Mercurial > hg > xemacs-beta
comparison src/elhash.c @ 0:376386a54a3c r19-14
Import from CVS: tag r19-14
author | cvs |
---|---|
date | Mon, 13 Aug 2007 08:45:50 +0200 |
parents | |
children | ac2d302a0011 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:376386a54a3c |
---|---|
1 /* Lisp interface to hash tables. | |
2 Copyright (C) 1992, 1993, 1994 Free Software Foundation, Inc. | |
3 Copyright (C) 1995, 1996 Ben Wing. | |
4 | |
5 This file is part of XEmacs. | |
6 | |
7 XEmacs is free software; you can redistribute it and/or modify it | |
8 under the terms of the GNU General Public License as published by the | |
9 Free Software Foundation; either version 2, or (at your option) any | |
10 later version. | |
11 | |
12 XEmacs is distributed in the hope that it will be useful, but WITHOUT | |
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |
15 for more details. | |
16 | |
17 You should have received a copy of the GNU General Public License | |
18 along with XEmacs; see the file COPYING. If not, write to | |
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330, | |
20 Boston, MA 02111-1307, USA. */ | |
21 | |
22 /* Synched up with: Not in FSF. */ | |
23 | |
24 #include <config.h> | |
25 #include "lisp.h" | |
26 #include "hash.h" | |
27 #include "elhash.h" | |
28 #include "bytecode.h" | |
29 | |
30 Lisp_Object Qhashtablep; | |
31 | |
32 #define LISP_OBJECTS_PER_HENTRY (sizeof (hentry) / sizeof (Lisp_Object))/* 2 */ | |
33 | |
34 struct hashtable_struct | |
35 { | |
36 struct lcrecord_header header; | |
37 unsigned int fullness; | |
38 unsigned long (*hash_function) (CONST void *); | |
39 int (*test_function) (CONST void *, CONST void *); | |
40 Lisp_Object zero_entry; | |
41 Lisp_Object harray; | |
42 enum hashtable_type type; /* whether and how this hashtable is weak */ | |
43 Lisp_Object next_weak; /* Used to chain together all of the weak | |
44 hashtables. Don't mark through this. */ | |
45 }; | |
46 | |
47 static Lisp_Object Vall_weak_hashtables; | |
48 | |
49 static Lisp_Object mark_hashtable (Lisp_Object, void (*) (Lisp_Object)); | |
50 static void print_hashtable (Lisp_Object, Lisp_Object, int); | |
51 DEFINE_LRECORD_IMPLEMENTATION ("hashtable", hashtable, | |
52 mark_hashtable, print_hashtable, 0, 0, 0, | |
53 struct hashtable_struct); | |
54 | |
55 static Lisp_Object | |
56 mark_hashtable (Lisp_Object obj, void (*markobj) (Lisp_Object)) | |
57 { | |
58 struct hashtable_struct *table = XHASHTABLE (obj); | |
59 | |
60 if (table->type != HASHTABLE_NONWEAK) | |
61 { | |
62 /* If the table is weak, we don't want to mark the keys and values | |
63 (we scan over them after everything else has been marked, | |
64 and mark or remove them as necessary). Note that we will mark | |
65 the table->harray itself at the same time; it's hard to mark | |
66 that here without also marking its contents. */ | |
67 return Qnil; | |
68 } | |
69 ((markobj) (table->zero_entry)); | |
70 return (table->harray); | |
71 } | |
72 | |
73 static void | |
74 print_hashtable (Lisp_Object obj, Lisp_Object printcharfun, int escapeflag) | |
75 { | |
76 struct hashtable_struct *table = XHASHTABLE (obj); | |
77 char buf[200]; | |
78 if (print_readably) | |
79 error ("printing unreadable object #<hashtable 0x%x>", | |
80 table->header.uid); | |
81 sprintf (buf, GETTEXT ("#<%shashtable %d/%ld 0x%x>"), | |
82 (table->type == HASHTABLE_WEAK ? "weak " : | |
83 table->type == HASHTABLE_KEY_WEAK ? "key-weak " : | |
84 table->type == HASHTABLE_VALUE_WEAK ? "value-weak " : | |
85 table->type == HASHTABLE_KEY_CAR_WEAK ? "key-car-weak " : | |
86 table->type == HASHTABLE_VALUE_CAR_WEAK ? "value-car-weak " : | |
87 ""), | |
88 table->fullness, | |
89 (vector_length (XVECTOR (table->harray)) / LISP_OBJECTS_PER_HENTRY), | |
90 table->header.uid); | |
91 write_c_string (buf, printcharfun); | |
92 } | |
93 | |
94 static void | |
95 ht_copy_to_c (struct hashtable_struct *ht, | |
96 c_hashtable c_table) | |
97 { | |
98 int len; | |
99 | |
100 c_table->harray = (void *) vector_data (XVECTOR (ht->harray)); | |
101 c_table->zero_set = (!GC_UNBOUNDP (ht->zero_entry)); | |
102 c_table->zero_entry = LISP_TO_VOID (ht->zero_entry); | |
103 len = vector_length (XVECTOR (ht->harray)); | |
104 if (len < 0) | |
105 { | |
106 /* #### if alloc.c mark_object() changes, this must change too. */ | |
107 /* barf gag retch. When a vector is marked, its len is | |
108 made less than 0. In the prune_weak_hashtables() stage, | |
109 we are called on vectors that are like this, and we must | |
110 be able to deal. */ | |
111 assert (gc_in_progress); | |
112 len = -1 - len; | |
113 } | |
114 c_table->size = len/LISP_OBJECTS_PER_HENTRY; | |
115 c_table->fullness = ht->fullness; | |
116 c_table->hash_function = ht->hash_function; | |
117 c_table->test_function = ht->test_function; | |
118 XSETHASHTABLE (c_table->elisp_table, ht); | |
119 } | |
120 | |
121 static void | |
122 ht_copy_from_c (c_hashtable c_table, | |
123 struct hashtable_struct *ht) | |
124 { | |
125 struct Lisp_Vector dummy; | |
126 /* C is truly hateful */ | |
127 void *vec_addr | |
128 = ((char *) c_table->harray | |
129 - ((char *) &(dummy.contents) - (char *) &dummy)); | |
130 | |
131 XSETVECTOR (ht->harray, vec_addr); | |
132 if (c_table->zero_set) | |
133 VOID_TO_LISP (ht->zero_entry, c_table->zero_entry); | |
134 else | |
135 ht->zero_entry = Qunbound; | |
136 ht->fullness = c_table->fullness; | |
137 } | |
138 | |
139 | |
140 static struct hashtable_struct * | |
141 allocate_hashtable (void) | |
142 { | |
143 struct hashtable_struct *table | |
144 = alloc_lcrecord (sizeof (struct hashtable_struct), lrecord_hashtable); | |
145 table->harray = Qnil; | |
146 table->zero_entry = Qunbound; | |
147 table->fullness = 0; | |
148 table->hash_function = 0; | |
149 table->test_function = 0; | |
150 return (table); | |
151 } | |
152 | |
153 char * | |
154 elisp_hvector_malloc (unsigned int bytes, Lisp_Object table) | |
155 { | |
156 Lisp_Object new_vector; | |
157 struct hashtable_struct *ht; | |
158 | |
159 ht = XHASHTABLE (table); | |
160 assert (bytes > vector_length (XVECTOR (ht->harray)) * sizeof (Lisp_Object)); | |
161 new_vector = make_vector ((bytes / sizeof (Lisp_Object)), Qzero); | |
162 return ((char *) (vector_data (XVECTOR (new_vector)))); | |
163 } | |
164 | |
165 void | |
166 elisp_hvector_free (void *ptr, Lisp_Object table) | |
167 { | |
168 struct hashtable_struct *ht = XHASHTABLE (table); | |
169 #if defined (USE_ASSERTIONS) || defined (DEBUG_XEMACS) | |
170 Lisp_Object current_vector = ht->harray; | |
171 #endif | |
172 | |
173 assert (((void *) vector_data (XVECTOR (current_vector))) == ptr); | |
174 ht->harray = Qnil; /* Let GC do its job */ | |
175 return; | |
176 } | |
177 | |
178 | |
179 DEFUN ("hashtablep", Fhashtablep, Shashtablep, 1, 1, 0 /* | |
180 Return t if OBJ is a hashtable, else nil. | |
181 */ ) | |
182 (obj) | |
183 Lisp_Object obj; | |
184 { | |
185 return ((HASHTABLEP (obj)) ? Qt : Qnil); | |
186 } | |
187 | |
188 | |
189 | |
190 | |
191 #if 0 /* I don't think these are needed any more. | |
192 If using the general lisp_object_equal_*() functions | |
193 causes efficiency problems, these can be resurrected. --ben */ | |
194 /* equality and hash functions for Lisp strings */ | |
195 int | |
196 lisp_string_equal (CONST void *x1, CONST void *x2) | |
197 { | |
198 Lisp_Object str1, str2; | |
199 CVOID_TO_LISP (str1, x1); | |
200 CVOID_TO_LISP (str2, x2); | |
201 return !strcmp ((char *) string_data (XSTRING (str1)), | |
202 (char *) string_data (XSTRING (str2))); | |
203 } | |
204 | |
205 unsigned long | |
206 lisp_string_hash (CONST void *x) | |
207 { | |
208 Lisp_Object str; | |
209 CVOID_TO_LISP (str, x); | |
210 return hash_string (string_data (XSTRING (str)), | |
211 string_length (XSTRING (str))); | |
212 } | |
213 | |
214 #endif /* 0 */ | |
215 | |
216 static int | |
217 lisp_object_eql_equal (CONST void *x1, CONST void *x2) | |
218 { | |
219 Lisp_Object obj1, obj2; | |
220 CVOID_TO_LISP (obj1, x1); | |
221 CVOID_TO_LISP (obj2, x2); | |
222 return | |
223 (FLOATP (obj1) ? !NILP (Fequal (obj1, obj2)) : EQ (obj1, obj2)); | |
224 } | |
225 | |
226 static unsigned long | |
227 lisp_object_eql_hash (CONST void *x) | |
228 { | |
229 Lisp_Object obj; | |
230 CVOID_TO_LISP (obj, x); | |
231 if (FLOATP (obj)) | |
232 return internal_hash (obj, 0); | |
233 else | |
234 return LISP_HASH (obj); | |
235 } | |
236 | |
237 static int | |
238 lisp_object_equal_equal (CONST void *x1, CONST void *x2) | |
239 { | |
240 Lisp_Object obj1, obj2; | |
241 CVOID_TO_LISP (obj1, x1); | |
242 CVOID_TO_LISP (obj2, x2); | |
243 return !NILP (Fequal (obj1, obj2)); | |
244 } | |
245 | |
246 static unsigned long | |
247 lisp_object_equal_hash (CONST void *x) | |
248 { | |
249 Lisp_Object obj; | |
250 CVOID_TO_LISP (obj, x); | |
251 return internal_hash (obj, 0); | |
252 } | |
253 | |
254 Lisp_Object | |
255 make_lisp_hashtable (int size, | |
256 enum hashtable_type type, | |
257 enum hashtable_test_fun test) | |
258 { | |
259 Lisp_Object result; | |
260 struct hashtable_struct *table = allocate_hashtable (); | |
261 | |
262 table->harray = make_vector ((compute_harray_size (size) | |
263 * LISP_OBJECTS_PER_HENTRY), | |
264 Qzero); | |
265 switch (test) | |
266 { | |
267 case HASHTABLE_EQ: | |
268 table->test_function = 0; | |
269 table->hash_function = 0; | |
270 break; | |
271 | |
272 case HASHTABLE_EQL: | |
273 table->test_function = lisp_object_eql_equal; | |
274 table->hash_function = lisp_object_eql_hash; | |
275 break; | |
276 | |
277 case HASHTABLE_EQUAL: | |
278 table->test_function = lisp_object_equal_equal; | |
279 table->hash_function = lisp_object_equal_hash; | |
280 break; | |
281 | |
282 default: | |
283 abort (); | |
284 } | |
285 | |
286 table->type = type; | |
287 XSETHASHTABLE (result, table); | |
288 | |
289 if (table->type != HASHTABLE_NONWEAK) | |
290 { | |
291 table->next_weak = Vall_weak_hashtables; | |
292 Vall_weak_hashtables = result; | |
293 } | |
294 else | |
295 table->next_weak = Qunbound; | |
296 | |
297 return (result); | |
298 } | |
299 | |
300 static enum hashtable_test_fun | |
301 decode_hashtable_test_fun (Lisp_Object sym) | |
302 { | |
303 if (NILP (sym)) | |
304 return HASHTABLE_EQL; | |
305 | |
306 CHECK_SYMBOL (sym); | |
307 | |
308 if (EQ (sym, Qeq)) | |
309 return HASHTABLE_EQ; | |
310 if (EQ (sym, Qequal)) | |
311 return HASHTABLE_EQUAL; | |
312 if (EQ (sym, Qeql)) | |
313 return HASHTABLE_EQL; | |
314 signal_simple_error ("Invalid hashtable test fun", sym); | |
315 return 0; /* not reached */ | |
316 } | |
317 | |
318 DEFUN ("make-hashtable", Fmake_hashtable, Smake_hashtable, 1, 2, 0 /* | |
319 Make a hashtable of initial size SIZE. | |
320 Comparison between keys is done with TEST-FUN, which must be one of | |
321 `eq', `eql', or `equal'. The default is `eql'; i.e. two keys must | |
322 be the same object (or have the same floating-point value, for floats) | |
323 to be considered equivalent. | |
324 | |
325 See also `make-weak-hashtable', `make-key-weak-hashtable', and | |
326 `make-value-weak-hashtable'. | |
327 */ ) | |
328 (size, test_fun) | |
329 Lisp_Object size, test_fun; | |
330 { | |
331 CHECK_NATNUM (size); | |
332 return make_lisp_hashtable (XINT (size), HASHTABLE_NONWEAK, | |
333 decode_hashtable_test_fun (test_fun)); | |
334 } | |
335 | |
336 DEFUN ("copy-hashtable", Fcopy_hashtable, Scopy_hashtable, 1, 1, 0 /* | |
337 Make a new hashtable which contains the same keys and values | |
338 as the given table. The keys and values will not themselves be copied. | |
339 */ ) | |
340 (old_table) | |
341 Lisp_Object old_table; | |
342 { | |
343 struct _C_hashtable old_htbl; | |
344 struct _C_hashtable new_htbl; | |
345 struct hashtable_struct *old_ht; | |
346 struct hashtable_struct *new_ht; | |
347 Lisp_Object result; | |
348 | |
349 CHECK_HASHTABLE (old_table); | |
350 old_ht = XHASHTABLE (old_table); | |
351 ht_copy_to_c (old_ht, &old_htbl); | |
352 | |
353 /* we can't just call Fmake_hashtable() here because that will make a | |
354 table that is slightly larger than the one we're trying to copy, | |
355 which will make copy_hash() blow up. */ | |
356 new_ht = allocate_hashtable (); | |
357 new_ht->fullness = 0; | |
358 new_ht->zero_entry = Qunbound; | |
359 new_ht->hash_function = old_ht->hash_function; | |
360 new_ht->test_function = old_ht->test_function; | |
361 new_ht->harray = Fmake_vector (Flength (old_ht->harray), Qzero); | |
362 ht_copy_to_c (new_ht, &new_htbl); | |
363 copy_hash (&new_htbl, &old_htbl); | |
364 ht_copy_from_c (&new_htbl, new_ht); | |
365 new_ht->type = old_ht->type; | |
366 XSETHASHTABLE (result, new_ht); | |
367 | |
368 if (UNBOUNDP (old_ht->next_weak)) | |
369 new_ht->next_weak = Qunbound; | |
370 else | |
371 { | |
372 new_ht->next_weak = Vall_weak_hashtables; | |
373 Vall_weak_hashtables = result; | |
374 } | |
375 | |
376 return (result); | |
377 } | |
378 | |
379 | |
380 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0 /* | |
381 Find hash value for KEY in TABLE. | |
382 If there is no corresponding value, return DEFAULT (defaults to nil). | |
383 */ ) | |
384 (key, table, defalt) | |
385 Lisp_Object key, table, defalt; /* One can't even spell correctly in C */ | |
386 { | |
387 CONST void *vval; | |
388 struct _C_hashtable htbl; | |
389 if (!gc_in_progress) | |
390 CHECK_HASHTABLE (table); | |
391 ht_copy_to_c (XHASHTABLE (table), &htbl); | |
392 if (gethash (LISP_TO_VOID (key), &htbl, &vval)) | |
393 { | |
394 Lisp_Object val; | |
395 CVOID_TO_LISP (val, vval); | |
396 return val; | |
397 } | |
398 else | |
399 return defalt; | |
400 } | |
401 | |
402 | |
403 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0 /* | |
404 Remove hash value for KEY in TABLE. | |
405 */ ) | |
406 (key, table) | |
407 Lisp_Object key, table; | |
408 { | |
409 struct _C_hashtable htbl; | |
410 CHECK_HASHTABLE (table); | |
411 | |
412 ht_copy_to_c (XHASHTABLE (table), &htbl); | |
413 remhash (LISP_TO_VOID (key), &htbl); | |
414 ht_copy_from_c (&htbl, XHASHTABLE (table)); | |
415 return Qnil; | |
416 } | |
417 | |
418 | |
419 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0 /* | |
420 Hash KEY to VAL in TABLE. | |
421 */ ) | |
422 (key, val, table) | |
423 Lisp_Object key, val, table; | |
424 { | |
425 struct hashtable_struct *ht; | |
426 void *vkey = LISP_TO_VOID (key); | |
427 | |
428 CHECK_HASHTABLE (table); | |
429 ht = XHASHTABLE (table); | |
430 if (!vkey) | |
431 ht->zero_entry = val; | |
432 else | |
433 { | |
434 struct gcpro gcpro1, gcpro2, gcpro3; | |
435 struct _C_hashtable htbl; | |
436 | |
437 ht_copy_to_c (XHASHTABLE (table), &htbl); | |
438 GCPRO3 (key, val, table); | |
439 puthash (vkey, LISP_TO_VOID (val), &htbl); | |
440 ht_copy_from_c (&htbl, XHASHTABLE (table)); | |
441 UNGCPRO; | |
442 } | |
443 return (val); | |
444 } | |
445 | |
446 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0 /* | |
447 Flush TABLE. | |
448 */ ) | |
449 (table) | |
450 Lisp_Object table; | |
451 { | |
452 struct _C_hashtable htbl; | |
453 CHECK_HASHTABLE (table); | |
454 ht_copy_to_c (XHASHTABLE (table), &htbl); | |
455 clrhash (&htbl); | |
456 ht_copy_from_c (&htbl, XHASHTABLE (table)); | |
457 return Qnil; | |
458 } | |
459 | |
460 DEFUN ("hashtable-fullness", Fhashtable_fullness, Shashtable_fullness, 1, 1, 0 /* | |
461 Return number of entries in TABLE. | |
462 */ ) | |
463 (table) | |
464 Lisp_Object table; | |
465 { | |
466 struct _C_hashtable htbl; | |
467 CHECK_HASHTABLE (table); | |
468 ht_copy_to_c (XHASHTABLE (table), &htbl); | |
469 return (make_int (htbl.fullness)); | |
470 } | |
471 | |
472 | |
473 static void | |
474 verify_function (Lisp_Object function, CONST char *description) | |
475 { | |
476 if (SYMBOLP (function)) | |
477 { | |
478 if (NILP (function)) | |
479 return; | |
480 else | |
481 function = indirect_function (function, 1); | |
482 } | |
483 if (SUBRP (function) || COMPILED_FUNCTIONP (function)) | |
484 return; | |
485 else if (CONSP (function)) | |
486 { | |
487 Lisp_Object funcar = Fcar (function); | |
488 if ((SYMBOLP (funcar)) | |
489 && (EQ (funcar, Qlambda) | |
490 #ifdef MOCKLISP_SUPPORT | |
491 || EQ (funcar, Qmocklisp) | |
492 #endif | |
493 || EQ (funcar, Qautoload))) | |
494 return; | |
495 } | |
496 signal_error (Qinvalid_function, list1 (function)); | |
497 } | |
498 | |
499 static void | |
500 lisp_maphash_function (CONST void *void_key, | |
501 void *void_val, | |
502 void *void_fn) | |
503 { | |
504 /* This function can GC */ | |
505 Lisp_Object key, val, fn; | |
506 CVOID_TO_LISP (key, void_key); | |
507 VOID_TO_LISP (val, void_val); | |
508 VOID_TO_LISP (fn, void_fn); | |
509 call2 (fn, key, val); | |
510 } | |
511 | |
512 | |
513 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0 /* | |
514 Map FUNCTION over entries in TABLE, calling it with two args, | |
515 each key and value in the table. | |
516 */ ) | |
517 (function, table) | |
518 Lisp_Object function, table; | |
519 { | |
520 struct _C_hashtable htbl; | |
521 struct gcpro gcpro1, gcpro2; | |
522 | |
523 verify_function (function, GETTEXT ("hashtable mapping function")); | |
524 CHECK_HASHTABLE (table); | |
525 ht_copy_to_c (XHASHTABLE (table), &htbl); | |
526 GCPRO2 (table, function); | |
527 maphash (lisp_maphash_function, &htbl, LISP_TO_VOID (function)); | |
528 UNGCPRO; | |
529 return Qnil; | |
530 } | |
531 | |
532 | |
533 /* This function is for mapping a *C* function over the elements of a | |
534 lisp hashtable. | |
535 */ | |
536 void | |
537 elisp_maphash (maphash_function function, Lisp_Object table, void *closure) | |
538 { | |
539 struct _C_hashtable htbl; | |
540 | |
541 if (!gc_in_progress) CHECK_HASHTABLE (table); | |
542 ht_copy_to_c (XHASHTABLE (table), &htbl); | |
543 maphash (function, &htbl, closure); | |
544 } | |
545 | |
546 void | |
547 elisp_map_remhash (remhash_predicate function, | |
548 Lisp_Object table, | |
549 void *closure) | |
550 { | |
551 struct _C_hashtable htbl; | |
552 | |
553 if (!gc_in_progress) CHECK_HASHTABLE (table); | |
554 ht_copy_to_c (XHASHTABLE (table), &htbl); | |
555 map_remhash (function, &htbl, closure); | |
556 ht_copy_from_c (&htbl, XHASHTABLE (table)); | |
557 } | |
558 | |
559 #if 0 | |
560 void | |
561 elisp_table_op (Lisp_Object table, generic_hashtable_op op, void *arg1, | |
562 void *arg2, void *arg3) | |
563 { | |
564 struct _C_hashtable htbl; | |
565 CHECK_HASHTABLE (table); | |
566 ht_copy_to_c (XHASHTABLE (table), &htbl); | |
567 (*op) (&htbl, arg1, arg2, arg3); | |
568 ht_copy_from_c (&htbl, XHASHTABLE (table)); | |
569 } | |
570 #endif /* 0 */ | |
571 | |
572 | |
573 | |
574 DEFUN ("make-weak-hashtable", Fmake_weak_hashtable, Smake_weak_hashtable, | |
575 1, 2, 0 /* | |
576 Make a fully weak hashtable of initial size SIZE. | |
577 A weak hashtable is one whose pointers do not count as GC referents: | |
578 for any key-value pair in the hashtable, if the only remaining pointer | |
579 to either the key or the value is in a weak hash table, then the pair | |
580 will be removed from the table, and the key and value collected. A | |
581 non-weak hash table (or any other pointer) would prevent the object | |
582 from being collected. | |
583 | |
584 You can also create semi-weak hashtables; see `make-key-weak-hashtable' | |
585 and `make-value-weak-hashtable'. | |
586 */ ) | |
587 (size, test_fun) | |
588 Lisp_Object size, test_fun; | |
589 { | |
590 CHECK_NATNUM (size); | |
591 return make_lisp_hashtable (XINT (size), HASHTABLE_WEAK, | |
592 decode_hashtable_test_fun (test_fun)); | |
593 } | |
594 | |
595 DEFUN ("make-key-weak-hashtable", Fmake_key_weak_hashtable, | |
596 Smake_key_weak_hashtable, 1, 2, 0 /* | |
597 Make a key-weak hashtable of initial size SIZE. | |
598 A key-weak hashtable is similar to a fully-weak hashtable (see | |
599 `make-weak-hashtable') except that a key-value pair will be removed | |
600 only if the key remains unmarked outside of weak hashtables. The pair | |
601 will remain in the hashtable if the key is pointed to by something other | |
602 than a weak hashtable, even if the value is not. | |
603 */ ) | |
604 (size, test_fun) | |
605 Lisp_Object size, test_fun; | |
606 { | |
607 CHECK_NATNUM (size); | |
608 return make_lisp_hashtable (XINT (size), HASHTABLE_KEY_WEAK, | |
609 decode_hashtable_test_fun (test_fun)); | |
610 } | |
611 | |
612 DEFUN ("make-value-weak-hashtable", Fmake_value_weak_hashtable, | |
613 Smake_value_weak_hashtable, 1, 2, 0 /* | |
614 Make a value-weak hashtable of initial size SIZE. | |
615 A value-weak hashtable is similar to a fully-weak hashtable (see | |
616 `make-weak-hashtable') except that a key-value pair will be removed only | |
617 if the value remains unmarked outside of weak hashtables. The pair will | |
618 remain in the hashtable if the value is pointed to by something other | |
619 than a weak hashtable, even if the key is not. | |
620 */ ) | |
621 (size, test_fun) | |
622 Lisp_Object size, test_fun; | |
623 { | |
624 CHECK_NATNUM (size); | |
625 return make_lisp_hashtable (XINT (size), HASHTABLE_VALUE_WEAK, | |
626 decode_hashtable_test_fun (test_fun)); | |
627 } | |
628 | |
629 struct marking_closure | |
630 { | |
631 int (*obj_marked_p) (Lisp_Object); | |
632 void (*markobj) (Lisp_Object); | |
633 enum hashtable_type type; | |
634 int did_mark; | |
635 }; | |
636 | |
637 static void | |
638 marking_mapper (CONST void *key, void *contents, void *closure) | |
639 { | |
640 Lisp_Object keytem, valuetem; | |
641 struct marking_closure *fmh = | |
642 (struct marking_closure *) closure; | |
643 | |
644 /* This function is called over each pair in the hashtable. | |
645 We complete the marking for semi-weak hashtables. */ | |
646 CVOID_TO_LISP (keytem, key); | |
647 CVOID_TO_LISP (valuetem, contents); | |
648 | |
649 switch (fmh->type) | |
650 { | |
651 case HASHTABLE_KEY_WEAK: | |
652 if ((fmh->obj_marked_p) (keytem) && | |
653 !(fmh->obj_marked_p) (valuetem)) | |
654 { | |
655 (fmh->markobj) (valuetem); | |
656 fmh->did_mark = 1; | |
657 } | |
658 break; | |
659 | |
660 case HASHTABLE_VALUE_WEAK: | |
661 if ((fmh->obj_marked_p) (valuetem) && | |
662 !(fmh->obj_marked_p) (keytem)) | |
663 { | |
664 (fmh->markobj) (keytem); | |
665 fmh->did_mark = 1; | |
666 } | |
667 break; | |
668 | |
669 case HASHTABLE_KEY_CAR_WEAK: | |
670 if (!CONSP (keytem) || (fmh->obj_marked_p) (XCAR (keytem))) | |
671 { | |
672 if (!(fmh->obj_marked_p) (keytem)) | |
673 { | |
674 (fmh->markobj) (keytem); | |
675 fmh->did_mark = 1; | |
676 } | |
677 if (!(fmh->obj_marked_p) (valuetem)) | |
678 { | |
679 (fmh->markobj) (valuetem); | |
680 fmh->did_mark = 1; | |
681 } | |
682 } | |
683 break; | |
684 | |
685 case HASHTABLE_VALUE_CAR_WEAK: | |
686 if (!CONSP (valuetem) || (fmh->obj_marked_p) (XCAR (valuetem))) | |
687 { | |
688 if (!(fmh->obj_marked_p) (keytem)) | |
689 { | |
690 (fmh->markobj) (keytem); | |
691 fmh->did_mark = 1; | |
692 } | |
693 if (!(fmh->obj_marked_p) (valuetem)) | |
694 { | |
695 (fmh->markobj) (valuetem); | |
696 fmh->did_mark = 1; | |
697 } | |
698 } | |
699 break; | |
700 | |
701 default: | |
702 abort (); /* Huh? */ | |
703 } | |
704 | |
705 return; | |
706 } | |
707 | |
708 int | |
709 finish_marking_weak_hashtables (int (*obj_marked_p) (Lisp_Object), | |
710 void (*markobj) (Lisp_Object)) | |
711 { | |
712 Lisp_Object rest; | |
713 int did_mark = 0; | |
714 | |
715 for (rest = Vall_weak_hashtables; | |
716 !GC_NILP (rest); | |
717 rest = XHASHTABLE (rest)->next_weak) | |
718 { | |
719 enum hashtable_type type; | |
720 | |
721 if (! ((*obj_marked_p) (rest))) | |
722 /* The hashtable is probably garbage. Ignore it. */ | |
723 continue; | |
724 type = XHASHTABLE (rest)->type; | |
725 if (type == HASHTABLE_KEY_WEAK || type == HASHTABLE_VALUE_WEAK | |
726 || type == HASHTABLE_KEY_CAR_WEAK | |
727 || type == HASHTABLE_VALUE_CAR_WEAK) | |
728 { | |
729 struct marking_closure fmh; | |
730 | |
731 fmh.obj_marked_p = obj_marked_p; | |
732 fmh.markobj = markobj; | |
733 fmh.type = type; | |
734 fmh.did_mark = 0; | |
735 /* Now, scan over all the pairs. For all pairs that are | |
736 half-marked, we may need to mark the other half if we're | |
737 keeping this pair. */ | |
738 elisp_maphash (marking_mapper, rest, &fmh); | |
739 if (fmh.did_mark) | |
740 did_mark = 1; | |
741 } | |
742 | |
743 /* #### If alloc.c mark_object changes, this must change also... */ | |
744 { | |
745 /* Now mark the vector itself. (We don't need to call markobj | |
746 here because we know that everything *in* it is already marked, | |
747 we just need to prevent the vector itself from disappearing.) | |
748 (The remhash above has taken care of zero_entry.) | |
749 */ | |
750 struct Lisp_Vector *ptr = XVECTOR (XHASHTABLE (rest)->harray); | |
751 int len = vector_length (ptr); | |
752 if (len >= 0) | |
753 { | |
754 ptr->size = -1 - len; | |
755 did_mark = 1; | |
756 } | |
757 /* else it's already marked (remember, this function is iterated | |
758 until marking stops) */ | |
759 } | |
760 } | |
761 | |
762 return did_mark; | |
763 } | |
764 | |
765 struct pruning_closure | |
766 { | |
767 int (*obj_marked_p) (Lisp_Object); | |
768 }; | |
769 | |
770 static int | |
771 pruning_mapper (CONST void *key, CONST void *contents, void *closure) | |
772 { | |
773 Lisp_Object keytem, valuetem; | |
774 struct pruning_closure *fmh = | |
775 (struct pruning_closure *) closure; | |
776 | |
777 /* This function is called over each pair in the hashtable. | |
778 We remove the pairs that aren't completely marked (everything | |
779 that is going to stay ought to have been marked already | |
780 by the finish_marking stage). */ | |
781 CVOID_TO_LISP (keytem, key); | |
782 CVOID_TO_LISP (valuetem, contents); | |
783 | |
784 return (! ((*fmh->obj_marked_p) (keytem) && | |
785 (*fmh->obj_marked_p) (valuetem))); | |
786 } | |
787 | |
788 void | |
789 prune_weak_hashtables (int (*obj_marked_p) (Lisp_Object)) | |
790 { | |
791 Lisp_Object rest, prev = Qnil; | |
792 for (rest = Vall_weak_hashtables; | |
793 !GC_NILP (rest); | |
794 rest = XHASHTABLE (rest)->next_weak) | |
795 { | |
796 if (! ((*obj_marked_p) (rest))) | |
797 { | |
798 /* This table itself is garbage. Remove it from the list. */ | |
799 if (GC_NILP (prev)) | |
800 Vall_weak_hashtables = XHASHTABLE (rest)->next_weak; | |
801 else | |
802 XHASHTABLE (prev)->next_weak = XHASHTABLE (rest)->next_weak; | |
803 } | |
804 else | |
805 { | |
806 struct pruning_closure fmh; | |
807 fmh.obj_marked_p = obj_marked_p; | |
808 /* Now, scan over all the pairs. Remove all of the pairs | |
809 in which the key or value, or both, is unmarked | |
810 (depending on the type of weak hashtable). */ | |
811 elisp_map_remhash (pruning_mapper, rest, &fmh); | |
812 prev = rest; | |
813 } | |
814 } | |
815 } | |
816 | |
817 /* Return a hash value for an array of Lisp_Objects of size SIZE. */ | |
818 | |
819 unsigned long | |
820 internal_array_hash (Lisp_Object *arr, int size, int depth) | |
821 { | |
822 int i; | |
823 unsigned long hash = 0; | |
824 | |
825 if (size <= 5) | |
826 { | |
827 for (i = 0; i < size; i++) | |
828 hash = HASH2 (hash, internal_hash (arr[i], depth + 1)); | |
829 return hash; | |
830 } | |
831 | |
832 /* just pick five elements scattered throughout the array. | |
833 A slightly better approach would be to offset by some | |
834 noise factor from the points chosen below. */ | |
835 for (i = 0; i < 5; i++) | |
836 hash = HASH2 (hash, internal_hash (arr[i*size/5], depth + 1)); | |
837 | |
838 return hash; | |
839 } | |
840 | |
841 /* Return a hash value for a Lisp_Object. This is for use when hashing | |
842 objects with the comparison being `equal' (for `eq', you can just | |
843 use the Lisp_Object itself as the hash value). You need to make a | |
844 tradeoff between the speed of the hash function and how good the | |
845 hashing is. In particular, the hash function needs to be FAST, | |
846 so you can't just traipse down the whole tree hashing everything | |
847 together. Most of the time, objects will differ in the first | |
848 few elements you hash. Thus, we only go to a short depth (5) | |
849 and only hash at most 5 elements out of a vector. Theoretically | |
850 we could still take 5^5 time (a big big number) to compute a | |
851 hash, but practically this won't ever happen. */ | |
852 | |
853 unsigned long | |
854 internal_hash (Lisp_Object obj, int depth) | |
855 { | |
856 if (depth > 5) | |
857 return 0; | |
858 if (CONSP (obj)) | |
859 { | |
860 /* no point in worrying about tail recursion, since we're not | |
861 going very deep */ | |
862 return HASH2 (internal_hash (XCAR (obj), depth + 1), | |
863 internal_hash (XCDR (obj), depth + 1)); | |
864 } | |
865 else if (STRINGP (obj)) | |
866 return hash_string (string_data (XSTRING (obj)), | |
867 string_length (XSTRING (obj))); | |
868 #ifndef LRECORD_VECTOR | |
869 else if (VECTORP (obj)) | |
870 { | |
871 struct Lisp_Vector *v = XVECTOR (obj); | |
872 return HASH2 (vector_length (v), | |
873 internal_array_hash (v->contents, vector_length (v), | |
874 depth + 1)); | |
875 } | |
876 #endif /* !LRECORD_VECTOR */ | |
877 else if (LRECORDP (obj)) | |
878 { | |
879 CONST struct lrecord_implementation | |
880 *imp = XRECORD_LHEADER (obj)->implementation; | |
881 if (imp->hash) | |
882 return ((imp->hash) (obj, depth)); | |
883 } | |
884 | |
885 return LISP_HASH (obj); | |
886 } | |
887 | |
888 | |
889 /************************************************************************/ | |
890 /* initialization */ | |
891 /************************************************************************/ | |
892 | |
893 void | |
894 syms_of_elhash (void) | |
895 { | |
896 defsubr (&Smake_hashtable); | |
897 defsubr (&Scopy_hashtable); | |
898 defsubr (&Shashtablep); | |
899 defsubr (&Sgethash); | |
900 defsubr (&Sputhash); | |
901 defsubr (&Sremhash); | |
902 defsubr (&Sclrhash); | |
903 defsubr (&Smaphash); | |
904 defsubr (&Shashtable_fullness); | |
905 defsubr (&Smake_weak_hashtable); | |
906 defsubr (&Smake_key_weak_hashtable); | |
907 defsubr (&Smake_value_weak_hashtable); | |
908 defsymbol (&Qhashtablep, "hashtablep"); | |
909 } | |
910 | |
911 void | |
912 vars_of_elhash (void) | |
913 { | |
914 /* This must not be staticpro'd */ | |
915 Vall_weak_hashtables = Qnil; | |
916 } |