comparison src/buffer.h @ 0:376386a54a3c r19-14

Import from CVS: tag r19-14
author cvs
date Mon, 13 Aug 2007 08:45:50 +0200
parents
children 9ee227acff29
comparison
equal deleted inserted replaced
-1:000000000000 0:376386a54a3c
1 /* Header file for the buffer manipulation primitives.
2 Copyright (C) 1985, 1986, 1992, 1993, 1994, 1995
3 Free Software Foundation, Inc.
4 Copyright (C) 1995 Sun Microsystems, Inc.
5
6 This file is part of XEmacs.
7
8 XEmacs is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by the
10 Free Software Foundation; either version 2, or (at your option) any
11 later version.
12
13 XEmacs is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with XEmacs; see the file COPYING. If not, write to
20 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /* Synched up with: FSF 19.30. */
24
25 /* Authorship:
26
27 FSF: long ago.
28 JWZ: separated out bufslots.h, early in Lemacs.
29 Ben Wing: almost completely rewritten for Mule, 19.12.
30 */
31
32 #ifndef _XEMACS_BUFFER_H_
33 #define _XEMACS_BUFFER_H_
34
35 /************************************************************************/
36 /* */
37 /* definition of Lisp buffer object */
38 /* */
39 /************************************************************************/
40
41 /* Note: we keep both Bytind and Bufpos versions of some of the
42 important buffer positions because they are accessed so much.
43 If we didn't do this, we would constantly be invalidating the
44 bufpos<->bytind cache under Mule.
45
46 Note that under non-Mule, both versions will always be the
47 same so we don't really need to keep track of them. But it
48 simplifies the logic to go ahead and do so all the time and
49 the memory loss is insignificant. */
50
51 /* Formerly, it didn't much matter what went inside the struct buffer_text
52 and what went outside it. Now it does, with the advent of "indirect
53 buffers" that share text with another buffer. An indirect buffer
54 shares the same *text* as another buffer, but has its own buffer-local
55 variables, its own accessible region, and its own markers and extents.
56 (Due to the nature of markers, it doesn't actually matter much whether
57 we stick them inside or out of the struct buffer_text -- the user won't
58 notice any difference -- but we go ahead and put them outside for
59 consistency and overall saneness of algorithm.)
60
61 FSFmacs gets away with not maintaining any "children" pointers from
62 a buffer to the indirect buffers that refer to it by putting the
63 markers inside of the struct buffer_text, using markers to keep track
64 of BEGV and ZV in indirect buffers, and relying on the fact that
65 all intervals (text properties and overlays) use markers for their
66 start and end points. We don't do this for extents (markers are
67 inefficient anyway and take up space), so we have to maintain
68 children pointers. This is not terribly hard, though, and the
69 code to maintain this is just like the code already present in
70 extent-parent and extent-children.
71 */
72
73 struct buffer_text
74 {
75 Bufbyte *beg; /* Actual address of buffer contents. */
76 Bytind gpt; /* Index of gap in buffer. */
77 Bytind z; /* Index of end of buffer. */
78 Bufpos bufz; /* Equivalent as a Bufpos. */
79 int gap_size; /* Size of buffer's gap */
80 int modiff; /* This counts buffer-modification events
81 for this buffer. It is incremented for
82 each such event, and never otherwise
83 changed. */
84 int save_modiff; /* Previous value of modiff, as of last
85 time buffer visited or saved a file. */
86
87
88 /* Change data that goes with the text. */
89 struct buffer_text_change_data *changes;
90
91 };
92
93 struct buffer
94 {
95 struct lcrecord_header header;
96
97 /* This structure holds the coordinates of the buffer contents
98 in ordinary buffers. In indirect buffers, this is not used. */
99 struct buffer_text own_text;
100
101 /* This points to the `struct buffer_text' that used for this buffer.
102 In an ordinary buffer, this is the own_text field above.
103 In an indirect buffer, this is the own_text field of another buffer. */
104 struct buffer_text *text;
105
106 Bytind pt; /* Position of point in buffer. */
107 Bufpos bufpt; /* Equivalent as a Bufpos. */
108 Bytind begv; /* Index of beginning of accessible range. */
109 Bufpos bufbegv; /* Equivalent as a Bufpos. */
110 Bytind zv; /* Index of end of accessible range. */
111 Bufpos bufzv; /* Equivalent as a Bufpos. */
112
113 int face_change; /* This is set when a change in how the text
114 should be displayed (e.g., font, color)
115 is made. */
116
117 /* change data indicating what portion of the text has changed
118 since the last time this was reset. Used by redisplay.
119 Logically we should keep this with the text structure, but
120 redisplay resets it for each buffer individually and we don't
121 want interference between an indirect buffer and its base
122 buffer. */
123 struct each_buffer_change_data *changes;
124
125 #ifdef REGION_CACHE_NEEDS_WORK
126 /* If the long line scan cache is enabled (i.e. the buffer-local
127 variable cache-long-line-scans is non-nil), newline_cache
128 points to the newline cache, and width_run_cache points to the
129 width run cache.
130
131 The newline cache records which stretches of the buffer are
132 known *not* to contain newlines, so that they can be skipped
133 quickly when we search for newlines.
134
135 The width run cache records which stretches of the buffer are
136 known to contain characters whose widths are all the same. If
137 the width run cache maps a character to a value > 0, that value is
138 the character's width; if it maps a character to zero, we don't
139 know what its width is. This allows compute_motion to process
140 such regions very quickly, using algebra instead of inspecting
141 each character. See also width_table, below. */
142 struct region_cache *newline_cache;
143 struct region_cache *width_run_cache;
144 #endif
145
146 /* The markers that refer to this buffer. This
147 is actually a single marker -- successive elements in its marker
148 `chain' are the other markers referring to this buffer */
149 struct Lisp_Marker *markers;
150
151 /* The buffer's extent info. This is its own type, an extent-info
152 object (done this way for ease in marking / finalizing). */
153 Lisp_Object extent_info;
154
155 /* ----------------------------------------------------------------- */
156 /* All the stuff above this line is the responsibility of insdel.c,
157 with some help from marker.c and extents.c.
158 All the stuff below this line is the responsibility of buffer.c. */
159
160 /* In an indirect buffer, this points to the base buffer.
161 In an ordinary buffer, it is 0.
162 We DO mark through this slot. */
163 struct buffer *base_buffer;
164
165 /* List of indirect buffers whose base is this buffer.
166 If we are an indirect buffer, this will be nil.
167 Do NOT mark through this. */
168 Lisp_Object indirect_children;
169
170 /* Flags saying which DEFVAR_PER_BUFFER variables
171 are local to this buffer. */
172 int local_var_flags;
173
174 /* Set to the modtime of the visited file when read or written.
175 -1 means visited file was nonexistent.
176 0 means visited file modtime unknown; in no case complain
177 about any mismatch on next save attempt. */
178 int modtime;
179
180 /* the value of text->modiff at the last auto-save. */
181 int auto_save_modified;
182
183 /* The time at which we detected a failure to auto-save,
184 Or -1 if we didn't have a failure. */
185 int auto_save_failure_time;
186
187 /* Position in buffer at which display started
188 the last time this buffer was displayed. */
189 int last_window_start;
190
191 /* Everything from here down must be a Lisp_Object */
192
193 #define MARKED_SLOT(x) Lisp_Object x
194 #include "bufslots.h"
195 #undef MARKED_SLOT
196 };
197
198 DECLARE_LRECORD (buffer, struct buffer);
199 #define XBUFFER(x) XRECORD (x, buffer, struct buffer)
200 #define XSETBUFFER(x, p) XSETRECORD (x, p, buffer)
201 #define BUFFERP(x) RECORDP (x, buffer)
202 #define GC_BUFFERP(x) GC_RECORDP (x, buffer)
203 #define CHECK_BUFFER(x) CHECK_RECORD (x, buffer)
204 #define CONCHECK_BUFFER(x) CONCHECK_RECORD (x, buffer)
205
206 #define BUFFER_LIVE_P(b) (!NILP ((b)->name))
207 extern Lisp_Object Qbuffer_live_p;
208 #define CHECK_LIVE_BUFFER(x) \
209 do { CHECK_BUFFER (x); \
210 if (!BUFFER_LIVE_P (XBUFFER (x))) \
211 dead_wrong_type_argument (Qbuffer_live_p, (x)); \
212 } while (0)
213 #define CONCHECK_LIVE_BUFFER(x) \
214 do { CONCHECK_BUFFER (x); \
215 if (!BUFFER_LIVE_P (XBUFFER (x))) \
216 x = wrong_type_argument (Qbuffer_live_p, (x)); \
217 } while (0)
218
219 #define BUFFER_OR_STRING_P(x) (BUFFERP (x) || STRINGP (x))
220
221 extern Lisp_Object Qbuffer_or_string_p;
222 #define CHECK_BUFFER_OR_STRING(x) \
223 do { if (!BUFFER_OR_STRING_P (x)) \
224 dead_wrong_type_argument (Qbuffer_or_string_p, (x)); \
225 } while (0)
226 #define CONCHECK_BUFFER_OR_STRING(x) \
227 do { if (!BUFFER_OR_STRING_P (x)) \
228 x = wrong_type_argument (Qbuffer_or_string_p, (x)); \
229 } while (0)
230
231 #define CHECK_LIVE_BUFFER_OR_STRING(x) \
232 do { CHECK_BUFFER_OR_STRING (x); \
233 if (BUFFERP (x)) \
234 CHECK_LIVE_BUFFER (x); \
235 } while (0)
236 #define CONCHECK_LIVE_BUFFER_OR_STRING(x) \
237 do { CONCHECK_BUFFER_OR_STRING (x); \
238 if (BUFFERP (x)) \
239 CONCHECK_LIVE_BUFFER (x); \
240 } while (0)
241
242
243
244 /* NOTE: In all the following macros, we follow these rules concerning
245 multiple evaluation of the arguments:
246
247 1) Anything that's an lvalue can be evaluated more than once.
248 2) Anything that's a Lisp Object can be evaluated more than once.
249 This should probably be changed, but this follows the way
250 that all the macros in lisp.h do things.
251 3) 'struct buffer *' arguments can be evaluated more than once.
252 4) Nothing else can be evaluated more than once. Use MTxx
253 variables to prevent multiple evaluation.
254 5) An exception to (4) is that there are some macros below that
255 may evaluate their arguments more than once. They are all
256 denoted with the word "unsafe" in their name and are generally
257 meant to be called only by other macros that have already
258 stored the calling values in temporary variables.
259
260 */
261
262 /************************************************************************/
263 /* */
264 /* working with raw internal-format data */
265 /* */
266 /************************************************************************/
267
268 /* Use these on contiguous strings of data. If the text you're
269 operating on is known to come from a buffer, use the buffer-level
270 functions below -- they know about the gap and may be more
271 efficient. */
272
273 /* Functions are as follows:
274
275
276 (A) For working with charptr's (pointers to internally-formatted text):
277 -----------------------------------------------------------------------
278
279 VALID_CHARPTR_P(ptr):
280 Given a charptr, does it point to the beginning of a character?
281
282 ASSERT_VALID_CHARPTR(ptr):
283 If error-checking is enabled, assert that the given charptr
284 points to the beginning of a character. Otherwise, do nothing.
285
286 INC_CHARPTR(ptr):
287 Given a charptr (assumed to point at the beginning of a character),
288 modify that pointer so it points to the beginning of the next
289 character.
290
291 DEC_CHARPTR(ptr):
292 Given a charptr (assumed to point at the beginning of a
293 character or at the very end of the text), modify that pointer
294 so it points to the beginning of the previous character.
295
296 VALIDATE_CHARPTR_BACKWARD(ptr):
297 Make sure that PTR is pointing to the beginning of a character.
298 If not, back up until this is the case. Note that there are not
299 too many places where it is legitimate to do this sort of thing.
300 It's an error if you're passed an "invalid" char * pointer.
301 NOTE: PTR *must* be pointing to a valid part of the string (i.e.
302 not the very end, unless the string is zero-terminated or
303 something) in order for this function to not cause crashes.
304
305 VALIDATE_CHARPTR_FORWARD(ptr):
306 Make sure that PTR is pointing to the beginning of a character.
307 If not, move forward until this is the case. Note that there
308 are not too many places where it is legitimate to do this sort
309 of thing. It's an error if you're passed an "invalid" char *
310 pointer.
311
312
313 (B) For working with the length (in bytes and characters) of a
314 section of internally-formatted text:
315 --------------------------------------------------------------
316
317 bytecount_to_charcount(ptr, nbi):
318 Given a pointer to a text string and a length in bytes,
319 return the equivalent length in characters.
320
321 charcount_to_bytecount(ptr, nch):
322 Given a pointer to a text string and a length in characters,
323 return the equivalent length in bytes.
324
325 charptr_n_addr(ptr, n):
326 Return a pointer to the beginning of the character offset N
327 (in characters) from PTR.
328
329 charptr_length(ptr):
330 Given a zero-terminated pointer to Emacs characters,
331 return the number of Emacs characters contained within.
332
333
334 (C) For retrieving or changing the character pointed to by a charptr:
335 ---------------------------------------------------------------------
336
337 charptr_emchar(ptr):
338 Retrieve the character pointed to by PTR as an Emchar.
339
340 charptr_emchar_n(ptr, n):
341 Retrieve the character at offset N (in characters) from PTR,
342 as an Emchar.
343
344 set_charptr_emchar(ptr, ch):
345 Store the character CH (an Emchar) as internally-formatted
346 text starting at PTR. Return the number of bytes stored.
347
348 charptr_copy_char(ptr, ptr2):
349 Retrieve the character pointed to by PTR and store it as
350 internally-formatted text in PTR2.
351
352
353 (D) For working with Emchars:
354 -----------------------------
355
356 valid_char_p(ch):
357 Return whether the given Emchar is valid.
358
359 CHARP(ch):
360 Return whether the given Lisp_Object is a valid character.
361 This is approximately the same as saying the Lisp_Object is
362 an int whose value is a valid Emchar. (But not exactly
363 because when MULE is not defined, we allow arbitrary values
364 in all but the lowest 8 bits and mask them off, for backward
365 compatibility.)
366
367 CHECK_CHAR_COERCE_INT(ch):
368 Signal an error if CH is not a valid character as per CHARP().
369 Also canonicalize the value into a valid Emchar, as necessary.
370 (This only means anything when MULE is not defined.)
371
372 COERCE_CHAR(ch):
373 Coerce an object that is known to satisfy CHARP() into a
374 valid Emchar.
375
376 MAX_EMCHAR_LEN:
377 Maximum number of buffer bytes per Emacs character.
378
379 */
380
381
382 /* ---------------------------------------------------------------------- */
383 /* (A) For working with charptr's (pointers to internally-formatted text) */
384 /* ---------------------------------------------------------------------- */
385
386 #define VALID_CHARPTR_P(ptr) 1
387
388 #ifdef ERROR_CHECK_BUFPOS
389 # define ASSERT_VALID_CHARPTR(ptr) assert (VALID_CHARPTR_P (ptr))
390 #else
391 # define ASSERT_VALID_CHARPTR(ptr)
392 #endif
393
394 /* Note that INC_CHARPTR() and DEC_CHARPTR() have to be written in
395 completely separate ways. INC_CHARPTR() cannot use the DEC_CHARPTR()
396 trick of looking for a valid first byte because it might run off
397 the end of the string. DEC_CHARPTR() can't use the INC_CHARPTR()
398 method because it doesn't have easy access to the first byte of
399 the character it's moving over. */
400
401 #define real_inc_charptr_fun(ptr) \
402 ((ptr) += REP_BYTES_BY_FIRST_BYTE (* (unsigned char *) (ptr)))
403 #ifdef ERROR_CHECK_BUFPOS
404 #define inc_charptr_fun(ptr) (ASSERT_VALID_CHARPTR (ptr), \
405 real_inc_charptr_fun (ptr))
406 #else
407 #define inc_charptr_fun(ptr) real_inc_charptr_fun (ptr)
408 #endif
409
410 #define REAL_INC_CHARPTR(ptr) do \
411 { \
412 real_inc_charptr_fun (ptr); \
413 } while (0)
414
415 #define INC_CHARPTR(ptr) do \
416 { \
417 ASSERT_VALID_CHARPTR (ptr); \
418 REAL_INC_CHARPTR (ptr); \
419 } while (0)
420
421 #define REAL_DEC_CHARPTR(ptr) do \
422 { \
423 (ptr)--; \
424 } while (!VALID_CHARPTR_P (ptr))
425
426 #ifdef ERROR_CHECK_BUFPOS
427 #define DEC_CHARPTR(ptr) do \
428 { \
429 CONST Bufbyte *__dcptr__ = (ptr); \
430 CONST Bufbyte *__dcptr2__ = __dcptr__; \
431 REAL_DEC_CHARPTR (__dcptr2__); \
432 assert (__dcptr__ - __dcptr2__ == \
433 REP_BYTES_BY_FIRST_BYTE (*__dcptr2__)); \
434 (ptr) = __dcptr2__; \
435 } while (0)
436 #else
437 #define DEC_CHARPTR(ptr) REAL_DEC_CHARPTR (ptr)
438 #endif
439
440 #define VALIDATE_CHARPTR_BACKWARD(ptr)
441 #define VALIDATE_CHARPTR_FORWARD(ptr)
442
443 /* -------------------------------------------------------------- */
444 /* (B) For working with the length (in bytes and characters) of a */
445 /* section of internally-formatted text */
446 /* -------------------------------------------------------------- */
447
448 INLINE CONST Bufbyte *charptr_n_addr (CONST Bufbyte *ptr, Charcount offset);
449 INLINE CONST Bufbyte *
450 charptr_n_addr (CONST Bufbyte *ptr, Charcount offset)
451 {
452 return ptr + charcount_to_bytecount (ptr, offset);
453 }
454
455 INLINE Charcount charptr_length (CONST Bufbyte *ptr);
456 INLINE Charcount
457 charptr_length (CONST Bufbyte *ptr)
458 {
459 return bytecount_to_charcount (ptr, strlen ((CONST char *) ptr));
460 }
461
462
463 /* -------------------------------------------------------------------- */
464 /* (C) For retrieving or changing the character pointed to by a charptr */
465 /* -------------------------------------------------------------------- */
466
467 #define simple_charptr_emchar(ptr) ((Emchar) (ptr)[0])
468 #define simple_set_charptr_emchar(ptr, x) ((ptr)[0] = (Bufbyte) (x), 1)
469 #define simple_charptr_copy_char(ptr, ptr2) ((ptr2)[0] = *(ptr), 1)
470
471 # define charptr_emchar(ptr) simple_charptr_emchar (ptr)
472 # define set_charptr_emchar(ptr, x) simple_set_charptr_emchar (ptr, x)
473 # define charptr_copy_char(ptr, ptr2) simple_charptr_copy_char (ptr, ptr2)
474
475 #define charptr_emchar_n(ptr, offset) \
476 charptr_emchar (charptr_n_addr (ptr, offset))
477
478
479 /* ---------------------------- */
480 /* (D) For working with Emchars */
481 /* ---------------------------- */
482
483 #define valid_char_p(ch) ((unsigned int) (ch) < 0400)
484
485 #define CHAR_INTP(x) (INTP (x) && valid_char_p (XINT (x)))
486
487 #define CHAR_OR_CHAR_INTP(x) (CHARP (x) || CHAR_INTP (x))
488
489 #ifdef ERROR_CHECK_TYPECHECK
490
491 INLINE Emchar XCHAR_OR_CHAR_INT (Lisp_Object obj);
492 INLINE Emchar
493 XCHAR_OR_CHAR_INT (Lisp_Object obj)
494 {
495 assert (CHAR_OR_CHAR_INTP (obj));
496 return XREALINT (obj);
497 }
498
499 #else
500
501 #define XCHAR_OR_CHAR_INT(obj) XREALINT (obj)
502
503 #endif
504
505 #define CHECK_CHAR_COERCE_INT(x) \
506 do { if (CHARP (x)) \
507 ; \
508 else if (CHAR_INTP (x)) \
509 x = make_char (XINT (x)); \
510 else \
511 x = wrong_type_argument (Qcharacterp, x); } while (0)
512
513 #define MAX_EMCHAR_LEN 1
514
515
516 /*----------------------------------------------------------------------*/
517 /* Accessor macros for important positions in a buffer */
518 /*----------------------------------------------------------------------*/
519
520 /* We put them here because some stuff below wants them before the
521 place where we would normally put them. */
522
523 /* None of these are lvalues. Use the settor macros below to change
524 the positions. */
525
526 /* Beginning of buffer. */
527 #define BI_BUF_BEG(buf) ((Bytind) 1)
528 #define BUF_BEG(buf) ((Bufpos) 1)
529
530 /* Beginning of accessible range of buffer. */
531 #define BI_BUF_BEGV(buf) ((buf)->begv + 0)
532 #define BUF_BEGV(buf) ((buf)->bufbegv + 0)
533
534 /* End of accessible range of buffer. */
535 #define BI_BUF_ZV(buf) ((buf)->zv + 0)
536 #define BUF_ZV(buf) ((buf)->bufzv + 0)
537
538 /* End of buffer. */
539 #define BI_BUF_Z(buf) ((buf)->text->z + 0)
540 #define BUF_Z(buf) ((buf)->text->bufz + 0)
541
542 /* Point. */
543 #define BI_BUF_PT(buf) ((buf)->pt + 0)
544 #define BUF_PT(buf) ((buf)->bufpt + 0)
545
546 /*----------------------------------------------------------------------*/
547 /* Converting between positions and addresses */
548 /*----------------------------------------------------------------------*/
549
550 /* Convert the address of a byte in the buffer into a position. */
551 INLINE Bytind BI_BUF_PTR_BYTE_POS (struct buffer *buf, Bufbyte *ptr);
552 INLINE Bytind
553 BI_BUF_PTR_BYTE_POS (struct buffer *buf, Bufbyte *ptr)
554 {
555 return ((ptr) - (buf)->text->beg + 1
556 - ((ptr - (buf)->text->beg + 1) > (buf)->text->gpt
557 ? (buf)->text->gap_size : 0));
558 }
559
560 #define BUF_PTR_BYTE_POS(buf, ptr) \
561 bytind_to_bufpos (buf, BI_BUF_PTR_BYTE_POS (buf, ptr))
562
563 /* Address of byte at position POS in buffer. */
564 INLINE Bufbyte * BI_BUF_BYTE_ADDRESS (struct buffer *buf, Bytind pos);
565 INLINE Bufbyte *
566 BI_BUF_BYTE_ADDRESS (struct buffer *buf, Bytind pos)
567 {
568 return ((buf)->text->beg +
569 ((pos >= (buf)->text->gpt ? (pos + (buf)->text->gap_size) : pos)
570 - 1));
571 }
572
573 #define BUF_BYTE_ADDRESS(buf, pos) \
574 BI_BUF_BYTE_ADDRESS (buf, bufpos_to_bytind (buf, pos))
575
576 /* Address of byte before position POS in buffer. */
577 INLINE Bufbyte * BI_BUF_BYTE_ADDRESS_BEFORE (struct buffer *buf, Bytind pos);
578 INLINE Bufbyte *
579 BI_BUF_BYTE_ADDRESS_BEFORE (struct buffer *buf, Bytind pos)
580 {
581 return ((buf)->text->beg +
582 ((pos > (buf)->text->gpt ? (pos + (buf)->text->gap_size) : pos)
583 - 2));
584 }
585
586 #define BUF_BYTE_ADDRESS_BEFORE(buf, pos) \
587 BI_BUF_BYTE_ADDRESS_BEFORE (buf, bufpos_to_bytind (buf, pos))
588
589 /*----------------------------------------------------------------------*/
590 /* Converting between byte indices and memory indices */
591 /*----------------------------------------------------------------------*/
592
593 INLINE int valid_memind_p (struct buffer *buf, Memind x);
594 INLINE int
595 valid_memind_p (struct buffer *buf, Memind x)
596 {
597 if (x >= 1 && x <= (Memind) (buf)->text->gpt)
598 return 1;
599 if (x > (Memind) ((buf)->text->gpt + (buf)->text->gap_size)
600 && x <= (Memind) ((buf)->text->z + (buf)->text->gap_size))
601 return 1;
602 return 0;
603 }
604
605 INLINE Memind bytind_to_memind (struct buffer *buf, Bytind x);
606 INLINE Memind
607 bytind_to_memind (struct buffer *buf, Bytind x)
608 {
609 if (x > (buf)->text->gpt)
610 return (Memind) (x + (buf)->text->gap_size);
611 else
612 return (Memind) (x);
613 }
614
615 #ifdef ERROR_CHECK_BUFPOS
616
617 INLINE Bytind memind_to_bytind (struct buffer *buf, Memind x);
618 INLINE Bytind
619 memind_to_bytind (struct buffer *buf, Memind x)
620 {
621 assert (valid_memind_p (buf, x));
622 if (x > (Memind) (buf)->text->gpt)
623 return (Bytind) (x - (buf)->text->gap_size);
624 else
625 return (Bytind) (x);
626 }
627
628 #else
629
630 INLINE Bytind memind_to_bytind (struct buffer *buf, Memind x);
631 INLINE Bytind
632 memind_to_bytind (struct buffer *buf, Memind x)
633 {
634 if (x > (Memind) (buf)->text->gpt)
635 return (Bytind) (x - (buf)->text->gap_size);
636 else
637 return (Bytind) (x);
638 }
639
640 #endif
641
642 #define memind_to_bufpos(buf, x) \
643 bytind_to_bufpos (buf, memind_to_bytind (buf, x))
644 #define bufpos_to_memind(buf, x) \
645 bytind_to_memind (buf, bufpos_to_bytind (buf, x))
646
647 /* These macros generalize many standard buffer-position functions to
648 either a buffer or a string. */
649
650 /* Converting between Meminds and Bytinds, for a buffer-or-string.
651 For strings, this is a no-op. For buffers, this resolves
652 to the standard memind<->bytind converters. */
653
654 #define buffer_or_string_bytind_to_memind(obj, ind) \
655 (BUFFERP (obj) ? bytind_to_memind (XBUFFER (obj), ind) : (Memind) ind)
656
657 #define buffer_or_string_memind_to_bytind(obj, ind) \
658 (BUFFERP (obj) ? memind_to_bytind (XBUFFER (obj), ind) : (Bytind) ind)
659
660 /* Converting between Bufpos's and Bytinds, for a buffer-or-string.
661 For strings, this maps to the bytecount<->charcount converters. */
662
663 #define buffer_or_string_bufpos_to_bytind(obj, pos) \
664 (BUFFERP (obj) ? bufpos_to_bytind (XBUFFER (obj), pos) : \
665 (Bytind) charcount_to_bytecount (string_data (XSTRING (obj)), pos))
666
667 #define buffer_or_string_bytind_to_bufpos(obj, ind) \
668 (BUFFERP (obj) ? bytind_to_bufpos (XBUFFER (obj), ind) : \
669 (Bufpos) bytecount_to_charcount (string_data (XSTRING (obj)), ind))
670
671 /* Similar for Bufpos's and Meminds. */
672
673 #define buffer_or_string_bufpos_to_memind(obj, pos) \
674 (BUFFERP (obj) ? bufpos_to_memind (XBUFFER (obj), pos) : \
675 (Memind) charcount_to_bytecount (string_data (XSTRING (obj)), pos))
676
677 #define buffer_or_string_memind_to_bufpos(obj, ind) \
678 (BUFFERP (obj) ? memind_to_bufpos (XBUFFER (obj), ind) : \
679 (Bufpos) bytecount_to_charcount (string_data (XSTRING (obj)), ind))
680
681 /************************************************************************/
682 /* */
683 /* working with buffer-level data */
684 /* */
685 /************************************************************************/
686
687 /*
688
689 (A) Working with byte indices:
690 ------------------------------
691
692 VALID_BYTIND_P(buf, bi):
693 Given a byte index, does it point to the beginning of a character?
694
695 ASSERT_VALID_BYTIND_UNSAFE(buf, bi):
696 If error-checking is enabled, assert that the given byte index
697 is within range and points to the beginning of a character
698 or to the end of the buffer. Otherwise, do nothing.
699
700 ASSERT_VALID_BYTIND_BACKWARD_UNSAFE(buf, bi):
701 If error-checking is enabled, assert that the given byte index
702 is within range and satisfies ASSERT_VALID_BYTIND() and also
703 does not refer to the beginning of the buffer. (i.e. movement
704 backwards is OK.) Otherwise, do nothing.
705
706 ASSERT_VALID_BYTIND_FORWARD_UNSAFE(buf, bi):
707 If error-checking is enabled, assert that the given byte index
708 is within range and satisfies ASSERT_VALID_BYTIND() and also
709 does not refer to the end of the buffer. (i.e. movement
710 forwards is OK.) Otherwise, do nothing.
711
712 VALIDATE_BYTIND_BACKWARD(buf, bi):
713 Make sure that the given byte index is pointing to the beginning
714 of a character. If not, back up until this is the case. Note
715 that there are not too many places where it is legitimate to do
716 this sort of thing. It's an error if you're passed an "invalid"
717 byte index.
718
719 VALIDATE_BYTIND_FORWARD(buf, bi):
720 Make sure that the given byte index is pointing to the beginning
721 of a character. If not, move forward until this is the case.
722 Note that there are not too many places where it is legitimate
723 to do this sort of thing. It's an error if you're passed an
724 "invalid" byte index.
725
726 INC_BYTIND(buf, bi):
727 Given a byte index (assumed to point at the beginning of a
728 character), modify that value so it points to the beginning
729 of the next character.
730
731 DEC_BYTIND(buf, bi):
732 Given a byte index (assumed to point at the beginning of a
733 character), modify that value so it points to the beginning
734 of the previous character. Unlike for DEC_CHARPTR(), we can
735 do all the assert()s because there are sentinels at the
736 beginning of the gap and the end of the buffer.
737
738 BYTIND_INVALID:
739 A constant representing an invalid Bytind. Valid Bytinds
740 can never have this value.
741
742
743 (B) Converting between Bufpos's and Bytinds:
744 --------------------------------------------
745
746 bufpos_to_bytind(buf, bu):
747 Given a Bufpos, return the equivalent Bytind.
748
749 bytind_to_bufpos(buf, bi):
750 Given a Bytind, return the equivalent Bufpos.
751
752 make_bufpos(buf, bi):
753 Given a Bytind, return the equivalent Bufpos as a Lisp Object.
754
755
756
757 */
758
759
760 /*----------------------------------------------------------------------*/
761 /* working with byte indices */
762 /*----------------------------------------------------------------------*/
763
764 #define VALID_BYTIND_P(buf, x) 1
765
766 #ifdef ERROR_CHECK_BUFPOS
767
768 # define ASSERT_VALID_BYTIND_UNSAFE(buf, x) do \
769 { \
770 assert (BUFFER_LIVE_P (buf)); \
771 assert ((x) >= BI_BUF_BEG (buf) && x <= BI_BUF_Z (buf)); \
772 assert (VALID_BYTIND_P (buf, x)); \
773 } while (0)
774 # define ASSERT_VALID_BYTIND_BACKWARD_UNSAFE(buf, x) do \
775 { \
776 assert (BUFFER_LIVE_P (buf)); \
777 assert ((x) > BI_BUF_BEG (buf) && x <= BI_BUF_Z (buf)); \
778 assert (VALID_BYTIND_P (buf, x)); \
779 } while (0)
780 # define ASSERT_VALID_BYTIND_FORWARD_UNSAFE(buf, x) do \
781 { \
782 assert (BUFFER_LIVE_P (buf)); \
783 assert ((x) >= BI_BUF_BEG (buf) && x < BI_BUF_Z (buf)); \
784 assert (VALID_BYTIND_P (buf, x)); \
785 } while (0)
786
787 #else /* not ERROR_CHECK_BUFPOS */
788 # define ASSERT_VALID_BYTIND_UNSAFE(buf, x)
789 # define ASSERT_VALID_BYTIND_BACKWARD_UNSAFE(buf, x)
790 # define ASSERT_VALID_BYTIND_FORWARD_UNSAFE(buf, x)
791
792 #endif /* not ERROR_CHECK_BUFPOS */
793
794 #define VALIDATE_BYTIND_BACKWARD(buf, x)
795
796 #define VALIDATE_BYTIND_FORWARD(buf, x)
797
798 /* Note that in the simplest case (no MULE, no ERROR_CHECK_BUFPOS),
799 this crap reduces down to simply (x)++. */
800
801 #define INC_BYTIND(buf, x) do \
802 { \
803 ASSERT_VALID_BYTIND_FORWARD_UNSAFE (buf, x); \
804 /* Note that we do the increment first to \
805 make sure that the pointer in \
806 VALIDATE_BYTIND_FORWARD() ends up on \
807 the correct side of the gap */ \
808 (x)++; \
809 VALIDATE_BYTIND_FORWARD (buf, x); \
810 } while (0)
811
812 /* Note that in the simplest case (no MULE, no ERROR_CHECK_BUFPOS),
813 this crap reduces down to simply (x)--. */
814
815 #define DEC_BYTIND(buf, x) do \
816 { \
817 ASSERT_VALID_BYTIND_BACKWARD_UNSAFE (buf, x); \
818 /* Note that we do the decrement first to \
819 make sure that the pointer in \
820 VALIDATE_BYTIND_BACKWARD() ends up on \
821 the correct side of the gap */ \
822 (x)--; \
823 VALIDATE_BYTIND_BACKWARD (buf, x); \
824 } while (0)
825
826 INLINE Bytind prev_bytind (struct buffer *buf, Bytind x);
827 INLINE Bytind
828 prev_bytind (struct buffer *buf, Bytind x)
829 {
830 DEC_BYTIND (buf, x);
831 return x;
832 }
833
834 INLINE Bytind next_bytind (struct buffer *buf, Bytind x);
835 INLINE Bytind
836 next_bytind (struct buffer *buf, Bytind x)
837 {
838 INC_BYTIND (buf, x);
839 return x;
840 }
841
842 #define BYTIND_INVALID ((Bytind) -1)
843
844 /*----------------------------------------------------------------------*/
845 /* Converting between buffer positions and byte indices */
846 /*----------------------------------------------------------------------*/
847
848 #define real_bufpos_to_bytind(buf, x) ((Bytind) x)
849 #define real_bytind_to_bufpos(buf, x) ((Bufpos) x)
850
851 #ifdef ERROR_CHECK_BUFPOS
852
853 Bytind bufpos_to_bytind (struct buffer *buf, Bufpos x);
854 Bufpos bytind_to_bufpos (struct buffer *buf, Bytind x);
855
856 #else /* not ERROR_CHECK_BUFPOS */
857
858 #define bufpos_to_bytind real_bufpos_to_bytind
859 #define bytind_to_bufpos real_bytind_to_bufpos
860
861 #endif /* not ERROR_CHECK_BUFPOS */
862
863 #define make_bufpos(buf, ind) make_int (bytind_to_bufpos (buf, ind))
864
865 /*----------------------------------------------------------------------*/
866 /* Converting between buffer bytes and Emacs characters */
867 /*----------------------------------------------------------------------*/
868
869 /* The character at position POS in buffer. */
870 #define BI_BUF_FETCH_CHAR(buf, pos) \
871 charptr_emchar (BI_BUF_BYTE_ADDRESS (buf, pos))
872 #define BUF_FETCH_CHAR(buf, pos) \
873 BI_BUF_FETCH_CHAR (buf, bufpos_to_bytind (buf, pos))
874
875 /* The character at position POS in buffer, as a string. This is
876 equivalent to set_charptr_emchar (str, BUF_FETCH_CHAR (buf, pos))
877 but is faster for Mule. */
878
879 # define BI_BUF_CHARPTR_COPY_CHAR(buf, pos, str) \
880 charptr_copy_char (BI_BUF_BYTE_ADDRESS (buf, pos), str)
881 #define BUF_CHARPTR_COPY_CHAR(buf, pos, str) \
882 BI_BUF_CHARPTR_COPY_CHAR (buf, bufpos_to_bytind (buf, pos), str)
883
884
885
886
887
888
889 /************************************************************************/
890 /* */
891 /* working with externally-formatted data */
892 /* */
893 /************************************************************************/
894
895 /* Sometimes strings need to be converted into one or another
896 external format, for passing to a library function. (Note
897 that we encapsulate and automatically convert the arguments
898 of some functions, but not others.) At times this conversion
899 also has to go the other way -- i.e. when we get external-
900 format strings back from a library function.
901 */
902
903 #define convert_to_external_format(ptr, len, len_out, fmt) \
904 (*(len_out) = (int) (len), (CONST Extbyte *) (ptr))
905 #define convert_from_external_format(ptr, len, len_out, fmt) \
906 (*(len_out) = (Bytecount) (len), (CONST Bufbyte *) (ptr))
907
908
909 /* In all of the following macros we use the following general principles:
910
911 -- Functions that work with charptr's accept two sorts of charptr's:
912
913 a) Pointers to memory with a length specified. The pointer will be
914 fundamentally of type `unsigned char *' (although labelled
915 as `Bufbyte *' for internal-format data and `Extbyte *' for
916 external-format data) and the length will be fundamentally of
917 type `int' (although labelled as `Bytecount' for internal-format
918 data and `Extcount' for external-format data). The length is
919 always a count in bytes.
920 b) Zero-terminated pointers; no length specified. The pointer
921 is of type `char *', whether the data pointed to is internal-format
922 or external-format. These sorts of pointers are available for
923 convenience in working with C library functions and literal
924 strings. In general you should use these sorts of pointers only
925 to interface to library routines and not for general manipulation,
926 as you are liable to lose embedded nulls and such. This could
927 be a big problem for routines that want Unicode-formatted data,
928 which is likely to have lots of embedded nulls in it.
929
930 -- Functions that work with Lisp strings accept strings as Lisp Objects
931 (as opposed to the `struct Lisp_String *' for some of the other
932 string accessors). This is for convenience in working with the
933 functions, as otherwise you will almost always have to call
934 XSTRING() on the object.
935
936 -- Functions that work with charptr's are not guaranteed to copy
937 their data into alloca()ed space. Functions that work with
938 Lisp strings are, however. The reason is that Lisp strings can
939 be relocated any time a GC happens, and it could happen at some
940 rather unexpected times. The internal-external conversion is
941 rarely done in time-critical functions, and so the slight
942 extra time required for alloca() and copy is well-worth the
943 safety of knowing your string data won't be relocated out from
944 under you.
945 */
946
947
948 /* Maybe convert charptr's data into ext-format and store the result in
949 alloca()'ed space.
950
951 You may wonder why this is written in this fashion and not as a
952 function call. With a little trickery it could certainly be
953 written this way, but it won't work because of those DAMN GCC WANKERS
954 who couldn't be bothered to handle alloca() properly on the x86
955 architecture. (If you put a call to alloca() in the argument to
956 a function call, the stack space gets allocated right in the
957 middle of the arguments to the function call and you are unbelievably
958 hosed.) */
959
960 #define GET_CHARPTR_EXT_DATA_ALLOCA(ptr, len, fmt, stick_value_here, stick_len_here)\
961 do \
962 { \
963 (stick_value_here) = (CONST Extbyte *) (ptr); \
964 (stick_len_here) = (Extcount) (len); \
965 } while (0)
966
967 #define GET_C_CHARPTR_EXT_DATA_ALLOCA(ptr, fmt, stick_value_here) \
968 do \
969 { \
970 Extcount __gcceda_ignored_len__; \
971 CONST char *__gcceda_ptr_in__; \
972 CONST Extbyte *__gcceda_ptr_out__; \
973 \
974 __gcceda_ptr_in__ = ptr; \
975 GET_CHARPTR_EXT_DATA_ALLOCA ((CONST Extbyte *) __gcceda_ptr_in__, \
976 strlen (__gcceda_ptr_in__), fmt, \
977 __gcceda_ptr_out__, \
978 __gcceda_ignored_len__); \
979 (stick_value_here) = (CONST char *) __gcceda_ptr_out__; \
980 } while (0)
981
982 #define GET_C_CHARPTR_EXT_BINARY_DATA_ALLOCA(ptr, stick_value_here) \
983 GET_C_CHARPTR_EXT_DATA_ALLOCA (ptr, FORMAT_BINARY, stick_value_here)
984 #define GET_CHARPTR_EXT_BINARY_DATA_ALLOCA(ptr, len, stick_value_here, stick_len_here) \
985 GET_CHARPTR_EXT_DATA_ALLOCA (ptr, len, FORMAT_BINARY, stick_value_here, \
986 stick_len_here)
987
988 #define GET_C_CHARPTR_EXT_FILENAME_DATA_ALLOCA(ptr, stick_value_here) \
989 GET_C_CHARPTR_EXT_DATA_ALLOCA (ptr, FORMAT_FILENAME, stick_value_here)
990 #define GET_CHARPTR_EXT_FILENAME_DATA_ALLOCA(ptr, len, stick_value_here, stick_len_here) \
991 GET_CHARPTR_EXT_DATA_ALLOCA (ptr, len, FORMAT_FILENAME, stick_value_here, \
992 stick_len_here)
993
994 #define GET_C_CHARPTR_EXT_CTEXT_DATA_ALLOCA(ptr, stick_value_here) \
995 GET_C_CHARPTR_EXT_DATA_ALLOCA (ptr, FORMAT_CTEXT, stick_value_here)
996 #define GET_CHARPTR_EXT_CTEXT_DATA_ALLOCA(ptr, len, stick_value_here, stick_len_here) \
997 GET_CHARPTR_EXT_DATA_ALLOCA (ptr, len, FORMAT_CTEXT, stick_value_here, \
998 stick_len_here)
999
1000 /* Maybe convert external charptr's data into internal format and store
1001 the result in alloca()'ed space.
1002
1003 You may wonder why this is written in this fashion and not as a
1004 function call. With a little trickery it could certainly be
1005 written this way, but it won't work because of those DAMN GCC WANKERS
1006 who couldn't be bothered to handle alloca() properly on the x86
1007 architecture. (If you put a call to alloca() in the argument to
1008 a function call, the stack space gets allocated right in the
1009 middle of the arguments to the function call and you are unbelievably
1010 hosed.) */
1011
1012 #define GET_CHARPTR_INT_DATA_ALLOCA(ptr, len, fmt, stick_value_here, stick_len_here)\
1013 do \
1014 { \
1015 (stick_value_here) = (CONST Bufbyte *) (ptr); \
1016 (stick_len_here) = (Bytecount) (len); \
1017 } while (0)
1018
1019 #define GET_C_CHARPTR_INT_DATA_ALLOCA(ptr, fmt, stick_value_here) \
1020 do \
1021 { \
1022 Bytecount __gccida_ignored_len__; \
1023 CONST char *__gccida_ptr_in__; \
1024 CONST Bufbyte *__gccida_ptr_out__; \
1025 \
1026 __gccida_ptr_in__ = ptr; \
1027 GET_CHARPTR_INT_DATA_ALLOCA ((CONST Extbyte *) __gccida_ptr_in__, \
1028 strlen (__gccida_ptr_in__), fmt, \
1029 __gccida_ptr_out__, \
1030 __gccida_ignored_len__); \
1031 (stick_value_here) = (CONST char *) __gccida_ptr_out__; \
1032 } while (0)
1033
1034 #define GET_C_CHARPTR_INT_BINARY_DATA_ALLOCA(ptr, stick_value_here) \
1035 GET_C_CHARPTR_INT_DATA_ALLOCA (ptr, FORMAT_BINARY, stick_value_here)
1036 #define GET_CHARPTR_INT_BINARY_DATA_ALLOCA(ptr, len, stick_value_here, stick_len_here) \
1037 GET_CHARPTR_INT_DATA_ALLOCA (ptr, len, FORMAT_BINARY, stick_value_here, \
1038 stick_len_here)
1039
1040 #define GET_C_CHARPTR_INT_FILENAME_DATA_ALLOCA(ptr, stick_value_here) \
1041 GET_C_CHARPTR_INT_DATA_ALLOCA (ptr, FORMAT_FILENAME, stick_value_here)
1042 #define GET_CHARPTR_INT_FILENAME_DATA_ALLOCA(ptr, len, stick_value_here, stick_len_here) \
1043 GET_CHARPTR_INT_DATA_ALLOCA (ptr, len, FORMAT_FILENAME, stick_value_here, \
1044 stick_len_here)
1045
1046 #define GET_C_CHARPTR_INT_CTEXT_DATA_ALLOCA(ptr, stick_value_here) \
1047 GET_C_CHARPTR_INT_DATA_ALLOCA (ptr, FORMAT_CTEXT, stick_value_here)
1048 #define GET_CHARPTR_INT_CTEXT_DATA_ALLOCA(ptr, len, stick_value_here, stick_len_here) \
1049 GET_CHARPTR_INT_DATA_ALLOCA (ptr, len, FORMAT_CTEXT, stick_value_here, \
1050 stick_len_here)
1051
1052
1053 /* Maybe convert Lisp string's data into ext-format and store the result in
1054 alloca()'ed space.
1055
1056 You may wonder why this is written in this fashion and not as a
1057 function call. With a little trickery it could certainly be
1058 written this way, but it won't work because of those DAMN GCC WANKERS
1059 who couldn't be bothered to handle alloca() properly on the x86
1060 architecture. (If you put a call to alloca() in the argument to
1061 a function call, the stack space gets allocated right in the
1062 middle of the arguments to the function call and you are unbelievably
1063 hosed.) */
1064
1065 #define GET_STRING_EXT_DATA_ALLOCA(s, fmt, stick_value_here, stick_len_here)\
1066 do \
1067 { \
1068 Extcount __gseda_len__; \
1069 CONST Extbyte *__gseda_ptr__; \
1070 struct Lisp_String *__gseda_s__ = XSTRING (s); \
1071 \
1072 __gseda_ptr__ = convert_to_external_format (string_data (__gseda_s__), \
1073 string_length (__gseda_s__), \
1074 &__gseda_len__, fmt); \
1075 (stick_value_here) = alloca (1 + __gseda_len__); \
1076 memcpy ((Extbyte *) stick_value_here, __gseda_ptr__, 1 + __gseda_len__); \
1077 (stick_len_here) = __gseda_len__; \
1078 } while (0)
1079
1080
1081 #define GET_C_STRING_EXT_DATA_ALLOCA(s, fmt, stick_value_here) \
1082 do \
1083 { \
1084 Extcount __gcseda_ignored_len__; \
1085 CONST Extbyte *__gcseda_ptr__; \
1086 \
1087 GET_STRING_EXT_DATA_ALLOCA (s, fmt, __gcseda_ptr__, \
1088 __gcseda_ignored_len__); \
1089 (stick_value_here) = (CONST char *) __gcseda_ptr__; \
1090 } while (0)
1091
1092 #define GET_STRING_BINARY_DATA_ALLOCA(s, stick_value_here, stick_len_here) \
1093 GET_STRING_EXT_DATA_ALLOCA (s, FORMAT_BINARY, stick_value_here, \
1094 stick_len_here)
1095 #define GET_C_STRING_BINARY_DATA_ALLOCA(s, stick_value_here) \
1096 GET_C_STRING_EXT_DATA_ALLOCA (s, FORMAT_BINARY, stick_value_here)
1097
1098 #define GET_STRING_FILENAME_DATA_ALLOCA(s, stick_value_here, stick_len_here) \
1099 GET_STRING_EXT_DATA_ALLOCA (s, FORMAT_FILENAME, stick_value_here, \
1100 stick_len_here)
1101 #define GET_C_STRING_FILENAME_DATA_ALLOCA(s, stick_value_here) \
1102 GET_C_STRING_EXT_DATA_ALLOCA (s, FORMAT_FILENAME, stick_value_here)
1103
1104 #define GET_STRING_OS_DATA_ALLOCA(s, stick_value_here, stick_len_here) \
1105 GET_STRING_EXT_DATA_ALLOCA (s, FORMAT_OS, stick_value_here, \
1106 stick_len_here)
1107 #define GET_C_STRING_OS_DATA_ALLOCA(s, stick_value_here) \
1108 GET_C_STRING_EXT_DATA_ALLOCA (s, FORMAT_OS, stick_value_here)
1109
1110 #define GET_STRING_CTEXT_DATA_ALLOCA(s, stick_value_here, stick_len_here) \
1111 GET_STRING_EXT_DATA_ALLOCA (s, FORMAT_CTEXT, stick_value_here, \
1112 stick_len_here)
1113 #define GET_C_STRING_CTEXT_DATA_ALLOCA(s, stick_value_here) \
1114 GET_C_STRING_EXT_DATA_ALLOCA (s, FORMAT_CTEXT, stick_value_here)
1115
1116
1117
1118 /************************************************************************/
1119 /* */
1120 /* fake charset functions */
1121 /* */
1122 /************************************************************************/
1123
1124 #define Vcharset_ascii Qnil
1125
1126 #define CHAR_CHARSET(ch) Vcharset_ascii
1127 #define CHAR_LEADING_BYTE(ch) LEADING_BYTE_ASCII
1128 #define LEADING_BYTE_ASCII 0x80
1129 #define NUM_LEADING_BYTES 1
1130 #define MIN_LEADING_BYTE 0x80
1131 #define CHARSETP(cs) 1
1132 #define CHARSET_BY_LEADING_BYTE(cs) Vcharset_ascii
1133 #define XCHARSET_LEADING_BYTE(cs) LEADING_BYTE_ASCII
1134 #define XCHARSET_GRAPHIC(cs) -1
1135 #define XCHARSET_COLUMNS(cs) 1
1136 #define XCHARSET_DIMENSION(cs) 1
1137 #define REP_BYTES_BY_FIRST_BYTE(fb) 1
1138 #define BREAKUP_CHAR(ch, charset, byte1, byte2)\
1139 do \
1140 { \
1141 (charset) = Vcharset_ascii; \
1142 (byte1) = (ch); \
1143 (byte2) = 0; \
1144 } while (0)
1145 #define BYTE_ASCII_P(by) 1
1146
1147
1148 /************************************************************************/
1149 /* */
1150 /* higher-level buffer-position functions */
1151 /* */
1152 /************************************************************************/
1153
1154 /*----------------------------------------------------------------------*/
1155 /* Settor macros for important positions in a buffer */
1156 /*----------------------------------------------------------------------*/
1157
1158 /* Set beginning of accessible range of buffer. */
1159 #define SET_BOTH_BUF_BEGV(buf, val, bival) \
1160 do \
1161 { \
1162 (buf)->begv = (bival); \
1163 (buf)->bufbegv = (val); \
1164 } while (0)
1165
1166 /* Set end of accessible range of buffer. */
1167 #define SET_BOTH_BUF_ZV(buf, val, bival) \
1168 do \
1169 { \
1170 (buf)->zv = (bival); \
1171 (buf)->bufzv = (val); \
1172 } while (0)
1173
1174 /* Set point. */
1175 /* Since BEGV and ZV are almost never set, it's reasonable to enforce
1176 the restriction that the Bufpos and Bytind values must both be
1177 specified. However, point is set in lots and lots of places. So
1178 we provide the ability to specify both (for efficiency) or just
1179 one. */
1180 #define BOTH_BUF_SET_PT(buf, val, bival) set_buffer_point (buf, val, bival)
1181 #define BI_BUF_SET_PT(buf, bival) \
1182 BOTH_BUF_SET_PT (buf, bytind_to_bufpos (buf, bival), bival)
1183 #define BUF_SET_PT(buf, value) \
1184 BOTH_BUF_SET_PT (buf, value, bufpos_to_bytind (buf, value))
1185
1186
1187 #if 0 /* FSFmacs */
1188 /* These macros exist in FSFmacs because SET_PT() in FSFmacs incorrectly
1189 does too much stuff, such as moving out of invisible extents. */
1190 #define TEMP_SET_PT(position) (temp_set_point ((position), current_buffer))
1191 #define SET_BUF_PT(buf, value) ((buf)->pt = (value))
1192 #endif
1193
1194 /*----------------------------------------------------------------------*/
1195 /* Miscellaneous buffer values */
1196 /*----------------------------------------------------------------------*/
1197
1198 /* Number of characters in buffer */
1199 #define BUF_SIZE(buf) (BUF_Z (buf) - BUF_BEG (buf))
1200
1201 /* Is this buffer narrowed? */
1202 #define BUF_NARROWED(buf) ((BI_BUF_BEGV (buf) != BI_BUF_BEG (buf)) \
1203 || (BI_BUF_ZV (buf) != BI_BUF_Z (buf)))
1204
1205 /* Modification count. */
1206 #define BUF_MODIFF(buf) ((buf)->text->modiff)
1207
1208 /* Saved modification count. */
1209 #define BUF_SAVE_MODIFF(buf) ((buf)->text->save_modiff)
1210
1211 /* Face changed. */
1212 #define BUF_FACECHANGE(buf) ((buf)->face_change)
1213
1214 #define POINT_MARKER_P(marker) \
1215 (XMARKER (marker)->buffer != 0 && \
1216 EQ ((marker), XMARKER (marker)->buffer->point_marker))
1217
1218 #define BUF_MARKERS(buf) ((buf)->markers)
1219
1220 /* WARNING:
1221
1222 The new definitions of CEILING_OF() and FLOOR_OF() differ semantically
1223 from the old ones (in FSF Emacs and XEmacs 19.11 and before).
1224 Conversion is as follows:
1225
1226 OLD_BI_CEILING_OF(n) = NEW_BI_CEILING_OF(n) - 1
1227 OLD_BI_FLOOR_OF(n) = NEW_BI_FLOOR_OF(n + 1)
1228
1229 The definitions were changed because the new definitions are more
1230 consistent with the way everything else works in Emacs.
1231 */
1232
1233 /* Properties of CEILING_OF and FLOOR_OF (also apply to BI_ variants):
1234
1235 1) FLOOR_OF (CEILING_OF (n)) = n
1236 CEILING_OF (FLOOR_OF (n)) = n
1237
1238 2) CEILING_OF (n) = n if and only if n = ZV
1239 FLOOR_OF (n) = n if and only if n = BEGV
1240
1241 3) CEILING_OF (CEILING_OF (n)) = ZV
1242 FLOOR_OF (FLOOR_OF (n)) = BEGV
1243
1244 4) The bytes in the regions
1245
1246 [BYTE_ADDRESS (n), BYTE_ADDRESS_BEFORE (CEILING_OF (n))]
1247
1248 and
1249
1250 [BYTE_ADDRESS (FLOOR_OF (n)), BYTE_ADDRESS_BEFORE (n)]
1251
1252 are contiguous.
1253 */
1254
1255
1256 /* Return the maximum index in the buffer it is safe to scan forwards
1257 past N to. This is used to prevent buffer scans from running into
1258 the gap (e.g. search.c). All characters between N and CEILING_OF(N)
1259 are located contiguous in memory. Note that the character *at*
1260 CEILING_OF(N) is not contiguous in memory. */
1261 #define BI_BUF_CEILING_OF(b, n) \
1262 ((n) < (b)->text->gpt && (b)->text->gpt < BI_BUF_ZV (b) ? \
1263 (b)->text->gpt : BI_BUF_ZV (b))
1264 #define BUF_CEILING_OF(b, n) \
1265 bytind_to_bufpos (b, BI_BUF_CEILING_OF (b, bufpos_to_bytind (b, n)))
1266
1267 /* Return the minimum index in the buffer it is safe to scan backwards
1268 past N to. All characters between FLOOR_OF(N) and N are located
1269 contiguous in memory. Note that the character *at* N may not be
1270 contiguous in memory. */
1271 #define BI_BUF_FLOOR_OF(b, n) \
1272 (BI_BUF_BEGV (b) < (b)->text->gpt && (b)->text->gpt < (n) ? \
1273 (b)->text->gpt : BI_BUF_BEGV (b))
1274 #define BUF_FLOOR_OF(b, n) \
1275 bytind_to_bufpos (b, BI_BUF_FLOOR_OF (b, bufpos_to_bytind (b, n)))
1276
1277 #define BI_BUF_CEILING_OF_IGNORE_ACCESSIBLE(b, n) \
1278 ((n) < (b)->text->gpt && (b)->text->gpt < BI_BUF_Z (b) ? \
1279 (b)->text->gpt : BI_BUF_Z (b))
1280 #define BUF_CEILING_OF_IGNORE_ACCESSIBLE(b, n) \
1281 bytind_to_bufpos \
1282 (b, BI_BUF_CEILING_OF_IGNORE_ACCESSIBLE (b, bufpos_to_bytind (b, n)))
1283
1284 #define BI_BUF_FLOOR_OF_IGNORE_ACCESSIBLE(b, n) \
1285 (BI_BUF_BEG (b) < (b)->text->gpt && (b)->text->gpt < (n) ? \
1286 (b)->text->gpt : BI_BUF_BEG (b))
1287 #define BUF_FLOOR_OF_IGNORE_ACCESSIBLE(b, n) \
1288 bytind_to_bufpos \
1289 (b, BI_BUF_FLOOR_OF_IGNORE_ACCESSIBLE (b, bufpos_to_bytind (b, n)))
1290
1291
1292
1293
1294 extern struct buffer *current_buffer;
1295
1296 /* This structure holds the default values of the buffer-local variables
1297 defined with DEFVAR_BUFFER_LOCAL, that have special slots in each buffer.
1298 The default value occupies the same slot in this structure
1299 as an individual buffer's value occupies in that buffer.
1300 Setting the default value also goes through the alist of buffers
1301 and stores into each buffer that does not say it has a local value. */
1302
1303 extern Lisp_Object Vbuffer_defaults;
1304
1305 /* This structure marks which slots in a buffer have corresponding
1306 default values in buffer_defaults.
1307 Each such slot has a nonzero value in this structure.
1308 The value has only one nonzero bit.
1309
1310 When a buffer has its own local value for a slot,
1311 the bit for that slot (found in the same slot in this structure)
1312 is turned on in the buffer's local_var_flags slot.
1313
1314 If a slot in this structure is zero, then even though there may
1315 be a DEFVAR_BUFFER_LOCAL for the slot, there is no default value for it;
1316 and the corresponding slot in buffer_defaults is not used. */
1317
1318 extern struct buffer buffer_local_flags;
1319
1320
1321 /* Allocation of buffer data. */
1322
1323 #ifdef REL_ALLOC
1324
1325 char *r_alloc (char **, unsigned long);
1326 char *r_re_alloc (char **, unsigned long);
1327 void r_alloc_free (void **);
1328
1329 #define BUFFER_ALLOC(data,size) \
1330 ((Bufbyte *) r_alloc ((char **) &data, (size) * sizeof(Bufbyte)))
1331 #define BUFFER_REALLOC(data,size) \
1332 ((Bufbyte *) r_re_alloc ((char **) &data, (size) * sizeof(Bufbyte)))
1333 #define BUFFER_FREE(data) r_alloc_free ((void **) &(data))
1334 #define R_ALLOC_DECLARE(var,data) r_alloc_declare (&(var), data)
1335
1336 #else /* !REL_ALLOC */
1337
1338 #define BUFFER_ALLOC(data,size)\
1339 (data = (Bufbyte *) xmalloc ((size) * sizeof(Bufbyte)))
1340 #define BUFFER_REALLOC(data,size)\
1341 ((Bufbyte *) xrealloc (data, (size) * sizeof(Bufbyte)))
1342 /* Avoid excess parentheses, or syntax errors may rear their heads. */
1343 #define BUFFER_FREE(data) xfree (data)
1344 #define R_ALLOC_DECLARE(var,data)
1345
1346 #endif /* !REL_ALLOC */
1347
1348 extern Lisp_Object Vbuffer_alist;
1349 void set_buffer_internal (struct buffer *b);
1350 struct buffer *decode_buffer (Lisp_Object buffer, int allow_string);
1351
1352 /* from editfns.c */
1353 void widen_buffer (struct buffer *b, int no_clip);
1354 int beginning_of_line_p (struct buffer *b, Bufpos pt);
1355
1356 /* from insdel.c */
1357 void set_buffer_point (struct buffer *buf, Bufpos pos, Bytind bipos);
1358 void find_charsets_in_bufbyte_string (unsigned char *charsets,
1359 CONST Bufbyte *str,
1360 Bytecount len);
1361 void find_charsets_in_emchar_string (unsigned char *charsets,
1362 CONST Emchar *str,
1363 Charcount len);
1364 int bufbyte_string_displayed_columns (CONST Bufbyte *str, Bytecount len);
1365 int emchar_string_displayed_columns (CONST Emchar *str, Charcount len);
1366 void convert_bufbyte_string_into_emchar_dynarr (CONST Bufbyte *str,
1367 Bytecount len,
1368 emchar_dynarr *dyn);
1369 int convert_bufbyte_string_into_emchar_string (CONST Bufbyte *str,
1370 Bytecount len,
1371 Emchar *arr);
1372 void convert_emchar_string_into_bufbyte_dynarr (Emchar *arr, int nels,
1373 bufbyte_dynarr *dyn);
1374 Bufbyte *convert_emchar_string_into_malloced_string (Emchar *arr, int nels,
1375 Bytecount *len_out);
1376
1377 /* flags for get_buffer_pos_char(), get_buffer_range_char(), etc. */
1378 /* At most one of GB_COERCE_RANGE and GB_NO_ERROR_IF_BAD should be
1379 specified. At most one of GB_NEGATIVE_FROM_END and GB_NO_ERROR_IF_BAD
1380 should be specified. */
1381
1382 #define GB_ALLOW_PAST_ACCESSIBLE (1 << 0)
1383 #define GB_ALLOW_NIL (1 << 1)
1384 #define GB_CHECK_ORDER (1 << 2)
1385 #define GB_COERCE_RANGE (1 << 3)
1386 #define GB_NO_ERROR_IF_BAD (1 << 4)
1387 #define GB_NEGATIVE_FROM_END (1 << 5)
1388 #define GB_HISTORICAL_STRING_BEHAVIOR (GB_NEGATIVE_FROM_END | GB_ALLOW_NIL)
1389
1390 Bufpos get_buffer_pos_char (struct buffer *b, Lisp_Object pos,
1391 unsigned int flags);
1392 Bytind get_buffer_pos_byte (struct buffer *b, Lisp_Object pos,
1393 unsigned int flags);
1394 void get_buffer_range_char (struct buffer *b, Lisp_Object from, Lisp_Object to,
1395 Bufpos *from_out, Bufpos *to_out,
1396 unsigned int flags);
1397 void get_buffer_range_byte (struct buffer *b, Lisp_Object from, Lisp_Object to,
1398 Bytind *from_out, Bytind *to_out,
1399 unsigned int flags);
1400 Charcount get_string_pos_char (Lisp_Object string, Lisp_Object pos,
1401 unsigned int flags);
1402 Bytecount get_string_pos_byte (Lisp_Object string, Lisp_Object pos,
1403 unsigned int flags);
1404 void get_string_range_char (Lisp_Object string, Lisp_Object from,
1405 Lisp_Object to, Charcount *from_out,
1406 Charcount *to_out, unsigned int flags);
1407 void get_string_range_byte (Lisp_Object string, Lisp_Object from,
1408 Lisp_Object to, Bytecount *from_out,
1409 Bytecount *to_out, unsigned int flags);
1410 Bufpos get_buffer_or_string_pos_char (Lisp_Object object, Lisp_Object pos,
1411 unsigned int flags);
1412 Bytind get_buffer_or_string_pos_byte (Lisp_Object object, Lisp_Object pos,
1413 unsigned int flags);
1414 void get_buffer_or_string_range_char (Lisp_Object object, Lisp_Object from,
1415 Lisp_Object to, Bufpos *from_out,
1416 Bufpos *to_out, unsigned int flags);
1417 void get_buffer_or_string_range_byte (Lisp_Object object, Lisp_Object from,
1418 Lisp_Object to, Bytind *from_out,
1419 Bytind *to_out, unsigned int flags);
1420 Bufpos buffer_or_string_accessible_begin_char (Lisp_Object object);
1421 Bufpos buffer_or_string_accessible_end_char (Lisp_Object object);
1422 Bytind buffer_or_string_accessible_begin_byte (Lisp_Object object);
1423 Bytind buffer_or_string_accessible_end_byte (Lisp_Object object);
1424 Bufpos buffer_or_string_absolute_begin_char (Lisp_Object object);
1425 Bufpos buffer_or_string_absolute_end_char (Lisp_Object object);
1426 Bytind buffer_or_string_absolute_begin_byte (Lisp_Object object);
1427 Bytind buffer_or_string_absolute_end_byte (Lisp_Object object);
1428 void record_buffer (Lisp_Object buf);
1429 Lisp_Object get_buffer (Lisp_Object name,
1430 int error_if_deleted_or_does_not_exist);
1431 int map_over_sharing_buffers (struct buffer *buf,
1432 int (*mapfun) (struct buffer *buf,
1433 void *closure),
1434 void *closure);
1435
1436
1437 /************************************************************************/
1438 /* Case conversion */
1439 /************************************************************************/
1440
1441 /* A "trt" table is a mapping from characters to other characters,
1442 typically used to convert between uppercase and lowercase. For
1443 compatibility reasons, trt tables are currently in the form of
1444 a Lisp string of 256 characters, specifying the conversion for each
1445 of the first 256 Emacs characters (i.e. the 256 extended-ASCII
1446 characters). This should be generalized at some point to support
1447 conversions for all of the allowable Mule characters.
1448 */
1449
1450 /* The _1 macros are named as such because they assume that you have
1451 already guaranteed that the character values are all in the range
1452 0 - 255. Bad lossage will happen otherwise. */
1453
1454 # define MAKE_TRT_TABLE() Fmake_string (make_int (256), make_char (0))
1455 # define TRT_TABLE_AS_STRING(table) string_data (XSTRING (table))
1456 # define TRT_TABLE_CHAR_1(table, ch) \
1457 string_char (XSTRING (table), (Charcount) ch)
1458 # define SET_TRT_TABLE_CHAR_1(table, ch1, ch2) \
1459 set_string_char (XSTRING (table), (Charcount) ch1, ch2)
1460
1461 # define IN_TRT_TABLE_DOMAIN(c) (((unsigned EMACS_INT) (c)) < 0400)
1462
1463 #define MIRROR_DOWNCASE_TABLE_AS_STRING(buf) \
1464 TRT_TABLE_AS_STRING (buf->downcase_table)
1465 #define MIRROR_UPCASE_TABLE_AS_STRING(buf) \
1466 TRT_TABLE_AS_STRING (buf->upcase_table)
1467 #define MIRROR_CANON_TABLE_AS_STRING(buf) \
1468 TRT_TABLE_AS_STRING (buf->case_canon_table)
1469 #define MIRROR_EQV_TABLE_AS_STRING(buf) \
1470 TRT_TABLE_AS_STRING (buf->case_eqv_table)
1471
1472 INLINE Emchar TRT_TABLE_OF (Lisp_Object trt, Emchar c);
1473 INLINE Emchar
1474 TRT_TABLE_OF (Lisp_Object trt, Emchar c)
1475 {
1476 if (IN_TRT_TABLE_DOMAIN (c))
1477 return TRT_TABLE_CHAR_1 (trt, c);
1478 else
1479 return c;
1480 }
1481
1482 /* Macros used below. */
1483 #define DOWNCASE_TABLE_OF(buf, c) TRT_TABLE_OF (buf->downcase_table, c)
1484 #define UPCASE_TABLE_OF(buf, c) TRT_TABLE_OF (buf->upcase_table, c)
1485
1486 /* 1 if CH is upper case. */
1487
1488 INLINE int UPPERCASEP (struct buffer *buf, Emchar ch);
1489 INLINE int
1490 UPPERCASEP (struct buffer *buf, Emchar ch)
1491 {
1492 return (DOWNCASE_TABLE_OF (buf, ch) != ch);
1493 }
1494
1495 /* 1 if CH is lower case. */
1496
1497 INLINE int LOWERCASEP (struct buffer *buf, Emchar ch);
1498 INLINE int
1499 LOWERCASEP (struct buffer *buf, Emchar ch)
1500 {
1501 return (UPCASE_TABLE_OF (buf, ch) != ch &&
1502 DOWNCASE_TABLE_OF (buf, ch) == ch);
1503 }
1504
1505 /* 1 if CH is neither upper nor lower case. */
1506
1507 INLINE int NOCASEP (struct buffer *buf, Emchar ch);
1508 INLINE int
1509 NOCASEP (struct buffer *buf, Emchar ch)
1510 {
1511 return (UPCASE_TABLE_OF (buf, ch) == ch);
1512 }
1513
1514 /* Upcase a character, or make no change if that cannot be done. */
1515
1516 INLINE Emchar UPCASE (struct buffer *buf, Emchar ch);
1517 INLINE Emchar
1518 UPCASE (struct buffer *buf, Emchar ch)
1519 {
1520 if (DOWNCASE_TABLE_OF (buf, ch) == ch)
1521 return UPCASE_TABLE_OF (buf, ch);
1522 else
1523 return ch;
1524 }
1525
1526 /* Upcase a character known to be not upper case. */
1527
1528 #define UPCASE1(buf, ch) UPCASE_TABLE_OF (buf, ch)
1529
1530 /* Downcase a character, or make no change if that cannot be done. */
1531
1532 #define DOWNCASE(buf, ch) DOWNCASE_TABLE_OF (buf, ch)
1533
1534
1535 /* put it here, somewhat arbitrarily ... its needs to be in *some*
1536 header file. */
1537 DECLARE_LRECORD (range_table, struct Lisp_Range_Table);
1538
1539 #endif /* _XEMACS_BUFFER_H_ */