Mercurial > hg > xemacs-beta
comparison lib-src/qsort.c @ 0:376386a54a3c r19-14
Import from CVS: tag r19-14
author | cvs |
---|---|
date | Mon, 13 Aug 2007 08:45:50 +0200 |
parents | |
children | 576fb035e263 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:376386a54a3c |
---|---|
1 /* Plug-compatible replacement for UNIX qsort. | |
2 Copyright (C) 1989 Free Software Foundation, Inc. | |
3 Written by Douglas C. Schmidt (schmidt@ics.uci.edu) | |
4 | |
5 This file is part of GNU CC. | |
6 | |
7 GNU QSORT is free software; you can redistribute it and/or modify | |
8 it under the terms of the GNU General Public License as published by | |
9 the Free Software Foundation; either version 2, or (at your option) | |
10 any later version. | |
11 | |
12 GNU QSORT is distributed in the hope that it will be useful, | |
13 but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 GNU General Public License for more details. | |
16 | |
17 You should have received a copy of the GNU General Public License | |
18 along with GNU QSORT; see the file COPYING. If not, write to | |
19 the Free the Free Software Foundation, Inc., 59 Temple Place - Suite 330, | |
20 Boston, MA 02111-1307, USA. */ | |
21 | |
22 /* Synched up with: FSF 19.28. */ | |
23 | |
24 #ifdef sparc | |
25 #include <alloca.h> | |
26 #endif | |
27 | |
28 /* Invoke the comparison function, returns either 0, < 0, or > 0. */ | |
29 #define CMP(A,B) ((*cmp)((A),(B))) | |
30 | |
31 /* Byte-wise swap two items of size SIZE. */ | |
32 #define SWAP(A,B,SIZE) do {int sz = (SIZE); char *a = (A); char *b = (B); \ | |
33 do { char _temp = *a;*a++ = *b;*b++ = _temp;} while (--sz);} while (0) | |
34 | |
35 /* Copy SIZE bytes from item B to item A. */ | |
36 #define COPY(A,B,SIZE) {int sz = (SIZE); do { *(A)++ = *(B)++; } while (--sz); } | |
37 | |
38 /* This should be replaced by a standard ANSI macro. */ | |
39 #define BYTES_PER_WORD 8 | |
40 | |
41 /* The next 4 #defines implement a very fast in-line stack abstraction. */ | |
42 #define STACK_SIZE (BYTES_PER_WORD * sizeof (long)) | |
43 #define PUSH(LOW,HIGH) do {top->lo = LOW;top++->hi = HIGH;} while (0) | |
44 #define POP(LOW,HIGH) do {LOW = (--top)->lo;HIGH = top->hi;} while (0) | |
45 #define STACK_NOT_EMPTY (stack < top) | |
46 | |
47 /* Discontinue quicksort algorithm when partition gets below this size. | |
48 This particular magic number was chosen to work best on a Sun 4/260. */ | |
49 #define MAX_THRESH 4 | |
50 | |
51 /* Stack node declarations used to store unfulfilled partition obligations. */ | |
52 typedef struct | |
53 { | |
54 char *lo; | |
55 char *hi; | |
56 } stack_node; | |
57 | |
58 /* Order size using quicksort. This implementation incorporates | |
59 four optimizations discussed in Sedgewick: | |
60 | |
61 1. Non-recursive, using an explicit stack of pointer that store the | |
62 next array partition to sort. To save time, this maximum amount | |
63 of space required to store an array of MAX_INT is allocated on the | |
64 stack. Assuming a 32-bit integer, this needs only 32 * | |
65 sizeof (stack_node) == 136 bits. Pretty cheap, actually. | |
66 | |
67 2. Chose the pivot element using a median-of-three decision tree. | |
68 This reduces the probability of selecting a bad pivot value and | |
69 eliminates certain extraneous comparisons. | |
70 | |
71 3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving | |
72 insertion sort to order the MAX_THRESH items within each partition. | |
73 This is a big win, since insertion sort is faster for small, mostly | |
74 sorted array segments. | |
75 | |
76 4. The larger of the two sub-partitions is always pushed onto the | |
77 stack first, with the algorithm then concentrating on the | |
78 smaller partition. This *guarantees* no more than log (n) | |
79 stack size is needed (actually O(1) in this case)! */ | |
80 | |
81 int | |
82 qsort (base_ptr, total_elems, size, cmp) | |
83 char *base_ptr; | |
84 int total_elems; | |
85 int size; | |
86 int (*cmp)(); | |
87 { | |
88 /* Allocating SIZE bytes for a pivot buffer facilitates a better | |
89 algorithm below since we can do comparisons directly on the pivot. */ | |
90 char *pivot_buffer = (char *) alloca (size); | |
91 int max_thresh = MAX_THRESH * size; | |
92 | |
93 if (total_elems > MAX_THRESH) | |
94 { | |
95 char *lo = base_ptr; | |
96 char *hi = lo + size * (total_elems - 1); | |
97 stack_node stack[STACK_SIZE]; /* Largest size needed for 32-bit int!!! */ | |
98 stack_node *top = stack + 1; | |
99 | |
100 while (STACK_NOT_EMPTY) | |
101 { | |
102 char *left_ptr; | |
103 char *right_ptr; | |
104 { | |
105 char *pivot = pivot_buffer; | |
106 { | |
107 /* Select median value from among LO, MID, and HI. Rearrange | |
108 LO and HI so the three values are sorted. This lowers the | |
109 probability of picking a pathological pivot value and | |
110 skips a comparison for both the LEFT_PTR and RIGHT_PTR. */ | |
111 | |
112 char *mid = lo + size * ((hi - lo) / size >> 1); | |
113 | |
114 if (CMP (mid, lo) < 0) | |
115 SWAP (mid, lo, size); | |
116 if (CMP (hi, mid) < 0) | |
117 SWAP (mid, hi, size); | |
118 else | |
119 goto jump_over; | |
120 if (CMP (mid, lo) < 0) | |
121 SWAP (mid, lo, size); | |
122 jump_over: | |
123 COPY (pivot, mid, size); | |
124 pivot = pivot_buffer; | |
125 } | |
126 left_ptr = lo + size; | |
127 right_ptr = hi - size; | |
128 | |
129 /* Here's the famous ``collapse the walls'' section of quicksort. | |
130 Gotta like those tight inner loops! They are the main reason | |
131 that this algorithm runs much faster than others. */ | |
132 do | |
133 { | |
134 while (CMP (left_ptr, pivot) < 0) | |
135 left_ptr += size; | |
136 | |
137 while (CMP (pivot, right_ptr) < 0) | |
138 right_ptr -= size; | |
139 | |
140 if (left_ptr < right_ptr) | |
141 { | |
142 SWAP (left_ptr, right_ptr, size); | |
143 left_ptr += size; | |
144 right_ptr -= size; | |
145 } | |
146 else if (left_ptr == right_ptr) | |
147 { | |
148 left_ptr += size; | |
149 right_ptr -= size; | |
150 break; | |
151 } | |
152 } | |
153 while (left_ptr <= right_ptr); | |
154 | |
155 } | |
156 | |
157 /* Set up pointers for next iteration. First determine whether | |
158 left and right partitions are below the threshold size. If so, | |
159 ignore one or both. Otherwise, push the larger partition's | |
160 bounds on the stack and continue sorting the smaller one. */ | |
161 | |
162 if ((right_ptr - lo) <= max_thresh) | |
163 { | |
164 if ((hi - left_ptr) <= max_thresh) /* Ignore both small partitions. */ | |
165 POP (lo, hi); | |
166 else /* Ignore small left partition. */ | |
167 lo = left_ptr; | |
168 } | |
169 else if ((hi - left_ptr) <= max_thresh) /* Ignore small right partition. */ | |
170 hi = right_ptr; | |
171 else if ((right_ptr - lo) > (hi - left_ptr)) /* Push larger left partition indices. */ | |
172 { | |
173 PUSH (lo, right_ptr); | |
174 lo = left_ptr; | |
175 } | |
176 else /* Push larger right partition indices. */ | |
177 { | |
178 PUSH (left_ptr, hi); | |
179 hi = right_ptr; | |
180 } | |
181 } | |
182 } | |
183 | |
184 /* Once the BASE_PTR array is partially sorted by quicksort the rest | |
185 is completely sorted using insertion sort, since this is efficient | |
186 for partitions below MAX_THRESH size. BASE_PTR points to the beginning | |
187 of the array to sort, and END_PTR points at the very last element in | |
188 the array (*not* one beyond it!). */ | |
189 | |
190 #define MIN(X,Y) ((X) < (Y) ? (X) : (Y)) | |
191 | |
192 { | |
193 char *end_ptr = base_ptr + size * (total_elems - 1); | |
194 char *run_ptr; | |
195 char *tmp_ptr = base_ptr; | |
196 char *thresh = MIN (end_ptr, base_ptr + max_thresh); | |
197 | |
198 /* Find smallest element in first threshold and place it at the | |
199 array's beginning. This is the smallest array element, | |
200 and the operation speeds up insertion sort's inner loop. */ | |
201 | |
202 for (run_ptr = tmp_ptr + size; run_ptr <= thresh; run_ptr += size) | |
203 if (CMP (run_ptr, tmp_ptr) < 0) | |
204 tmp_ptr = run_ptr; | |
205 | |
206 if (tmp_ptr != base_ptr) | |
207 SWAP (tmp_ptr, base_ptr, size); | |
208 | |
209 /* Insertion sort, running from left-hand-side up to `right-hand-side.' | |
210 Pretty much straight out of the original GNU qsort routine. */ | |
211 | |
212 for (run_ptr = base_ptr + size; (tmp_ptr = run_ptr += size) <= end_ptr; ) | |
213 { | |
214 | |
215 while (CMP (run_ptr, tmp_ptr -= size) < 0) | |
216 ; | |
217 | |
218 if ((tmp_ptr += size) != run_ptr) | |
219 { | |
220 char *trav; | |
221 | |
222 for (trav = run_ptr + size; --trav >= run_ptr;) | |
223 { | |
224 char c = *trav; | |
225 char *hi, *lo; | |
226 | |
227 for (hi = lo = trav; (lo -= size) >= tmp_ptr; hi = lo) | |
228 *hi = *lo; | |
229 *hi = c; | |
230 } | |
231 } | |
232 | |
233 } | |
234 } | |
235 return 1; | |
236 } | |
237 |