comparison lisp/bytecomp/byte-optimize.el @ 0:376386a54a3c r19-14

Import from CVS: tag r19-14
author cvs
date Mon, 13 Aug 2007 08:45:50 +0200
parents
children ac2d302a0011
comparison
equal deleted inserted replaced
-1:000000000000 0:376386a54a3c
1 ;;; byte-opt.el --- the optimization passes of the emacs-lisp byte compiler.
2
3 ;;; Copyright (c) 1991, 1994 Free Software Foundation, Inc.
4
5 ;; Author: Jamie Zawinski <jwz@lucid.com>
6 ;; Hallvard Furuseth <hbf@ulrik.uio.no>
7 ;; Keywords: internal
8
9 ;; This file is part of XEmacs.
10
11 ;; XEmacs is free software; you can redistribute it and/or modify it
12 ;; under the terms of the GNU General Public License as published by
13 ;; the Free Software Foundation; either version 2, or (at your option)
14 ;; any later version.
15
16 ;; XEmacs is distributed in the hope that it will be useful, but
17 ;; WITHOUT ANY WARRANTY; without even the implied warranty of
18 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 ;; General Public License for more details.
20
21 ;; You should have received a copy of the GNU General Public License
22 ;; along with XEmacs; see the file COPYING. If not, write to the Free
23 ;; Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24
25 ;;; Synched up with: FSF 19.30.
26
27 ;;; Commentary:
28
29 ;;; ========================================================================
30 ;;; "No matter how hard you try, you can't make a racehorse out of a pig.
31 ;;; You can, however, make a faster pig."
32 ;;;
33 ;;; Or, to put it another way, the emacs byte compiler is a VW Bug. This code
34 ;;; makes it be a VW Bug with fuel injection and a turbocharger... You're
35 ;;; still not going to make it go faster than 70 mph, but it might be easier
36 ;;; to get it there.
37 ;;;
38
39 ;;; TO DO:
40 ;;;
41 ;;; (apply '(lambda (x &rest y) ...) 1 (foo))
42 ;;;
43 ;;; maintain a list of functions known not to access any global variables
44 ;;; (actually, give them a 'dynamically-safe property) and then
45 ;;; (let ( v1 v2 ... vM vN ) <...dynamically-safe...> ) ==>
46 ;;; (let ( v1 v2 ... vM ) vN <...dynamically-safe...> )
47 ;;; by recursing on this, we might be able to eliminate the entire let.
48 ;;; However certain variables should never have their bindings optimized
49 ;;; away, because they affect everything.
50 ;;; (put 'debug-on-error 'binding-is-magic t)
51 ;;; (put 'debug-on-abort 'binding-is-magic t)
52 ;;; (put 'debug-on-next-call 'binding-is-magic t)
53 ;;; (put 'mocklisp-arguments 'binding-is-magic t)
54 ;;; (put 'inhibit-quit 'binding-is-magic t)
55 ;;; (put 'quit-flag 'binding-is-magic t)
56 ;;; (put 't 'binding-is-magic t)
57 ;;; (put 'nil 'binding-is-magic t)
58 ;;; possibly also
59 ;;; (put 'gc-cons-threshold 'binding-is-magic t)
60 ;;; (put 'track-mouse 'binding-is-magic t)
61 ;;; others?
62 ;;;
63 ;;; Simple defsubsts often produce forms like
64 ;;; (let ((v1 (f1)) (v2 (f2)) ...)
65 ;;; (FN v1 v2 ...))
66 ;;; It would be nice if we could optimize this to
67 ;;; (FN (f1) (f2) ...)
68 ;;; but we can't unless FN is dynamically-safe (it might be dynamically
69 ;;; referring to the bindings that the lambda arglist established.)
70 ;;; One of the uncountable lossages introduced by dynamic scope...
71 ;;;
72 ;;; Maybe there should be a control-structure that says "turn on
73 ;;; fast-and-loose type-assumptive optimizations here." Then when
74 ;;; we see a form like (car foo) we can from then on assume that
75 ;;; the variable foo is of type cons, and optimize based on that.
76 ;;; But, this won't win much because of (you guessed it) dynamic
77 ;;; scope. Anything down the stack could change the value.
78 ;;; (Another reason it doesn't work is that it is perfectly valid
79 ;;; to call car with a null argument.) A better approach might
80 ;;; be to allow type-specification of the form
81 ;;; (put 'foo 'arg-types '(float (list integer) dynamic))
82 ;;; (put 'foo 'result-type 'bool)
83 ;;; It should be possible to have these types checked to a certain
84 ;;; degree.
85 ;;;
86 ;;; collapse common subexpressions
87 ;;;
88 ;;; It would be nice if redundant sequences could be factored out as well,
89 ;;; when they are known to have no side-effects:
90 ;;; (list (+ a b c) (+ a b c)) --> a b add c add dup list-2
91 ;;; but beware of traps like
92 ;;; (cons (list x y) (list x y))
93 ;;;
94 ;;; Tail-recursion elimination is not really possible in Emacs Lisp.
95 ;;; Tail-recursion elimination is almost always impossible when all variables
96 ;;; have dynamic scope, but given that the "return" byteop requires the
97 ;;; binding stack to be empty (rather than emptying it itself), there can be
98 ;;; no truly tail-recursive Emacs Lisp functions that take any arguments or
99 ;;; make any bindings.
100 ;;;
101 ;;; Here is an example of an Emacs Lisp function which could safely be
102 ;;; byte-compiled tail-recursively:
103 ;;;
104 ;;; (defun tail-map (fn list)
105 ;;; (cond (list
106 ;;; (funcall fn (car list))
107 ;;; (tail-map fn (cdr list)))))
108 ;;;
109 ;;; However, if there was even a single let-binding around the COND,
110 ;;; it could not be byte-compiled, because there would be an "unbind"
111 ;;; byte-op between the final "call" and "return." Adding a
112 ;;; Bunbind_all byteop would fix this.
113 ;;;
114 ;;; (defun foo (x y z) ... (foo a b c))
115 ;;; ... (const foo) (varref a) (varref b) (varref c) (call 3) END: (return)
116 ;;; ... (varref a) (varbind x) (varref b) (varbind y) (varref c) (varbind z) (goto 0) END: (unbind-all) (return)
117 ;;; ... (varref a) (varset x) (varref b) (varset y) (varref c) (varset z) (goto 0) END: (return)
118 ;;;
119 ;;; this also can be considered tail recursion:
120 ;;;
121 ;;; ... (const foo) (varref a) (call 1) (goto X) ... X: (return)
122 ;;; could generalize this by doing the optimization
123 ;;; (goto X) ... X: (return) --> (return)
124 ;;;
125 ;;; But this doesn't solve all of the problems: although by doing tail-
126 ;;; recursion elimination in this way, the call-stack does not grow, the
127 ;;; binding-stack would grow with each recursive step, and would eventually
128 ;;; overflow. I don't believe there is any way around this without lexical
129 ;;; scope.
130 ;;;
131 ;;; Wouldn't it be nice if Emacs Lisp had lexical scope.
132 ;;;
133 ;;; Idea: the form (lexical-scope) in a file means that the file may be
134 ;;; compiled lexically. This proclamation is file-local. Then, within
135 ;;; that file, "let" would establish lexical bindings, and "let-dynamic"
136 ;;; would do things the old way. (Or we could use CL "declare" forms.)
137 ;;; We'd have to notice defvars and defconsts, since those variables should
138 ;;; always be dynamic, and attempting to do a lexical binding of them
139 ;;; should simply do a dynamic binding instead.
140 ;;; But! We need to know about variables that were not necessarily defvarred
141 ;;; in the file being compiled (doing a boundp check isn't good enough.)
142 ;;; Fdefvar() would have to be modified to add something to the plist.
143 ;;;
144 ;;; A major disadvantage of this scheme is that the interpreter and compiler
145 ;;; would have different semantics for files compiled with (dynamic-scope).
146 ;;; Since this would be a file-local optimization, there would be no way to
147 ;;; modify the interpreter to obey this (unless the loader was hacked
148 ;;; in some grody way, but that's a really bad idea.)
149 ;;;
150 ;;; HA! HA! HA! RMS removed the following paragraph from his version of
151 ;;; byte-opt.el, proving once again his stubborn refusal to accept any
152 ;;; developments in computer science that occurred after the late 1970's.
153 ;;;
154 ;;; Really the Right Thing is to make lexical scope the default across
155 ;;; the board, in the interpreter and compiler, and just FIX all of
156 ;;; the code that relies on dynamic scope of non-defvarred variables.
157
158 ;; Other things to consider:
159
160 ;;;;; Associative math should recognize subcalls to identical function:
161 ;;;(disassemble (lambda (x) (+ (+ (foo) 1) (+ (bar) 2))))
162 ;;;;; This should generate the same as (1+ x) and (1- x)
163
164 ;;;(disassemble (lambda (x) (cons (+ x 1) (- x 1))))
165 ;;;;; An awful lot of functions always return a non-nil value. If they're
166 ;;;;; error free also they may act as true-constants.
167
168 ;;;(disassemble (lambda (x) (and (point) (foo))))
169 ;;;;; When
170 ;;;;; - all but one arguments to a function are constant
171 ;;;;; - the non-constant argument is an if-expression (cond-expression?)
172 ;;;;; then the outer function can be distributed. If the guarding
173 ;;;;; condition is side-effect-free [assignment-free] then the other
174 ;;;;; arguments may be any expressions. Since, however, the code size
175 ;;;;; can increase this way they should be "simple". Compare:
176
177 ;;;(disassemble (lambda (x) (eq (if (point) 'a 'b) 'c)))
178 ;;;(disassemble (lambda (x) (if (point) (eq 'a 'c) (eq 'b 'c))))
179
180 ;;;;; (car (cons A B)) -> (progn B A)
181 ;;;(disassemble (lambda (x) (car (cons (foo) 42))))
182
183 ;;;;; (cdr (cons A B)) -> (progn A B)
184 ;;;(disassemble (lambda (x) (cdr (cons 42 (foo)))))
185
186 ;;;;; (car (list A B ...)) -> (progn B ... A)
187 ;;;(disassemble (lambda (x) (car (list (foo) 42 (bar)))))
188
189 ;;;;; (cdr (list A B ...)) -> (progn A (list B ...))
190 ;;;(disassemble (lambda (x) (cdr (list 42 (foo) (bar)))))
191
192
193 ;;; Code:
194
195 (require 'byte-compile "bytecomp")
196
197 (defun byte-compile-log-lap-1 (format &rest args)
198 (if (aref byte-code-vector 0)
199 (error "The old version of the disassembler is loaded. Reload new-bytecomp as well."))
200 (byte-compile-log-1
201 (apply 'format format
202 (let (c a)
203 (mapcar '(lambda (arg)
204 (if (not (consp arg))
205 (if (and (symbolp arg)
206 (string-match "^byte-" (symbol-name arg)))
207 (intern (substring (symbol-name arg) 5))
208 arg)
209 (if (integerp (setq c (car arg)))
210 (error "non-symbolic byte-op %s" c))
211 (if (eq c 'TAG)
212 (setq c arg)
213 (setq a (cond ((memq c byte-goto-ops)
214 (car (cdr (cdr arg))))
215 ((memq c byte-constref-ops)
216 (car (cdr arg)))
217 (t (cdr arg))))
218 (setq c (symbol-name c))
219 (if (string-match "^byte-." c)
220 (setq c (intern (substring c 5)))))
221 (if (eq c 'constant) (setq c 'const))
222 (if (and (eq (cdr arg) 0)
223 (not (memq c '(unbind call const))))
224 c
225 (format "(%s %s)" c a))))
226 args)))))
227
228 (defmacro byte-compile-log-lap (format-string &rest args)
229 (list 'and
230 '(memq byte-optimize-log '(t byte))
231 (cons 'byte-compile-log-lap-1
232 (cons format-string args))))
233
234
235 ;;; byte-compile optimizers to support inlining
236
237 (put 'inline 'byte-optimizer 'byte-optimize-inline-handler)
238
239 (defun byte-optimize-inline-handler (form)
240 "byte-optimize-handler for the `inline' special-form."
241 (cons 'progn
242 (mapcar
243 '(lambda (sexp)
244 (let ((fn (car-safe sexp)))
245 (if (and (symbolp fn)
246 (or (cdr (assq fn byte-compile-function-environment))
247 (and (fboundp fn)
248 (not (or (cdr (assq fn byte-compile-macro-environment))
249 (and (consp (setq fn (symbol-function fn)))
250 (eq (car fn) 'macro))
251 (subrp fn))))))
252 (byte-compile-inline-expand sexp)
253 sexp)))
254 (cdr form))))
255
256
257 ;; Splice the given lap code into the current instruction stream.
258 ;; If it has any labels in it, you're responsible for making sure there
259 ;; are no collisions, and that byte-compile-tag-number is reasonable
260 ;; after this is spliced in. The provided list is destroyed.
261 (defun byte-inline-lapcode (lap)
262 (setq byte-compile-output (nconc (nreverse lap) byte-compile-output)))
263
264
265 (defun byte-compile-inline-expand (form)
266 (let* ((name (car form))
267 (fn (or (cdr (assq name byte-compile-function-environment))
268 (and (fboundp name) (symbol-function name)))))
269 (if (null fn)
270 (progn
271 (byte-compile-warn "attempt to inline %s before it was defined" name)
272 form)
273 ;; else
274 (if (and (consp fn) (eq (car fn) 'autoload))
275 (load (nth 1 fn)))
276 (if (and (consp fn) (eq (car fn) 'autoload))
277 (error "file \"%s\" didn't define \"%s\"" (nth 1 fn) name))
278 (if (symbolp fn)
279 (byte-compile-inline-expand (cons fn (cdr form)))
280 (if (compiled-function-p fn)
281 (progn
282 (fetch-bytecode fn)
283 (cons (list 'lambda (compiled-function-arglist fn)
284 (list 'byte-code
285 (compiled-function-instructions fn)
286 (compiled-function-constants fn)
287 (compiled-function-stack-depth fn)))
288 (cdr form)))
289 (if (not (eq (car fn) 'lambda)) (error "%s is not a lambda" name))
290 (cons fn (cdr form)))))))
291
292 ;;; ((lambda ...) ...)
293 ;;;
294 (defun byte-compile-unfold-lambda (form &optional name)
295 (or name (setq name "anonymous lambda"))
296 (let ((lambda (car form))
297 (values (cdr form)))
298 (if (compiled-function-p lambda)
299 (setq lambda (list 'lambda (compiled-function-arglist lambda)
300 (list 'byte-code
301 (compiled-function-instructions lambda)
302 (compiled-function-constants lambda)
303 (compiled-function-stack-depth lambda)))))
304 (let ((arglist (nth 1 lambda))
305 (body (cdr (cdr lambda)))
306 optionalp restp
307 bindings)
308 (if (and (stringp (car body)) (cdr body))
309 (setq body (cdr body)))
310 (if (and (consp (car body)) (eq 'interactive (car (car body))))
311 (setq body (cdr body)))
312 (while arglist
313 (cond ((eq (car arglist) '&optional)
314 ;; ok, I'll let this slide because funcall_lambda() does...
315 ;; (if optionalp (error "multiple &optional keywords in %s" name))
316 (if restp (error "&optional found after &rest in %s" name))
317 (if (null (cdr arglist))
318 (error "nothing after &optional in %s" name))
319 (setq optionalp t))
320 ((eq (car arglist) '&rest)
321 ;; ...but it is by no stretch of the imagination a reasonable
322 ;; thing that funcall_lambda() allows (&rest x y) and
323 ;; (&rest x &optional y) in arglists.
324 (if (null (cdr arglist))
325 (error "nothing after &rest in %s" name))
326 (if (cdr (cdr arglist))
327 (error "multiple vars after &rest in %s" name))
328 (setq restp t))
329 (restp
330 (setq bindings (cons (list (car arglist)
331 (and values (cons 'list values)))
332 bindings)
333 values nil))
334 ((and (not optionalp) (null values))
335 (byte-compile-warn "attempt to open-code %s with too few arguments" name)
336 (setq arglist nil values 'too-few))
337 (t
338 (setq bindings (cons (list (car arglist) (car values))
339 bindings)
340 values (cdr values))))
341 (setq arglist (cdr arglist)))
342 (if values
343 (progn
344 (or (eq values 'too-few)
345 (byte-compile-warn
346 "attempt to open-code %s with too many arguments" name))
347 form)
348 (let ((newform
349 (if bindings
350 (cons 'let (cons (nreverse bindings) body))
351 (cons 'progn body))))
352 (byte-compile-log " %s\t==>\t%s" form newform)
353 newform)))))
354
355
356 ;;; implementing source-level optimizers
357
358 (defun byte-optimize-form-code-walker (form for-effect)
359 ;;
360 ;; For normal function calls, We can just mapcar the optimizer the cdr. But
361 ;; we need to have special knowledge of the syntax of the special forms
362 ;; like let and defun (that's why they're special forms :-). (Actually,
363 ;; the important aspect is that they are subrs that don't evaluate all of
364 ;; their args.)
365 ;;
366 (let ((fn (car-safe form))
367 tmp)
368 (cond ((not (consp form))
369 (if (not (and for-effect
370 (or byte-compile-delete-errors
371 (not (symbolp form))
372 (eq form t))))
373 form))
374 ((eq fn 'quote)
375 (if (cdr (cdr form))
376 (byte-compile-warn "malformed quote form: %s"
377 (prin1-to-string form)))
378 ;; map (quote nil) to nil to simplify optimizer logic.
379 ;; map quoted constants to nil if for-effect (just because).
380 (and (nth 1 form)
381 (not for-effect)
382 form))
383 ((or (compiled-function-p fn)
384 (eq 'lambda (car-safe fn)))
385 (byte-compile-unfold-lambda form))
386 ((memq fn '(let let*))
387 ;; recursively enter the optimizer for the bindings and body
388 ;; of a let or let*. This for depth-firstness: forms that
389 ;; are more deeply nested are optimized first.
390 (cons fn
391 (cons
392 (mapcar '(lambda (binding)
393 (if (symbolp binding)
394 binding
395 (if (cdr (cdr binding))
396 (byte-compile-warn "malformed let binding: %s"
397 (prin1-to-string binding)))
398 (list (car binding)
399 (byte-optimize-form (nth 1 binding) nil))))
400 (nth 1 form))
401 (byte-optimize-body (cdr (cdr form)) for-effect))))
402 ((eq fn 'cond)
403 (cons fn
404 (mapcar '(lambda (clause)
405 (if (consp clause)
406 (cons
407 (byte-optimize-form (car clause) nil)
408 (byte-optimize-body (cdr clause) for-effect))
409 (byte-compile-warn "malformed cond form: %s"
410 (prin1-to-string clause))
411 clause))
412 (cdr form))))
413 ((eq fn 'progn)
414 ;; as an extra added bonus, this simplifies (progn <x>) --> <x>
415 (if (cdr (cdr form))
416 (progn
417 (setq tmp (byte-optimize-body (cdr form) for-effect))
418 (if (cdr tmp) (cons 'progn tmp) (car tmp)))
419 (byte-optimize-form (nth 1 form) for-effect)))
420 ((eq fn 'prog1)
421 (if (cdr (cdr form))
422 (cons 'prog1
423 (cons (byte-optimize-form (nth 1 form) for-effect)
424 (byte-optimize-body (cdr (cdr form)) t)))
425 (byte-optimize-form (nth 1 form) for-effect)))
426 ((eq fn 'prog2)
427 (cons 'prog2
428 (cons (byte-optimize-form (nth 1 form) t)
429 (cons (byte-optimize-form (nth 2 form) for-effect)
430 (byte-optimize-body (cdr (cdr (cdr form))) t)))))
431
432 ((memq fn '(save-excursion save-restriction))
433 ;; those subrs which have an implicit progn; it's not quite good
434 ;; enough to treat these like normal function calls.
435 ;; This can turn (save-excursion ...) into (save-excursion) which
436 ;; will be optimized away in the lap-optimize pass.
437 (cons fn (byte-optimize-body (cdr form) for-effect)))
438
439 ((eq fn 'with-output-to-temp-buffer)
440 ;; this is just like the above, except for the first argument.
441 (cons fn
442 (cons
443 (byte-optimize-form (nth 1 form) nil)
444 (byte-optimize-body (cdr (cdr form)) for-effect))))
445
446 ((eq fn 'if)
447 (cons fn
448 (cons (byte-optimize-form (nth 1 form) nil)
449 (cons
450 (byte-optimize-form (nth 2 form) for-effect)
451 (byte-optimize-body (nthcdr 3 form) for-effect)))))
452
453 ((memq fn '(and or)) ; remember, and/or are control structures.
454 ;; take forms off the back until we can't any more.
455 ;; In the future it could conceivably be a problem that the
456 ;; subexpressions of these forms are optimized in the reverse
457 ;; order, but it's ok for now.
458 (if for-effect
459 (let ((backwards (reverse (cdr form))))
460 (while (and backwards
461 (null (setcar backwards
462 (byte-optimize-form (car backwards)
463 for-effect))))
464 (setq backwards (cdr backwards)))
465 (if (and (cdr form) (null backwards))
466 (byte-compile-log
467 " all subforms of %s called for effect; deleted" form))
468 (and backwards
469 (cons fn (nreverse backwards))))
470 (cons fn (mapcar 'byte-optimize-form (cdr form)))))
471
472 ((eq fn 'interactive)
473 (byte-compile-warn "misplaced interactive spec: %s"
474 (prin1-to-string form))
475 nil)
476
477 ((memq fn '(defun defmacro function
478 condition-case save-window-excursion))
479 ;; These forms are compiled as constants or by breaking out
480 ;; all the subexpressions and compiling them separately.
481 form)
482
483 ((eq fn 'unwind-protect)
484 ;; the "protected" part of an unwind-protect is compiled (and thus
485 ;; optimized) as a top-level form, so don't do it here. But the
486 ;; non-protected part has the same for-effect status as the
487 ;; unwind-protect itself. (The protected part is always for effect,
488 ;; but that isn't handled properly yet.)
489 (cons fn
490 (cons (byte-optimize-form (nth 1 form) for-effect)
491 (cdr (cdr form)))))
492
493 ((eq fn 'catch)
494 ;; the body of a catch is compiled (and thus optimized) as a
495 ;; top-level form, so don't do it here. The tag is never
496 ;; for-effect. The body should have the same for-effect status
497 ;; as the catch form itself, but that isn't handled properly yet.
498 (cons fn
499 (cons (byte-optimize-form (nth 1 form) nil)
500 (cdr (cdr form)))))
501
502 ;; If optimization is on, this is the only place that macros are
503 ;; expanded. If optimization is off, then macroexpansion happens
504 ;; in byte-compile-form. Otherwise, the macros are already expanded
505 ;; by the time that is reached.
506 ((not (eq form
507 (setq form (macroexpand form
508 byte-compile-macro-environment))))
509 (byte-optimize-form form for-effect))
510
511 ((not (symbolp fn))
512 (or (eq 'mocklisp (car-safe fn)) ; ha!
513 (byte-compile-warn "%s is a malformed function"
514 (prin1-to-string fn)))
515 form)
516
517 ((and for-effect (setq tmp (get fn 'side-effect-free))
518 (or byte-compile-delete-errors
519 (eq tmp 'error-free)
520 (progn
521 (byte-compile-warn "%s called for effect"
522 (prin1-to-string form))
523 nil)))
524 (byte-compile-log " %s called for effect; deleted" fn)
525 ;; appending a nil here might not be necessary, but it can't hurt.
526 (byte-optimize-form
527 (cons 'progn (append (cdr form) '(nil))) t))
528
529 (t
530 ;; Otherwise, no args can be considered to be for-effect,
531 ;; even if the called function is for-effect, because we
532 ;; don't know anything about that function.
533 (cons fn (mapcar 'byte-optimize-form (cdr form)))))))
534
535
536 (defun byte-optimize-form (form &optional for-effect)
537 "The source-level pass of the optimizer."
538 ;;
539 ;; First, optimize all sub-forms of this one.
540 (setq form (byte-optimize-form-code-walker form for-effect))
541 ;;
542 ;; after optimizing all subforms, optimize this form until it doesn't
543 ;; optimize any further. This means that some forms will be passed through
544 ;; the optimizer many times, but that's necessary to make the for-effect
545 ;; processing do as much as possible.
546 ;;
547 (let (opt new)
548 (if (and (consp form)
549 (symbolp (car form))
550 (or (and for-effect
551 ;; we don't have any of these yet, but we might.
552 (setq opt (get (car form) 'byte-for-effect-optimizer)))
553 (setq opt (get (car form) 'byte-optimizer)))
554 (not (eq form (setq new (funcall opt form)))))
555 (progn
556 ;; (if (equal form new) (error "bogus optimizer -- %s" opt))
557 (byte-compile-log " %s\t==>\t%s" form new)
558 (setq new (byte-optimize-form new for-effect))
559 new)
560 form)))
561
562
563 (defun byte-optimize-body (forms all-for-effect)
564 ;; optimize the cdr of a progn or implicit progn; all forms is a list of
565 ;; forms, all but the last of which are optimized with the assumption that
566 ;; they are being called for effect. the last is for-effect as well if
567 ;; all-for-effect is true. returns a new list of forms.
568 (let ((rest forms)
569 (result nil)
570 fe new)
571 (while rest
572 (setq fe (or all-for-effect (cdr rest)))
573 (setq new (and (car rest) (byte-optimize-form (car rest) fe)))
574 (if (or new (not fe))
575 (setq result (cons new result)))
576 (setq rest (cdr rest)))
577 (nreverse result)))
578
579
580 ;;; some source-level optimizers
581 ;;;
582 ;;; when writing optimizers, be VERY careful that the optimizer returns
583 ;;; something not EQ to its argument if and ONLY if it has made a change.
584 ;;; This implies that you cannot simply destructively modify the list;
585 ;;; you must return something not EQ to it if you make an optimization.
586 ;;;
587 ;;; It is now safe to optimize code such that it introduces new bindings.
588
589 ;; I'd like this to be a defsubst, but let's not be self-referential...
590 (defmacro byte-compile-trueconstp (form)
591 ;; Returns non-nil if FORM is a non-nil constant.
592 (` (cond ((consp (, form)) (eq (car (, form)) 'quote))
593 ((not (symbolp (, form))))
594 ((eq (, form) t)))))
595
596 ;; If the function is being called with constant numeric args,
597 ;; evaluate as much as possible at compile-time. This optimizer
598 ;; assumes that the function is associative, like + or *.
599 (defun byte-optimize-associative-math (form)
600 (let ((args nil)
601 (constants nil)
602 (rest (cdr form)))
603 (while rest
604 (if (numberp (car rest))
605 (setq constants (cons (car rest) constants))
606 (setq args (cons (car rest) args)))
607 (setq rest (cdr rest)))
608 (if (cdr constants)
609 (if args
610 (list (car form)
611 (apply (car form) constants)
612 (if (cdr args)
613 (cons (car form) (nreverse args))
614 (car args)))
615 (apply (car form) constants))
616 form)))
617
618 ;; If the function is being called with constant numeric args,
619 ;; evaluate as much as possible at compile-time. This optimizer
620 ;; assumes that the function satisfies
621 ;; (op x1 x2 ... xn) == (op ...(op (op x1 x2) x3) ...xn)
622 ;; like - and /.
623 (defun byte-optimize-nonassociative-math (form)
624 (if (or (not (numberp (car (cdr form))))
625 (not (numberp (car (cdr (cdr form))))))
626 form
627 (let ((constant (car (cdr form)))
628 (rest (cdr (cdr form))))
629 (while (numberp (car rest))
630 (setq constant (funcall (car form) constant (car rest))
631 rest (cdr rest)))
632 (if rest
633 (cons (car form) (cons constant rest))
634 constant))))
635
636 ;;(defun byte-optimize-associative-two-args-math (form)
637 ;; (setq form (byte-optimize-associative-math form))
638 ;; (if (consp form)
639 ;; (byte-optimize-two-args-left form)
640 ;; form))
641
642 ;;(defun byte-optimize-nonassociative-two-args-math (form)
643 ;; (setq form (byte-optimize-nonassociative-math form))
644 ;; (if (consp form)
645 ;; (byte-optimize-two-args-right form)
646 ;; form))
647
648 (defun byte-optimize-approx-equal (x y)
649 (< (* (abs (- x y)) 100) (abs (+ x y))))
650
651 ;; Collect all the constants from FORM, after the STARTth arg,
652 ;; and apply FUN to them to make one argument at the end.
653 ;; For functions that can handle floats, that optimization
654 ;; can be incorrect because reordering can cause an overflow
655 ;; that would otherwise be avoided by encountering an arg that is a float.
656 ;; We avoid this problem by (1) not moving float constants and
657 ;; (2) not moving anything if it would cause an overflow.
658 (defun byte-optimize-delay-constants-math (form start fun)
659 ;; Merge all FORM's constants from number START, call FUN on them
660 ;; and put the result at the end.
661 (let ((rest (nthcdr (1- start) form))
662 (orig form)
663 ;; t means we must check for overflow.
664 (overflow (memq fun '(+ *))))
665 (while (cdr (setq rest (cdr rest)))
666 (if (integerp (car rest))
667 (let (constants)
668 (setq form (copy-sequence form)
669 rest (nthcdr (1- start) form))
670 (while (setq rest (cdr rest))
671 (cond ((integerp (car rest))
672 (setq constants (cons (car rest) constants))
673 (setcar rest nil))))
674 ;; If necessary, check now for overflow
675 ;; that might be caused by reordering.
676 (if (and overflow
677 ;; We have overflow if the result of doing the arithmetic
678 ;; on floats is not even close to the result
679 ;; of doing it on integers.
680 (not (byte-optimize-approx-equal
681 (apply fun (mapcar 'float constants))
682 (float (apply fun constants)))))
683 (setq form orig)
684 (setq form (nconc (delq nil form)
685 (list (apply fun (nreverse constants)))))))))
686 form))
687
688 (defun byte-optimize-plus (form)
689 (setq form (byte-optimize-delay-constants-math form 1 '+))
690 (if (memq 0 form) (setq form (delq 0 (copy-sequence form))))
691 ;;(setq form (byte-optimize-associative-two-args-math form))
692 (cond ((null (cdr form))
693 (condition-case ()
694 (eval form)
695 (error form)))
696 ;;; It is not safe to delete the function entirely
697 ;;; (actually, it would be safe if we know the sole arg
698 ;;; is not a marker).
699 ;; ((null (cdr (cdr form))) (nth 1 form))
700 (t form)))
701
702 (defun byte-optimize-minus (form)
703 ;; Put constants at the end, except the last constant.
704 (setq form (byte-optimize-delay-constants-math form 2 '+))
705 ;; Now only first and last element can be a number.
706 (let ((last (car (reverse (nthcdr 3 form)))))
707 (cond ((eq 0 last)
708 ;; (- x y ... 0) --> (- x y ...)
709 (setq form (copy-sequence form))
710 (setcdr (cdr (cdr form)) (delq 0 (nthcdr 3 form))))
711 ;; If form is (- CONST foo... CONST), merge first and last.
712 ((and (numberp (nth 1 form))
713 (numberp last))
714 (setq form (nconc (list '- (- (nth 1 form) last) (nth 2 form))
715 (delq last (copy-sequence (nthcdr 3 form))))))))
716 ;;; It is not safe to delete the function entirely
717 ;;; (actually, it would be safe if we know the sole arg
718 ;;; is not a marker).
719 ;;; (if (eq (nth 2 form) 0)
720 ;;; (nth 1 form) ; (- x 0) --> x
721 (byte-optimize-predicate
722 (if (and (null (cdr (cdr (cdr form))))
723 (eq (nth 1 form) 0)) ; (- 0 x) --> (- x)
724 (cons (car form) (cdr (cdr form)))
725 form))
726 ;;; )
727 )
728
729 (defun byte-optimize-multiply (form)
730 (setq form (byte-optimize-delay-constants-math form 1 '*))
731 ;; If there is a constant in FORM, it is now the last element.
732 (cond ((null (cdr form)) 1)
733 ;;; It is not safe to delete the function entirely
734 ;;; (actually, it would be safe if we know the sole arg
735 ;;; is not a marker or if it appears in other arithmetic).
736 ;;; ((null (cdr (cdr form))) (nth 1 form))
737 ((let ((last (car (reverse form))))
738 (cond ((eq 0 last) (cons 'progn (cdr form)))
739 ((eq 1 last) (delq 1 (copy-sequence form)))
740 ((eq -1 last) (list '- (delq -1 (copy-sequence form))))
741 ((and (eq 2 last)
742 (memq t (mapcar 'symbolp (cdr form))))
743 (prog1 (setq form (delq 2 (copy-sequence form)))
744 (while (not (symbolp (car (setq form (cdr form))))))
745 (setcar form (list '+ (car form) (car form)))))
746 (form))))))
747
748 (defsubst byte-compile-butlast (form)
749 (nreverse (cdr (reverse form))))
750
751 (defun byte-optimize-divide (form)
752 (setq form (byte-optimize-delay-constants-math form 2 '*))
753 (let ((last (car (reverse (cdr (cdr form))))))
754 (if (numberp last)
755 (cond ((= (length form) 3)
756 (if (and (numberp (nth 1 form))
757 (not (zerop last))
758 (condition-case nil
759 (/ (nth 1 form) last)
760 (error nil)))
761 (setq form (list 'progn (/ (nth 1 form) last)))))
762 ((= last 1)
763 (setq form (byte-compile-butlast form)))
764 ((numberp (nth 1 form))
765 (setq form (cons (car form)
766 (cons (/ (nth 1 form) last)
767 (byte-compile-butlast (cdr (cdr form)))))
768 last nil))))
769 (cond
770 ;;; ((null (cdr (cdr form)))
771 ;;; (nth 1 form))
772 ((eq (nth 1 form) 0)
773 (append '(progn) (cdr (cdr form)) '(0)))
774 ((eq last -1)
775 (list '- (if (nthcdr 3 form)
776 (byte-compile-butlast form)
777 (nth 1 form))))
778 (form))))
779
780 (defun byte-optimize-logmumble (form)
781 (setq form (byte-optimize-delay-constants-math form 1 (car form)))
782 (byte-optimize-predicate
783 (cond ((memq 0 form)
784 (setq form (if (eq (car form) 'logand)
785 (cons 'progn (cdr form))
786 (delq 0 (copy-sequence form)))))
787 ((and (eq (car-safe form) 'logior)
788 (memq -1 form))
789 (cons 'progn (cdr form)))
790 (form))))
791
792
793 (defun byte-optimize-binary-predicate (form)
794 (if (byte-compile-constp (nth 1 form))
795 (if (byte-compile-constp (nth 2 form))
796 (condition-case ()
797 (list 'quote (eval form))
798 (error form))
799 ;; This can enable some lapcode optimizations.
800 (list (car form) (nth 2 form) (nth 1 form)))
801 form))
802
803 (defun byte-optimize-predicate (form)
804 (let ((ok t)
805 (rest (cdr form)))
806 (while (and rest ok)
807 (setq ok (byte-compile-constp (car rest))
808 rest (cdr rest)))
809 (if ok
810 (condition-case ()
811 (list 'quote (eval form))
812 (error form))
813 form)))
814
815 (defun byte-optimize-identity (form)
816 (if (and (cdr form) (null (cdr (cdr form))))
817 (nth 1 form)
818 (byte-compile-warn "identity called with %d arg%s, but requires 1"
819 (length (cdr form))
820 (if (= 1 (length (cdr form))) "" "s"))
821 form))
822
823 (put 'identity 'byte-optimizer 'byte-optimize-identity)
824
825 (put '+ 'byte-optimizer 'byte-optimize-plus)
826 (put '* 'byte-optimizer 'byte-optimize-multiply)
827 (put '- 'byte-optimizer 'byte-optimize-minus)
828 (put '/ 'byte-optimizer 'byte-optimize-divide)
829 (put 'max 'byte-optimizer 'byte-optimize-associative-math)
830 (put 'min 'byte-optimizer 'byte-optimize-associative-math)
831
832 (put '= 'byte-optimizer 'byte-optimize-binary-predicate)
833 (put 'eq 'byte-optimizer 'byte-optimize-binary-predicate)
834 (put 'eql 'byte-optimizer 'byte-optimize-binary-predicate)
835 (put 'equal 'byte-optimizer 'byte-optimize-binary-predicate)
836 (put 'string= 'byte-optimizer 'byte-optimize-binary-predicate)
837 (put 'string-equal 'byte-optimizer 'byte-optimize-binary-predicate)
838
839 (put '< 'byte-optimizer 'byte-optimize-predicate)
840 (put '> 'byte-optimizer 'byte-optimize-predicate)
841 (put '<= 'byte-optimizer 'byte-optimize-predicate)
842 (put '>= 'byte-optimizer 'byte-optimize-predicate)
843 (put '1+ 'byte-optimizer 'byte-optimize-predicate)
844 (put '1- 'byte-optimizer 'byte-optimize-predicate)
845 (put 'not 'byte-optimizer 'byte-optimize-predicate)
846 (put 'null 'byte-optimizer 'byte-optimize-predicate)
847 (put 'memq 'byte-optimizer 'byte-optimize-predicate)
848 (put 'consp 'byte-optimizer 'byte-optimize-predicate)
849 (put 'listp 'byte-optimizer 'byte-optimize-predicate)
850 (put 'symbolp 'byte-optimizer 'byte-optimize-predicate)
851 (put 'stringp 'byte-optimizer 'byte-optimize-predicate)
852 (put 'string< 'byte-optimizer 'byte-optimize-predicate)
853 (put 'string-lessp 'byte-optimizer 'byte-optimize-predicate)
854
855 (put 'logand 'byte-optimizer 'byte-optimize-logmumble)
856 (put 'logior 'byte-optimizer 'byte-optimize-logmumble)
857 (put 'logxor 'byte-optimizer 'byte-optimize-logmumble)
858 (put 'lognot 'byte-optimizer 'byte-optimize-predicate)
859
860 (put 'car 'byte-optimizer 'byte-optimize-predicate)
861 (put 'cdr 'byte-optimizer 'byte-optimize-predicate)
862 (put 'car-safe 'byte-optimizer 'byte-optimize-predicate)
863 (put 'cdr-safe 'byte-optimizer 'byte-optimize-predicate)
864
865
866 ;; I'm not convinced that this is necessary. Doesn't the optimizer loop
867 ;; take care of this? - Jamie
868 ;; I think this may some times be necessary to reduce ie (quote 5) to 5,
869 ;; so arithmetic optimizers recognize the numeric constant. - Hallvard
870 (put 'quote 'byte-optimizer 'byte-optimize-quote)
871 (defun byte-optimize-quote (form)
872 (if (or (consp (nth 1 form))
873 (and (symbolp (nth 1 form))
874 ;; XEmacs addition:
875 (not (keywordp (nth 1 form)))
876 (not (memq (nth 1 form) '(nil t)))))
877 form
878 (nth 1 form)))
879
880 (defun byte-optimize-zerop (form)
881 (cond ((numberp (nth 1 form))
882 (eval form))
883 (byte-compile-delete-errors
884 (list '= (nth 1 form) 0))
885 (form)))
886
887 (put 'zerop 'byte-optimizer 'byte-optimize-zerop)
888
889 (defun byte-optimize-and (form)
890 ;; Simplify if less than 2 args.
891 ;; if there is a literal nil in the args to `and', throw it and following
892 ;; forms away, and surround the `and' with (progn ... nil).
893 (cond ((null (cdr form)))
894 ((memq nil form)
895 (list 'progn
896 (byte-optimize-and
897 (prog1 (setq form (copy-sequence form))
898 (while (nth 1 form)
899 (setq form (cdr form)))
900 (setcdr form nil)))
901 nil))
902 ((null (cdr (cdr form)))
903 (nth 1 form))
904 ((byte-optimize-predicate form))))
905
906 (defun byte-optimize-or (form)
907 ;; Throw away nil's, and simplify if less than 2 args.
908 ;; If there is a literal non-nil constant in the args to `or', throw away all
909 ;; following forms.
910 (if (memq nil form)
911 (setq form (delq nil (copy-sequence form))))
912 (let ((rest form))
913 (while (cdr (setq rest (cdr rest)))
914 (if (byte-compile-trueconstp (car rest))
915 (setq form (copy-sequence form)
916 rest (setcdr (memq (car rest) form) nil))))
917 (if (cdr (cdr form))
918 (byte-optimize-predicate form)
919 (nth 1 form))))
920
921 (defun byte-optimize-cond (form)
922 ;; if any clauses have a literal nil as their test, throw them away.
923 ;; if any clause has a literal non-nil constant as its test, throw
924 ;; away all following clauses.
925 (let (rest)
926 ;; This must be first, to reduce (cond (t ...) (nil)) to (progn t ...)
927 (while (setq rest (assq nil (cdr form)))
928 (setq form (delq rest (copy-sequence form))))
929 (if (memq nil (cdr form))
930 (setq form (delq nil (copy-sequence form))))
931 (setq rest form)
932 (while (setq rest (cdr rest))
933 (cond ((byte-compile-trueconstp (car-safe (car rest)))
934 (cond ((eq rest (cdr form))
935 (setq form
936 (if (cdr (car rest))
937 (if (cdr (cdr (car rest)))
938 (cons 'progn (cdr (car rest)))
939 (nth 1 (car rest)))
940 (car (car rest)))))
941 ((cdr rest)
942 (setq form (copy-sequence form))
943 (setcdr (memq (car rest) form) nil)))
944 (setq rest nil)))))
945 ;;
946 ;; Turn (cond (( <x> )) ... ) into (or <x> (cond ... ))
947 (if (eq 'cond (car-safe form))
948 (let ((clauses (cdr form)))
949 (if (and (consp (car clauses))
950 (null (cdr (car clauses))))
951 (list 'or (car (car clauses))
952 (byte-optimize-cond
953 (cons (car form) (cdr (cdr form)))))
954 form))
955 form))
956
957 (defun byte-optimize-if (form)
958 ;; (if <true-constant> <then> <else...>) ==> <then>
959 ;; (if <false-constant> <then> <else...>) ==> (progn <else...>)
960 ;; (if <test> nil <else...>) ==> (if (not <test>) (progn <else...>))
961 ;; (if <test> <then> nil) ==> (if <test> <then>)
962 (let ((clause (nth 1 form)))
963 (cond ((byte-compile-trueconstp clause)
964 (nth 2 form))
965 ((null clause)
966 (if (nthcdr 4 form)
967 (cons 'progn (nthcdr 3 form))
968 (nth 3 form)))
969 ((nth 2 form)
970 (if (equal '(nil) (nthcdr 3 form))
971 (list 'if clause (nth 2 form))
972 form))
973 ((or (nth 3 form) (nthcdr 4 form))
974 (list 'if
975 ;; Don't make a double negative;
976 ;; instead, take away the one that is there.
977 (if (and (consp clause) (memq (car clause) '(not null))
978 (= (length clause) 2)) ; (not xxxx) or (not (xxxx))
979 (nth 1 clause)
980 (list 'not clause))
981 (if (nthcdr 4 form)
982 (cons 'progn (nthcdr 3 form))
983 (nth 3 form))))
984 (t
985 (list 'progn clause nil)))))
986
987 (defun byte-optimize-while (form)
988 (if (nth 1 form)
989 form))
990
991 (put 'and 'byte-optimizer 'byte-optimize-and)
992 (put 'or 'byte-optimizer 'byte-optimize-or)
993 (put 'cond 'byte-optimizer 'byte-optimize-cond)
994 (put 'if 'byte-optimizer 'byte-optimize-if)
995 (put 'while 'byte-optimizer 'byte-optimize-while)
996
997 ;; byte-compile-negation-optimizer lives in bytecomp.el
998 (put '/= 'byte-optimizer 'byte-compile-negation-optimizer)
999 (put 'atom 'byte-optimizer 'byte-compile-negation-optimizer)
1000 (put 'nlistp 'byte-optimizer 'byte-compile-negation-optimizer)
1001
1002
1003 (defun byte-optimize-funcall (form)
1004 ;; (funcall '(lambda ...) ...) ==> ((lambda ...) ...)
1005 ;; (funcall 'foo ...) ==> (foo ...)
1006 (let ((fn (nth 1 form)))
1007 (if (memq (car-safe fn) '(quote function))
1008 (cons (nth 1 fn) (cdr (cdr form)))
1009 form)))
1010
1011 (defun byte-optimize-apply (form)
1012 ;; If the last arg is a literal constant, turn this into a funcall.
1013 ;; The funcall optimizer can then transform (funcall 'foo ...) -> (foo ...).
1014 (let ((fn (nth 1 form))
1015 (last (nth (1- (length form)) form))) ; I think this really is fastest
1016 (or (if (or (null last)
1017 (eq (car-safe last) 'quote))
1018 (if (listp (nth 1 last))
1019 (let ((butlast (nreverse (cdr (reverse (cdr (cdr form)))))))
1020 (nconc (list 'funcall fn) butlast
1021 (mapcar '(lambda (x) (list 'quote x)) (nth 1 last))))
1022 (byte-compile-warn
1023 "last arg to apply can't be a literal atom: %s"
1024 (prin1-to-string last))
1025 nil))
1026 form)))
1027
1028 (put 'funcall 'byte-optimizer 'byte-optimize-funcall)
1029 (put 'apply 'byte-optimizer 'byte-optimize-apply)
1030
1031
1032 (put 'let 'byte-optimizer 'byte-optimize-letX)
1033 (put 'let* 'byte-optimizer 'byte-optimize-letX)
1034 (defun byte-optimize-letX (form)
1035 (cond ((null (nth 1 form))
1036 ;; No bindings
1037 (cons 'progn (cdr (cdr form))))
1038 ((or (nth 2 form) (nthcdr 3 form))
1039 form)
1040 ;; The body is nil
1041 ((eq (car form) 'let)
1042 (append '(progn) (mapcar 'car-safe (mapcar 'cdr-safe (nth 1 form)))
1043 '(nil)))
1044 (t
1045 (let ((binds (reverse (nth 1 form))))
1046 (list 'let* (reverse (cdr binds)) (nth 1 (car binds)) nil)))))
1047
1048
1049 (put 'nth 'byte-optimizer 'byte-optimize-nth)
1050 (defun byte-optimize-nth (form)
1051 (if (and (= (safe-length form) 3) (memq (nth 1 form) '(0 1)))
1052 (list 'car (if (zerop (nth 1 form))
1053 (nth 2 form)
1054 (list 'cdr (nth 2 form))))
1055 (byte-optimize-predicate form)))
1056
1057 (put 'nthcdr 'byte-optimizer 'byte-optimize-nthcdr)
1058 (defun byte-optimize-nthcdr (form)
1059 (if (and (= (safe-length form) 3) (not (memq (nth 1 form) '(0 1 2))))
1060 (byte-optimize-predicate form)
1061 (let ((count (nth 1 form)))
1062 (setq form (nth 2 form))
1063 (while (>= (setq count (1- count)) 0)
1064 (setq form (list 'cdr form)))
1065 form)))
1066
1067 ;;; enumerating those functions which need not be called if the returned
1068 ;;; value is not used. That is, something like
1069 ;;; (progn (list (something-with-side-effects) (yow))
1070 ;;; (foo))
1071 ;;; may safely be turned into
1072 ;;; (progn (progn (something-with-side-effects) (yow))
1073 ;;; (foo))
1074 ;;; Further optimizations will turn (progn (list 1 2 3) 'foo) into 'foo.
1075
1076 ;;; I wonder if I missed any :-\)
1077 (let ((side-effect-free-fns
1078 '(% * + - / /= 1+ 1- < <= = > >= abs acos append aref ash asin atan
1079 assoc assq
1080 boundp buffer-file-name buffer-local-variables buffer-modified-p
1081 buffer-substring
1082 capitalize car-less-than-car car cdr ceiling concat
1083 ;; coordinates-in-window-p not in XEmacs
1084 copy-marker cos count-lines
1085 default-boundp default-value documentation downcase
1086 elt exp expt fboundp featurep
1087 file-directory-p file-exists-p file-locked-p file-name-absolute-p
1088 file-newer-than-file-p file-readable-p file-symlink-p file-writable-p
1089 float floor format
1090 get get-buffer get-buffer-window getenv get-file-buffer
1091 int-to-string
1092 length log log10 logand logb logior lognot logxor lsh
1093 marker-buffer max member memq min mod
1094 next-window nth nthcdr number-to-string
1095 parse-colon-path previous-window
1096 radians-to-degrees rassq regexp-quote reverse round
1097 sin sqrt string< string= string-equal string-lessp string-to-char
1098 string-to-int string-to-number substring symbol-plist
1099 tan upcase user-variable-p vconcat
1100 ;; XEmacs change: window-edges -> window-pixel-edges
1101 window-buffer window-dedicated-p window-pixel-edges window-height
1102 window-hscroll window-minibuffer-p window-width
1103 zerop))
1104 (side-effect-and-error-free-fns
1105 '(arrayp atom
1106 bobp bolp buffer-end buffer-list buffer-size buffer-string bufferp
1107 car-safe case-table-p cdr-safe char-or-string-p char-table-p
1108 characterp commandp cons
1109 consolep console-live-p consp
1110 current-buffer
1111 ;; XEmacs: extent functions, frame-live-p, various other stuff
1112 devicep device-live-p
1113 dot dot-marker eobp eolp eq eql equal eventp extentp
1114 extent-live-p floatp framep frame-live-p
1115 get-largest-window get-lru-window
1116 identity ignore integerp integer-or-marker-p interactive-p
1117 invocation-directory invocation-name
1118 ;; keymapp may autoload in XEmacs, so not on this list!
1119 list listp
1120 make-marker mark mark-marker markerp memory-limit minibuffer-window
1121 ;; mouse-movement-p not in XEmacs
1122 natnump nlistp not null number-or-marker-p numberp
1123 one-window-p ;; overlayp not in XEmacs
1124 point point-marker point-min point-max processp
1125 range-table-p
1126 selected-window sequencep stringp subrp symbolp syntax-table-p
1127 user-full-name user-login-name user-original-login-name
1128 user-real-login-name user-real-uid user-uid
1129 vector vectorp
1130 window-configuration-p window-live-p windowp)))
1131 (while side-effect-free-fns
1132 (put (car side-effect-free-fns) 'side-effect-free t)
1133 (setq side-effect-free-fns (cdr side-effect-free-fns)))
1134 (while side-effect-and-error-free-fns
1135 (put (car side-effect-and-error-free-fns) 'side-effect-free 'error-free)
1136 (setq side-effect-and-error-free-fns (cdr side-effect-and-error-free-fns)))
1137 nil)
1138
1139
1140 (defun byte-compile-splice-in-already-compiled-code (form)
1141 ;; form is (byte-code "..." [...] n)
1142 (if (not (memq byte-optimize '(t lap)))
1143 (byte-compile-normal-call form)
1144 (byte-inline-lapcode
1145 (byte-decompile-bytecode-1 (nth 1 form) (nth 2 form) t))
1146 (setq byte-compile-maxdepth (max (+ byte-compile-depth (nth 3 form))
1147 byte-compile-maxdepth))
1148 (setq byte-compile-depth (1+ byte-compile-depth))))
1149
1150 (put 'byte-code 'byte-compile 'byte-compile-splice-in-already-compiled-code)
1151
1152
1153 (defconst byte-constref-ops
1154 '(byte-constant byte-constant2 byte-varref byte-varset byte-varbind))
1155
1156 ;;; This function extracts the bitfields from variable-length opcodes.
1157 ;;; Originally defined in disass.el (which no longer uses it.)
1158
1159 (defun disassemble-offset ()
1160 "Don't call this!"
1161 ;; fetch and return the offset for the current opcode.
1162 ;; return NIL if this opcode has no offset
1163 ;; OP, PTR and BYTES are used and set dynamically
1164 (defvar op)
1165 (defvar ptr)
1166 (defvar bytes)
1167 (cond ((< op byte-nth)
1168 (let ((tem (logand op 7)))
1169 (setq op (logand op 248))
1170 (cond ((eq tem 6)
1171 (setq ptr (1+ ptr)) ;offset in next byte
1172 (aref bytes ptr))
1173 ((eq tem 7)
1174 (setq ptr (1+ ptr)) ;offset in next 2 bytes
1175 (+ (aref bytes ptr)
1176 (progn (setq ptr (1+ ptr))
1177 (lsh (aref bytes ptr) 8))))
1178 (t tem)))) ;offset was in opcode
1179 ((>= op byte-constant)
1180 (prog1 (- op byte-constant) ;offset in opcode
1181 (setq op byte-constant)))
1182 ((and (>= op byte-constant2)
1183 (<= op byte-goto-if-not-nil-else-pop))
1184 (setq ptr (1+ ptr)) ;offset in next 2 bytes
1185 (+ (aref bytes ptr)
1186 (progn (setq ptr (1+ ptr))
1187 (lsh (aref bytes ptr) 8))))
1188 ;; XEmacs: this code was here before. FSF's first comparison
1189 ;; is (>= op byte-listN). It appears the the rel-goto stuff
1190 ;; does not exist in FSF 19.30. It doesn't exist in 19.28
1191 ;; either, so I'm going to assume that this is an improvement
1192 ;; on our part and leave it in. --ben
1193 ((and (>= op byte-rel-goto)
1194 (<= op byte-insertN))
1195 (setq ptr (1+ ptr)) ;offset in next byte
1196 (aref bytes ptr))))
1197
1198
1199 ;;; This de-compiler is used for inline expansion of compiled functions,
1200 ;;; and by the disassembler.
1201 ;;;
1202 ;;; This list contains numbers, which are pc values,
1203 ;;; before each instruction.
1204 (defun byte-decompile-bytecode (bytes constvec)
1205 "Turns BYTECODE into lapcode, referring to CONSTVEC."
1206 (let ((byte-compile-constants nil)
1207 (byte-compile-variables nil)
1208 (byte-compile-tag-number 0))
1209 (byte-decompile-bytecode-1 bytes constvec)))
1210
1211 ;; As byte-decompile-bytecode, but updates
1212 ;; byte-compile-{constants, variables, tag-number}.
1213 ;; If MAKE-SPLICEABLE is true, then `return' opcodes are replaced
1214 ;; with `goto's destined for the end of the code.
1215 ;; That is for use by the compiler.
1216 ;; If MAKE-SPLICEABLE is nil, we are being called for the disassembler.
1217 ;; In that case, we put a pc value into the list
1218 ;; before each insn (or its label).
1219 (defun byte-decompile-bytecode-1 (bytes constvec &optional make-spliceable)
1220 (let ((length (length bytes))
1221 (ptr 0) optr tags op offset
1222 ;; tag unused
1223 lap tmp
1224 endtag
1225 ;; (retcount 0) unused
1226 )
1227 (while (not (= ptr length))
1228 (or make-spliceable
1229 (setq lap (cons ptr lap)))
1230 (setq op (aref bytes ptr)
1231 optr ptr
1232 offset (disassemble-offset)) ; this does dynamic-scope magic
1233 (setq op (aref byte-code-vector op))
1234 ;; XEmacs: the next line in FSF 19.30 reads
1235 ;; (cond ((memq op byte-goto-ops)
1236 ;; see the comment above about byte-rel-goto in XEmacs.
1237 (cond ((or (memq op byte-goto-ops)
1238 (cond ((memq op byte-rel-goto-ops)
1239 (setq op (aref byte-code-vector
1240 (- (symbol-value op)
1241 (- byte-rel-goto byte-goto))))
1242 (setq offset (+ ptr (- offset 127)))
1243 t)))
1244 ;; it's a pc
1245 (setq offset
1246 (cdr (or (assq offset tags)
1247 (car (setq tags
1248 (cons (cons offset
1249 (byte-compile-make-tag))
1250 tags)))))))
1251 ((cond ((eq op 'byte-constant2) (setq op 'byte-constant) t)
1252 ((memq op byte-constref-ops)))
1253 (setq tmp (aref constvec offset)
1254 offset (if (eq op 'byte-constant)
1255 (byte-compile-get-constant tmp)
1256 (or (assq tmp byte-compile-variables)
1257 (car (setq byte-compile-variables
1258 (cons (list tmp)
1259 byte-compile-variables)))))))
1260 ((and make-spliceable
1261 (eq op 'byte-return))
1262 (if (= ptr (1- length))
1263 (setq op nil)
1264 (setq offset (or endtag (setq endtag (byte-compile-make-tag)))
1265 op 'byte-goto))))
1266 ;; lap = ( [ (pc . (op . arg)) ]* )
1267 (setq lap (cons (cons optr (cons op (or offset 0)))
1268 lap))
1269 (setq ptr (1+ ptr)))
1270 ;; take off the dummy nil op that we replaced a trailing "return" with.
1271 (let ((rest lap))
1272 (while rest
1273 (cond ((numberp (car rest)))
1274 ((setq tmp (assq (car (car rest)) tags))
1275 ;; this addr is jumped to
1276 (setcdr rest (cons (cons nil (cdr tmp))
1277 (cdr rest)))
1278 (setq tags (delq tmp tags))
1279 (setq rest (cdr rest))))
1280 (setq rest (cdr rest))))
1281 (if tags (error "optimizer error: missed tags %s" tags))
1282 (if (null (car (cdr (car lap))))
1283 (setq lap (cdr lap)))
1284 (if endtag
1285 (setq lap (cons (cons nil endtag) lap)))
1286 ;; remove addrs, lap = ( [ (op . arg) | (TAG tagno) ]* )
1287 (mapcar (function (lambda (elt)
1288 (if (numberp elt)
1289 elt
1290 (cdr elt))))
1291 (nreverse lap))))
1292
1293
1294 ;;; peephole optimizer
1295
1296 (defconst byte-tagref-ops (cons 'TAG byte-goto-ops))
1297
1298 (defconst byte-conditional-ops
1299 '(byte-goto-if-nil byte-goto-if-not-nil byte-goto-if-nil-else-pop
1300 byte-goto-if-not-nil-else-pop))
1301
1302 (defconst byte-after-unbind-ops
1303 '(byte-constant byte-dup
1304 byte-symbolp byte-consp byte-stringp byte-listp byte-numberp byte-integerp
1305 byte-eq byte-equal byte-not
1306 byte-cons byte-list1 byte-list2 ; byte-list3 byte-list4
1307 byte-interactive-p)
1308 ;; How about other side-effect-free-ops? Is it safe to move an
1309 ;; error invocation (such as from nth) out of an unwind-protect?
1310 "Byte-codes that can be moved past an unbind.")
1311
1312 (defconst byte-compile-side-effect-and-error-free-ops
1313 '(byte-constant byte-dup byte-symbolp byte-consp byte-stringp byte-listp
1314 byte-integerp byte-numberp byte-eq byte-equal byte-not byte-car-safe
1315 byte-cdr-safe byte-cons byte-list1 byte-list2 byte-point byte-point-max
1316 byte-point-min byte-following-char byte-preceding-char
1317 byte-current-column byte-eolp byte-eobp byte-bolp byte-bobp
1318 byte-current-buffer byte-interactive-p))
1319
1320 (defconst byte-compile-side-effect-free-ops
1321 (nconc
1322 '(byte-varref byte-nth byte-memq byte-car byte-cdr byte-length byte-aref
1323 byte-symbol-value byte-get byte-concat2 byte-concat3 byte-sub1 byte-add1
1324 byte-eqlsign byte-gtr byte-lss byte-leq byte-geq byte-diff byte-negate
1325 byte-plus byte-max byte-min byte-mult byte-char-after byte-char-syntax
1326 byte-buffer-substring byte-string= byte-string< byte-nthcdr byte-elt
1327 byte-member byte-assq byte-quo byte-rem)
1328 byte-compile-side-effect-and-error-free-ops))
1329
1330 ;;; This piece of shit is because of the way DEFVAR_BOOL() variables work.
1331 ;;; Consider the code
1332 ;;;
1333 ;;; (defun foo (flag)
1334 ;;; (let ((old-pop-ups pop-up-windows)
1335 ;;; (pop-up-windows flag))
1336 ;;; (cond ((not (eq pop-up-windows old-pop-ups))
1337 ;;; (setq old-pop-ups pop-up-windows)
1338 ;;; ...))))
1339 ;;;
1340 ;;; Uncompiled, old-pop-ups will always be set to nil or t, even if FLAG is
1341 ;;; something else. But if we optimize
1342 ;;;
1343 ;;; varref flag
1344 ;;; varbind pop-up-windows
1345 ;;; varref pop-up-windows
1346 ;;; not
1347 ;;; to
1348 ;;; varref flag
1349 ;;; dup
1350 ;;; varbind pop-up-windows
1351 ;;; not
1352 ;;;
1353 ;;; we break the program, because it will appear that pop-up-windows and
1354 ;;; old-pop-ups are not EQ when really they are. So we have to know what
1355 ;;; the BOOL variables are, and not perform this optimization on them.
1356 ;;;
1357 (defconst byte-boolean-vars
1358 '(abbrev-all-caps purify-flag find-file-compare-truenames
1359 find-file-use-truenames find-file-visit-truename
1360 find-file-existing-other-name byte-metering-on
1361 zmacs-regions zmacs-region-active-p zmacs-region-stays
1362 atomic-extent-goto-char-p suppress-early-error-handler
1363 noninteractive ignore-kernel debug-on-quit debug-on-next-call
1364 modifier-keys-are-sticky x-allow-sendevents vms-stmlf-recfm
1365 disable-auto-save-when-buffer-shrinks indent-tabs-mode
1366 load-in-progress load-warn-when-source-newer load-warn-when-source-only
1367 load-ignore-elc-files load-force-doc-strings
1368 fail-on-bucky-bit-character-escapes popup-menu-titles
1369 menubar-show-keybindings completion-ignore-case
1370 canna-empty-info canna-through-info canna-underline
1371 canna-inhibit-hankakukana x-handle-non-fully-specified-fonts
1372 print-escape-newlines print-readably print-gensym
1373 delete-exited-processes truncate-partial-width-windows
1374 visible-bell no-redraw-on-reenter cursor-in-echo-area
1375 inhibit-warning-display parse-sexp-ignore-comments words-include-escapes
1376 scroll-on-clipped-lines pop-up-frames pop-up-windows)
1377 "DEFVAR_BOOL variables. Giving these any non-nil value sets them to t.
1378 If this does not enumerate all DEFVAR_BOOL variables, the byte-optimizer
1379 may generate incorrect code.")
1380
1381 (defun byte-optimize-lapcode (lap &optional for-effect)
1382 "Simple peephole optimizer. LAP is both modified and returned."
1383 (let (lap0 ;; off0 unused
1384 lap1 ;; off1
1385 lap2 ;; off2
1386 (keep-going 'first-time)
1387 (add-depth 0)
1388 rest tmp tmp2 tmp3
1389 (side-effect-free (if byte-compile-delete-errors
1390 byte-compile-side-effect-free-ops
1391 byte-compile-side-effect-and-error-free-ops)))
1392 (while keep-going
1393 (or (eq keep-going 'first-time)
1394 (byte-compile-log-lap " ---- next pass"))
1395 (setq rest lap
1396 keep-going nil)
1397 (while rest
1398 (setq lap0 (car rest)
1399 lap1 (nth 1 rest)
1400 lap2 (nth 2 rest))
1401
1402 ;; You may notice that sequences like "dup varset discard" are
1403 ;; optimized but sequences like "dup varset TAG1: discard" are not.
1404 ;; You may be tempted to change this; resist that temptation.
1405 (cond ;;
1406 ;; <side-effect-free> pop --> <deleted>
1407 ;; ...including:
1408 ;; const-X pop --> <deleted>
1409 ;; varref-X pop --> <deleted>
1410 ;; dup pop --> <deleted>
1411 ;;
1412 ((and (eq 'byte-discard (car lap1))
1413 (memq (car lap0) side-effect-free))
1414 (setq keep-going t)
1415 (setq tmp (aref byte-stack+-info (symbol-value (car lap0))))
1416 (setq rest (cdr rest))
1417 (cond ((= tmp 1)
1418 (byte-compile-log-lap
1419 " %s discard\t-->\t<deleted>" lap0)
1420 (setq lap (delq lap0 (delq lap1 lap))))
1421 ((= tmp 0)
1422 (byte-compile-log-lap
1423 " %s discard\t-->\t<deleted> discard" lap0)
1424 (setq lap (delq lap0 lap)))
1425 ((= tmp -1)
1426 (byte-compile-log-lap
1427 " %s discard\t-->\tdiscard discard" lap0)
1428 (setcar lap0 'byte-discard)
1429 (setcdr lap0 0))
1430 ((error "Optimizer error: too much on the stack"))))
1431 ;;
1432 ;; goto*-X X: --> X:
1433 ;;
1434 ((and (memq (car lap0) byte-goto-ops)
1435 (eq (cdr lap0) lap1))
1436 (cond ((eq (car lap0) 'byte-goto)
1437 (setq lap (delq lap0 lap))
1438 (setq tmp "<deleted>"))
1439 ((memq (car lap0) byte-goto-always-pop-ops)
1440 (setcar lap0 (setq tmp 'byte-discard))
1441 (setcdr lap0 0))
1442 ((error "Depth conflict at tag %d" (nth 2 lap0))))
1443 (and (memq byte-optimize-log '(t byte))
1444 (byte-compile-log " (goto %s) %s:\t-->\t%s %s:"
1445 (nth 1 lap1) (nth 1 lap1)
1446 tmp (nth 1 lap1)))
1447 (setq keep-going t))
1448 ;;
1449 ;; varset-X varref-X --> dup varset-X
1450 ;; varbind-X varref-X --> dup varbind-X
1451 ;; const/dup varset-X varref-X --> const/dup varset-X const/dup
1452 ;; const/dup varbind-X varref-X --> const/dup varbind-X const/dup
1453 ;; The latter two can enable other optimizations.
1454 ;;
1455 ((and (eq 'byte-varref (car lap2))
1456 (eq (cdr lap1) (cdr lap2))
1457 (memq (car lap1) '(byte-varset byte-varbind)))
1458 (if (and (setq tmp (memq (car (cdr lap2)) byte-boolean-vars))
1459 (not (eq (car lap0) 'byte-constant)))
1460 nil
1461 (setq keep-going t)
1462 (if (memq (car lap0) '(byte-constant byte-dup))
1463 (progn
1464 (setq tmp (if (or (not tmp)
1465 (memq (car (cdr lap0)) '(nil t)))
1466 (cdr lap0)
1467 (byte-compile-get-constant t)))
1468 (byte-compile-log-lap " %s %s %s\t-->\t%s %s %s"
1469 lap0 lap1 lap2 lap0 lap1
1470 (cons (car lap0) tmp))
1471 (setcar lap2 (car lap0))
1472 (setcdr lap2 tmp))
1473 (byte-compile-log-lap " %s %s\t-->\tdup %s" lap1 lap2 lap1)
1474 (setcar lap2 (car lap1))
1475 (setcar lap1 'byte-dup)
1476 (setcdr lap1 0)
1477 ;; The stack depth gets locally increased, so we will
1478 ;; increase maxdepth in case depth = maxdepth here.
1479 ;; This can cause the third argument to byte-code to
1480 ;; be larger than necessary.
1481 (setq add-depth 1))))
1482 ;;
1483 ;; dup varset-X discard --> varset-X
1484 ;; dup varbind-X discard --> varbind-X
1485 ;; (the varbind variant can emerge from other optimizations)
1486 ;;
1487 ((and (eq 'byte-dup (car lap0))
1488 (eq 'byte-discard (car lap2))
1489 (memq (car lap1) '(byte-varset byte-varbind)))
1490 (byte-compile-log-lap " dup %s discard\t-->\t%s" lap1 lap1)
1491 (setq keep-going t
1492 rest (cdr rest))
1493 (setq lap (delq lap0 (delq lap2 lap))))
1494 ;;
1495 ;; not goto-X-if-nil --> goto-X-if-non-nil
1496 ;; not goto-X-if-non-nil --> goto-X-if-nil
1497 ;;
1498 ;; it is wrong to do the same thing for the -else-pop variants.
1499 ;;
1500 ((and (eq 'byte-not (car lap0))
1501 (or (eq 'byte-goto-if-nil (car lap1))
1502 (eq 'byte-goto-if-not-nil (car lap1))))
1503 (byte-compile-log-lap " not %s\t-->\t%s"
1504 lap1
1505 (cons
1506 (if (eq (car lap1) 'byte-goto-if-nil)
1507 'byte-goto-if-not-nil
1508 'byte-goto-if-nil)
1509 (cdr lap1)))
1510 (setcar lap1 (if (eq (car lap1) 'byte-goto-if-nil)
1511 'byte-goto-if-not-nil
1512 'byte-goto-if-nil))
1513 (setq lap (delq lap0 lap))
1514 (setq keep-going t))
1515 ;;
1516 ;; goto-X-if-nil goto-Y X: --> goto-Y-if-non-nil X:
1517 ;; goto-X-if-non-nil goto-Y X: --> goto-Y-if-nil X:
1518 ;;
1519 ;; it is wrong to do the same thing for the -else-pop variants.
1520 ;;
1521 ((and (or (eq 'byte-goto-if-nil (car lap0))
1522 (eq 'byte-goto-if-not-nil (car lap0))) ; gotoX
1523 (eq 'byte-goto (car lap1)) ; gotoY
1524 (eq (cdr lap0) lap2)) ; TAG X
1525 (let ((inverse (if (eq 'byte-goto-if-nil (car lap0))
1526 'byte-goto-if-not-nil 'byte-goto-if-nil)))
1527 (byte-compile-log-lap " %s %s %s:\t-->\t%s %s:"
1528 lap0 lap1 lap2
1529 (cons inverse (cdr lap1)) lap2)
1530 (setq lap (delq lap0 lap))
1531 (setcar lap1 inverse)
1532 (setq keep-going t)))
1533 ;;
1534 ;; const goto-if-* --> whatever
1535 ;;
1536 ((and (eq 'byte-constant (car lap0))
1537 (memq (car lap1) byte-conditional-ops))
1538 (cond ((if (or (eq (car lap1) 'byte-goto-if-nil)
1539 (eq (car lap1) 'byte-goto-if-nil-else-pop))
1540 (car (cdr lap0))
1541 (not (car (cdr lap0))))
1542 (byte-compile-log-lap " %s %s\t-->\t<deleted>"
1543 lap0 lap1)
1544 (setq rest (cdr rest)
1545 lap (delq lap0 (delq lap1 lap))))
1546 (t
1547 (if (memq (car lap1) byte-goto-always-pop-ops)
1548 (progn
1549 (byte-compile-log-lap " %s %s\t-->\t%s"
1550 lap0 lap1 (cons 'byte-goto (cdr lap1)))
1551 (setq lap (delq lap0 lap)))
1552 (byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1
1553 (cons 'byte-goto (cdr lap1))))
1554 (setcar lap1 'byte-goto)))
1555 (setq keep-going t))
1556 ;;
1557 ;; varref-X varref-X --> varref-X dup
1558 ;; varref-X [dup ...] varref-X --> varref-X [dup ...] dup
1559 ;; We don't optimize the const-X variations on this here,
1560 ;; because that would inhibit some goto optimizations; we
1561 ;; optimize the const-X case after all other optimizations.
1562 ;;
1563 ((and (eq 'byte-varref (car lap0))
1564 (progn
1565 (setq tmp (cdr rest))
1566 (while (eq (car (car tmp)) 'byte-dup)
1567 (setq tmp (cdr tmp)))
1568 t)
1569 (eq (cdr lap0) (cdr (car tmp)))
1570 (eq 'byte-varref (car (car tmp))))
1571 (if (memq byte-optimize-log '(t byte))
1572 (let ((str ""))
1573 (setq tmp2 (cdr rest))
1574 (while (not (eq tmp tmp2))
1575 (setq tmp2 (cdr tmp2)
1576 str (concat str " dup")))
1577 (byte-compile-log-lap " %s%s %s\t-->\t%s%s dup"
1578 lap0 str lap0 lap0 str)))
1579 (setq keep-going t)
1580 (setcar (car tmp) 'byte-dup)
1581 (setcdr (car tmp) 0)
1582 (setq rest tmp))
1583 ;;
1584 ;; TAG1: TAG2: --> TAG1: <deleted>
1585 ;; (and other references to TAG2 are replaced with TAG1)
1586 ;;
1587 ((and (eq (car lap0) 'TAG)
1588 (eq (car lap1) 'TAG))
1589 (and (memq byte-optimize-log '(t byte))
1590 (byte-compile-log " adjacent tags %d and %d merged"
1591 (nth 1 lap1) (nth 1 lap0)))
1592 (setq tmp3 lap)
1593 (while (setq tmp2 (rassq lap0 tmp3))
1594 (setcdr tmp2 lap1)
1595 (setq tmp3 (cdr (memq tmp2 tmp3))))
1596 (setq lap (delq lap0 lap)
1597 keep-going t))
1598 ;;
1599 ;; unused-TAG: --> <deleted>
1600 ;;
1601 ((and (eq 'TAG (car lap0))
1602 (not (rassq lap0 lap)))
1603 (and (memq byte-optimize-log '(t byte))
1604 (byte-compile-log " unused tag %d removed" (nth 1 lap0)))
1605 (setq lap (delq lap0 lap)
1606 keep-going t))
1607 ;;
1608 ;; goto ... --> goto <delete until TAG or end>
1609 ;; return ... --> return <delete until TAG or end>
1610 ;;
1611 ((and (memq (car lap0) '(byte-goto byte-return))
1612 (not (memq (car lap1) '(TAG nil))))
1613 (setq tmp rest)
1614 (let ((i 0)
1615 (opt-p (memq byte-optimize-log '(t lap)))
1616 str deleted)
1617 (while (and (setq tmp (cdr tmp))
1618 (not (eq 'TAG (car (car tmp)))))
1619 (if opt-p (setq deleted (cons (car tmp) deleted)
1620 str (concat str " %s")
1621 i (1+ i))))
1622 (if opt-p
1623 (let ((tagstr
1624 (if (eq 'TAG (car (car tmp)))
1625 (format "%d:" (car (cdr (car tmp))))
1626 (or (car tmp) ""))))
1627 (if (< i 6)
1628 (apply 'byte-compile-log-lap-1
1629 (concat " %s" str
1630 " %s\t-->\t%s <deleted> %s")
1631 lap0
1632 (nconc (nreverse deleted)
1633 (list tagstr lap0 tagstr)))
1634 (byte-compile-log-lap
1635 " %s <%d unreachable op%s> %s\t-->\t%s <deleted> %s"
1636 lap0 i (if (= i 1) "" "s")
1637 tagstr lap0 tagstr))))
1638 (rplacd rest tmp))
1639 (setq keep-going t))
1640 ;;
1641 ;; <safe-op> unbind --> unbind <safe-op>
1642 ;; (this may enable other optimizations.)
1643 ;;
1644 ((and (eq 'byte-unbind (car lap1))
1645 (memq (car lap0) byte-after-unbind-ops))
1646 (byte-compile-log-lap " %s %s\t-->\t%s %s" lap0 lap1 lap1 lap0)
1647 (setcar rest lap1)
1648 (setcar (cdr rest) lap0)
1649 (setq keep-going t))
1650 ;;
1651 ;; varbind-X unbind-N --> discard unbind-(N-1)
1652 ;; save-excursion unbind-N --> unbind-(N-1)
1653 ;; save-restriction unbind-N --> unbind-(N-1)
1654 ;;
1655 ((and (eq 'byte-unbind (car lap1))
1656 (memq (car lap0) '(byte-varbind byte-save-excursion
1657 byte-save-restriction))
1658 (< 0 (cdr lap1)))
1659 (if (zerop (setcdr lap1 (1- (cdr lap1))))
1660 (delq lap1 rest))
1661 (if (eq (car lap0) 'byte-varbind)
1662 (setcar rest (cons 'byte-discard 0))
1663 (setq lap (delq lap0 lap)))
1664 (byte-compile-log-lap " %s %s\t-->\t%s %s"
1665 lap0 (cons (car lap1) (1+ (cdr lap1)))
1666 (if (eq (car lap0) 'byte-varbind)
1667 (car rest)
1668 (car (cdr rest)))
1669 (if (and (/= 0 (cdr lap1))
1670 (eq (car lap0) 'byte-varbind))
1671 (car (cdr rest))
1672 ""))
1673 (setq keep-going t))
1674 ;;
1675 ;; goto*-X ... X: goto-Y --> goto*-Y
1676 ;; goto-X ... X: return --> return
1677 ;;
1678 ((and (memq (car lap0) byte-goto-ops)
1679 (memq (car (setq tmp (nth 1 (memq (cdr lap0) lap))))
1680 '(byte-goto byte-return)))
1681 (cond ((and (not (eq tmp lap0))
1682 (or (eq (car lap0) 'byte-goto)
1683 (eq (car tmp) 'byte-goto)))
1684 (byte-compile-log-lap " %s [%s]\t-->\t%s"
1685 (car lap0) tmp tmp)
1686 (if (eq (car tmp) 'byte-return)
1687 (setcar lap0 'byte-return))
1688 (setcdr lap0 (cdr tmp))
1689 (setq keep-going t))))
1690 ;;
1691 ;; goto-*-else-pop X ... X: goto-if-* --> whatever
1692 ;; goto-*-else-pop X ... X: discard --> whatever
1693 ;;
1694 ((and (memq (car lap0) '(byte-goto-if-nil-else-pop
1695 byte-goto-if-not-nil-else-pop))
1696 (memq (car (car (setq tmp (cdr (memq (cdr lap0) lap)))))
1697 (eval-when-compile
1698 (cons 'byte-discard byte-conditional-ops)))
1699 (not (eq lap0 (car tmp))))
1700 (setq tmp2 (car tmp))
1701 (setq tmp3 (assq (car lap0) '((byte-goto-if-nil-else-pop
1702 byte-goto-if-nil)
1703 (byte-goto-if-not-nil-else-pop
1704 byte-goto-if-not-nil))))
1705 (if (memq (car tmp2) tmp3)
1706 (progn (setcar lap0 (car tmp2))
1707 (setcdr lap0 (cdr tmp2))
1708 (byte-compile-log-lap " %s-else-pop [%s]\t-->\t%s"
1709 (car lap0) tmp2 lap0))
1710 ;; Get rid of the -else-pop's and jump one step further.
1711 (or (eq 'TAG (car (nth 1 tmp)))
1712 (setcdr tmp (cons (byte-compile-make-tag)
1713 (cdr tmp))))
1714 (byte-compile-log-lap " %s [%s]\t-->\t%s <skip>"
1715 (car lap0) tmp2 (nth 1 tmp3))
1716 (setcar lap0 (nth 1 tmp3))
1717 (setcdr lap0 (nth 1 tmp)))
1718 (setq keep-going t))
1719 ;;
1720 ;; const goto-X ... X: goto-if-* --> whatever
1721 ;; const goto-X ... X: discard --> whatever
1722 ;;
1723 ((and (eq (car lap0) 'byte-constant)
1724 (eq (car lap1) 'byte-goto)
1725 (memq (car (car (setq tmp (cdr (memq (cdr lap1) lap)))))
1726 (eval-when-compile
1727 (cons 'byte-discard byte-conditional-ops)))
1728 (not (eq lap1 (car tmp))))
1729 (setq tmp2 (car tmp))
1730 (cond ((memq (car tmp2)
1731 (if (null (car (cdr lap0)))
1732 '(byte-goto-if-nil byte-goto-if-nil-else-pop)
1733 '(byte-goto-if-not-nil
1734 byte-goto-if-not-nil-else-pop)))
1735 (byte-compile-log-lap " %s goto [%s]\t-->\t%s %s"
1736 lap0 tmp2 lap0 tmp2)
1737 (setcar lap1 (car tmp2))
1738 (setcdr lap1 (cdr tmp2))
1739 ;; Let next step fix the (const,goto-if*) sequence.
1740 (setq rest (cons nil rest)))
1741 (t
1742 ;; Jump one step further
1743 (byte-compile-log-lap
1744 " %s goto [%s]\t-->\t<deleted> goto <skip>"
1745 lap0 tmp2)
1746 (or (eq 'TAG (car (nth 1 tmp)))
1747 (setcdr tmp (cons (byte-compile-make-tag)
1748 (cdr tmp))))
1749 (setcdr lap1 (car (cdr tmp)))
1750 (setq lap (delq lap0 lap))))
1751 (setq keep-going t))
1752 ;;
1753 ;; X: varref-Y ... varset-Y goto-X -->
1754 ;; X: varref-Y Z: ... dup varset-Y goto-Z
1755 ;; (varset-X goto-BACK, BACK: varref-X --> copy the varref down.)
1756 ;; (This is so usual for while loops that it is worth handling).
1757 ;;
1758 ((and (eq (car lap1) 'byte-varset)
1759 (eq (car lap2) 'byte-goto)
1760 (not (memq (cdr lap2) rest)) ;Backwards jump
1761 (eq (car (car (setq tmp (cdr (memq (cdr lap2) lap)))))
1762 'byte-varref)
1763 (eq (cdr (car tmp)) (cdr lap1))
1764 (not (memq (car (cdr lap1)) byte-boolean-vars)))
1765 ;;(byte-compile-log-lap " Pulled %s to end of loop" (car tmp))
1766 (let ((newtag (byte-compile-make-tag)))
1767 (byte-compile-log-lap
1768 " %s: %s ... %s %s\t-->\t%s: %s %s: ... %s %s %s"
1769 (nth 1 (cdr lap2)) (car tmp)
1770 lap1 lap2
1771 (nth 1 (cdr lap2)) (car tmp)
1772 (nth 1 newtag) 'byte-dup lap1
1773 (cons 'byte-goto newtag)
1774 )
1775 (setcdr rest (cons (cons 'byte-dup 0) (cdr rest)))
1776 (setcdr tmp (cons (setcdr lap2 newtag) (cdr tmp))))
1777 (setq add-depth 1)
1778 (setq keep-going t))
1779 ;;
1780 ;; goto-X Y: ... X: goto-if*-Y --> goto-if-not-*-X+1 Y:
1781 ;; (This can pull the loop test to the end of the loop)
1782 ;;
1783 ((and (eq (car lap0) 'byte-goto)
1784 (eq (car lap1) 'TAG)
1785 (eq lap1
1786 (cdr (car (setq tmp (cdr (memq (cdr lap0) lap))))))
1787 (memq (car (car tmp))
1788 '(byte-goto byte-goto-if-nil byte-goto-if-not-nil
1789 byte-goto-if-nil-else-pop)))
1790 ;; (byte-compile-log-lap " %s %s, %s %s --> moved conditional"
1791 ;; lap0 lap1 (cdr lap0) (car tmp))
1792 (let ((newtag (byte-compile-make-tag)))
1793 (byte-compile-log-lap
1794 "%s %s: ... %s: %s\t-->\t%s ... %s:"
1795 lap0 (nth 1 lap1) (nth 1 (cdr lap0)) (car tmp)
1796 (cons (cdr (assq (car (car tmp))
1797 '((byte-goto-if-nil . byte-goto-if-not-nil)
1798 (byte-goto-if-not-nil . byte-goto-if-nil)
1799 (byte-goto-if-nil-else-pop .
1800 byte-goto-if-not-nil-else-pop)
1801 (byte-goto-if-not-nil-else-pop .
1802 byte-goto-if-nil-else-pop))))
1803 newtag)
1804
1805 (nth 1 newtag)
1806 )
1807 (setcdr tmp (cons (setcdr lap0 newtag) (cdr tmp)))
1808 (if (eq (car (car tmp)) 'byte-goto-if-nil-else-pop)
1809 ;; We can handle this case but not the -if-not-nil case,
1810 ;; because we won't know which non-nil constant to push.
1811 (setcdr rest (cons (cons 'byte-constant
1812 (byte-compile-get-constant nil))
1813 (cdr rest))))
1814 (setcar lap0 (nth 1 (memq (car (car tmp))
1815 '(byte-goto-if-nil-else-pop
1816 byte-goto-if-not-nil
1817 byte-goto-if-nil
1818 byte-goto-if-not-nil
1819 byte-goto byte-goto))))
1820 )
1821 (setq keep-going t))
1822 )
1823 (setq rest (cdr rest)))
1824 )
1825 ;; Cleanup stage:
1826 ;; Rebuild byte-compile-constants / byte-compile-variables.
1827 ;; Simple optimizations that would inhibit other optimizations if they
1828 ;; were done in the optimizing loop, and optimizations which there is no
1829 ;; need to do more than once.
1830 (setq byte-compile-constants nil
1831 byte-compile-variables nil)
1832 (setq rest lap)
1833 (while rest
1834 (setq lap0 (car rest)
1835 lap1 (nth 1 rest))
1836 (if (memq (car lap0) byte-constref-ops)
1837 (if (eq (cdr lap0) 'byte-constant)
1838 (or (memq (cdr lap0) byte-compile-variables)
1839 (setq byte-compile-variables (cons (cdr lap0)
1840 byte-compile-variables)))
1841 (or (memq (cdr lap0) byte-compile-constants)
1842 (setq byte-compile-constants (cons (cdr lap0)
1843 byte-compile-constants)))))
1844 (cond (;;
1845 ;; const-C varset-X const-C --> const-C dup varset-X
1846 ;; const-C varbind-X const-C --> const-C dup varbind-X
1847 ;;
1848 (and (eq (car lap0) 'byte-constant)
1849 (eq (car (nth 2 rest)) 'byte-constant)
1850 (eq (cdr lap0) (car (nth 2 rest)))
1851 (memq (car lap1) '(byte-varbind byte-varset)))
1852 (byte-compile-log-lap " %s %s %s\t-->\t%s dup %s"
1853 lap0 lap1 lap0 lap0 lap1)
1854 (setcar (cdr (cdr rest)) (cons (car lap1) (cdr lap1)))
1855 (setcar (cdr rest) (cons 'byte-dup 0))
1856 (setq add-depth 1))
1857 ;;
1858 ;; const-X [dup/const-X ...] --> const-X [dup ...] dup
1859 ;; varref-X [dup/varref-X ...] --> varref-X [dup ...] dup
1860 ;;
1861 ((memq (car lap0) '(byte-constant byte-varref))
1862 (setq tmp rest
1863 tmp2 nil)
1864 (while (progn
1865 (while (eq 'byte-dup (car (car (setq tmp (cdr tmp))))))
1866 (and (eq (cdr lap0) (cdr (car tmp)))
1867 (eq (car lap0) (car (car tmp)))))
1868 (setcar tmp (cons 'byte-dup 0))
1869 (setq tmp2 t))
1870 (if tmp2
1871 (byte-compile-log-lap
1872 " %s [dup/%s]...\t-->\t%s dup..." lap0 lap0 lap0)))
1873 ;;
1874 ;; unbind-N unbind-M --> unbind-(N+M)
1875 ;;
1876 ((and (eq 'byte-unbind (car lap0))
1877 (eq 'byte-unbind (car lap1)))
1878 (byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1
1879 (cons 'byte-unbind
1880 (+ (cdr lap0) (cdr lap1))))
1881 (setq keep-going t)
1882 (setq lap (delq lap0 lap))
1883 (setcdr lap1 (+ (cdr lap1) (cdr lap0))))
1884 )
1885 (setq rest (cdr rest)))
1886 (setq byte-compile-maxdepth (+ byte-compile-maxdepth add-depth)))
1887 lap)
1888
1889 (provide 'byte-optimize)
1890
1891
1892 ;; To avoid "lisp nesting exceeds max-lisp-eval-depth" when this file compiles
1893 ;; itself, compile some of its most used recursive functions (at load time).
1894 ;;
1895 (eval-when-compile
1896 (or (compiled-function-p (symbol-function 'byte-optimize-form))
1897 (assq 'byte-code (symbol-function 'byte-optimize-form))
1898 (let ((byte-optimize nil)
1899 (byte-compile-warnings nil))
1900 (mapcar '(lambda (x)
1901 (or noninteractive (message "compiling %s..." x))
1902 (byte-compile x)
1903 (or noninteractive (message "compiling %s...done" x)))
1904 '(byte-optimize-form
1905 byte-optimize-body
1906 byte-optimize-predicate
1907 byte-optimize-binary-predicate
1908 ;; Inserted some more than necessary, to speed it up.
1909 byte-optimize-form-code-walker
1910 byte-optimize-lapcode))))
1911 nil)
1912
1913 ;;; byte-optimize.el ends here