Mercurial > hg > xemacs-beta
comparison src/mule-coding.c @ 70:131b0175ea99 r20-0b30
Import from CVS: tag r20-0b30
author | cvs |
---|---|
date | Mon, 13 Aug 2007 09:02:59 +0200 |
parents | |
children | 54cc21c15cbb |
comparison
equal
deleted
inserted
replaced
69:804d1389bcd6 | 70:131b0175ea99 |
---|---|
1 /* Code conversion functions. | |
2 Copyright (C) 1991, 1995 Free Software Foundation, Inc. | |
3 Copyright (C) 1995 Sun Microsystems, Inc. | |
4 | |
5 This file is part of XEmacs. | |
6 | |
7 XEmacs is free software; you can redistribute it and/or modify it | |
8 under the terms of the GNU General Public License as published by the | |
9 Free Software Foundation; either version 2, or (at your option) any | |
10 later version. | |
11 | |
12 XEmacs is distributed in the hope that it will be useful, but WITHOUT | |
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |
15 for more details. | |
16 | |
17 You should have received a copy of the GNU General Public License | |
18 along with XEmacs; see the file COPYING. If not, write to | |
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330, | |
20 Boston, MA 02111-1307, USA. */ | |
21 | |
22 /* Synched up with: Mule 2.3. Not in FSF. */ | |
23 | |
24 /* Rewritten by Ben Wing <wing@666.com>. */ | |
25 | |
26 #include <config.h> | |
27 #include "lisp.h" | |
28 | |
29 #include "buffer.h" | |
30 #include "elhash.h" | |
31 #include "insdel.h" | |
32 #include "lstream.h" | |
33 #include "mule-coding.h" | |
34 | |
35 Lisp_Object Qfile_coding_system, Qcoding_system_error; | |
36 | |
37 Lisp_Object Vkeyboard_coding_system; | |
38 Lisp_Object Vterminal_coding_system; | |
39 Lisp_Object Vprocess_input_coding_system; | |
40 Lisp_Object Vprocess_output_coding_system; | |
41 Lisp_Object Vpathname_coding_system; | |
42 | |
43 /* Table of symbols identifying each coding category. */ | |
44 Lisp_Object coding_category_symbol[CODING_CATEGORY_LAST + 1]; | |
45 | |
46 /* Coding system currently associated with each coding category. */ | |
47 Lisp_Object coding_category_system[CODING_CATEGORY_LAST + 1]; | |
48 | |
49 /* Table of all coding categories in decreasing order of priority. | |
50 This describes a permutation of the possible coding categories. */ | |
51 int coding_category_by_priority[CODING_CATEGORY_LAST + 1]; | |
52 | |
53 Lisp_Object Qcoding_system_p; | |
54 | |
55 Lisp_Object Qbig5, Qshift_jis, Qno_conversion, Qccl, Qiso2022; | |
56 /* Qinternal in general.c */ | |
57 | |
58 Lisp_Object Qmnemonic, Qeol_type; | |
59 Lisp_Object Qcr, Qcrlf, Qlf; | |
60 Lisp_Object Qeol_cr, Qeol_crlf, Qeol_lf; | |
61 Lisp_Object Qpost_read_conversion; | |
62 Lisp_Object Qpre_write_conversion; | |
63 | |
64 Lisp_Object Qcharset_g0, Qcharset_g1, Qcharset_g2, Qcharset_g3; | |
65 Lisp_Object Qforce_g0_on_output, Qforce_g1_on_output; | |
66 Lisp_Object Qforce_g2_on_output, Qforce_g3_on_output; | |
67 Lisp_Object Qshort, Qno_ascii_eol, Qno_ascii_cntl, Qseven, Qlock_shift; | |
68 Lisp_Object Qno_iso6429, Qescape_quoted; | |
69 Lisp_Object Qinput_charset_conversion, Qoutput_charset_conversion; | |
70 | |
71 Lisp_Object Qencode, Qdecode; | |
72 | |
73 Lisp_Object Qctext; | |
74 | |
75 Lisp_Object Vcoding_system_hashtable; | |
76 | |
77 /* Additional information used by the ISO2022 decoder and detector. */ | |
78 struct iso2022_decoder | |
79 { | |
80 /* CHARSET holds the character sets currently assigned to the G0 | |
81 through G3 variables. It is initialized from the array | |
82 INITIAL_CHARSET in CODESYS. */ | |
83 Lisp_Object charset[4]; | |
84 | |
85 /* Which registers are currently invoked into the left (GL) and | |
86 right (GR) halves of the 8-bit encoding space? */ | |
87 int register_left, register_right; | |
88 | |
89 /* ISO_ESC holds a value indicating part of an escape sequence | |
90 that has already been seen. */ | |
91 enum iso_esc_flag esc; | |
92 | |
93 /* This records the bytes we've seen so far in an escape sequence, | |
94 in case the sequence is invalid (we spit out the bytes unchanged). */ | |
95 unsigned char esc_bytes[8]; | |
96 | |
97 /* Index for next byte to store in ISO escape sequence. */ | |
98 int esc_bytes_index; | |
99 | |
100 /* Stuff seen so far when composing a string. */ | |
101 unsigned_char_dynarr *composite_chars; | |
102 | |
103 /* If we saw an invalid designation sequence for a particular | |
104 register, we flag it here and switch to ASCII. The next time we | |
105 see a valid designation for this register, we turn off the flag | |
106 and do the designation normally, but pretend the sequence was | |
107 invalid. The effect of all this is that (most of the time) the | |
108 escape sequences for both the switch to the unknown charset, and | |
109 the switch back to the known charset, get inserted literally into | |
110 the buffer and saved out as such. The hope is that we can | |
111 preserve the escape sequences so that the resulting written out | |
112 file makes sense. If we don't do any of this, the designation | |
113 to the invalid charset will be preserved but that switch back | |
114 to the known charset will probably get eaten because it was | |
115 the same charset that was already present in the register. */ | |
116 unsigned char invalid_designated[4]; | |
117 | |
118 /* We try to do similar things as above for direction-switching | |
119 sequences. If we encountered a direction switch while an | |
120 invalid designation was present, or an invalid designation | |
121 just after a direction switch (i.e. no valid designation | |
122 encountered yet), we insert the direction-switch escape | |
123 sequence literally into the output stream, and later on | |
124 insert the corresponding direction-restoring escape sequence | |
125 literally also. */ | |
126 int switched_dir_and_no_valid_charset_yet :1; | |
127 int invalid_switch_dir :1; | |
128 | |
129 /* Tells the decoder to output the escape sequence literally | |
130 even though it was valid. Used in the games we play to | |
131 avoid lossage when we encounter invalid designations. */ | |
132 int output_literally :1; | |
133 /* We encountered a direction switch followed by an invalid | |
134 designation. We didn't output the direction switch | |
135 literally because we didn't know about the invalid designation; | |
136 but we have to do so now. */ | |
137 int output_direction_sequence :1; | |
138 }; | |
139 | |
140 Lisp_Object Fcopy_coding_system (Lisp_Object old_coding_system, | |
141 Lisp_Object new_name); | |
142 struct detection_state; | |
143 static int detect_coding_shift_jis (struct detection_state *st, | |
144 CONST unsigned char *src, | |
145 unsigned int n); | |
146 static void decode_coding_shift_jis (Lstream *decoding, | |
147 CONST unsigned char *src, | |
148 unsigned_char_dynarr *dst, | |
149 unsigned int n); | |
150 static void encode_coding_shift_jis (Lstream *encoding, | |
151 CONST unsigned char *src, | |
152 unsigned_char_dynarr *dst, | |
153 unsigned int n); | |
154 static int detect_coding_big5 (struct detection_state *st, | |
155 CONST unsigned char *src, | |
156 unsigned int n); | |
157 static void decode_coding_big5 (Lstream *decoding, | |
158 CONST unsigned char *src, | |
159 unsigned_char_dynarr *dst, unsigned int n); | |
160 static void encode_coding_big5 (Lstream *encoding, | |
161 CONST unsigned char *src, | |
162 unsigned_char_dynarr *dst, unsigned int n); | |
163 static int postprocess_iso2022_mask (int mask); | |
164 static void reset_iso2022 (Lisp_Object coding_system, | |
165 struct iso2022_decoder *iso); | |
166 static int detect_coding_iso2022 (struct detection_state *st, | |
167 CONST unsigned char *src, | |
168 unsigned int n); | |
169 static void decode_coding_iso2022 (Lstream *decoding, | |
170 CONST unsigned char *src, | |
171 unsigned_char_dynarr *dst, unsigned int n); | |
172 static void encode_coding_iso2022 (Lstream *encoding, | |
173 CONST unsigned char *src, | |
174 unsigned_char_dynarr *dst, unsigned int n); | |
175 static void decode_coding_no_conversion (Lstream *decoding, | |
176 CONST unsigned char *src, | |
177 unsigned_char_dynarr *dst, | |
178 unsigned int n); | |
179 static void encode_coding_no_conversion (Lstream *encoding, | |
180 CONST unsigned char *src, | |
181 unsigned_char_dynarr *dst, | |
182 unsigned int n); | |
183 static void mule_decode (Lstream *decoding, CONST unsigned char *src, | |
184 unsigned_char_dynarr *dst, unsigned int n); | |
185 static void mule_encode (Lstream *encoding, CONST unsigned char *src, | |
186 unsigned_char_dynarr *dst, unsigned int n); | |
187 | |
188 struct codesys_prop | |
189 { | |
190 Lisp_Object sym; | |
191 int prop_type; | |
192 }; | |
193 | |
194 typedef struct codesys_prop_dynarr_type | |
195 { | |
196 Dynarr_declare (struct codesys_prop); | |
197 } codesys_prop_dynarr; | |
198 | |
199 codesys_prop_dynarr *the_codesys_prop_dynarr; | |
200 | |
201 enum codesys_prop_enum | |
202 { | |
203 CODESYS_PROP_ALL_OK, | |
204 CODESYS_PROP_ISO2022, | |
205 CODESYS_PROP_CCL | |
206 }; | |
207 | |
208 | |
209 /************************************************************************/ | |
210 /* Coding system functions */ | |
211 /************************************************************************/ | |
212 | |
213 static Lisp_Object mark_coding_system (Lisp_Object, void (*) (Lisp_Object)); | |
214 static void print_coding_system (Lisp_Object, Lisp_Object, int); | |
215 static void finalize_coding_system (void *header, int for_disksave); | |
216 | |
217 DEFINE_LRECORD_IMPLEMENTATION ("coding-system", coding_system, | |
218 mark_coding_system, print_coding_system, | |
219 finalize_coding_system, | |
220 0, 0, struct Lisp_Coding_System); | |
221 | |
222 static Lisp_Object | |
223 mark_coding_system (Lisp_Object obj, void (*markobj) (Lisp_Object)) | |
224 { | |
225 struct Lisp_Coding_System *codesys = XCODING_SYSTEM (obj); | |
226 int i; | |
227 | |
228 (markobj) (CODING_SYSTEM_NAME (codesys)); | |
229 (markobj) (CODING_SYSTEM_DOC_STRING (codesys)); | |
230 (markobj) (CODING_SYSTEM_MNEMONIC (codesys)); | |
231 (markobj) (CODING_SYSTEM_EOL_LF (codesys)); | |
232 (markobj) (CODING_SYSTEM_EOL_CRLF (codesys)); | |
233 (markobj) (CODING_SYSTEM_EOL_CR (codesys)); | |
234 switch (CODING_SYSTEM_TYPE (codesys)) | |
235 { | |
236 case CODESYS_ISO2022: | |
237 for (i = 0; i < 4; i++) | |
238 (markobj) (CODING_SYSTEM_ISO2022_INITIAL_CHARSET (codesys, i)); | |
239 if (codesys->iso2022.input_conv) | |
240 { | |
241 for (i = 0; i < Dynarr_length (codesys->iso2022.input_conv); i++) | |
242 { | |
243 struct charset_conversion_spec *ccs = | |
244 Dynarr_atp (codesys->iso2022.input_conv, i); | |
245 (markobj) (ccs->from_charset); | |
246 (markobj) (ccs->to_charset); | |
247 } | |
248 } | |
249 if (codesys->iso2022.output_conv) | |
250 { | |
251 for (i = 0; i < Dynarr_length (codesys->iso2022.output_conv); i++) | |
252 { | |
253 struct charset_conversion_spec *ccs = | |
254 Dynarr_atp (codesys->iso2022.output_conv, i); | |
255 (markobj) (ccs->from_charset); | |
256 (markobj) (ccs->to_charset); | |
257 } | |
258 } | |
259 break; | |
260 | |
261 case CODESYS_CCL: | |
262 (markobj) (CODING_SYSTEM_CCL_DECODE (codesys)); | |
263 (markobj) (CODING_SYSTEM_CCL_ENCODE (codesys)); | |
264 break; | |
265 default: | |
266 break; | |
267 } | |
268 | |
269 (markobj) (CODING_SYSTEM_PRE_WRITE_CONVERSION (codesys)); | |
270 return CODING_SYSTEM_POST_READ_CONVERSION (codesys); | |
271 } | |
272 | |
273 static void | |
274 print_coding_system (Lisp_Object obj, Lisp_Object printcharfun, | |
275 int escapeflag) | |
276 { | |
277 struct Lisp_Coding_System *c = XCODING_SYSTEM (obj); | |
278 if (print_readably) | |
279 error ("printing unreadable object #<coding_system 0x%x>", | |
280 c->header.uid); | |
281 | |
282 write_c_string ("#<coding_system ", printcharfun); | |
283 print_internal (c->name, printcharfun, 1); | |
284 write_c_string (">", printcharfun); | |
285 } | |
286 | |
287 static void | |
288 finalize_coding_system (void *header, int for_disksave) | |
289 { | |
290 struct Lisp_Coding_System *c = (struct Lisp_Coding_System *) header; | |
291 /* Since coding systems never go away, this function is not | |
292 necessary. But it would be necessary if we changed things | |
293 so that coding systems could go away. */ | |
294 if (!for_disksave) /* see comment in lstream.c */ | |
295 { | |
296 switch (CODING_SYSTEM_TYPE (c)) | |
297 { | |
298 case CODESYS_ISO2022: | |
299 if (c->iso2022.input_conv) | |
300 { | |
301 Dynarr_free (c->iso2022.input_conv); | |
302 c->iso2022.input_conv = 0; | |
303 } | |
304 if (c->iso2022.output_conv) | |
305 { | |
306 Dynarr_free (c->iso2022.output_conv); | |
307 c->iso2022.output_conv = 0; | |
308 } | |
309 break; | |
310 | |
311 default: | |
312 break; | |
313 } | |
314 } | |
315 } | |
316 | |
317 static int | |
318 symbol_to_eol_type (Lisp_Object symbol) | |
319 { | |
320 CHECK_SYMBOL (symbol); | |
321 if (NILP (symbol)) return EOL_AUTODETECT; | |
322 else if (EQ (symbol, Qlf)) return EOL_LF; | |
323 else if (EQ (symbol, Qcrlf)) return EOL_CRLF; | |
324 else if (EQ (symbol, Qcr)) return EOL_CR; | |
325 else | |
326 signal_simple_error ("Unrecognized eol type", symbol); | |
327 | |
328 return 0; /* not reached */ | |
329 } | |
330 | |
331 static Lisp_Object | |
332 eol_type_to_symbol (int eol_type) | |
333 { | |
334 switch (eol_type) | |
335 { | |
336 case EOL_LF: return Qlf; | |
337 case EOL_CRLF: return Qcrlf; | |
338 case EOL_CR: return Qcr; | |
339 case EOL_AUTODETECT: return Qnil; | |
340 default: abort (); | |
341 } | |
342 | |
343 return Qnil; /* not reached */ | |
344 } | |
345 | |
346 static void | |
347 setup_eol_coding_systems (struct Lisp_Coding_System *codesys) | |
348 { | |
349 Lisp_Object codesys_obj = Qnil; | |
350 int len = string_length (XSYMBOL (CODING_SYSTEM_NAME (codesys))->name); | |
351 char *codesys_name = (char *) alloca (len + 7); | |
352 Lisp_Object codesys_name_sym, sub_codesys_obj; | |
353 | |
354 /* kludge */ | |
355 | |
356 XSETCODING_SYSTEM (codesys_obj, codesys); | |
357 | |
358 memcpy (codesys_name, | |
359 string_data (XSYMBOL (CODING_SYSTEM_NAME (codesys))->name), len); | |
360 | |
361 #define DEFINE_SUB_CODESYS(op_sys, Type) do { \ | |
362 strcpy (codesys_name + len, "-" op_sys); \ | |
363 codesys_name_sym = intern (codesys_name); \ | |
364 sub_codesys_obj = Fcopy_coding_system (codesys_obj, codesys_name_sym); \ | |
365 XCODING_SYSTEM_EOL_TYPE (sub_codesys_obj) = Type; \ | |
366 CODING_SYSTEM_##Type (codesys) = sub_codesys_obj; \ | |
367 } while (0) | |
368 | |
369 DEFINE_SUB_CODESYS("unix", EOL_LF); | |
370 DEFINE_SUB_CODESYS("dos", EOL_CRLF); | |
371 DEFINE_SUB_CODESYS("mac", EOL_CR); | |
372 } | |
373 | |
374 DEFUN ("coding-system-p", Fcoding_system_p, 1, 1, 0, /* | |
375 T if OBJECT is a coding system. | |
376 A coding system is an object that defines how text containing multiple | |
377 character sets is encoded into a stream of (typically 8-bit) bytes. | |
378 The coding system is used to decode the stream into a series of | |
379 characters (which may be from multiple charsets) when the text is read | |
380 from a file or process, and is used to encode the text back into the | |
381 same format when it is written out to a file or process. | |
382 | |
383 For example, many ISO2022-compliant coding systems (such as Compound | |
384 Text, which is used for inter-client data under the X Window System) | |
385 use escape sequences to switch between different charsets -- Japanese | |
386 Kanji, for example, is invoked with \"ESC $ ( B\"; ASCII is invoked | |
387 with \"ESC ( B\"; and Cyrillic is invoked with \"ESC - L\". See | |
388 `make-coding-system' for more information. | |
389 | |
390 Coding systems are normally identified using a symbol, and the | |
391 symbol is accepted in place of the actual coding system object whenever | |
392 a coding system is called for. (This is similar to how faces work.) | |
393 */ | |
394 (object)) | |
395 { | |
396 return CODING_SYSTEMP (object) ? Qt : Qnil; | |
397 } | |
398 | |
399 DEFUN ("find-coding-system", Ffind_coding_system, 1, 1, 0, /* | |
400 Retrieve the coding system of the given name. | |
401 | |
402 If CODING-SYSTEM-OR-NAME is a coding-system object, it is simply | |
403 returned. Otherwise, CODING-SYSTEM-OR-NAME should be a symbol. | |
404 If there is no such coding system, nil is returned. Otherwise the | |
405 associated coding system object is returned. | |
406 */ | |
407 (coding_system_or_name)) | |
408 { | |
409 if (NILP (coding_system_or_name)) | |
410 coding_system_or_name = Qbinary; | |
411 if (CODING_SYSTEMP (coding_system_or_name)) | |
412 return coding_system_or_name; | |
413 CHECK_SYMBOL (coding_system_or_name); | |
414 | |
415 return Fgethash (coding_system_or_name, Vcoding_system_hashtable, Qnil); | |
416 } | |
417 | |
418 DEFUN ("get-coding-system", Fget_coding_system, 1, 1, 0, /* | |
419 Retrieve the coding system of the given name. | |
420 Same as `find-coding-system' except that if there is no such | |
421 coding system, an error is signaled instead of returning nil. | |
422 */ | |
423 (name)) | |
424 { | |
425 Lisp_Object coding_system = Ffind_coding_system (name); | |
426 | |
427 if (NILP (coding_system)) | |
428 signal_simple_error ("No such coding system", name); | |
429 return coding_system; | |
430 } | |
431 | |
432 /* We store the coding systems in hash tables with the names as the key and the | |
433 actual coding system object as the value. Occasionally we need to use them | |
434 in a list format. These routines provide us with that. */ | |
435 struct coding_system_list_closure | |
436 { | |
437 Lisp_Object *coding_system_list; | |
438 }; | |
439 | |
440 static void | |
441 add_coding_system_to_list_mapper (CONST void *hash_key, void *hash_contents, | |
442 void *coding_system_list_closure) | |
443 { | |
444 /* This function can GC */ | |
445 Lisp_Object key, contents; | |
446 Lisp_Object *coding_system_list; | |
447 struct coding_system_list_closure *chcl = coding_system_list_closure; | |
448 CVOID_TO_LISP (key, hash_key); | |
449 VOID_TO_LISP (contents, hash_contents); | |
450 coding_system_list = chcl->coding_system_list; | |
451 | |
452 *coding_system_list = Fcons (XCODING_SYSTEM (contents)->name, | |
453 *coding_system_list); | |
454 } | |
455 | |
456 DEFUN ("coding-system-list", Fcoding_system_list, 0, 0, 0, /* | |
457 Return a list of the names of all defined coding systems. | |
458 */ | |
459 ()) | |
460 { | |
461 Lisp_Object coding_system_list = Qnil; | |
462 struct gcpro gcpro1; | |
463 struct coding_system_list_closure coding_system_list_closure; | |
464 | |
465 GCPRO1 (coding_system_list); | |
466 coding_system_list_closure.coding_system_list = &coding_system_list; | |
467 elisp_maphash (add_coding_system_to_list_mapper, Vcoding_system_hashtable, | |
468 &coding_system_list_closure); | |
469 UNGCPRO; | |
470 | |
471 return coding_system_list; | |
472 } | |
473 | |
474 DEFUN ("coding-system-name", Fcoding_system_name, 1, 1, 0, /* | |
475 Return the name of the given coding system. | |
476 */ | |
477 (coding_system)) | |
478 { | |
479 coding_system = Fget_coding_system (coding_system); | |
480 return (XCODING_SYSTEM_NAME (coding_system)); | |
481 } | |
482 | |
483 static struct Lisp_Coding_System * | |
484 allocate_coding_system (int type, Lisp_Object name) | |
485 { | |
486 struct Lisp_Coding_System *codesys; | |
487 | |
488 codesys = (struct Lisp_Coding_System *) | |
489 alloc_lcrecord (sizeof (struct Lisp_Coding_System), lrecord_coding_system); | |
490 | |
491 zero_lcrecord (codesys); | |
492 CODING_SYSTEM_PRE_WRITE_CONVERSION (codesys) = Qnil; | |
493 CODING_SYSTEM_POST_READ_CONVERSION (codesys) = Qnil; | |
494 CODING_SYSTEM_EOL_TYPE (codesys) = EOL_AUTODETECT; | |
495 CODING_SYSTEM_EOL_CRLF (codesys) = Qnil; | |
496 CODING_SYSTEM_EOL_CR (codesys) = Qnil; | |
497 CODING_SYSTEM_EOL_LF (codesys) = Qnil; | |
498 CODING_SYSTEM_TYPE (codesys) = type; | |
499 | |
500 if (type == CODESYS_ISO2022) | |
501 { | |
502 int i; | |
503 for (i = 0; i < 4; i++) | |
504 CODING_SYSTEM_ISO2022_INITIAL_CHARSET (codesys, i) = Qnil; | |
505 } | |
506 else if (type == CODESYS_CCL) | |
507 { | |
508 CODING_SYSTEM_CCL_DECODE (codesys) = Qnil; | |
509 CODING_SYSTEM_CCL_ENCODE (codesys) = Qnil; | |
510 } | |
511 | |
512 CODING_SYSTEM_NAME (codesys) = name; | |
513 | |
514 return codesys; | |
515 } | |
516 | |
517 /* Given a list of charset conversion specs as specified in a Lisp | |
518 program, parse it into STORE_HERE. */ | |
519 | |
520 static void | |
521 parse_charset_conversion_specs (charset_conversion_spec_dynarr *store_here, | |
522 Lisp_Object spec_list) | |
523 { | |
524 Lisp_Object rest; | |
525 | |
526 EXTERNAL_LIST_LOOP (rest, spec_list) | |
527 { | |
528 Lisp_Object car = XCAR (rest); | |
529 Lisp_Object from, to; | |
530 struct charset_conversion_spec spec; | |
531 | |
532 if (!CONSP (car) || !CONSP (XCDR (car)) || !NILP (XCDR (XCDR (car)))) | |
533 signal_simple_error ("Invalid charset conversion spec", car); | |
534 from = Fget_charset (XCAR (car)); | |
535 to = Fget_charset (XCAR (XCDR (car))); | |
536 if (XCHARSET_TYPE (from) != XCHARSET_TYPE (to)) | |
537 signal_simple_error_2 | |
538 ("Attempted conversion between different charset types", | |
539 from, to); | |
540 spec.from_charset = from; | |
541 spec.to_charset = to; | |
542 | |
543 Dynarr_add (store_here, spec); | |
544 } | |
545 } | |
546 | |
547 /* Given a dynarr LOAD_HERE of internally-stored charset conversion | |
548 specs, return the equivalent as the Lisp programmer would see it. | |
549 | |
550 If LOAD_HERE is 0, return Qnil. */ | |
551 | |
552 static Lisp_Object | |
553 unparse_charset_conversion_specs (charset_conversion_spec_dynarr *load_here) | |
554 { | |
555 int i; | |
556 Lisp_Object result = Qnil; | |
557 | |
558 if (!load_here) | |
559 return Qnil; | |
560 for (i = 0; i < Dynarr_length (load_here); i++) | |
561 { | |
562 struct charset_conversion_spec *ccs = | |
563 Dynarr_atp (load_here, i); | |
564 result = Fcons (list2 (ccs->from_charset, ccs->to_charset), result); | |
565 } | |
566 | |
567 return Fnreverse (result); | |
568 } | |
569 | |
570 DEFUN ("make-coding-system", Fmake_coding_system, 2, 4, 0, /* | |
571 Register symbol NAME as a coding system. | |
572 | |
573 TYPE describes the conversion method used and should be one of | |
574 | |
575 nil or 'autodetect | |
576 Automatic conversion. XEmacs attempts to detect the coding system | |
577 used in the file. | |
578 'no-conversion | |
579 No conversion. Use this for binary files and such. On output, | |
580 graphic characters that are not in ASCII or Latin-1 will be | |
581 replaced by a ?. (For a no-conversion-encoded buffer, these | |
582 characters will only be present if you explicitly insert them.) | |
583 'shift-jis | |
584 Shift-JIS (a Japanese encoding commonly used in PC operating systems). | |
585 'iso2022 | |
586 Any ISO2022-compliant encoding. Among other things, this includes | |
587 JIS (the Japanese encoding commonly used for e-mail), EUC (the | |
588 standard Unix encoding for Japanese and other languages), and | |
589 Compound Text (the encoding used in X11). You can specify more | |
590 specific information about the conversion with the FLAGS argument. | |
591 'big5 | |
592 Big5 (the encoding commonly used for Taiwanese). | |
593 'ccl | |
594 The conversion is performed using a user-written pseudo-code | |
595 program. CCL (Code Conversion Language) is the name of this | |
596 pseudo-code. | |
597 'internal | |
598 Write out or read in the raw contents of the memory representing | |
599 the buffer's text. This is primarily useful for debugging | |
600 purposes, and is only enabled when XEmacs has been compiled with | |
601 DEBUG_XEMACS defined (via the --debug configure option). | |
602 WARNING: Reading in a file using 'internal conversion can result | |
603 in an internal inconsistency in the memory representing a | |
604 buffer's text, which will produce unpredictable results and may | |
605 cause XEmacs to crash. Under normal circumstances you should | |
606 never use 'internal conversion. | |
607 | |
608 DOC-STRING is a string describing the coding system. | |
609 | |
610 PROPS is a property list, describing the specific nature of the | |
611 character set. Recognized properties are: | |
612 | |
613 'mnemonic | |
614 String to be displayed in the modeline when this coding system is | |
615 active. | |
616 | |
617 'eol-type | |
618 End-of-line conversion to be used. It should be one of | |
619 | |
620 nil | |
621 Automatically detect the end-of-line type (LF, CRLF, | |
622 or CR). Also generate subsidiary coding systems named | |
623 `NAME-unix', `NAME-dos', and `NAME-mac', that are | |
624 identical to this coding system but have an EOL-TYPE | |
625 value of 'lf, 'crlf, and 'cr, respectively. | |
626 'lf | |
627 The end of a line is marked externally using ASCII LF. | |
628 Since this is also the way that XEmacs represents an | |
629 end-of-line internally, specifying this option results | |
630 in no end-of-line conversion. This is the standard | |
631 format for Unix text files. | |
632 'crlf | |
633 The end of a line is marked externally using ASCII | |
634 CRLF. This is the standard format for MS-DOS text | |
635 files. | |
636 'cr | |
637 The end of a line is marked externally using ASCII CR. | |
638 This is the standard format for Macintosh text files. | |
639 t | |
640 Automatically detect the end-of-line type but do not | |
641 generate subsidiary coding systems. (This value is | |
642 converted to nil when stored internally, and | |
643 `coding-system-property' will return nil.) | |
644 | |
645 'post-read-conversion | |
646 Function called after a file has been read in, to perform the | |
647 decoding. Called with two arguments, BEG and END, denoting | |
648 a region of the current buffer to be decoded. | |
649 | |
650 'pre-write-conversion | |
651 Function called before a file is written out, to perform the | |
652 encoding. Called with two arguments, BEG and END, denoting | |
653 a region of the current buffer to be encoded. | |
654 | |
655 | |
656 The following additional properties are recognized if TYPE is 'iso2022: | |
657 | |
658 'charset-g0 | |
659 'charset-g1 | |
660 'charset-g2 | |
661 'charset-g3 | |
662 The character set initially designated to the G0 - G3 registers. | |
663 The value should be one of | |
664 | |
665 -- A charset object (designate that character set) | |
666 -- nil (do not ever use this register) | |
667 -- t (no character set is initially designated to | |
668 the register, but may be later on; this automatically | |
669 sets the corresponding `force-g*-on-output' property) | |
670 | |
671 'force-g0-on-output | |
672 'force-g1-on-output | |
673 'force-g2-on-output | |
674 'force-g2-on-output | |
675 If non-nil, send an explicit designation sequence on output before | |
676 using the specified register. | |
677 | |
678 'short | |
679 If non-nil, use the short forms \"ESC $ @\", \"ESC $ A\", and | |
680 \"ESC $ B\" on output in place of the full designation sequences | |
681 \"ESC $ ( @\", \"ESC $ ( A\", and \"ESC $ ( B\". | |
682 | |
683 'no-ascii-eol | |
684 If non-nil, don't designate ASCII to G0 at each end of line on output. | |
685 Setting this to non-nil also suppresses other state-resetting that | |
686 normally happens at the end of a line. | |
687 | |
688 'no-ascii-cntl | |
689 If non-nil, don't designate ASCII to G0 before control chars on output. | |
690 | |
691 'seven | |
692 If non-nil, use 7-bit environment on output. Otherwise, use 8-bit | |
693 environment. | |
694 | |
695 'lock-shift | |
696 If non-nil, use locking-shift (SO/SI) instead of single-shift | |
697 or designation by escape sequence. | |
698 | |
699 'no-iso6429 | |
700 If non-nil, don't use ISO6429's direction specification. | |
701 | |
702 'escape-quoted | |
703 If non-nil, literal control characters that are the same as | |
704 the beginning of a recognized ISO2022 or ISO6429 escape sequence | |
705 (in particular, ESC (0x1B), SO (0x0E), SI (0x0F), SS2 (0x8E), | |
706 SS3 (0x8F), and CSI (0x9B)) are \"quoted\" with an escape character | |
707 so that they can be properly distinguished from an escape sequence. | |
708 (Note that doing this results in a non-portable encoding.) This | |
709 encoding flag is used for byte-compiled files. Note that ESC | |
710 is a good choice for a quoting character because there are no | |
711 escape sequences whose second byte is a character from the Control-0 | |
712 or Control-1 character sets; this is explicitly disallowed by the | |
713 ISO2022 standard. | |
714 | |
715 'input-charset-conversion | |
716 A list of conversion specifications, specifying conversion of | |
717 characters in one charset to another when decoding is performed. | |
718 Each specification is a list of two elements: the source charset, | |
719 and the destination charset. | |
720 | |
721 'output-charset-conversion | |
722 A list of conversion specifications, specifying conversion of | |
723 characters in one charset to another when encoding is performed. | |
724 The form of each specification is the same as for | |
725 'input-charset-conversion. | |
726 | |
727 | |
728 The following additional properties are recognized (and required) | |
729 if TYPE is 'ccl: | |
730 | |
731 'decode | |
732 CCL program used for decoding (converting to internal format). | |
733 | |
734 'encode | |
735 CCL program used for encoding (converting to external format). | |
736 */ | |
737 (name, type, doc_string, props)) | |
738 { | |
739 struct Lisp_Coding_System *codesys; | |
740 Lisp_Object rest, key, value; | |
741 int ty; | |
742 int need_to_setup_eol_systems = 1; | |
743 | |
744 /* Convert type to constant */ | |
745 if (NILP (type) || EQ (type, Qautodetect)) { ty = CODESYS_AUTODETECT; } | |
746 else if (EQ (type, Qshift_jis)) { ty = CODESYS_SHIFT_JIS; } | |
747 else if (EQ (type, Qiso2022)) { ty = CODESYS_ISO2022; } | |
748 else if (EQ (type, Qbig5)) { ty = CODESYS_BIG5; } | |
749 else if (EQ (type, Qccl)) { ty = CODESYS_CCL; } | |
750 else if (EQ (type, Qno_conversion)) { ty = CODESYS_NO_CONVERSION; } | |
751 #ifdef DEBUG_XEMACS | |
752 else if (EQ (type, Qinternal)) { ty = CODESYS_INTERNAL; } | |
753 #endif | |
754 else | |
755 signal_simple_error ("Invalid coding system type", type); | |
756 | |
757 CHECK_SYMBOL (name); | |
758 | |
759 codesys = allocate_coding_system (ty, name); | |
760 | |
761 if (NILP (doc_string)) | |
762 doc_string = build_string (""); | |
763 else | |
764 CHECK_STRING (doc_string); | |
765 CODING_SYSTEM_DOC_STRING (codesys) = doc_string; | |
766 | |
767 EXTERNAL_PROPERTY_LIST_LOOP (rest, key, value, props) | |
768 { | |
769 if (EQ (key, Qmnemonic)) | |
770 { | |
771 if (!NILP (value)) | |
772 CHECK_STRING (value); | |
773 CODING_SYSTEM_MNEMONIC (codesys) = value; | |
774 } | |
775 | |
776 else if (EQ (key, Qeol_type)) | |
777 { | |
778 need_to_setup_eol_systems = NILP (value); | |
779 if (EQ (value, Qt)) | |
780 value = Qnil; | |
781 CODING_SYSTEM_EOL_TYPE (codesys) = symbol_to_eol_type (value); | |
782 } | |
783 | |
784 else if (EQ (key, Qpost_read_conversion)) CODING_SYSTEM_POST_READ_CONVERSION (codesys) = value; | |
785 else if (EQ (key, Qpre_write_conversion)) CODING_SYSTEM_PRE_WRITE_CONVERSION (codesys) = value; | |
786 else if (ty == CODESYS_ISO2022) | |
787 { | |
788 #define FROB_INITIAL_CHARSET(charset_num) \ | |
789 CODING_SYSTEM_ISO2022_INITIAL_CHARSET (codesys, charset_num) = \ | |
790 ((EQ (value, Qt) || EQ (value, Qnil)) ? value : Fget_charset (value)) | |
791 | |
792 if (EQ (key, Qcharset_g0)) FROB_INITIAL_CHARSET (0); | |
793 else if (EQ (key, Qcharset_g1)) FROB_INITIAL_CHARSET (1); | |
794 else if (EQ (key, Qcharset_g2)) FROB_INITIAL_CHARSET (2); | |
795 else if (EQ (key, Qcharset_g3)) FROB_INITIAL_CHARSET (3); | |
796 | |
797 #define FROB_FORCE_CHARSET(charset_num) \ | |
798 CODING_SYSTEM_ISO2022_FORCE_CHARSET_ON_OUTPUT (codesys, charset_num) = !NILP (value) | |
799 | |
800 else if (EQ (key, Qforce_g0_on_output)) FROB_FORCE_CHARSET (0); | |
801 else if (EQ (key, Qforce_g1_on_output)) FROB_FORCE_CHARSET (1); | |
802 else if (EQ (key, Qforce_g2_on_output)) FROB_FORCE_CHARSET (2); | |
803 else if (EQ (key, Qforce_g3_on_output)) FROB_FORCE_CHARSET (3); | |
804 | |
805 #define FROB_BOOLEAN_PROPERTY(prop) \ | |
806 CODING_SYSTEM_ISO2022_##prop (codesys) = !NILP (value) | |
807 | |
808 else if (EQ (key, Qshort)) FROB_BOOLEAN_PROPERTY (SHORT); | |
809 else if (EQ (key, Qno_ascii_eol)) FROB_BOOLEAN_PROPERTY (NO_ASCII_EOL); | |
810 else if (EQ (key, Qno_ascii_cntl)) FROB_BOOLEAN_PROPERTY (NO_ASCII_CNTL); | |
811 else if (EQ (key, Qseven)) FROB_BOOLEAN_PROPERTY (SEVEN); | |
812 else if (EQ (key, Qlock_shift)) FROB_BOOLEAN_PROPERTY (LOCK_SHIFT); | |
813 else if (EQ (key, Qno_iso6429)) FROB_BOOLEAN_PROPERTY (NO_ISO6429); | |
814 else if (EQ (key, Qescape_quoted)) FROB_BOOLEAN_PROPERTY (ESCAPE_QUOTED); | |
815 | |
816 else if (EQ (key, Qinput_charset_conversion)) | |
817 { | |
818 codesys->iso2022.input_conv = | |
819 Dynarr_new (struct charset_conversion_spec); | |
820 parse_charset_conversion_specs (codesys->iso2022.input_conv, | |
821 value); | |
822 } | |
823 else if (EQ (key, Qoutput_charset_conversion)) | |
824 { | |
825 codesys->iso2022.output_conv = | |
826 Dynarr_new (struct charset_conversion_spec); | |
827 parse_charset_conversion_specs (codesys->iso2022.output_conv, | |
828 value); | |
829 } | |
830 else | |
831 signal_simple_error ("Unrecognized property", key); | |
832 } | |
833 else if (EQ (type, Qccl)) | |
834 { | |
835 if (EQ (key, Qdecode)) | |
836 { | |
837 CHECK_VECTOR (value); | |
838 CODING_SYSTEM_CCL_DECODE (codesys) = value; | |
839 } | |
840 else if (EQ (key, Qencode)) | |
841 { | |
842 CHECK_VECTOR (value); | |
843 CODING_SYSTEM_CCL_ENCODE (codesys) = value; | |
844 } | |
845 else | |
846 signal_simple_error ("Unrecognized property", key); | |
847 } | |
848 else | |
849 signal_simple_error ("Unrecognized property", key); | |
850 } | |
851 | |
852 if (need_to_setup_eol_systems) | |
853 setup_eol_coding_systems (codesys); | |
854 | |
855 { | |
856 Lisp_Object codesys_obj; | |
857 XSETCODING_SYSTEM (codesys_obj, codesys); | |
858 Fputhash (name, codesys_obj, Vcoding_system_hashtable); | |
859 return codesys_obj; | |
860 } | |
861 } | |
862 | |
863 DEFUN ("copy-coding-system", Fcopy_coding_system, 2, 2, 0, /* | |
864 Copy OLD-CODING-SYSTEM to NEW-NAME. | |
865 If NEW-NAME does not name an existing coding system, a new one will | |
866 be created. | |
867 */ | |
868 (old_coding_system, new_name)) | |
869 { | |
870 Lisp_Object new_coding_system; | |
871 old_coding_system = Fget_coding_system (old_coding_system); | |
872 new_coding_system = Ffind_coding_system (new_name); | |
873 if (NILP (new_coding_system)) | |
874 { | |
875 XSETCODING_SYSTEM (new_coding_system, | |
876 allocate_coding_system | |
877 (XCODING_SYSTEM_TYPE (old_coding_system), | |
878 new_name)); | |
879 Fputhash (new_name, new_coding_system, Vcoding_system_hashtable); | |
880 } | |
881 | |
882 { | |
883 struct Lisp_Coding_System *to = XCODING_SYSTEM (new_coding_system); | |
884 struct Lisp_Coding_System *from = XCODING_SYSTEM (old_coding_system); | |
885 memcpy (((char *) to ) + sizeof (to->header), | |
886 ((char *) from) + sizeof (from->header), | |
887 sizeof (*from) - sizeof (from->header)); | |
888 to->name = new_name; | |
889 } | |
890 return new_coding_system; | |
891 } | |
892 | |
893 static Lisp_Object | |
894 subsidiary_coding_system (Lisp_Object coding_system, int eol_type) | |
895 { | |
896 struct Lisp_Coding_System *cs = XCODING_SYSTEM (coding_system); | |
897 Lisp_Object new_coding_system; | |
898 | |
899 if (CODING_SYSTEM_EOL_TYPE (cs) != EOL_AUTODETECT) | |
900 return coding_system; | |
901 if (eol_type == EOL_AUTODETECT) | |
902 return coding_system; | |
903 | |
904 switch (eol_type) | |
905 { | |
906 case EOL_LF: new_coding_system = CODING_SYSTEM_EOL_LF (cs); break; | |
907 case EOL_CR: new_coding_system = CODING_SYSTEM_EOL_CR (cs); break; | |
908 case EOL_CRLF: new_coding_system = CODING_SYSTEM_EOL_CRLF (cs); break; | |
909 default: abort (); | |
910 } | |
911 | |
912 return NILP (new_coding_system) ? coding_system : new_coding_system; | |
913 } | |
914 | |
915 DEFUN ("subsidiary-coding-system", Fsubsidiary_coding_system, 2, 2, 0, /* | |
916 Return the subsidiary coding system of CODING-SYSTEM with eol type EOL-TYPE. | |
917 */ | |
918 (coding_system, eol_type)) | |
919 { | |
920 coding_system = Fget_coding_system (coding_system); | |
921 | |
922 return subsidiary_coding_system (coding_system, | |
923 symbol_to_eol_type (eol_type)); | |
924 } | |
925 | |
926 | |
927 /************************************************************************/ | |
928 /* Coding system accessors */ | |
929 /************************************************************************/ | |
930 | |
931 DEFUN ("coding-system-doc-string", Fcoding_system_doc_string, 1, 1, 0, /* | |
932 Return the doc string for CODING-SYSTEM. | |
933 */ | |
934 (coding_system)) | |
935 { | |
936 coding_system = Fget_coding_system (coding_system); | |
937 return XCODING_SYSTEM_DOC_STRING (coding_system); | |
938 } | |
939 | |
940 DEFUN ("coding-system-type", Fcoding_system_type, 1, 1, 0, /* | |
941 Return the type of CODING-SYSTEM. | |
942 */ | |
943 (coding_system)) | |
944 { | |
945 switch (XCODING_SYSTEM_TYPE (Fget_coding_system (coding_system))) | |
946 { | |
947 case CODESYS_AUTODETECT: return Qautodetect; | |
948 case CODESYS_SHIFT_JIS: return Qshift_jis; | |
949 case CODESYS_ISO2022: return Qiso2022; | |
950 case CODESYS_BIG5: return Qbig5; | |
951 case CODESYS_CCL: return Qccl; | |
952 case CODESYS_NO_CONVERSION: return Qno_conversion; | |
953 #ifdef DEBUG_XEMACS | |
954 case CODESYS_INTERNAL: return Qinternal; | |
955 #endif | |
956 default: | |
957 abort (); | |
958 } | |
959 | |
960 return Qnil; /* not reached */ | |
961 } | |
962 | |
963 DEFUN ("coding-system-property", Fcoding_system_property, 2, 2, 0, /* | |
964 Return the PROP property of CODING-SYSTEM. | |
965 */ | |
966 (coding_system, prop)) | |
967 { | |
968 int i, ok = 0; | |
969 enum coding_system_type type; | |
970 | |
971 coding_system = Fget_coding_system (coding_system); | |
972 CHECK_SYMBOL (prop); | |
973 type = XCODING_SYSTEM_TYPE (coding_system); | |
974 | |
975 for (i = 0; !ok && i < Dynarr_length (the_codesys_prop_dynarr); i++) | |
976 if (EQ (Dynarr_at (the_codesys_prop_dynarr, i).sym, prop)) | |
977 { | |
978 ok = 1; | |
979 switch (Dynarr_at (the_codesys_prop_dynarr, i).prop_type) | |
980 { | |
981 case CODESYS_PROP_ALL_OK: | |
982 break; | |
983 | |
984 case CODESYS_PROP_ISO2022: | |
985 if (type != CODESYS_ISO2022) | |
986 signal_simple_error | |
987 ("Property only valid in ISO2022 coding systems", | |
988 prop); | |
989 break; | |
990 | |
991 case CODESYS_PROP_CCL: | |
992 if (type != CODESYS_CCL) | |
993 signal_simple_error | |
994 ("Property only valid in CCL coding systems", | |
995 prop); | |
996 break; | |
997 | |
998 default: | |
999 abort (); | |
1000 } | |
1001 } | |
1002 | |
1003 if (!ok) | |
1004 signal_simple_error ("Unrecognized property", prop); | |
1005 | |
1006 if (EQ (prop, Qname)) | |
1007 return XCODING_SYSTEM_NAME (coding_system); | |
1008 else if (EQ (prop, Qtype)) | |
1009 return Fcoding_system_type (coding_system); | |
1010 else if (EQ (prop, Qdoc_string)) | |
1011 return XCODING_SYSTEM_DOC_STRING (coding_system); | |
1012 else if (EQ (prop, Qmnemonic)) | |
1013 return XCODING_SYSTEM_MNEMONIC (coding_system); | |
1014 else if (EQ (prop, Qeol_type)) | |
1015 return eol_type_to_symbol (XCODING_SYSTEM_EOL_TYPE (coding_system)); | |
1016 else if (EQ (prop, Qeol_lf)) | |
1017 return XCODING_SYSTEM_EOL_LF (coding_system); | |
1018 else if (EQ (prop, Qeol_crlf)) | |
1019 return XCODING_SYSTEM_EOL_CRLF (coding_system); | |
1020 else if (EQ (prop, Qeol_cr)) | |
1021 return XCODING_SYSTEM_EOL_CR (coding_system); | |
1022 else if (EQ (prop, Qpost_read_conversion)) | |
1023 return XCODING_SYSTEM_POST_READ_CONVERSION (coding_system); | |
1024 else if (EQ (prop, Qpre_write_conversion)) | |
1025 return XCODING_SYSTEM_PRE_WRITE_CONVERSION (coding_system); | |
1026 else if (type == CODESYS_ISO2022) | |
1027 { | |
1028 #define INITIAL_CHARSET(charset_num) \ | |
1029 (XCHARSET_NAME (XCODING_SYSTEM_ISO2022_INITIAL_CHARSET \ | |
1030 (coding_system, charset_num))) | |
1031 | |
1032 if (EQ (prop, Qcharset_g0)) return INITIAL_CHARSET (0); | |
1033 else if (EQ (prop, Qcharset_g1)) return INITIAL_CHARSET (1); | |
1034 else if (EQ (prop, Qcharset_g2)) return INITIAL_CHARSET (2); | |
1035 else if (EQ (prop, Qcharset_g3)) return INITIAL_CHARSET (3); | |
1036 | |
1037 #define FORCE_CHARSET(charset_num) \ | |
1038 (XCODING_SYSTEM_ISO2022_FORCE_CHARSET_ON_OUTPUT \ | |
1039 (coding_system, charset_num) ? Qt : Qnil) | |
1040 | |
1041 else if (EQ (prop, Qforce_g0_on_output)) return FORCE_CHARSET (0); | |
1042 else if (EQ (prop, Qforce_g1_on_output)) return FORCE_CHARSET (1); | |
1043 else if (EQ (prop, Qforce_g2_on_output)) return FORCE_CHARSET (2); | |
1044 else if (EQ (prop, Qforce_g3_on_output)) return FORCE_CHARSET (3); | |
1045 | |
1046 #define LISP_BOOLEAN(prop) \ | |
1047 (XCODING_SYSTEM_ISO2022_##prop (coding_system) ? Qt : Qnil) | |
1048 | |
1049 else if (EQ (prop, Qshort)) return LISP_BOOLEAN (SHORT); | |
1050 else if (EQ (prop, Qno_ascii_eol)) return LISP_BOOLEAN (NO_ASCII_EOL); | |
1051 else if (EQ (prop, Qno_ascii_cntl)) return LISP_BOOLEAN (NO_ASCII_CNTL); | |
1052 else if (EQ (prop, Qseven)) return LISP_BOOLEAN (SEVEN); | |
1053 else if (EQ (prop, Qlock_shift)) return LISP_BOOLEAN (LOCK_SHIFT); | |
1054 else if (EQ (prop, Qno_iso6429)) return LISP_BOOLEAN (NO_ISO6429); | |
1055 else if (EQ (prop, Qescape_quoted)) return LISP_BOOLEAN (ESCAPE_QUOTED); | |
1056 | |
1057 else if (EQ (prop, Qinput_charset_conversion)) | |
1058 return | |
1059 unparse_charset_conversion_specs | |
1060 (XCODING_SYSTEM (coding_system)->iso2022.input_conv); | |
1061 else if (EQ (prop, Qoutput_charset_conversion)) | |
1062 return | |
1063 unparse_charset_conversion_specs | |
1064 (XCODING_SYSTEM (coding_system)->iso2022.output_conv); | |
1065 else | |
1066 abort (); | |
1067 } | |
1068 else if (type == CODESYS_CCL) | |
1069 { | |
1070 if (EQ (prop, Qdecode)) | |
1071 return XCODING_SYSTEM_CCL_DECODE (coding_system); | |
1072 else if (EQ (prop, Qencode)) | |
1073 return XCODING_SYSTEM_CCL_ENCODE (coding_system); | |
1074 else | |
1075 abort (); | |
1076 } | |
1077 else | |
1078 abort (); | |
1079 | |
1080 return Qnil; /* not reached */ | |
1081 } | |
1082 | |
1083 | |
1084 /************************************************************************/ | |
1085 /* Coding category functions */ | |
1086 /************************************************************************/ | |
1087 | |
1088 static int | |
1089 decode_coding_category (Lisp_Object symbol) | |
1090 { | |
1091 int i; | |
1092 | |
1093 CHECK_SYMBOL (symbol); | |
1094 for (i = 0; i <= CODING_CATEGORY_LAST; i++) | |
1095 if (EQ (coding_category_symbol[i], symbol)) | |
1096 return i; | |
1097 | |
1098 signal_simple_error ("Unrecognized coding category", symbol); | |
1099 return 0; /* not reached */ | |
1100 } | |
1101 | |
1102 DEFUN ("coding-category-list", Fcoding_category_list, 0, 0, 0, /* | |
1103 Return a list of all recognized coding categories. | |
1104 */ | |
1105 ()) | |
1106 { | |
1107 int i; | |
1108 Lisp_Object list = Qnil; | |
1109 | |
1110 for (i = CODING_CATEGORY_LAST; i >= 0; i--) | |
1111 list = Fcons (coding_category_symbol[i], list); | |
1112 return list; | |
1113 } | |
1114 | |
1115 DEFUN ("set-coding-priority-list", Fset_coding_priority_list, 1, 1, 0, /* | |
1116 Change the priority order of the coding categories. | |
1117 LIST should be list of coding categories, in descending order of | |
1118 priority. Unspecified coding categories will be lower in priority | |
1119 than all specified ones, in the same relative order they were in | |
1120 previously. | |
1121 */ | |
1122 (list)) | |
1123 { | |
1124 int category_to_priority[CODING_CATEGORY_LAST + 1]; | |
1125 int i, j; | |
1126 Lisp_Object rest; | |
1127 | |
1128 /* First generate a list that maps coding categories to priorities. */ | |
1129 | |
1130 for (i = 0; i <= CODING_CATEGORY_LAST; i++) | |
1131 category_to_priority[i] = -1; | |
1132 | |
1133 /* Highest priority comes from the specified list. */ | |
1134 i = 0; | |
1135 EXTERNAL_LIST_LOOP (rest, list) | |
1136 { | |
1137 int cat = decode_coding_category (XCAR (rest)); | |
1138 | |
1139 if (category_to_priority[cat] >= 0) | |
1140 signal_simple_error ("Duplicate coding category in list", XCAR (rest)); | |
1141 category_to_priority[cat] = i++; | |
1142 } | |
1143 | |
1144 /* Now go through the existing categories by priority to retrieve | |
1145 the categories not yet specified and preserve their priority | |
1146 order. */ | |
1147 for (j = 0; j <= CODING_CATEGORY_LAST; j++) | |
1148 { | |
1149 int cat = coding_category_by_priority[j]; | |
1150 if (category_to_priority[cat] < 0) | |
1151 category_to_priority[cat] = i++; | |
1152 } | |
1153 | |
1154 /* Now we need to construct the inverse of the mapping we just | |
1155 constructed. */ | |
1156 | |
1157 for (i = 0; i <= CODING_CATEGORY_LAST; i++) | |
1158 coding_category_by_priority[category_to_priority[i]] = i; | |
1159 | |
1160 /* Phew! That was confusing. */ | |
1161 return Qnil; | |
1162 } | |
1163 | |
1164 DEFUN ("coding-priority-list", Fcoding_priority_list, 0, 0, 0, /* | |
1165 Return a list of coding categories in descending order of priority. | |
1166 */ | |
1167 ()) | |
1168 { | |
1169 int i; | |
1170 Lisp_Object list = Qnil; | |
1171 | |
1172 for (i = CODING_CATEGORY_LAST; i >= 0; i--) | |
1173 list = Fcons (coding_category_symbol[coding_category_by_priority[i]], | |
1174 list); | |
1175 return list; | |
1176 } | |
1177 | |
1178 DEFUN ("set-coding-category-system", Fset_coding_category_system, 2, 2, 0, /* | |
1179 Change the coding system associated with a coding category. | |
1180 */ | |
1181 (coding_category, coding_system)) | |
1182 { | |
1183 int cat = decode_coding_category (coding_category); | |
1184 | |
1185 coding_system = Fget_coding_system (coding_system); | |
1186 coding_category_system[cat] = coding_system; | |
1187 return Qnil; | |
1188 } | |
1189 | |
1190 DEFUN ("coding-category-system", Fcoding_category_system, 1, 1, 0, /* | |
1191 Return the coding system associated with a coding category. | |
1192 */ | |
1193 (coding_category)) | |
1194 { | |
1195 int cat = decode_coding_category (coding_category); | |
1196 Lisp_Object sys = coding_category_system[cat]; | |
1197 | |
1198 if (!NILP (sys)) | |
1199 return XCODING_SYSTEM_NAME (sys); | |
1200 return Qnil; | |
1201 } | |
1202 | |
1203 | |
1204 /************************************************************************/ | |
1205 /* Detecting the encoding of data */ | |
1206 /************************************************************************/ | |
1207 | |
1208 struct detection_state | |
1209 { | |
1210 int eol_type; | |
1211 int seen_non_ascii; | |
1212 int mask; | |
1213 | |
1214 struct | |
1215 { | |
1216 int mask; | |
1217 int in_second_byte; | |
1218 } | |
1219 big5; | |
1220 | |
1221 struct | |
1222 { | |
1223 int mask; | |
1224 int in_second_byte; | |
1225 } | |
1226 shift_jis; | |
1227 | |
1228 struct | |
1229 { | |
1230 int mask; | |
1231 int initted; | |
1232 struct iso2022_decoder iso; | |
1233 unsigned int flags; | |
1234 int high_byte_count; | |
1235 int saw_single_shift:1; | |
1236 } | |
1237 iso2022; | |
1238 | |
1239 struct | |
1240 { | |
1241 int seen_anything; | |
1242 int just_saw_cr; | |
1243 } | |
1244 eol; | |
1245 }; | |
1246 | |
1247 static int | |
1248 acceptable_control_char_p (int c) | |
1249 { | |
1250 switch (c) | |
1251 { | |
1252 /* Allow and ignore control characters that you might | |
1253 reasonably see in a text file */ | |
1254 case '\r': | |
1255 case '\n': | |
1256 case '\t': | |
1257 case 7: /* bell */ | |
1258 case 8: /* backspace */ | |
1259 case 11: /* vertical tab */ | |
1260 case 12: /* form feed */ | |
1261 case 26: /* MS-DOS C-z junk */ | |
1262 return 1; | |
1263 default: | |
1264 return 0; | |
1265 } | |
1266 } | |
1267 | |
1268 static int | |
1269 mask_has_at_most_one_bit_p (int mask) | |
1270 { | |
1271 /* Perhaps the only thing useful you learn from intensive Microsoft | |
1272 technical interviews */ | |
1273 return (mask & (mask - 1)) == 0; | |
1274 } | |
1275 | |
1276 static int | |
1277 detect_eol_type (struct detection_state *st, CONST unsigned char *src, | |
1278 unsigned int n) | |
1279 { | |
1280 int c; | |
1281 | |
1282 while (n--) | |
1283 { | |
1284 c = *src++; | |
1285 if (c == '\r') | |
1286 st->eol.just_saw_cr = 1; | |
1287 else | |
1288 { | |
1289 if (c == '\n') | |
1290 { | |
1291 if (st->eol.just_saw_cr) | |
1292 return EOL_CRLF; | |
1293 else if (st->eol.seen_anything) | |
1294 return EOL_LF; | |
1295 } | |
1296 else if (st->eol.just_saw_cr) | |
1297 return EOL_CR; | |
1298 st->eol.just_saw_cr = 0; | |
1299 } | |
1300 st->eol.seen_anything = 1; | |
1301 } | |
1302 | |
1303 return EOL_AUTODETECT; | |
1304 } | |
1305 | |
1306 /* Attempt to determine the encoding and EOL type of the given text. | |
1307 Before calling this function for the first type, you must initialize | |
1308 st->eol_type as appropriate and initialize st->mask to ~0. | |
1309 | |
1310 st->eol_type holds the determined EOL type, or EOL_AUTODETECT if | |
1311 not yet known. | |
1312 | |
1313 st->mask holds the determined coding category mask, or ~0 if only | |
1314 ASCII has been seen so far. | |
1315 | |
1316 Returns: | |
1317 | |
1318 0 == st->eol_type is EOL_AUTODETECT and/or more than coding category | |
1319 is present in st->mask | |
1320 1 == definitive answers are here for both st->eol_type and st->mask | |
1321 */ | |
1322 | |
1323 static int | |
1324 detect_coding_type (struct detection_state *st, CONST unsigned char *src, | |
1325 unsigned int n, int just_do_eol) | |
1326 { | |
1327 int c; | |
1328 | |
1329 if (st->eol_type == EOL_AUTODETECT) | |
1330 st->eol_type = detect_eol_type (st, src, n); | |
1331 | |
1332 if (just_do_eol) | |
1333 return st->eol_type != EOL_AUTODETECT; | |
1334 | |
1335 if (!st->seen_non_ascii) | |
1336 { | |
1337 for (; n; n--, src++) | |
1338 { | |
1339 c = *src; | |
1340 if ((c < 0x20 && !acceptable_control_char_p (c)) || c >= 0x80) | |
1341 { | |
1342 st->seen_non_ascii = 1; | |
1343 st->shift_jis.mask = ~0; | |
1344 st->big5.mask = ~0; | |
1345 st->iso2022.mask = ~0; | |
1346 break; | |
1347 } | |
1348 } | |
1349 } | |
1350 | |
1351 if (!n) | |
1352 return 0; | |
1353 | |
1354 if (!mask_has_at_most_one_bit_p (st->iso2022.mask)) | |
1355 st->iso2022.mask = detect_coding_iso2022 (st, src, n); | |
1356 if (!mask_has_at_most_one_bit_p (st->shift_jis.mask)) | |
1357 st->shift_jis.mask = detect_coding_shift_jis (st, src, n); | |
1358 if (!mask_has_at_most_one_bit_p (st->big5.mask)) | |
1359 st->big5.mask = detect_coding_big5 (st, src, n); | |
1360 | |
1361 st->mask = st->iso2022.mask | st->shift_jis.mask | st->big5.mask; | |
1362 | |
1363 { | |
1364 int retval = mask_has_at_most_one_bit_p (st->mask); | |
1365 st->mask |= CODING_CATEGORY_NO_CONVERSION_MASK; | |
1366 return retval && st->eol_type != EOL_AUTODETECT; | |
1367 } | |
1368 } | |
1369 | |
1370 static Lisp_Object | |
1371 coding_system_from_mask (int mask) | |
1372 { | |
1373 if (mask == ~0) | |
1374 { | |
1375 /* If the file was entirely or basically ASCII, use the | |
1376 default value of `file-coding-system'. */ | |
1377 Lisp_Object retval = | |
1378 XBUFFER (Vbuffer_defaults)->file_coding_system; | |
1379 if (!NILP (retval)) | |
1380 { | |
1381 retval = Ffind_coding_system (retval); | |
1382 if (NILP (retval)) | |
1383 { | |
1384 warn_when_safe | |
1385 (Qbad_variable, Qwarning, | |
1386 "Invalid `default-file-coding-system', set to nil"); | |
1387 XBUFFER (Vbuffer_defaults)->file_coding_system = Qnil; | |
1388 } | |
1389 } | |
1390 if (NILP (retval)) | |
1391 retval = Fget_coding_system (Qno_conversion); | |
1392 return retval; | |
1393 } | |
1394 else | |
1395 { | |
1396 int i; | |
1397 int cat = -1; | |
1398 | |
1399 mask = postprocess_iso2022_mask (mask); | |
1400 | |
1401 /* Look through the coding categories by priority and find | |
1402 the first one that is allowed. */ | |
1403 for (i = 0; i <= CODING_CATEGORY_LAST; i++) | |
1404 { | |
1405 cat = coding_category_by_priority[i]; | |
1406 if ((mask & (1 << cat)) && | |
1407 !NILP (coding_category_system[cat])) | |
1408 break; | |
1409 } | |
1410 if (cat >= 0) | |
1411 return coding_category_system[cat]; | |
1412 else | |
1413 return Fget_coding_system (Qno_conversion); | |
1414 } | |
1415 } | |
1416 | |
1417 /* Given a seekable read stream and potential coding system and EOL type | |
1418 as specified, do any autodetection that is called for. If the | |
1419 coding system and/or EOL type are not autodetect, they will be left | |
1420 alone; but this function will never return an autodetect coding system | |
1421 or EOL type. | |
1422 | |
1423 This function does not automatically fetch subsidiary coding systems; | |
1424 that should be unnecessary with the explicit eol-type argument. */ | |
1425 | |
1426 static void | |
1427 determine_real_coding_system (Lstream *stream, Lisp_Object *codesys_in_out, | |
1428 int *eol_type_in_out) | |
1429 { | |
1430 struct detection_state decst; | |
1431 | |
1432 if (*eol_type_in_out == EOL_AUTODETECT) | |
1433 *eol_type_in_out = XCODING_SYSTEM_EOL_TYPE (*codesys_in_out); | |
1434 | |
1435 memset (&decst, 0, sizeof (decst)); | |
1436 decst.eol_type = *eol_type_in_out; | |
1437 decst.mask = ~0; | |
1438 | |
1439 /* If autodetection is called for, do it now. */ | |
1440 if (XCODING_SYSTEM_TYPE (*codesys_in_out) == CODESYS_AUTODETECT || | |
1441 *eol_type_in_out == EOL_AUTODETECT) | |
1442 { | |
1443 | |
1444 while (1) | |
1445 { | |
1446 unsigned char random_buffer[4096]; | |
1447 int nread; | |
1448 | |
1449 nread = Lstream_read (stream, random_buffer, sizeof (random_buffer)); | |
1450 if (!nread) | |
1451 break; | |
1452 if (detect_coding_type (&decst, random_buffer, nread, | |
1453 XCODING_SYSTEM_TYPE (*codesys_in_out) != | |
1454 CODESYS_AUTODETECT)) | |
1455 break; | |
1456 } | |
1457 | |
1458 *eol_type_in_out = decst.eol_type; | |
1459 if (XCODING_SYSTEM_TYPE (*codesys_in_out) == CODESYS_AUTODETECT) | |
1460 *codesys_in_out = coding_system_from_mask (decst.mask); | |
1461 } | |
1462 | |
1463 /* If we absolutely can't determine the EOL type, just assume LF. */ | |
1464 if (*eol_type_in_out == EOL_AUTODETECT) | |
1465 *eol_type_in_out = EOL_LF; | |
1466 | |
1467 Lstream_rewind (stream); | |
1468 } | |
1469 | |
1470 DEFUN ("detect-coding-region", Fdetect_coding_region, 2, 3, 0, /* | |
1471 Detect coding system of the text in the region between START and END. | |
1472 Returned value is a list of possible coding systems ordered by priority. | |
1473 If only ASCII characters are found, it returns 'autodetect or one of its | |
1474 subsidiary coding systems according to a detected end-of-line type. | |
1475 Optional arg BUFFER defaults to the current buffer. | |
1476 */ | |
1477 (start, end, buffer)) | |
1478 { | |
1479 Lisp_Object val = Qnil; | |
1480 struct buffer *buf = decode_buffer (buffer, 0); | |
1481 Bufpos b, e; | |
1482 Lisp_Object instream; | |
1483 struct detection_state decst; | |
1484 | |
1485 get_buffer_range_char (buf, start, end, &b, &e, 0); | |
1486 instream = make_lisp_buffer_input_stream (buf, b, e, 0); | |
1487 instream = make_encoding_input_stream (XLSTREAM (instream), | |
1488 Fget_coding_system (Qbinary)); | |
1489 memset (&decst, 0, sizeof (decst)); | |
1490 decst.eol_type = EOL_AUTODETECT; | |
1491 decst.mask = ~0; | |
1492 while (1) | |
1493 { | |
1494 unsigned char random_buffer[4096]; | |
1495 int nread; | |
1496 | |
1497 nread = Lstream_read (XLSTREAM (instream), random_buffer, | |
1498 sizeof (random_buffer)); | |
1499 if (!nread) | |
1500 break; | |
1501 if (detect_coding_type (&decst, random_buffer, nread, 0)) | |
1502 break; | |
1503 } | |
1504 | |
1505 if (decst.mask == ~0) | |
1506 { | |
1507 val = subsidiary_coding_system (Fget_coding_system (Qautodetect), | |
1508 decst.eol_type); | |
1509 } | |
1510 else | |
1511 { | |
1512 int i; | |
1513 | |
1514 val = Qnil; | |
1515 | |
1516 decst.mask = postprocess_iso2022_mask (decst.mask); | |
1517 | |
1518 for (i = CODING_CATEGORY_LAST; i >= 0; i--) | |
1519 { | |
1520 int sys = coding_category_by_priority[i]; | |
1521 if (decst.mask & (1 << sys)) | |
1522 { | |
1523 Lisp_Object codesys = coding_category_system[sys]; | |
1524 if (!NILP (codesys)) | |
1525 codesys = subsidiary_coding_system (codesys, decst.eol_type); | |
1526 val = Fcons (codesys, val); | |
1527 } | |
1528 } | |
1529 } | |
1530 return val; | |
1531 } | |
1532 | |
1533 | |
1534 /************************************************************************/ | |
1535 /* Converting to internal Mule format ("decoding") */ | |
1536 /************************************************************************/ | |
1537 | |
1538 /* A decoding stream is a stream used for decoding text (i.e. | |
1539 converting from some external format to internal format). | |
1540 The decoding-stream object keeps track of the actual coding | |
1541 stream, the stream that is at the other end, and data that | |
1542 needs to be persistent across the lifetime of the stream. */ | |
1543 | |
1544 /* Handle the EOL stuff related to just-read-in character C. EOL is | |
1545 the EOL type of the coding stream. FLAGS is the current value of | |
1546 FLAGS in the coding stream, and may be modified by this macro. | |
1547 (The macro only looks at the CODING_STATE_CR flag.) DST is the | |
1548 Dynarr to which the decoded bytes are to be written. You need to | |
1549 also define a local goto label "label_continue_loop" that is at the | |
1550 end of the main character-reading loop. | |
1551 | |
1552 If C is a CR character, then this macro handles it entirely and | |
1553 jumps to label_continue_loop. Otherwise, this macro does not add | |
1554 anything to DST, and continues normally. You should continue | |
1555 processing C normally after this macro. */ | |
1556 | |
1557 #define DECODE_HANDLE_EOL_TYPE(eol, c, flags, dst) \ | |
1558 do { \ | |
1559 if (c == '\r') \ | |
1560 { \ | |
1561 if (eol == EOL_CR) \ | |
1562 Dynarr_add (dst, '\n'); \ | |
1563 else if (eol != EOL_CRLF || flags & CODING_STATE_CR) \ | |
1564 Dynarr_add (dst, c); \ | |
1565 else \ | |
1566 flags |= CODING_STATE_CR; \ | |
1567 goto label_continue_loop; \ | |
1568 } \ | |
1569 else if (flags & CODING_STATE_CR) \ | |
1570 { /* eol == CODING_SYSTEM_EOL_CRLF */ \ | |
1571 if (c != '\n') \ | |
1572 Dynarr_add (dst, '\r'); \ | |
1573 flags &= ~CODING_STATE_CR; \ | |
1574 } \ | |
1575 } while (0) | |
1576 | |
1577 /* C should be a binary character in the range 0 - 255; convert | |
1578 to internal format and add to Dynarr DST. */ | |
1579 | |
1580 #define DECODE_ADD_BINARY_CHAR(c, dst) \ | |
1581 do { \ | |
1582 if (BYTE_ASCII_P (c)) \ | |
1583 Dynarr_add (dst, c); \ | |
1584 else if (BYTE_C1_P (c)) \ | |
1585 { \ | |
1586 Dynarr_add (dst, LEADING_BYTE_CONTROL_1); \ | |
1587 Dynarr_add (dst, c + 0x20); \ | |
1588 } \ | |
1589 else \ | |
1590 { \ | |
1591 Dynarr_add (dst, LEADING_BYTE_LATIN_1); \ | |
1592 Dynarr_add (dst, c); \ | |
1593 } \ | |
1594 } while (0) | |
1595 | |
1596 #define DECODE_OUTPUT_PARTIAL_CHAR(ch) \ | |
1597 do { \ | |
1598 if (ch) \ | |
1599 { \ | |
1600 DECODE_ADD_BINARY_CHAR (ch, dst); \ | |
1601 ch = 0; \ | |
1602 } \ | |
1603 } while (0) | |
1604 | |
1605 #define DECODE_HANDLE_END_OF_CONVERSION(flags, ch, dst)\ | |
1606 do { \ | |
1607 DECODE_OUTPUT_PARTIAL_CHAR (ch); \ | |
1608 if (flags & CODING_STATE_END) \ | |
1609 { \ | |
1610 if (flags & CODING_STATE_CR) \ | |
1611 Dynarr_add (dst, '\r'); \ | |
1612 } \ | |
1613 } while (0) | |
1614 | |
1615 #define DECODING_STREAM_DATA(stream) LSTREAM_TYPE_DATA (stream, decoding) | |
1616 | |
1617 struct decoding_stream | |
1618 { | |
1619 /* Coding system that governs the conversion. */ | |
1620 struct Lisp_Coding_System *codesys; | |
1621 | |
1622 /* Stream that we read the encoded data from or | |
1623 write the decoded data to. */ | |
1624 Lstream *other_end; | |
1625 | |
1626 /* If we are reading, then we can return only a fixed amount of | |
1627 data, so if the conversion resulted in too much data, we store it | |
1628 here for retrieval the next time around. */ | |
1629 unsigned_char_dynarr *runoff; | |
1630 | |
1631 /* FLAGS holds flags indicating the current state of the decoding. | |
1632 Some of these flags are dependent on the coding system. */ | |
1633 unsigned int flags; | |
1634 | |
1635 /* CH holds a partially built-up character. Since we only deal | |
1636 with one- and two-byte characters at the moment, we only use | |
1637 this to store the first byte of a two-byte character. */ | |
1638 unsigned int ch; | |
1639 | |
1640 /* EOL_TYPE specifies the type of end-of-line conversion that | |
1641 currently applies. We need to keep this separate from the | |
1642 EOL type stored in CODESYS because the latter might indicate | |
1643 automatic EOL-type detection while the former will always | |
1644 indicate a particular EOL type. */ | |
1645 int eol_type; | |
1646 | |
1647 /* Additional ISO2022 information. We define the structure above | |
1648 because it's also needed by the detection routines. */ | |
1649 struct iso2022_decoder iso2022; | |
1650 | |
1651 /* Additional information (the state of the running CCL program) | |
1652 used by the CCL decoder. */ | |
1653 struct ccl_program ccl; | |
1654 | |
1655 struct detection_state decst; | |
1656 }; | |
1657 | |
1658 static int decoding_reader (Lstream *stream, unsigned char *data, int size); | |
1659 static int decoding_writer (Lstream *stream, CONST unsigned char *data, int size); | |
1660 static int decoding_rewinder (Lstream *stream); | |
1661 static int decoding_seekable_p (Lstream *stream); | |
1662 static int decoding_flusher (Lstream *stream); | |
1663 static int decoding_closer (Lstream *stream); | |
1664 static Lisp_Object decoding_marker (Lisp_Object stream, | |
1665 void (*markobj) (Lisp_Object)); | |
1666 | |
1667 DEFINE_LSTREAM_IMPLEMENTATION ("decoding", lstream_decoding, | |
1668 sizeof (struct decoding_stream)); | |
1669 | |
1670 static Lisp_Object | |
1671 decoding_marker (Lisp_Object stream, void (*markobj) (Lisp_Object)) | |
1672 { | |
1673 Lstream *str = DECODING_STREAM_DATA (XLSTREAM (stream))->other_end; | |
1674 Lisp_Object str_obj; | |
1675 | |
1676 /* We do not need to mark the coding systems or charsets stored | |
1677 within the stream because they are stored in a global list | |
1678 and automatically marked. */ | |
1679 | |
1680 XSETLSTREAM (str_obj, str); | |
1681 (markobj) (str_obj); | |
1682 if (str->imp->marker) | |
1683 return (str->imp->marker) (str_obj, markobj); | |
1684 else | |
1685 return Qnil; | |
1686 } | |
1687 | |
1688 /* Read SIZE bytes of data and store it into DATA. We are a decoding stream | |
1689 so we read data from the other end, decode it, and store it into DATA. */ | |
1690 | |
1691 static int | |
1692 decoding_reader (Lstream *stream, unsigned char *data, int size) | |
1693 { | |
1694 struct decoding_stream *str = DECODING_STREAM_DATA (stream); | |
1695 unsigned char *orig_data = data; | |
1696 int read_size; | |
1697 int error_occurred = 0; | |
1698 | |
1699 /* We need to interface to mule_decode(), which expects to take some | |
1700 amount of data and store the result into a Dynarr. We have | |
1701 mule_decode() store into str->runoff, and take data from there | |
1702 as necessary. */ | |
1703 | |
1704 /* We loop until we have enough data, reading chunks from the other | |
1705 end and decoding it. */ | |
1706 while (1) | |
1707 { | |
1708 /* Take data from the runoff if we can. Make sure to take at | |
1709 most SIZE bytes, and delete the data from the runoff. */ | |
1710 if (Dynarr_length (str->runoff) > 0) | |
1711 { | |
1712 int chunk = min (size, Dynarr_length (str->runoff)); | |
1713 memcpy (data, Dynarr_atp (str->runoff, 0), chunk); | |
1714 Dynarr_delete_many (str->runoff, 0, chunk); | |
1715 data += chunk; | |
1716 size -= chunk; | |
1717 } | |
1718 | |
1719 if (size == 0) | |
1720 break; /* No more room for data */ | |
1721 | |
1722 if (str->flags & CODING_STATE_END) | |
1723 /* This means that on the previous iteration, we hit the EOF on | |
1724 the other end. We loop once more so that mule_decode() can | |
1725 output any final stuff it may be holding, or any "go back | |
1726 to a sane state" escape sequences. (This latter makes sense | |
1727 during encoding.) */ | |
1728 break; | |
1729 | |
1730 /* Exhausted the runoff, so get some more. DATA has at least | |
1731 SIZE bytes left of storage in it, so it's OK to read directly | |
1732 into it. (We'll be overwriting above, after we've decoded it | |
1733 into the runoff.) */ | |
1734 read_size = Lstream_read (str->other_end, data, size); | |
1735 if (read_size < 0) | |
1736 { | |
1737 error_occurred = 1; | |
1738 break; | |
1739 } | |
1740 if (read_size == 0) | |
1741 /* There might be some more end data produced in the translation. | |
1742 See the comment above. */ | |
1743 str->flags |= CODING_STATE_END; | |
1744 mule_decode (stream, data, str->runoff, read_size); | |
1745 } | |
1746 | |
1747 if (data - orig_data == 0) | |
1748 return error_occurred ? -1 : 0; | |
1749 else | |
1750 return data - orig_data; | |
1751 } | |
1752 | |
1753 static int | |
1754 decoding_writer (Lstream *stream, CONST unsigned char *data, int size) | |
1755 { | |
1756 struct decoding_stream *str = DECODING_STREAM_DATA (stream); | |
1757 int retval; | |
1758 | |
1759 /* Decode all our data into the runoff, and then attempt to write | |
1760 it all out to the other end. Remove whatever chunk we succeeded | |
1761 in writing. */ | |
1762 mule_decode (stream, data, str->runoff, size); | |
1763 retval = Lstream_write (str->other_end, Dynarr_atp (str->runoff, 0), | |
1764 Dynarr_length (str->runoff)); | |
1765 if (retval > 0) | |
1766 Dynarr_delete_many (str->runoff, 0, retval); | |
1767 /* Do NOT return retval. The return value indicates how much | |
1768 of the incoming data was written, not how many bytes were | |
1769 written. */ | |
1770 return size; | |
1771 } | |
1772 | |
1773 static void | |
1774 reset_decoding_stream (struct decoding_stream *str) | |
1775 { | |
1776 if (CODING_SYSTEM_TYPE (str->codesys) == CODESYS_ISO2022) | |
1777 { | |
1778 Lisp_Object coding_system = Qnil; | |
1779 XSETCODING_SYSTEM (coding_system, str->codesys); | |
1780 reset_iso2022 (coding_system, &str->iso2022); | |
1781 } | |
1782 else if (CODING_SYSTEM_TYPE (str->codesys) == CODESYS_CCL) | |
1783 { | |
1784 set_ccl_program (&str->ccl, CODING_SYSTEM_CCL_DECODE (str->codesys), | |
1785 0, 0, 0); | |
1786 } | |
1787 | |
1788 str->flags = str->ch = 0; | |
1789 } | |
1790 | |
1791 static int | |
1792 decoding_rewinder (Lstream *stream) | |
1793 { | |
1794 struct decoding_stream *str = DECODING_STREAM_DATA (stream); | |
1795 reset_decoding_stream (str); | |
1796 Dynarr_reset (str->runoff); | |
1797 return Lstream_rewind (str->other_end); | |
1798 } | |
1799 | |
1800 static int | |
1801 decoding_seekable_p (Lstream *stream) | |
1802 { | |
1803 struct decoding_stream *str = DECODING_STREAM_DATA (stream); | |
1804 return Lstream_seekable_p (str->other_end); | |
1805 } | |
1806 | |
1807 static int | |
1808 decoding_flusher (Lstream *stream) | |
1809 { | |
1810 struct decoding_stream *str = DECODING_STREAM_DATA (stream); | |
1811 return Lstream_flush (str->other_end); | |
1812 } | |
1813 | |
1814 static int | |
1815 decoding_closer (Lstream *stream) | |
1816 { | |
1817 struct decoding_stream *str = DECODING_STREAM_DATA (stream); | |
1818 if (stream->flags & LSTREAM_FL_WRITE) | |
1819 { | |
1820 str->flags |= CODING_STATE_END; | |
1821 decoding_writer (stream, 0, 0); | |
1822 } | |
1823 Dynarr_free (str->runoff); | |
1824 if (str->iso2022.composite_chars) | |
1825 Dynarr_free (str->iso2022.composite_chars); | |
1826 return Lstream_close (str->other_end); | |
1827 } | |
1828 | |
1829 Lisp_Object | |
1830 decoding_stream_coding_system (Lstream *stream) | |
1831 { | |
1832 Lisp_Object coding_system = Qnil; | |
1833 struct decoding_stream *str = DECODING_STREAM_DATA (stream); | |
1834 | |
1835 XSETCODING_SYSTEM (coding_system, str->codesys); | |
1836 return subsidiary_coding_system (coding_system, str->eol_type); | |
1837 } | |
1838 | |
1839 void | |
1840 set_decoding_stream_coding_system (Lstream *lstr, Lisp_Object codesys) | |
1841 { | |
1842 struct Lisp_Coding_System *cs = XCODING_SYSTEM (codesys); | |
1843 struct decoding_stream *str = DECODING_STREAM_DATA (lstr); | |
1844 str->codesys = cs; | |
1845 if (CODING_SYSTEM_EOL_TYPE (cs) != EOL_AUTODETECT) | |
1846 str->eol_type = CODING_SYSTEM_EOL_TYPE (cs); | |
1847 reset_decoding_stream (str); | |
1848 } | |
1849 | |
1850 /* WARNING WARNING WARNING WARNING!!!!! If you open up a decoding | |
1851 stream for writing, no automatic code detection will be performed. | |
1852 The reason for this is that automatic code detection requires a | |
1853 seekable input. Things will also fail if you open a decoding | |
1854 stream for reading using a non-fully-specified coding system and | |
1855 a non-seekable input stream. */ | |
1856 | |
1857 static Lisp_Object | |
1858 make_decoding_stream_1 (Lstream *stream, Lisp_Object codesys, | |
1859 CONST char *mode) | |
1860 { | |
1861 Lstream *lstr = Lstream_new (lstream_decoding, mode); | |
1862 struct decoding_stream *str = DECODING_STREAM_DATA (lstr); | |
1863 Lisp_Object obj; | |
1864 | |
1865 memset (str, 0, sizeof (*str)); | |
1866 str->other_end = stream; | |
1867 str->runoff = (unsigned_char_dynarr *) Dynarr_new (unsigned char); | |
1868 str->eol_type = EOL_AUTODETECT; | |
1869 if (!strcmp (mode, "r") | |
1870 && Lstream_seekable_p (stream)) | |
1871 /* We can determine the coding system now. */ | |
1872 determine_real_coding_system (stream, &codesys, &str->eol_type); | |
1873 set_decoding_stream_coding_system (lstr, codesys); | |
1874 str->decst.eol_type = str->eol_type; | |
1875 str->decst.mask = ~0; | |
1876 XSETLSTREAM (obj, lstr); | |
1877 return obj; | |
1878 } | |
1879 | |
1880 Lisp_Object | |
1881 make_decoding_input_stream (Lstream *stream, Lisp_Object codesys) | |
1882 { | |
1883 return make_decoding_stream_1 (stream, codesys, "r"); | |
1884 } | |
1885 | |
1886 Lisp_Object | |
1887 make_decoding_output_stream (Lstream *stream, Lisp_Object codesys) | |
1888 { | |
1889 return make_decoding_stream_1 (stream, codesys, "w"); | |
1890 } | |
1891 | |
1892 /* Note: the decode_coding_? functions all take the same | |
1893 arguments as mule_decode(), which is to say some SRC data of | |
1894 size N, which is to be stored into dynamic array DST. | |
1895 DECODING is the stream within which the decoding is | |
1896 taking place, but no data is actually read from or | |
1897 written to that stream; that is handled in decoding_reader() | |
1898 or decoding_writer(). This allows the same functions to | |
1899 be used for both reading and writing. */ | |
1900 | |
1901 static void | |
1902 mule_decode (Lstream *decoding, CONST unsigned char *src, | |
1903 unsigned_char_dynarr *dst, unsigned int n) | |
1904 { | |
1905 struct decoding_stream *str = DECODING_STREAM_DATA (decoding); | |
1906 | |
1907 /* If necessary, do encoding-detection now. We do this when | |
1908 we're a writing stream or a non-seekable reading stream, | |
1909 meaning that we can't just process the whole input, | |
1910 rewind, and start over. */ | |
1911 | |
1912 if (CODING_SYSTEM_TYPE (str->codesys) == CODESYS_AUTODETECT || | |
1913 str->eol_type == EOL_AUTODETECT) | |
1914 { | |
1915 Lisp_Object codesys = Qnil; | |
1916 | |
1917 XSETCODING_SYSTEM (codesys, str->codesys); | |
1918 detect_coding_type (&str->decst, src, n, | |
1919 CODING_SYSTEM_TYPE (str->codesys) != | |
1920 CODESYS_AUTODETECT); | |
1921 if (CODING_SYSTEM_TYPE (str->codesys) == CODESYS_AUTODETECT && | |
1922 str->decst.mask != ~0) | |
1923 /* #### This is cheesy. What we really ought to do is | |
1924 buffer up a certain amount of data so as to get a | |
1925 less random result. */ | |
1926 codesys = coding_system_from_mask (str->decst.mask); | |
1927 str->eol_type = str->decst.eol_type; | |
1928 if (XCODING_SYSTEM (codesys) != str->codesys) | |
1929 { | |
1930 /* Preserve the CODING_STATE_END flag in case it was set. | |
1931 If we erase it, bad things might happen. */ | |
1932 int was_end = str->flags & CODING_STATE_END; | |
1933 set_decoding_stream_coding_system (decoding, codesys); | |
1934 if (was_end) | |
1935 str->flags |= CODING_STATE_END; | |
1936 } | |
1937 } | |
1938 | |
1939 switch (CODING_SYSTEM_TYPE (str->codesys)) | |
1940 { | |
1941 #ifdef DEBUG_XEMACS | |
1942 case CODESYS_INTERNAL: | |
1943 Dynarr_add_many (dst, src, n); | |
1944 break; | |
1945 #endif | |
1946 case CODESYS_AUTODETECT: | |
1947 /* If we got this far and still haven't decided on the coding | |
1948 system, then do no conversion. */ | |
1949 case CODESYS_NO_CONVERSION: | |
1950 decode_coding_no_conversion (decoding, src, dst, n); | |
1951 break; | |
1952 case CODESYS_SHIFT_JIS: | |
1953 decode_coding_shift_jis (decoding, src, dst, n); | |
1954 break; | |
1955 case CODESYS_BIG5: | |
1956 decode_coding_big5 (decoding, src, dst, n); | |
1957 break; | |
1958 case CODESYS_CCL: | |
1959 ccl_driver (&str->ccl, src, dst, n, (str->flags) & CODING_STATE_END); | |
1960 break; | |
1961 case CODESYS_ISO2022: | |
1962 decode_coding_iso2022 (decoding, src, dst, n); | |
1963 break; | |
1964 default: | |
1965 abort (); | |
1966 } | |
1967 } | |
1968 | |
1969 static Lisp_Object | |
1970 close_both_streams (Lisp_Object cons) | |
1971 { | |
1972 Lisp_Object instream = XCAR (cons); | |
1973 Lisp_Object outstream = XCDR (cons); | |
1974 Lstream_close (XLSTREAM (outstream)); | |
1975 Lstream_close (XLSTREAM (instream)); | |
1976 return Qnil; | |
1977 } | |
1978 | |
1979 DEFUN ("decode-coding-region", Fdecode_coding_region, 3, 4, 0, /* | |
1980 Decode the text between START and END which is encoded in CODING-SYSTEM. | |
1981 This is useful if you've read in encoded text from a file without decoding | |
1982 it (e.g. you read in a JIS-formatted file but used the `binary' or | |
1983 `no-conversion' coding system, so that it shows up as \"^[$B!<!+^[(B\"). | |
1984 Return length of decoded text. | |
1985 BUFFER defaults to the current buffer if unspecified. | |
1986 */ | |
1987 (start, end, coding_system, buffer)) | |
1988 { | |
1989 Bufpos b, e; | |
1990 struct buffer *buf = decode_buffer (buffer, 0); | |
1991 Lisp_Object instream, outstream; | |
1992 int speccount = specpdl_depth (); | |
1993 struct gcpro gcpro1, gcpro2; | |
1994 | |
1995 get_buffer_range_char (buf, start, end, &b, &e, 0); | |
1996 coding_system = Fget_coding_system (coding_system); | |
1997 instream = make_lisp_buffer_input_stream (buf, b, e, 0); | |
1998 outstream = make_lisp_buffer_output_stream (buf, b, 0); | |
1999 outstream = make_decoding_output_stream (XLSTREAM (outstream), | |
2000 coding_system); | |
2001 outstream = make_encoding_output_stream (XLSTREAM (outstream), | |
2002 Fget_coding_system (Qbinary)); | |
2003 GCPRO2 (instream, outstream); | |
2004 record_unwind_protect (close_both_streams, Fcons (instream, outstream)); | |
2005 | |
2006 /* The chain of streams looks like this: | |
2007 | |
2008 [BUFFER] <----- send through | |
2009 ------> [ENCODE AS BINARY] | |
2010 ------> [DECODE AS SPECIFIED] | |
2011 ------> [BUFFER] | |
2012 */ | |
2013 | |
2014 { | |
2015 char tempbuf[1024]; /* some random amount */ | |
2016 Lstream *in = XLSTREAM(instream); | |
2017 Lstream *out = XLSTREAM(outstream); | |
2018 Bufpos newpos, even_newer_pos; | |
2019 | |
2020 while (1) | |
2021 { | |
2022 Bufpos oldpos = lisp_buffer_stream_startpos (in); | |
2023 int size_in_bytes = Lstream_read (in, tempbuf, sizeof (tempbuf)); | |
2024 if (!size_in_bytes) | |
2025 break; | |
2026 newpos = lisp_buffer_stream_startpos (in); | |
2027 Lstream_write (out, tempbuf, size_in_bytes); | |
2028 even_newer_pos = lisp_buffer_stream_startpos (in); | |
2029 buffer_delete_range (buf, even_newer_pos - (newpos - oldpos), | |
2030 even_newer_pos, 0); | |
2031 } | |
2032 } | |
2033 | |
2034 unbind_to (speccount, Qnil); | |
2035 UNGCPRO; | |
2036 return Qnil; | |
2037 } | |
2038 | |
2039 | |
2040 /************************************************************************/ | |
2041 /* Converting to an external encoding ("encoding") */ | |
2042 /************************************************************************/ | |
2043 | |
2044 /* An encoding stream is an output stream. When you create the | |
2045 stream, you specify the coding system that governs the encoding | |
2046 and another stream that the resulting encoded data is to be | |
2047 sent to, and then start sending data to it. */ | |
2048 | |
2049 #define ENCODING_STREAM_DATA(stream) LSTREAM_TYPE_DATA (stream, encoding) | |
2050 | |
2051 struct encoding_stream | |
2052 { | |
2053 /* Coding system that governs the conversion. */ | |
2054 struct Lisp_Coding_System *codesys; | |
2055 | |
2056 /* Stream that we read the encoded data from or | |
2057 write the decoded data to. */ | |
2058 Lstream *other_end; | |
2059 | |
2060 /* If we are reading, then we can return only a fixed amount of | |
2061 data, so if the conversion resulted in too much data, we store it | |
2062 here for retrieval the next time around. */ | |
2063 unsigned_char_dynarr *runoff; | |
2064 | |
2065 /* FLAGS holds flags indicating the current state of the encoding. | |
2066 Some of these flags are dependent on the coding system. */ | |
2067 unsigned int flags; | |
2068 | |
2069 /* CH holds a partially built-up character. Since we only deal | |
2070 with one- and two-byte characters at the moment, we only use | |
2071 this to store the first byte of a two-byte character. */ | |
2072 unsigned int ch; | |
2073 | |
2074 /* Additional information used by the ISO2022 encoder. */ | |
2075 struct | |
2076 { | |
2077 /* CHARSET holds the character sets currently assigned to the G0 | |
2078 through G3 registers. It is initialized from the array | |
2079 INITIAL_CHARSET in CODESYS. */ | |
2080 Lisp_Object charset[4]; | |
2081 | |
2082 /* Which registers are currently invoked into the left (GL) and | |
2083 right (GR) halves of the 8-bit encoding space? */ | |
2084 int register_left, register_right; | |
2085 | |
2086 /* Whether we need to explicitly designate the charset in the | |
2087 G? register before using it. It is initialized from the | |
2088 array FORCE_CHARSET_ON_OUTPUT in CODESYS. */ | |
2089 unsigned char force_charset_on_output[4]; | |
2090 | |
2091 /* Other state variables that need to be preserved across | |
2092 invocations. */ | |
2093 Lisp_Object current_charset; | |
2094 int current_half; | |
2095 int current_char_boundary; | |
2096 } iso2022; | |
2097 | |
2098 /* Additional information (the state of the running CCL program) | |
2099 used by the CCL encoder. */ | |
2100 struct ccl_program ccl; | |
2101 }; | |
2102 | |
2103 static int encoding_reader (Lstream *stream, unsigned char *data, int size); | |
2104 static int encoding_writer (Lstream *stream, CONST unsigned char *data, | |
2105 int size); | |
2106 static int encoding_rewinder (Lstream *stream); | |
2107 static int encoding_seekable_p (Lstream *stream); | |
2108 static int encoding_flusher (Lstream *stream); | |
2109 static int encoding_closer (Lstream *stream); | |
2110 static Lisp_Object encoding_marker (Lisp_Object stream, | |
2111 void (*markobj) (Lisp_Object)); | |
2112 | |
2113 DEFINE_LSTREAM_IMPLEMENTATION ("encoding", lstream_encoding, | |
2114 sizeof (struct encoding_stream)); | |
2115 | |
2116 static Lisp_Object | |
2117 encoding_marker (Lisp_Object stream, void (*markobj) (Lisp_Object)) | |
2118 { | |
2119 Lstream *str = ENCODING_STREAM_DATA (XLSTREAM (stream))->other_end; | |
2120 Lisp_Object str_obj; | |
2121 | |
2122 /* We do not need to mark the coding systems or charsets stored | |
2123 within the stream because they are stored in a global list | |
2124 and automatically marked. */ | |
2125 | |
2126 XSETLSTREAM (str_obj, str); | |
2127 (markobj) (str_obj); | |
2128 if (str->imp->marker) | |
2129 return (str->imp->marker) (str_obj, markobj); | |
2130 else | |
2131 return Qnil; | |
2132 } | |
2133 | |
2134 /* Read SIZE bytes of data and store it into DATA. We are a encoding stream | |
2135 so we read data from the other end, encode it, and store it into DATA. */ | |
2136 | |
2137 static int | |
2138 encoding_reader (Lstream *stream, unsigned char *data, int size) | |
2139 { | |
2140 struct encoding_stream *str = ENCODING_STREAM_DATA (stream); | |
2141 unsigned char *orig_data = data; | |
2142 int read_size; | |
2143 int error_occurred = 0; | |
2144 | |
2145 /* We need to interface to mule_encode(), which expects to take some | |
2146 amount of data and store the result into a Dynarr. We have | |
2147 mule_encode() store into str->runoff, and take data from there | |
2148 as necessary. */ | |
2149 | |
2150 /* We loop until we have enough data, reading chunks from the other | |
2151 end and encoding it. */ | |
2152 while (1) | |
2153 { | |
2154 /* Take data from the runoff if we can. Make sure to take at | |
2155 most SIZE bytes, and delete the data from the runoff. */ | |
2156 if (Dynarr_length (str->runoff) > 0) | |
2157 { | |
2158 int chunk = min (size, Dynarr_length (str->runoff)); | |
2159 memcpy (data, Dynarr_atp (str->runoff, 0), chunk); | |
2160 Dynarr_delete_many (str->runoff, 0, chunk); | |
2161 data += chunk; | |
2162 size -= chunk; | |
2163 } | |
2164 | |
2165 if (size == 0) | |
2166 break; /* No more room for data */ | |
2167 | |
2168 if (str->flags & CODING_STATE_END) | |
2169 /* This means that on the previous iteration, we hit the EOF on | |
2170 the other end. We loop once more so that mule_encode() can | |
2171 output any final stuff it may be holding, or any "go back | |
2172 to a sane state" escape sequences. (This latter makes sense | |
2173 during encoding.) */ | |
2174 break; | |
2175 | |
2176 /* Exhausted the runoff, so get some more. DATA at least SIZE bytes | |
2177 left of storage in it, so it's OK to read directly into it. | |
2178 (We'll be overwriting above, after we've encoded it into the | |
2179 runoff.) */ | |
2180 read_size = Lstream_read (str->other_end, data, size); | |
2181 if (read_size < 0) | |
2182 { | |
2183 error_occurred = 1; | |
2184 break; | |
2185 } | |
2186 if (read_size == 0) | |
2187 /* There might be some more end data produced in the translation. | |
2188 See the comment above. */ | |
2189 str->flags |= CODING_STATE_END; | |
2190 mule_encode (stream, data, str->runoff, read_size); | |
2191 } | |
2192 | |
2193 if (data - orig_data == 0) | |
2194 return error_occurred ? -1 : 0; | |
2195 else | |
2196 return data - orig_data; | |
2197 } | |
2198 | |
2199 static int | |
2200 encoding_writer (Lstream *stream, CONST unsigned char *data, int size) | |
2201 { | |
2202 struct encoding_stream *str = ENCODING_STREAM_DATA (stream); | |
2203 int retval; | |
2204 | |
2205 /* Encode all our data into the runoff, and then attempt to write | |
2206 it all out to the other end. Remove whatever chunk we succeeded | |
2207 in writing. */ | |
2208 mule_encode (stream, data, str->runoff, size); | |
2209 retval = Lstream_write (str->other_end, Dynarr_atp (str->runoff, 0), | |
2210 Dynarr_length (str->runoff)); | |
2211 if (retval > 0) | |
2212 Dynarr_delete_many (str->runoff, 0, retval); | |
2213 /* Do NOT return retval. The return value indicates how much | |
2214 of the incoming data was written, not how many bytes were | |
2215 written. */ | |
2216 return size; | |
2217 } | |
2218 | |
2219 static void | |
2220 reset_encoding_stream (struct encoding_stream *str) | |
2221 { | |
2222 if (CODING_SYSTEM_TYPE (str->codesys) == CODESYS_ISO2022) | |
2223 { | |
2224 int i; | |
2225 | |
2226 for (i = 0; i < 4; i++) | |
2227 str->iso2022.charset[i] = | |
2228 CODING_SYSTEM_ISO2022_INITIAL_CHARSET (str->codesys, i); | |
2229 for (i = 0; i < 4; i++) | |
2230 str->iso2022.force_charset_on_output[i] = | |
2231 CODING_SYSTEM_ISO2022_FORCE_CHARSET_ON_OUTPUT (str->codesys, i); | |
2232 str->iso2022.register_left = 0; | |
2233 str->iso2022.register_right = 1; | |
2234 str->iso2022.current_charset = Qnil; | |
2235 str->iso2022.current_half = 0; | |
2236 str->iso2022.current_char_boundary = 1; | |
2237 } | |
2238 else if (CODING_SYSTEM_TYPE (str->codesys) == CODESYS_CCL) | |
2239 { | |
2240 set_ccl_program (&str->ccl, CODING_SYSTEM_CCL_ENCODE (str->codesys), 0, 0, 0); | |
2241 } | |
2242 str->flags = str->ch = 0; | |
2243 } | |
2244 | |
2245 static int | |
2246 encoding_rewinder (Lstream *stream) | |
2247 { | |
2248 struct encoding_stream *str = ENCODING_STREAM_DATA (stream); | |
2249 reset_encoding_stream (str); | |
2250 Dynarr_reset (str->runoff); | |
2251 return Lstream_rewind (str->other_end); | |
2252 } | |
2253 | |
2254 static int | |
2255 encoding_seekable_p (Lstream *stream) | |
2256 { | |
2257 struct encoding_stream *str = ENCODING_STREAM_DATA (stream); | |
2258 return Lstream_seekable_p (str->other_end); | |
2259 } | |
2260 | |
2261 static int | |
2262 encoding_flusher (Lstream *stream) | |
2263 { | |
2264 struct encoding_stream *str = ENCODING_STREAM_DATA (stream); | |
2265 return Lstream_flush (str->other_end); | |
2266 } | |
2267 | |
2268 static int | |
2269 encoding_closer (Lstream *stream) | |
2270 { | |
2271 struct encoding_stream *str = ENCODING_STREAM_DATA (stream); | |
2272 if (stream->flags & LSTREAM_FL_WRITE) | |
2273 { | |
2274 str->flags |= CODING_STATE_END; | |
2275 encoding_writer (stream, 0, 0); | |
2276 } | |
2277 Dynarr_free (str->runoff); | |
2278 return Lstream_close (str->other_end); | |
2279 } | |
2280 | |
2281 Lisp_Object | |
2282 encoding_stream_coding_system (Lstream *stream) | |
2283 { | |
2284 Lisp_Object coding_system = Qnil; | |
2285 struct encoding_stream *str = ENCODING_STREAM_DATA (stream); | |
2286 | |
2287 XSETCODING_SYSTEM (coding_system, str->codesys); | |
2288 return coding_system; | |
2289 } | |
2290 | |
2291 void | |
2292 set_encoding_stream_coding_system (Lstream *lstr, Lisp_Object codesys) | |
2293 { | |
2294 struct Lisp_Coding_System *cs = XCODING_SYSTEM (codesys); | |
2295 struct encoding_stream *str = ENCODING_STREAM_DATA (lstr); | |
2296 str->codesys = cs; | |
2297 reset_encoding_stream (str); | |
2298 } | |
2299 | |
2300 static Lisp_Object | |
2301 make_encoding_stream_1 (Lstream *stream, Lisp_Object codesys, | |
2302 CONST char *mode) | |
2303 { | |
2304 Lstream *lstr = Lstream_new (lstream_encoding, mode); | |
2305 struct encoding_stream *str = ENCODING_STREAM_DATA (lstr); | |
2306 Lisp_Object obj; | |
2307 | |
2308 memset (str, 0, sizeof (*str)); | |
2309 str->runoff = (unsigned_char_dynarr *) Dynarr_new (unsigned char); | |
2310 str->other_end = stream; | |
2311 set_encoding_stream_coding_system (lstr, codesys); | |
2312 XSETLSTREAM (obj, lstr); | |
2313 return obj; | |
2314 } | |
2315 | |
2316 Lisp_Object | |
2317 make_encoding_input_stream (Lstream *stream, Lisp_Object codesys) | |
2318 { | |
2319 return make_encoding_stream_1 (stream, codesys, "r"); | |
2320 } | |
2321 | |
2322 Lisp_Object | |
2323 make_encoding_output_stream (Lstream *stream, Lisp_Object codesys) | |
2324 { | |
2325 return make_encoding_stream_1 (stream, codesys, "w"); | |
2326 } | |
2327 | |
2328 /* Convert N bytes of internally-formatted data stored in SRC to an | |
2329 external format, according to the encoding stream ENCODING. | |
2330 Store the encoded data into DST. */ | |
2331 | |
2332 static void | |
2333 mule_encode (Lstream *encoding, CONST unsigned char *src, | |
2334 unsigned_char_dynarr *dst, unsigned int n) | |
2335 { | |
2336 struct encoding_stream *str = ENCODING_STREAM_DATA (encoding); | |
2337 | |
2338 switch (CODING_SYSTEM_TYPE (str->codesys)) | |
2339 { | |
2340 #ifdef DEBUG_XEMACS | |
2341 case CODESYS_INTERNAL: | |
2342 Dynarr_add_many (dst, src, n); | |
2343 break; | |
2344 #endif | |
2345 case CODESYS_AUTODETECT: | |
2346 /* If we got this far and still haven't decided on the coding | |
2347 system, then do no conversion. */ | |
2348 case CODESYS_NO_CONVERSION: | |
2349 encode_coding_no_conversion (encoding, src, dst, n); | |
2350 break; | |
2351 case CODESYS_SHIFT_JIS: | |
2352 encode_coding_shift_jis (encoding, src, dst, n); | |
2353 break; | |
2354 case CODESYS_BIG5: | |
2355 encode_coding_big5 (encoding, src, dst, n); | |
2356 break; | |
2357 case CODESYS_CCL: | |
2358 ccl_driver (&str->ccl, src, dst, n, (str->flags) & CODING_STATE_END); | |
2359 break; | |
2360 case CODESYS_ISO2022: | |
2361 encode_coding_iso2022 (encoding, src, dst, n); | |
2362 break; | |
2363 default: | |
2364 abort (); | |
2365 } | |
2366 } | |
2367 | |
2368 DEFUN ("encode-coding-region", Fencode_coding_region, 3, 4, 0, /* | |
2369 Encode the text between START and END using CODING-SYSTEM. | |
2370 This will, for example, convert Japanese characters into stuff such as | |
2371 \"^[$B!<!+^[(B\" if you use the JIS encoding. Return length of encoded | |
2372 text. BUFFER defaults to the current buffer if unspecified. | |
2373 */ | |
2374 (start, end, coding_system, buffer)) | |
2375 { | |
2376 Bufpos b, e; | |
2377 struct buffer *buf = decode_buffer (buffer, 0); | |
2378 Lisp_Object instream, outstream; | |
2379 char tempbuf[1024]; /* some random amount */ | |
2380 int speccount = specpdl_depth (); | |
2381 struct gcpro gcpro1, gcpro2; | |
2382 | |
2383 get_buffer_range_char (buf, start, end, &b, &e, 0); | |
2384 coding_system = Fget_coding_system (coding_system); | |
2385 instream = make_lisp_buffer_input_stream (buf, b, e, 0); | |
2386 outstream = make_lisp_buffer_output_stream (buf, b, 0); | |
2387 outstream = make_decoding_output_stream (XLSTREAM (outstream), | |
2388 Fget_coding_system (Qbinary)); | |
2389 outstream = make_encoding_output_stream (XLSTREAM (outstream), | |
2390 coding_system); | |
2391 GCPRO2 (instream, outstream); | |
2392 record_unwind_protect (close_both_streams, Fcons (instream, outstream)); | |
2393 /* The chain of streams looks like this: | |
2394 | |
2395 [BUFFER] <----- send through | |
2396 ------> [ENCODE AS SPECIFIED] | |
2397 ------> [DECODE AS BINARY] | |
2398 ------> [BUFFER] | |
2399 | |
2400 */ | |
2401 while (1) | |
2402 { | |
2403 int size_in_bytes; | |
2404 Bufpos oldpos, newpos, even_newer_pos; | |
2405 | |
2406 oldpos = lisp_buffer_stream_startpos (XLSTREAM (instream)); | |
2407 size_in_bytes = Lstream_read (XLSTREAM (instream), tempbuf, | |
2408 sizeof (tempbuf)); | |
2409 if (!size_in_bytes) | |
2410 break; | |
2411 newpos = lisp_buffer_stream_startpos (XLSTREAM (instream)); | |
2412 Lstream_write (XLSTREAM (outstream), tempbuf, size_in_bytes); | |
2413 even_newer_pos = lisp_buffer_stream_startpos (XLSTREAM (instream)); | |
2414 buffer_delete_range (buf, even_newer_pos - (newpos - oldpos), | |
2415 even_newer_pos, 0); | |
2416 } | |
2417 | |
2418 { | |
2419 Charcount retlen = | |
2420 lisp_buffer_stream_startpos (XLSTREAM (instream)) - b; | |
2421 unbind_to (speccount, Qnil); | |
2422 UNGCPRO; | |
2423 return make_int (retlen); | |
2424 } | |
2425 } | |
2426 | |
2427 | |
2428 /************************************************************************/ | |
2429 /* Shift-JIS methods */ | |
2430 /************************************************************************/ | |
2431 | |
2432 /* Shift-JIS is a coding system encoding three character sets: ASCII, right | |
2433 half of JISX0201-Kana, and JISX0208. An ASCII character is encoded | |
2434 as is. A character of JISX0201-Kana (TYPE94 character set) is | |
2435 encoded by "position-code + 0x80". A character of JISX0208 | |
2436 (TYPE94x94 character set) is encoded in 2-byte but two | |
2437 position-codes are divided and shifted so that it fit in the range | |
2438 below. | |
2439 | |
2440 --- CODE RANGE of Shift-JIS --- | |
2441 (character set) (range) | |
2442 ASCII 0x00 .. 0x7F | |
2443 JISX0201-Kana 0xA0 .. 0xDF | |
2444 JISX0208 (1st byte) 0x80 .. 0x9F and 0xE0 .. 0xEF | |
2445 (2nd byte) 0x40 .. 0x7E and 0x80 .. 0xFC | |
2446 ------------------------------- | |
2447 | |
2448 */ | |
2449 | |
2450 /* Is this the first byte of a Shift-JIS two-byte char? */ | |
2451 | |
2452 #define BYTE_SHIFT_JIS_TWO_BYTE_1_P(c) \ | |
2453 (((c) >= 0x81 && (c) <= 0x9F) || ((c) >= 0xE0 && (c) <= 0xEF)) | |
2454 | |
2455 /* Is this the second byte of a Shift-JIS two-byte char? */ | |
2456 | |
2457 #define BYTE_SHIFT_JIS_TWO_BYTE_2_P(c) \ | |
2458 (((c) >= 0x40 && (c) <= 0x7E) || ((c) >= 0x80 && (c) <= 0xFC)) | |
2459 | |
2460 #define BYTE_SHIFT_JIS_KATAKANA_P(c) \ | |
2461 ((c) >= 0xA1 && (c) <= 0xDF) | |
2462 | |
2463 /* Code conversion macros. These are macros because they are used in | |
2464 inner loops during code conversion. | |
2465 | |
2466 Note that temporary variables in macros introduce the classic | |
2467 dynamic-scoping problems with variable names. We use capital- | |
2468 lettered variables in the assumption that XEmacs does not use | |
2469 capital letters in variables except in a very formalized way | |
2470 (e.g. Qstring). */ | |
2471 | |
2472 /* Convert shift-JIS code (sj1, sj2) into internal string | |
2473 representation (c1, c2). (The leading byte is assumed.) */ | |
2474 | |
2475 #define DECODE_SHIFT_JIS(sj1, sj2, c1, c2) do \ | |
2476 { \ | |
2477 int I1 = sj1, I2 = sj2; \ | |
2478 if (I2 >= 0x9f) \ | |
2479 { \ | |
2480 if (I1 >= 0xe0) \ | |
2481 c1 = (I1 << 1) - 0xe0; \ | |
2482 else \ | |
2483 c1 = (I1 << 1) - 0x60; \ | |
2484 c2 = I2 + 2; \ | |
2485 } \ | |
2486 else \ | |
2487 { \ | |
2488 if (I1 >= 0xe0) \ | |
2489 c1 = (I1 << 1) - 0xe1; \ | |
2490 else \ | |
2491 c1 = (I1 << 1) - 0x61; \ | |
2492 if (I2 >= 0x7f) \ | |
2493 c2 = I2 + 0x60; \ | |
2494 else \ | |
2495 c2 = I2 + 0x61; \ | |
2496 } \ | |
2497 } while (0) | |
2498 | |
2499 /* Convert the internal string representation of a Shift-JIS character | |
2500 (c1, c2) into Shift-JIS code (sj1, sj2). The leading byte is | |
2501 assumed. */ | |
2502 | |
2503 #define ENCODE_SHIFT_JIS(c1, c2, sj1, sj2) do \ | |
2504 { \ | |
2505 int I1 = c1, I2 = sj2; \ | |
2506 if (I1 & 1) \ | |
2507 { \ | |
2508 if (I1 < 0xdf) \ | |
2509 sj1 = (I1 >> 1) + 0x31; \ | |
2510 else \ | |
2511 sj1 = (I1 >> 1) + 0x71; \ | |
2512 if (I2 >= 0xe0) \ | |
2513 sj2 = I2 - 0x60; \ | |
2514 else \ | |
2515 sj2 = I2 - 0x61; \ | |
2516 } \ | |
2517 else \ | |
2518 { \ | |
2519 if (I1 < 0xdf) \ | |
2520 sj1 = (I1 >> 1) + 0x30; \ | |
2521 else \ | |
2522 sj1 = (I1 >> 1) + 0x70; \ | |
2523 sj2 = I2 - 2; \ | |
2524 } \ | |
2525 } while (0) | |
2526 | |
2527 static int | |
2528 detect_coding_shift_jis (struct detection_state *st, CONST unsigned char *src, | |
2529 unsigned int n) | |
2530 { | |
2531 int c; | |
2532 | |
2533 while (n--) | |
2534 { | |
2535 c = *src++; | |
2536 if (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO) | |
2537 return 0; | |
2538 if (st->shift_jis.in_second_byte) | |
2539 { | |
2540 st->shift_jis.in_second_byte = 0; | |
2541 if (c < 0x40) | |
2542 return 0; | |
2543 } | |
2544 else if ((c >= 0x80 && c < 0xA0) || c >= 0xE0) | |
2545 st->shift_jis.in_second_byte = 1; | |
2546 } | |
2547 return CODING_CATEGORY_SHIFT_JIS_MASK; | |
2548 } | |
2549 | |
2550 /* Convert Shift-JIS data to internal format. */ | |
2551 | |
2552 static void | |
2553 decode_coding_shift_jis (Lstream *decoding, CONST unsigned char *src, | |
2554 unsigned_char_dynarr *dst, unsigned int n) | |
2555 { | |
2556 unsigned char c; | |
2557 unsigned int flags, ch; | |
2558 int eol; | |
2559 struct decoding_stream *str = DECODING_STREAM_DATA (decoding); | |
2560 | |
2561 CODING_STREAM_DECOMPOSE (str, flags, ch); | |
2562 eol = str->eol_type; | |
2563 | |
2564 while (n--) | |
2565 { | |
2566 c = *src++; | |
2567 | |
2568 if (ch) | |
2569 { | |
2570 /* Previous character was first byte of Shift-JIS Kanji char. */ | |
2571 if (BYTE_SHIFT_JIS_TWO_BYTE_2_P (c)) | |
2572 { | |
2573 unsigned char e1, e2; | |
2574 | |
2575 Dynarr_add (dst, LEADING_BYTE_JAPANESE_JISX0208); | |
2576 DECODE_SHIFT_JIS (ch, c, e1, e2); | |
2577 Dynarr_add (dst, e1); | |
2578 Dynarr_add (dst, e2); | |
2579 } | |
2580 else | |
2581 { | |
2582 DECODE_ADD_BINARY_CHAR (ch, dst); | |
2583 DECODE_ADD_BINARY_CHAR (c, dst); | |
2584 } | |
2585 ch = 0; | |
2586 } | |
2587 else | |
2588 { | |
2589 DECODE_HANDLE_EOL_TYPE (eol, c, flags, dst); | |
2590 if (BYTE_SHIFT_JIS_TWO_BYTE_1_P (c)) | |
2591 ch = c; | |
2592 else if (BYTE_SHIFT_JIS_KATAKANA_P (c)) | |
2593 { | |
2594 Dynarr_add (dst, LEADING_BYTE_JAPANESE_JISX0201_KANA); | |
2595 Dynarr_add (dst, c); | |
2596 } | |
2597 else | |
2598 DECODE_ADD_BINARY_CHAR (c, dst); | |
2599 } | |
2600 label_continue_loop:; | |
2601 } | |
2602 | |
2603 DECODE_HANDLE_END_OF_CONVERSION (flags, ch, dst); | |
2604 | |
2605 CODING_STREAM_COMPOSE (str, flags, ch); | |
2606 } | |
2607 | |
2608 /* Convert internally-formatted data to Shift-JIS. */ | |
2609 | |
2610 static void | |
2611 encode_coding_shift_jis (Lstream *encoding, CONST unsigned char *src, | |
2612 unsigned_char_dynarr *dst, unsigned int n) | |
2613 { | |
2614 unsigned char c; | |
2615 struct encoding_stream *str = ENCODING_STREAM_DATA (encoding); | |
2616 unsigned int flags, ch; | |
2617 int eol; | |
2618 | |
2619 CODING_STREAM_DECOMPOSE (str, flags, ch); | |
2620 eol = CODING_SYSTEM_EOL_TYPE (str->codesys); | |
2621 | |
2622 while (n--) | |
2623 { | |
2624 c = *src++; | |
2625 if (c == '\n') | |
2626 { | |
2627 if (eol != EOL_LF && eol != EOL_AUTODETECT) | |
2628 Dynarr_add (dst, '\r'); | |
2629 if (eol != EOL_CR) | |
2630 Dynarr_add (dst, '\n'); | |
2631 ch = 0; | |
2632 } | |
2633 else if (BYTE_ASCII_P (c)) | |
2634 { | |
2635 Dynarr_add (dst, c); | |
2636 ch = 0; | |
2637 } | |
2638 else if (BUFBYTE_LEADING_BYTE_P (c)) | |
2639 ch = (c == LEADING_BYTE_JAPANESE_JISX0201_KANA || | |
2640 c == LEADING_BYTE_JAPANESE_JISX0208_1978 || | |
2641 c == LEADING_BYTE_JAPANESE_JISX0208) ? c : 0; | |
2642 else if (ch) | |
2643 { | |
2644 if (ch == LEADING_BYTE_JAPANESE_JISX0201_KANA) | |
2645 { | |
2646 Dynarr_add (dst, c); | |
2647 ch = 0; | |
2648 } | |
2649 else if (ch == LEADING_BYTE_JAPANESE_JISX0208_1978 || | |
2650 ch == LEADING_BYTE_JAPANESE_JISX0208) | |
2651 ch = c; | |
2652 else | |
2653 { | |
2654 unsigned char j1, j2; | |
2655 ENCODE_SHIFT_JIS (ch, c, j1, j2); | |
2656 Dynarr_add (dst, j1); | |
2657 Dynarr_add (dst, j2); | |
2658 ch = 0; | |
2659 } | |
2660 } | |
2661 } | |
2662 | |
2663 CODING_STREAM_COMPOSE (str, flags, ch); | |
2664 } | |
2665 | |
2666 DEFUN ("decode-shift-jis-char", Fdecode_shift_jis_char, 1, 1, 0, /* | |
2667 Decode a JISX0208 character of Shift-JIS coding-system. | |
2668 CODE is the character code in Shift-JIS as a cons of type bytes. | |
2669 Return the corresponding character. | |
2670 */ | |
2671 (code)) | |
2672 { | |
2673 unsigned char c1, c2, s1, s2; | |
2674 | |
2675 CHECK_CONS (code); | |
2676 CHECK_INT (XCAR (code)); | |
2677 CHECK_INT (XCDR (code)); | |
2678 s1 = XINT (XCAR (code)); | |
2679 s2 = XINT (XCDR (code)); | |
2680 if (BYTE_SHIFT_JIS_TWO_BYTE_1_P (s1) && | |
2681 BYTE_SHIFT_JIS_TWO_BYTE_2_P (s2)) | |
2682 { | |
2683 DECODE_SHIFT_JIS (s1, s2, c1, c2); | |
2684 return make_char (MAKE_CHAR (Vcharset_japanese_jisx0208, | |
2685 c1 & 0x7F, c2 & 0x7F)); | |
2686 } | |
2687 else | |
2688 return Qnil; | |
2689 } | |
2690 | |
2691 DEFUN ("encode-shift-jis-char", Fencode_shift_jis_char, 1, 1, 0, /* | |
2692 Encode a JISX0208 character CHAR to SHIFT-JIS coding-system. | |
2693 Return the corresponding character code in SHIFT-JIS as a cons of two bytes. | |
2694 */ | |
2695 (ch)) | |
2696 { | |
2697 Lisp_Object charset; | |
2698 int c1, c2, s1, s2; | |
2699 | |
2700 CHECK_CHAR_COERCE_INT (ch); | |
2701 BREAKUP_CHAR (XCHAR (ch), charset, c1, c2); | |
2702 if (EQ (charset, Vcharset_japanese_jisx0208)) | |
2703 { | |
2704 ENCODE_SHIFT_JIS (c1 | 0x80, c2 | 0x80, s1, s2); | |
2705 return Fcons (make_int (s1), make_int (s2)); | |
2706 } | |
2707 else | |
2708 return Qnil; | |
2709 } | |
2710 | |
2711 | |
2712 /************************************************************************/ | |
2713 /* Big5 methods */ | |
2714 /************************************************************************/ | |
2715 | |
2716 /* BIG5 is a coding system encoding two character sets: ASCII and | |
2717 Big5. An ASCII character is encoded as is. Big5 is a two-byte | |
2718 character set and is encoded in two-byte. | |
2719 | |
2720 --- CODE RANGE of BIG5 --- | |
2721 (character set) (range) | |
2722 ASCII 0x00 .. 0x7F | |
2723 Big5 (1st byte) 0xA1 .. 0xFE | |
2724 (2nd byte) 0x40 .. 0x7E and 0xA1 .. 0xFE | |
2725 -------------------------- | |
2726 | |
2727 Since the number of characters in Big5 is larger than maximum | |
2728 characters in Emacs' charset (96x96), it can't be handled as one | |
2729 charset. So, in Emacs, Big5 is devided into two: `charset-big5-1' | |
2730 and `charset-big5-2'. Both <type>s are TYPE94x94. The former | |
2731 contains frequently used characters and the latter contains less | |
2732 frequently used characters. */ | |
2733 | |
2734 #define BYTE_BIG5_TWO_BYTE_1_P(c) \ | |
2735 ((c) >= 0xA1 && (c) <= 0xFE) | |
2736 | |
2737 /* Is this the second byte of a Shift-JIS two-byte char? */ | |
2738 | |
2739 #define BYTE_BIG5_TWO_BYTE_2_P(c) \ | |
2740 (((c) >= 0x40 && (c) <= 0x7E) || ((c) >= 0xA1 && (c) <= 0xFE)) | |
2741 | |
2742 /* Number of Big5 characters which have the same code in 1st byte. */ | |
2743 | |
2744 #define BIG5_SAME_ROW (0xFF - 0xA1 + 0x7F - 0x40) | |
2745 | |
2746 /* Code conversion macros. These are macros because they are used in | |
2747 inner loops during code conversion. | |
2748 | |
2749 Note that temporary variables in macros introduce the classic | |
2750 dynamic-scoping problems with variable names. We use capital- | |
2751 lettered variables in the assumption that XEmacs does not use | |
2752 capital letters in variables except in a very formalized way | |
2753 (e.g. Qstring). */ | |
2754 | |
2755 /* Convert Big5 code (b1, b2) into its internal string representation | |
2756 (lb, c1, c2). */ | |
2757 | |
2758 /* There is a much simpler way to split the Big5 charset into two. | |
2759 For the moment I'm going to leave the algorithm as-is because it | |
2760 claims to separate out the most-used characters into a single | |
2761 charset, which perhaps will lead to optimizations in various | |
2762 places. | |
2763 | |
2764 The way the algorithm works is something like this: | |
2765 | |
2766 Big5 can be viewed as a 94x157 charset, where the row is | |
2767 encoded into the bytes 0xA1 .. 0xFE and the column is encoded | |
2768 into the bytes 0x40 .. 0x7E and 0xA1 .. 0xFE. As for frequency, | |
2769 the split between low and high column numbers is apparently | |
2770 meaningless; ascending rows produce less and less frequent chars. | |
2771 Therefore, we assign the lower half of rows (0xA1 .. 0xC8) to | |
2772 the first charset, and the upper half (0xC9 .. 0xFE) to the | |
2773 second. To do the conversion, we convert the character into | |
2774 a single number where 0 .. 156 is the first row, 157 .. 313 | |
2775 is the second, etc. That way, the characters are ordered by | |
2776 decreasing frequency. Then we just chop the space in two | |
2777 and coerce the result into a 94x94 space. | |
2778 */ | |
2779 | |
2780 #define DECODE_BIG5(b1, b2, lb, c1, c2) do \ | |
2781 { \ | |
2782 int B1 = b1, B2 = b2; \ | |
2783 unsigned int I \ | |
2784 = (B1 - 0xA1) * BIG5_SAME_ROW + B2 - (B2 < 0x7F ? 0x40 : 0x62); \ | |
2785 \ | |
2786 if (B1 < 0xC9) \ | |
2787 { \ | |
2788 lb = LEADING_BYTE_CHINESE_BIG5_1; \ | |
2789 } \ | |
2790 else \ | |
2791 { \ | |
2792 lb = LEADING_BYTE_CHINESE_BIG5_2; \ | |
2793 I -= (BIG5_SAME_ROW) * (0xC9 - 0xA1); \ | |
2794 } \ | |
2795 c1 = I / (0xFF - 0xA1) + 0xA1; \ | |
2796 c2 = I % (0xFF - 0xA1) + 0xA1; \ | |
2797 } while (0) | |
2798 | |
2799 /* Convert the internal string representation of a Big5 character | |
2800 (lb, c1, c2) into Big5 code (b1, b2). */ | |
2801 | |
2802 #define ENCODE_BIG5(lb, c1, c2, b1, b2) do \ | |
2803 { \ | |
2804 unsigned int I = ((c1) - 0xA1) * (0xFF - 0xA1) + ((c2) - 0xA1); \ | |
2805 \ | |
2806 if (lb == LEADING_BYTE_CHINESE_BIG5_2) \ | |
2807 { \ | |
2808 I += BIG5_SAME_ROW * (0xC9 - 0xA1); \ | |
2809 } \ | |
2810 b1 = I / BIG5_SAME_ROW + 0xA1; \ | |
2811 b2 = I % BIG5_SAME_ROW; \ | |
2812 b2 += b2 < 0x3F ? 0x40 : 0x62; \ | |
2813 } while (0) | |
2814 | |
2815 static int | |
2816 detect_coding_big5 (struct detection_state *st, CONST unsigned char *src, | |
2817 unsigned int n) | |
2818 { | |
2819 int c; | |
2820 | |
2821 while (n--) | |
2822 { | |
2823 c = *src++; | |
2824 if (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO || | |
2825 (c >= 0x80 && c <= 0xA0)) | |
2826 return 0; | |
2827 if (st->big5.in_second_byte) | |
2828 { | |
2829 st->big5.in_second_byte = 0; | |
2830 if (c < 0x40 || (c >= 0x80 && c <= 0xA0)) | |
2831 return 0; | |
2832 } | |
2833 else if (c >= 0xA1) | |
2834 st->big5.in_second_byte = 1; | |
2835 } | |
2836 return CODING_CATEGORY_BIG5_MASK; | |
2837 } | |
2838 | |
2839 /* Convert Big5 data to internal format. */ | |
2840 | |
2841 static void | |
2842 decode_coding_big5 (Lstream *decoding, CONST unsigned char *src, | |
2843 unsigned_char_dynarr *dst, unsigned int n) | |
2844 { | |
2845 unsigned char c; | |
2846 unsigned int flags, ch, eol; | |
2847 struct decoding_stream *str = DECODING_STREAM_DATA (decoding); | |
2848 | |
2849 CODING_STREAM_DECOMPOSE (str, flags, ch); | |
2850 eol = str->eol_type; | |
2851 | |
2852 while (n--) | |
2853 { | |
2854 c = *src++; | |
2855 if (ch) | |
2856 { | |
2857 /* Previous character was first byte of Big5 char. */ | |
2858 if (BYTE_BIG5_TWO_BYTE_2_P (c)) | |
2859 { | |
2860 unsigned char b1, b2, b3; | |
2861 DECODE_BIG5 (ch, c, b1, b2, b3); | |
2862 Dynarr_add (dst, b1); | |
2863 Dynarr_add (dst, b2); | |
2864 Dynarr_add (dst, b3); | |
2865 } | |
2866 else | |
2867 { | |
2868 DECODE_ADD_BINARY_CHAR (ch, dst); | |
2869 DECODE_ADD_BINARY_CHAR (c, dst); | |
2870 } | |
2871 ch = 0; | |
2872 } | |
2873 else | |
2874 { | |
2875 DECODE_HANDLE_EOL_TYPE (eol, c, flags, dst); | |
2876 if (BYTE_BIG5_TWO_BYTE_1_P (c)) | |
2877 ch = c; | |
2878 else | |
2879 DECODE_ADD_BINARY_CHAR (c, dst); | |
2880 } | |
2881 label_continue_loop:; | |
2882 } | |
2883 | |
2884 DECODE_HANDLE_END_OF_CONVERSION (flags, ch, dst); | |
2885 | |
2886 CODING_STREAM_COMPOSE (str, flags, ch); | |
2887 } | |
2888 | |
2889 /* Convert internally-formatted data to Big5. */ | |
2890 | |
2891 static void | |
2892 encode_coding_big5 (Lstream *encoding, CONST unsigned char *src, | |
2893 unsigned_char_dynarr *dst, unsigned int n) | |
2894 { | |
2895 unsigned char c; | |
2896 struct encoding_stream *str = ENCODING_STREAM_DATA (encoding); | |
2897 unsigned int flags, ch, eol; | |
2898 | |
2899 CODING_STREAM_DECOMPOSE (str, flags, ch); | |
2900 eol = CODING_SYSTEM_EOL_TYPE (str->codesys); | |
2901 | |
2902 while (n--) | |
2903 { | |
2904 c = *src++; | |
2905 if (c == '\n') | |
2906 { | |
2907 if (eol != EOL_LF && eol != EOL_AUTODETECT) | |
2908 Dynarr_add (dst, '\r'); | |
2909 if (eol != EOL_CR) | |
2910 Dynarr_add (dst, '\n'); | |
2911 } | |
2912 else if (BYTE_ASCII_P (c)) | |
2913 { | |
2914 /* ASCII. */ | |
2915 Dynarr_add (dst, c); | |
2916 } | |
2917 else if (BUFBYTE_LEADING_BYTE_P (c)) | |
2918 { | |
2919 if (c == LEADING_BYTE_CHINESE_BIG5_1 || | |
2920 c == LEADING_BYTE_CHINESE_BIG5_2) | |
2921 { | |
2922 /* A recognized leading byte. */ | |
2923 ch = c; | |
2924 continue; /* not done with this character. */ | |
2925 } | |
2926 /* otherwise just ignore this character. */ | |
2927 } | |
2928 else if (ch == LEADING_BYTE_CHINESE_BIG5_1 || | |
2929 ch == LEADING_BYTE_CHINESE_BIG5_2) | |
2930 { | |
2931 /* Previous char was a recognized leading byte. */ | |
2932 ch = (ch << 8) | c; | |
2933 continue; /* not done with this character. */ | |
2934 } | |
2935 else if (ch) | |
2936 { | |
2937 /* Encountering second byte of a Big5 character. */ | |
2938 unsigned char b1, b2; | |
2939 | |
2940 ENCODE_BIG5 (ch >> 8, ch & 0xFF, c, b1, b2); | |
2941 Dynarr_add (dst, b1); | |
2942 Dynarr_add (dst, b2); | |
2943 } | |
2944 | |
2945 ch = 0; | |
2946 } | |
2947 | |
2948 CODING_STREAM_COMPOSE (str, flags, ch); | |
2949 } | |
2950 | |
2951 | |
2952 DEFUN ("decode-big5-char", Fdecode_big5_char, 1, 1, 0, /* | |
2953 Decode a Big5 character CODE of BIG5 coding-system. | |
2954 CODE is the character code in BIG5. | |
2955 Return the corresponding character. | |
2956 */ | |
2957 (code)) | |
2958 { | |
2959 unsigned char c1, c2, b1, b2; | |
2960 Lisp_Object charset; | |
2961 | |
2962 CHECK_CONS (code); | |
2963 CHECK_INT (XCAR (code)); | |
2964 CHECK_INT (XCDR (code)); | |
2965 b1 = XINT (XCAR (code)); | |
2966 b2 = XINT (XCDR (code)); | |
2967 if (BYTE_BIG5_TWO_BYTE_1_P (b1) && | |
2968 BYTE_BIG5_TWO_BYTE_2_P (b2)) | |
2969 { | |
2970 DECODE_BIG5 (b1, b2, XCHARSET_LEADING_BYTE (charset), c1, c2); | |
2971 return make_char (MAKE_CHAR (charset, c1 & 0x7F, c2 & 0x7F)); | |
2972 } | |
2973 else | |
2974 return Qnil; | |
2975 } | |
2976 | |
2977 DEFUN ("encode-big5-char", Fencode_big5_char, 1, 1, 0, /* | |
2978 Encode the Big5 character CH to BIG5 coding-system. | |
2979 Return the corresponding character code in Big5. | |
2980 */ | |
2981 (ch)) | |
2982 { | |
2983 Lisp_Object charset; | |
2984 int c1, c2, b1, b2; | |
2985 | |
2986 CHECK_CHAR_COERCE_INT (ch); | |
2987 BREAKUP_CHAR (XCHAR (ch), charset, c1, c2); | |
2988 if (EQ (charset, Vcharset_chinese_big5_1) || | |
2989 EQ (charset, Vcharset_chinese_big5_2)) | |
2990 { | |
2991 ENCODE_BIG5 (XCHARSET_LEADING_BYTE (charset), c1 | 0x80, c2 | 0x80, | |
2992 b1, b2); | |
2993 return Fcons (make_int (b1), make_int (b2)); | |
2994 } | |
2995 else | |
2996 return Qnil; | |
2997 } | |
2998 | |
2999 | |
3000 /************************************************************************/ | |
3001 /* ISO2022 methods */ | |
3002 /************************************************************************/ | |
3003 | |
3004 /* The following note describes the coding system ISO2022 briefly. | |
3005 Since the intention of this note is to help understanding of the | |
3006 programs in this file, some parts are NOT ACCURATE or OVERLY | |
3007 SIMPLIFIED. For thorough understanding, please refer to the | |
3008 original document of ISO2022. | |
3009 | |
3010 ISO2022 provides many mechanisms to encode several character sets | |
3011 in 7-bit and 8-bit environments. If one chooses 7-bit environment, | |
3012 all text is encoded by codes of less than 128. This may make the | |
3013 encoded text a little bit longer, but the text get more stability | |
3014 to pass through several gateways (some of them strip off MSB). | |
3015 | |
3016 There are two kind of character sets: control character set and | |
3017 graphic character set. The former contains control characters such | |
3018 as `newline' and `escape' to provide control functions (control | |
3019 functions are provided also by escape sequence). The latter | |
3020 contains graphic characters such as 'A' and '-'. Emacs recognizes | |
3021 two control character sets and many graphic character sets. | |
3022 | |
3023 Graphic character sets are classified into one of four types, | |
3024 according to the dimension and number of characters in the set: | |
3025 TYPE94, TYPE96, TYPE94x94, and TYPE96x96. In addition, each | |
3026 character set is assigned an identification byte, unique for each | |
3027 type, called "final character" (denoted as <F> hereafter). The <F> | |
3028 of each character set is decided by ECMA(*) when it is registered | |
3029 in ISO. Code range of <F> is 0x30..0x7F (0x30..0x3F are for | |
3030 private use only). | |
3031 | |
3032 Note (*): ECMA = European Computer Manufacturers Association | |
3033 | |
3034 Here are examples of graphic character set [NAME(<F>)]: | |
3035 o TYPE94 -- ASCII('B'), right-half-of-JISX0201('I'), ... | |
3036 o TYPE96 -- right-half-of-ISO8859-1('A'), ... | |
3037 o TYPE94x94 -- GB2312('A'), JISX0208('B'), ... | |
3038 o TYPE96x96 -- none for the moment | |
3039 | |
3040 A code area (1byte=8bits) is divided into 4 areas, C0, GL, C1, and GR. | |
3041 C0 [0x00..0x1F] -- control character plane 0 | |
3042 GL [0x20..0x7F] -- graphic character plane 0 | |
3043 C1 [0x80..0x9F] -- control character plane 1 | |
3044 GR [0xA0..0xFF] -- graphic character plane 1 | |
3045 | |
3046 A control character set is directly designated and invoked to C0 or | |
3047 C1 by an escape sequence. The most common case is that: | |
3048 - ISO646's control character set is designated/invoked to C0, and | |
3049 - ISO6429's control character set is designated/invoked to C1, | |
3050 and usually these designations/invocations are omitted in encoded | |
3051 text. In a 7-bit environment, only C0 can be used, and a control | |
3052 character for C1 is encoded by an appropriate escape sequence to | |
3053 fit into the environment. All control characters for C1 are | |
3054 defined to have corresponding escape sequences. | |
3055 | |
3056 A graphic character set is at first designated to one of four | |
3057 graphic registers (G0 through G3), then these graphic registers are | |
3058 invoked to GL or GR. These designations and invocations can be | |
3059 done independently. The most common case is that G0 is invoked to | |
3060 GL, G1 is invoked to GR, and ASCII is designated to G0. Usually | |
3061 these invocations and designations are omitted in encoded text. | |
3062 In a 7-bit environment, only GL can be used. | |
3063 | |
3064 When a graphic character set of TYPE94 or TYPE94x94 is invoked to | |
3065 GL, codes 0x20 and 0x7F of the GL area work as control characters | |
3066 SPACE and DEL respectively, and code 0xA0 and 0xFF of GR area | |
3067 should not be used. | |
3068 | |
3069 There are two ways of invocation: locking-shift and single-shift. | |
3070 With locking-shift, the invocation lasts until the next different | |
3071 invocation, whereas with single-shift, the invocation works only | |
3072 for the following character and doesn't affect locking-shift. | |
3073 Invocations are done by the following control characters or escape | |
3074 sequences. | |
3075 | |
3076 ---------------------------------------------------------------------- | |
3077 abbrev function cntrl escape seq description | |
3078 ---------------------------------------------------------------------- | |
3079 SI/LS0 (shift-in) 0x0F none invoke G0 into GL | |
3080 SO/LS1 (shift-out) 0x0E none invoke G1 into GL | |
3081 LS1R (locking-shift-1 right) none ESC '~' invoke G1 into GR | |
3082 LS2 (locking-shift-2) none ESC 'n' invoke G2 into GL | |
3083 LS2R (locking-shift-2 right) none ESC '}' invoke G2 into GR | |
3084 LS3 (locking-shift-3) none ESC 'o' invoke G3 into GL | |
3085 LS3R (locking-shift 3 right) none ESC '|' invoke G3 into GR | |
3086 SS2 (single-shift-2) 0x8E ESC 'N' invoke G2 for one char | |
3087 SS3 (single-shift-3) 0x8F ESC 'O' invoke G3 for one char | |
3088 ---------------------------------------------------------------------- | |
3089 The first four are for locking-shift. Control characters for these | |
3090 functions are defined by macros ISO_CODE_XXX in `coding.h'. | |
3091 | |
3092 Designations are done by the following escape sequences. | |
3093 ---------------------------------------------------------------------- | |
3094 escape sequence description | |
3095 ---------------------------------------------------------------------- | |
3096 ESC '(' <F> designate TYPE94<F> to G0 | |
3097 ESC ')' <F> designate TYPE94<F> to G1 | |
3098 ESC '*' <F> designate TYPE94<F> to G2 | |
3099 ESC '+' <F> designate TYPE94<F> to G3 | |
3100 ESC ',' <F> designate TYPE96<F> to G0 (*) | |
3101 ESC '-' <F> designate TYPE96<F> to G1 | |
3102 ESC '.' <F> designate TYPE96<F> to G2 | |
3103 ESC '/' <F> designate TYPE96<F> to G3 | |
3104 ESC '$' '(' <F> designate TYPE94x94<F> to G0 (**) | |
3105 ESC '$' ')' <F> designate TYPE94x94<F> to G1 | |
3106 ESC '$' '*' <F> designate TYPE94x94<F> to G2 | |
3107 ESC '$' '+' <F> designate TYPE94x94<F> to G3 | |
3108 ESC '$' ',' <F> designate TYPE96x96<F> to G0 (*) | |
3109 ESC '$' '-' <F> designate TYPE96x96<F> to G1 | |
3110 ESC '$' '.' <F> designate TYPE96x96<F> to G2 | |
3111 ESC '$' '/' <F> designate TYPE96x96<F> to G3 | |
3112 ---------------------------------------------------------------------- | |
3113 In this list, "TYPE94<F>" means a graphic character set of type TYPE94 | |
3114 and final character <F>, and etc. | |
3115 | |
3116 Note (*): Although these designations are not allowed in ISO2022, | |
3117 Emacs accepts them on decoding, and produces them on encoding | |
3118 TYPE96 or TYPE96x96 character set in a coding system which is | |
3119 characterized as 7-bit environment, non-locking-shift, and | |
3120 non-single-shift. | |
3121 | |
3122 Note (**): If <F> is '@', 'A', or 'B', the intermediate character | |
3123 '(' can be omitted. We call this as "short-form" here after. | |
3124 | |
3125 Now you may notice that there are a lot of ways for encoding the | |
3126 same multilingual text in ISO2022. Actually, there exist many | |
3127 coding systems such as Compound Text (used in X's inter client | |
3128 communication, ISO-2022-JP (used in Japanese internet), ISO-2022-KR | |
3129 (used in Korean internet), EUC (Extended UNIX Code, used in Asian | |
3130 localized platforms), and all of these are variants of ISO2022. | |
3131 | |
3132 In addition to the above, Emacs handles two more kinds of escape | |
3133 sequences: ISO6429's direction specification and Emacs' private | |
3134 sequence for specifying character composition. | |
3135 | |
3136 ISO6429's direction specification takes the following format: | |
3137 o CSI ']' -- end of the current direction | |
3138 o CSI '0' ']' -- end of the current direction | |
3139 o CSI '1' ']' -- start of left-to-right text | |
3140 o CSI '2' ']' -- start of right-to-left text | |
3141 The control character CSI (0x9B: control sequence introducer) is | |
3142 abbreviated to the escape sequence ESC '[' in 7-bit environment. | |
3143 | |
3144 Character composition specification takes the following format: | |
3145 o ESC '0' -- start character composition | |
3146 o ESC '1' -- end character composition | |
3147 Since these are not standard escape sequences of any ISO, the use | |
3148 of them for these meanings is restricted to Emacs only. */ | |
3149 | |
3150 static void | |
3151 reset_iso2022 (Lisp_Object coding_system, struct iso2022_decoder *iso) | |
3152 { | |
3153 int i; | |
3154 | |
3155 for (i = 0; i < 4; i++) | |
3156 { | |
3157 if (!NILP (coding_system)) | |
3158 iso->charset[i] = | |
3159 XCODING_SYSTEM_ISO2022_INITIAL_CHARSET (coding_system, i); | |
3160 else | |
3161 iso->charset[i] = Qt; | |
3162 iso->invalid_designated[i] = 0; | |
3163 } | |
3164 iso->esc = ISO_ESC_NOTHING; | |
3165 iso->esc_bytes_index = 0; | |
3166 iso->register_left = 0; | |
3167 iso->register_right = 1; | |
3168 iso->switched_dir_and_no_valid_charset_yet = 0; | |
3169 iso->invalid_switch_dir = 0; | |
3170 iso->output_direction_sequence = 0; | |
3171 iso->output_literally = 0; | |
3172 if (iso->composite_chars) | |
3173 Dynarr_reset (iso->composite_chars); | |
3174 } | |
3175 | |
3176 static int | |
3177 fit_to_be_escape_quoted (unsigned char c) | |
3178 { | |
3179 switch (c) | |
3180 { | |
3181 case ISO_CODE_ESC: | |
3182 case ISO_CODE_CSI: | |
3183 case ISO_CODE_SS2: | |
3184 case ISO_CODE_SS3: | |
3185 case ISO_CODE_SO: | |
3186 case ISO_CODE_SI: | |
3187 return 1; | |
3188 | |
3189 default: | |
3190 return 0; | |
3191 } | |
3192 } | |
3193 | |
3194 /* Parse one byte of an ISO2022 escape sequence. | |
3195 If the result is an invalid escape sequence, return 0 and | |
3196 do not change anything in STR. Otherwise, if the result is | |
3197 an incomplete escape sequence, update ISO2022.ESC and | |
3198 ISO2022.ESC_BYTES and return -1. Otherwise, update | |
3199 all the state variables (but not ISO2022.ESC_BYTES) and | |
3200 return 1. | |
3201 | |
3202 If CHECK_INVALID_CHARSETS is non-zero, check for designation | |
3203 or invocation of an invalid character set and treat that as | |
3204 an unrecognized escape sequence. */ | |
3205 | |
3206 static int | |
3207 parse_iso2022_esc (Lisp_Object codesys, struct iso2022_decoder *iso, | |
3208 unsigned char c, unsigned int *flags, | |
3209 int check_invalid_charsets) | |
3210 { | |
3211 /* (1) If we're at the end of a designation sequence, CS is the | |
3212 charset being designated and REG is the register to designate | |
3213 it to. | |
3214 | |
3215 (2) If we're at the end of a locking-shift sequence, REG is | |
3216 the register to invoke and HALF (0 == left, 1 == right) is | |
3217 the half to invoke it into. | |
3218 | |
3219 (3) If we're at the end of a single-shift sequence, REG is | |
3220 the register to invoke. */ | |
3221 Lisp_Object cs = Qnil; | |
3222 int reg, half; | |
3223 | |
3224 /* NOTE: This code does goto's all over the fucking place. | |
3225 The reason for this is that we're basically implementing | |
3226 a state machine here, and hierarchical languages like C | |
3227 don't really provide a clean way of doing this. */ | |
3228 | |
3229 if (! (*flags & CODING_STATE_ESCAPE)) | |
3230 /* At beginning of escape sequence; we need to reset our | |
3231 escape-state variables. */ | |
3232 iso->esc = ISO_ESC_NOTHING; | |
3233 | |
3234 iso->output_literally = 0; | |
3235 iso->output_direction_sequence = 0; | |
3236 | |
3237 switch (iso->esc) | |
3238 { | |
3239 case ISO_ESC_NOTHING: | |
3240 iso->esc_bytes_index = 0; | |
3241 switch (c) | |
3242 { | |
3243 case ISO_CODE_ESC: /* Start escape sequence */ | |
3244 *flags |= CODING_STATE_ESCAPE; | |
3245 iso->esc = ISO_ESC; | |
3246 goto not_done; | |
3247 | |
3248 case ISO_CODE_CSI: /* ISO6429 (specifying directionality) */ | |
3249 *flags |= CODING_STATE_ESCAPE; | |
3250 iso->esc = ISO_ESC_5_11; | |
3251 goto not_done; | |
3252 | |
3253 case ISO_CODE_SO: /* locking shift 1 */ | |
3254 reg = 1; half = 0; | |
3255 goto locking_shift; | |
3256 case ISO_CODE_SI: /* locking shift 0 */ | |
3257 reg = 0; half = 0; | |
3258 goto locking_shift; | |
3259 | |
3260 case ISO_CODE_SS2: /* single shift */ | |
3261 reg = 2; | |
3262 goto single_shift; | |
3263 case ISO_CODE_SS3: /* single shift */ | |
3264 reg = 3; | |
3265 goto single_shift; | |
3266 | |
3267 default: /* Other control characters */ | |
3268 return 0; | |
3269 } | |
3270 | |
3271 case ISO_ESC: | |
3272 switch (c) | |
3273 { | |
3274 /**** single shift ****/ | |
3275 | |
3276 case 'N': /* single shift 2 */ | |
3277 reg = 2; | |
3278 goto single_shift; | |
3279 case 'O': /* single shift 3 */ | |
3280 reg = 3; | |
3281 goto single_shift; | |
3282 | |
3283 /**** locking shift ****/ | |
3284 | |
3285 case '~': /* locking shift 1 right */ | |
3286 reg = 1; half = 1; | |
3287 goto locking_shift; | |
3288 case 'n': /* locking shift 2 */ | |
3289 reg = 2; half = 0; | |
3290 goto locking_shift; | |
3291 case '}': /* locking shift 2 right */ | |
3292 reg = 2; half = 1; | |
3293 goto locking_shift; | |
3294 case 'o': /* locking shift 3 */ | |
3295 reg = 3; half = 0; | |
3296 goto locking_shift; | |
3297 case '|': /* locking shift 3 right */ | |
3298 reg = 3; half = 1; | |
3299 goto locking_shift; | |
3300 | |
3301 /**** composite ****/ | |
3302 | |
3303 case '0': | |
3304 iso->esc = ISO_ESC_START_COMPOSITE; | |
3305 *flags = (*flags & CODING_STATE_ISO2022_LOCK) | | |
3306 CODING_STATE_COMPOSITE; | |
3307 return 1; | |
3308 | |
3309 case '1': | |
3310 iso->esc = ISO_ESC_END_COMPOSITE; | |
3311 *flags = (*flags & CODING_STATE_ISO2022_LOCK) & | |
3312 ~CODING_STATE_COMPOSITE; | |
3313 return 1; | |
3314 | |
3315 /**** directionality ****/ | |
3316 | |
3317 case '[': | |
3318 iso->esc = ISO_ESC_5_11; | |
3319 goto not_done; | |
3320 | |
3321 /**** designation ****/ | |
3322 | |
3323 case '$': /* multibyte charset prefix */ | |
3324 iso->esc = ISO_ESC_2_4; | |
3325 goto not_done; | |
3326 | |
3327 default: | |
3328 if (0x28 <= c && c <= 0x2F) | |
3329 { | |
3330 iso->esc = c - 0x28 + ISO_ESC_2_8; | |
3331 goto not_done; | |
3332 } | |
3333 | |
3334 /* This function is called with CODESYS equal to nil when | |
3335 doing coding-system detection. */ | |
3336 if (!NILP (codesys) | |
3337 && XCODING_SYSTEM_ISO2022_ESCAPE_QUOTED (codesys) | |
3338 && fit_to_be_escape_quoted (c)) | |
3339 { | |
3340 iso->esc = ISO_ESC_LITERAL; | |
3341 *flags &= CODING_STATE_ISO2022_LOCK; | |
3342 return 1; | |
3343 } | |
3344 | |
3345 /* bzzzt! */ | |
3346 return 0; | |
3347 } | |
3348 | |
3349 | |
3350 | |
3351 /**** directionality ****/ | |
3352 | |
3353 case ISO_ESC_5_11: /* ISO6429 direction control */ | |
3354 if (c == ']') | |
3355 { | |
3356 *flags &= (CODING_STATE_ISO2022_LOCK & ~CODING_STATE_R2L); | |
3357 goto directionality; | |
3358 } | |
3359 if (c == '0') iso->esc = ISO_ESC_5_11_0; | |
3360 else if (c == '1') iso->esc = ISO_ESC_5_11_1; | |
3361 else if (c == '2') iso->esc = ISO_ESC_5_11_2; | |
3362 else return 0; | |
3363 goto not_done; | |
3364 | |
3365 case ISO_ESC_5_11_0: | |
3366 if (c == ']') | |
3367 { | |
3368 *flags &= (CODING_STATE_ISO2022_LOCK & ~CODING_STATE_R2L); | |
3369 goto directionality; | |
3370 } | |
3371 return 0; | |
3372 | |
3373 case ISO_ESC_5_11_1: | |
3374 if (c == ']') | |
3375 { | |
3376 *flags = (CODING_STATE_ISO2022_LOCK & ~CODING_STATE_R2L); | |
3377 goto directionality; | |
3378 } | |
3379 return 0; | |
3380 | |
3381 case ISO_ESC_5_11_2: | |
3382 if (c == ']') | |
3383 { | |
3384 *flags = (*flags & CODING_STATE_ISO2022_LOCK) | CODING_STATE_R2L; | |
3385 goto directionality; | |
3386 } | |
3387 return 0; | |
3388 | |
3389 directionality: | |
3390 iso->esc = ISO_ESC_DIRECTIONALITY; | |
3391 /* Various junk here to attempt to preserve the direction sequences | |
3392 literally in the text if they would otherwise be swallowed due | |
3393 to invalid designations that don't show up as actual charset | |
3394 changes in the text. */ | |
3395 if (iso->invalid_switch_dir) | |
3396 { | |
3397 /* We already inserted a direction switch literally into the | |
3398 text. We assume (#### this may not be right) that the | |
3399 next direction switch is the one going the other way, | |
3400 and we need to output that literally as well. */ | |
3401 iso->output_literally = 1; | |
3402 iso->invalid_switch_dir = 0; | |
3403 } | |
3404 else | |
3405 { | |
3406 int jj; | |
3407 | |
3408 /* If we are in the thrall of in invalid designation, | |
3409 then stick the directionality sequence literally into the | |
3410 output stream so it ends up in the original text again. */ | |
3411 for (jj = 0; jj < 4; jj++) | |
3412 if (iso->invalid_designated[jj]) | |
3413 break; | |
3414 if (jj < 4) | |
3415 { | |
3416 iso->output_literally = 1; | |
3417 iso->invalid_switch_dir = 1; | |
3418 } | |
3419 else | |
3420 /* Indicate that we haven't yet seen a valid designation, | |
3421 so that if a switch-dir is directly followed by an | |
3422 invalid designation, both get inserted literally. */ | |
3423 iso->switched_dir_and_no_valid_charset_yet = 1; | |
3424 } | |
3425 return 1; | |
3426 | |
3427 | |
3428 /**** designation ****/ | |
3429 | |
3430 case ISO_ESC_2_4: | |
3431 if (0x28 <= c && c <= 0x2F) | |
3432 { | |
3433 iso->esc = c - 0x28 + ISO_ESC_2_4_8; | |
3434 goto not_done; | |
3435 } | |
3436 if (0x40 <= c && c <= 0x42) | |
3437 { | |
3438 cs = CHARSET_BY_ATTRIBUTES (CHARSET_TYPE_94X94, c, | |
3439 *flags & CODING_STATE_R2L ? | |
3440 CHARSET_RIGHT_TO_LEFT : | |
3441 CHARSET_LEFT_TO_RIGHT); | |
3442 reg = 0; | |
3443 goto designated; | |
3444 } | |
3445 return 0; | |
3446 | |
3447 default: | |
3448 { | |
3449 int type; | |
3450 | |
3451 if (c < '0' || c > '~') | |
3452 return 0; /* bad final byte */ | |
3453 | |
3454 if (iso->esc >= ISO_ESC_2_8 && | |
3455 iso->esc <= ISO_ESC_2_15) | |
3456 { | |
3457 if (iso->esc >= ISO_ESC_2_12) | |
3458 type = CHARSET_TYPE_96; | |
3459 else | |
3460 type = CHARSET_TYPE_94; | |
3461 reg = (iso->esc - ISO_ESC_2_8) & 3; | |
3462 } | |
3463 else if (iso->esc >= ISO_ESC_2_4_8 && | |
3464 iso->esc <= ISO_ESC_2_4_15) | |
3465 { | |
3466 if (iso->esc >= ISO_ESC_2_4_12) | |
3467 type = CHARSET_TYPE_96X96; | |
3468 else | |
3469 type = CHARSET_TYPE_94X94; | |
3470 reg = (iso->esc - ISO_ESC_2_4_8) & 3; | |
3471 } | |
3472 | |
3473 cs = CHARSET_BY_ATTRIBUTES (type, c, | |
3474 *flags & CODING_STATE_R2L ? | |
3475 CHARSET_RIGHT_TO_LEFT : | |
3476 CHARSET_LEFT_TO_RIGHT); | |
3477 goto designated; | |
3478 } | |
3479 } | |
3480 | |
3481 not_done: | |
3482 iso->esc_bytes[iso->esc_bytes_index++] = (unsigned char) c; | |
3483 return -1; | |
3484 | |
3485 single_shift: | |
3486 if (check_invalid_charsets && !CHARSETP (iso->charset[reg])) | |
3487 /* can't invoke something that ain't there. */ | |
3488 return 0; | |
3489 iso->esc = ISO_ESC_SINGLE_SHIFT; | |
3490 *flags &= CODING_STATE_ISO2022_LOCK; | |
3491 if (reg == 2) | |
3492 *flags |= CODING_STATE_SS2; | |
3493 else | |
3494 *flags |= CODING_STATE_SS3; | |
3495 return 1; | |
3496 | |
3497 locking_shift: | |
3498 if (check_invalid_charsets && | |
3499 !CHARSETP (iso->charset[reg])) | |
3500 /* can't invoke something that ain't there. */ | |
3501 return 0; | |
3502 if (half) | |
3503 iso->register_right = reg; | |
3504 else | |
3505 iso->register_left = reg; | |
3506 *flags &= CODING_STATE_ISO2022_LOCK; | |
3507 iso->esc = ISO_ESC_LOCKING_SHIFT; | |
3508 return 1; | |
3509 | |
3510 designated: | |
3511 if (NILP (cs) && check_invalid_charsets) | |
3512 { | |
3513 iso->invalid_designated[reg] = 1; | |
3514 iso->charset[reg] = Vcharset_ascii; | |
3515 iso->esc = ISO_ESC_DESIGNATE; | |
3516 *flags &= CODING_STATE_ISO2022_LOCK; | |
3517 iso->output_literally = 1; | |
3518 if (iso->switched_dir_and_no_valid_charset_yet) | |
3519 { | |
3520 /* We encountered a switch-direction followed by an | |
3521 invalid designation. Ensure that the switch-direction | |
3522 gets outputted; otherwise it will probably get eaten | |
3523 when the text is written out again. */ | |
3524 iso->switched_dir_and_no_valid_charset_yet = 0; | |
3525 iso->output_direction_sequence = 1; | |
3526 /* And make sure that the switch-dir going the other | |
3527 way gets outputted, as well. */ | |
3528 iso->invalid_switch_dir = 1; | |
3529 } | |
3530 return 1; | |
3531 } | |
3532 /* This function is called with CODESYS equal to nil when | |
3533 doing coding-system detection. */ | |
3534 if (!NILP (codesys)) | |
3535 { | |
3536 charset_conversion_spec_dynarr *dyn = | |
3537 XCODING_SYSTEM (codesys)->iso2022.input_conv; | |
3538 | |
3539 if (dyn) | |
3540 { | |
3541 int i; | |
3542 | |
3543 for (i = 0; i < Dynarr_length (dyn); i++) | |
3544 { | |
3545 struct charset_conversion_spec *spec = Dynarr_atp (dyn, i); | |
3546 if (EQ (cs, spec->from_charset)) | |
3547 cs = spec->to_charset; | |
3548 } | |
3549 } | |
3550 } | |
3551 | |
3552 iso->charset[reg] = cs; | |
3553 iso->esc = ISO_ESC_DESIGNATE; | |
3554 *flags &= CODING_STATE_ISO2022_LOCK; | |
3555 if (iso->invalid_designated[reg]) | |
3556 { | |
3557 iso->invalid_designated[reg] = 0; | |
3558 iso->output_literally = 1; | |
3559 } | |
3560 if (iso->switched_dir_and_no_valid_charset_yet) | |
3561 iso->switched_dir_and_no_valid_charset_yet = 0; | |
3562 return 1; | |
3563 } | |
3564 | |
3565 static int | |
3566 detect_coding_iso2022 (struct detection_state *st, CONST unsigned char *src, | |
3567 unsigned int n) | |
3568 { | |
3569 int c; | |
3570 int mask; | |
3571 | |
3572 /* #### There are serious deficiencies in the recognition mechanism | |
3573 here. This needs to be much smarter if it's going to cut it. */ | |
3574 | |
3575 if (!st->iso2022.initted) | |
3576 { | |
3577 reset_iso2022 (Qnil, &st->iso2022.iso); | |
3578 st->iso2022.mask = (CODING_CATEGORY_ISO_7_MASK | | |
3579 CODING_CATEGORY_ISO_8_DESIGNATE_MASK | | |
3580 CODING_CATEGORY_ISO_8_1_MASK | | |
3581 CODING_CATEGORY_ISO_8_2_MASK | | |
3582 CODING_CATEGORY_ISO_LOCK_SHIFT_MASK); | |
3583 st->iso2022.flags = 0; | |
3584 st->iso2022.high_byte_count = 0; | |
3585 st->iso2022.saw_single_shift = 0; | |
3586 st->iso2022.initted = 1; | |
3587 } | |
3588 | |
3589 mask = st->iso2022.mask; | |
3590 | |
3591 while (n--) | |
3592 { | |
3593 c = *src++; | |
3594 if (c >= 0xA0) | |
3595 { | |
3596 mask &= ~CODING_CATEGORY_ISO_7_MASK; | |
3597 st->iso2022.high_byte_count++; | |
3598 } | |
3599 else | |
3600 { | |
3601 if (st->iso2022.high_byte_count && !st->iso2022.saw_single_shift) | |
3602 { | |
3603 if (st->iso2022.high_byte_count & 1) | |
3604 /* odd number of high bytes; assume not iso-8-2 */ | |
3605 mask &= ~CODING_CATEGORY_ISO_8_2_MASK; | |
3606 } | |
3607 st->iso2022.high_byte_count = 0; | |
3608 st->iso2022.saw_single_shift = 0; | |
3609 if (c > 0x80) | |
3610 mask &= ~CODING_CATEGORY_ISO_7_MASK; | |
3611 } | |
3612 if (!(st->iso2022.flags & CODING_STATE_ESCAPE) | |
3613 && (BYTE_C0_P (c) || BYTE_C1_P (c))) | |
3614 { /* control chars */ | |
3615 switch (c) | |
3616 { | |
3617 /* Allow and ignore control characters that you might | |
3618 reasonably see in a text file */ | |
3619 case '\r': | |
3620 case '\n': | |
3621 case '\t': | |
3622 case 7: /* bell */ | |
3623 case 8: /* backspace */ | |
3624 case 11: /* vertical tab */ | |
3625 case 12: /* form feed */ | |
3626 case 26: /* MS-DOS C-z junk */ | |
3627 goto label_continue_loop; | |
3628 | |
3629 default: | |
3630 break; | |
3631 } | |
3632 } | |
3633 | |
3634 if ((st->iso2022.flags & CODING_STATE_ESCAPE) || BYTE_C0_P (c) | |
3635 || BYTE_C1_P (c)) | |
3636 { | |
3637 if (parse_iso2022_esc (Qnil, &st->iso2022.iso, c, | |
3638 &st->iso2022.flags, 0)) | |
3639 { | |
3640 switch (st->iso2022.iso.esc) | |
3641 { | |
3642 case ISO_ESC_DESIGNATE: | |
3643 mask &= ~CODING_CATEGORY_ISO_8_1_MASK; | |
3644 mask &= ~CODING_CATEGORY_ISO_8_2_MASK; | |
3645 break; | |
3646 case ISO_ESC_LOCKING_SHIFT: | |
3647 mask = CODING_CATEGORY_ISO_LOCK_SHIFT_MASK; | |
3648 goto ran_out_of_chars; | |
3649 case ISO_ESC_SINGLE_SHIFT: | |
3650 mask &= ~CODING_CATEGORY_ISO_8_DESIGNATE_MASK; | |
3651 st->iso2022.saw_single_shift = 1; | |
3652 break; | |
3653 default: | |
3654 break; | |
3655 } | |
3656 } | |
3657 else | |
3658 { | |
3659 mask = 0; | |
3660 goto ran_out_of_chars; | |
3661 } | |
3662 } | |
3663 label_continue_loop:; | |
3664 } | |
3665 | |
3666 ran_out_of_chars: | |
3667 | |
3668 return mask; | |
3669 } | |
3670 | |
3671 static int | |
3672 postprocess_iso2022_mask (int mask) | |
3673 { | |
3674 /* #### kind of cheesy */ | |
3675 /* If seven-bit ISO is allowed, then assume that the encoding is | |
3676 entirely seven-bit and turn off the eight-bit ones. */ | |
3677 if (mask & CODING_CATEGORY_ISO_7_MASK) | |
3678 mask &= ~ (CODING_CATEGORY_ISO_8_DESIGNATE_MASK | | |
3679 CODING_CATEGORY_ISO_8_1_MASK | | |
3680 CODING_CATEGORY_ISO_8_2_MASK); | |
3681 return mask; | |
3682 } | |
3683 | |
3684 /* If FLAGS is a null pointer or specifies right-to-left motion, | |
3685 output a switch-dir-to-left-to-right sequence to DST. | |
3686 Also update FLAGS if it is not a null pointer. | |
3687 If INTERNAL_P is set, we are outputting in internal format and | |
3688 need to handle the CSI differently. */ | |
3689 | |
3690 static void | |
3691 restore_left_to_right_direction (struct Lisp_Coding_System *codesys, | |
3692 unsigned_char_dynarr *dst, | |
3693 unsigned int *flags, | |
3694 int internal_p) | |
3695 { | |
3696 if (!flags || (*flags & CODING_STATE_R2L)) | |
3697 { | |
3698 if (CODING_SYSTEM_ISO2022_SEVEN (codesys)) | |
3699 { | |
3700 Dynarr_add (dst, ISO_CODE_ESC); | |
3701 Dynarr_add (dst, '['); | |
3702 } | |
3703 else if (internal_p) | |
3704 DECODE_ADD_BINARY_CHAR (ISO_CODE_CSI, dst); | |
3705 else | |
3706 Dynarr_add (dst, ISO_CODE_CSI); | |
3707 Dynarr_add (dst, '0'); | |
3708 Dynarr_add (dst, ']'); | |
3709 if (flags) | |
3710 *flags &= ~CODING_STATE_R2L; | |
3711 } | |
3712 } | |
3713 | |
3714 /* If FLAGS is a null pointer or specifies a direction different from | |
3715 DIRECTION (which should be either CHARSET_RIGHT_TO_LEFT or | |
3716 CHARSET_LEFT_TO_RIGHT), output the appropriate switch-dir escape | |
3717 sequence to DST. Also update FLAGS if it is not a null pointer. | |
3718 If INTERNAL_P is set, we are outputting in internal format and | |
3719 need to handle the CSI differently. */ | |
3720 | |
3721 static void | |
3722 ensure_correct_direction (int direction, struct Lisp_Coding_System *codesys, | |
3723 unsigned_char_dynarr *dst, unsigned int *flags, | |
3724 int internal_p) | |
3725 { | |
3726 if ((!flags || (*flags & CODING_STATE_R2L)) && | |
3727 direction == CHARSET_LEFT_TO_RIGHT) | |
3728 restore_left_to_right_direction (codesys, dst, flags, internal_p); | |
3729 else if (!CODING_SYSTEM_ISO2022_NO_ISO6429 (codesys) | |
3730 && (!flags || !(*flags & CODING_STATE_R2L)) && | |
3731 direction == CHARSET_RIGHT_TO_LEFT) | |
3732 { | |
3733 if (CODING_SYSTEM_ISO2022_SEVEN (codesys)) | |
3734 { | |
3735 Dynarr_add (dst, ISO_CODE_ESC); | |
3736 Dynarr_add (dst, '['); | |
3737 } | |
3738 else if (internal_p) | |
3739 DECODE_ADD_BINARY_CHAR (ISO_CODE_CSI, dst); | |
3740 else | |
3741 Dynarr_add (dst, ISO_CODE_CSI); | |
3742 Dynarr_add (dst, '2'); | |
3743 Dynarr_add (dst, ']'); | |
3744 if (flags) | |
3745 *flags |= CODING_STATE_R2L; | |
3746 } | |
3747 } | |
3748 | |
3749 /* Convert ISO2022-format data to internal format. */ | |
3750 | |
3751 static void | |
3752 decode_coding_iso2022 (Lstream *decoding, CONST unsigned char *src, | |
3753 unsigned_char_dynarr *dst, unsigned int n) | |
3754 { | |
3755 unsigned char c; | |
3756 unsigned int flags, ch; | |
3757 int eol; | |
3758 struct decoding_stream *str = DECODING_STREAM_DATA (decoding); | |
3759 Lisp_Object coding_system = Qnil; | |
3760 unsigned_char_dynarr *real_dst = dst; | |
3761 | |
3762 CODING_STREAM_DECOMPOSE (str, flags, ch); | |
3763 eol = CODING_SYSTEM_EOL_TYPE (str->codesys); | |
3764 XSETCODING_SYSTEM (coding_system, str->codesys); | |
3765 | |
3766 if (flags & CODING_STATE_COMPOSITE) | |
3767 dst = str->iso2022.composite_chars; | |
3768 | |
3769 while (n--) | |
3770 { | |
3771 c = *src++; | |
3772 if (flags & CODING_STATE_ESCAPE) | |
3773 { /* Within ESC sequence */ | |
3774 int retval; | |
3775 | |
3776 retval = parse_iso2022_esc (coding_system, &str->iso2022, | |
3777 c, &flags, 1); | |
3778 | |
3779 if (retval) | |
3780 { | |
3781 switch (str->iso2022.esc) | |
3782 { | |
3783 case ISO_ESC_START_COMPOSITE: | |
3784 if (str->iso2022.composite_chars) | |
3785 Dynarr_reset (str->iso2022.composite_chars); | |
3786 else | |
3787 str->iso2022.composite_chars = Dynarr_new (unsigned char); | |
3788 dst = str->iso2022.composite_chars; | |
3789 break; | |
3790 case ISO_ESC_END_COMPOSITE: | |
3791 { | |
3792 Bufbyte comstr[MAX_EMCHAR_LEN]; | |
3793 Bytecount len; | |
3794 Emchar emch = lookup_composite_char (Dynarr_atp (dst, 0), | |
3795 Dynarr_length (dst)); | |
3796 dst = real_dst; | |
3797 len = set_charptr_emchar (comstr, emch); | |
3798 Dynarr_add_many (dst, comstr, len); | |
3799 break; | |
3800 } | |
3801 | |
3802 case ISO_ESC_LITERAL: | |
3803 DECODE_ADD_BINARY_CHAR (c, dst); | |
3804 break; | |
3805 | |
3806 default: | |
3807 /* Everything else handled already */ | |
3808 break; | |
3809 } | |
3810 } | |
3811 | |
3812 /* Attempted error recovery. */ | |
3813 if (str->iso2022.output_direction_sequence) | |
3814 ensure_correct_direction (flags & CODING_STATE_R2L ? | |
3815 CHARSET_RIGHT_TO_LEFT : | |
3816 CHARSET_LEFT_TO_RIGHT, | |
3817 str->codesys, dst, 0, 1); | |
3818 /* More error recovery. */ | |
3819 if (!retval || str->iso2022.output_literally) | |
3820 { | |
3821 /* Output the (possibly invalid) sequence */ | |
3822 int i; | |
3823 for (i = 0; i < str->iso2022.esc_bytes_index; i++) | |
3824 DECODE_ADD_BINARY_CHAR (str->iso2022.esc_bytes[i], dst); | |
3825 flags &= CODING_STATE_ISO2022_LOCK; | |
3826 if (!retval) | |
3827 n++, src--;/* Repeat the loop with the same character. */ | |
3828 else | |
3829 { | |
3830 /* No sense in reprocessing the final byte of the | |
3831 escape sequence; it could mess things up anyway. | |
3832 Just add it now. */ | |
3833 DECODE_ADD_BINARY_CHAR (c, dst); | |
3834 } | |
3835 } | |
3836 ch = 0; | |
3837 } | |
3838 else if (BYTE_C0_P (c) || BYTE_C1_P (c)) | |
3839 { /* Control characters */ | |
3840 | |
3841 /***** Error-handling *****/ | |
3842 | |
3843 /* If we were in the middle of a character, dump out the | |
3844 partial character. */ | |
3845 DECODE_OUTPUT_PARTIAL_CHAR (ch); | |
3846 | |
3847 /* If we just saw a single-shift character, dump it out. | |
3848 This may dump out the wrong sort of single-shift character, | |
3849 but least it will give an indication that something went | |
3850 wrong. */ | |
3851 if (flags & CODING_STATE_SS2) | |
3852 { | |
3853 DECODE_ADD_BINARY_CHAR (ISO_CODE_SS2, dst); | |
3854 flags &= ~CODING_STATE_SS2; | |
3855 } | |
3856 if (flags & CODING_STATE_SS3) | |
3857 { | |
3858 DECODE_ADD_BINARY_CHAR (ISO_CODE_SS3, dst); | |
3859 flags &= ~CODING_STATE_SS3; | |
3860 } | |
3861 | |
3862 /***** Now handle the control characters. *****/ | |
3863 | |
3864 /* Handle CR/LF */ | |
3865 DECODE_HANDLE_EOL_TYPE (eol, c, flags, dst); | |
3866 | |
3867 flags &= CODING_STATE_ISO2022_LOCK; | |
3868 | |
3869 if (!parse_iso2022_esc (coding_system, &str->iso2022, c, &flags, 1)) | |
3870 DECODE_ADD_BINARY_CHAR (c, dst); | |
3871 } | |
3872 else | |
3873 { /* Graphic characters */ | |
3874 Lisp_Object charset; | |
3875 int lb; | |
3876 int reg; | |
3877 | |
3878 DECODE_HANDLE_EOL_TYPE (eol, c, flags, dst); | |
3879 | |
3880 /* Now determine the charset. */ | |
3881 reg = ((flags & CODING_STATE_SS2) ? 2 | |
3882 : (flags & CODING_STATE_SS3) ? 3 | |
3883 : !BYTE_ASCII_P (c) ? str->iso2022.register_right | |
3884 : str->iso2022.register_left); | |
3885 charset = str->iso2022.charset[reg]; | |
3886 | |
3887 /* Error checking: */ | |
3888 if (NILP (charset) || str->iso2022.invalid_designated[reg] | |
3889 || (((c & 0x7F) == ' ' || (c & 0x7F) == ISO_CODE_DEL) | |
3890 && XCHARSET_CHARS (charset) == 94)) | |
3891 /* Mrmph. We are trying to invoke a register that has no | |
3892 or an invalid charset in it, or trying to add a character | |
3893 outside the range of the charset. Insert that char literally | |
3894 to preserve it for the output. */ | |
3895 { | |
3896 DECODE_OUTPUT_PARTIAL_CHAR (ch); | |
3897 DECODE_ADD_BINARY_CHAR (c, dst); | |
3898 } | |
3899 | |
3900 else | |
3901 { | |
3902 /* Things are probably hunky-dorey. */ | |
3903 | |
3904 /* Fetch reverse charset, maybe. */ | |
3905 if (((flags & CODING_STATE_R2L) && | |
3906 XCHARSET_DIRECTION (charset) == CHARSET_LEFT_TO_RIGHT) | |
3907 || | |
3908 (!(flags & CODING_STATE_R2L) && | |
3909 XCHARSET_DIRECTION (charset) == CHARSET_RIGHT_TO_LEFT)) | |
3910 { | |
3911 Lisp_Object new_charset = | |
3912 XCHARSET_REVERSE_DIRECTION_CHARSET (charset); | |
3913 if (!NILP (new_charset)) | |
3914 charset = new_charset; | |
3915 } | |
3916 | |
3917 lb = XCHARSET_LEADING_BYTE (charset); | |
3918 switch (XCHARSET_REP_BYTES (charset)) | |
3919 { | |
3920 case 1: /* ASCII */ | |
3921 DECODE_OUTPUT_PARTIAL_CHAR (ch); | |
3922 Dynarr_add (dst, c & 0x7F); | |
3923 break; | |
3924 | |
3925 case 2: /* one-byte official */ | |
3926 DECODE_OUTPUT_PARTIAL_CHAR (ch); | |
3927 Dynarr_add (dst, lb); | |
3928 Dynarr_add (dst, c | 0x80); | |
3929 break; | |
3930 | |
3931 case 3: /* one-byte private or two-byte official */ | |
3932 if (XCHARSET_PRIVATE_P (charset)) | |
3933 { | |
3934 DECODE_OUTPUT_PARTIAL_CHAR (ch); | |
3935 Dynarr_add (dst, PRE_LEADING_BYTE_PRIVATE_1); | |
3936 Dynarr_add (dst, lb); | |
3937 Dynarr_add (dst, c | 0x80); | |
3938 } | |
3939 else | |
3940 { | |
3941 if (ch) | |
3942 { | |
3943 Dynarr_add (dst, lb); | |
3944 Dynarr_add (dst, ch | 0x80); | |
3945 Dynarr_add (dst, c | 0x80); | |
3946 ch = 0; | |
3947 } | |
3948 else | |
3949 ch = c; | |
3950 } | |
3951 break; | |
3952 | |
3953 default: /* two-byte private */ | |
3954 if (ch) | |
3955 { | |
3956 Dynarr_add (dst, PRE_LEADING_BYTE_PRIVATE_2); | |
3957 Dynarr_add (dst, lb); | |
3958 Dynarr_add (dst, ch | 0x80); | |
3959 Dynarr_add (dst, c | 0x80); | |
3960 ch = 0; | |
3961 } | |
3962 else | |
3963 ch = c; | |
3964 } | |
3965 } | |
3966 | |
3967 if (!ch) | |
3968 flags &= CODING_STATE_ISO2022_LOCK; | |
3969 } | |
3970 | |
3971 label_continue_loop:; | |
3972 } | |
3973 | |
3974 if (flags & CODING_STATE_END) | |
3975 DECODE_OUTPUT_PARTIAL_CHAR (ch); | |
3976 | |
3977 CODING_STREAM_COMPOSE (str, flags, ch); | |
3978 } | |
3979 | |
3980 | |
3981 /***** ISO2022 encoder *****/ | |
3982 | |
3983 /* Designate CHARSET into register REG. */ | |
3984 | |
3985 static void | |
3986 iso2022_designate (Lisp_Object charset, unsigned char reg, | |
3987 struct encoding_stream *str, unsigned_char_dynarr *dst) | |
3988 { | |
3989 CONST char *inter94 = "()*+", *inter96= ",-./"; | |
3990 int type; | |
3991 unsigned char final; | |
3992 Lisp_Object old_charset = str->iso2022.charset[reg]; | |
3993 | |
3994 str->iso2022.charset[reg] = charset; | |
3995 if (!CHARSETP (charset)) | |
3996 /* charset might be an initial nil or t. */ | |
3997 return; | |
3998 type = XCHARSET_TYPE (charset); | |
3999 final = XCHARSET_FINAL (charset); | |
4000 if (!str->iso2022.force_charset_on_output[reg] && | |
4001 CHARSETP (old_charset) && | |
4002 XCHARSET_TYPE (old_charset) == type && | |
4003 XCHARSET_FINAL (old_charset) == final) | |
4004 return; | |
4005 | |
4006 str->iso2022.force_charset_on_output[reg] = 0; | |
4007 | |
4008 { | |
4009 charset_conversion_spec_dynarr *dyn = | |
4010 str->codesys->iso2022.output_conv; | |
4011 | |
4012 if (dyn) | |
4013 { | |
4014 int i; | |
4015 | |
4016 for (i = 0; i < Dynarr_length (dyn); i++) | |
4017 { | |
4018 struct charset_conversion_spec *spec = Dynarr_atp (dyn, i); | |
4019 if (EQ (charset, spec->from_charset)) | |
4020 charset = spec->to_charset; | |
4021 } | |
4022 } | |
4023 } | |
4024 | |
4025 Dynarr_add (dst, ISO_CODE_ESC); | |
4026 switch (type) | |
4027 { | |
4028 case CHARSET_TYPE_94: | |
4029 Dynarr_add (dst, inter94[reg]); | |
4030 break; | |
4031 case CHARSET_TYPE_96: | |
4032 Dynarr_add (dst, inter96[reg]); | |
4033 break; | |
4034 case CHARSET_TYPE_94X94: | |
4035 Dynarr_add (dst, '$'); | |
4036 if (reg != 0 | |
4037 || !(CODING_SYSTEM_ISO2022_SHORT (str->codesys)) | |
4038 || final < '@' | |
4039 || final > 'B') | |
4040 Dynarr_add (dst, inter94[reg]); | |
4041 break; | |
4042 case CHARSET_TYPE_96X96: | |
4043 Dynarr_add (dst, '$'); | |
4044 Dynarr_add (dst, inter96[reg]); | |
4045 break; | |
4046 } | |
4047 Dynarr_add (dst, final); | |
4048 } | |
4049 | |
4050 static void | |
4051 ensure_normal_shift (struct encoding_stream *str, unsigned_char_dynarr *dst) | |
4052 { | |
4053 if (str->iso2022.register_left != 0) | |
4054 { | |
4055 Dynarr_add (dst, ISO_CODE_SI); | |
4056 str->iso2022.register_left = 0; | |
4057 } | |
4058 } | |
4059 | |
4060 static void | |
4061 ensure_shift_out (struct encoding_stream *str, unsigned_char_dynarr *dst) | |
4062 { | |
4063 if (str->iso2022.register_left != 1) | |
4064 { | |
4065 Dynarr_add (dst, ISO_CODE_SO); | |
4066 str->iso2022.register_left = 1; | |
4067 } | |
4068 } | |
4069 | |
4070 /* Convert internally-formatted data to ISO2022 format. */ | |
4071 | |
4072 static void | |
4073 encode_coding_iso2022 (Lstream *encoding, CONST unsigned char *src, | |
4074 unsigned_char_dynarr *dst, unsigned int n) | |
4075 { | |
4076 unsigned char charmask, c; | |
4077 unsigned int flags, ch, eol; | |
4078 unsigned char char_boundary; | |
4079 struct encoding_stream *str = ENCODING_STREAM_DATA (encoding); | |
4080 struct Lisp_Coding_System *codesys = str->codesys; | |
4081 int i; | |
4082 Lisp_Object charset; | |
4083 int half; | |
4084 | |
4085 /* flags for handling composite chars. We do a little switcharoo | |
4086 on the source while we're outputting the composite char. */ | |
4087 unsigned int saved_n; | |
4088 CONST unsigned char *saved_src; | |
4089 int in_composite = 0; | |
4090 | |
4091 CODING_STREAM_DECOMPOSE (str, flags, ch); | |
4092 eol = CODING_SYSTEM_EOL_TYPE (str->codesys); | |
4093 char_boundary = str->iso2022.current_char_boundary; | |
4094 charset = str->iso2022.current_charset; | |
4095 half = str->iso2022.current_half; | |
4096 | |
4097 back_to_square_n: | |
4098 while (n--) | |
4099 { | |
4100 c = *src++; | |
4101 | |
4102 if (BYTE_ASCII_P (c)) | |
4103 { /* Processing ASCII character */ | |
4104 ch = 0; | |
4105 | |
4106 restore_left_to_right_direction (codesys, dst, &flags, 0); | |
4107 | |
4108 /* Make sure G0 contains ASCII */ | |
4109 if ((c > ' ' && c < ISO_CODE_DEL) || | |
4110 !CODING_SYSTEM_ISO2022_NO_ASCII_CNTL (codesys)) | |
4111 { | |
4112 ensure_normal_shift (str, dst); | |
4113 iso2022_designate (Vcharset_ascii, 0, str, dst); | |
4114 } | |
4115 | |
4116 /* If necessary, restore everything to the default state | |
4117 at end-of-line */ | |
4118 if (c == '\n' && | |
4119 !(CODING_SYSTEM_ISO2022_NO_ASCII_EOL (codesys))) | |
4120 { | |
4121 restore_left_to_right_direction (codesys, dst, &flags, 0); | |
4122 | |
4123 ensure_normal_shift (str, dst); | |
4124 | |
4125 for (i = 0; i < 4; i++) | |
4126 { | |
4127 Lisp_Object initial_charset = | |
4128 CODING_SYSTEM_ISO2022_INITIAL_CHARSET (codesys, i); | |
4129 iso2022_designate (initial_charset, i, str, dst); | |
4130 } | |
4131 } | |
4132 if (c == '\n') | |
4133 { | |
4134 if (eol != EOL_LF && eol != EOL_AUTODETECT) | |
4135 Dynarr_add (dst, '\r'); | |
4136 if (eol != EOL_CR) | |
4137 Dynarr_add (dst, c); | |
4138 } | |
4139 else | |
4140 { | |
4141 if (CODING_SYSTEM_ISO2022_ESCAPE_QUOTED (codesys) | |
4142 && fit_to_be_escape_quoted (c)) | |
4143 Dynarr_add (dst, ISO_CODE_ESC); | |
4144 Dynarr_add (dst, c); | |
4145 } | |
4146 char_boundary = 1; | |
4147 } | |
4148 | |
4149 else if (BUFBYTE_LEADING_BYTE_P (c) || BUFBYTE_LEADING_BYTE_P (ch)) | |
4150 { /* Processing Leading Byte */ | |
4151 ch = 0; | |
4152 charset = CHARSET_BY_LEADING_BYTE (c); | |
4153 if (c == PRE_LEADING_BYTE_PRIVATE_1 || | |
4154 c == PRE_LEADING_BYTE_PRIVATE_2) | |
4155 ch = c; | |
4156 else if (!EQ (charset, Vcharset_control_1) | |
4157 && !EQ (charset, Vcharset_composite)) | |
4158 { | |
4159 int reg; | |
4160 | |
4161 ensure_correct_direction (XCHARSET_DIRECTION (charset), | |
4162 codesys, dst, &flags, 0); | |
4163 | |
4164 /* Now determine which register to use. */ | |
4165 reg = -1; | |
4166 for (i = 0; i < 4; i++) | |
4167 { | |
4168 if (EQ (charset, str->iso2022.charset[i]) || | |
4169 EQ (charset, | |
4170 CODING_SYSTEM_ISO2022_INITIAL_CHARSET (codesys, i))) | |
4171 { | |
4172 reg = i; | |
4173 break; | |
4174 } | |
4175 } | |
4176 | |
4177 if (reg == -1) | |
4178 { | |
4179 if (XCHARSET_GRAPHIC (charset) != 0) | |
4180 { | |
4181 if (!NILP (str->iso2022.charset[1]) && | |
4182 (!CODING_SYSTEM_ISO2022_SEVEN (codesys) || | |
4183 CODING_SYSTEM_ISO2022_LOCK_SHIFT (codesys))) | |
4184 reg = 1; | |
4185 else if (!NILP (str->iso2022.charset[2])) | |
4186 reg = 2; | |
4187 else if (!NILP (str->iso2022.charset[3])) | |
4188 reg = 3; | |
4189 else | |
4190 reg = 0; | |
4191 } | |
4192 else | |
4193 reg = 0; | |
4194 } | |
4195 | |
4196 iso2022_designate (charset, reg, str, dst); | |
4197 | |
4198 /* Now invoke that register. */ | |
4199 switch (reg) | |
4200 { | |
4201 case 0: | |
4202 ensure_normal_shift (str, dst); | |
4203 half = 0; | |
4204 break; | |
4205 | |
4206 case 1: | |
4207 if (CODING_SYSTEM_ISO2022_SEVEN (codesys)) | |
4208 { | |
4209 ensure_shift_out (str, dst); | |
4210 half = 0; | |
4211 } | |
4212 else | |
4213 half = 1; | |
4214 break; | |
4215 | |
4216 case 2: | |
4217 if (CODING_SYSTEM_ISO2022_SEVEN (str->codesys)) | |
4218 { | |
4219 Dynarr_add (dst, ISO_CODE_ESC); | |
4220 Dynarr_add (dst, 'N'); | |
4221 half = 0; | |
4222 } | |
4223 else | |
4224 { | |
4225 Dynarr_add (dst, ISO_CODE_SS2); | |
4226 half = 1; | |
4227 } | |
4228 break; | |
4229 | |
4230 case 3: | |
4231 if (CODING_SYSTEM_ISO2022_SEVEN (str->codesys)) | |
4232 { | |
4233 Dynarr_add (dst, ISO_CODE_ESC); | |
4234 Dynarr_add (dst, 'O'); | |
4235 half = 0; | |
4236 } | |
4237 else | |
4238 { | |
4239 Dynarr_add (dst, ISO_CODE_SS3); | |
4240 half = 1; | |
4241 } | |
4242 break; | |
4243 | |
4244 default: | |
4245 abort (); | |
4246 } | |
4247 } | |
4248 char_boundary = 0; | |
4249 } | |
4250 else | |
4251 { /* Processing Non-ASCII character */ | |
4252 charmask = (half == 0 ? 0x7F : 0xFF); | |
4253 char_boundary = 1; | |
4254 if (EQ (charset, Vcharset_control_1)) | |
4255 { | |
4256 if (CODING_SYSTEM_ISO2022_ESCAPE_QUOTED (codesys) | |
4257 && fit_to_be_escape_quoted (c)) | |
4258 Dynarr_add (dst, ISO_CODE_ESC); | |
4259 /* you asked for it ... */ | |
4260 Dynarr_add (dst, c - 0x20); | |
4261 } | |
4262 else | |
4263 { | |
4264 switch (XCHARSET_REP_BYTES (charset)) | |
4265 { | |
4266 case 2: | |
4267 Dynarr_add (dst, c & charmask); | |
4268 break; | |
4269 case 3: | |
4270 if (XCHARSET_PRIVATE_P (charset)) | |
4271 { | |
4272 Dynarr_add (dst, c & charmask); | |
4273 ch = 0; | |
4274 } | |
4275 else if (ch) | |
4276 { | |
4277 if (EQ (charset, Vcharset_composite)) | |
4278 { | |
4279 if (in_composite) | |
4280 { | |
4281 /* #### Bother! We don't know how to | |
4282 handle this yet. */ | |
4283 Dynarr_add (dst, '~'); | |
4284 } | |
4285 else | |
4286 { | |
4287 Emchar emch = MAKE_CHAR (Vcharset_composite, | |
4288 ch & 0x7F, c & 0x7F); | |
4289 Lisp_Object lstr = composite_char_string (emch); | |
4290 saved_n = n; | |
4291 saved_src = src; | |
4292 in_composite = 1; | |
4293 src = XSTRING_DATA (lstr); | |
4294 n = XSTRING_LENGTH (lstr); | |
4295 Dynarr_add (dst, ISO_CODE_ESC); | |
4296 Dynarr_add (dst, '0'); /* start composing */ | |
4297 } | |
4298 } | |
4299 else | |
4300 { | |
4301 Dynarr_add (dst, ch & charmask); | |
4302 Dynarr_add (dst, c & charmask); | |
4303 } | |
4304 ch = 0; | |
4305 } | |
4306 else | |
4307 { | |
4308 ch = c; | |
4309 char_boundary = 0; | |
4310 } | |
4311 break; | |
4312 case 4: | |
4313 if (ch) | |
4314 { | |
4315 Dynarr_add (dst, ch & charmask); | |
4316 Dynarr_add (dst, c & charmask); | |
4317 ch = 0; | |
4318 } | |
4319 else | |
4320 { | |
4321 ch = c; | |
4322 char_boundary = 0; | |
4323 } | |
4324 break; | |
4325 default: | |
4326 abort (); | |
4327 } | |
4328 } | |
4329 } | |
4330 } | |
4331 | |
4332 if (in_composite) | |
4333 { | |
4334 n = saved_n; | |
4335 src = saved_src; | |
4336 in_composite = 0; | |
4337 Dynarr_add (dst, ISO_CODE_ESC); | |
4338 Dynarr_add (dst, '1'); /* end composing */ | |
4339 goto back_to_square_n; /* Wheeeeeeeee ..... */ | |
4340 } | |
4341 | |
4342 if (char_boundary && flags & CODING_STATE_END) | |
4343 { | |
4344 restore_left_to_right_direction (codesys, dst, &flags, 0); | |
4345 ensure_normal_shift (str, dst); | |
4346 for (i = 0; i < 4; i++) | |
4347 { | |
4348 Lisp_Object initial_charset = | |
4349 CODING_SYSTEM_ISO2022_INITIAL_CHARSET (codesys, i); | |
4350 iso2022_designate (initial_charset, i, str, dst); | |
4351 } | |
4352 } | |
4353 | |
4354 CODING_STREAM_COMPOSE (str, flags, ch); | |
4355 str->iso2022.current_char_boundary = char_boundary; | |
4356 str->iso2022.current_charset = charset; | |
4357 str->iso2022.current_half = half; | |
4358 | |
4359 /* Verbum caro factum est! */ | |
4360 } | |
4361 | |
4362 | |
4363 /************************************************************************/ | |
4364 /* No-conversion methods */ | |
4365 /************************************************************************/ | |
4366 | |
4367 /* This is used when reading in "binary" files -- i.e. files that may | |
4368 contain all 256 possible byte values and that are not to be | |
4369 interpreted as being in any particular decoding. */ | |
4370 static void | |
4371 decode_coding_no_conversion (Lstream *decoding, CONST unsigned char *src, | |
4372 unsigned_char_dynarr *dst, unsigned int n) | |
4373 { | |
4374 unsigned char c; | |
4375 unsigned int flags, ch; | |
4376 int eol; | |
4377 struct decoding_stream *str = DECODING_STREAM_DATA (decoding); | |
4378 | |
4379 CODING_STREAM_DECOMPOSE (str, flags, ch); | |
4380 eol = str->eol_type; | |
4381 | |
4382 while (n--) | |
4383 { | |
4384 c = *src++; | |
4385 | |
4386 DECODE_HANDLE_EOL_TYPE (eol, c, flags, dst); | |
4387 DECODE_ADD_BINARY_CHAR (c, dst); | |
4388 label_continue_loop:; | |
4389 } | |
4390 | |
4391 DECODE_HANDLE_END_OF_CONVERSION (flags, ch, dst); | |
4392 | |
4393 CODING_STREAM_COMPOSE (str, flags, ch); | |
4394 } | |
4395 | |
4396 static void | |
4397 encode_coding_no_conversion (Lstream *encoding, CONST unsigned char *src, | |
4398 unsigned_char_dynarr *dst, unsigned int n) | |
4399 { | |
4400 unsigned char c; | |
4401 struct encoding_stream *str = ENCODING_STREAM_DATA (encoding); | |
4402 unsigned int flags, ch, eol; | |
4403 | |
4404 CODING_STREAM_DECOMPOSE (str, flags, ch); | |
4405 eol = CODING_SYSTEM_EOL_TYPE (str->codesys); | |
4406 | |
4407 while (n--) | |
4408 { | |
4409 c = *src++; | |
4410 if (c == '\n') | |
4411 { | |
4412 if (eol != EOL_LF && eol != EOL_AUTODETECT) | |
4413 Dynarr_add (dst, '\r'); | |
4414 if (eol != EOL_CR) | |
4415 Dynarr_add (dst, '\n'); | |
4416 ch = 0; | |
4417 } | |
4418 else if (BYTE_ASCII_P (c)) | |
4419 { | |
4420 assert (ch == 0); | |
4421 Dynarr_add (dst, c); | |
4422 } | |
4423 else if (BUFBYTE_LEADING_BYTE_P (c)) | |
4424 { | |
4425 assert (ch == 0); | |
4426 if (c == LEADING_BYTE_LATIN_1 || c == LEADING_BYTE_CONTROL_1) | |
4427 ch = c; | |
4428 else | |
4429 Dynarr_add (dst, '~'); /* untranslatable character */ | |
4430 } | |
4431 else | |
4432 { | |
4433 if (ch == LEADING_BYTE_LATIN_1) | |
4434 Dynarr_add (dst, c); | |
4435 else if (ch == LEADING_BYTE_CONTROL_1) | |
4436 { | |
4437 assert (c < 0xC0); | |
4438 Dynarr_add (dst, c - 0x20); | |
4439 } | |
4440 /* else it should be the second or third byte of an | |
4441 untranslatable character, so ignore it */ | |
4442 ch = 0; | |
4443 } | |
4444 } | |
4445 | |
4446 CODING_STREAM_COMPOSE (str, flags, ch); | |
4447 } | |
4448 | |
4449 | |
4450 /************************************************************************/ | |
4451 /* Simple internal/external functions */ | |
4452 /************************************************************************/ | |
4453 | |
4454 static extbyte_dynarr *conversion_out_dynarr; | |
4455 static bufbyte_dynarr *conversion_in_dynarr; | |
4456 | |
4457 /* Determine coding system from coding format */ | |
4458 | |
4459 #define PATHNAME_CODING_SYSTEM \ | |
4460 ((NILP (Vpathname_coding_system) || \ | |
4461 (EQ ((Vpathname_coding_system), Qbinary))) ? \ | |
4462 Qnil : Fget_coding_system (Vpathname_coding_system)) | |
4463 | |
4464 /* #### not correct for all values of `fmt'! */ | |
4465 #define FMT_CODING_SYSTEM(fmt) \ | |
4466 (((fmt) == FORMAT_FILENAME) ? PATHNAME_CODING_SYSTEM : \ | |
4467 ((fmt) == FORMAT_CTEXT ) ? Fget_coding_system (Qctext) : \ | |
4468 ((fmt) == FORMAT_TERMINAL) ? PATHNAME_CODING_SYSTEM : \ | |
4469 Qnil) | |
4470 | |
4471 extern CONST Extbyte * | |
4472 convert_to_external_format (CONST Bufbyte *ptr, | |
4473 Bytecount len, | |
4474 Extcount *len_out, | |
4475 enum external_data_format fmt) | |
4476 { | |
4477 Lisp_Object coding_system = FMT_CODING_SYSTEM (fmt); | |
4478 | |
4479 if (!conversion_out_dynarr) | |
4480 conversion_out_dynarr = Dynarr_new (Extbyte); | |
4481 else | |
4482 Dynarr_reset (conversion_out_dynarr); | |
4483 | |
4484 if (NILP (coding_system)) | |
4485 { | |
4486 CONST Bufbyte *end = ptr + len; | |
4487 | |
4488 for (; ptr < end;) | |
4489 { | |
4490 Bufbyte c = | |
4491 (BYTE_ASCII_P (*ptr)) ? *ptr : | |
4492 (*ptr == LEADING_BYTE_CONTROL_1) ? (*(ptr+1) - 0x20) : | |
4493 (*ptr == LEADING_BYTE_LATIN_1) ? (*(ptr+1)) : | |
4494 '~'; | |
4495 | |
4496 Dynarr_add (conversion_out_dynarr, (Extbyte) c); | |
4497 INC_CHARPTR (ptr); | |
4498 } | |
4499 | |
4500 #ifdef ERROR_CHECK_BUFPOS | |
4501 assert (ptr == end); | |
4502 #endif | |
4503 } | |
4504 else | |
4505 { | |
4506 Lisp_Object instream = | |
4507 make_fixed_buffer_input_stream ((unsigned char *) ptr, len); | |
4508 Lisp_Object outstream = make_dynarr_output_stream | |
4509 ((unsigned_char_dynarr *) conversion_out_dynarr); | |
4510 struct gcpro gcpro1, gcpro2; | |
4511 char tempbuf[1024]; /* some random amount */ | |
4512 | |
4513 outstream = | |
4514 make_encoding_output_stream (XLSTREAM (outstream), coding_system); | |
4515 GCPRO2 (instream, outstream); /* Necessary?? */ | |
4516 while (1) | |
4517 { | |
4518 int size_in_bytes = Lstream_read (XLSTREAM (instream), | |
4519 tempbuf, sizeof (tempbuf)); | |
4520 if (!size_in_bytes) | |
4521 break; | |
4522 Lstream_write (XLSTREAM (outstream), tempbuf, size_in_bytes); | |
4523 } | |
4524 Lstream_close (XLSTREAM (instream)); | |
4525 Lstream_close (XLSTREAM (outstream)); | |
4526 UNGCPRO; | |
4527 } | |
4528 | |
4529 *len_out = Dynarr_length (conversion_out_dynarr); | |
4530 Dynarr_add (conversion_out_dynarr, 0); /* remember to zero-terminate! */ | |
4531 return Dynarr_atp (conversion_out_dynarr, 0); | |
4532 } | |
4533 | |
4534 extern CONST Bufbyte * | |
4535 convert_from_external_format (CONST Extbyte *ptr, | |
4536 Extcount len, | |
4537 Bytecount *len_out, | |
4538 enum external_data_format fmt) | |
4539 { | |
4540 Lisp_Object coding_system = FMT_CODING_SYSTEM (fmt); | |
4541 | |
4542 if (!conversion_in_dynarr) | |
4543 conversion_in_dynarr = Dynarr_new (Bufbyte); | |
4544 else | |
4545 Dynarr_reset (conversion_in_dynarr); | |
4546 | |
4547 if (NILP (coding_system)) | |
4548 { | |
4549 CONST Extbyte *end = ptr + len; | |
4550 for (; ptr < end; ptr++) | |
4551 { | |
4552 Extbyte c = *ptr; | |
4553 DECODE_ADD_BINARY_CHAR (c, conversion_in_dynarr); | |
4554 } | |
4555 } | |
4556 else | |
4557 { | |
4558 Lisp_Object instream = | |
4559 make_fixed_buffer_input_stream ((unsigned char *) ptr, len); | |
4560 Lisp_Object outstream = make_dynarr_output_stream | |
4561 ((unsigned_char_dynarr *) conversion_in_dynarr); | |
4562 struct gcpro gcpro1, gcpro2; | |
4563 char tempbuf[1024]; /* some random amount */ | |
4564 | |
4565 outstream = | |
4566 make_decoding_output_stream (XLSTREAM (outstream), coding_system); | |
4567 GCPRO2 (instream, outstream); /* Necessary?? */ | |
4568 while (1) | |
4569 { | |
4570 int size_in_bytes = Lstream_read (XLSTREAM (instream), | |
4571 tempbuf, sizeof (tempbuf)); | |
4572 if (!size_in_bytes) | |
4573 break; | |
4574 Lstream_write (XLSTREAM (outstream), tempbuf, size_in_bytes); | |
4575 } | |
4576 Lstream_close (XLSTREAM (instream)); | |
4577 Lstream_close (XLSTREAM (outstream)); | |
4578 UNGCPRO; | |
4579 } | |
4580 | |
4581 *len_out = Dynarr_length (conversion_in_dynarr); | |
4582 Dynarr_add (conversion_in_dynarr, 0); /* remember to zero-terminate! */ | |
4583 return Dynarr_atp (conversion_in_dynarr, 0); | |
4584 } | |
4585 | |
4586 | |
4587 /************************************************************************/ | |
4588 /* Initialization */ | |
4589 /************************************************************************/ | |
4590 | |
4591 void | |
4592 syms_of_mule_coding (void) | |
4593 { | |
4594 defsymbol (&Qfile_coding_system, "file-coding-system"); | |
4595 deferror (&Qcoding_system_error, "coding-system-error", | |
4596 "Coding-system error", Qio_error); | |
4597 | |
4598 DEFSUBR (Fcoding_system_p); | |
4599 DEFSUBR (Ffind_coding_system); | |
4600 DEFSUBR (Fget_coding_system); | |
4601 DEFSUBR (Fcoding_system_list); | |
4602 DEFSUBR (Fcoding_system_name); | |
4603 DEFSUBR (Fmake_coding_system); | |
4604 DEFSUBR (Fcopy_coding_system); | |
4605 DEFSUBR (Fsubsidiary_coding_system); | |
4606 | |
4607 DEFSUBR (Fcoding_system_type); | |
4608 DEFSUBR (Fcoding_system_doc_string); | |
4609 DEFSUBR (Fcoding_system_property); | |
4610 | |
4611 DEFSUBR (Fcoding_category_list); | |
4612 DEFSUBR (Fset_coding_priority_list); | |
4613 DEFSUBR (Fcoding_priority_list); | |
4614 DEFSUBR (Fset_coding_category_system); | |
4615 DEFSUBR (Fcoding_category_system); | |
4616 | |
4617 DEFSUBR (Fdetect_coding_region); | |
4618 DEFSUBR (Fdecode_coding_region); | |
4619 DEFSUBR (Fencode_coding_region); | |
4620 DEFSUBR (Fdecode_shift_jis_char); | |
4621 DEFSUBR (Fencode_shift_jis_char); | |
4622 DEFSUBR (Fdecode_big5_char); | |
4623 DEFSUBR (Fencode_big5_char); | |
4624 | |
4625 defsymbol (&Qcoding_system_p, "coding-system-p"); | |
4626 | |
4627 defsymbol (&Qbig5, "big5"); | |
4628 defsymbol (&Qshift_jis, "shift-jis"); | |
4629 defsymbol (&Qno_conversion, "no-conversion"); | |
4630 defsymbol (&Qccl, "ccl"); | |
4631 defsymbol (&Qiso2022, "iso2022"); | |
4632 | |
4633 defsymbol (&Qmnemonic, "mnemonic"); | |
4634 defsymbol (&Qeol_type, "eol-type"); | |
4635 defsymbol (&Qpost_read_conversion, "post-read-conversion"); | |
4636 defsymbol (&Qpre_write_conversion, "pre-write-conversion"); | |
4637 | |
4638 defsymbol (&Qcr, "cr"); | |
4639 defsymbol (&Qlf, "lf"); | |
4640 defsymbol (&Qcrlf, "crlf"); | |
4641 defsymbol (&Qeol_cr, "eol-cr"); | |
4642 defsymbol (&Qeol_lf, "eol-lf"); | |
4643 defsymbol (&Qeol_crlf, "eol-crlf"); | |
4644 | |
4645 defsymbol (&Qcharset_g0, "charset-g0"); | |
4646 defsymbol (&Qcharset_g1, "charset-g1"); | |
4647 defsymbol (&Qcharset_g2, "charset-g2"); | |
4648 defsymbol (&Qcharset_g3, "charset-g3"); | |
4649 defsymbol (&Qforce_g0_on_output, "force-g0-on-output"); | |
4650 defsymbol (&Qforce_g1_on_output, "force-g1-on-output"); | |
4651 defsymbol (&Qforce_g2_on_output, "force-g2-on-output"); | |
4652 defsymbol (&Qforce_g3_on_output, "force-g3-on-output"); | |
4653 defsymbol (&Qshort, "short"); | |
4654 defsymbol (&Qno_ascii_eol, "no-ascii-eol"); | |
4655 defsymbol (&Qno_ascii_cntl, "no-ascii-cntl"); | |
4656 defsymbol (&Qseven, "seven"); | |
4657 defsymbol (&Qlock_shift, "lock-shift"); | |
4658 defsymbol (&Qno_iso6429, "no-iso6429"); | |
4659 defsymbol (&Qescape_quoted, "escape-quoted"); | |
4660 defsymbol (&Qinput_charset_conversion, "input-charset-conversion"); | |
4661 defsymbol (&Qoutput_charset_conversion, "output-charset-conversion"); | |
4662 | |
4663 defsymbol (&Qencode, "encode"); | |
4664 defsymbol (&Qdecode, "decode"); | |
4665 | |
4666 defsymbol (&Qctext, "ctext"); | |
4667 | |
4668 defsymbol (&coding_category_symbol[CODING_CATEGORY_SHIFT_JIS], | |
4669 "shift-jis"); | |
4670 defsymbol (&coding_category_symbol[CODING_CATEGORY_ISO_7], | |
4671 "iso-7"); | |
4672 defsymbol (&coding_category_symbol[CODING_CATEGORY_ISO_8_DESIGNATE], | |
4673 "iso-8-designate"); | |
4674 defsymbol (&coding_category_symbol[CODING_CATEGORY_ISO_8_1], | |
4675 "iso-8-1"); | |
4676 defsymbol (&coding_category_symbol[CODING_CATEGORY_ISO_8_2], | |
4677 "iso-8-2"); | |
4678 defsymbol (&coding_category_symbol[CODING_CATEGORY_ISO_LOCK_SHIFT], | |
4679 "iso-lock-shift"); | |
4680 defsymbol (&coding_category_symbol[CODING_CATEGORY_BIG5], | |
4681 "big5"); | |
4682 defsymbol (&coding_category_symbol[CODING_CATEGORY_NO_CONVERSION], | |
4683 "no-conversion"); | |
4684 } | |
4685 | |
4686 void | |
4687 lstream_type_create_mule_coding (void) | |
4688 { | |
4689 LSTREAM_HAS_METHOD (decoding, reader); | |
4690 LSTREAM_HAS_METHOD (decoding, writer); | |
4691 LSTREAM_HAS_METHOD (decoding, rewinder); | |
4692 LSTREAM_HAS_METHOD (decoding, seekable_p); | |
4693 LSTREAM_HAS_METHOD (decoding, flusher); | |
4694 LSTREAM_HAS_METHOD (decoding, closer); | |
4695 LSTREAM_HAS_METHOD (decoding, marker); | |
4696 | |
4697 LSTREAM_HAS_METHOD (encoding, reader); | |
4698 LSTREAM_HAS_METHOD (encoding, writer); | |
4699 LSTREAM_HAS_METHOD (encoding, rewinder); | |
4700 LSTREAM_HAS_METHOD (encoding, seekable_p); | |
4701 LSTREAM_HAS_METHOD (encoding, flusher); | |
4702 LSTREAM_HAS_METHOD (encoding, closer); | |
4703 LSTREAM_HAS_METHOD (encoding, marker); | |
4704 } | |
4705 | |
4706 void | |
4707 vars_of_mule_coding (void) | |
4708 { | |
4709 int i; | |
4710 | |
4711 /* Initialize to something reasonable ... */ | |
4712 for (i = 0; i <= CODING_CATEGORY_LAST; i++) | |
4713 { | |
4714 coding_category_system[i] = Qnil; | |
4715 coding_category_by_priority[i] = i; | |
4716 } | |
4717 | |
4718 DEFVAR_LISP ("keyboard-coding-system", &Vkeyboard_coding_system /* | |
4719 Coding system used for TTY keyboard input. | |
4720 Not used under a windowing system. | |
4721 */ ); | |
4722 Vkeyboard_coding_system = Qnil; | |
4723 | |
4724 DEFVAR_LISP ("terminal-coding-system", &Vterminal_coding_system /* | |
4725 Coding system used for TTY display output. | |
4726 Not used under a windowing system. | |
4727 */ ); | |
4728 Vterminal_coding_system = Qnil; | |
4729 | |
4730 DEFVAR_LISP ("process-input-coding-system", &Vprocess_input_coding_system /* | |
4731 Default coding system used by C process routines for inputting data. | |
4732 This can be changed for a particular process using | |
4733 `set-process-input-coding-system'. | |
4734 */ ); | |
4735 Vprocess_input_coding_system = Qnil; | |
4736 | |
4737 DEFVAR_LISP ("process-output-coding-system", | |
4738 &Vprocess_output_coding_system /* | |
4739 Default coding system used by C process routines for outputting data. | |
4740 This can be changed for a particular process using | |
4741 `set-process-output-coding-system'. | |
4742 */ ); | |
4743 Vprocess_output_coding_system = Qnil; | |
4744 | |
4745 DEFVAR_LISP ("pathname-coding-system", &Vpathname_coding_system /* | |
4746 Coding system used to convert pathnames when accessing files. | |
4747 */ ); | |
4748 Vpathname_coding_system = Qnil; | |
4749 } | |
4750 | |
4751 void | |
4752 complex_vars_of_mule_coding (void) | |
4753 { | |
4754 staticpro (&Vcoding_system_hashtable); | |
4755 Vcoding_system_hashtable = make_lisp_hashtable (50, HASHTABLE_NONWEAK, | |
4756 HASHTABLE_EQ); | |
4757 | |
4758 the_codesys_prop_dynarr = Dynarr_new (struct codesys_prop); | |
4759 | |
4760 #define DEFINE_CODESYS_PROP(Prop_Type, Sym) do \ | |
4761 { \ | |
4762 struct codesys_prop csp; \ | |
4763 csp.sym = (Sym); \ | |
4764 csp.prop_type = (Prop_Type); \ | |
4765 Dynarr_add (the_codesys_prop_dynarr, csp); \ | |
4766 } while (0) | |
4767 | |
4768 DEFINE_CODESYS_PROP (CODESYS_PROP_ALL_OK, Qmnemonic); | |
4769 DEFINE_CODESYS_PROP (CODESYS_PROP_ALL_OK, Qeol_type); | |
4770 DEFINE_CODESYS_PROP (CODESYS_PROP_ALL_OK, Qeol_cr); | |
4771 DEFINE_CODESYS_PROP (CODESYS_PROP_ALL_OK, Qeol_crlf); | |
4772 DEFINE_CODESYS_PROP (CODESYS_PROP_ALL_OK, Qeol_lf); | |
4773 DEFINE_CODESYS_PROP (CODESYS_PROP_ALL_OK, Qpost_read_conversion); | |
4774 DEFINE_CODESYS_PROP (CODESYS_PROP_ALL_OK, Qpre_write_conversion); | |
4775 | |
4776 DEFINE_CODESYS_PROP (CODESYS_PROP_ISO2022, Qcharset_g0); | |
4777 DEFINE_CODESYS_PROP (CODESYS_PROP_ISO2022, Qcharset_g1); | |
4778 DEFINE_CODESYS_PROP (CODESYS_PROP_ISO2022, Qcharset_g2); | |
4779 DEFINE_CODESYS_PROP (CODESYS_PROP_ISO2022, Qcharset_g3); | |
4780 DEFINE_CODESYS_PROP (CODESYS_PROP_ISO2022, Qforce_g0_on_output); | |
4781 DEFINE_CODESYS_PROP (CODESYS_PROP_ISO2022, Qforce_g1_on_output); | |
4782 DEFINE_CODESYS_PROP (CODESYS_PROP_ISO2022, Qforce_g2_on_output); | |
4783 DEFINE_CODESYS_PROP (CODESYS_PROP_ISO2022, Qforce_g3_on_output); | |
4784 DEFINE_CODESYS_PROP (CODESYS_PROP_ISO2022, Qshort); | |
4785 DEFINE_CODESYS_PROP (CODESYS_PROP_ISO2022, Qno_ascii_eol); | |
4786 DEFINE_CODESYS_PROP (CODESYS_PROP_ISO2022, Qno_ascii_cntl); | |
4787 DEFINE_CODESYS_PROP (CODESYS_PROP_ISO2022, Qseven); | |
4788 DEFINE_CODESYS_PROP (CODESYS_PROP_ISO2022, Qlock_shift); | |
4789 DEFINE_CODESYS_PROP (CODESYS_PROP_ISO2022, Qno_iso6429); | |
4790 DEFINE_CODESYS_PROP (CODESYS_PROP_ISO2022, Qescape_quoted); | |
4791 DEFINE_CODESYS_PROP (CODESYS_PROP_ISO2022, Qinput_charset_conversion); | |
4792 DEFINE_CODESYS_PROP (CODESYS_PROP_ISO2022, Qoutput_charset_conversion); | |
4793 | |
4794 DEFINE_CODESYS_PROP (CODESYS_PROP_CCL, Qencode); | |
4795 DEFINE_CODESYS_PROP (CODESYS_PROP_CCL, Qdecode); | |
4796 | |
4797 /* Need to create this here or we're really screwed. */ | |
4798 Fmake_coding_system (Qno_conversion, Qno_conversion, build_string ("No conversion"), | |
4799 list2 (Qmnemonic, build_string ("Noconv"))); | |
4800 | |
4801 Fcopy_coding_system (Fcoding_system_property (Qno_conversion, Qeol_lf), | |
4802 Qbinary); | |
4803 | |
4804 /* Need this for bootstrapping */ | |
4805 coding_category_system[CODING_CATEGORY_NO_CONVERSION] = | |
4806 Fget_coding_system (Qno_conversion); | |
4807 } |