(ev->mode)); | |
1909 stderr_out(" detail: %s\n", XEvent_detail_to_string(ev->detail)); | |
1910 stderr_out(" focus: %d\n", ev->focus); | |
1911 #if 0 | |
1912 stderr_out(" state: 0x%x\n", ev->state); | |
1913 #endif | |
1914 } | |
1915 else | |
1916 stderr_out("\n"); | |
1917 break; | |
1918 | |
1919 case ConfigureNotify: | |
1920 if (x_debug_events > 1) | |
1921 { | |
1922 XConfigureEvent *ev = &event->xconfigure; | |
1923 describe_event_window (ev->window, ev->display); | |
1924 stderr_out(" above: 0x%lx\n", ev->above); | |
1925 stderr_out(" size: %d %d %d %d\n", ev->x, ev->y, | |
1926 ev->width, ev->height); | |
1927 stderr_out(" redirect: %d\n", ev->override_redirect); | |
1928 } | |
1929 else | |
1930 stderr_out("\n"); | |
1931 break; | |
1932 | |
1933 case VisibilityNotify: | |
1934 if (x_debug_events > 1) | |
1935 { | |
1936 XVisibilityEvent *ev = &event->xvisibility; | |
1937 describe_event_window (ev->window, ev->display); | |
1938 stderr_out(" state: %s\n", XEvent_visibility_to_string(ev->state)); | |
1939 } | |
1940 else | |
1941 stderr_out ("\n"); | |
1942 break; | |
1943 | |
1944 case ClientMessage: | |
1945 { | |
1946 XClientMessageEvent *ev = &event->xclient; | |
1947 char *name = XGetAtomName (ev->display, ev->message_type); | |
1948 stderr_out ("%s", name); | |
1949 if (!strcmp (name, "WM_PROTOCOLS")) { | |
1950 char *protname = XGetAtomName (ev->display, ev->data.l[0]); | |
1951 stderr_out ("(%s)", protname); | |
1952 XFree (protname); | |
1953 } | |
1954 XFree (name); | |
1955 stderr_out ("\n"); | |
1956 break; | |
1957 } | |
1958 | |
1959 default: | |
1960 stderr_out ("\n"); | |
1961 break; | |
1962 } | |
1963 | |
1964 fflush (stdout); | |
1965 } | |
1966 | |
1967 #endif /* include describe_event definition */ | |
1968 | |
1969 | |
1970 /************************************************************************/ | |
1971 /* get the next event from Xt */ | |
1972 /************************************************************************/ | |
1973 | |
1974 static Lisp_Object dispatch_event_queue, dispatch_event_queue_tail; | |
1975 | |
1976 static void | |
1977 enqueue_Xt_dispatch_event (Lisp_Object event) | |
1978 { | |
1979 enqueue_event (event, &dispatch_event_queue, &dispatch_event_queue_tail); | |
1980 } | |
1981 | |
1982 Lisp_Object | |
1983 dequeue_Xt_dispatch_event (void) | |
1984 { | |
1985 return dequeue_event (&dispatch_event_queue, &dispatch_event_queue_tail); | |
1986 } | |
1987 | |
1988 /* This business exists because menu events "happen" when | |
1989 menubar_selection_callback() is called from somewhere deep | |
1990 within XtAppProcessEvent in emacs_Xt_next_event(). The | |
1991 callback needs to terminate the modal loop in that function | |
1992 or else it will continue waiting until another event is | |
1993 received. | |
1994 | |
1995 Same business applies to scrollbar events. */ | |
1996 | |
1997 void | |
1998 signal_special_Xt_user_event (Lisp_Object channel, Lisp_Object function, | |
1999 Lisp_Object object) | |
2000 { | |
2001 Lisp_Object event; | |
2002 | |
2003 event = Fmake_event (); | |
2004 | |
2005 XEVENT (event)->event_type = misc_user_event; | |
2006 XEVENT (event)->channel = channel; | |
2007 XEVENT (event)->event.eval.function = function; | |
2008 XEVENT (event)->event.eval.object = object; | |
2009 | |
2010 enqueue_Xt_dispatch_event (event); | |
2011 } | |
2012 | |
2013 static void | |
2014 emacs_Xt_next_event (struct Lisp_Event *emacs_event) | |
2015 { | |
2016 we_didnt_get_an_event: | |
2017 | |
2018 while (NILP (dispatch_event_queue) && | |
2019 !completed_timeouts && | |
2020 !fake_event_occurred && | |
2021 !process_events_occurred && | |
2022 !tty_events_occurred) | |
2023 { | |
2024 | |
2025 /* Stupid logic in XtAppProcessEvent() dictates that, if process | |
2026 events and X events are both available, the process event gets | |
2027 taken first. This will cause an infinite loop if we're being | |
2028 called from Fdiscard_input(). | |
2029 */ | |
2030 if (XtAppPending (Xt_app_con) & XtIMXEvent) | |
2031 XtAppProcessEvent (Xt_app_con, XtIMXEvent); | |
2032 else | |
2033 { | |
2034 Lisp_Object devcons, concons; | |
2035 | |
2036 /* We're about to block. Xt has a bug in it (big surprise, | |
2037 there) in that it blocks using select() and doesn't | |
2038 flush the Xlib output buffers (XNextEvent() does this | |
2039 automatically before blocking). So it's necessary | |
2040 for us to do this ourselves. If we don't do it, then | |
2041 display output may not be seen until the next time | |
2042 an X event is received. (This happens esp. with | |
2043 subprocess output that gets sent to a visible buffer.) | |
2044 | |
2045 #### The above comment may not have any validity. */ | |
2046 | |
2047 DEVICE_LOOP_NO_BREAK (devcons, concons) | |
2048 { | |
2049 struct device *d; | |
2050 d = XDEVICE (XCAR (devcons)); | |
2051 | |
2052 if (DEVICE_X_P (d) && DEVICE_X_DISPLAY (d)) | |
2053 /* emacs may be exiting */ | |
2054 XFlush (DEVICE_X_DISPLAY (d)); | |
2055 } | |
2056 XtAppProcessEvent (Xt_app_con, XtIMAll); | |
2057 } | |
2058 } | |
2059 | |
2060 if (!NILP (dispatch_event_queue)) | |
2061 { | |
2062 Lisp_Object event, event2; | |
2063 XSETEVENT (event2, emacs_event); | |
2064 event = dequeue_Xt_dispatch_event (); | |
2065 Fcopy_event (event, event2); | |
2066 Fdeallocate_event (event); | |
2067 } | |
2068 else if (tty_events_occurred) | |
2069 { | |
2070 if (!Xt_tty_to_emacs_event (emacs_event)) | |
2071 goto we_didnt_get_an_event; | |
2072 } | |
2073 else if (completed_timeouts) | |
2074 Xt_timeout_to_emacs_event (emacs_event); | |
2075 else if (fake_event_occurred) | |
2076 { | |
2077 /* A dummy event, so that a cycle of the command loop will | |
2078 occur. */ | |
2079 fake_event_occurred = 0; | |
2080 /* eval events have nil as channel */ | |
2081 emacs_event->event_type = eval_event; | |
2082 emacs_event->event.eval.function = Qidentity; | |
2083 emacs_event->event.eval.object = Qnil; | |
2084 } | |
2085 else /* if (process_events_occurred) */ | |
2086 Xt_process_to_emacs_event (emacs_event); | |
2087 | |
2088 /* No need to call XFilterEvent; Xt does it for us */ | |
2089 } | |
2090 | |
2091 void | |
2092 emacs_Xt_event_handler (Widget wid /* unused */, | |
2093 XtPointer closure /* unused */, | |
2094 XEvent *event, | |
2095 Boolean *continue_to_dispatch /* unused */) | |
2096 { | |
2097 Lisp_Object emacs_event = Fmake_event (); | |
2098 | |
2099 #ifdef DEBUG_XEMACS | |
2100 if (x_debug_events > 0) | |
2101 { | |
2102 describe_event (event); | |
2103 } | |
2104 #endif /* DEBUG_XEMACS */ | |
2105 if (x_event_to_emacs_event (event, XEVENT (emacs_event))) | |
2106 enqueue_Xt_dispatch_event (emacs_event); | |
2107 else | |
2108 Fdeallocate_event (emacs_event); | |
2109 } | |
2110 | |
2111 | |
2112 /************************************************************************/ | |
2113 /* input pending / C-g checking */ | |
2114 /************************************************************************/ | |
2115 | |
2116 static Bool | |
2117 quit_char_predicate (Display *display, XEvent *event, XPointer data) | |
2118 { | |
2119 struct device *d = get_device_from_display (display); | |
2120 struct x_device *xd = DEVICE_X_DATA (d); | |
2121 char c, quit_char; | |
2122 Bool *critical = (Bool *) data; | |
2123 Lisp_Object keysym; | |
2124 | |
2125 if (critical) *critical = False; | |
2126 if (event->type != KeyPress) return 0; | |
2127 if (! x_any_window_to_frame (d, event->xany.window)) return 0; | |
2128 if (event->xkey.state | |
2129 & (xd->MetaMask | xd->HyperMask | xd->SuperMask | xd->AltMask)) | |
2130 return 0; | |
2131 | |
2132 /* This duplicates some code that exists elsewhere, but it's relatively | |
2133 fast and doesn't cons. | |
2134 */ | |
2135 keysym = x_to_emacs_keysym (event, 1); | |
2136 if (NILP (keysym)) return 0; | |
2137 if (CHAR_OR_CHAR_INTP (keysym)) | |
2138 c = XCHAR_OR_CHAR_INT (keysym); | |
2139 /* Highly doubtful that these are the quit character, but... */ | |
2140 else if (EQ (keysym, QKbackspace)) c = '\b'; | |
2141 else if (EQ (keysym, QKtab)) c = '\t'; | |
2142 else if (EQ (keysym, QKlinefeed)) c = '\n'; | |
2143 else if (EQ (keysym, QKreturn)) c = '\r'; | |
2144 else if (EQ (keysym, QKescape)) c = 27; | |
2145 else if (EQ (keysym, QKspace)) c = ' '; | |
2146 else if (EQ (keysym, QKdelete)) c = 127; | |
2147 else return 0; | |
2148 | |
2149 if (event->xkey.state & xd->MetaMask) c |= 0x80; | |
2150 if ((event->xkey.state & ControlMask) && !(c >= 'A' && c <= 'Z')) | |
2151 c &= 0x1F; /* unshifted control characters */ | |
2152 quit_char = CONSOLE_QUIT_CHAR (XCONSOLE (DEVICE_CONSOLE (d))); | |
2153 if (c == quit_char) | |
2154 return True; | |
2155 /* If we've got Control-Shift-G instead of Control-G, that means | |
2156 we have a critical_quit. Caps_Lock is its own modifier, so it | |
2157 won't cause ^G to act differently than before. */ | |
2158 if (event->xkey.state & ControlMask) c &= 0x1F; | |
2159 if (c == quit_char) | |
2160 { | |
2161 if (critical) *critical = True; | |
2162 return True; | |
2163 } | |
2164 return False; | |
2165 } | |
2166 | |
2167 /* This scans the X input queue for a KeyPress event that matches the | |
2168 quit character, and sets Vquit_flag. This is called from the | |
2169 QUIT macro to determine whether we should quit. | |
2170 | |
2171 In a SIGIO world, this won't be called unless a SIGIO has happened | |
2172 since the last time we checked. | |
2173 | |
2174 In a non-SIGIO world, this is called from emacs_Xt_event_pending_p | |
2175 (which is called from input_pending_p). | |
2176 */ | |
2177 static void | |
2178 x_check_for_quit_char (Display *display) | |
2179 { | |
2180 XEvent event; | |
2181 int queued; | |
2182 Bool critical_quit = False; | |
2183 XEventsQueued (display, QueuedAfterReading); | |
2184 queued = XCheckIfEvent (display, &event, | |
2185 quit_char_predicate, | |
2186 (XtPointer)&critical_quit); | |
2187 if (queued) | |
2188 { | |
2189 Vquit_flag = (critical_quit ? Qcritical : Qt); | |
2190 /* don't put the event back onto the queue. Those functions that | |
2191 wanted to read a ^G directly have arranged to do this. */ | |
2192 } | |
2193 } | |
2194 | |
2195 static void | |
2196 check_for_tty_quit_char (struct device *d) | |
2197 { | |
2198 SELECT_TYPE temp_mask; | |
2199 int infd = DEVICE_INFD (d); | |
2200 struct console *con = XCONSOLE (DEVICE_CONSOLE (d)); | |
2201 Emchar quit_char = CONSOLE_QUIT_CHAR (con); | |
2202 | |
2203 FD_ZERO (&temp_mask); | |
2204 FD_SET (infd, &temp_mask); | |
2205 | |
2206 while (1) | |
2207 { | |
2208 Lisp_Object event; | |
2209 Emchar the_char; | |
2210 | |
2211 if (!poll_fds_for_input (temp_mask)) | |
2212 return; | |
2213 | |
2214 event = Fmake_event (); | |
2215 if (!read_event_from_tty_or_stream_desc (XEVENT (event), con, infd)) | |
2216 /* EOF, or something ... */ | |
2217 return; | |
2218 /* #### bogus. quit-char should be allowed to be any sort | |
2219 of event. */ | |
2220 the_char = event_to_character (XEVENT (event), 1, 0, 0); | |
2221 if (the_char >= 0 && the_char == quit_char) | |
2222 { | |
2223 Vquit_flag = Qt; | |
2224 /* do not queue the C-g. See above. */ | |
2225 return; | |
2226 } | |
2227 | |
2228 /* queue the read event to be read for real later. */ | |
2229 enqueue_Xt_dispatch_event (event); | |
2230 } | |
2231 } | |
2232 | |
2233 static void | |
2234 emacs_Xt_quit_p (void) | |
2235 { | |
2236 Lisp_Object devcons, concons; | |
2237 CONSOLE_LOOP (concons) | |
2238 { | |
2239 struct console *con = XCONSOLE (XCAR (concons)); | |
2240 if (!con->input_enabled) | |
2241 continue; | |
2242 | |
2243 CONSOLE_DEVICE_LOOP (devcons, con) | |
2244 { | |
2245 struct device *d; | |
2246 d = XDEVICE (XCAR (devcons)); | |
2247 | |
2248 if (DEVICE_X_P (d) && DEVICE_X_DISPLAY (d)) | |
2249 /* emacs may be exiting */ | |
2250 x_check_for_quit_char (DEVICE_X_DISPLAY (d)); | |
2251 else if (DEVICE_TTY_P (d)) | |
2252 check_for_tty_quit_char (d); | |
2253 } | |
2254 } | |
2255 } | |
2256 | |
2257 static void | |
2258 drain_X_queue (void) | |
2259 { | |
2260 while (XtAppPending (Xt_app_con) & XtIMXEvent) | |
2261 XtAppProcessEvent (Xt_app_con, XtIMXEvent); | |
2262 } | |
2263 | |
2264 static int | |
2265 emacs_Xt_event_pending_p (int user_p) | |
2266 { | |
2267 Lisp_Object event; | |
2268 int tick_count_val; | |
2269 | |
2270 /* If `user_p' is false, then this function returns whether there are any | |
2271 X, timeout, or fd events pending (that is, whether emacs_Xt_next_event() | |
2272 would return immediately without blocking). | |
2273 | |
2274 if `user_p' is true, then this function returns whether there are any | |
2275 *user generated* events available (that is, whether there are keyboard | |
2276 or mouse-click events ready to be read). This also implies that | |
2277 emacs_Xt_next_event() would not block. | |
2278 | |
2279 In a non-SIGIO world, this also checks whether the user has typed ^G, | |
2280 since this is a convenient place to do so. We don't need to do this | |
2281 in a SIGIO world, since input causes an interrupt. | |
2282 */ | |
2283 | |
2284 #if 0 | |
2285 /* I don't think there's any point to this and it will nullify | |
2286 the speed gains achieved by the sigio_happened checking below. | |
2287 Its only advantage is that it may possibly make C-g response | |
2288 a bit faster. The C-g will be noticed within 0.25 second, anyway, | |
2289 even without this. */ | |
2290 #ifndef SIGIO | |
2291 /* First check for C-g if necessary */ | |
2292 emacs_Xt_quit_p (); | |
2293 #endif | |
2294 #endif | |
2295 | |
2296 /* This function used to simply check whether there were any X | |
2297 events (or is user_p was 1, it iterated over all the pending | |
2298 X events using XCheckIfEvent(), looking for keystrokes and | |
2299 button events). That worked in the old cheesoid event loop, | |
2300 which didn't go through XtAppDispatchEvent(), but it doesn't | |
2301 work any more -- X events may not result in anything. For | |
2302 example, a button press in a blank part of the menubar appears | |
2303 as an X event but will not result in any Emacs events (a | |
2304 button press that activates the menubar results in an Emacs | |
2305 event through the stop_next_event mechanism). | |
2306 | |
2307 The only accurate way of determining whether these X events | |
2308 translate into Emacs events is to go ahead and dispatch them | |
2309 until there's something on the dispatch queue. */ | |
2310 | |
2311 /* See if there are any user events already on the queue. */ | |
2312 EVENT_CHAIN_LOOP (event, dispatch_event_queue) | |
2313 if (!user_p || command_event_p (event)) | |
2314 return 1; | |
2315 | |
2316 /* See if there's any TTY input available. | |
2317 */ | |
2318 if (poll_fds_for_input (tty_only_mask)) | |
2319 return 1; | |
2320 | |
2321 if (!user_p) | |
2322 { | |
2323 /* If not user_p and there are any timer or file-desc events | |
2324 pending, we know there will be an event so we're through. */ | |
2325 XtInputMask pending_value; | |
2326 | |
2327 /* Note that formerly we just checked the value of XtAppPending() | |
2328 to determine if there was file-desc input. This doesn't | |
2329 work any more with the signal_event_pipe; XtAppPending() | |
2330 will says "yes" in this case but there isn't really any | |
2331 input. Another way of fixing this problem is for the | |
2332 signal_event_pipe to generate actual input in the form | |
2333 of an identity eval event or something. (#### maybe this | |
2334 actually happens?) */ | |
2335 | |
2336 if (poll_fds_for_input (process_only_mask)) | |
2337 return 1; | |
2338 | |
2339 pending_value = XtAppPending (Xt_app_con); | |
2340 | |
2341 if (pending_value & XtIMTimer) | |
2342 return 1; | |
2343 } | |
2344 | |
2345 /* XtAppPending() can be super-slow, esp. over a network connection. | |
2346 Quantify results have indicated that in some cases the | |
2347 call to detect_input_pending() completely dominates the | |
2348 running time of redisplay(). Fortunately, in a SIGIO world | |
2349 we can more quickly determine whether there are any X events: | |
2350 if an event has happened since the last time we checked, then | |
2351 a SIGIO will have happened. On a machine with broken SIGIO, | |
2352 we'll still be in an OK state -- the sigio_happened flag | |
2353 will get set at least once a second, so we'll be no more than | |
2354 one second behind reality. (In general it's OK if we | |
2355 erroneously report no input pending when input is actually | |
2356 pending() -- preemption is just a bit less efficient, that's | |
2357 all. It's bad bad bad if you err the other way -- you've | |
2358 promised that `next-event' won't block but it actually will, | |
2359 and some action might get delayed until the next time you | |
2360 hit a key.) | |
2361 */ | |
2362 | |
2363 /* quit_check_signal_tick_count is volatile so try to avoid race conditions | |
2364 by using a temporary variable */ | |
2365 tick_count_val = quit_check_signal_tick_count; | |
2366 if (last_quit_check_signal_tick_count != tick_count_val) | |
2367 { | |
2368 last_quit_check_signal_tick_count = tick_count_val; | |
2369 | |
2370 /* We need to drain the entire queue now -- if we only | |
2371 drain part of it, we may later on end up with events | |
2372 actually pending but detect_input_pending() returning | |
2373 false because there wasn't another SIGIO. */ | |
2374 drain_X_queue (); | |
2375 | |
2376 EVENT_CHAIN_LOOP (event, dispatch_event_queue) | |
2377 if (!user_p || command_event_p (event)) | |
2378 return 1; | |
2379 } | |
2380 | |
2381 return 0; | |
2382 } | |
2383 | |
2384 | |
2385 /************************************************************************/ | |
2386 /* replacement for standard string-to-pixel converter */ | |
2387 /************************************************************************/ | |
2388 | |
2389 /* This was constructed by ripping off the standard string-to-pixel | |
2390 converter from Converters.c in the Xt source code and modifying | |
2391 appropriately. */ | |
2392 | |
2393 #if 0 | |
2394 | |
2395 /* This is exported by the Xt library (at least by mine). If this | |
2396 isn't the case somewhere, rename this appropriately and remove | |
2397 the '#if 0'. Note, however, that I got "unknown structure" | |
2398 errors when I tried this. */ | |
2399 XtConvertArgRec Const colorConvertArgs[] = { | |
2400 {XtWidgetBaseOffset, (XtPointer)XtOffsetOf(WidgetRec, core.screen), | |
2401 sizeof(Screen *)}, | |
2402 {XtWidgetBaseOffset, (XtPointer)XtOffsetOf(WidgetRec, core.colormap), | |
2403 sizeof(Colormap)} | |
2404 }; | |
2405 | |
2406 #endif | |
2407 | |
2408 #define done(type, value) \ | |
2409 if (toVal->addr != NULL) { \ | |
2410 if (toVal->size < sizeof(type)) { \ | |
2411 toVal->size = sizeof(type); \ | |
2412 return False; \ | |
2413 } \ | |
2414 *(type*)(toVal->addr) = (value); \ | |
2415 } else { \ | |
2416 static type static_val; \ | |
2417 static_val = (value); \ | |
2418 toVal->addr = (XPointer)&static_val; \ | |
2419 } \ | |
2420 toVal->size = sizeof(type); \ | |
2421 return True /* Caller supplies `;' */ | |
2422 | |
2423 static | |
2424 Boolean EmacsXtCvtStringToPixel ( | |
2425 Display *dpy, | |
2426 XrmValuePtr args, | |
2427 Cardinal *num_args, | |
2428 XrmValuePtr fromVal, | |
2429 XrmValuePtr toVal, | |
2430 XtPointer *closure_ret) | |
2431 { | |
2432 String str = (String)fromVal->addr; | |
2433 XColor screenColor; | |
2434 XColor exactColor; | |
2435 Screen *screen; | |
2436 Colormap colormap; | |
2437 Status status; | |
2438 String params[1]; | |
2439 Cardinal num_params = 1; | |
2440 XtAppContext the_app_con = XtDisplayToApplicationContext (dpy); | |
2441 | |
2442 if (*num_args != 2) { | |
2443 XtAppWarningMsg(the_app_con, "wrongParameters", "cvtStringToPixel", | |
2444 "XtToolkitError", | |
2445 "String to pixel conversion needs screen and colormap arguments", | |
2446 (String *)NULL, (Cardinal *)NULL); | |
2447 return False; | |
2448 } | |
2449 | |
2450 screen = *((Screen **) args[0].addr); | |
2451 colormap = *((Colormap *) args[1].addr); | |
2452 | |
2453 /* The original uses the private function CompareISOLatin1(). | |
2454 Use XmuCompareISOLatin1() if you want, but I don't think it | |
2455 makes any difference here. */ | |
2456 if (strcmp(str, XtDefaultBackground) == 0) { | |
2457 *closure_ret = False; | |
2458 /* This refers to the display's "*reverseVideo" resource. | |
2459 These display resources aren't documented anywhere that | |
2460 I can find, so I'm going to ignore this. */ | |
2461 /* if (pd->rv) done(Pixel, BlackPixelOfScreen(screen)) else */ | |
2462 done(Pixel, WhitePixelOfScreen(screen)); | |
2463 } | |
2464 if (strcmp(str, XtDefaultForeground) == 0) { | |
2465 *closure_ret = False; | |
2466 /* if (pd->rv) done(Pixel, WhitePixelOfScreen(screen)) else */ | |
2467 done(Pixel, BlackPixelOfScreen(screen)); | |
2468 } | |
2469 | |
2470 /* Originally called XAllocNamedColor() here. */ | |
2471 status = XParseColor (DisplayOfScreen(screen), colormap, (char*)str, | |
2472 &screenColor); | |
2473 if (status) { | |
2474 status = allocate_nearest_color (DisplayOfScreen(screen), colormap, | |
2475 &screenColor); | |
2476 } | |
2477 | |
2478 if (status == 0) { | |
2479 params[0] = str; | |
2480 /* Server returns a specific error code but Xlib discards it. Ugh */ | |
2481 if (XLookupColor(DisplayOfScreen(screen), colormap, (char*)str, | |
2482 &exactColor, &screenColor)) { | |
2483 XtAppWarningMsg(the_app_con, "noColormap", "cvtStringToPixel", | |
2484 "XtToolkitError", | |
2485 "Cannot allocate colormap entry for \"%s\"", | |
2486 params, &num_params); | |
2487 | |
2488 } else { | |
2489 XtAppWarningMsg(the_app_con, "badValue", "cvtStringToPixel", | |
2490 "XtToolkitError", | |
2491 "Color name \"%s\" is not defined", params, &num_params); | |
2492 } | |
2493 | |
2494 *closure_ret = False; | |
2495 return False; | |
2496 } else { | |
2497 *closure_ret = (char*)True; | |
2498 done(Pixel, screenColor.pixel); | |
2499 } | |
2500 } | |
2501 | |
2502 /* ARGSUSED */ | |
2503 static void EmacsFreePixel ( | |
2504 XtAppContext app, | |
2505 XrmValuePtr toVal, | |
2506 XtPointer closure, | |
2507 XrmValuePtr args, | |
2508 Cardinal *num_args) | |
2509 { | |
2510 if (*num_args != 2) { | |
2511 XtAppWarningMsg(app, "wrongParameters","freePixel","XtToolkitError", | |
2512 "Freeing a pixel requires screen and colormap arguments", | |
2513 (String *)NULL, (Cardinal *)NULL); | |
2514 return; | |
2515 } | |
2516 | |
2517 if (closure) { | |
2518 Screen *screen = *((Screen **) args[0].addr); | |
2519 Colormap colormap = *((Colormap *) args[1].addr); | |
2520 XFreeColors(DisplayOfScreen(screen), colormap, | |
2521 (unsigned long*)toVal->addr, 1, (unsigned long)0); | |
2522 } | |
2523 } | |
2524 | |
2525 | |
2526 /************************************************************************/ | |
2527 /* initialization */ | |
2528 /************************************************************************/ | |
2529 | |
2530 void | |
2531 syms_of_event_Xt (void) | |
2532 { | |
2533 defsymbol (&Qkey_mapping, "key-mapping"); | |
2534 } | |
2535 | |
2536 void | |
2537 vars_of_event_Xt (void) | |
2538 { | |
2539 dispatch_event_queue = Qnil; | |
2540 staticpro (&dispatch_event_queue); | |
2541 dispatch_event_queue_tail = Qnil; | |
2542 | |
2543 /* this function only makes safe calls */ | |
2544 init_what_input_once (); | |
2545 | |
2546 Xt_event_stream = | |
2547 (struct event_stream *) xmalloc (sizeof (struct event_stream)); | |
2548 Xt_event_stream->event_pending_p = emacs_Xt_event_pending_p; | |
2549 Xt_event_stream->next_event_cb = emacs_Xt_next_event; | |
2550 Xt_event_stream->handle_magic_event_cb= emacs_Xt_handle_magic_event; | |
2551 Xt_event_stream->add_timeout_cb = emacs_Xt_add_timeout; | |
2552 Xt_event_stream->remove_timeout_cb = emacs_Xt_remove_timeout; | |
2553 Xt_event_stream->select_console_cb = emacs_Xt_select_console; | |
2554 Xt_event_stream->unselect_console_cb = emacs_Xt_unselect_console; | |
2555 Xt_event_stream->select_process_cb = emacs_Xt_select_process; | |
2556 Xt_event_stream->unselect_process_cb = emacs_Xt_unselect_process; | |
2557 Xt_event_stream->quit_p_cb = emacs_Xt_quit_p; | |
2558 | |
2559 DEFVAR_BOOL ("modifier-keys-are-sticky", &modifier_keys_are_sticky /* | |
2560 *Non-nil makes modifier keys sticky. | |
2561 This means that you can release the modifier key before pressing down | |
2562 the key that you wish to be modified. Although this is non-standard | |
2563 behavior, it is recommended because it reduces the strain on your hand, | |
2564 thus reducing the incidence of the dreaded Emacs-pinky syndrome. | |
2565 */ ); | |
2566 modifier_keys_are_sticky = 0; | |
2567 | |
2568 DEFVAR_BOOL ("x-allow-sendevents", &x_allow_sendevents /* | |
2569 *Non-nil means to allow synthetic events. Nil means they are ignored. | |
2570 Beware: allowing emacs to process SendEvents opens a big security hole. | |
2571 */ ); | |
2572 x_allow_sendevents = 0; | |
2573 | |
2574 #ifdef DEBUG_XEMACS | |
2575 DEFVAR_INT ("x-debug-events", &x_debug_events /* | |
2576 If non-zero, display debug information about X events that XEmacs sees. | |
2577 Information is displayed on stderr. Currently defined values are: | |
2578 | |
2579 1 == non-verbose output | |
2580 2 == verbose output | |
2581 */ ); | |
2582 x_debug_events = 0; | |
2583 #endif | |
2584 | |
2585 the_Xt_timeout_blocktype = Blocktype_new (struct Xt_timeout_blocktype); | |
2586 | |
2587 last_quit_check_signal_tick_count = 0; | |
2588 } | |
2589 | |
2590 void | |
2591 init_event_Xt_late (void) /* called when already initialized */ | |
2592 { | |
2593 timeout_id_tick = 1; | |
2594 pending_timeouts = 0; | |
2595 completed_timeouts = 0; | |
2596 | |
2597 event_stream = Xt_event_stream; | |
2598 XtToolkitInitialize (); | |
2599 Xt_app_con = XtCreateApplicationContext (); | |
2600 XtAppSetFallbackResources (Xt_app_con, (String *) x_fallback_resources); | |
2601 | |
2602 /* In xselect.c */ | |
2603 x_selection_timeout = (XtAppGetSelectionTimeout (Xt_app_con) / 1000); | |
2604 XSetErrorHandler (x_error_handler); | |
2605 XSetIOErrorHandler (x_IO_error_handler); | |
2606 | |
2607 XtAppAddInput (Xt_app_con, signal_event_pipe[0], | |
2608 (XtPointer) (XtInputReadMask /* | XtInputExceptMask */), | |
2609 Xt_what_callback, 0); | |
2610 | |
2611 XtAppSetTypeConverter (Xt_app_con, XtRString, XtRPixel, | |
2612 EmacsXtCvtStringToPixel, | |
2613 (XtConvertArgList) colorConvertArgs, | |
2614 2, XtCacheByDisplay, EmacsFreePixel); | |
2615 } |