371
|
1 /* Copyright (C) 1985, 1986, 1987, 1988, 1990, 1992
|
0
|
2 Free Software Foundation, Inc.
|
|
3
|
371
|
4 This file is part of XEmacs.
|
0
|
5
|
371
|
6 XEmacs is free software; you can redistribute it and/or modify it
|
|
7 under the terms of the GNU General Public License as published by the
|
|
8 Free Software Foundation; either version 2, or (at your option) any
|
|
9 later version.
|
0
|
10
|
371
|
11 XEmacs is distributed in the hope that it will be useful, but WITHOUT
|
|
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
14 for more details.
|
0
|
15
|
371
|
16 You should have received a copy of the GNU General Public License
|
|
17 along with XEmacs; see the file COPYING. If not, write to
|
|
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
19 Boston, MA 02111-1307, USA. */
|
0
|
20
|
371
|
21 /* Synched up with: FSF 19.31. */
|
0
|
22
|
|
23
|
|
24 /*
|
|
25 * unexec.c - Convert a running program into an a.out file.
|
|
26 *
|
|
27 * Author: Spencer W. Thomas
|
|
28 * Computer Science Dept.
|
|
29 * University of Utah
|
|
30 * Date: Tue Mar 2 1982
|
|
31 * Modified heavily since then.
|
|
32 *
|
|
33 * Synopsis:
|
371
|
34 * unexec (new_name, a_name, data_start, bss_start, entry_address)
|
|
35 * char *new_name, *a_name;
|
|
36 * unsigned data_start, bss_start, entry_address;
|
|
37 *
|
|
38 * Takes a snapshot of the program and makes an a.out format file in the
|
|
39 * file named by the string argument new_name.
|
|
40 * If a_name is non-NULL, the symbol table will be taken from the given file.
|
|
41 * On some machines, an existing a_name file is required.
|
|
42 *
|
|
43 * The boundaries within the a.out file may be adjusted with the data_start
|
|
44 * and bss_start arguments. Either or both may be given as 0 for defaults.
|
|
45 *
|
|
46 * Data_start gives the boundary between the text segment and the data
|
|
47 * segment of the program. The text segment can contain shared, read-only
|
|
48 * program code and literal data, while the data segment is always unshared
|
|
49 * and unprotected. Data_start gives the lowest unprotected address.
|
|
50 * The value you specify may be rounded down to a suitable boundary
|
|
51 * as required by the machine you are using.
|
|
52 *
|
|
53 * Specifying zero for data_start means the boundary between text and data
|
|
54 * should not be the same as when the program was loaded.
|
|
55 * If NO_REMAP is defined, the argument data_start is ignored and the
|
|
56 * segment boundaries are never changed.
|
0
|
57 *
|
371
|
58 * Bss_start indicates how much of the data segment is to be saved in the
|
|
59 * a.out file and restored when the program is executed. It gives the lowest
|
|
60 * unsaved address, and is rounded up to a page boundary. The default when 0
|
|
61 * is given assumes that the entire data segment is to be stored, including
|
|
62 * the previous data and bss as well as any additional storage allocated with
|
|
63 * break (2).
|
|
64 *
|
|
65 * The new file is set up to start at entry_address.
|
|
66 *
|
|
67 * If you make improvements I'd like to get them too.
|
|
68 * harpo!utah-cs!thomas, thomas@Utah-20
|
|
69 *
|
|
70 */
|
|
71
|
|
72 /* Even more heavily modified by james@bigtex.cactus.org of Dell Computer Co.
|
|
73 * ELF support added.
|
|
74 *
|
|
75 * Basic theory: the data space of the running process needs to be
|
|
76 * dumped to the output file. Normally we would just enlarge the size
|
|
77 * of .data, scooting everything down. But we can't do that in ELF,
|
|
78 * because there is often something between the .data space and the
|
|
79 * .bss space.
|
|
80 *
|
|
81 * In the temacs dump below, notice that the Global Offset Table
|
|
82 * (.got) and the Dynamic link data (.dynamic) come between .data1 and
|
|
83 * .bss. It does not work to overlap .data with these fields.
|
0
|
84 *
|
371
|
85 * The solution is to create a new .data segment. This segment is
|
|
86 * filled with data from the current process. Since the contents of
|
|
87 * various sections refer to sections by index, the new .data segment
|
|
88 * is made the last in the table to avoid changing any existing index.
|
|
89
|
|
90 * This is an example of how the section headers are changed. "Addr"
|
|
91 * is a process virtual address. "Offset" is a file offset.
|
|
92
|
|
93 raid:/nfs/raid/src/dist-18.56/src> dump -h temacs
|
|
94
|
|
95 temacs:
|
|
96
|
|
97 **** SECTION HEADER TABLE ****
|
|
98 [No] Type Flags Addr Offset Size Name
|
|
99 Link Info Adralgn Entsize
|
|
100
|
|
101 [1] 1 2 0x80480d4 0xd4 0x13 .interp
|
|
102 0 0 0x1 0
|
|
103
|
|
104 [2] 5 2 0x80480e8 0xe8 0x388 .hash
|
|
105 3 0 0x4 0x4
|
|
106
|
|
107 [3] 11 2 0x8048470 0x470 0x7f0 .dynsym
|
|
108 4 1 0x4 0x10
|
|
109
|
|
110 [4] 3 2 0x8048c60 0xc60 0x3ad .dynstr
|
|
111 0 0 0x1 0
|
|
112
|
|
113 [5] 9 2 0x8049010 0x1010 0x338 .rel.plt
|
|
114 3 7 0x4 0x8
|
|
115
|
|
116 [6] 1 6 0x8049348 0x1348 0x3 .init
|
|
117 0 0 0x4 0
|
|
118
|
|
119 [7] 1 6 0x804934c 0x134c 0x680 .plt
|
|
120 0 0 0x4 0x4
|
|
121
|
|
122 [8] 1 6 0x80499cc 0x19cc 0x3c56f .text
|
|
123 0 0 0x4 0
|
|
124
|
|
125 [9] 1 6 0x8085f3c 0x3df3c 0x3 .fini
|
|
126 0 0 0x4 0
|
|
127
|
|
128 [10] 1 2 0x8085f40 0x3df40 0x69c .rodata
|
|
129 0 0 0x4 0
|
|
130
|
|
131 [11] 1 2 0x80865dc 0x3e5dc 0xd51 .rodata1
|
|
132 0 0 0x4 0
|
|
133
|
|
134 [12] 1 3 0x8088330 0x3f330 0x20afc .data
|
|
135 0 0 0x4 0
|
|
136
|
|
137 [13] 1 3 0x80a8e2c 0x5fe2c 0x89d .data1
|
|
138 0 0 0x4 0
|
|
139
|
|
140 [14] 1 3 0x80a96cc 0x606cc 0x1a8 .got
|
|
141 0 0 0x4 0x4
|
|
142
|
|
143 [15] 6 3 0x80a9874 0x60874 0x80 .dynamic
|
|
144 4 0 0x4 0x8
|
|
145
|
|
146 [16] 8 3 0x80a98f4 0x608f4 0x449c .bss
|
|
147 0 0 0x4 0
|
|
148
|
|
149 [17] 2 0 0 0x608f4 0x9b90 .symtab
|
|
150 18 371 0x4 0x10
|
|
151
|
|
152 [18] 3 0 0 0x6a484 0x8526 .strtab
|
|
153 0 0 0x1 0
|
|
154
|
|
155 [19] 3 0 0 0x729aa 0x93 .shstrtab
|
|
156 0 0 0x1 0
|
|
157
|
|
158 [20] 1 0 0 0x72a3d 0x68b7 .comment
|
|
159 0 0 0x1 0
|
|
160
|
|
161 raid:/nfs/raid/src/dist-18.56/src> dump -h xemacs
|
|
162
|
|
163 xemacs:
|
|
164
|
|
165 **** SECTION HEADER TABLE ****
|
|
166 [No] Type Flags Addr Offset Size Name
|
|
167 Link Info Adralgn Entsize
|
|
168
|
|
169 [1] 1 2 0x80480d4 0xd4 0x13 .interp
|
|
170 0 0 0x1 0
|
|
171
|
|
172 [2] 5 2 0x80480e8 0xe8 0x388 .hash
|
|
173 3 0 0x4 0x4
|
|
174
|
|
175 [3] 11 2 0x8048470 0x470 0x7f0 .dynsym
|
|
176 4 1 0x4 0x10
|
|
177
|
|
178 [4] 3 2 0x8048c60 0xc60 0x3ad .dynstr
|
|
179 0 0 0x1 0
|
|
180
|
|
181 [5] 9 2 0x8049010 0x1010 0x338 .rel.plt
|
|
182 3 7 0x4 0x8
|
|
183
|
|
184 [6] 1 6 0x8049348 0x1348 0x3 .init
|
|
185 0 0 0x4 0
|
|
186
|
|
187 [7] 1 6 0x804934c 0x134c 0x680 .plt
|
|
188 0 0 0x4 0x4
|
|
189
|
|
190 [8] 1 6 0x80499cc 0x19cc 0x3c56f .text
|
|
191 0 0 0x4 0
|
|
192
|
|
193 [9] 1 6 0x8085f3c 0x3df3c 0x3 .fini
|
|
194 0 0 0x4 0
|
|
195
|
|
196 [10] 1 2 0x8085f40 0x3df40 0x69c .rodata
|
|
197 0 0 0x4 0
|
|
198
|
|
199 [11] 1 2 0x80865dc 0x3e5dc 0xd51 .rodata1
|
|
200 0 0 0x4 0
|
|
201
|
|
202 [12] 1 3 0x8088330 0x3f330 0x20afc .data
|
|
203 0 0 0x4 0
|
|
204
|
|
205 [13] 1 3 0x80a8e2c 0x5fe2c 0x89d .data1
|
|
206 0 0 0x4 0
|
|
207
|
|
208 [14] 1 3 0x80a96cc 0x606cc 0x1a8 .got
|
|
209 0 0 0x4 0x4
|
|
210
|
|
211 [15] 6 3 0x80a9874 0x60874 0x80 .dynamic
|
|
212 4 0 0x4 0x8
|
|
213
|
|
214 [16] 8 3 0x80c6800 0x7d800 0 .bss
|
|
215 0 0 0x4 0
|
|
216
|
|
217 [17] 2 0 0 0x7d800 0x9b90 .symtab
|
|
218 18 371 0x4 0x10
|
|
219
|
|
220 [18] 3 0 0 0x87390 0x8526 .strtab
|
|
221 0 0 0x1 0
|
|
222
|
|
223 [19] 3 0 0 0x8f8b6 0x93 .shstrtab
|
|
224 0 0 0x1 0
|
|
225
|
|
226 [20] 1 0 0 0x8f949 0x68b7 .comment
|
|
227 0 0 0x1 0
|
|
228
|
|
229 [21] 1 3 0x80a98f4 0x608f4 0x1cf0c .data
|
|
230 0 0 0x4 0
|
|
231
|
|
232 * This is an example of how the file header is changed. "Shoff" is
|
|
233 * the section header offset within the file. Since that table is
|
|
234 * after the new .data section, it is moved. "Shnum" is the number of
|
|
235 * sections, which we increment.
|
0
|
236 *
|
371
|
237 * "Phoff" is the file offset to the program header. "Phentsize" and
|
|
238 * "Shentsz" are the program and section header entries sizes respectively.
|
|
239 * These can be larger than the apparent struct sizes.
|
|
240
|
|
241 raid:/nfs/raid/src/dist-18.56/src> dump -f temacs
|
|
242
|
|
243 temacs:
|
|
244
|
|
245 **** ELF HEADER ****
|
|
246 Class Data Type Machine Version
|
|
247 Entry Phoff Shoff Flags Ehsize
|
|
248 Phentsize Phnum Shentsz Shnum Shstrndx
|
|
249
|
|
250 1 1 2 3 1
|
|
251 0x80499cc 0x34 0x792f4 0 0x34
|
|
252 0x20 5 0x28 21 19
|
|
253
|
|
254 raid:/nfs/raid/src/dist-18.56/src> dump -f xemacs
|
|
255
|
|
256 xemacs:
|
|
257
|
|
258 **** ELF HEADER ****
|
|
259 Class Data Type Machine Version
|
|
260 Entry Phoff Shoff Flags Ehsize
|
|
261 Phentsize Phnum Shentsz Shnum Shstrndx
|
|
262
|
|
263 1 1 2 3 1
|
|
264 0x80499cc 0x34 0x96200 0 0x34
|
|
265 0x20 5 0x28 22 19
|
|
266
|
|
267 * These are the program headers. "Offset" is the file offset to the
|
|
268 * segment. "Vaddr" is the memory load address. "Filesz" is the
|
|
269 * segment size as it appears in the file, and "Memsz" is the size in
|
|
270 * memory. Below, the third segment is the code and the fourth is the
|
|
271 * data: the difference between Filesz and Memsz is .bss
|
|
272
|
|
273 raid:/nfs/raid/src/dist-18.56/src> dump -o temacs
|
|
274
|
|
275 temacs:
|
|
276 ***** PROGRAM EXECUTION HEADER *****
|
|
277 Type Offset Vaddr Paddr
|
|
278 Filesz Memsz Flags Align
|
|
279
|
|
280 6 0x34 0x8048034 0
|
|
281 0xa0 0xa0 5 0
|
|
282
|
|
283 3 0xd4 0 0
|
|
284 0x13 0 4 0
|
|
285
|
|
286 1 0x34 0x8048034 0
|
|
287 0x3f2f9 0x3f2f9 5 0x1000
|
|
288
|
|
289 1 0x3f330 0x8088330 0
|
|
290 0x215c4 0x25a60 7 0x1000
|
|
291
|
|
292 2 0x60874 0x80a9874 0
|
|
293 0x80 0 7 0
|
|
294
|
|
295 raid:/nfs/raid/src/dist-18.56/src> dump -o xemacs
|
|
296
|
|
297 xemacs:
|
|
298 ***** PROGRAM EXECUTION HEADER *****
|
|
299 Type Offset Vaddr Paddr
|
|
300 Filesz Memsz Flags Align
|
|
301
|
|
302 6 0x34 0x8048034 0
|
|
303 0xa0 0xa0 5 0
|
|
304
|
|
305 3 0xd4 0 0
|
|
306 0x13 0 4 0
|
|
307
|
|
308 1 0x34 0x8048034 0
|
|
309 0x3f2f9 0x3f2f9 5 0x1000
|
|
310
|
|
311 1 0x3f330 0x8088330 0
|
|
312 0x3e4d0 0x3e4d0 7 0x1000
|
|
313
|
|
314 2 0x60874 0x80a9874 0
|
|
315 0x80 0 7 0
|
|
316
|
|
317
|
0
|
318 */
|
|
319
|
371
|
320 /* Modified by wtien@urbana.mcd.mot.com of Motorola Inc.
|
|
321 *
|
|
322 * The above mechanism does not work if the unexeced ELF file is being
|
|
323 * re-layout by other applications (such as `strip'). All the applications
|
|
324 * that re-layout the internal of ELF will layout all sections in ascending
|
|
325 * order of their file offsets. After the re-layout, the data2 section will
|
|
326 * still be the LAST section in the section header vector, but its file offset
|
|
327 * is now being pushed far away down, and causes part of it not to be mapped
|
|
328 * in (ie. not covered by the load segment entry in PHDR vector), therefore
|
|
329 * causes the new binary to fail.
|
|
330 *
|
|
331 * The solution is to modify the unexec algorithm to insert the new data2
|
|
332 * section header right before the new bss section header, so their file
|
|
333 * offsets will be in the ascending order. Since some of the section's (all
|
|
334 * sections AFTER the bss section) indexes are now changed, we also need to
|
|
335 * modify some fields to make them point to the right sections. This is done
|
|
336 * by macro PATCH_INDEX. All the fields that need to be patched are:
|
|
337 *
|
|
338 * 1. ELF header e_shstrndx field.
|
|
339 * 2. section header sh_link and sh_info field.
|
|
340 * 3. symbol table entry st_shndx field.
|
|
341 *
|
|
342 * The above example now should look like:
|
|
343
|
|
344 **** SECTION HEADER TABLE ****
|
|
345 [No] Type Flags Addr Offset Size Name
|
|
346 Link Info Adralgn Entsize
|
|
347
|
|
348 [1] 1 2 0x80480d4 0xd4 0x13 .interp
|
|
349 0 0 0x1 0
|
|
350
|
|
351 [2] 5 2 0x80480e8 0xe8 0x388 .hash
|
|
352 3 0 0x4 0x4
|
|
353
|
|
354 [3] 11 2 0x8048470 0x470 0x7f0 .dynsym
|
|
355 4 1 0x4 0x10
|
|
356
|
|
357 [4] 3 2 0x8048c60 0xc60 0x3ad .dynstr
|
|
358 0 0 0x1 0
|
|
359
|
|
360 [5] 9 2 0x8049010 0x1010 0x338 .rel.plt
|
|
361 3 7 0x4 0x8
|
|
362
|
|
363 [6] 1 6 0x8049348 0x1348 0x3 .init
|
|
364 0 0 0x4 0
|
|
365
|
|
366 [7] 1 6 0x804934c 0x134c 0x680 .plt
|
|
367 0 0 0x4 0x4
|
|
368
|
|
369 [8] 1 6 0x80499cc 0x19cc 0x3c56f .text
|
|
370 0 0 0x4 0
|
|
371
|
|
372 [9] 1 6 0x8085f3c 0x3df3c 0x3 .fini
|
|
373 0 0 0x4 0
|
|
374
|
|
375 [10] 1 2 0x8085f40 0x3df40 0x69c .rodata
|
|
376 0 0 0x4 0
|
|
377
|
|
378 [11] 1 2 0x80865dc 0x3e5dc 0xd51 .rodata1
|
|
379 0 0 0x4 0
|
|
380
|
|
381 [12] 1 3 0x8088330 0x3f330 0x20afc .data
|
|
382 0 0 0x4 0
|
|
383
|
|
384 [13] 1 3 0x80a8e2c 0x5fe2c 0x89d .data1
|
|
385 0 0 0x4 0
|
|
386
|
|
387 [14] 1 3 0x80a96cc 0x606cc 0x1a8 .got
|
|
388 0 0 0x4 0x4
|
|
389
|
|
390 [15] 6 3 0x80a9874 0x60874 0x80 .dynamic
|
|
391 4 0 0x4 0x8
|
|
392
|
|
393 [16] 1 3 0x80a98f4 0x608f4 0x1cf0c .data
|
|
394 0 0 0x4 0
|
|
395
|
|
396 [17] 8 3 0x80c6800 0x7d800 0 .bss
|
|
397 0 0 0x4 0
|
|
398
|
|
399 [18] 2 0 0 0x7d800 0x9b90 .symtab
|
|
400 19 371 0x4 0x10
|
|
401
|
|
402 [19] 3 0 0 0x87390 0x8526 .strtab
|
|
403 0 0 0x1 0
|
0
|
404
|
371
|
405 [20] 3 0 0 0x8f8b6 0x93 .shstrtab
|
|
406 0 0 0x1 0
|
|
407
|
|
408 [21] 1 0 0 0x8f949 0x68b7 .comment
|
|
409 0 0 0x1 0
|
|
410
|
|
411 */
|
|
412
|
|
413 /* More mods, by Jack Repenning <jackr@sgi.com>, Fri Aug 11 15:45:52 1995
|
|
414
|
|
415 Same algorithm as immediately above. However, the detailed
|
|
416 calculations of the various locations needed significant
|
|
417 overhaul.
|
|
418
|
|
419 At the point of the old .bss, the file offsets and the memory
|
|
420 addresses do distinct, slightly snaky things:
|
|
421
|
|
422 offset of .bss is meaningless and unpredictable
|
|
423 addr of .bss is meaningful
|
|
424 alignment of .bss is important to addr, so there may be a small
|
|
425 gap in address range before start of bss
|
|
426 offset of next section is rounded up modulo 0x1000
|
|
427 the hole so-introduced is zero-filled, so it can be mapped in as
|
|
428 the first partial-page of bss (the rest of the bss is mapped from
|
|
429 /dev/zero)
|
|
430 I suppose you could view this not as a hole, but as the beginning
|
|
431 of the bss, actually present in the file. But you should not
|
|
432 push that worldview too far, as the linker still knows that the
|
|
433 "offset" claimed for the bss is unused, and seems not always
|
|
434 careful about setting it.
|
|
435
|
|
436 We are doing all our tricks at this same rather complicated
|
|
437 location (isn't life fun?):
|
|
438
|
|
439 insert a new data section to contain now-initialized old bss and
|
|
440 heap
|
|
441 define a zero-length bss just so there is one
|
|
442
|
|
443 The offset of the new data section is dictated by its current
|
|
444 address (which, of course, we want also to be its addr): the
|
|
445 loader maps in the whole file region containing old data, rodata,
|
|
446 got, and new data as a single mapped segment, starting at the
|
|
447 address of the first chunk; the rest have to be laid out in the
|
|
448 file such that the map into the right spots. That is:
|
|
449
|
|
450 offset(newdata) ==
|
|
451 addrInRunningMemory(newdata)-aIRM(olddata)
|
|
452 + offset(oldData)
|
|
453
|
|
454 This would not necessarily match the oldbss offset, even if it
|
|
455 were carefully calculated! We must compute this.
|
|
456
|
|
457 The linker that built temacs has also already arranged that
|
|
458 olddata is properly page-aligned (not necessarily beginning on a
|
|
459 page, but rather that a page's worth of the low bits of addr and
|
|
460 offset match). We preserve this.
|
|
461
|
|
462 addr(bss) is alignment-constrained from the end of the new data.
|
|
463 Since we base endof(newdata) on sbrk(), we have a page boundary
|
|
464 (in both offset and addr) and meet any alignment constraint,
|
|
465 needing no alignment adjustment of this location and no
|
|
466 mini-hole. Or, if you like, we've allowed sbrk() to "compute"
|
|
467 the mini-hole size for us.
|
|
468
|
|
469 That puts newbss beginning on a page boundary, both in offset and
|
|
470 addr. (offset(bss) is still meaningless, but what the heck,
|
|
471 we'll fix it up.)
|
|
472
|
|
473 Since newbss has zero length, and its offset (however
|
|
474 meaningless) is page aligned, we place the next section exactly
|
|
475 there, with no hole needed to restore page alignment.
|
|
476
|
|
477 So, the shift for all sections beyond the playing field is:
|
|
478
|
|
479 new_bss_addr - roundup(old_bss_addr,0x1000)
|
|
480
|
|
481 */
|
|
482 /* Still more mods... Olivier Galibert 19971705
|
|
483 - support for .sbss section (automagically changed to data without
|
|
484 name change)
|
|
485 - support for 64bits ABI (will need a bunch of fixes in the rest
|
|
486 of the code before it works
|
|
487 */
|
|
488
|
0
|
489 #include <sys/types.h>
|
|
490 #include <stdio.h>
|
|
491 #include <sys/stat.h>
|
|
492 #include <memory.h>
|
371
|
493 #include <string.h>
|
0
|
494 #include <errno.h>
|
|
495 #include <unistd.h>
|
|
496 #include <fcntl.h>
|
|
497 #include <elf.h>
|
371
|
498 #include <sym.h> /* for HDRR declaration */
|
0
|
499 #include <sys/mman.h>
|
371
|
500 #include <config.h>
|
|
501 #include "lisp.h"
|
0
|
502
|
371
|
503 /* in 64bits mode, use 64bits elf */
|
|
504 #ifdef _ABI64
|
|
505 typedef Elf64_Shdr l_Elf_Shdr;
|
|
506 typedef Elf64_Phdr l_Elf_Phdr;
|
|
507 typedef Elf64_Ehdr l_Elf_Ehdr;
|
|
508 typedef Elf64_Addr l_Elf_Addr;
|
|
509 typedef Elf64_Word l_Elf_Word;
|
|
510 typedef Elf64_Off l_Elf_Off;
|
|
511 typedef Elf64_Sym l_Elf_Sym;
|
|
512 #else
|
|
513 typedef Elf32_Shdr l_Elf_Shdr;
|
|
514 typedef Elf32_Phdr l_Elf_Phdr;
|
|
515 typedef Elf32_Ehdr l_Elf_Ehdr;
|
|
516 typedef Elf32_Addr l_Elf_Addr;
|
|
517 typedef Elf32_Word l_Elf_Word;
|
|
518 typedef Elf32_Off l_Elf_Off;
|
|
519 typedef Elf32_Sym l_Elf_Sym;
|
163
|
520 #endif
|
|
521
|
|
522
|
0
|
523 /* Get the address of a particular section or program header entry,
|
371
|
524 * accounting for the size of the entries.
|
|
525 */
|
0
|
526
|
|
527 #define OLD_SECTION_H(n) \
|
371
|
528 (*(l_Elf_Shdr *) ((byte *) old_section_h + old_file_h->e_shentsize * (n)))
|
0
|
529 #define NEW_SECTION_H(n) \
|
371
|
530 (*(l_Elf_Shdr *) ((byte *) new_section_h + new_file_h->e_shentsize * (n)))
|
0
|
531 #define OLD_PROGRAM_H(n) \
|
371
|
532 (*(l_Elf_Phdr *) ((byte *) old_program_h + old_file_h->e_phentsize * (n)))
|
0
|
533 #define NEW_PROGRAM_H(n) \
|
371
|
534 (*(l_Elf_Phdr *) ((byte *) new_program_h + new_file_h->e_phentsize * (n)))
|
0
|
535
|
|
536 #define PATCH_INDEX(n) \
|
|
537 do { \
|
371
|
538 if ((n) >= old_bss_index) \
|
0
|
539 (n)++; } while (0)
|
|
540 typedef unsigned char byte;
|
|
541
|
|
542 /* Round X up to a multiple of Y. */
|
|
543
|
394
|
544 static int
|
|
545 round_up (int x, int y)
|
0
|
546 {
|
|
547 int rem = x % y;
|
|
548 if (rem == 0)
|
|
549 return x;
|
|
550 return x - rem + y;
|
|
551 }
|
|
552
|
|
553 /* Return the index of the section named NAME.
|
|
554 SECTION_NAMES, FILE_NAME and FILE_H give information
|
|
555 about the file we are looking in.
|
|
556
|
|
557 If we don't find the section NAME, that is a fatal error
|
|
558 if NOERROR is 0; we return -1 if NOERROR is nonzero. */
|
|
559
|
|
560 static int
|
394
|
561 find_section (char *name,
|
|
562 char *section_names,
|
|
563 char *file_name,
|
|
564 l_Elf_Ehdr *old_file_h,
|
|
565 l_Elf_Shdr *old_section_h,
|
|
566 int noerror)
|
0
|
567 {
|
|
568 int idx;
|
|
569
|
|
570 for (idx = 1; idx < old_file_h->e_shnum; idx++)
|
|
571 {
|
|
572 #ifdef DEBUG
|
|
573 fprintf (stderr, "Looking for %s - found %s\n", name,
|
|
574 section_names + OLD_SECTION_H (idx).sh_name);
|
|
575 #endif
|
|
576 if (!strcmp (section_names + OLD_SECTION_H (idx).sh_name,
|
|
577 name))
|
371
|
578 break;
|
|
579 }
|
|
580 if (idx == old_file_h->e_shnum)
|
|
581 {
|
|
582 if (noerror)
|
|
583 return -1;
|
|
584 else
|
|
585 fatal ("Can't find .bss in %s.\n", file_name);
|
0
|
586 }
|
|
587
|
371
|
588 return idx;
|
0
|
589 }
|
|
590
|
|
591 /* ****************************************************************
|
|
592 * unexec
|
|
593 *
|
|
594 * driving logic.
|
|
595 *
|
|
596 * In ELF, this works by replacing the old .bss section with a new
|
|
597 * .data section, and inserting an empty .bss immediately afterwards.
|
|
598 *
|
|
599 */
|
371
|
600 int
|
394
|
601 unexec (char *new_name,
|
|
602 char *old_name,
|
|
603 uintptr_t data_start,
|
|
604 uintptr_t bss_start,
|
|
605 uintptr_t entry_address)
|
0
|
606 {
|
371
|
607 extern uintptr_t bss_end;
|
|
608 int new_file, old_file, new_file_size;
|
0
|
609
|
371
|
610 /* Pointers to the base of the image of the two files. */
|
0
|
611 caddr_t old_base, new_base;
|
|
612
|
371
|
613 /* Pointers to the file, program and section headers for the old and new
|
|
614 files. */
|
|
615 l_Elf_Ehdr *old_file_h, *new_file_h;
|
|
616 l_Elf_Phdr *old_program_h, *new_program_h;
|
|
617 l_Elf_Shdr *old_section_h, *new_section_h;
|
|
618
|
|
619 /* Point to the section name table in the old file. */
|
|
620 char *old_section_names;
|
0
|
621
|
371
|
622 l_Elf_Addr old_bss_addr, new_bss_addr;
|
|
623 l_Elf_Addr old_base_addr;
|
|
624 l_Elf_Word old_bss_size, new_data2_size;
|
|
625 l_Elf_Off new_data2_offset, new_base_offset;
|
|
626 l_Elf_Addr new_data2_addr;
|
|
627 l_Elf_Addr new_offsets_shift;
|
0
|
628
|
371
|
629 int n, nn, old_bss_index, old_data_index;
|
|
630 int old_mdebug_index, old_sbss_index;
|
|
631 struct stat stat_buf;
|
|
632
|
|
633 /* Open the old file & map it into the address space. */
|
|
634
|
|
635 old_file = open (old_name, O_RDONLY);
|
|
636
|
|
637 if (old_file < 0)
|
|
638 fatal ("Can't open %s for reading: errno %d\n", old_name, errno);
|
0
|
639
|
|
640 if (fstat (old_file, &stat_buf) == -1)
|
371
|
641 fatal ("Can't fstat(%s): errno %d\n", old_name, errno);
|
|
642
|
|
643 old_base = mmap (0, stat_buf.st_size, PROT_READ, MAP_SHARED, old_file, 0);
|
|
644
|
|
645 if (old_base == (caddr_t) -1)
|
|
646 fatal ("Can't mmap(%s): errno %d\n", old_name, errno);
|
0
|
647
|
371
|
648 #ifdef DEBUG
|
|
649 fprintf (stderr, "mmap(%s, %x) -> %x\n", old_name, stat_buf.st_size,
|
|
650 old_base);
|
|
651 #endif
|
0
|
652
|
371
|
653 /* Get pointers to headers & section names. */
|
|
654
|
|
655 old_file_h = (l_Elf_Ehdr *) old_base;
|
|
656 old_program_h = (l_Elf_Phdr *) ((byte *) old_base + old_file_h->e_phoff);
|
|
657 old_section_h = (l_Elf_Shdr *) ((byte *) old_base + old_file_h->e_shoff);
|
|
658 old_section_names
|
|
659 = (char *) old_base + OLD_SECTION_H (old_file_h->e_shstrndx).sh_offset;
|
0
|
660
|
371
|
661 /* Find the mdebug section, if any. */
|
|
662
|
|
663 old_mdebug_index = find_section (".mdebug", old_section_names,
|
|
664 old_name, old_file_h, old_section_h, 1);
|
|
665
|
|
666 /* Find the .sbss section, if any. */
|
|
667
|
|
668 old_sbss_index = find_section (".sbss", old_section_names,
|
|
669 old_name, old_file_h, old_section_h, 1);
|
167
|
670
|
371
|
671 if (old_sbss_index != -1 && (OLD_SECTION_H (old_sbss_index).sh_type == SHT_PROGBITS))
|
|
672 old_sbss_index = -1;
|
|
673
|
|
674 /* Find the old .bss section. */
|
0
|
675
|
371
|
676 old_bss_index = find_section (".bss", old_section_names,
|
|
677 old_name, old_file_h, old_section_h, 0);
|
|
678
|
|
679 /* Find the old .data section. Figure out parameters of
|
|
680 the new data2 and bss sections. */
|
0
|
681
|
|
682 old_data_index = find_section (".data", old_section_names,
|
|
683 old_name, old_file_h, old_section_h, 0);
|
|
684
|
371
|
685 old_bss_addr = OLD_SECTION_H (old_bss_index).sh_addr;
|
|
686 old_bss_size = OLD_SECTION_H (old_bss_index).sh_size;
|
|
687 old_base_addr = old_sbss_index == -1 ? old_bss_addr : OLD_SECTION_H (old_sbss_index).sh_addr;
|
|
688 #if defined(emacs) || !defined(DEBUG)
|
|
689 bss_end = (uintptr_t) sbrk (0);
|
|
690 new_bss_addr = (l_Elf_Addr) bss_end;
|
|
691 #else
|
|
692 new_bss_addr = old_bss_addr + old_bss_size + 0x1234;
|
|
693 #endif
|
|
694 new_data2_addr = old_bss_addr;
|
|
695 new_data2_size = new_bss_addr - old_bss_addr;
|
0
|
696 new_data2_offset = OLD_SECTION_H (old_data_index).sh_offset +
|
371
|
697 (new_data2_addr - OLD_SECTION_H (old_data_index).sh_addr);
|
|
698 new_base_offset = OLD_SECTION_H (old_data_index).sh_offset +
|
|
699 (old_base_addr - OLD_SECTION_H (old_data_index).sh_addr);
|
|
700 new_offsets_shift = new_bss_addr -
|
|
701 ((old_base_addr & ~0xfff) + ((old_base_addr & 0xfff) ? 0x1000 : 0));
|
0
|
702
|
371
|
703 #ifdef DEBUG
|
|
704 fprintf (stderr, "old_bss_index %d\n", old_bss_index);
|
|
705 fprintf (stderr, "old_bss_addr %x\n", old_bss_addr);
|
|
706 fprintf (stderr, "old_bss_size %x\n", old_bss_size);
|
|
707 fprintf (stderr, "old_base_addr %x\n", old_base_addr);
|
|
708 fprintf (stderr, "new_bss_addr %x\n", new_bss_addr);
|
|
709 fprintf (stderr, "new_data2_addr %x\n", new_data2_addr);
|
|
710 fprintf (stderr, "new_data2_size %x\n", new_data2_size);
|
|
711 fprintf (stderr, "new_data2_offset %x\n", new_data2_offset);
|
|
712 fprintf (stderr, "new_offsets_shift %x\n", new_offsets_shift);
|
|
713 #endif
|
0
|
714
|
371
|
715 if ((unsigned) new_bss_addr < (unsigned) old_bss_addr + old_bss_size)
|
|
716 fatal (".bss shrank when undumping???\n");
|
|
717
|
|
718 /* Set the output file to the right size and mmap it. Set
|
|
719 pointers to various interesting objects. stat_buf still has
|
|
720 old_file data. */
|
0
|
721
|
371
|
722 new_file = open (new_name, O_RDWR | O_CREAT, 0666);
|
|
723 if (new_file < 0)
|
|
724 fatal ("Can't creat (%s): errno %d\n", new_name, errno);
|
|
725
|
|
726 new_file_size = stat_buf.st_size /* old file size */
|
|
727 + old_file_h->e_shentsize /* one new section header */
|
|
728 + new_offsets_shift; /* trailing section shift */
|
0
|
729
|
|
730 if (ftruncate (new_file, new_file_size))
|
371
|
731 fatal ("Can't ftruncate (%s): errno %d\n", new_name, errno);
|
0
|
732
|
371
|
733 new_base = mmap (0, new_file_size, PROT_READ | PROT_WRITE, MAP_SHARED,
|
|
734 new_file, 0);
|
0
|
735
|
|
736 if (new_base == (caddr_t) -1)
|
371
|
737 fatal ("Can't mmap (%s): errno %d\n", new_name, errno);
|
0
|
738
|
371
|
739 new_file_h = (l_Elf_Ehdr *) new_base;
|
|
740 new_program_h = (l_Elf_Phdr *) ((byte *) new_base + old_file_h->e_phoff);
|
|
741 new_section_h
|
|
742 = (l_Elf_Shdr *) ((byte *) new_base + old_file_h->e_shoff
|
|
743 + new_offsets_shift);
|
0
|
744
|
|
745 /* Make our new file, program and section headers as copies of the
|
371
|
746 originals. */
|
|
747
|
0
|
748 memcpy (new_file_h, old_file_h, old_file_h->e_ehsize);
|
|
749 memcpy (new_program_h, old_program_h,
|
|
750 old_file_h->e_phnum * old_file_h->e_phentsize);
|
|
751
|
|
752 /* Modify the e_shstrndx if necessary. */
|
|
753 PATCH_INDEX (new_file_h->e_shstrndx);
|
|
754
|
|
755 /* Fix up file header. We'll add one section. Section header is
|
371
|
756 further away now. */
|
|
757
|
|
758 new_file_h->e_shoff += new_offsets_shift;
|
0
|
759 new_file_h->e_shnum += 1;
|
|
760
|
371
|
761
|
359
|
762 #ifdef DEBUG
|
371
|
763 fprintf (stderr, "Old section offset %x\n", old_file_h->e_shoff);
|
|
764 fprintf (stderr, "Old section count %d\n", old_file_h->e_shnum);
|
|
765 fprintf (stderr, "New section offset %x\n", new_file_h->e_shoff);
|
|
766 fprintf (stderr, "New section count %d\n", new_file_h->e_shnum);
|
0
|
767 #endif
|
371
|
768
|
|
769 /* Fix up a new program header. Extend the writable data segment so
|
|
770 that the bss area is covered too. Find that segment by looking
|
|
771 for a segment that ends just before the .bss area. Make sure
|
|
772 that no segments are above the new .data2. Put a loop at the end
|
|
773 to adjust the offset and address of any segment that is above
|
|
774 data2, just in case we decide to allow this later. */
|
|
775
|
|
776 for (n = new_file_h->e_phnum - 1; n >= 0; n--)
|
|
777 {
|
|
778 /* Compute maximum of all requirements for alignment of section. */
|
|
779 int alignment = (NEW_PROGRAM_H (n)).p_align;
|
|
780 if ((OLD_SECTION_H (old_bss_index)).sh_addralign > alignment)
|
|
781 alignment = OLD_SECTION_H (old_bss_index).sh_addralign;
|
|
782
|
|
783 /* Supposedly this condition is okay for the SGI. */
|
|
784 #if 0
|
|
785 if (NEW_PROGRAM_H (n).p_vaddr + NEW_PROGRAM_H (n).p_filesz > old_base_addr)
|
|
786 fatal ("Program segment above .bss in %s\n", old_name);
|
359
|
787 #endif
|
0
|
788
|
371
|
789 if (NEW_PROGRAM_H (n).p_type == PT_LOAD
|
|
790 && (round_up ((NEW_PROGRAM_H (n)).p_vaddr
|
|
791 + (NEW_PROGRAM_H (n)).p_filesz,
|
|
792 alignment)
|
|
793 == round_up (old_base_addr, alignment)))
|
|
794 break;
|
|
795 }
|
367
|
796 if (n < 0)
|
371
|
797 fatal ("Couldn't find segment next to %s in %s\n",
|
|
798 old_sbss_index == -1 ? ".sbss" : ".bss", old_name);
|
|
799
|
|
800 NEW_PROGRAM_H (n).p_filesz += new_offsets_shift;
|
|
801 NEW_PROGRAM_H (n).p_memsz = NEW_PROGRAM_H (n).p_filesz;
|
|
802
|
|
803 #if 1 /* Maybe allow section after data2 - does this ever happen? */
|
|
804 for (n = new_file_h->e_phnum - 1; n >= 0; n--)
|
|
805 {
|
|
806 if (NEW_PROGRAM_H (n).p_vaddr
|
|
807 && NEW_PROGRAM_H (n).p_vaddr >= new_data2_addr)
|
|
808 NEW_PROGRAM_H (n).p_vaddr += new_offsets_shift - old_bss_size;
|
0
|
809
|
371
|
810 if (NEW_PROGRAM_H (n).p_offset >= new_data2_offset)
|
|
811 NEW_PROGRAM_H (n).p_offset += new_offsets_shift;
|
|
812 }
|
|
813 #endif
|
|
814
|
|
815 /* Fix up section headers based on new .data2 section. Any section
|
|
816 whose offset or virtual address is after the new .data2 section
|
|
817 gets its value adjusted. .bss size becomes zero and new address
|
|
818 is set. data2 section header gets added by copying the existing
|
|
819 .data header and modifying the offset, address and size. */
|
|
820 for (old_data_index = 1; old_data_index < old_file_h->e_shnum;
|
|
821 old_data_index++)
|
|
822 if (!strcmp (old_section_names + OLD_SECTION_H (old_data_index).sh_name,
|
|
823 ".data"))
|
|
824 break;
|
|
825 if (old_data_index == old_file_h->e_shnum)
|
|
826 fatal ("Can't find .data in %s.\n", old_name);
|
0
|
827
|
371
|
828 /* Walk through all section headers, insert the new data2 section right
|
|
829 before the new bss section. */
|
|
830 for (n = 1, nn = 1; n < old_file_h->e_shnum; n++, nn++)
|
|
831 {
|
|
832 caddr_t src;
|
0
|
833
|
371
|
834 /* XEmacs change: */
|
|
835 if (n < old_bss_index)
|
|
836 {
|
|
837 memcpy (&NEW_SECTION_H (nn), &OLD_SECTION_H (n),
|
|
838 old_file_h->e_shentsize);
|
|
839
|
|
840 }
|
|
841 else if (n == old_bss_index)
|
|
842 {
|
|
843
|
|
844 /* If it is bss section, insert the new data2 section before it. */
|
|
845 /* Steal the data section header for this data2 section. */
|
|
846 memcpy (&NEW_SECTION_H (nn), &OLD_SECTION_H (old_data_index),
|
|
847 new_file_h->e_shentsize);
|
|
848
|
|
849 NEW_SECTION_H (nn).sh_addr = new_data2_addr;
|
|
850 NEW_SECTION_H (nn).sh_offset = new_data2_offset;
|
|
851 NEW_SECTION_H (nn).sh_size = new_data2_size;
|
|
852 /* Use the bss section's alignment. This will assure that the
|
|
853 new data2 section always be placed in the same spot as the old
|
|
854 bss section by any other application. */
|
|
855 NEW_SECTION_H (nn).sh_addralign = OLD_SECTION_H (n).sh_addralign;
|
0
|
856
|
371
|
857 /* Now copy over what we have in the memory now. */
|
|
858 memcpy (NEW_SECTION_H (nn).sh_offset + new_base,
|
|
859 (caddr_t) OLD_SECTION_H (n).sh_addr,
|
0
|
860 new_data2_size);
|
|
861 nn++;
|
371
|
862 memcpy (&NEW_SECTION_H (nn), &OLD_SECTION_H (n),
|
|
863 old_file_h->e_shentsize);
|
|
864
|
|
865 /* The new bss section's size is zero, and its file offset and virtual
|
|
866 address should be off by NEW_OFFSETS_SHIFT. */
|
|
867 NEW_SECTION_H (nn).sh_offset += new_offsets_shift;
|
|
868 NEW_SECTION_H (nn).sh_addr = new_bss_addr;
|
|
869 /* Let the new bss section address alignment be the same as the
|
|
870 section address alignment followed the old bss section, so
|
|
871 this section will be placed in exactly the same place. */
|
|
872 NEW_SECTION_H (nn).sh_addralign = OLD_SECTION_H (n).sh_addralign;
|
|
873 NEW_SECTION_H (nn).sh_size = 0;
|
|
874 }
|
|
875 else /* n > old_bss_index */
|
|
876 memcpy (&NEW_SECTION_H (nn), &OLD_SECTION_H (n),
|
|
877 old_file_h->e_shentsize);
|
|
878
|
|
879 /* Any section that was original placed AFTER the bss
|
|
880 section must now be adjusted by NEW_OFFSETS_SHIFT. */
|
367
|
881
|
371
|
882 if (NEW_SECTION_H (nn).sh_offset >= new_base_offset)
|
|
883 NEW_SECTION_H (nn).sh_offset += new_offsets_shift;
|
|
884
|
|
885 /* If any section hdr refers to the section after the new .data
|
|
886 section, make it refer to next one because we have inserted
|
|
887 a new section in between. */
|
|
888
|
|
889 PATCH_INDEX (NEW_SECTION_H (nn).sh_link);
|
|
890 /* For symbol tables, info is a symbol table index,
|
|
891 so don't change it. */
|
|
892 if (NEW_SECTION_H (nn).sh_type != SHT_SYMTAB
|
|
893 && NEW_SECTION_H (nn).sh_type != SHT_DYNSYM)
|
|
894 PATCH_INDEX (NEW_SECTION_H (nn).sh_info);
|
|
895
|
|
896 /* Fix the type and alignment for the .sbss section */
|
|
897 if ((old_sbss_index != -1) && !strcmp (old_section_names + NEW_SECTION_H (nn).sh_name, ".sbss"))
|
|
898 {
|
|
899 NEW_SECTION_H (nn).sh_type = SHT_PROGBITS;
|
|
900 NEW_SECTION_H (nn).sh_offset = round_up (NEW_SECTION_H (nn).sh_offset,
|
|
901 NEW_SECTION_H (nn).sh_addralign);
|
|
902 }
|
367
|
903
|
371
|
904 /* Now, start to copy the content of sections. */
|
|
905 if (NEW_SECTION_H (nn).sh_type == SHT_NULL
|
|
906 || NEW_SECTION_H (nn).sh_type == SHT_NOBITS)
|
|
907 continue;
|
|
908
|
|
909 /* Write out the sections. .data, .data1 and .sbss (and data2, called
|
|
910 ".data" in the strings table) get copied from the current process
|
|
911 instead of the old file. */
|
|
912 if (!strcmp (old_section_names + NEW_SECTION_H (nn).sh_name, ".data")
|
|
913 || !strcmp (old_section_names + NEW_SECTION_H (nn).sh_name, ".data1")
|
|
914 || !strcmp (old_section_names + NEW_SECTION_H (nn).sh_name, ".got")
|
|
915 || !strcmp (old_section_names + NEW_SECTION_H (nn).sh_name, ".sbss"))
|
|
916 src = (caddr_t) OLD_SECTION_H (n).sh_addr;
|
|
917 else
|
|
918 src = old_base + OLD_SECTION_H (n).sh_offset;
|
|
919
|
|
920 memcpy (NEW_SECTION_H (nn).sh_offset + new_base, src,
|
|
921 NEW_SECTION_H (nn).sh_size);
|
0
|
922
|
371
|
923 /* Adjust the HDRR offsets in .mdebug and copy the
|
|
924 line data if it's in its usual 'hole' in the object.
|
|
925 Makes the new file debuggable with dbx.
|
|
926 patches up two problems: the absolute file offsets
|
|
927 in the HDRR record of .mdebug (see /usr/include/syms.h), and
|
|
928 the ld bug that gets the line table in a hole in the
|
|
929 elf file rather than in the .mdebug section proper.
|
|
930 David Anderson. davea@sgi.com Jan 16,1994. */
|
|
931 if (n == old_mdebug_index)
|
|
932 {
|
0
|
933 #define MDEBUGADJUST(__ct,__fileaddr) \
|
|
934 if (n_phdrr->__ct > 0) \
|
|
935 { \
|
|
936 n_phdrr->__fileaddr += movement; \
|
|
937 }
|
|
938
|
371
|
939 HDRR * o_phdrr = (HDRR *)((byte *)old_base + OLD_SECTION_H (n).sh_offset);
|
|
940 HDRR * n_phdrr = (HDRR *)((byte *)new_base + NEW_SECTION_H (nn).sh_offset);
|
|
941 unsigned movement = new_offsets_shift;
|
0
|
942
|
|
943 MDEBUGADJUST (idnMax, cbDnOffset);
|
|
944 MDEBUGADJUST (ipdMax, cbPdOffset);
|
|
945 MDEBUGADJUST (isymMax, cbSymOffset);
|
|
946 MDEBUGADJUST (ioptMax, cbOptOffset);
|
|
947 MDEBUGADJUST (iauxMax, cbAuxOffset);
|
|
948 MDEBUGADJUST (issMax, cbSsOffset);
|
|
949 MDEBUGADJUST (issExtMax, cbSsExtOffset);
|
|
950 MDEBUGADJUST (ifdMax, cbFdOffset);
|
|
951 MDEBUGADJUST (crfd, cbRfdOffset);
|
|
952 MDEBUGADJUST (iextMax, cbExtOffset);
|
371
|
953 /* The Line Section, being possible off in a hole of the object,
|
|
954 requires special handling. */
|
|
955 if (n_phdrr->cbLine > 0)
|
|
956 {
|
|
957 if (o_phdrr->cbLineOffset > (OLD_SECTION_H (n).sh_offset
|
|
958 + OLD_SECTION_H (n).sh_size))
|
|
959 {
|
|
960 /* line data is in a hole in elf. do special copy and adjust
|
|
961 for this ld mistake.
|
|
962 */
|
0
|
963 n_phdrr->cbLineOffset += movement;
|
|
964
|
|
965 memcpy (n_phdrr->cbLineOffset + new_base,
|
|
966 o_phdrr->cbLineOffset + old_base, n_phdrr->cbLine);
|
371
|
967 }
|
|
968 else
|
|
969 {
|
|
970 /* somehow line data is in .mdebug as it is supposed to be. */
|
0
|
971 MDEBUGADJUST (cbLine, cbLineOffset);
|
371
|
972 }
|
|
973 }
|
|
974 }
|
0
|
975
|
371
|
976 /* If it is the symbol table, its st_shndx field needs to be patched. */
|
|
977 if (NEW_SECTION_H (nn).sh_type == SHT_SYMTAB
|
|
978 || NEW_SECTION_H (nn).sh_type == SHT_DYNSYM)
|
|
979 {
|
|
980 l_Elf_Shdr *spt = &NEW_SECTION_H (nn);
|
|
981 unsigned int num = spt->sh_size / spt->sh_entsize;
|
|
982 l_Elf_Sym * sym = (l_Elf_Sym *) (NEW_SECTION_H (nn).sh_offset
|
|
983 + new_base);
|
|
984 for (; num--; sym++)
|
|
985 {
|
|
986 if (sym->st_shndx == SHN_UNDEF
|
|
987 || sym->st_shndx == SHN_ABS
|
|
988 || sym->st_shndx == SHN_COMMON)
|
|
989 continue;
|
|
990
|
|
991 PATCH_INDEX (sym->st_shndx);
|
|
992 }
|
|
993 }
|
|
994 }
|
0
|
995
|
|
996 /* Close the files and make the new file executable. */
|
371
|
997
|
0
|
998 if (close (old_file))
|
371
|
999 fatal ("Can't close (%s): errno %d\n", old_name, errno);
|
0
|
1000
|
|
1001 if (close (new_file))
|
371
|
1002 fatal ("Can't close (%s): errno %d\n", new_name, errno);
|
0
|
1003
|
|
1004 if (stat (new_name, &stat_buf) == -1)
|
371
|
1005 fatal ("Can't stat (%s): errno %d\n", new_name, errno);
|
0
|
1006
|
|
1007 n = umask (777);
|
|
1008 umask (n);
|
|
1009 stat_buf.st_mode |= 0111 & ~n;
|
|
1010 if (chmod (new_name, stat_buf.st_mode) == -1)
|
371
|
1011 fatal ("Can't chmod (%s): errno %d\n", new_name, errno);
|
|
1012
|
|
1013 return 0;
|
0
|
1014 }
|