Mercurial > hg > xemacs-beta
annotate src/regex.c @ 4779:fd98353950a4
Make my last change to elhash.c more kosher, comparing pointers not ints
2009-12-17 Aidan Kehoe <kehoea@parhasard.net>
* elhash.c (HASH_TABLE_DEFAULT_REHASH_THRESHOLD):
That last change was wrong in theory though not in practice; we're
comparing function pointers, not enumeration values.
author | Aidan Kehoe <kehoea@parhasard.net> |
---|---|
date | Thu, 17 Dec 2009 17:29:32 +0000 |
parents | aa5ed11f473b |
children | 07fa38c30fdf |
rev | line source |
---|---|
428 | 1 /* Extended regular expression matching and search library, |
2 version 0.12, extended for XEmacs. | |
3 (Implements POSIX draft P10003.2/D11.2, except for | |
4 internationalization features.) | |
5 | |
6 Copyright (C) 1993, 1994, 1995 Free Software Foundation, Inc. | |
7 Copyright (C) 1995 Sun Microsystems, Inc. | |
1333 | 8 Copyright (C) 1995, 2001, 2002, 2003 Ben Wing. |
428 | 9 |
10 This program is free software; you can redistribute it and/or modify | |
11 it under the terms of the GNU General Public License as published by | |
12 the Free Software Foundation; either version 2, or (at your option) | |
13 any later version. | |
14 | |
15 This program is distributed in the hope that it will be useful, | |
16 but WITHOUT ANY WARRANTY; without even the implied warranty of | |
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
18 GNU General Public License for more details. | |
19 | |
20 You should have received a copy of the GNU General Public License | |
21 along with this program; see the file COPYING. If not, write to | |
22 the Free Software Foundation, Inc., 59 Temple Place - Suite 330, | |
23 Boston, MA 02111-1307, USA. */ | |
24 | |
25 /* Synched up with: FSF 19.29. */ | |
26 | |
27 #ifdef HAVE_CONFIG_H | |
28 #include <config.h> | |
29 #endif | |
30 | |
31 #ifndef _GNU_SOURCE | |
32 #define _GNU_SOURCE 1 | |
33 #endif | |
34 | |
35 /* We assume non-Mule if emacs isn't defined. */ | |
36 #ifndef emacs | |
37 #undef MULE | |
38 #endif | |
39 | |
771 | 40 /* XEmacs addition */ |
41 #ifdef REL_ALLOC | |
42 #define REGEX_REL_ALLOC /* may be undefined below */ | |
43 #endif | |
44 | |
428 | 45 /* XEmacs: define this to add in a speedup for patterns anchored at |
46 the beginning of a line. Keep the ifdefs so that it's easier to | |
47 tell where/why this code has diverged from v19. */ | |
48 #define REGEX_BEGLINE_CHECK | |
49 | |
50 /* XEmacs: the current mmap-based ralloc handles small blocks very | |
51 poorly, so we disable it here. */ | |
52 | |
771 | 53 #if defined (HAVE_MMAP) || defined (DOUG_LEA_MALLOC) |
54 # undef REGEX_REL_ALLOC | |
428 | 55 #endif |
56 | |
57 /* The `emacs' switch turns on certain matching commands | |
58 that make sense only in Emacs. */ | |
59 #ifdef emacs | |
60 | |
61 #include "lisp.h" | |
62 #include "buffer.h" | |
63 #include "syntax.h" | |
64 | |
65 #if (defined (DEBUG_XEMACS) && !defined (DEBUG)) | |
66 #define DEBUG | |
67 #endif | |
68 | |
867 | 69 #define RE_TRANSLATE_1(ch) TRT_TABLE_OF (translate, (Ichar) ch) |
446 | 70 #define TRANSLATE_P(tr) (!NILP (tr)) |
428 | 71 |
826 | 72 /* Converts the pointer to the char to BEG-based offset from the start. */ |
73 #define PTR_TO_OFFSET(d) (MATCHING_IN_FIRST_STRING \ | |
74 ? (d) - string1 : (d) - (string2 - size1)) | |
75 | |
428 | 76 #else /* not emacs */ |
77 | |
2367 | 78 #include <stdlib.h> |
79 #include <sys/types.h> | |
80 #include <stddef.h> /* needed for ptrdiff_t under Solaris */ | |
81 #include <string.h> | |
82 | |
2286 | 83 #include "compiler.h" /* Get compiler-specific definitions like UNUSED */ |
84 | |
2500 | 85 #define ABORT abort |
86 | |
428 | 87 /* If we are not linking with Emacs proper, |
88 we can't use the relocating allocator | |
89 even if config.h says that we can. */ | |
771 | 90 #undef REGEX_REL_ALLOC |
428 | 91 |
544 | 92 /* defined in lisp.h */ |
93 #ifdef REGEX_MALLOC | |
94 #ifndef DECLARE_NOTHING | |
95 #define DECLARE_NOTHING struct nosuchstruct | |
96 #endif | |
97 #endif | |
98 | |
867 | 99 #define itext_ichar(str) ((Ichar) (str)[0]) |
100 #define itext_ichar_fmt(str, fmt, object) ((Ichar) (str)[0]) | |
101 #define itext_ichar_ascii_fmt(str, fmt, object) ((Ichar) (str)[0]) | |
428 | 102 |
103 #if (LONGBITS > INTBITS) | |
104 # define EMACS_INT long | |
105 #else | |
106 # define EMACS_INT int | |
107 #endif | |
108 | |
867 | 109 typedef int Ichar; |
110 | |
111 #define INC_IBYTEPTR(p) ((p)++) | |
112 #define INC_IBYTEPTR_FMT(p, fmt) ((p)++) | |
113 #define DEC_IBYTEPTR(p) ((p)--) | |
114 #define DEC_IBYTEPTR_FMT(p, fmt) ((p)--) | |
4750
b5f21bb36684
Fix crash in regex.c (closes issue630).
Stephen J. Turnbull <stephen@xemacs.org>
parents:
4527
diff
changeset
|
115 #define MAX_ICHAR_LEN 1 |
867 | 116 #define itext_ichar_len(ptr) 1 |
117 #define itext_ichar_len_fmt(ptr, fmt) 1 | |
428 | 118 |
119 /* Define the syntax stuff for \<, \>, etc. */ | |
120 | |
121 /* This must be nonzero for the wordchar and notwordchar pattern | |
122 commands in re_match_2. */ | |
123 #ifndef Sword | |
124 #define Sword 1 | |
125 #endif | |
126 | |
127 #ifdef SYNTAX_TABLE | |
128 | |
129 extern char *re_syntax_table; | |
130 | |
131 #else /* not SYNTAX_TABLE */ | |
132 | |
133 /* How many characters in the character set. */ | |
134 #define CHAR_SET_SIZE 256 | |
135 | |
136 static char re_syntax_table[CHAR_SET_SIZE]; | |
137 | |
138 static void | |
139 init_syntax_once (void) | |
140 { | |
141 static int done = 0; | |
142 | |
143 if (!done) | |
144 { | |
442 | 145 const char *word_syntax_chars = |
428 | 146 "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789_"; |
147 | |
148 memset (re_syntax_table, 0, sizeof (re_syntax_table)); | |
149 | |
150 while (*word_syntax_chars) | |
647 | 151 re_syntax_table[(unsigned int) (*word_syntax_chars++)] = Sword; |
428 | 152 |
153 done = 1; | |
154 } | |
155 } | |
156 | |
446 | 157 #endif /* SYNTAX_TABLE */ |
428 | 158 |
826 | 159 #define SYNTAX(ignored, c) re_syntax_table[c] |
460 | 160 #undef SYNTAX_FROM_CACHE |
826 | 161 #define SYNTAX_FROM_CACHE SYNTAX |
162 | |
163 #define RE_TRANSLATE_1(c) translate[(unsigned char) (c)] | |
446 | 164 #define TRANSLATE_P(tr) tr |
165 | |
166 #endif /* emacs */ | |
428 | 167 |
2201 | 168 /* This is for other GNU distributions with internationalized messages. */ |
169 #if defined (I18N3) && (defined (HAVE_LIBINTL_H) || defined (_LIBC)) | |
170 # include <libintl.h> | |
171 #else | |
172 # define gettext(msgid) (msgid) | |
173 #endif | |
174 | |
428 | 175 |
176 /* Get the interface, including the syntax bits. */ | |
177 #include "regex.h" | |
178 | |
179 /* isalpha etc. are used for the character classes. */ | |
180 #include <ctype.h> | |
181 | |
182 /* Jim Meyering writes: | |
183 | |
184 "... Some ctype macros are valid only for character codes that | |
185 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when | |
186 using /bin/cc or gcc but without giving an ansi option). So, all | |
187 ctype uses should be through macros like ISPRINT... If | |
188 STDC_HEADERS is defined, then autoconf has verified that the ctype | |
189 macros don't need to be guarded with references to isascii. ... | |
190 Defining isascii to 1 should let any compiler worth its salt | |
191 eliminate the && through constant folding." */ | |
192 | |
193 #if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII)) | |
194 #define ISASCII_1(c) 1 | |
195 #else | |
196 #define ISASCII_1(c) isascii(c) | |
197 #endif | |
198 | |
199 #ifdef MULE | |
200 /* The IS*() macros can be passed any character, including an extended | |
201 one. We need to make sure there are no crashes, which would occur | |
202 otherwise due to out-of-bounds array references. */ | |
203 #define ISASCII(c) (((EMACS_UINT) (c)) < 0x100 && ISASCII_1 (c)) | |
204 #else | |
205 #define ISASCII(c) ISASCII_1 (c) | |
206 #endif /* MULE */ | |
207 | |
208 #ifdef isblank | |
209 #define ISBLANK(c) (ISASCII (c) && isblank (c)) | |
210 #else | |
211 #define ISBLANK(c) ((c) == ' ' || (c) == '\t') | |
212 #endif | |
213 #ifdef isgraph | |
214 #define ISGRAPH(c) (ISASCII (c) && isgraph (c)) | |
215 #else | |
216 #define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c)) | |
217 #endif | |
218 | |
219 #define ISPRINT(c) (ISASCII (c) && isprint (c)) | |
220 #define ISDIGIT(c) (ISASCII (c) && isdigit (c)) | |
221 #define ISALNUM(c) (ISASCII (c) && isalnum (c)) | |
222 #define ISALPHA(c) (ISASCII (c) && isalpha (c)) | |
223 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c)) | |
224 #define ISLOWER(c) (ISASCII (c) && islower (c)) | |
225 #define ISPUNCT(c) (ISASCII (c) && ispunct (c)) | |
226 #define ISSPACE(c) (ISASCII (c) && isspace (c)) | |
227 #define ISUPPER(c) (ISASCII (c) && isupper (c)) | |
228 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c)) | |
229 | |
230 #ifndef NULL | |
231 #define NULL (void *)0 | |
232 #endif | |
233 | |
234 /* We remove any previous definition of `SIGN_EXTEND_CHAR', | |
235 since ours (we hope) works properly with all combinations of | |
236 machines, compilers, `char' and `unsigned char' argument types. | |
237 (Per Bothner suggested the basic approach.) */ | |
238 #undef SIGN_EXTEND_CHAR | |
239 #if __STDC__ | |
240 #define SIGN_EXTEND_CHAR(c) ((signed char) (c)) | |
241 #else /* not __STDC__ */ | |
242 /* As in Harbison and Steele. */ | |
243 #define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128) | |
244 #endif | |
245 | |
246 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we | |
247 use `alloca' instead of `malloc'. This is because using malloc in | |
248 re_search* or re_match* could cause memory leaks when C-g is used in | |
249 Emacs; also, malloc is slower and causes storage fragmentation. On | |
250 the other hand, malloc is more portable, and easier to debug. | |
251 | |
252 Because we sometimes use alloca, some routines have to be macros, | |
253 not functions -- `alloca'-allocated space disappears at the end of the | |
254 function it is called in. */ | |
255 | |
1333 | 256 #ifndef emacs |
257 #define ALLOCA alloca | |
258 #define xmalloc malloc | |
259 #define xrealloc realloc | |
1726 | 260 #define xfree(x,type) free (x) |
1333 | 261 #endif |
262 | |
263 #ifdef emacs | |
264 #define ALLOCA_GARBAGE_COLLECT() \ | |
265 do \ | |
266 { \ | |
267 if (need_to_check_c_alloca) \ | |
268 xemacs_c_alloca (0); \ | |
269 } while (0) | |
270 #elif defined (C_ALLOCA) | |
271 #define ALLOCA_GARBAGE_COLLECT() alloca (0) | |
272 #else | |
273 #define ALLOCA_GARBAGE_COLLECT() | |
274 #endif | |
275 | |
276 #ifndef emacs | |
277 /* So we can use just it to conditionalize on */ | |
278 #undef ERROR_CHECK_MALLOC | |
279 #endif | |
280 | |
281 #ifdef ERROR_CHECK_MALLOC | |
282 /* When REL_ALLOC, malloc() is problematic because it could potentially | |
283 cause all rel-alloc()ed data -- including buffer text -- to be relocated. | |
284 We deal with this by checking for such relocation whenever we have | |
285 executed a statement that may call malloc() -- or alloca(), which may | |
286 end up calling malloc() in some circumstances -- and recomputing all | |
287 of our string pointers in re_match_2_internal() and re_search_2(). | |
288 However, if malloc() or alloca() happens and we don't know about it, | |
289 we could still be screwed. So we set up a system where we indicate all | |
290 places where we are prepared for malloc() or alloca(), and in any | |
291 other circumstances, calls to those functions (from anywhere inside of | |
2500 | 292 XEmacs!) will ABORT(). We do this even when REL_ALLOC is not defined |
1333 | 293 so that we catch these problems sooner, since many developers and beta |
294 testers will not be running with REL_ALLOC. */ | |
295 int regex_malloc_disallowed; | |
296 #define BEGIN_REGEX_MALLOC_OK() regex_malloc_disallowed = 0 | |
297 #define END_REGEX_MALLOC_OK() regex_malloc_disallowed = 1 | |
298 #define UNBIND_REGEX_MALLOC_CHECK() unbind_to (depth) | |
299 #else | |
300 #define BEGIN_REGEX_MALLOC_OK() | |
301 #define END_REGEX_MALLOC_OK() | |
302 #define UNBIND_REGEX_MALLOC_CHECK() | |
303 #endif | |
304 | |
305 | |
428 | 306 #ifdef REGEX_MALLOC |
307 | |
1333 | 308 #define REGEX_ALLOCATE xmalloc |
309 #define REGEX_REALLOCATE(source, osize, nsize) xrealloc (source, nsize) | |
310 #define REGEX_FREE xfree | |
428 | 311 |
312 #else /* not REGEX_MALLOC */ | |
313 | |
314 /* Emacs already defines alloca, sometimes. */ | |
315 #ifndef alloca | |
316 | |
317 /* Make alloca work the best possible way. */ | |
318 #ifdef __GNUC__ | |
319 #define alloca __builtin_alloca | |
771 | 320 #elif defined (__DECC) /* XEmacs: added next 3 lines, similar to config.h.in */ |
321 #include <alloca.h> | |
322 #pragma intrinsic(alloca) | |
428 | 323 #else /* not __GNUC__ */ |
324 #if HAVE_ALLOCA_H | |
325 #include <alloca.h> | |
326 #else /* not __GNUC__ or HAVE_ALLOCA_H */ | |
327 #ifndef _AIX /* Already did AIX, up at the top. */ | |
444 | 328 void *alloca (); |
428 | 329 #endif /* not _AIX */ |
446 | 330 #endif /* HAVE_ALLOCA_H */ |
331 #endif /* __GNUC__ */ | |
428 | 332 |
333 #endif /* not alloca */ | |
334 | |
1333 | 335 #define REGEX_ALLOCATE ALLOCA |
428 | 336 |
2367 | 337 /* !!#### Needs review */ |
428 | 338 /* Assumes a `char *destination' variable. */ |
339 #define REGEX_REALLOCATE(source, osize, nsize) \ | |
1333 | 340 (destination = (char *) ALLOCA (nsize), \ |
428 | 341 memmove (destination, source, osize), \ |
342 destination) | |
343 | |
1726 | 344 /* No need to do anything to free, after alloca. |
345 Do nothing! But inhibit gcc warning. */ | |
346 #define REGEX_FREE(arg,type) ((void)0) | |
428 | 347 |
446 | 348 #endif /* REGEX_MALLOC */ |
428 | 349 |
350 /* Define how to allocate the failure stack. */ | |
351 | |
771 | 352 #ifdef REGEX_REL_ALLOC |
428 | 353 #define REGEX_ALLOCATE_STACK(size) \ |
1346 | 354 r_alloc ((unsigned char **) &failure_stack_ptr, (size)) |
428 | 355 #define REGEX_REALLOCATE_STACK(source, osize, nsize) \ |
1346 | 356 r_re_alloc ((unsigned char **) &failure_stack_ptr, (nsize)) |
428 | 357 #define REGEX_FREE_STACK(ptr) \ |
1346 | 358 r_alloc_free ((unsigned char **) &failure_stack_ptr) |
428 | 359 |
771 | 360 #else /* not REGEX_REL_ALLOC */ |
428 | 361 |
362 #ifdef REGEX_MALLOC | |
363 | |
1333 | 364 #define REGEX_ALLOCATE_STACK xmalloc |
365 #define REGEX_REALLOCATE_STACK(source, osize, nsize) xrealloc (source, nsize) | |
1726 | 366 #define REGEX_FREE_STACK(arg) xfree (arg, fail_stack_elt_t *) |
428 | 367 |
368 #else /* not REGEX_MALLOC */ | |
369 | |
1333 | 370 #define REGEX_ALLOCATE_STACK ALLOCA |
428 | 371 |
372 #define REGEX_REALLOCATE_STACK(source, osize, nsize) \ | |
373 REGEX_REALLOCATE (source, osize, nsize) | |
374 /* No need to explicitly free anything. */ | |
375 #define REGEX_FREE_STACK(arg) | |
376 | |
446 | 377 #endif /* REGEX_MALLOC */ |
771 | 378 #endif /* REGEX_REL_ALLOC */ |
428 | 379 |
380 | |
381 /* True if `size1' is non-NULL and PTR is pointing anywhere inside | |
382 `string1' or just past its end. This works if PTR is NULL, which is | |
383 a good thing. */ | |
384 #define FIRST_STRING_P(ptr) \ | |
385 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1) | |
386 | |
387 /* (Re)Allocate N items of type T using malloc, or fail. */ | |
1333 | 388 #define TALLOC(n, t) ((t *) xmalloc ((n) * sizeof (t))) |
389 #define RETALLOC(addr, n, t) ((addr) = (t *) xrealloc (addr, (n) * sizeof (t))) | |
428 | 390 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t))) |
391 | |
392 #define BYTEWIDTH 8 /* In bits. */ | |
393 | |
434 | 394 #define STREQ(s1, s2) (strcmp (s1, s2) == 0) |
428 | 395 |
396 #undef MAX | |
397 #undef MIN | |
398 #define MAX(a, b) ((a) > (b) ? (a) : (b)) | |
399 #define MIN(a, b) ((a) < (b) ? (a) : (b)) | |
400 | |
446 | 401 /* Type of source-pattern and string chars. */ |
402 typedef const unsigned char re_char; | |
403 | |
460 | 404 typedef char re_bool; |
428 | 405 #define false 0 |
406 #define true 1 | |
407 | |
408 | |
1346 | 409 #ifdef emacs |
410 | |
411 #ifdef MULE | |
412 | |
413 Lisp_Object Vthe_lisp_rangetab; | |
414 | |
415 void | |
416 vars_of_regex (void) | |
417 { | |
2421 | 418 Vthe_lisp_rangetab = Fmake_range_table (Qstart_closed_end_closed); |
1346 | 419 staticpro (&Vthe_lisp_rangetab); |
420 } | |
421 | |
422 #else /* not MULE */ | |
423 | |
424 void | |
425 vars_of_regex (void) | |
426 { | |
427 } | |
428 | |
429 #endif /* MULE */ | |
430 | |
431 /* Convert an offset from the start of the logical text string formed by | |
432 concatenating the two strings together into a character position in the | |
433 Lisp buffer or string that the text represents. Knows that | |
434 when handling buffer text, the "string" we're passed in is always | |
435 BEGV - ZV. */ | |
436 | |
437 static Charxpos | |
438 offset_to_charxpos (Lisp_Object lispobj, int off) | |
439 { | |
440 if (STRINGP (lispobj)) | |
441 return string_index_byte_to_char (lispobj, off); | |
442 else if (BUFFERP (lispobj)) | |
443 return bytebpos_to_charbpos (XBUFFER (lispobj), | |
444 off + BYTE_BUF_BEGV (XBUFFER (lispobj))); | |
445 else | |
446 return 0; | |
447 } | |
448 | |
449 #ifdef REL_ALLOC | |
450 | |
451 /* STRING1 is the value of STRING1 given to re_match_2(). LISPOBJ is | |
452 the Lisp object (if any) from which the string is taken. If LISPOBJ | |
453 is a buffer, return a relocation offset to be added to all pointers to | |
454 string data so that they will be accurate again, after an allocation or | |
455 reallocation that potentially relocated the buffer data. | |
456 */ | |
457 static Bytecount | |
458 offset_post_relocation (Lisp_Object lispobj, Ibyte *orig_buftext) | |
459 { | |
460 if (!BUFFERP (lispobj)) | |
461 return 0; | |
462 return (BYTE_BUF_BYTE_ADDRESS (XBUFFER (lispobj), | |
463 BYTE_BUF_BEGV (XBUFFER (lispobj))) - | |
464 orig_buftext); | |
465 } | |
466 | |
467 #endif /* REL_ALLOC */ | |
468 | |
469 #ifdef ERROR_CHECK_MALLOC | |
470 | |
471 /* NOTE that this can run malloc() so you need to adjust afterwards. */ | |
472 | |
473 static int | |
474 bind_regex_malloc_disallowed (int value) | |
475 { | |
476 /* Tricky, because the act of binding can run malloc(). */ | |
477 int old_regex_malloc_disallowed = regex_malloc_disallowed; | |
478 int depth; | |
479 regex_malloc_disallowed = 0; | |
480 depth = record_unwind_protect_restoring_int (®ex_malloc_disallowed, | |
481 old_regex_malloc_disallowed); | |
482 regex_malloc_disallowed = value; | |
483 return depth; | |
484 } | |
485 | |
486 #endif /* ERROR_CHECK_MALLOC */ | |
487 | |
488 #endif /* emacs */ | |
489 | |
490 | |
428 | 491 /* These are the command codes that appear in compiled regular |
492 expressions. Some opcodes are followed by argument bytes. A | |
493 command code can specify any interpretation whatsoever for its | |
494 arguments. Zero bytes may appear in the compiled regular expression. */ | |
495 | |
496 typedef enum | |
497 { | |
498 no_op = 0, | |
499 | |
500 /* Succeed right away--no more backtracking. */ | |
501 succeed, | |
502 | |
503 /* Followed by one byte giving n, then by n literal bytes. */ | |
504 exactn, | |
505 | |
506 /* Matches any (more or less) character. */ | |
507 anychar, | |
508 | |
509 /* Matches any one char belonging to specified set. First | |
510 following byte is number of bitmap bytes. Then come bytes | |
511 for a bitmap saying which chars are in. Bits in each byte | |
512 are ordered low-bit-first. A character is in the set if its | |
513 bit is 1. A character too large to have a bit in the map is | |
514 automatically not in the set. */ | |
515 charset, | |
516 | |
517 /* Same parameters as charset, but match any character that is | |
518 not one of those specified. */ | |
519 charset_not, | |
520 | |
521 /* Start remembering the text that is matched, for storing in a | |
522 register. Followed by one byte with the register number, in | |
502 | 523 the range 1 to the pattern buffer's re_ngroups |
428 | 524 field. Then followed by one byte with the number of groups |
525 inner to this one. (This last has to be part of the | |
526 start_memory only because we need it in the on_failure_jump | |
527 of re_match_2.) */ | |
528 start_memory, | |
529 | |
530 /* Stop remembering the text that is matched and store it in a | |
531 memory register. Followed by one byte with the register | |
502 | 532 number, in the range 1 to `re_ngroups' in the |
428 | 533 pattern buffer, and one byte with the number of inner groups, |
534 just like `start_memory'. (We need the number of inner | |
535 groups here because we don't have any easy way of finding the | |
536 corresponding start_memory when we're at a stop_memory.) */ | |
537 stop_memory, | |
538 | |
539 /* Match a duplicate of something remembered. Followed by one | |
540 byte containing the register number. */ | |
541 duplicate, | |
542 | |
543 /* Fail unless at beginning of line. */ | |
544 begline, | |
545 | |
546 /* Fail unless at end of line. */ | |
547 endline, | |
548 | |
549 /* Succeeds if at beginning of buffer (if emacs) or at beginning | |
550 of string to be matched (if not). */ | |
551 begbuf, | |
552 | |
553 /* Analogously, for end of buffer/string. */ | |
554 endbuf, | |
555 | |
556 /* Followed by two byte relative address to which to jump. */ | |
557 jump, | |
558 | |
559 /* Same as jump, but marks the end of an alternative. */ | |
560 jump_past_alt, | |
561 | |
562 /* Followed by two-byte relative address of place to resume at | |
563 in case of failure. */ | |
564 on_failure_jump, | |
565 | |
566 /* Like on_failure_jump, but pushes a placeholder instead of the | |
567 current string position when executed. */ | |
568 on_failure_keep_string_jump, | |
569 | |
570 /* Throw away latest failure point and then jump to following | |
571 two-byte relative address. */ | |
572 pop_failure_jump, | |
573 | |
574 /* Change to pop_failure_jump if know won't have to backtrack to | |
575 match; otherwise change to jump. This is used to jump | |
576 back to the beginning of a repeat. If what follows this jump | |
577 clearly won't match what the repeat does, such that we can be | |
578 sure that there is no use backtracking out of repetitions | |
579 already matched, then we change it to a pop_failure_jump. | |
580 Followed by two-byte address. */ | |
581 maybe_pop_jump, | |
582 | |
583 /* Jump to following two-byte address, and push a dummy failure | |
584 point. This failure point will be thrown away if an attempt | |
585 is made to use it for a failure. A `+' construct makes this | |
586 before the first repeat. Also used as an intermediary kind | |
587 of jump when compiling an alternative. */ | |
588 dummy_failure_jump, | |
589 | |
590 /* Push a dummy failure point and continue. Used at the end of | |
591 alternatives. */ | |
592 push_dummy_failure, | |
593 | |
594 /* Followed by two-byte relative address and two-byte number n. | |
595 After matching N times, jump to the address upon failure. */ | |
596 succeed_n, | |
597 | |
598 /* Followed by two-byte relative address, and two-byte number n. | |
599 Jump to the address N times, then fail. */ | |
600 jump_n, | |
601 | |
602 /* Set the following two-byte relative address to the | |
603 subsequent two-byte number. The address *includes* the two | |
604 bytes of number. */ | |
605 set_number_at, | |
606 | |
607 wordchar, /* Matches any word-constituent character. */ | |
608 notwordchar, /* Matches any char that is not a word-constituent. */ | |
609 | |
610 wordbeg, /* Succeeds if at word beginning. */ | |
611 wordend, /* Succeeds if at word end. */ | |
612 | |
613 wordbound, /* Succeeds if at a word boundary. */ | |
614 notwordbound /* Succeeds if not at a word boundary. */ | |
615 | |
616 #ifdef emacs | |
617 ,before_dot, /* Succeeds if before point. */ | |
618 at_dot, /* Succeeds if at point. */ | |
619 after_dot, /* Succeeds if after point. */ | |
620 | |
621 /* Matches any character whose syntax is specified. Followed by | |
622 a byte which contains a syntax code, e.g., Sword. */ | |
623 syntaxspec, | |
624 | |
625 /* Matches any character whose syntax is not that specified. */ | |
626 notsyntaxspec | |
627 | |
628 #endif /* emacs */ | |
629 | |
630 #ifdef MULE | |
631 /* need extra stuff to be able to properly work with XEmacs/Mule | |
632 characters (which may take up more than one byte) */ | |
633 | |
634 ,charset_mule, /* Matches any character belonging to specified set. | |
635 The set is stored in "unified range-table | |
636 format"; see rangetab.c. Unlike the `charset' | |
637 opcode, this can handle arbitrary characters. */ | |
638 | |
639 charset_mule_not /* Same parameters as charset_mule, but match any | |
640 character that is not one of those specified. */ | |
641 | |
642 /* 97/2/17 jhod: The following two were merged back in from the Mule | |
643 2.3 code to enable some language specific processing */ | |
644 ,categoryspec, /* Matches entries in the character category tables */ | |
645 notcategoryspec /* The opposite of the above */ | |
646 #endif /* MULE */ | |
647 | |
648 } re_opcode_t; | |
649 | |
650 /* Common operations on the compiled pattern. */ | |
651 | |
652 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */ | |
653 | |
654 #define STORE_NUMBER(destination, number) \ | |
655 do { \ | |
656 (destination)[0] = (number) & 0377; \ | |
657 (destination)[1] = (number) >> 8; \ | |
658 } while (0) | |
659 | |
660 /* Same as STORE_NUMBER, except increment DESTINATION to | |
661 the byte after where the number is stored. Therefore, DESTINATION | |
662 must be an lvalue. */ | |
663 | |
664 #define STORE_NUMBER_AND_INCR(destination, number) \ | |
665 do { \ | |
666 STORE_NUMBER (destination, number); \ | |
667 (destination) += 2; \ | |
668 } while (0) | |
669 | |
670 /* Put into DESTINATION a number stored in two contiguous bytes starting | |
671 at SOURCE. */ | |
672 | |
673 #define EXTRACT_NUMBER(destination, source) \ | |
674 do { \ | |
675 (destination) = *(source) & 0377; \ | |
676 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \ | |
677 } while (0) | |
678 | |
679 #ifdef DEBUG | |
680 static void | |
446 | 681 extract_number (int *dest, re_char *source) |
428 | 682 { |
683 int temp = SIGN_EXTEND_CHAR (*(source + 1)); | |
684 *dest = *source & 0377; | |
685 *dest += temp << 8; | |
686 } | |
687 | |
688 #ifndef EXTRACT_MACROS /* To debug the macros. */ | |
689 #undef EXTRACT_NUMBER | |
690 #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src) | |
691 #endif /* not EXTRACT_MACROS */ | |
692 | |
693 #endif /* DEBUG */ | |
694 | |
695 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number. | |
696 SOURCE must be an lvalue. */ | |
697 | |
698 #define EXTRACT_NUMBER_AND_INCR(destination, source) \ | |
699 do { \ | |
700 EXTRACT_NUMBER (destination, source); \ | |
701 (source) += 2; \ | |
702 } while (0) | |
703 | |
704 #ifdef DEBUG | |
705 static void | |
706 extract_number_and_incr (int *destination, unsigned char **source) | |
707 { | |
708 extract_number (destination, *source); | |
709 *source += 2; | |
710 } | |
711 | |
712 #ifndef EXTRACT_MACROS | |
713 #undef EXTRACT_NUMBER_AND_INCR | |
714 #define EXTRACT_NUMBER_AND_INCR(dest, src) \ | |
715 extract_number_and_incr (&dest, &src) | |
716 #endif /* not EXTRACT_MACROS */ | |
717 | |
718 #endif /* DEBUG */ | |
719 | |
720 /* If DEBUG is defined, Regex prints many voluminous messages about what | |
721 it is doing (if the variable `debug' is nonzero). If linked with the | |
722 main program in `iregex.c', you can enter patterns and strings | |
723 interactively. And if linked with the main program in `main.c' and | |
724 the other test files, you can run the already-written tests. */ | |
725 | |
726 #if defined (DEBUG) | |
727 | |
728 /* We use standard I/O for debugging. */ | |
729 #include <stdio.h> | |
730 | |
731 #ifndef emacs | |
732 /* XEmacs provides its own version of assert() */ | |
733 /* It is useful to test things that ``must'' be true when debugging. */ | |
734 #include <assert.h> | |
735 #endif | |
736 | |
737 static int debug = 0; | |
738 | |
739 #define DEBUG_STATEMENT(e) e | |
740 #define DEBUG_PRINT1(x) if (debug) printf (x) | |
741 #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2) | |
742 #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3) | |
743 #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4) | |
744 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \ | |
745 if (debug) print_partial_compiled_pattern (s, e) | |
746 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \ | |
747 if (debug) print_double_string (w, s1, sz1, s2, sz2) | |
748 | |
749 | |
750 /* Print the fastmap in human-readable form. */ | |
751 | |
752 static void | |
753 print_fastmap (char *fastmap) | |
754 { | |
647 | 755 int was_a_range = 0; |
756 int i = 0; | |
428 | 757 |
758 while (i < (1 << BYTEWIDTH)) | |
759 { | |
760 if (fastmap[i++]) | |
761 { | |
762 was_a_range = 0; | |
763 putchar (i - 1); | |
764 while (i < (1 << BYTEWIDTH) && fastmap[i]) | |
765 { | |
766 was_a_range = 1; | |
767 i++; | |
768 } | |
769 if (was_a_range) | |
770 { | |
771 putchar ('-'); | |
772 putchar (i - 1); | |
773 } | |
774 } | |
775 } | |
776 putchar ('\n'); | |
777 } | |
778 | |
779 | |
780 /* Print a compiled pattern string in human-readable form, starting at | |
781 the START pointer into it and ending just before the pointer END. */ | |
782 | |
783 static void | |
446 | 784 print_partial_compiled_pattern (re_char *start, re_char *end) |
428 | 785 { |
786 int mcnt, mcnt2; | |
446 | 787 unsigned char *p = (unsigned char *) start; |
788 re_char *pend = end; | |
428 | 789 |
790 if (start == NULL) | |
791 { | |
792 puts ("(null)"); | |
793 return; | |
794 } | |
795 | |
796 /* Loop over pattern commands. */ | |
797 while (p < pend) | |
798 { | |
799 printf ("%ld:\t", (long)(p - start)); | |
800 | |
801 switch ((re_opcode_t) *p++) | |
802 { | |
803 case no_op: | |
804 printf ("/no_op"); | |
805 break; | |
806 | |
807 case exactn: | |
808 mcnt = *p++; | |
809 printf ("/exactn/%d", mcnt); | |
4750
b5f21bb36684
Fix crash in regex.c (closes issue630).
Stephen J. Turnbull <stephen@xemacs.org>
parents:
4527
diff
changeset
|
810 while (mcnt--) |
428 | 811 { |
4750
b5f21bb36684
Fix crash in regex.c (closes issue630).
Stephen J. Turnbull <stephen@xemacs.org>
parents:
4527
diff
changeset
|
812 putchar ('/'); |
428 | 813 putchar (*p++); |
814 } | |
815 break; | |
816 | |
817 case start_memory: | |
818 mcnt = *p++; | |
819 printf ("/start_memory/%d/%d", mcnt, *p++); | |
820 break; | |
821 | |
822 case stop_memory: | |
823 mcnt = *p++; | |
824 printf ("/stop_memory/%d/%d", mcnt, *p++); | |
825 break; | |
826 | |
827 case duplicate: | |
828 printf ("/duplicate/%d", *p++); | |
829 break; | |
830 | |
831 case anychar: | |
832 printf ("/anychar"); | |
833 break; | |
834 | |
835 case charset: | |
836 case charset_not: | |
837 { | |
838 REGISTER int c, last = -100; | |
839 REGISTER int in_range = 0; | |
840 | |
841 printf ("/charset [%s", | |
842 (re_opcode_t) *(p - 1) == charset_not ? "^" : ""); | |
843 | |
844 assert (p + *p < pend); | |
845 | |
846 for (c = 0; c < 256; c++) | |
847 if (((unsigned char) (c / 8) < *p) | |
848 && (p[1 + (c/8)] & (1 << (c % 8)))) | |
849 { | |
850 /* Are we starting a range? */ | |
851 if (last + 1 == c && ! in_range) | |
852 { | |
853 putchar ('-'); | |
854 in_range = 1; | |
855 } | |
856 /* Have we broken a range? */ | |
857 else if (last + 1 != c && in_range) | |
858 { | |
859 putchar (last); | |
860 in_range = 0; | |
861 } | |
862 | |
863 if (! in_range) | |
864 putchar (c); | |
865 | |
866 last = c; | |
867 } | |
868 | |
869 if (in_range) | |
870 putchar (last); | |
871 | |
872 putchar (']'); | |
873 | |
874 p += 1 + *p; | |
875 } | |
876 break; | |
877 | |
878 #ifdef MULE | |
879 case charset_mule: | |
880 case charset_mule_not: | |
881 { | |
882 int nentries, i; | |
883 | |
884 printf ("/charset_mule [%s", | |
885 (re_opcode_t) *(p - 1) == charset_mule_not ? "^" : ""); | |
886 nentries = unified_range_table_nentries (p); | |
887 for (i = 0; i < nentries; i++) | |
888 { | |
889 EMACS_INT first, last; | |
890 Lisp_Object dummy_val; | |
891 | |
892 unified_range_table_get_range (p, i, &first, &last, | |
893 &dummy_val); | |
894 if (first < 0x100) | |
895 putchar (first); | |
896 else | |
897 printf ("(0x%lx)", (long)first); | |
898 if (first != last) | |
899 { | |
900 putchar ('-'); | |
901 if (last < 0x100) | |
902 putchar (last); | |
903 else | |
904 printf ("(0x%lx)", (long)last); | |
905 } | |
906 } | |
907 putchar (']'); | |
908 p += unified_range_table_bytes_used (p); | |
909 } | |
910 break; | |
911 #endif | |
912 | |
913 case begline: | |
914 printf ("/begline"); | |
915 break; | |
916 | |
917 case endline: | |
918 printf ("/endline"); | |
919 break; | |
920 | |
921 case on_failure_jump: | |
922 extract_number_and_incr (&mcnt, &p); | |
923 printf ("/on_failure_jump to %ld", (long)(p + mcnt - start)); | |
924 break; | |
925 | |
926 case on_failure_keep_string_jump: | |
927 extract_number_and_incr (&mcnt, &p); | |
928 printf ("/on_failure_keep_string_jump to %ld", (long)(p + mcnt - start)); | |
929 break; | |
930 | |
931 case dummy_failure_jump: | |
932 extract_number_and_incr (&mcnt, &p); | |
933 printf ("/dummy_failure_jump to %ld", (long)(p + mcnt - start)); | |
934 break; | |
935 | |
936 case push_dummy_failure: | |
937 printf ("/push_dummy_failure"); | |
938 break; | |
939 | |
940 case maybe_pop_jump: | |
941 extract_number_and_incr (&mcnt, &p); | |
942 printf ("/maybe_pop_jump to %ld", (long)(p + mcnt - start)); | |
943 break; | |
944 | |
945 case pop_failure_jump: | |
946 extract_number_and_incr (&mcnt, &p); | |
947 printf ("/pop_failure_jump to %ld", (long)(p + mcnt - start)); | |
948 break; | |
949 | |
950 case jump_past_alt: | |
951 extract_number_and_incr (&mcnt, &p); | |
952 printf ("/jump_past_alt to %ld", (long)(p + mcnt - start)); | |
953 break; | |
954 | |
955 case jump: | |
956 extract_number_and_incr (&mcnt, &p); | |
957 printf ("/jump to %ld", (long)(p + mcnt - start)); | |
958 break; | |
959 | |
960 case succeed_n: | |
961 extract_number_and_incr (&mcnt, &p); | |
962 extract_number_and_incr (&mcnt2, &p); | |
963 printf ("/succeed_n to %ld, %d times", (long)(p + mcnt - start), mcnt2); | |
964 break; | |
965 | |
966 case jump_n: | |
967 extract_number_and_incr (&mcnt, &p); | |
968 extract_number_and_incr (&mcnt2, &p); | |
969 printf ("/jump_n to %ld, %d times", (long)(p + mcnt - start), mcnt2); | |
970 break; | |
971 | |
972 case set_number_at: | |
973 extract_number_and_incr (&mcnt, &p); | |
974 extract_number_and_incr (&mcnt2, &p); | |
975 printf ("/set_number_at location %ld to %d", (long)(p + mcnt - start), mcnt2); | |
976 break; | |
977 | |
978 case wordbound: | |
979 printf ("/wordbound"); | |
980 break; | |
981 | |
982 case notwordbound: | |
983 printf ("/notwordbound"); | |
984 break; | |
985 | |
986 case wordbeg: | |
987 printf ("/wordbeg"); | |
988 break; | |
989 | |
990 case wordend: | |
991 printf ("/wordend"); | |
992 | |
993 #ifdef emacs | |
994 case before_dot: | |
995 printf ("/before_dot"); | |
996 break; | |
997 | |
998 case at_dot: | |
999 printf ("/at_dot"); | |
1000 break; | |
1001 | |
1002 case after_dot: | |
1003 printf ("/after_dot"); | |
1004 break; | |
1005 | |
1006 case syntaxspec: | |
1007 printf ("/syntaxspec"); | |
1008 mcnt = *p++; | |
1009 printf ("/%d", mcnt); | |
1010 break; | |
1011 | |
1012 case notsyntaxspec: | |
1013 printf ("/notsyntaxspec"); | |
1014 mcnt = *p++; | |
1015 printf ("/%d", mcnt); | |
1016 break; | |
1017 | |
1018 #ifdef MULE | |
1019 /* 97/2/17 jhod Mule category patch */ | |
1020 case categoryspec: | |
1021 printf ("/categoryspec"); | |
1022 mcnt = *p++; | |
1023 printf ("/%d", mcnt); | |
1024 break; | |
1025 | |
1026 case notcategoryspec: | |
1027 printf ("/notcategoryspec"); | |
1028 mcnt = *p++; | |
1029 printf ("/%d", mcnt); | |
1030 break; | |
1031 /* end of category patch */ | |
1032 #endif /* MULE */ | |
1033 #endif /* emacs */ | |
1034 | |
1035 case wordchar: | |
1036 printf ("/wordchar"); | |
1037 break; | |
1038 | |
1039 case notwordchar: | |
1040 printf ("/notwordchar"); | |
1041 break; | |
1042 | |
1043 case begbuf: | |
1044 printf ("/begbuf"); | |
1045 break; | |
1046 | |
1047 case endbuf: | |
1048 printf ("/endbuf"); | |
1049 break; | |
1050 | |
1051 default: | |
1052 printf ("?%d", *(p-1)); | |
1053 } | |
1054 | |
1055 putchar ('\n'); | |
1056 } | |
1057 | |
1058 printf ("%ld:\tend of pattern.\n", (long)(p - start)); | |
1059 } | |
1060 | |
1061 | |
1062 static void | |
1063 print_compiled_pattern (struct re_pattern_buffer *bufp) | |
1064 { | |
446 | 1065 re_char *buffer = bufp->buffer; |
428 | 1066 |
1067 print_partial_compiled_pattern (buffer, buffer + bufp->used); | |
1068 printf ("%ld bytes used/%ld bytes allocated.\n", bufp->used, | |
1069 bufp->allocated); | |
1070 | |
1071 if (bufp->fastmap_accurate && bufp->fastmap) | |
1072 { | |
1073 printf ("fastmap: "); | |
1074 print_fastmap (bufp->fastmap); | |
1075 } | |
1076 | |
1077 printf ("re_nsub: %ld\t", (long)bufp->re_nsub); | |
502 | 1078 printf ("re_ngroups: %ld\t", (long)bufp->re_ngroups); |
428 | 1079 printf ("regs_alloc: %d\t", bufp->regs_allocated); |
1080 printf ("can_be_null: %d\t", bufp->can_be_null); | |
1081 printf ("newline_anchor: %d\n", bufp->newline_anchor); | |
1082 printf ("no_sub: %d\t", bufp->no_sub); | |
1083 printf ("not_bol: %d\t", bufp->not_bol); | |
1084 printf ("not_eol: %d\t", bufp->not_eol); | |
1085 printf ("syntax: %d\n", bufp->syntax); | |
1086 /* Perhaps we should print the translate table? */ | |
1087 /* and maybe the category table? */ | |
502 | 1088 |
1089 if (bufp->external_to_internal_register) | |
1090 { | |
1091 int i; | |
1092 | |
1093 printf ("external_to_internal_register:\n"); | |
1094 for (i = 0; i <= bufp->re_nsub; i++) | |
1095 { | |
1096 if (i > 0) | |
1097 printf (", "); | |
1098 printf ("%d -> %d", i, bufp->external_to_internal_register[i]); | |
1099 } | |
1100 printf ("\n"); | |
1101 } | |
428 | 1102 } |
1103 | |
1104 | |
1105 static void | |
446 | 1106 print_double_string (re_char *where, re_char *string1, int size1, |
1107 re_char *string2, int size2) | |
428 | 1108 { |
1109 if (where == NULL) | |
1110 printf ("(null)"); | |
1111 else | |
1112 { | |
647 | 1113 int this_char; |
428 | 1114 |
1115 if (FIRST_STRING_P (where)) | |
1116 { | |
1117 for (this_char = where - string1; this_char < size1; this_char++) | |
1118 putchar (string1[this_char]); | |
1119 | |
1120 where = string2; | |
1121 } | |
1122 | |
1123 for (this_char = where - string2; this_char < size2; this_char++) | |
1124 putchar (string2[this_char]); | |
1125 } | |
1126 } | |
1127 | |
1128 #else /* not DEBUG */ | |
1129 | |
771 | 1130 #ifndef emacs |
428 | 1131 #undef assert |
771 | 1132 #define assert(e) ((void) (1)) |
1133 #endif | |
428 | 1134 |
1135 #define DEBUG_STATEMENT(e) | |
1136 #define DEBUG_PRINT1(x) | |
1137 #define DEBUG_PRINT2(x1, x2) | |
1138 #define DEBUG_PRINT3(x1, x2, x3) | |
1139 #define DEBUG_PRINT4(x1, x2, x3, x4) | |
1140 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) | |
1141 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) | |
1142 | |
446 | 1143 #endif /* DEBUG */ |
428 | 1144 |
1145 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can | |
1146 also be assigned to arbitrarily: each pattern buffer stores its own | |
1147 syntax, so it can be changed between regex compilations. */ | |
1148 /* This has no initializer because initialized variables in Emacs | |
1149 become read-only after dumping. */ | |
1150 reg_syntax_t re_syntax_options; | |
1151 | |
1152 | |
1153 /* Specify the precise syntax of regexps for compilation. This provides | |
1154 for compatibility for various utilities which historically have | |
1155 different, incompatible syntaxes. | |
1156 | |
1157 The argument SYNTAX is a bit mask comprised of the various bits | |
1158 defined in regex.h. We return the old syntax. */ | |
1159 | |
1160 reg_syntax_t | |
1161 re_set_syntax (reg_syntax_t syntax) | |
1162 { | |
1163 reg_syntax_t ret = re_syntax_options; | |
1164 | |
1165 re_syntax_options = syntax; | |
1166 return ret; | |
1167 } | |
1168 | |
1169 /* This table gives an error message for each of the error codes listed | |
1170 in regex.h. Obviously the order here has to be same as there. | |
1171 POSIX doesn't require that we do anything for REG_NOERROR, | |
1172 but why not be nice? */ | |
1173 | |
442 | 1174 static const char *re_error_msgid[] = |
428 | 1175 { |
1176 "Success", /* REG_NOERROR */ | |
1177 "No match", /* REG_NOMATCH */ | |
1178 "Invalid regular expression", /* REG_BADPAT */ | |
1179 "Invalid collation character", /* REG_ECOLLATE */ | |
1180 "Invalid character class name", /* REG_ECTYPE */ | |
1181 "Trailing backslash", /* REG_EESCAPE */ | |
1182 "Invalid back reference", /* REG_ESUBREG */ | |
1183 "Unmatched [ or [^", /* REG_EBRACK */ | |
1184 "Unmatched ( or \\(", /* REG_EPAREN */ | |
1185 "Unmatched \\{", /* REG_EBRACE */ | |
1186 "Invalid content of \\{\\}", /* REG_BADBR */ | |
1187 "Invalid range end", /* REG_ERANGE */ | |
1188 "Memory exhausted", /* REG_ESPACE */ | |
1189 "Invalid preceding regular expression", /* REG_BADRPT */ | |
1190 "Premature end of regular expression", /* REG_EEND */ | |
1191 "Regular expression too big", /* REG_ESIZE */ | |
1192 "Unmatched ) or \\)", /* REG_ERPAREN */ | |
1193 #ifdef emacs | |
1194 "Invalid syntax designator", /* REG_ESYNTAX */ | |
1195 #endif | |
1196 #ifdef MULE | |
1197 "Ranges may not span charsets", /* REG_ERANGESPAN */ | |
1198 "Invalid category designator", /* REG_ECATEGORY */ | |
1199 #endif | |
1200 }; | |
1201 | |
1202 /* Avoiding alloca during matching, to placate r_alloc. */ | |
1203 | |
1333 | 1204 /* About these various flags: |
1205 | |
1206 MATCH_MAY_ALLOCATE indicates that it's OK to do allocation in the | |
1207 searching and matching functions. In this case, we use local variables | |
1208 to hold the values allocated. If not, we use *global* variables, which | |
1209 are pre-allocated. NOTE: XEmacs ***MUST*** run with MATCH_MAY_ALLOCATE, | |
1210 because the regexp routines may get called reentrantly as a result of | |
1211 QUIT processing (e.g. under Windows: re_match -> QUIT -> quit_p -> drain | |
1212 events -> process WM_INITMENU -> call filter -> re_match; see stack | |
1213 trace in signal.c), so we cannot have any global variables (unless we do | |
1214 lots of trickiness including some unwind-protects, which isn't worth it | |
1215 at this point). | |
1216 | |
1217 REL_ALLOC means that the relocating allocator is in use, for buffers | |
1218 and such. REGEX_REL_ALLOC means that we use rel-alloc to manage the | |
1219 fail stack, which may grow quite large. REGEX_MALLOC means we use | |
1220 malloc() in place of alloca() to allocate the fail stack -- only | |
1221 applicable if REGEX_REL_ALLOC is not defined. | |
1222 */ | |
1223 | |
428 | 1224 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the |
1225 searching and matching functions should not call alloca. On some | |
1226 systems, alloca is implemented in terms of malloc, and if we're | |
1227 using the relocating allocator routines, then malloc could cause a | |
1228 relocation, which might (if the strings being searched are in the | |
1229 ralloc heap) shift the data out from underneath the regexp | |
771 | 1230 routines. [To clarify: The purpose of rel-alloc is to allow data to |
1231 be moved in memory from one place to another so that all data | |
1232 blocks can be consolidated together and excess memory released back | |
1233 to the operating system. This requires that all the blocks that | |
1234 are managed by rel-alloc go at the very end of the program's heap, | |
1235 after all regularly malloc()ed data. malloc(), however, is used to | |
1236 owning the end of the heap, so that when more memory is needed, it | |
1237 just expands the heap using sbrk(). This is reconciled by using a | |
1238 malloc() (such as malloc.c, gmalloc.c, or recent versions of | |
1239 malloc() in libc) where the sbrk() call can be replaced with a | |
1240 user-specified call -- in this case, to rel-alloc's r_alloc_sbrk() | |
1241 routine. This routine calls the real sbrk(), but then shifts all | |
1242 the rel-alloc-managed blocks forward to the end of the heap again, | |
1243 so that malloc() gets the memory it needs in the location it needs | |
1244 it at. The regex routines may well have pointers to buffer data as | |
1245 their arguments, and buffers are managed by rel-alloc if rel-alloc | |
1246 has been enabled, so calling malloc() may potentially screw things | |
1247 up badly if it runs out of space and asks for more from the OS.] | |
1248 | |
1249 [[Here's another reason to avoid allocation: Emacs processes input | |
1250 from X in a signal handler; processing X input may call malloc; if | |
1251 input arrives while a matching routine is calling malloc, then | |
1252 we're scrod. But Emacs can't just block input while calling | |
1253 matching routines; then we don't notice interrupts when they come | |
1254 in. So, Emacs blocks input around all regexp calls except the | |
1255 matching calls, which it leaves unprotected, in the faith that they | |
1333 | 1256 will not malloc.]] This previous paragraph is irrelevant under XEmacs, |
1257 as we *do not* do anything so stupid as process input from within a | |
1258 signal handler. | |
1259 | |
1260 However, the regexp routines may get called reentrantly as a result of | |
1261 QUIT processing (e.g. under Windows: re_match -> QUIT -> quit_p -> drain | |
1262 events -> process WM_INITMENU -> call filter -> re_match; see stack | |
1263 trace in signal.c), so we cannot have any global variables (unless we do | |
1264 lots of trickiness including some unwind-protects, which isn't worth it | |
1265 at this point). Hence we MUST have MATCH_MAY_ALLOCATE defined. | |
1266 | |
1267 Also, the first paragraph does not make complete sense to me -- what | |
1268 about the use of rel-alloc to handle the fail stacks? Shouldn't these | |
1269 reallocations potentially cause buffer data to be relocated as well? I | |
826 | 1270 must be missing something, though -- perhaps the writer above is |
1271 assuming that the failure stack(s) will always be allocated after the | |
1272 buffer data, and thus reallocating them with rel-alloc won't move buffer | |
1333 | 1273 data. (In fact, a cursory glance at the code in ralloc.c seems to |
1274 confirm this.) --ben */ | |
428 | 1275 |
1276 /* Normally, this is fine. */ | |
1277 #define MATCH_MAY_ALLOCATE | |
1278 | |
1279 /* When using GNU C, we are not REALLY using the C alloca, no matter | |
1280 what config.h may say. So don't take precautions for it. */ | |
1281 #ifdef __GNUC__ | |
1282 #undef C_ALLOCA | |
1283 #endif | |
1284 | |
1285 /* The match routines may not allocate if (1) they would do it with malloc | |
1286 and (2) it's not safe for them to use malloc. | |
1287 Note that if REL_ALLOC is defined, matching would not use malloc for the | |
1288 failure stack, but we would still use it for the register vectors; | |
1289 so REL_ALLOC should not affect this. */ | |
771 | 1290 |
1333 | 1291 /* XEmacs can handle REL_ALLOC and malloc() OK */ |
1292 #if !defined (emacs) && (defined (C_ALLOCA) || defined (REGEX_MALLOC)) && defined (REL_ALLOC) | |
428 | 1293 #undef MATCH_MAY_ALLOCATE |
1294 #endif | |
1295 | |
1333 | 1296 #if !defined (MATCH_MAY_ALLOCATE) && defined (emacs) |
771 | 1297 #error regex must be handle reentrancy; MATCH_MAY_ALLOCATE must be defined |
1298 #endif | |
1299 | |
428 | 1300 |
1301 /* Failure stack declarations and macros; both re_compile_fastmap and | |
1302 re_match_2 use a failure stack. These have to be macros because of | |
1303 REGEX_ALLOCATE_STACK. */ | |
1304 | |
1305 | |
1306 /* Number of failure points for which to initially allocate space | |
1307 when matching. If this number is exceeded, we allocate more | |
1308 space, so it is not a hard limit. */ | |
1309 #ifndef INIT_FAILURE_ALLOC | |
3300 | 1310 #define INIT_FAILURE_ALLOC 20 |
428 | 1311 #endif |
1312 | |
1313 /* Roughly the maximum number of failure points on the stack. Would be | |
1314 exactly that if always used MAX_FAILURE_SPACE each time we failed. | |
1315 This is a variable only so users of regex can assign to it; we never | |
1316 change it ourselves. */ | |
1317 #if defined (MATCH_MAY_ALLOCATE) | |
1318 /* 4400 was enough to cause a crash on Alpha OSF/1, | |
1319 whose default stack limit is 2mb. */ | |
3300 | 1320 int re_max_failures = 40000; |
428 | 1321 #else |
3300 | 1322 int re_max_failures = 4000; |
428 | 1323 #endif |
1324 | |
1325 union fail_stack_elt | |
1326 { | |
446 | 1327 re_char *pointer; |
428 | 1328 int integer; |
1329 }; | |
1330 | |
1331 typedef union fail_stack_elt fail_stack_elt_t; | |
1332 | |
1333 typedef struct | |
1334 { | |
1335 fail_stack_elt_t *stack; | |
665 | 1336 Elemcount size; |
1337 Elemcount avail; /* Offset of next open position. */ | |
428 | 1338 } fail_stack_type; |
1339 | |
1340 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0) | |
1341 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0) | |
1342 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size) | |
1343 | |
1344 | |
1345 /* Define macros to initialize and free the failure stack. | |
1346 Do `return -2' if the alloc fails. */ | |
1347 | |
1348 #ifdef MATCH_MAY_ALLOCATE | |
1333 | 1349 #define INIT_FAIL_STACK() \ |
1350 do { \ | |
1351 fail_stack.stack = (fail_stack_elt_t *) \ | |
1352 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * \ | |
1353 sizeof (fail_stack_elt_t)); \ | |
1354 \ | |
1355 if (fail_stack.stack == NULL) \ | |
1356 { \ | |
1357 UNBIND_REGEX_MALLOC_CHECK (); \ | |
1358 return -2; \ | |
1359 } \ | |
1360 \ | |
1361 fail_stack.size = INIT_FAILURE_ALLOC; \ | |
1362 fail_stack.avail = 0; \ | |
428 | 1363 } while (0) |
1364 | |
1365 #define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack) | |
1366 #else | |
1367 #define INIT_FAIL_STACK() \ | |
1368 do { \ | |
1369 fail_stack.avail = 0; \ | |
1370 } while (0) | |
1371 | |
1372 #define RESET_FAIL_STACK() | |
1373 #endif | |
1374 | |
1375 | |
1376 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items. | |
1377 | |
1378 Return 1 if succeeds, and 0 if either ran out of memory | |
1379 allocating space for it or it was already too large. | |
1380 | |
1381 REGEX_REALLOCATE_STACK requires `destination' be declared. */ | |
1382 | |
1383 #define DOUBLE_FAIL_STACK(fail_stack) \ | |
1384 ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \ | |
1385 ? 0 \ | |
1386 : ((fail_stack).stack = (fail_stack_elt_t *) \ | |
1387 REGEX_REALLOCATE_STACK ((fail_stack).stack, \ | |
1388 (fail_stack).size * sizeof (fail_stack_elt_t), \ | |
1389 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \ | |
1390 \ | |
1391 (fail_stack).stack == NULL \ | |
1392 ? 0 \ | |
1393 : ((fail_stack).size <<= 1, \ | |
1394 1))) | |
1395 | |
1333 | 1396 #if !defined (emacs) || !defined (REL_ALLOC) |
1397 #define RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS() | |
1398 #else | |
1399 /* Don't change NULL pointers */ | |
1400 #define ADD_IF_NZ(val) if (val) val += rmdp_offset | |
1346 | 1401 #define RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS() \ |
1402 do \ | |
1403 { \ | |
1404 Bytecount rmdp_offset = offset_post_relocation (lispobj, orig_buftext); \ | |
1405 \ | |
1406 if (rmdp_offset) \ | |
1407 { \ | |
1408 int i; \ | |
1409 \ | |
1410 ADD_IF_NZ (string1); \ | |
1411 ADD_IF_NZ (string2); \ | |
1412 ADD_IF_NZ (d); \ | |
1413 ADD_IF_NZ (dend); \ | |
1414 ADD_IF_NZ (end1); \ | |
1415 ADD_IF_NZ (end2); \ | |
1416 ADD_IF_NZ (end_match_1); \ | |
1417 ADD_IF_NZ (end_match_2); \ | |
1418 \ | |
1419 if (bufp->re_ngroups) \ | |
1420 { \ | |
1421 for (i = 0; i < num_regs; i++) \ | |
1422 { \ | |
1423 ADD_IF_NZ (regstart[i]); \ | |
1424 ADD_IF_NZ (regend[i]); \ | |
1425 ADD_IF_NZ (old_regstart[i]); \ | |
1426 ADD_IF_NZ (old_regend[i]); \ | |
1427 ADD_IF_NZ (best_regstart[i]); \ | |
1428 ADD_IF_NZ (best_regend[i]); \ | |
1429 ADD_IF_NZ (reg_dummy[i]); \ | |
1430 } \ | |
1431 } \ | |
1432 \ | |
1433 ADD_IF_NZ (match_end); \ | |
1434 } \ | |
1333 | 1435 } while (0) |
1436 #endif /* !defined (emacs) || !defined (REL_ALLOC) */ | |
1437 | |
1438 #if !defined (emacs) || !defined (REL_ALLOC) | |
1439 #define RE_SEARCH_RELOCATE_MOVEABLE_DATA_POINTERS() | |
1440 #else | |
1346 | 1441 #define RE_SEARCH_RELOCATE_MOVEABLE_DATA_POINTERS() \ |
1442 do \ | |
1443 { \ | |
1444 Bytecount rmdp_offset = offset_post_relocation (lispobj, orig_buftext); \ | |
1445 \ | |
1446 if (rmdp_offset) \ | |
1447 { \ | |
1448 ADD_IF_NZ (str1); \ | |
1449 ADD_IF_NZ (str2); \ | |
1450 ADD_IF_NZ (string1); \ | |
1451 ADD_IF_NZ (string2); \ | |
1452 ADD_IF_NZ (d); \ | |
1453 } \ | |
1333 | 1454 } while (0) |
1455 | |
1456 #endif /* emacs */ | |
428 | 1457 |
1458 /* Push pointer POINTER on FAIL_STACK. | |
1459 Return 1 if was able to do so and 0 if ran out of memory allocating | |
1460 space to do so. */ | |
1461 #define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \ | |
1462 ((FAIL_STACK_FULL () \ | |
1463 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \ | |
1464 ? 0 \ | |
1465 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \ | |
1466 1)) | |
1467 | |
1468 /* Push a pointer value onto the failure stack. | |
1469 Assumes the variable `fail_stack'. Probably should only | |
1470 be called from within `PUSH_FAILURE_POINT'. */ | |
1471 #define PUSH_FAILURE_POINTER(item) \ | |
1472 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item) | |
1473 | |
1474 /* This pushes an integer-valued item onto the failure stack. | |
1475 Assumes the variable `fail_stack'. Probably should only | |
1476 be called from within `PUSH_FAILURE_POINT'. */ | |
1477 #define PUSH_FAILURE_INT(item) \ | |
1478 fail_stack.stack[fail_stack.avail++].integer = (item) | |
1479 | |
1480 /* Push a fail_stack_elt_t value onto the failure stack. | |
1481 Assumes the variable `fail_stack'. Probably should only | |
1482 be called from within `PUSH_FAILURE_POINT'. */ | |
1483 #define PUSH_FAILURE_ELT(item) \ | |
1484 fail_stack.stack[fail_stack.avail++] = (item) | |
1485 | |
1486 /* These three POP... operations complement the three PUSH... operations. | |
1487 All assume that `fail_stack' is nonempty. */ | |
1488 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer | |
1489 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer | |
1490 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail] | |
1491 | |
1492 /* Used to omit pushing failure point id's when we're not debugging. */ | |
1493 #ifdef DEBUG | |
1494 #define DEBUG_PUSH PUSH_FAILURE_INT | |
1495 #define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT () | |
1496 #else | |
1497 #define DEBUG_PUSH(item) | |
1498 #define DEBUG_POP(item_addr) | |
1499 #endif | |
1500 | |
1501 | |
1502 /* Push the information about the state we will need | |
1503 if we ever fail back to it. | |
1504 | |
1505 Requires variables fail_stack, regstart, regend, reg_info, and | |
1506 num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be | |
1507 declared. | |
1508 | |
1509 Does `return FAILURE_CODE' if runs out of memory. */ | |
1510 | |
771 | 1511 #if !defined (REGEX_MALLOC) && !defined (REGEX_REL_ALLOC) |
456 | 1512 #define DECLARE_DESTINATION char *destination |
428 | 1513 #else |
456 | 1514 #define DECLARE_DESTINATION DECLARE_NOTHING |
428 | 1515 #endif |
1516 | |
1517 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \ | |
456 | 1518 do { \ |
1519 DECLARE_DESTINATION; \ | |
1520 /* Must be int, so when we don't save any registers, the arithmetic \ | |
1521 of 0 + -1 isn't done as unsigned. */ \ | |
1522 int this_reg; \ | |
428 | 1523 \ |
456 | 1524 DEBUG_STATEMENT (failure_id++); \ |
1525 DEBUG_STATEMENT (nfailure_points_pushed++); \ | |
647 | 1526 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%d:\n", failure_id); \ |
1527 DEBUG_PRINT2 (" Before push, next avail: %ld\n", \ | |
1528 (long) (fail_stack).avail); \ | |
1529 DEBUG_PRINT2 (" size: %ld\n", \ | |
1530 (long) (fail_stack).size); \ | |
456 | 1531 \ |
1532 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \ | |
1533 DEBUG_PRINT2 (" available: %ld\n", \ | |
1534 (long) REMAINING_AVAIL_SLOTS); \ | |
428 | 1535 \ |
456 | 1536 /* Ensure we have enough space allocated for what we will push. */ \ |
1537 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \ | |
1538 { \ | |
1333 | 1539 BEGIN_REGEX_MALLOC_OK (); \ |
456 | 1540 if (!DOUBLE_FAIL_STACK (fail_stack)) \ |
1333 | 1541 { \ |
1542 END_REGEX_MALLOC_OK (); \ | |
1543 UNBIND_REGEX_MALLOC_CHECK (); \ | |
1544 return failure_code; \ | |
1545 } \ | |
1546 END_REGEX_MALLOC_OK (); \ | |
647 | 1547 DEBUG_PRINT2 ("\n Doubled stack; size now: %ld\n", \ |
1548 (long) (fail_stack).size); \ | |
456 | 1549 DEBUG_PRINT2 (" slots available: %ld\n", \ |
1550 (long) REMAINING_AVAIL_SLOTS); \ | |
1333 | 1551 \ |
1552 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS (); \ | |
456 | 1553 } \ |
428 | 1554 \ |
456 | 1555 /* Push the info, starting with the registers. */ \ |
1556 DEBUG_PRINT1 ("\n"); \ | |
428 | 1557 \ |
456 | 1558 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \ |
1559 this_reg++) \ | |
1560 { \ | |
1561 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \ | |
1562 DEBUG_STATEMENT (num_regs_pushed++); \ | |
428 | 1563 \ |
456 | 1564 DEBUG_PRINT2 (" start: 0x%lx\n", (long) regstart[this_reg]); \ |
1565 PUSH_FAILURE_POINTER (regstart[this_reg]); \ | |
1566 \ | |
1567 DEBUG_PRINT2 (" end: 0x%lx\n", (long) regend[this_reg]); \ | |
1568 PUSH_FAILURE_POINTER (regend[this_reg]); \ | |
428 | 1569 \ |
456 | 1570 DEBUG_PRINT2 (" info: 0x%lx\n ", \ |
1571 * (long *) (®_info[this_reg])); \ | |
1572 DEBUG_PRINT2 (" match_null=%d", \ | |
1573 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \ | |
1574 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \ | |
1575 DEBUG_PRINT2 (" matched_something=%d", \ | |
1576 MATCHED_SOMETHING (reg_info[this_reg])); \ | |
1577 DEBUG_PRINT2 (" ever_matched_something=%d", \ | |
1578 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \ | |
1579 DEBUG_PRINT1 ("\n"); \ | |
1580 PUSH_FAILURE_ELT (reg_info[this_reg].word); \ | |
1581 } \ | |
428 | 1582 \ |
456 | 1583 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg); \ |
1584 PUSH_FAILURE_INT (lowest_active_reg); \ | |
428 | 1585 \ |
456 | 1586 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg); \ |
1587 PUSH_FAILURE_INT (highest_active_reg); \ | |
428 | 1588 \ |
456 | 1589 DEBUG_PRINT2 (" Pushing pattern 0x%lx: \n", (long) pattern_place); \ |
1590 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \ | |
1591 PUSH_FAILURE_POINTER (pattern_place); \ | |
428 | 1592 \ |
456 | 1593 DEBUG_PRINT2 (" Pushing string 0x%lx: `", (long) string_place); \ |
1594 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \ | |
1595 size2); \ | |
1596 DEBUG_PRINT1 ("'\n"); \ | |
1597 PUSH_FAILURE_POINTER (string_place); \ | |
428 | 1598 \ |
456 | 1599 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \ |
1600 DEBUG_PUSH (failure_id); \ | |
1601 } while (0) | |
428 | 1602 |
1603 /* This is the number of items that are pushed and popped on the stack | |
1604 for each register. */ | |
1605 #define NUM_REG_ITEMS 3 | |
1606 | |
1607 /* Individual items aside from the registers. */ | |
1608 #ifdef DEBUG | |
1609 #define NUM_NONREG_ITEMS 5 /* Includes failure point id. */ | |
1610 #else | |
1611 #define NUM_NONREG_ITEMS 4 | |
1612 #endif | |
1613 | |
1614 /* We push at most this many items on the stack. */ | |
1615 /* We used to use (num_regs - 1), which is the number of registers | |
1616 this regexp will save; but that was changed to 5 | |
1617 to avoid stack overflow for a regexp with lots of parens. */ | |
1618 #define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS) | |
1619 | |
1620 /* We actually push this many items. */ | |
1621 #define NUM_FAILURE_ITEMS \ | |
1622 ((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS \ | |
1623 + NUM_NONREG_ITEMS) | |
1624 | |
1625 /* How many items can still be added to the stack without overflowing it. */ | |
1626 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail) | |
1627 | |
1628 | |
1629 /* Pops what PUSH_FAIL_STACK pushes. | |
1630 | |
1631 We restore into the parameters, all of which should be lvalues: | |
1632 STR -- the saved data position. | |
1633 PAT -- the saved pattern position. | |
1634 LOW_REG, HIGH_REG -- the highest and lowest active registers. | |
1635 REGSTART, REGEND -- arrays of string positions. | |
1636 REG_INFO -- array of information about each subexpression. | |
1637 | |
1638 Also assumes the variables `fail_stack' and (if debugging), `bufp', | |
1639 `pend', `string1', `size1', `string2', and `size2'. */ | |
1640 | |
456 | 1641 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, \ |
1642 regstart, regend, reg_info) \ | |
1643 do { \ | |
428 | 1644 DEBUG_STATEMENT (fail_stack_elt_t ffailure_id;) \ |
1645 int this_reg; \ | |
442 | 1646 const unsigned char *string_temp; \ |
428 | 1647 \ |
1648 assert (!FAIL_STACK_EMPTY ()); \ | |
1649 \ | |
1650 /* Remove failure points and point to how many regs pushed. */ \ | |
1651 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \ | |
647 | 1652 DEBUG_PRINT2 (" Before pop, next avail: %ld\n", \ |
1653 (long) fail_stack.avail); \ | |
1654 DEBUG_PRINT2 (" size: %ld\n", \ | |
1655 (long) fail_stack.size); \ | |
428 | 1656 \ |
1657 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \ | |
1658 \ | |
1659 DEBUG_POP (&ffailure_id.integer); \ | |
647 | 1660 DEBUG_PRINT2 (" Popping failure id: %d\n", \ |
1661 * (int *) &ffailure_id); \ | |
428 | 1662 \ |
1663 /* If the saved string location is NULL, it came from an \ | |
1664 on_failure_keep_string_jump opcode, and we want to throw away the \ | |
1665 saved NULL, thus retaining our current position in the string. */ \ | |
1666 string_temp = POP_FAILURE_POINTER (); \ | |
1667 if (string_temp != NULL) \ | |
446 | 1668 str = string_temp; \ |
428 | 1669 \ |
1670 DEBUG_PRINT2 (" Popping string 0x%lx: `", (long) str); \ | |
1671 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \ | |
1672 DEBUG_PRINT1 ("'\n"); \ | |
1673 \ | |
1674 pat = (unsigned char *) POP_FAILURE_POINTER (); \ | |
1675 DEBUG_PRINT2 (" Popping pattern 0x%lx: ", (long) pat); \ | |
1676 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \ | |
1677 \ | |
1678 /* Restore register info. */ \ | |
647 | 1679 high_reg = POP_FAILURE_INT (); \ |
428 | 1680 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \ |
1681 \ | |
647 | 1682 low_reg = POP_FAILURE_INT (); \ |
428 | 1683 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \ |
1684 \ | |
1685 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \ | |
1686 { \ | |
1687 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \ | |
1688 \ | |
1689 reg_info[this_reg].word = POP_FAILURE_ELT (); \ | |
1690 DEBUG_PRINT2 (" info: 0x%lx\n", \ | |
1691 * (long *) ®_info[this_reg]); \ | |
1692 \ | |
446 | 1693 regend[this_reg] = POP_FAILURE_POINTER (); \ |
428 | 1694 DEBUG_PRINT2 (" end: 0x%lx\n", (long) regend[this_reg]); \ |
1695 \ | |
446 | 1696 regstart[this_reg] = POP_FAILURE_POINTER (); \ |
428 | 1697 DEBUG_PRINT2 (" start: 0x%lx\n", (long) regstart[this_reg]); \ |
1698 } \ | |
1699 \ | |
1700 set_regs_matched_done = 0; \ | |
1701 DEBUG_STATEMENT (nfailure_points_popped++); \ | |
456 | 1702 } while (0) /* POP_FAILURE_POINT */ |
428 | 1703 |
1704 | |
1705 | |
1706 /* Structure for per-register (a.k.a. per-group) information. | |
1707 Other register information, such as the | |
1708 starting and ending positions (which are addresses), and the list of | |
1709 inner groups (which is a bits list) are maintained in separate | |
1710 variables. | |
1711 | |
1712 We are making a (strictly speaking) nonportable assumption here: that | |
1713 the compiler will pack our bit fields into something that fits into | |
1714 the type of `word', i.e., is something that fits into one item on the | |
1715 failure stack. */ | |
1716 | |
1717 typedef union | |
1718 { | |
1719 fail_stack_elt_t word; | |
1720 struct | |
1721 { | |
1722 /* This field is one if this group can match the empty string, | |
1723 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */ | |
1724 #define MATCH_NULL_UNSET_VALUE 3 | |
647 | 1725 unsigned int match_null_string_p : 2; |
1726 unsigned int is_active : 1; | |
1727 unsigned int matched_something : 1; | |
1728 unsigned int ever_matched_something : 1; | |
428 | 1729 } bits; |
1730 } register_info_type; | |
1731 | |
1732 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p) | |
1733 #define IS_ACTIVE(R) ((R).bits.is_active) | |
1734 #define MATCHED_SOMETHING(R) ((R).bits.matched_something) | |
1735 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something) | |
1736 | |
1737 | |
1738 /* Call this when have matched a real character; it sets `matched' flags | |
1739 for the subexpressions which we are currently inside. Also records | |
1740 that those subexprs have matched. */ | |
1741 #define SET_REGS_MATCHED() \ | |
1742 do \ | |
1743 { \ | |
1744 if (!set_regs_matched_done) \ | |
1745 { \ | |
647 | 1746 int r; \ |
428 | 1747 set_regs_matched_done = 1; \ |
1748 for (r = lowest_active_reg; r <= highest_active_reg; r++) \ | |
1749 { \ | |
1750 MATCHED_SOMETHING (reg_info[r]) \ | |
1751 = EVER_MATCHED_SOMETHING (reg_info[r]) \ | |
1752 = 1; \ | |
1753 } \ | |
1754 } \ | |
1755 } \ | |
1756 while (0) | |
1757 | |
1758 /* Registers are set to a sentinel when they haven't yet matched. */ | |
446 | 1759 static unsigned char reg_unset_dummy; |
428 | 1760 #define REG_UNSET_VALUE (®_unset_dummy) |
1761 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE) | |
1762 | |
1763 /* Subroutine declarations and macros for regex_compile. */ | |
1764 | |
1765 /* Fetch the next character in the uncompiled pattern---translating it | |
826 | 1766 if necessary. */ |
428 | 1767 #define PATFETCH(c) \ |
446 | 1768 do { \ |
1769 PATFETCH_RAW (c); \ | |
826 | 1770 c = RE_TRANSLATE (c); \ |
428 | 1771 } while (0) |
1772 | |
1773 /* Fetch the next character in the uncompiled pattern, with no | |
1774 translation. */ | |
1775 #define PATFETCH_RAW(c) \ | |
1776 do {if (p == pend) return REG_EEND; \ | |
1777 assert (p < pend); \ | |
867 | 1778 c = itext_ichar (p); \ |
1779 INC_IBYTEPTR (p); \ | |
428 | 1780 } while (0) |
1781 | |
1782 /* Go backwards one character in the pattern. */ | |
867 | 1783 #define PATUNFETCH DEC_IBYTEPTR (p) |
428 | 1784 |
1785 /* If `translate' is non-null, return translate[D], else just D. We | |
1786 cast the subscript to translate because some data is declared as | |
1787 `char *', to avoid warnings when a string constant is passed. But | |
1788 when we use a character as a subscript we must make it unsigned. */ | |
826 | 1789 #define RE_TRANSLATE(d) \ |
1790 (TRANSLATE_P (translate) ? RE_TRANSLATE_1 (d) : (d)) | |
428 | 1791 |
1792 /* Macros for outputting the compiled pattern into `buffer'. */ | |
1793 | |
1794 /* If the buffer isn't allocated when it comes in, use this. */ | |
1795 #define INIT_BUF_SIZE 32 | |
1796 | |
1797 /* Make sure we have at least N more bytes of space in buffer. */ | |
1798 #define GET_BUFFER_SPACE(n) \ | |
647 | 1799 while (buf_end - bufp->buffer + (n) > (ptrdiff_t) bufp->allocated) \ |
428 | 1800 EXTEND_BUFFER () |
1801 | |
1802 /* Make sure we have one more byte of buffer space and then add C to it. */ | |
1803 #define BUF_PUSH(c) \ | |
1804 do { \ | |
1805 GET_BUFFER_SPACE (1); \ | |
446 | 1806 *buf_end++ = (unsigned char) (c); \ |
428 | 1807 } while (0) |
1808 | |
1809 | |
1810 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */ | |
1811 #define BUF_PUSH_2(c1, c2) \ | |
1812 do { \ | |
1813 GET_BUFFER_SPACE (2); \ | |
446 | 1814 *buf_end++ = (unsigned char) (c1); \ |
1815 *buf_end++ = (unsigned char) (c2); \ | |
428 | 1816 } while (0) |
1817 | |
1818 | |
1819 /* As with BUF_PUSH_2, except for three bytes. */ | |
1820 #define BUF_PUSH_3(c1, c2, c3) \ | |
1821 do { \ | |
1822 GET_BUFFER_SPACE (3); \ | |
446 | 1823 *buf_end++ = (unsigned char) (c1); \ |
1824 *buf_end++ = (unsigned char) (c2); \ | |
1825 *buf_end++ = (unsigned char) (c3); \ | |
428 | 1826 } while (0) |
1827 | |
1828 | |
1829 /* Store a jump with opcode OP at LOC to location TO. We store a | |
1830 relative address offset by the three bytes the jump itself occupies. */ | |
1831 #define STORE_JUMP(op, loc, to) \ | |
1832 store_op1 (op, loc, (to) - (loc) - 3) | |
1833 | |
1834 /* Likewise, for a two-argument jump. */ | |
1835 #define STORE_JUMP2(op, loc, to, arg) \ | |
1836 store_op2 (op, loc, (to) - (loc) - 3, arg) | |
1837 | |
446 | 1838 /* Like `STORE_JUMP', but for inserting. Assume `buf_end' is the |
1839 buffer end. */ | |
428 | 1840 #define INSERT_JUMP(op, loc, to) \ |
446 | 1841 insert_op1 (op, loc, (to) - (loc) - 3, buf_end) |
1842 | |
1843 /* Like `STORE_JUMP2', but for inserting. Assume `buf_end' is the | |
1844 buffer end. */ | |
428 | 1845 #define INSERT_JUMP2(op, loc, to, arg) \ |
446 | 1846 insert_op2 (op, loc, (to) - (loc) - 3, arg, buf_end) |
428 | 1847 |
1848 | |
1849 /* This is not an arbitrary limit: the arguments which represent offsets | |
1850 into the pattern are two bytes long. So if 2^16 bytes turns out to | |
1851 be too small, many things would have to change. */ | |
1852 #define MAX_BUF_SIZE (1L << 16) | |
1853 | |
1854 | |
1855 /* Extend the buffer by twice its current size via realloc and | |
1856 reset the pointers that pointed into the old block to point to the | |
1857 correct places in the new one. If extending the buffer results in it | |
1858 being larger than MAX_BUF_SIZE, then flag memory exhausted. */ | |
1333 | 1859 #define EXTEND_BUFFER() \ |
1860 do { \ | |
1861 re_char *old_buffer = bufp->buffer; \ | |
1862 if (bufp->allocated == MAX_BUF_SIZE) \ | |
1863 return REG_ESIZE; \ | |
1864 bufp->allocated <<= 1; \ | |
1865 if (bufp->allocated > MAX_BUF_SIZE) \ | |
1866 bufp->allocated = MAX_BUF_SIZE; \ | |
1867 bufp->buffer = \ | |
1868 (unsigned char *) xrealloc (bufp->buffer, bufp->allocated); \ | |
1869 if (bufp->buffer == NULL) \ | |
1870 return REG_ESPACE; \ | |
1871 /* If the buffer moved, move all the pointers into it. */ \ | |
1872 if (old_buffer != bufp->buffer) \ | |
1873 { \ | |
1874 buf_end = (buf_end - old_buffer) + bufp->buffer; \ | |
1875 begalt = (begalt - old_buffer) + bufp->buffer; \ | |
1876 if (fixup_alt_jump) \ | |
1877 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer; \ | |
1878 if (laststart) \ | |
1879 laststart = (laststart - old_buffer) + bufp->buffer; \ | |
1880 if (pending_exact) \ | |
1881 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \ | |
1882 } \ | |
428 | 1883 } while (0) |
1884 | |
1885 | |
1886 /* Since we have one byte reserved for the register number argument to | |
1887 {start,stop}_memory, the maximum number of groups we can report | |
1888 things about is what fits in that byte. */ | |
1889 #define MAX_REGNUM 255 | |
1890 | |
1891 /* But patterns can have more than `MAX_REGNUM' registers. We just | |
502 | 1892 ignore the excess. |
1893 #### not true! groups past this will fail in lots of ways, if we | |
1894 ever have to backtrack. | |
1895 */ | |
647 | 1896 typedef int regnum_t; |
428 | 1897 |
502 | 1898 #define INIT_REG_TRANSLATE_SIZE 5 |
428 | 1899 |
1900 /* Macros for the compile stack. */ | |
1901 | |
1902 /* Since offsets can go either forwards or backwards, this type needs to | |
1903 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */ | |
1904 typedef int pattern_offset_t; | |
1905 | |
1906 typedef struct | |
1907 { | |
1908 pattern_offset_t begalt_offset; | |
1909 pattern_offset_t fixup_alt_jump; | |
1910 pattern_offset_t inner_group_offset; | |
1911 pattern_offset_t laststart_offset; | |
1912 regnum_t regnum; | |
1913 } compile_stack_elt_t; | |
1914 | |
1915 | |
1916 typedef struct | |
1917 { | |
1918 compile_stack_elt_t *stack; | |
647 | 1919 int size; |
1920 int avail; /* Offset of next open position. */ | |
428 | 1921 } compile_stack_type; |
1922 | |
1923 | |
1924 #define INIT_COMPILE_STACK_SIZE 32 | |
1925 | |
1926 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0) | |
1927 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size) | |
1928 | |
1929 /* The next available element. */ | |
1930 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail]) | |
1931 | |
1932 | |
1933 /* Set the bit for character C in a bit vector. */ | |
1934 #define SET_LIST_BIT(c) \ | |
446 | 1935 (buf_end[((unsigned char) (c)) / BYTEWIDTH] \ |
428 | 1936 |= 1 << (((unsigned char) c) % BYTEWIDTH)) |
1937 | |
1938 #ifdef MULE | |
1939 | |
1940 /* Set the "bit" for character C in a range table. */ | |
1941 #define SET_RANGETAB_BIT(c) put_range_table (rtab, c, c, Qt) | |
1942 | |
1943 /* Set the "bit" for character c in the appropriate table. */ | |
1944 #define SET_EITHER_BIT(c) \ | |
1945 do { \ | |
1946 if (has_extended_chars) \ | |
1947 SET_RANGETAB_BIT (c); \ | |
1948 else \ | |
1949 SET_LIST_BIT (c); \ | |
1950 } while (0) | |
1951 | |
1952 #else /* not MULE */ | |
1953 | |
1954 #define SET_EITHER_BIT(c) SET_LIST_BIT (c) | |
1955 | |
1956 #endif | |
1957 | |
1958 | |
1959 /* Get the next unsigned number in the uncompiled pattern. */ | |
1960 #define GET_UNSIGNED_NUMBER(num) \ | |
1961 { if (p != pend) \ | |
1962 { \ | |
1963 PATFETCH (c); \ | |
1964 while (ISDIGIT (c)) \ | |
1965 { \ | |
1966 if (num < 0) \ | |
1967 num = 0; \ | |
1968 num = num * 10 + c - '0'; \ | |
1969 if (p == pend) \ | |
1970 break; \ | |
1971 PATFETCH (c); \ | |
1972 } \ | |
1973 } \ | |
1974 } | |
1975 | |
1976 #define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */ | |
1977 | |
1978 #define IS_CHAR_CLASS(string) \ | |
1979 (STREQ (string, "alpha") || STREQ (string, "upper") \ | |
1980 || STREQ (string, "lower") || STREQ (string, "digit") \ | |
1981 || STREQ (string, "alnum") || STREQ (string, "xdigit") \ | |
1982 || STREQ (string, "space") || STREQ (string, "print") \ | |
1983 || STREQ (string, "punct") || STREQ (string, "graph") \ | |
1984 || STREQ (string, "cntrl") || STREQ (string, "blank")) | |
1985 | |
1986 static void store_op1 (re_opcode_t op, unsigned char *loc, int arg); | |
1987 static void store_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2); | |
1988 static void insert_op1 (re_opcode_t op, unsigned char *loc, int arg, | |
1989 unsigned char *end); | |
1990 static void insert_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2, | |
1991 unsigned char *end); | |
460 | 1992 static re_bool at_begline_loc_p (re_char *pattern, re_char *p, |
428 | 1993 reg_syntax_t syntax); |
460 | 1994 static re_bool at_endline_loc_p (re_char *p, re_char *pend, int syntax); |
1995 static re_bool group_in_compile_stack (compile_stack_type compile_stack, | |
428 | 1996 regnum_t regnum); |
446 | 1997 static reg_errcode_t compile_range (re_char **p_ptr, re_char *pend, |
1998 RE_TRANSLATE_TYPE translate, | |
1999 reg_syntax_t syntax, | |
428 | 2000 unsigned char *b); |
2001 #ifdef MULE | |
446 | 2002 static reg_errcode_t compile_extended_range (re_char **p_ptr, |
2003 re_char *pend, | |
2004 RE_TRANSLATE_TYPE translate, | |
428 | 2005 reg_syntax_t syntax, |
2006 Lisp_Object rtab); | |
2007 #endif /* MULE */ | |
460 | 2008 static re_bool group_match_null_string_p (unsigned char **p, |
428 | 2009 unsigned char *end, |
2010 register_info_type *reg_info); | |
460 | 2011 static re_bool alt_match_null_string_p (unsigned char *p, unsigned char *end, |
428 | 2012 register_info_type *reg_info); |
460 | 2013 static re_bool common_op_match_null_string_p (unsigned char **p, |
428 | 2014 unsigned char *end, |
2015 register_info_type *reg_info); | |
826 | 2016 static int bcmp_translate (re_char *s1, re_char *s2, |
2017 REGISTER int len, RE_TRANSLATE_TYPE translate | |
2018 #ifdef emacs | |
2019 , Internal_Format fmt, Lisp_Object lispobj | |
2020 #endif | |
2021 ); | |
428 | 2022 static int re_match_2_internal (struct re_pattern_buffer *bufp, |
446 | 2023 re_char *string1, int size1, |
2024 re_char *string2, int size2, int pos, | |
826 | 2025 struct re_registers *regs, int stop |
2026 RE_LISP_CONTEXT_ARGS_DECL); | |
428 | 2027 |
2028 #ifndef MATCH_MAY_ALLOCATE | |
2029 | |
2030 /* If we cannot allocate large objects within re_match_2_internal, | |
2031 we make the fail stack and register vectors global. | |
2032 The fail stack, we grow to the maximum size when a regexp | |
2033 is compiled. | |
2034 The register vectors, we adjust in size each time we | |
2035 compile a regexp, according to the number of registers it needs. */ | |
2036 | |
2037 static fail_stack_type fail_stack; | |
2038 | |
2039 /* Size with which the following vectors are currently allocated. | |
2040 That is so we can make them bigger as needed, | |
2041 but never make them smaller. */ | |
2042 static int regs_allocated_size; | |
2043 | |
446 | 2044 static re_char ** regstart, ** regend; |
2045 static re_char ** old_regstart, ** old_regend; | |
2046 static re_char **best_regstart, **best_regend; | |
428 | 2047 static register_info_type *reg_info; |
446 | 2048 static re_char **reg_dummy; |
428 | 2049 static register_info_type *reg_info_dummy; |
2050 | |
2051 /* Make the register vectors big enough for NUM_REGS registers, | |
2052 but don't make them smaller. */ | |
2053 | |
2054 static | |
2055 regex_grow_registers (int num_regs) | |
2056 { | |
2057 if (num_regs > regs_allocated_size) | |
2058 { | |
551 | 2059 RETALLOC (regstart, num_regs, re_char *); |
2060 RETALLOC (regend, num_regs, re_char *); | |
2061 RETALLOC (old_regstart, num_regs, re_char *); | |
2062 RETALLOC (old_regend, num_regs, re_char *); | |
2063 RETALLOC (best_regstart, num_regs, re_char *); | |
2064 RETALLOC (best_regend, num_regs, re_char *); | |
2065 RETALLOC (reg_info, num_regs, register_info_type); | |
2066 RETALLOC (reg_dummy, num_regs, re_char *); | |
2067 RETALLOC (reg_info_dummy, num_regs, register_info_type); | |
428 | 2068 |
2069 regs_allocated_size = num_regs; | |
2070 } | |
2071 } | |
2072 | |
2073 #endif /* not MATCH_MAY_ALLOCATE */ | |
2074 | |
2075 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX. | |
2076 Returns one of error codes defined in `regex.h', or zero for success. | |
2077 | |
2078 Assumes the `allocated' (and perhaps `buffer') and `translate' | |
2079 fields are set in BUFP on entry. | |
2080 | |
2081 If it succeeds, results are put in BUFP (if it returns an error, the | |
2082 contents of BUFP are undefined): | |
2083 `buffer' is the compiled pattern; | |
2084 `syntax' is set to SYNTAX; | |
2085 `used' is set to the length of the compiled pattern; | |
2086 `fastmap_accurate' is zero; | |
502 | 2087 `re_ngroups' is the number of groups/subexpressions (including shy |
2088 groups) in PATTERN; | |
2089 `re_nsub' is the number of non-shy groups in PATTERN; | |
428 | 2090 `not_bol' and `not_eol' are zero; |
2091 | |
2092 The `fastmap' and `newline_anchor' fields are neither | |
2093 examined nor set. */ | |
2094 | |
2095 /* Return, freeing storage we allocated. */ | |
1726 | 2096 #define FREE_STACK_RETURN(value) \ |
2097 do \ | |
2098 { \ | |
2099 xfree (compile_stack.stack, compile_stack_elt_t *); \ | |
2100 return value; \ | |
1333 | 2101 } while (0) |
428 | 2102 |
2103 static reg_errcode_t | |
446 | 2104 regex_compile (re_char *pattern, int size, reg_syntax_t syntax, |
428 | 2105 struct re_pattern_buffer *bufp) |
2106 { | |
2107 /* We fetch characters from PATTERN here. We declare these as int | |
2108 (or possibly long) so that chars above 127 can be used as | |
2109 array indices. The macros that fetch a character from the pattern | |
2110 make sure to coerce to unsigned char before assigning, so we won't | |
2111 get bitten by negative numbers here. */ | |
2112 /* XEmacs change: used to be unsigned char. */ | |
2113 REGISTER EMACS_INT c, c1; | |
2114 | |
2115 /* A random temporary spot in PATTERN. */ | |
446 | 2116 re_char *p1; |
428 | 2117 |
2118 /* Points to the end of the buffer, where we should append. */ | |
446 | 2119 REGISTER unsigned char *buf_end; |
428 | 2120 |
2121 /* Keeps track of unclosed groups. */ | |
2122 compile_stack_type compile_stack; | |
2123 | |
2124 /* Points to the current (ending) position in the pattern. */ | |
446 | 2125 re_char *p = pattern; |
2126 re_char *pend = pattern + size; | |
428 | 2127 |
2128 /* How to translate the characters in the pattern. */ | |
446 | 2129 RE_TRANSLATE_TYPE translate = bufp->translate; |
428 | 2130 |
2131 /* Address of the count-byte of the most recently inserted `exactn' | |
2132 command. This makes it possible to tell if a new exact-match | |
2133 character can be added to that command or if the character requires | |
2134 a new `exactn' command. */ | |
2135 unsigned char *pending_exact = 0; | |
2136 | |
2137 /* Address of start of the most recently finished expression. | |
2138 This tells, e.g., postfix * where to find the start of its | |
2139 operand. Reset at the beginning of groups and alternatives. */ | |
2140 unsigned char *laststart = 0; | |
2141 | |
2142 /* Address of beginning of regexp, or inside of last group. */ | |
2143 unsigned char *begalt; | |
2144 | |
2145 /* Place in the uncompiled pattern (i.e., the {) to | |
2146 which to go back if the interval is invalid. */ | |
446 | 2147 re_char *beg_interval; |
428 | 2148 |
2149 /* Address of the place where a forward jump should go to the end of | |
2150 the containing expression. Each alternative of an `or' -- except the | |
2151 last -- ends with a forward jump of this sort. */ | |
2152 unsigned char *fixup_alt_jump = 0; | |
2153 | |
2154 /* Counts open-groups as they are encountered. Remembered for the | |
2155 matching close-group on the compile stack, so the same register | |
2156 number is put in the stop_memory as the start_memory. */ | |
2157 regnum_t regnum = 0; | |
2158 | |
2159 #ifdef DEBUG | |
2160 DEBUG_PRINT1 ("\nCompiling pattern: "); | |
2161 if (debug) | |
2162 { | |
647 | 2163 int debug_count; |
428 | 2164 |
2165 for (debug_count = 0; debug_count < size; debug_count++) | |
2166 putchar (pattern[debug_count]); | |
2167 putchar ('\n'); | |
2168 } | |
2169 #endif /* DEBUG */ | |
2170 | |
2171 /* Initialize the compile stack. */ | |
2172 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t); | |
2173 if (compile_stack.stack == NULL) | |
2174 return REG_ESPACE; | |
2175 | |
2176 compile_stack.size = INIT_COMPILE_STACK_SIZE; | |
2177 compile_stack.avail = 0; | |
2178 | |
2179 /* Initialize the pattern buffer. */ | |
2180 bufp->syntax = syntax; | |
2181 bufp->fastmap_accurate = 0; | |
2182 bufp->not_bol = bufp->not_eol = 0; | |
2183 | |
2184 /* Set `used' to zero, so that if we return an error, the pattern | |
2185 printer (for debugging) will think there's no pattern. We reset it | |
2186 at the end. */ | |
2187 bufp->used = 0; | |
2188 | |
2189 /* Always count groups, whether or not bufp->no_sub is set. */ | |
2190 bufp->re_nsub = 0; | |
502 | 2191 bufp->re_ngroups = 0; |
2192 | |
2193 bufp->warned_about_incompatible_back_references = 0; | |
2194 | |
2195 if (bufp->external_to_internal_register == 0) | |
2196 { | |
2197 bufp->external_to_internal_register_size = INIT_REG_TRANSLATE_SIZE; | |
2198 RETALLOC (bufp->external_to_internal_register, | |
2199 bufp->external_to_internal_register_size, | |
2200 int); | |
2201 } | |
2202 | |
2203 { | |
2204 int i; | |
2205 | |
2206 bufp->external_to_internal_register[0] = 0; | |
2207 for (i = 1; i < bufp->external_to_internal_register_size; i++) | |
2208 bufp->external_to_internal_register[i] = (int) 0xDEADBEEF; | |
2209 } | |
428 | 2210 |
2211 #if !defined (emacs) && !defined (SYNTAX_TABLE) | |
2212 /* Initialize the syntax table. */ | |
2213 init_syntax_once (); | |
2214 #endif | |
2215 | |
2216 if (bufp->allocated == 0) | |
2217 { | |
2218 if (bufp->buffer) | |
2219 { /* If zero allocated, but buffer is non-null, try to realloc | |
2220 enough space. This loses if buffer's address is bogus, but | |
2221 that is the user's responsibility. */ | |
2222 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char); | |
2223 } | |
2224 else | |
2225 { /* Caller did not allocate a buffer. Do it for them. */ | |
2226 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char); | |
2227 } | |
2228 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE); | |
2229 | |
2230 bufp->allocated = INIT_BUF_SIZE; | |
2231 } | |
2232 | |
446 | 2233 begalt = buf_end = bufp->buffer; |
428 | 2234 |
2235 /* Loop through the uncompiled pattern until we're at the end. */ | |
2236 while (p != pend) | |
2237 { | |
2238 PATFETCH (c); | |
2239 | |
2240 switch (c) | |
2241 { | |
2242 case '^': | |
2243 { | |
2244 if ( /* If at start of pattern, it's an operator. */ | |
2245 p == pattern + 1 | |
2246 /* If context independent, it's an operator. */ | |
2247 || syntax & RE_CONTEXT_INDEP_ANCHORS | |
2248 /* Otherwise, depends on what's come before. */ | |
2249 || at_begline_loc_p (pattern, p, syntax)) | |
2250 BUF_PUSH (begline); | |
2251 else | |
2252 goto normal_char; | |
2253 } | |
2254 break; | |
2255 | |
2256 | |
2257 case '$': | |
2258 { | |
2259 if ( /* If at end of pattern, it's an operator. */ | |
2260 p == pend | |
2261 /* If context independent, it's an operator. */ | |
2262 || syntax & RE_CONTEXT_INDEP_ANCHORS | |
2263 /* Otherwise, depends on what's next. */ | |
2264 || at_endline_loc_p (p, pend, syntax)) | |
2265 BUF_PUSH (endline); | |
2266 else | |
2267 goto normal_char; | |
2268 } | |
2269 break; | |
2270 | |
2271 | |
2272 case '+': | |
2273 case '?': | |
2274 if ((syntax & RE_BK_PLUS_QM) | |
2275 || (syntax & RE_LIMITED_OPS)) | |
2276 goto normal_char; | |
2277 handle_plus: | |
2278 case '*': | |
2279 /* If there is no previous pattern... */ | |
2280 if (!laststart) | |
2281 { | |
2282 if (syntax & RE_CONTEXT_INVALID_OPS) | |
2283 FREE_STACK_RETURN (REG_BADRPT); | |
2284 else if (!(syntax & RE_CONTEXT_INDEP_OPS)) | |
2285 goto normal_char; | |
2286 } | |
2287 | |
2288 { | |
2289 /* true means zero/many matches are allowed. */ | |
460 | 2290 re_bool zero_times_ok = c != '+'; |
2291 re_bool many_times_ok = c != '?'; | |
428 | 2292 |
2293 /* true means match shortest string possible. */ | |
460 | 2294 re_bool minimal = false; |
428 | 2295 |
2296 /* If there is a sequence of repetition chars, collapse it | |
2297 down to just one (the right one). We can't combine | |
2298 interval operators with these because of, e.g., `a{2}*', | |
2299 which should only match an even number of `a's. */ | |
2300 while (p != pend) | |
2301 { | |
2302 PATFETCH (c); | |
2303 | |
2304 if (c == '*' || (!(syntax & RE_BK_PLUS_QM) | |
2305 && (c == '+' || c == '?'))) | |
2306 ; | |
2307 | |
2308 else if (syntax & RE_BK_PLUS_QM && c == '\\') | |
2309 { | |
2310 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE); | |
2311 | |
2312 PATFETCH (c1); | |
2313 if (!(c1 == '+' || c1 == '?')) | |
2314 { | |
2315 PATUNFETCH; | |
2316 PATUNFETCH; | |
2317 break; | |
2318 } | |
2319 | |
2320 c = c1; | |
2321 } | |
2322 else | |
2323 { | |
2324 PATUNFETCH; | |
2325 break; | |
2326 } | |
2327 | |
2328 /* If we get here, we found another repeat character. */ | |
2329 if (!(syntax & RE_NO_MINIMAL_MATCHING)) | |
2330 { | |
440 | 2331 /* "*?" and "+?" and "??" are okay (and mean match |
2332 minimally), but other sequences (such as "*??" and | |
2333 "+++") are rejected (reserved for future use). */ | |
428 | 2334 if (minimal || c != '?') |
2335 FREE_STACK_RETURN (REG_BADRPT); | |
2336 minimal = true; | |
2337 } | |
2338 else | |
2339 { | |
2340 zero_times_ok |= c != '+'; | |
2341 many_times_ok |= c != '?'; | |
2342 } | |
2343 } | |
2344 | |
2345 /* Star, etc. applied to an empty pattern is equivalent | |
2346 to an empty pattern. */ | |
2347 if (!laststart) | |
2348 break; | |
2349 | |
2350 /* Now we know whether zero matches is allowed | |
2351 and whether two or more matches is allowed | |
2352 and whether we want minimal or maximal matching. */ | |
2353 if (minimal) | |
2354 { | |
2355 if (!many_times_ok) | |
2356 { | |
2357 /* "a??" becomes: | |
2358 0: /on_failure_jump to 6 | |
2359 3: /jump to 9 | |
2360 6: /exactn/1/A | |
2361 9: end of pattern. | |
2362 */ | |
2363 GET_BUFFER_SPACE (6); | |
446 | 2364 INSERT_JUMP (jump, laststart, buf_end + 3); |
2365 buf_end += 3; | |
428 | 2366 INSERT_JUMP (on_failure_jump, laststart, laststart + 6); |
446 | 2367 buf_end += 3; |
428 | 2368 } |
2369 else if (zero_times_ok) | |
2370 { | |
2371 /* "a*?" becomes: | |
2372 0: /jump to 6 | |
2373 3: /exactn/1/A | |
2374 6: /on_failure_jump to 3 | |
2375 9: end of pattern. | |
2376 */ | |
2377 GET_BUFFER_SPACE (6); | |
446 | 2378 INSERT_JUMP (jump, laststart, buf_end + 3); |
2379 buf_end += 3; | |
2380 STORE_JUMP (on_failure_jump, buf_end, laststart + 3); | |
2381 buf_end += 3; | |
428 | 2382 } |
2383 else | |
2384 { | |
2385 /* "a+?" becomes: | |
2386 0: /exactn/1/A | |
2387 3: /on_failure_jump to 0 | |
2388 6: end of pattern. | |
2389 */ | |
2390 GET_BUFFER_SPACE (3); | |
446 | 2391 STORE_JUMP (on_failure_jump, buf_end, laststart); |
2392 buf_end += 3; | |
428 | 2393 } |
2394 } | |
2395 else | |
2396 { | |
2397 /* Are we optimizing this jump? */ | |
460 | 2398 re_bool keep_string_p = false; |
428 | 2399 |
2400 if (many_times_ok) | |
446 | 2401 { /* More than one repetition is allowed, so put in |
2402 at the end a backward relative jump from | |
2403 `buf_end' to before the next jump we're going | |
2404 to put in below (which jumps from laststart to | |
2405 after this jump). | |
428 | 2406 |
2407 But if we are at the `*' in the exact sequence `.*\n', | |
2408 insert an unconditional jump backwards to the ., | |
2409 instead of the beginning of the loop. This way we only | |
2410 push a failure point once, instead of every time | |
2411 through the loop. */ | |
2412 assert (p - 1 > pattern); | |
2413 | |
2414 /* Allocate the space for the jump. */ | |
2415 GET_BUFFER_SPACE (3); | |
2416 | |
2417 /* We know we are not at the first character of the | |
2418 pattern, because laststart was nonzero. And we've | |
2419 already incremented `p', by the way, to be the | |
2420 character after the `*'. Do we have to do something | |
2421 analogous here for null bytes, because of | |
2422 RE_DOT_NOT_NULL? */ | |
446 | 2423 if (*(p - 2) == '.' |
428 | 2424 && zero_times_ok |
446 | 2425 && p < pend && *p == '\n' |
428 | 2426 && !(syntax & RE_DOT_NEWLINE)) |
2427 { /* We have .*\n. */ | |
446 | 2428 STORE_JUMP (jump, buf_end, laststart); |
428 | 2429 keep_string_p = true; |
2430 } | |
2431 else | |
2432 /* Anything else. */ | |
446 | 2433 STORE_JUMP (maybe_pop_jump, buf_end, laststart - 3); |
428 | 2434 |
2435 /* We've added more stuff to the buffer. */ | |
446 | 2436 buf_end += 3; |
428 | 2437 } |
2438 | |
446 | 2439 /* On failure, jump from laststart to buf_end + 3, |
2440 which will be the end of the buffer after this jump | |
2441 is inserted. */ | |
428 | 2442 GET_BUFFER_SPACE (3); |
2443 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump | |
2444 : on_failure_jump, | |
446 | 2445 laststart, buf_end + 3); |
2446 buf_end += 3; | |
428 | 2447 |
2448 if (!zero_times_ok) | |
2449 { | |
2450 /* At least one repetition is required, so insert a | |
2451 `dummy_failure_jump' before the initial | |
2452 `on_failure_jump' instruction of the loop. This | |
2453 effects a skip over that instruction the first time | |
2454 we hit that loop. */ | |
2455 GET_BUFFER_SPACE (3); | |
2456 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6); | |
446 | 2457 buf_end += 3; |
428 | 2458 } |
2459 } | |
2460 pending_exact = 0; | |
2461 } | |
2462 break; | |
2463 | |
2464 | |
2465 case '.': | |
446 | 2466 laststart = buf_end; |
428 | 2467 BUF_PUSH (anychar); |
2468 break; | |
2469 | |
2470 | |
2471 case '[': | |
2472 { | |
2473 /* XEmacs change: this whole section */ | |
460 | 2474 re_bool had_char_class = false; |
428 | 2475 #ifdef MULE |
460 | 2476 re_bool has_extended_chars = false; |
428 | 2477 REGISTER Lisp_Object rtab = Qnil; |
2478 #endif | |
2479 | |
2480 if (p == pend) FREE_STACK_RETURN (REG_EBRACK); | |
2481 | |
2482 /* Ensure that we have enough space to push a charset: the | |
2483 opcode, the length count, and the bitset; 34 bytes in all. */ | |
2484 GET_BUFFER_SPACE (34); | |
2485 | |
446 | 2486 laststart = buf_end; |
428 | 2487 |
2488 /* We test `*p == '^' twice, instead of using an if | |
2489 statement, so we only need one BUF_PUSH. */ | |
2490 BUF_PUSH (*p == '^' ? charset_not : charset); | |
2491 if (*p == '^') | |
2492 p++; | |
2493 | |
2494 /* Remember the first position in the bracket expression. */ | |
2495 p1 = p; | |
2496 | |
2497 /* Push the number of bytes in the bitmap. */ | |
2498 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH); | |
2499 | |
2500 /* Clear the whole map. */ | |
446 | 2501 memset (buf_end, 0, (1 << BYTEWIDTH) / BYTEWIDTH); |
428 | 2502 |
2503 /* charset_not matches newline according to a syntax bit. */ | |
446 | 2504 if ((re_opcode_t) buf_end[-2] == charset_not |
428 | 2505 && (syntax & RE_HAT_LISTS_NOT_NEWLINE)) |
2506 SET_LIST_BIT ('\n'); | |
2507 | |
2508 #ifdef MULE | |
2509 start_over_with_extended: | |
2510 if (has_extended_chars) | |
2511 { | |
2512 /* There are extended chars here, which means we need to start | |
2513 over and shift to unified range-table format. */ | |
446 | 2514 if (buf_end[-2] == charset) |
2515 buf_end[-2] = charset_mule; | |
428 | 2516 else |
446 | 2517 buf_end[-2] = charset_mule_not; |
2518 buf_end--; | |
428 | 2519 p = p1; /* go back to the beginning of the charset, after |
2520 a possible ^. */ | |
2521 rtab = Vthe_lisp_rangetab; | |
2522 Fclear_range_table (rtab); | |
2523 | |
2524 /* charset_not matches newline according to a syntax bit. */ | |
446 | 2525 if ((re_opcode_t) buf_end[-1] == charset_mule_not |
428 | 2526 && (syntax & RE_HAT_LISTS_NOT_NEWLINE)) |
2527 SET_EITHER_BIT ('\n'); | |
2528 } | |
2529 #endif /* MULE */ | |
2530 | |
2531 /* Read in characters and ranges, setting map bits. */ | |
2532 for (;;) | |
2533 { | |
2534 if (p == pend) FREE_STACK_RETURN (REG_EBRACK); | |
2535 | |
446 | 2536 PATFETCH (c); |
428 | 2537 |
2538 #ifdef MULE | |
2539 if (c >= 0x80 && !has_extended_chars) | |
2540 { | |
2541 has_extended_chars = 1; | |
2542 /* Frumble-bumble, we've found some extended chars. | |
2543 Need to start over, process everything using | |
2544 the general extended-char mechanism, and need | |
2545 to use charset_mule and charset_mule_not instead | |
2546 of charset and charset_not. */ | |
2547 goto start_over_with_extended; | |
2548 } | |
2549 #endif /* MULE */ | |
2550 /* \ might escape characters inside [...] and [^...]. */ | |
2551 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\') | |
2552 { | |
2553 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE); | |
2554 | |
446 | 2555 PATFETCH (c1); |
428 | 2556 #ifdef MULE |
2557 if (c1 >= 0x80 && !has_extended_chars) | |
2558 { | |
2559 has_extended_chars = 1; | |
2560 goto start_over_with_extended; | |
2561 } | |
2562 #endif /* MULE */ | |
2563 SET_EITHER_BIT (c1); | |
2564 continue; | |
2565 } | |
2566 | |
2567 /* Could be the end of the bracket expression. If it's | |
2568 not (i.e., when the bracket expression is `[]' so | |
2569 far), the ']' character bit gets set way below. */ | |
2570 if (c == ']' && p != p1 + 1) | |
2571 break; | |
2572 | |
2573 /* Look ahead to see if it's a range when the last thing | |
2574 was a character class. */ | |
2575 if (had_char_class && c == '-' && *p != ']') | |
2576 FREE_STACK_RETURN (REG_ERANGE); | |
2577 | |
2578 /* Look ahead to see if it's a range when the last thing | |
2579 was a character: if this is a hyphen not at the | |
2580 beginning or the end of a list, then it's the range | |
2581 operator. */ | |
2582 if (c == '-' | |
2583 && !(p - 2 >= pattern && p[-2] == '[') | |
446 | 2584 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^') |
428 | 2585 && *p != ']') |
2586 { | |
2587 reg_errcode_t ret; | |
2588 | |
2589 #ifdef MULE | |
2590 if (* (unsigned char *) p >= 0x80 && !has_extended_chars) | |
2591 { | |
2592 has_extended_chars = 1; | |
2593 goto start_over_with_extended; | |
2594 } | |
2595 if (has_extended_chars) | |
2596 ret = compile_extended_range (&p, pend, translate, | |
2597 syntax, rtab); | |
2598 else | |
2599 #endif /* MULE */ | |
446 | 2600 ret = compile_range (&p, pend, translate, syntax, buf_end); |
428 | 2601 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret); |
2602 } | |
2603 | |
2604 else if (p[0] == '-' && p[1] != ']') | |
2605 { /* This handles ranges made up of characters only. */ | |
2606 reg_errcode_t ret; | |
2607 | |
2608 /* Move past the `-'. */ | |
2609 PATFETCH (c1); | |
2610 | |
2611 #ifdef MULE | |
2612 if (* (unsigned char *) p >= 0x80 && !has_extended_chars) | |
2613 { | |
2614 has_extended_chars = 1; | |
2615 goto start_over_with_extended; | |
2616 } | |
2617 if (has_extended_chars) | |
2618 ret = compile_extended_range (&p, pend, translate, | |
2619 syntax, rtab); | |
2620 else | |
2621 #endif /* MULE */ | |
446 | 2622 ret = compile_range (&p, pend, translate, syntax, buf_end); |
428 | 2623 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret); |
2624 } | |
2625 | |
2626 /* See if we're at the beginning of a possible character | |
2627 class. */ | |
2628 | |
2629 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':') | |
2630 { /* Leave room for the null. */ | |
2631 char str[CHAR_CLASS_MAX_LENGTH + 1]; | |
2632 | |
2633 PATFETCH (c); | |
2634 c1 = 0; | |
2635 | |
2636 /* If pattern is `[[:'. */ | |
2637 if (p == pend) FREE_STACK_RETURN (REG_EBRACK); | |
2638 | |
2639 for (;;) | |
2640 { | |
446 | 2641 /* #### This code is unused. |
2642 Correctness is not checked after TRT | |
2643 table change. */ | |
428 | 2644 PATFETCH (c); |
2645 if (c == ':' || c == ']' || p == pend | |
2646 || c1 == CHAR_CLASS_MAX_LENGTH) | |
2647 break; | |
442 | 2648 str[c1++] = (char) c; |
428 | 2649 } |
2650 str[c1] = '\0'; | |
2651 | |
446 | 2652 /* If isn't a word bracketed by `[:' and `:]': |
428 | 2653 undo the ending character, the letters, and leave |
2654 the leading `:' and `[' (but set bits for them). */ | |
2655 if (c == ':' && *p == ']') | |
2656 { | |
2657 int ch; | |
460 | 2658 re_bool is_alnum = STREQ (str, "alnum"); |
2659 re_bool is_alpha = STREQ (str, "alpha"); | |
2660 re_bool is_blank = STREQ (str, "blank"); | |
2661 re_bool is_cntrl = STREQ (str, "cntrl"); | |
2662 re_bool is_digit = STREQ (str, "digit"); | |
2663 re_bool is_graph = STREQ (str, "graph"); | |
2664 re_bool is_lower = STREQ (str, "lower"); | |
2665 re_bool is_print = STREQ (str, "print"); | |
2666 re_bool is_punct = STREQ (str, "punct"); | |
2667 re_bool is_space = STREQ (str, "space"); | |
2668 re_bool is_upper = STREQ (str, "upper"); | |
2669 re_bool is_xdigit = STREQ (str, "xdigit"); | |
428 | 2670 |
2671 if (!IS_CHAR_CLASS (str)) | |
2672 FREE_STACK_RETURN (REG_ECTYPE); | |
2673 | |
2674 /* Throw away the ] at the end of the character | |
2675 class. */ | |
2676 PATFETCH (c); | |
2677 | |
2678 if (p == pend) FREE_STACK_RETURN (REG_EBRACK); | |
2679 | |
2680 for (ch = 0; ch < 1 << BYTEWIDTH; ch++) | |
2681 { | |
2682 /* This was split into 3 if's to | |
2683 avoid an arbitrary limit in some compiler. */ | |
2684 if ( (is_alnum && ISALNUM (ch)) | |
2685 || (is_alpha && ISALPHA (ch)) | |
2686 || (is_blank && ISBLANK (ch)) | |
2687 || (is_cntrl && ISCNTRL (ch))) | |
2688 SET_EITHER_BIT (ch); | |
2689 if ( (is_digit && ISDIGIT (ch)) | |
2690 || (is_graph && ISGRAPH (ch)) | |
2691 || (is_lower && ISLOWER (ch)) | |
2692 || (is_print && ISPRINT (ch))) | |
2693 SET_EITHER_BIT (ch); | |
2694 if ( (is_punct && ISPUNCT (ch)) | |
2695 || (is_space && ISSPACE (ch)) | |
2696 || (is_upper && ISUPPER (ch)) | |
2697 || (is_xdigit && ISXDIGIT (ch))) | |
2698 SET_EITHER_BIT (ch); | |
2699 } | |
2700 had_char_class = true; | |
2701 } | |
2702 else | |
2703 { | |
2704 c1++; | |
2705 while (c1--) | |
2706 PATUNFETCH; | |
2707 SET_EITHER_BIT ('['); | |
2708 SET_EITHER_BIT (':'); | |
2709 had_char_class = false; | |
2710 } | |
2711 } | |
2712 else | |
2713 { | |
2714 had_char_class = false; | |
2715 SET_EITHER_BIT (c); | |
2716 } | |
2717 } | |
2718 | |
2719 #ifdef MULE | |
2720 if (has_extended_chars) | |
2721 { | |
2722 /* We have a range table, not a bit vector. */ | |
2723 int bytes_needed = | |
2724 unified_range_table_bytes_needed (rtab); | |
2725 GET_BUFFER_SPACE (bytes_needed); | |
446 | 2726 unified_range_table_copy_data (rtab, buf_end); |
2727 buf_end += unified_range_table_bytes_used (buf_end); | |
428 | 2728 break; |
2729 } | |
2730 #endif /* MULE */ | |
2731 /* Discard any (non)matching list bytes that are all 0 at the | |
2732 end of the map. Decrease the map-length byte too. */ | |
446 | 2733 while ((int) buf_end[-1] > 0 && buf_end[buf_end[-1] - 1] == 0) |
2734 buf_end[-1]--; | |
2735 buf_end += buf_end[-1]; | |
428 | 2736 } |
2737 break; | |
2738 | |
2739 | |
2740 case '(': | |
2741 if (syntax & RE_NO_BK_PARENS) | |
2742 goto handle_open; | |
2743 else | |
2744 goto normal_char; | |
2745 | |
2746 | |
2747 case ')': | |
2748 if (syntax & RE_NO_BK_PARENS) | |
2749 goto handle_close; | |
2750 else | |
2751 goto normal_char; | |
2752 | |
2753 | |
2754 case '\n': | |
2755 if (syntax & RE_NEWLINE_ALT) | |
2756 goto handle_alt; | |
2757 else | |
2758 goto normal_char; | |
2759 | |
2760 | |
2761 case '|': | |
2762 if (syntax & RE_NO_BK_VBAR) | |
2763 goto handle_alt; | |
2764 else | |
2765 goto normal_char; | |
2766 | |
2767 | |
2768 case '{': | |
2769 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES) | |
2770 goto handle_interval; | |
2771 else | |
2772 goto normal_char; | |
2773 | |
2774 | |
2775 case '\\': | |
2776 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE); | |
2777 | |
2778 /* Do not translate the character after the \, so that we can | |
2779 distinguish, e.g., \B from \b, even if we normally would | |
2780 translate, e.g., B to b. */ | |
2781 PATFETCH_RAW (c); | |
2782 | |
2783 switch (c) | |
2784 { | |
2785 case '(': | |
2786 if (syntax & RE_NO_BK_PARENS) | |
2787 goto normal_backslash; | |
2788 | |
2789 handle_open: | |
2790 { | |
2791 regnum_t r; | |
502 | 2792 int shy = 0; |
428 | 2793 |
2794 if (!(syntax & RE_NO_SHY_GROUPS) | |
2795 && p != pend | |
446 | 2796 && *p == '?') |
428 | 2797 { |
2798 p++; | |
446 | 2799 PATFETCH (c); |
428 | 2800 switch (c) |
2801 { | |
2802 case ':': /* shy groups */ | |
502 | 2803 shy = 1; |
428 | 2804 break; |
2805 | |
2806 /* All others are reserved for future constructs. */ | |
2807 default: | |
2808 FREE_STACK_RETURN (REG_BADPAT); | |
2809 } | |
2810 } | |
502 | 2811 |
2812 r = ++regnum; | |
2813 bufp->re_ngroups++; | |
2814 if (!shy) | |
2815 { | |
2816 bufp->re_nsub++; | |
2817 while (bufp->external_to_internal_register_size <= | |
2818 bufp->re_nsub) | |
2819 { | |
2820 int i; | |
2821 int old_size = | |
2822 bufp->external_to_internal_register_size; | |
2823 bufp->external_to_internal_register_size += 5; | |
2824 RETALLOC (bufp->external_to_internal_register, | |
2825 bufp->external_to_internal_register_size, | |
2826 int); | |
2827 /* debugging */ | |
2828 for (i = old_size; | |
2829 i < bufp->external_to_internal_register_size; i++) | |
2830 bufp->external_to_internal_register[i] = | |
2831 (int) 0xDEADBEEF; | |
2832 } | |
2833 | |
2834 bufp->external_to_internal_register[bufp->re_nsub] = | |
2835 bufp->re_ngroups; | |
2836 } | |
428 | 2837 |
2838 if (COMPILE_STACK_FULL) | |
2839 { | |
2840 RETALLOC (compile_stack.stack, compile_stack.size << 1, | |
2841 compile_stack_elt_t); | |
2842 if (compile_stack.stack == NULL) return REG_ESPACE; | |
2843 | |
2844 compile_stack.size <<= 1; | |
2845 } | |
2846 | |
2847 /* These are the values to restore when we hit end of this | |
2848 group. They are all relative offsets, so that if the | |
2849 whole pattern moves because of realloc, they will still | |
2850 be valid. */ | |
2851 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer; | |
2852 COMPILE_STACK_TOP.fixup_alt_jump | |
2853 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0; | |
446 | 2854 COMPILE_STACK_TOP.laststart_offset = buf_end - bufp->buffer; |
428 | 2855 COMPILE_STACK_TOP.regnum = r; |
2856 | |
2857 /* We will eventually replace the 0 with the number of | |
2858 groups inner to this one. But do not push a | |
2859 start_memory for groups beyond the last one we can | |
502 | 2860 represent in the compiled pattern. |
2861 #### bad bad bad. this will fail in lots of ways, if we | |
2862 ever have to backtrack for these groups. | |
2863 */ | |
428 | 2864 if (r <= MAX_REGNUM) |
2865 { | |
2866 COMPILE_STACK_TOP.inner_group_offset | |
446 | 2867 = buf_end - bufp->buffer + 2; |
428 | 2868 BUF_PUSH_3 (start_memory, r, 0); |
2869 } | |
2870 | |
2871 compile_stack.avail++; | |
2872 | |
2873 fixup_alt_jump = 0; | |
2874 laststart = 0; | |
446 | 2875 begalt = buf_end; |
428 | 2876 /* If we've reached MAX_REGNUM groups, then this open |
2877 won't actually generate any code, so we'll have to | |
2878 clear pending_exact explicitly. */ | |
2879 pending_exact = 0; | |
2880 } | |
2881 break; | |
2882 | |
2883 | |
2884 case ')': | |
2885 if (syntax & RE_NO_BK_PARENS) goto normal_backslash; | |
2886 | |
2887 if (COMPILE_STACK_EMPTY) { | |
2888 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD) | |
2889 goto normal_backslash; | |
2890 else | |
2891 FREE_STACK_RETURN (REG_ERPAREN); | |
2892 } | |
2893 | |
2894 handle_close: | |
2895 if (fixup_alt_jump) | |
2896 { /* Push a dummy failure point at the end of the | |
2897 alternative for a possible future | |
2898 `pop_failure_jump' to pop. See comments at | |
2899 `push_dummy_failure' in `re_match_2'. */ | |
2900 BUF_PUSH (push_dummy_failure); | |
2901 | |
2902 /* We allocated space for this jump when we assigned | |
2903 to `fixup_alt_jump', in the `handle_alt' case below. */ | |
446 | 2904 STORE_JUMP (jump_past_alt, fixup_alt_jump, buf_end - 1); |
428 | 2905 } |
2906 | |
2907 /* See similar code for backslashed left paren above. */ | |
2908 if (COMPILE_STACK_EMPTY) { | |
2909 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD) | |
2910 goto normal_char; | |
2911 else | |
2912 FREE_STACK_RETURN (REG_ERPAREN); | |
2913 } | |
2914 | |
2915 /* Since we just checked for an empty stack above, this | |
2916 ``can't happen''. */ | |
2917 assert (compile_stack.avail != 0); | |
2918 { | |
2919 /* We don't just want to restore into `regnum', because | |
2920 later groups should continue to be numbered higher, | |
2921 as in `(ab)c(de)' -- the second group is #2. */ | |
2922 regnum_t this_group_regnum; | |
2923 | |
2924 compile_stack.avail--; | |
2925 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset; | |
2926 fixup_alt_jump | |
2927 = COMPILE_STACK_TOP.fixup_alt_jump | |
2928 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1 | |
2929 : 0; | |
2930 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset; | |
2931 this_group_regnum = COMPILE_STACK_TOP.regnum; | |
2932 /* If we've reached MAX_REGNUM groups, then this open | |
2933 won't actually generate any code, so we'll have to | |
2934 clear pending_exact explicitly. */ | |
2935 pending_exact = 0; | |
2936 | |
2937 /* We're at the end of the group, so now we know how many | |
2938 groups were inside this one. */ | |
2939 if (this_group_regnum <= MAX_REGNUM) | |
2940 { | |
2941 unsigned char *inner_group_loc | |
2942 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset; | |
2943 | |
2944 *inner_group_loc = regnum - this_group_regnum; | |
2945 BUF_PUSH_3 (stop_memory, this_group_regnum, | |
2946 regnum - this_group_regnum); | |
2947 } | |
2948 } | |
2949 break; | |
2950 | |
2951 | |
2952 case '|': /* `\|'. */ | |
2953 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR) | |
2954 goto normal_backslash; | |
2955 handle_alt: | |
2956 if (syntax & RE_LIMITED_OPS) | |
2957 goto normal_char; | |
2958 | |
2959 /* Insert before the previous alternative a jump which | |
2960 jumps to this alternative if the former fails. */ | |
2961 GET_BUFFER_SPACE (3); | |
446 | 2962 INSERT_JUMP (on_failure_jump, begalt, buf_end + 6); |
428 | 2963 pending_exact = 0; |
446 | 2964 buf_end += 3; |
428 | 2965 |
2966 /* The alternative before this one has a jump after it | |
2967 which gets executed if it gets matched. Adjust that | |
2968 jump so it will jump to this alternative's analogous | |
2969 jump (put in below, which in turn will jump to the next | |
2970 (if any) alternative's such jump, etc.). The last such | |
2971 jump jumps to the correct final destination. A picture: | |
2972 _____ _____ | |
2973 | | | | | |
2974 | v | v | |
2975 a | b | c | |
2976 | |
2977 If we are at `b', then fixup_alt_jump right now points to a | |
2978 three-byte space after `a'. We'll put in the jump, set | |
2979 fixup_alt_jump to right after `b', and leave behind three | |
2980 bytes which we'll fill in when we get to after `c'. */ | |
2981 | |
2982 if (fixup_alt_jump) | |
446 | 2983 STORE_JUMP (jump_past_alt, fixup_alt_jump, buf_end); |
428 | 2984 |
2985 /* Mark and leave space for a jump after this alternative, | |
2986 to be filled in later either by next alternative or | |
2987 when know we're at the end of a series of alternatives. */ | |
446 | 2988 fixup_alt_jump = buf_end; |
428 | 2989 GET_BUFFER_SPACE (3); |
446 | 2990 buf_end += 3; |
428 | 2991 |
2992 laststart = 0; | |
446 | 2993 begalt = buf_end; |
428 | 2994 break; |
2995 | |
2996 | |
2997 case '{': | |
2998 /* If \{ is a literal. */ | |
2999 if (!(syntax & RE_INTERVALS) | |
3000 /* If we're at `\{' and it's not the open-interval | |
3001 operator. */ | |
3002 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES)) | |
3003 || (p - 2 == pattern && p == pend)) | |
3004 goto normal_backslash; | |
3005 | |
3006 handle_interval: | |
3007 { | |
3008 /* If got here, then the syntax allows intervals. */ | |
3009 | |
3010 /* At least (most) this many matches must be made. */ | |
3011 int lower_bound = -1, upper_bound = -1; | |
3012 | |
3013 beg_interval = p - 1; | |
3014 | |
3015 if (p == pend) | |
3016 { | |
3017 if (syntax & RE_NO_BK_BRACES) | |
3018 goto unfetch_interval; | |
3019 else | |
3020 FREE_STACK_RETURN (REG_EBRACE); | |
3021 } | |
3022 | |
3023 GET_UNSIGNED_NUMBER (lower_bound); | |
3024 | |
3025 if (c == ',') | |
3026 { | |
3027 GET_UNSIGNED_NUMBER (upper_bound); | |
3028 if (upper_bound < 0) upper_bound = RE_DUP_MAX; | |
3029 } | |
3030 else | |
3031 /* Interval such as `{1}' => match exactly once. */ | |
3032 upper_bound = lower_bound; | |
3033 | |
3034 if (lower_bound < 0 || upper_bound > RE_DUP_MAX | |
3035 || lower_bound > upper_bound) | |
3036 { | |
3037 if (syntax & RE_NO_BK_BRACES) | |
3038 goto unfetch_interval; | |
3039 else | |
3040 FREE_STACK_RETURN (REG_BADBR); | |
3041 } | |
3042 | |
3043 if (!(syntax & RE_NO_BK_BRACES)) | |
3044 { | |
3045 if (c != '\\') FREE_STACK_RETURN (REG_EBRACE); | |
3046 | |
3047 PATFETCH (c); | |
3048 } | |
3049 | |
3050 if (c != '}') | |
3051 { | |
3052 if (syntax & RE_NO_BK_BRACES) | |
3053 goto unfetch_interval; | |
3054 else | |
3055 FREE_STACK_RETURN (REG_BADBR); | |
3056 } | |
3057 | |
3058 /* We just parsed a valid interval. */ | |
3059 | |
3060 /* If it's invalid to have no preceding re. */ | |
3061 if (!laststart) | |
3062 { | |
3063 if (syntax & RE_CONTEXT_INVALID_OPS) | |
3064 FREE_STACK_RETURN (REG_BADRPT); | |
3065 else if (syntax & RE_CONTEXT_INDEP_OPS) | |
446 | 3066 laststart = buf_end; |
428 | 3067 else |
3068 goto unfetch_interval; | |
3069 } | |
3070 | |
3071 /* If the upper bound is zero, don't want to succeed at | |
3072 all; jump from `laststart' to `b + 3', which will be | |
3073 the end of the buffer after we insert the jump. */ | |
3074 if (upper_bound == 0) | |
3075 { | |
3076 GET_BUFFER_SPACE (3); | |
446 | 3077 INSERT_JUMP (jump, laststart, buf_end + 3); |
3078 buf_end += 3; | |
428 | 3079 } |
3080 | |
3081 /* Otherwise, we have a nontrivial interval. When | |
3082 we're all done, the pattern will look like: | |
3083 set_number_at <jump count> <upper bound> | |
3084 set_number_at <succeed_n count> <lower bound> | |
3085 succeed_n <after jump addr> <succeed_n count> | |
3086 <body of loop> | |
3087 jump_n <succeed_n addr> <jump count> | |
3088 (The upper bound and `jump_n' are omitted if | |
3089 `upper_bound' is 1, though.) */ | |
3090 else | |
3091 { /* If the upper bound is > 1, we need to insert | |
3092 more at the end of the loop. */ | |
647 | 3093 int nbytes = 10 + (upper_bound > 1) * 10; |
428 | 3094 |
3095 GET_BUFFER_SPACE (nbytes); | |
3096 | |
3097 /* Initialize lower bound of the `succeed_n', even | |
3098 though it will be set during matching by its | |
3099 attendant `set_number_at' (inserted next), | |
3100 because `re_compile_fastmap' needs to know. | |
3101 Jump to the `jump_n' we might insert below. */ | |
3102 INSERT_JUMP2 (succeed_n, laststart, | |
446 | 3103 buf_end + 5 + (upper_bound > 1) * 5, |
428 | 3104 lower_bound); |
446 | 3105 buf_end += 5; |
428 | 3106 |
3107 /* Code to initialize the lower bound. Insert | |
3108 before the `succeed_n'. The `5' is the last two | |
3109 bytes of this `set_number_at', plus 3 bytes of | |
3110 the following `succeed_n'. */ | |
446 | 3111 insert_op2 (set_number_at, laststart, 5, lower_bound, buf_end); |
3112 buf_end += 5; | |
428 | 3113 |
3114 if (upper_bound > 1) | |
3115 { /* More than one repetition is allowed, so | |
3116 append a backward jump to the `succeed_n' | |
3117 that starts this interval. | |
3118 | |
3119 When we've reached this during matching, | |
3120 we'll have matched the interval once, so | |
3121 jump back only `upper_bound - 1' times. */ | |
446 | 3122 STORE_JUMP2 (jump_n, buf_end, laststart + 5, |
428 | 3123 upper_bound - 1); |
446 | 3124 buf_end += 5; |
428 | 3125 |
3126 /* The location we want to set is the second | |
3127 parameter of the `jump_n'; that is `b-2' as | |
3128 an absolute address. `laststart' will be | |
3129 the `set_number_at' we're about to insert; | |
3130 `laststart+3' the number to set, the source | |
3131 for the relative address. But we are | |
3132 inserting into the middle of the pattern -- | |
3133 so everything is getting moved up by 5. | |
3134 Conclusion: (b - 2) - (laststart + 3) + 5, | |
3135 i.e., b - laststart. | |
3136 | |
3137 We insert this at the beginning of the loop | |
3138 so that if we fail during matching, we'll | |
3139 reinitialize the bounds. */ | |
446 | 3140 insert_op2 (set_number_at, laststart, |
3141 buf_end - laststart, | |
3142 upper_bound - 1, buf_end); | |
3143 buf_end += 5; | |
428 | 3144 } |
3145 } | |
3146 pending_exact = 0; | |
3147 beg_interval = NULL; | |
3148 } | |
3149 break; | |
3150 | |
3151 unfetch_interval: | |
3152 /* If an invalid interval, match the characters as literals. */ | |
3153 assert (beg_interval); | |
3154 p = beg_interval; | |
3155 beg_interval = NULL; | |
3156 | |
3157 /* normal_char and normal_backslash need `c'. */ | |
3158 PATFETCH (c); | |
3159 | |
3160 if (!(syntax & RE_NO_BK_BRACES)) | |
3161 { | |
3162 if (p > pattern && p[-1] == '\\') | |
3163 goto normal_backslash; | |
3164 } | |
3165 goto normal_char; | |
3166 | |
3167 #ifdef emacs | |
3168 /* There is no way to specify the before_dot and after_dot | |
3169 operators. rms says this is ok. --karl */ | |
3170 case '=': | |
3171 BUF_PUSH (at_dot); | |
3172 break; | |
3173 | |
3174 case 's': | |
446 | 3175 laststart = buf_end; |
428 | 3176 PATFETCH (c); |
3177 /* XEmacs addition */ | |
3178 if (c >= 0x80 || syntax_spec_code[c] == 0377) | |
3179 FREE_STACK_RETURN (REG_ESYNTAX); | |
3180 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]); | |
3181 break; | |
3182 | |
3183 case 'S': | |
446 | 3184 laststart = buf_end; |
428 | 3185 PATFETCH (c); |
3186 /* XEmacs addition */ | |
3187 if (c >= 0x80 || syntax_spec_code[c] == 0377) | |
3188 FREE_STACK_RETURN (REG_ESYNTAX); | |
3189 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]); | |
3190 break; | |
3191 | |
3192 #ifdef MULE | |
3193 /* 97.2.17 jhod merged in to XEmacs from mule-2.3 */ | |
3194 case 'c': | |
446 | 3195 laststart = buf_end; |
428 | 3196 PATFETCH_RAW (c); |
3197 if (c < 32 || c > 127) | |
3198 FREE_STACK_RETURN (REG_ECATEGORY); | |
3199 BUF_PUSH_2 (categoryspec, c); | |
3200 break; | |
3201 | |
3202 case 'C': | |
446 | 3203 laststart = buf_end; |
428 | 3204 PATFETCH_RAW (c); |
3205 if (c < 32 || c > 127) | |
3206 FREE_STACK_RETURN (REG_ECATEGORY); | |
3207 BUF_PUSH_2 (notcategoryspec, c); | |
3208 break; | |
3209 /* end of category patch */ | |
3210 #endif /* MULE */ | |
3211 #endif /* emacs */ | |
3212 | |
3213 | |
3214 case 'w': | |
446 | 3215 laststart = buf_end; |
428 | 3216 BUF_PUSH (wordchar); |
3217 break; | |
3218 | |
3219 | |
3220 case 'W': | |
446 | 3221 laststart = buf_end; |
428 | 3222 BUF_PUSH (notwordchar); |
3223 break; | |
3224 | |
3225 | |
3226 case '<': | |
3227 BUF_PUSH (wordbeg); | |
3228 break; | |
3229 | |
3230 case '>': | |
3231 BUF_PUSH (wordend); | |
3232 break; | |
3233 | |
3234 case 'b': | |
3235 BUF_PUSH (wordbound); | |
3236 break; | |
3237 | |
3238 case 'B': | |
3239 BUF_PUSH (notwordbound); | |
3240 break; | |
3241 | |
3242 case '`': | |
3243 BUF_PUSH (begbuf); | |
3244 break; | |
3245 | |
3246 case '\'': | |
3247 BUF_PUSH (endbuf); | |
3248 break; | |
3249 | |
3250 case '1': case '2': case '3': case '4': case '5': | |
3251 case '6': case '7': case '8': case '9': | |
446 | 3252 { |
502 | 3253 regnum_t reg, regint; |
3254 int may_need_to_unfetch = 0; | |
446 | 3255 if (syntax & RE_NO_BK_REFS) |
3256 goto normal_char; | |
3257 | |
502 | 3258 /* This only goes up to 99. It could be extended to work |
3259 up to 255 (the maximum number of registers that can be | |
3260 handled by the current regexp engine, because it stores | |
3261 its register numbers in the compiled pattern as one byte, | |
3262 ugh). Doing that's a bit trickier, because you might | |
3263 have the case where \25 a back-ref but \255 is not, ... */ | |
446 | 3264 reg = c - '0'; |
502 | 3265 if (p < pend) |
3266 { | |
3267 PATFETCH (c); | |
3268 if (c >= '0' && c <= '9') | |
3269 { | |
3270 regnum_t new_reg = reg * 10 + c - '0'; | |
3271 if (new_reg <= bufp->re_nsub) | |
3272 { | |
3273 reg = new_reg; | |
3274 may_need_to_unfetch = 1; | |
3275 } | |
3276 else | |
3277 PATUNFETCH; | |
3278 } | |
523 | 3279 else |
3280 PATUNFETCH; | |
502 | 3281 } |
3282 | |
3283 if (reg > bufp->re_nsub) | |
446 | 3284 FREE_STACK_RETURN (REG_ESUBREG); |
3285 | |
502 | 3286 regint = bufp->external_to_internal_register[reg]; |
446 | 3287 /* Can't back reference to a subexpression if inside of it. */ |
502 | 3288 if (group_in_compile_stack (compile_stack, regint)) |
3289 { | |
3290 if (may_need_to_unfetch) | |
3291 PATUNFETCH; | |
3292 goto normal_char; | |
3293 } | |
3294 | |
3295 #ifdef emacs | |
3296 if (reg > 9 && | |
3297 bufp->warned_about_incompatible_back_references == 0) | |
3298 { | |
3299 bufp->warned_about_incompatible_back_references = 1; | |
3300 warn_when_safe (intern ("regex"), Qinfo, | |
3301 "Back reference \\%d now has new " | |
3302 "semantics in %s", reg, pattern); | |
3303 } | |
3304 #endif | |
446 | 3305 |
3306 laststart = buf_end; | |
502 | 3307 BUF_PUSH_2 (duplicate, regint); |
446 | 3308 } |
428 | 3309 break; |
3310 | |
3311 | |
3312 case '+': | |
3313 case '?': | |
3314 if (syntax & RE_BK_PLUS_QM) | |
3315 goto handle_plus; | |
3316 else | |
3317 goto normal_backslash; | |
3318 | |
3319 default: | |
3320 normal_backslash: | |
3321 /* You might think it would be useful for \ to mean | |
3322 not to translate; but if we don't translate it, | |
3323 it will never match anything. */ | |
826 | 3324 c = RE_TRANSLATE (c); |
428 | 3325 goto normal_char; |
3326 } | |
3327 break; | |
3328 | |
3329 | |
3330 default: | |
3331 /* Expects the character in `c'. */ | |
3332 /* `p' points to the location after where `c' came from. */ | |
3333 normal_char: | |
3334 { | |
4750
b5f21bb36684
Fix crash in regex.c (closes issue630).
Stephen J. Turnbull <stephen@xemacs.org>
parents:
4527
diff
changeset
|
3335 /* The following conditional synced to GNU Emacs 22.1. */ |
428 | 3336 /* If no exactn currently being built. */ |
3337 if (!pending_exact | |
3338 | |
3339 /* If last exactn not at current position. */ | |
446 | 3340 || pending_exact + *pending_exact + 1 != buf_end |
428 | 3341 |
3342 /* We have only one byte following the exactn for the count. */ | |
4750
b5f21bb36684
Fix crash in regex.c (closes issue630).
Stephen J. Turnbull <stephen@xemacs.org>
parents:
4527
diff
changeset
|
3343 || *pending_exact >= (1 << BYTEWIDTH) - MAX_ICHAR_LEN |
b5f21bb36684
Fix crash in regex.c (closes issue630).
Stephen J. Turnbull <stephen@xemacs.org>
parents:
4527
diff
changeset
|
3344 |
b5f21bb36684
Fix crash in regex.c (closes issue630).
Stephen J. Turnbull <stephen@xemacs.org>
parents:
4527
diff
changeset
|
3345 /* If followed by a repetition operator. |
b5f21bb36684
Fix crash in regex.c (closes issue630).
Stephen J. Turnbull <stephen@xemacs.org>
parents:
4527
diff
changeset
|
3346 If the lookahead fails because of end of pattern, any |
b5f21bb36684
Fix crash in regex.c (closes issue630).
Stephen J. Turnbull <stephen@xemacs.org>
parents:
4527
diff
changeset
|
3347 trailing backslash will get caught later. */ |
b5f21bb36684
Fix crash in regex.c (closes issue630).
Stephen J. Turnbull <stephen@xemacs.org>
parents:
4527
diff
changeset
|
3348 || (p != pend && (*p == '*' || *p == '^')) |
428 | 3349 || ((syntax & RE_BK_PLUS_QM) |
4750
b5f21bb36684
Fix crash in regex.c (closes issue630).
Stephen J. Turnbull <stephen@xemacs.org>
parents:
4527
diff
changeset
|
3350 ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?') |
b5f21bb36684
Fix crash in regex.c (closes issue630).
Stephen J. Turnbull <stephen@xemacs.org>
parents:
4527
diff
changeset
|
3351 : p != pend && (*p == '+' || *p == '?')) |
428 | 3352 || ((syntax & RE_INTERVALS) |
3353 && ((syntax & RE_NO_BK_BRACES) | |
4750
b5f21bb36684
Fix crash in regex.c (closes issue630).
Stephen J. Turnbull <stephen@xemacs.org>
parents:
4527
diff
changeset
|
3354 ? p != pend && *p == '{' |
b5f21bb36684
Fix crash in regex.c (closes issue630).
Stephen J. Turnbull <stephen@xemacs.org>
parents:
4527
diff
changeset
|
3355 : p + 1 < pend && (p[0] == '\\' && p[1] == '{')))) |
428 | 3356 { |
3357 /* Start building a new exactn. */ | |
3358 | |
446 | 3359 laststart = buf_end; |
428 | 3360 |
3361 BUF_PUSH_2 (exactn, 0); | |
446 | 3362 pending_exact = buf_end - 1; |
428 | 3363 } |
3364 | |
446 | 3365 #ifndef MULE |
428 | 3366 BUF_PUSH (c); |
3367 (*pending_exact)++; | |
446 | 3368 #else |
3369 { | |
3370 Bytecount bt_count; | |
867 | 3371 Ibyte tmp_buf[MAX_ICHAR_LEN]; |
446 | 3372 int i; |
3373 | |
867 | 3374 bt_count = set_itext_ichar (tmp_buf, c); |
446 | 3375 |
3376 for (i = 0; i < bt_count; i++) | |
3377 { | |
3378 BUF_PUSH (tmp_buf[i]); | |
3379 (*pending_exact)++; | |
3380 } | |
3381 } | |
3382 #endif | |
428 | 3383 break; |
3384 } | |
3385 } /* switch (c) */ | |
3386 } /* while p != pend */ | |
3387 | |
3388 | |
3389 /* Through the pattern now. */ | |
3390 | |
3391 if (fixup_alt_jump) | |
446 | 3392 STORE_JUMP (jump_past_alt, fixup_alt_jump, buf_end); |
428 | 3393 |
3394 if (!COMPILE_STACK_EMPTY) | |
3395 FREE_STACK_RETURN (REG_EPAREN); | |
3396 | |
3397 /* If we don't want backtracking, force success | |
3398 the first time we reach the end of the compiled pattern. */ | |
3399 if (syntax & RE_NO_POSIX_BACKTRACKING) | |
3400 BUF_PUSH (succeed); | |
3401 | |
1726 | 3402 xfree (compile_stack.stack, compile_stack_elt_t *); |
428 | 3403 |
3404 /* We have succeeded; set the length of the buffer. */ | |
446 | 3405 bufp->used = buf_end - bufp->buffer; |
428 | 3406 |
3407 #ifdef DEBUG | |
3408 if (debug) | |
3409 { | |
3410 DEBUG_PRINT1 ("\nCompiled pattern: \n"); | |
3411 print_compiled_pattern (bufp); | |
3412 } | |
3413 #endif /* DEBUG */ | |
3414 | |
3415 #ifndef MATCH_MAY_ALLOCATE | |
3416 /* Initialize the failure stack to the largest possible stack. This | |
3417 isn't necessary unless we're trying to avoid calling alloca in | |
3418 the search and match routines. */ | |
3419 { | |
502 | 3420 int num_regs = bufp->re_ngroups + 1; |
428 | 3421 |
3422 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size | |
3423 is strictly greater than re_max_failures, the largest possible stack | |
3424 is 2 * re_max_failures failure points. */ | |
3425 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS)) | |
3426 { | |
3427 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS); | |
3428 | |
3429 if (! fail_stack.stack) | |
3430 fail_stack.stack | |
3431 = (fail_stack_elt_t *) xmalloc (fail_stack.size | |
3432 * sizeof (fail_stack_elt_t)); | |
3433 else | |
3434 fail_stack.stack | |
3435 = (fail_stack_elt_t *) xrealloc (fail_stack.stack, | |
3436 (fail_stack.size | |
3437 * sizeof (fail_stack_elt_t))); | |
3438 } | |
3439 | |
3440 regex_grow_registers (num_regs); | |
3441 } | |
3442 #endif /* not MATCH_MAY_ALLOCATE */ | |
3443 | |
3444 return REG_NOERROR; | |
3445 } /* regex_compile */ | |
3446 | |
3447 /* Subroutines for `regex_compile'. */ | |
3448 | |
3449 /* Store OP at LOC followed by two-byte integer parameter ARG. */ | |
3450 | |
3451 static void | |
3452 store_op1 (re_opcode_t op, unsigned char *loc, int arg) | |
3453 { | |
3454 *loc = (unsigned char) op; | |
3455 STORE_NUMBER (loc + 1, arg); | |
3456 } | |
3457 | |
3458 | |
3459 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */ | |
3460 | |
3461 static void | |
3462 store_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2) | |
3463 { | |
3464 *loc = (unsigned char) op; | |
3465 STORE_NUMBER (loc + 1, arg1); | |
3466 STORE_NUMBER (loc + 3, arg2); | |
3467 } | |
3468 | |
3469 | |
3470 /* Copy the bytes from LOC to END to open up three bytes of space at LOC | |
3471 for OP followed by two-byte integer parameter ARG. */ | |
3472 | |
3473 static void | |
3474 insert_op1 (re_opcode_t op, unsigned char *loc, int arg, unsigned char *end) | |
3475 { | |
3476 REGISTER unsigned char *pfrom = end; | |
3477 REGISTER unsigned char *pto = end + 3; | |
3478 | |
3479 while (pfrom != loc) | |
3480 *--pto = *--pfrom; | |
3481 | |
3482 store_op1 (op, loc, arg); | |
3483 } | |
3484 | |
3485 | |
3486 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */ | |
3487 | |
3488 static void | |
3489 insert_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2, | |
3490 unsigned char *end) | |
3491 { | |
3492 REGISTER unsigned char *pfrom = end; | |
3493 REGISTER unsigned char *pto = end + 5; | |
3494 | |
3495 while (pfrom != loc) | |
3496 *--pto = *--pfrom; | |
3497 | |
3498 store_op2 (op, loc, arg1, arg2); | |
3499 } | |
3500 | |
3501 | |
3502 /* P points to just after a ^ in PATTERN. Return true if that ^ comes | |
3503 after an alternative or a begin-subexpression. We assume there is at | |
3504 least one character before the ^. */ | |
3505 | |
460 | 3506 static re_bool |
446 | 3507 at_begline_loc_p (re_char *pattern, re_char *p, reg_syntax_t syntax) |
428 | 3508 { |
446 | 3509 re_char *prev = p - 2; |
460 | 3510 re_bool prev_prev_backslash = prev > pattern && prev[-1] == '\\'; |
428 | 3511 |
3512 return | |
3513 /* After a subexpression? */ | |
3514 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash)) | |
3515 /* After an alternative? */ | |
3516 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash)); | |
3517 } | |
3518 | |
3519 | |
3520 /* The dual of at_begline_loc_p. This one is for $. We assume there is | |
3521 at least one character after the $, i.e., `P < PEND'. */ | |
3522 | |
460 | 3523 static re_bool |
446 | 3524 at_endline_loc_p (re_char *p, re_char *pend, int syntax) |
428 | 3525 { |
446 | 3526 re_char *next = p; |
460 | 3527 re_bool next_backslash = *next == '\\'; |
446 | 3528 re_char *next_next = p + 1 < pend ? p + 1 : 0; |
428 | 3529 |
3530 return | |
3531 /* Before a subexpression? */ | |
3532 (syntax & RE_NO_BK_PARENS ? *next == ')' | |
3533 : next_backslash && next_next && *next_next == ')') | |
3534 /* Before an alternative? */ | |
3535 || (syntax & RE_NO_BK_VBAR ? *next == '|' | |
3536 : next_backslash && next_next && *next_next == '|'); | |
3537 } | |
3538 | |
3539 | |
3540 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and | |
3541 false if it's not. */ | |
3542 | |
460 | 3543 static re_bool |
428 | 3544 group_in_compile_stack (compile_stack_type compile_stack, regnum_t regnum) |
3545 { | |
3546 int this_element; | |
3547 | |
3548 for (this_element = compile_stack.avail - 1; | |
3549 this_element >= 0; | |
3550 this_element--) | |
3551 if (compile_stack.stack[this_element].regnum == regnum) | |
3552 return true; | |
3553 | |
3554 return false; | |
3555 } | |
3556 | |
3557 | |
3558 /* Read the ending character of a range (in a bracket expression) from the | |
3559 uncompiled pattern *P_PTR (which ends at PEND). We assume the | |
3560 starting character is in `P[-2]'. (`P[-1]' is the character `-'.) | |
3561 Then we set the translation of all bits between the starting and | |
3562 ending characters (inclusive) in the compiled pattern B. | |
3563 | |
3564 Return an error code. | |
3565 | |
3566 We use these short variable names so we can use the same macros as | |
826 | 3567 `regex_compile' itself. |
3568 | |
3569 Under Mule, this is only called when both chars of the range are | |
3570 ASCII. */ | |
428 | 3571 |
3572 static reg_errcode_t | |
446 | 3573 compile_range (re_char **p_ptr, re_char *pend, RE_TRANSLATE_TYPE translate, |
3574 reg_syntax_t syntax, unsigned char *buf_end) | |
428 | 3575 { |
867 | 3576 Ichar this_char; |
428 | 3577 |
446 | 3578 re_char *p = *p_ptr; |
428 | 3579 int range_start, range_end; |
3580 | |
3581 if (p == pend) | |
3582 return REG_ERANGE; | |
3583 | |
3584 /* Even though the pattern is a signed `char *', we need to fetch | |
3585 with unsigned char *'s; if the high bit of the pattern character | |
3586 is set, the range endpoints will be negative if we fetch using a | |
3587 signed char *. | |
3588 | |
3589 We also want to fetch the endpoints without translating them; the | |
3590 appropriate translation is done in the bit-setting loop below. */ | |
442 | 3591 /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *. */ |
3592 range_start = ((const unsigned char *) p)[-2]; | |
3593 range_end = ((const unsigned char *) p)[0]; | |
428 | 3594 |
3595 /* Have to increment the pointer into the pattern string, so the | |
3596 caller isn't still at the ending character. */ | |
3597 (*p_ptr)++; | |
3598 | |
3599 /* If the start is after the end, the range is empty. */ | |
3600 if (range_start > range_end) | |
3601 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR; | |
3602 | |
3603 /* Here we see why `this_char' has to be larger than an `unsigned | |
3604 char' -- the range is inclusive, so if `range_end' == 0xff | |
3605 (assuming 8-bit characters), we would otherwise go into an infinite | |
3606 loop, since all characters <= 0xff. */ | |
3607 for (this_char = range_start; this_char <= range_end; this_char++) | |
3608 { | |
826 | 3609 SET_LIST_BIT (RE_TRANSLATE (this_char)); |
428 | 3610 } |
3611 | |
3612 return REG_NOERROR; | |
3613 } | |
3614 | |
3615 #ifdef MULE | |
3616 | |
3617 static reg_errcode_t | |
446 | 3618 compile_extended_range (re_char **p_ptr, re_char *pend, |
3619 RE_TRANSLATE_TYPE translate, | |
428 | 3620 reg_syntax_t syntax, Lisp_Object rtab) |
3621 { | |
867 | 3622 Ichar this_char, range_start, range_end; |
3623 const Ibyte *p; | |
428 | 3624 |
3625 if (*p_ptr == pend) | |
3626 return REG_ERANGE; | |
3627 | |
867 | 3628 p = (const Ibyte *) *p_ptr; |
3629 range_end = itext_ichar (p); | |
428 | 3630 p--; /* back to '-' */ |
867 | 3631 DEC_IBYTEPTR (p); /* back to start of range */ |
428 | 3632 /* We also want to fetch the endpoints without translating them; the |
3633 appropriate translation is done in the bit-setting loop below. */ | |
867 | 3634 range_start = itext_ichar (p); |
3635 INC_IBYTEPTR (*p_ptr); | |
428 | 3636 |
3637 /* If the start is after the end, the range is empty. */ | |
3638 if (range_start > range_end) | |
3639 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR; | |
3640 | |
3641 /* Can't have ranges spanning different charsets, except maybe for | |
3642 ranges entirely within the first 256 chars. */ | |
3643 | |
3644 if ((range_start >= 0x100 || range_end >= 0x100) | |
867 | 3645 && ichar_leading_byte (range_start) != |
3646 ichar_leading_byte (range_end)) | |
428 | 3647 return REG_ERANGESPAN; |
3648 | |
826 | 3649 /* #### This might be way inefficient if the range encompasses 10,000 |
3650 chars or something. To be efficient, you'd have to do something like | |
3651 this: | |
428 | 3652 |
3653 range_table a; | |
3654 range_table b; | |
3655 map over translation table in [range_start, range_end] of | |
3656 (put the mapped range in a; | |
3657 put the translation in b) | |
3658 invert the range in a and truncate to [range_start, range_end] | |
3659 compute the union of a, b | |
3660 union the result into rtab | |
3661 */ | |
826 | 3662 for (this_char = range_start; this_char <= range_end; this_char++) |
428 | 3663 { |
826 | 3664 SET_RANGETAB_BIT (RE_TRANSLATE (this_char)); |
428 | 3665 } |
3666 | |
3667 if (this_char <= range_end) | |
3668 put_range_table (rtab, this_char, range_end, Qt); | |
3669 | |
3670 return REG_NOERROR; | |
3671 } | |
3672 | |
3673 #endif /* MULE */ | |
3674 | |
3675 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in | |
3676 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible | |
3677 characters can start a string that matches the pattern. This fastmap | |
3678 is used by re_search to skip quickly over impossible starting points. | |
3679 | |
3680 The caller must supply the address of a (1 << BYTEWIDTH)-byte data | |
3681 area as BUFP->fastmap. | |
3682 | |
3683 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in | |
3684 the pattern buffer. | |
3685 | |
3686 Returns 0 if we succeed, -2 if an internal error. */ | |
3687 | |
3688 int | |
826 | 3689 re_compile_fastmap (struct re_pattern_buffer *bufp |
3690 RE_LISP_SHORT_CONTEXT_ARGS_DECL) | |
428 | 3691 { |
3692 int j, k; | |
3693 #ifdef MATCH_MAY_ALLOCATE | |
3694 fail_stack_type fail_stack; | |
3695 #endif | |
456 | 3696 DECLARE_DESTINATION; |
428 | 3697 /* We don't push any register information onto the failure stack. */ |
3698 | |
826 | 3699 /* &&#### this should be changed for 8-bit-fixed, for efficiency. see |
3700 comment marked with &&#### in re_search_2. */ | |
3701 | |
428 | 3702 REGISTER char *fastmap = bufp->fastmap; |
3703 unsigned char *pattern = bufp->buffer; | |
647 | 3704 long size = bufp->used; |
428 | 3705 unsigned char *p = pattern; |
3706 REGISTER unsigned char *pend = pattern + size; | |
3707 | |
771 | 3708 #ifdef REGEX_REL_ALLOC |
428 | 3709 /* This holds the pointer to the failure stack, when |
3710 it is allocated relocatably. */ | |
3711 fail_stack_elt_t *failure_stack_ptr; | |
3712 #endif | |
3713 | |
3714 /* Assume that each path through the pattern can be null until | |
3715 proven otherwise. We set this false at the bottom of switch | |
3716 statement, to which we get only if a particular path doesn't | |
3717 match the empty string. */ | |
460 | 3718 re_bool path_can_be_null = true; |
428 | 3719 |
3720 /* We aren't doing a `succeed_n' to begin with. */ | |
460 | 3721 re_bool succeed_n_p = false; |
428 | 3722 |
1333 | 3723 #ifdef ERROR_CHECK_MALLOC |
3724 /* The pattern comes from string data, not buffer data. We don't access | |
3725 any buffer data, so we don't have to worry about malloc() (but the | |
3726 disallowed flag may have been set by a caller). */ | |
3727 int depth = bind_regex_malloc_disallowed (0); | |
3728 #endif | |
3729 | |
428 | 3730 assert (fastmap != NULL && p != NULL); |
3731 | |
3732 INIT_FAIL_STACK (); | |
3733 memset (fastmap, 0, 1 << BYTEWIDTH); /* Assume nothing's valid. */ | |
3734 bufp->fastmap_accurate = 1; /* It will be when we're done. */ | |
3735 bufp->can_be_null = 0; | |
3736 | |
3737 while (1) | |
3738 { | |
3739 if (p == pend || *p == succeed) | |
3740 { | |
3741 /* We have reached the (effective) end of pattern. */ | |
3742 if (!FAIL_STACK_EMPTY ()) | |
3743 { | |
3744 bufp->can_be_null |= path_can_be_null; | |
3745 | |
3746 /* Reset for next path. */ | |
3747 path_can_be_null = true; | |
3748 | |
446 | 3749 p = (unsigned char *) fail_stack.stack[--fail_stack.avail].pointer; |
428 | 3750 |
3751 continue; | |
3752 } | |
3753 else | |
3754 break; | |
3755 } | |
3756 | |
3757 /* We should never be about to go beyond the end of the pattern. */ | |
3758 assert (p < pend); | |
3759 | |
4759
aa5ed11f473b
Remove support for obsolete systems. See xemacs-patches message with ID
Jerry James <james@xemacs.org>
parents:
4750
diff
changeset
|
3760 switch ((re_opcode_t) *p++) |
428 | 3761 { |
3762 | |
3763 /* I guess the idea here is to simply not bother with a fastmap | |
3764 if a backreference is used, since it's too hard to figure out | |
3765 the fastmap for the corresponding group. Setting | |
3766 `can_be_null' stops `re_search_2' from using the fastmap, so | |
3767 that is all we do. */ | |
3768 case duplicate: | |
3769 bufp->can_be_null = 1; | |
3770 goto done; | |
3771 | |
3772 | |
3773 /* Following are the cases which match a character. These end | |
3774 with `break'. */ | |
3775 | |
3776 case exactn: | |
3777 fastmap[p[1]] = 1; | |
3778 break; | |
3779 | |
3780 | |
3781 case charset: | |
3782 /* XEmacs: Under Mule, these bit vectors will | |
3783 only contain values for characters below 0x80. */ | |
3784 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--) | |
3785 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) | |
3786 fastmap[j] = 1; | |
3787 break; | |
3788 | |
3789 | |
3790 case charset_not: | |
3791 /* Chars beyond end of map must be allowed. */ | |
3792 #ifdef MULE | |
3793 for (j = *p * BYTEWIDTH; j < 0x80; j++) | |
3794 fastmap[j] = 1; | |
3795 /* And all extended characters must be allowed, too. */ | |
3796 for (j = 0x80; j < 0xA0; j++) | |
3797 fastmap[j] = 1; | |
446 | 3798 #else /* not MULE */ |
428 | 3799 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++) |
3800 fastmap[j] = 1; | |
446 | 3801 #endif /* MULE */ |
428 | 3802 |
3803 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--) | |
3804 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))) | |
3805 fastmap[j] = 1; | |
3806 break; | |
3807 | |
3808 #ifdef MULE | |
3809 case charset_mule: | |
3810 { | |
3811 int nentries; | |
3812 int i; | |
3813 | |
3814 nentries = unified_range_table_nentries (p); | |
3815 for (i = 0; i < nentries; i++) | |
3816 { | |
3817 EMACS_INT first, last; | |
3818 Lisp_Object dummy_val; | |
3819 int jj; | |
867 | 3820 Ibyte strr[MAX_ICHAR_LEN]; |
428 | 3821 |
3822 unified_range_table_get_range (p, i, &first, &last, | |
3823 &dummy_val); | |
3824 for (jj = first; jj <= last && jj < 0x80; jj++) | |
3825 fastmap[jj] = 1; | |
3826 /* Ranges below 0x100 can span charsets, but there | |
3827 are only two (Control-1 and Latin-1), and | |
3828 either first or last has to be in them. */ | |
867 | 3829 set_itext_ichar (strr, first); |
428 | 3830 fastmap[*strr] = 1; |
3831 if (last < 0x100) | |
3832 { | |
867 | 3833 set_itext_ichar (strr, last); |
428 | 3834 fastmap[*strr] = 1; |
3835 } | |
3836 } | |
3837 } | |
3838 break; | |
3839 | |
3840 case charset_mule_not: | |
3841 { | |
3842 int nentries; | |
3843 int i; | |
3844 | |
3845 nentries = unified_range_table_nentries (p); | |
3846 for (i = 0; i < nentries; i++) | |
3847 { | |
3848 EMACS_INT first, last; | |
3849 Lisp_Object dummy_val; | |
3850 int jj; | |
3851 int smallest_prev = 0; | |
3852 | |
3853 unified_range_table_get_range (p, i, &first, &last, | |
3854 &dummy_val); | |
3855 for (jj = smallest_prev; jj < first && jj < 0x80; jj++) | |
3856 fastmap[jj] = 1; | |
3857 smallest_prev = last + 1; | |
3858 if (smallest_prev >= 0x80) | |
3859 break; | |
3860 } | |
3861 /* Calculating which leading bytes are actually allowed | |
3862 here is rather difficult, so we just punt and allow | |
3863 all of them. */ | |
3864 for (i = 0x80; i < 0xA0; i++) | |
3865 fastmap[i] = 1; | |
3866 } | |
3867 break; | |
3868 #endif /* MULE */ | |
3869 | |
3870 | |
3871 case anychar: | |
3872 { | |
3873 int fastmap_newline = fastmap['\n']; | |
3874 | |
3875 /* `.' matches anything ... */ | |
3876 #ifdef MULE | |
3877 /* "anything" only includes bytes that can be the | |
3878 first byte of a character. */ | |
3879 for (j = 0; j < 0xA0; j++) | |
3880 fastmap[j] = 1; | |
3881 #else | |
3882 for (j = 0; j < (1 << BYTEWIDTH); j++) | |
3883 fastmap[j] = 1; | |
3884 #endif | |
3885 | |
3886 /* ... except perhaps newline. */ | |
3887 if (!(bufp->syntax & RE_DOT_NEWLINE)) | |
3888 fastmap['\n'] = fastmap_newline; | |
3889 | |
3890 /* Return if we have already set `can_be_null'; if we have, | |
3891 then the fastmap is irrelevant. Something's wrong here. */ | |
3892 else if (bufp->can_be_null) | |
3893 goto done; | |
3894 | |
3895 /* Otherwise, have to check alternative paths. */ | |
3896 break; | |
3897 } | |
3898 | |
826 | 3899 #ifndef emacs |
3900 case wordchar: | |
3901 for (j = 0; j < (1 << BYTEWIDTH); j++) | |
3902 if (SYNTAX (ignored, j) == Sword) | |
3903 fastmap[j] = 1; | |
3904 break; | |
3905 | |
3906 case notwordchar: | |
3907 for (j = 0; j < (1 << BYTEWIDTH); j++) | |
3908 if (SYNTAX (ignored, j) != Sword) | |
3909 fastmap[j] = 1; | |
3910 break; | |
3911 #else /* emacs */ | |
3912 case wordchar: | |
3913 case notwordchar: | |
460 | 3914 case wordbound: |
3915 case notwordbound: | |
3916 case wordbeg: | |
3917 case wordend: | |
3918 case notsyntaxspec: | |
3919 case syntaxspec: | |
3920 /* This match depends on text properties. These end with | |
3921 aborting optimizations. */ | |
3922 bufp->can_be_null = 1; | |
3923 goto done; | |
826 | 3924 #if 0 /* all of the following code is unused now that the `syntax-table' |
3925 property exists -- it's trickier to do this than just look in | |
3926 the buffer. &&#### but we could just use the syntax-cache stuff | |
3927 instead; why don't we? --ben */ | |
3928 case wordchar: | |
3929 k = (int) Sword; | |
3930 goto matchsyntax; | |
3931 | |
3932 case notwordchar: | |
3933 k = (int) Sword; | |
3934 goto matchnotsyntax; | |
3935 | |
428 | 3936 case syntaxspec: |
3937 k = *p++; | |
826 | 3938 matchsyntax: |
428 | 3939 #ifdef MULE |
3940 for (j = 0; j < 0x80; j++) | |
826 | 3941 if (SYNTAX |
3942 (XCHAR_TABLE (BUFFER_MIRROR_SYNTAX_TABLE (lispbuf)), j) == | |
428 | 3943 (enum syntaxcode) k) |
3944 fastmap[j] = 1; | |
3945 for (j = 0x80; j < 0xA0; j++) | |
3946 { | |
826 | 3947 if (leading_byte_prefix_p ((unsigned char) j)) |
428 | 3948 /* too complicated to calculate this right */ |
3949 fastmap[j] = 1; | |
3950 else | |
3951 { | |
3952 int multi_p; | |
3953 Lisp_Object cset; | |
3954 | |
826 | 3955 cset = charset_by_leading_byte (j); |
428 | 3956 if (CHARSETP (cset)) |
3957 { | |
826 | 3958 if (charset_syntax (lispbuf, cset, &multi_p) |
428 | 3959 == Sword || multi_p) |
3960 fastmap[j] = 1; | |
3961 } | |
3962 } | |
3963 } | |
446 | 3964 #else /* not MULE */ |
428 | 3965 for (j = 0; j < (1 << BYTEWIDTH); j++) |
826 | 3966 if (SYNTAX |
3967 (XCHAR_TABLE (BUFFER_MIRROR_SYNTAX_TABLE (lispbuf)), j) == | |
428 | 3968 (enum syntaxcode) k) |
3969 fastmap[j] = 1; | |
446 | 3970 #endif /* MULE */ |
428 | 3971 break; |
3972 | |
3973 | |
3974 case notsyntaxspec: | |
3975 k = *p++; | |
826 | 3976 matchnotsyntax: |
428 | 3977 #ifdef MULE |
3978 for (j = 0; j < 0x80; j++) | |
826 | 3979 if (SYNTAX |
428 | 3980 (XCHAR_TABLE |
826 | 3981 (BUFFER_MIRROR_SYNTAX_TABLE (lispbuf)), j) != |
428 | 3982 (enum syntaxcode) k) |
3983 fastmap[j] = 1; | |
3984 for (j = 0x80; j < 0xA0; j++) | |
3985 { | |
826 | 3986 if (leading_byte_prefix_p ((unsigned char) j)) |
428 | 3987 /* too complicated to calculate this right */ |
3988 fastmap[j] = 1; | |
3989 else | |
3990 { | |
3991 int multi_p; | |
3992 Lisp_Object cset; | |
3993 | |
826 | 3994 cset = charset_by_leading_byte (j); |
428 | 3995 if (CHARSETP (cset)) |
3996 { | |
826 | 3997 if (charset_syntax (lispbuf, cset, &multi_p) |
428 | 3998 != Sword || multi_p) |
3999 fastmap[j] = 1; | |
4000 } | |
4001 } | |
4002 } | |
446 | 4003 #else /* not MULE */ |
428 | 4004 for (j = 0; j < (1 << BYTEWIDTH); j++) |
826 | 4005 if (SYNTAX |
428 | 4006 (XCHAR_TABLE |
826 | 4007 (BUFFER_MIRROR_SYNTAX_TABLE (lispbuf)), j) != |
428 | 4008 (enum syntaxcode) k) |
4009 fastmap[j] = 1; | |
446 | 4010 #endif /* MULE */ |
428 | 4011 break; |
826 | 4012 #endif /* 0 */ |
428 | 4013 |
4014 #ifdef MULE | |
4015 /* 97/2/17 jhod category patch */ | |
4016 case categoryspec: | |
4017 case notcategoryspec: | |
4018 bufp->can_be_null = 1; | |
1333 | 4019 UNBIND_REGEX_MALLOC_CHECK (); |
428 | 4020 return 0; |
4021 /* end if category patch */ | |
4022 #endif /* MULE */ | |
4023 | |
4024 /* All cases after this match the empty string. These end with | |
4025 `continue'. */ | |
4026 case before_dot: | |
4027 case at_dot: | |
4028 case after_dot: | |
4029 continue; | |
826 | 4030 #endif /* emacs */ |
428 | 4031 |
4032 | |
4033 case no_op: | |
4034 case begline: | |
4035 case endline: | |
4036 case begbuf: | |
4037 case endbuf: | |
460 | 4038 #ifndef emacs |
428 | 4039 case wordbound: |
4040 case notwordbound: | |
4041 case wordbeg: | |
4042 case wordend: | |
460 | 4043 #endif |
428 | 4044 case push_dummy_failure: |
4045 continue; | |
4046 | |
4047 | |
4048 case jump_n: | |
4049 case pop_failure_jump: | |
4050 case maybe_pop_jump: | |
4051 case jump: | |
4052 case jump_past_alt: | |
4053 case dummy_failure_jump: | |
4054 EXTRACT_NUMBER_AND_INCR (j, p); | |
4055 p += j; | |
4056 if (j > 0) | |
4057 continue; | |
4058 | |
4059 /* Jump backward implies we just went through the body of a | |
4060 loop and matched nothing. Opcode jumped to should be | |
4061 `on_failure_jump' or `succeed_n'. Just treat it like an | |
4062 ordinary jump. For a * loop, it has pushed its failure | |
4063 point already; if so, discard that as redundant. */ | |
4064 if ((re_opcode_t) *p != on_failure_jump | |
4065 && (re_opcode_t) *p != succeed_n) | |
4066 continue; | |
4067 | |
4068 p++; | |
4069 EXTRACT_NUMBER_AND_INCR (j, p); | |
4070 p += j; | |
4071 | |
4072 /* If what's on the stack is where we are now, pop it. */ | |
4073 if (!FAIL_STACK_EMPTY () | |
4074 && fail_stack.stack[fail_stack.avail - 1].pointer == p) | |
4075 fail_stack.avail--; | |
4076 | |
4077 continue; | |
4078 | |
4079 | |
4080 case on_failure_jump: | |
4081 case on_failure_keep_string_jump: | |
4082 handle_on_failure_jump: | |
4083 EXTRACT_NUMBER_AND_INCR (j, p); | |
4084 | |
4085 /* For some patterns, e.g., `(a?)?', `p+j' here points to the | |
4086 end of the pattern. We don't want to push such a point, | |
4087 since when we restore it above, entering the switch will | |
4088 increment `p' past the end of the pattern. We don't need | |
4089 to push such a point since we obviously won't find any more | |
4090 fastmap entries beyond `pend'. Such a pattern can match | |
4091 the null string, though. */ | |
4092 if (p + j < pend) | |
4093 { | |
4094 if (!PUSH_PATTERN_OP (p + j, fail_stack)) | |
4095 { | |
4096 RESET_FAIL_STACK (); | |
1333 | 4097 UNBIND_REGEX_MALLOC_CHECK (); |
428 | 4098 return -2; |
4099 } | |
4100 } | |
4101 else | |
4102 bufp->can_be_null = 1; | |
4103 | |
4104 if (succeed_n_p) | |
4105 { | |
4106 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */ | |
4107 succeed_n_p = false; | |
4108 } | |
4109 | |
4110 continue; | |
4111 | |
4112 | |
4113 case succeed_n: | |
4114 /* Get to the number of times to succeed. */ | |
4115 p += 2; | |
4116 | |
4117 /* Increment p past the n for when k != 0. */ | |
4118 EXTRACT_NUMBER_AND_INCR (k, p); | |
4119 if (k == 0) | |
4120 { | |
4121 p -= 4; | |
4122 succeed_n_p = true; /* Spaghetti code alert. */ | |
4123 goto handle_on_failure_jump; | |
4124 } | |
4125 continue; | |
4126 | |
4127 | |
4128 case set_number_at: | |
4129 p += 4; | |
4130 continue; | |
4131 | |
4132 | |
4133 case start_memory: | |
4134 case stop_memory: | |
4135 p += 2; | |
4136 continue; | |
4137 | |
4138 | |
4139 default: | |
2500 | 4140 ABORT (); /* We have listed all the cases. */ |
428 | 4141 } /* switch *p++ */ |
4142 | |
4143 /* Getting here means we have found the possible starting | |
4144 characters for one path of the pattern -- and that the empty | |
4145 string does not match. We need not follow this path further. | |
4146 Instead, look at the next alternative (remembered on the | |
4147 stack), or quit if no more. The test at the top of the loop | |
4148 does these things. */ | |
4149 path_can_be_null = false; | |
4150 p = pend; | |
4151 } /* while p */ | |
4152 | |
4153 /* Set `can_be_null' for the last path (also the first path, if the | |
4154 pattern is empty). */ | |
4155 bufp->can_be_null |= path_can_be_null; | |
4156 | |
4157 done: | |
4158 RESET_FAIL_STACK (); | |
1333 | 4159 UNBIND_REGEX_MALLOC_CHECK (); |
428 | 4160 return 0; |
4161 } /* re_compile_fastmap */ | |
4162 | |
4163 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and | |
4164 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use | |
4165 this memory for recording register information. STARTS and ENDS | |
4166 must be allocated using the malloc library routine, and must each | |
4167 be at least NUM_REGS * sizeof (regoff_t) bytes long. | |
4168 | |
4169 If NUM_REGS == 0, then subsequent matches should allocate their own | |
4170 register data. | |
4171 | |
4172 Unless this function is called, the first search or match using | |
4173 PATTERN_BUFFER will allocate its own register data, without | |
4174 freeing the old data. */ | |
4175 | |
4176 void | |
4177 re_set_registers (struct re_pattern_buffer *bufp, struct re_registers *regs, | |
647 | 4178 int num_regs, regoff_t *starts, regoff_t *ends) |
428 | 4179 { |
4180 if (num_regs) | |
4181 { | |
4182 bufp->regs_allocated = REGS_REALLOCATE; | |
4183 regs->num_regs = num_regs; | |
4184 regs->start = starts; | |
4185 regs->end = ends; | |
4186 } | |
4187 else | |
4188 { | |
4189 bufp->regs_allocated = REGS_UNALLOCATED; | |
4190 regs->num_regs = 0; | |
4191 regs->start = regs->end = (regoff_t *) 0; | |
4192 } | |
4193 } | |
4194 | |
4195 /* Searching routines. */ | |
4196 | |
4197 /* Like re_search_2, below, but only one string is specified, and | |
4198 doesn't let you say where to stop matching. */ | |
4199 | |
4200 int | |
442 | 4201 re_search (struct re_pattern_buffer *bufp, const char *string, int size, |
826 | 4202 int startpos, int range, struct re_registers *regs |
4203 RE_LISP_CONTEXT_ARGS_DECL) | |
428 | 4204 { |
4205 return re_search_2 (bufp, NULL, 0, string, size, startpos, range, | |
826 | 4206 regs, size RE_LISP_CONTEXT_ARGS); |
428 | 4207 } |
4208 | |
4209 /* Using the compiled pattern in BUFP->buffer, first tries to match the | |
4210 virtual concatenation of STRING1 and STRING2, starting first at index | |
4211 STARTPOS, then at STARTPOS + 1, and so on. | |
4212 | |
4213 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively. | |
4214 | |
4215 RANGE is how far to scan while trying to match. RANGE = 0 means try | |
4216 only at STARTPOS; in general, the last start tried is STARTPOS + | |
4217 RANGE. | |
4218 | |
826 | 4219 All sizes and positions refer to bytes (not chars); under Mule, the code |
4220 knows about the format of the text and will only check at positions | |
4221 where a character starts. | |
4222 | |
428 | 4223 With MULE, RANGE is a byte position, not a char position. The last |
4224 start tried is the character starting <= STARTPOS + RANGE. | |
4225 | |
4226 In REGS, return the indices of the virtual concatenation of STRING1 | |
4227 and STRING2 that matched the entire BUFP->buffer and its contained | |
4228 subexpressions. | |
4229 | |
4230 Do not consider matching one past the index STOP in the virtual | |
4231 concatenation of STRING1 and STRING2. | |
4232 | |
4233 We return either the position in the strings at which the match was | |
4234 found, -1 if no match, or -2 if error (such as failure | |
4235 stack overflow). */ | |
4236 | |
4237 int | |
446 | 4238 re_search_2 (struct re_pattern_buffer *bufp, const char *str1, |
4239 int size1, const char *str2, int size2, int startpos, | |
826 | 4240 int range, struct re_registers *regs, int stop |
4241 RE_LISP_CONTEXT_ARGS_DECL) | |
428 | 4242 { |
4243 int val; | |
446 | 4244 re_char *string1 = (re_char *) str1; |
4245 re_char *string2 = (re_char *) str2; | |
428 | 4246 REGISTER char *fastmap = bufp->fastmap; |
446 | 4247 REGISTER RE_TRANSLATE_TYPE translate = bufp->translate; |
428 | 4248 int total_size = size1 + size2; |
4249 int endpos = startpos + range; | |
4250 #ifdef REGEX_BEGLINE_CHECK | |
4251 int anchored_at_begline = 0; | |
4252 #endif | |
446 | 4253 re_char *d; |
826 | 4254 #ifdef emacs |
4255 Internal_Format fmt = buffer_or_other_internal_format (lispobj); | |
1346 | 4256 #ifdef REL_ALLOC |
4257 Ibyte *orig_buftext = | |
4258 BUFFERP (lispobj) ? | |
4259 BYTE_BUF_BYTE_ADDRESS (XBUFFER (lispobj), | |
4260 BYTE_BUF_BEGV (XBUFFER (lispobj))) : | |
4261 0; | |
4262 #endif | |
1333 | 4263 #ifdef ERROR_CHECK_MALLOC |
4264 int depth; | |
4265 #endif | |
826 | 4266 #endif /* emacs */ |
4267 #if 1 | |
4268 int forward_search_p; | |
4269 #endif | |
428 | 4270 |
4271 /* Check for out-of-range STARTPOS. */ | |
4272 if (startpos < 0 || startpos > total_size) | |
4273 return -1; | |
4274 | |
4275 /* Fix up RANGE if it might eventually take us outside | |
4276 the virtual concatenation of STRING1 and STRING2. */ | |
4277 if (endpos < 0) | |
4278 range = 0 - startpos; | |
4279 else if (endpos > total_size) | |
4280 range = total_size - startpos; | |
4281 | |
826 | 4282 #if 1 |
4283 forward_search_p = range > 0; | |
4284 #endif | |
4285 | |
428 | 4286 /* If the search isn't to be a backwards one, don't waste time in a |
4287 search for a pattern that must be anchored. */ | |
4288 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0) | |
4289 { | |
4290 if (startpos > 0) | |
4291 return -1; | |
4292 else | |
4293 { | |
442 | 4294 d = ((const unsigned char *) |
428 | 4295 (startpos >= size1 ? string2 - size1 : string1) + startpos); |
867 | 4296 range = itext_ichar_len_fmt (d, fmt); |
428 | 4297 } |
4298 } | |
4299 | |
460 | 4300 #ifdef emacs |
4301 /* In a forward search for something that starts with \=. | |
4302 don't keep searching past point. */ | |
4303 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0) | |
4304 { | |
826 | 4305 if (!BUFFERP (lispobj)) |
4306 return -1; | |
4527
8418d1ad4944
Fix at_dot regex under Mule. <87hc6rv53v.fsf@uwakimon.sk.tsukuba.ac.jp>
Stephen J. Turnbull <stephen@xemacs.org>
parents:
3300
diff
changeset
|
4307 range = (BYTE_BUF_PT (XBUFFER (lispobj)) |
8418d1ad4944
Fix at_dot regex under Mule. <87hc6rv53v.fsf@uwakimon.sk.tsukuba.ac.jp>
Stephen J. Turnbull <stephen@xemacs.org>
parents:
3300
diff
changeset
|
4308 - BYTE_BUF_BEGV (XBUFFER (lispobj)) - startpos); |
460 | 4309 if (range < 0) |
4310 return -1; | |
4311 } | |
4312 #endif /* emacs */ | |
4313 | |
1333 | 4314 #ifdef ERROR_CHECK_MALLOC |
4315 /* Do this after the above return()s. */ | |
4316 depth = bind_regex_malloc_disallowed (1); | |
4317 #endif | |
4318 | |
428 | 4319 /* Update the fastmap now if not correct already. */ |
1333 | 4320 BEGIN_REGEX_MALLOC_OK (); |
428 | 4321 if (fastmap && !bufp->fastmap_accurate) |
826 | 4322 if (re_compile_fastmap (bufp RE_LISP_SHORT_CONTEXT_ARGS) == -2) |
1333 | 4323 { |
4324 END_REGEX_MALLOC_OK (); | |
4325 UNBIND_REGEX_MALLOC_CHECK (); | |
4326 return -2; | |
4327 } | |
4328 | |
4329 END_REGEX_MALLOC_OK (); | |
4330 RE_SEARCH_RELOCATE_MOVEABLE_DATA_POINTERS (); | |
428 | 4331 |
4332 #ifdef REGEX_BEGLINE_CHECK | |
4333 { | |
647 | 4334 long i = 0; |
428 | 4335 |
4336 while (i < bufp->used) | |
4337 { | |
4338 if (bufp->buffer[i] == start_memory || | |
4339 bufp->buffer[i] == stop_memory) | |
4340 i += 2; | |
4341 else | |
4342 break; | |
4343 } | |
4344 anchored_at_begline = i < bufp->used && bufp->buffer[i] == begline; | |
4345 } | |
4346 #endif | |
4347 | |
460 | 4348 #ifdef emacs |
1333 | 4349 BEGIN_REGEX_MALLOC_OK (); |
826 | 4350 scache = setup_syntax_cache (scache, lispobj, lispbuf, |
4351 offset_to_charxpos (lispobj, startpos), | |
4352 1); | |
1333 | 4353 END_REGEX_MALLOC_OK (); |
4354 RE_SEARCH_RELOCATE_MOVEABLE_DATA_POINTERS (); | |
460 | 4355 #endif |
4356 | |
428 | 4357 /* Loop through the string, looking for a place to start matching. */ |
4358 for (;;) | |
4359 { | |
4360 #ifdef REGEX_BEGLINE_CHECK | |
826 | 4361 /* If the regex is anchored at the beginning of a line (i.e. with a |
4362 ^), then we can speed things up by skipping to the next | |
4363 beginning-of-line. However, to determine "beginning of line" we | |
4364 need to look at the previous char, so can't do this check if at | |
4365 beginning of either string. (Well, we could if at the beginning of | |
4366 the second string, but it would require additional code, and this | |
4367 is just an optimization.) */ | |
4368 if (anchored_at_begline && startpos > 0 && startpos != size1) | |
428 | 4369 { |
826 | 4370 if (range > 0) |
4371 { | |
4372 /* whose stupid idea was it anyway to make this | |
4373 function take two strings to match?? */ | |
4374 int lim = 0; | |
4375 re_char *orig_d; | |
4376 re_char *stop_d; | |
4377 | |
4378 /* Compute limit as below in fastmap code, so we are guaranteed | |
4379 to remain within a single string. */ | |
4380 if (startpos < size1 && startpos + range >= size1) | |
4381 lim = range - (size1 - startpos); | |
4382 | |
4383 d = ((const unsigned char *) | |
4384 (startpos >= size1 ? string2 - size1 : string1) + startpos); | |
4385 orig_d = d; | |
4386 stop_d = d + range - lim; | |
4387 | |
4388 /* We want to find the next location (including the current | |
4389 one) where the previous char is a newline, so back up one | |
4390 and search forward for a newline. */ | |
867 | 4391 DEC_IBYTEPTR_FMT (d, fmt); /* Ok, since startpos != size1. */ |
826 | 4392 |
4393 /* Written out as an if-else to avoid testing `translate' | |
4394 inside the loop. */ | |
4395 if (TRANSLATE_P (translate)) | |
4396 while (d < stop_d && | |
867 | 4397 RE_TRANSLATE_1 (itext_ichar_fmt (d, fmt, lispobj)) |
826 | 4398 != '\n') |
867 | 4399 INC_IBYTEPTR_FMT (d, fmt); |
826 | 4400 else |
4401 while (d < stop_d && | |
867 | 4402 itext_ichar_ascii_fmt (d, fmt, lispobj) != '\n') |
4403 INC_IBYTEPTR_FMT (d, fmt); | |
826 | 4404 |
4405 /* If we were stopped by a newline, skip forward over it. | |
4406 Otherwise we will get in an infloop when our start position | |
4407 was at begline. */ | |
4408 if (d < stop_d) | |
867 | 4409 INC_IBYTEPTR_FMT (d, fmt); |
826 | 4410 range -= d - orig_d; |
4411 startpos += d - orig_d; | |
4412 #if 1 | |
4413 assert (!forward_search_p || range >= 0); | |
4414 #endif | |
4415 } | |
4416 else if (range < 0) | |
4417 { | |
4418 /* We're lazy, like in the fastmap code below */ | |
867 | 4419 Ichar c; |
826 | 4420 |
4421 d = ((const unsigned char *) | |
4422 (startpos >= size1 ? string2 - size1 : string1) + startpos); | |
867 | 4423 DEC_IBYTEPTR_FMT (d, fmt); |
4424 c = itext_ichar_fmt (d, fmt, lispobj); | |
826 | 4425 c = RE_TRANSLATE (c); |
4426 if (c != '\n') | |
4427 goto advance; | |
4428 } | |
428 | 4429 } |
4430 #endif /* REGEX_BEGLINE_CHECK */ | |
4431 | |
4432 /* If a fastmap is supplied, skip quickly over characters that | |
4433 cannot be the start of a match. If the pattern can match the | |
4434 null string, however, we don't need to skip characters; we want | |
4435 the first null string. */ | |
4436 if (fastmap && startpos < total_size && !bufp->can_be_null) | |
4437 { | |
826 | 4438 /* For the moment, fastmap always works as if buffer |
4439 is in default format, so convert chars in the search strings | |
4440 into default format as we go along, if necessary. | |
4441 | |
4442 &&#### fastmap needs rethinking for 8-bit-fixed so | |
4443 it's faster. We need it to reflect the raw | |
4444 8-bit-fixed values. That isn't so hard if we assume | |
4445 that the top 96 bytes represent a single 1-byte | |
4446 charset. For 16-bit/32-bit stuff it's probably not | |
4447 worth it to make the fastmap represent the raw, due to | |
4448 its nature -- we'd have to use the LSB for the | |
4449 fastmap, and that causes lots of problems with Mule | |
4450 chars, where it essentially wipes out the usefulness | |
4451 of the fastmap entirely. */ | |
428 | 4452 if (range > 0) /* Searching forwards. */ |
4453 { | |
4454 int lim = 0; | |
4455 int irange = range; | |
4456 | |
4457 if (startpos < size1 && startpos + range >= size1) | |
4458 lim = range - (size1 - startpos); | |
4459 | |
442 | 4460 d = ((const unsigned char *) |
428 | 4461 (startpos >= size1 ? string2 - size1 : string1) + startpos); |
4462 | |
4463 /* Written out as an if-else to avoid testing `translate' | |
4464 inside the loop. */ | |
446 | 4465 if (TRANSLATE_P (translate)) |
826 | 4466 { |
4467 while (range > lim) | |
4468 { | |
4469 re_char *old_d = d; | |
428 | 4470 #ifdef MULE |
867 | 4471 Ibyte tempch[MAX_ICHAR_LEN]; |
4472 Ichar buf_ch = | |
4473 RE_TRANSLATE_1 (itext_ichar_fmt (d, fmt, lispobj)); | |
4474 set_itext_ichar (tempch, buf_ch); | |
826 | 4475 if (fastmap[*tempch]) |
4476 break; | |
446 | 4477 #else |
826 | 4478 if (fastmap[(unsigned char) RE_TRANSLATE_1 (*d)]) |
4479 break; | |
446 | 4480 #endif /* MULE */ |
867 | 4481 INC_IBYTEPTR_FMT (d, fmt); |
826 | 4482 range -= (d - old_d); |
4483 #if 1 | |
1333 | 4484 assert (!forward_search_p || range >= 0); |
826 | 4485 #endif |
4486 } | |
4487 } | |
4488 #ifdef MULE | |
4489 else if (fmt != FORMAT_DEFAULT) | |
4490 { | |
4491 while (range > lim) | |
4492 { | |
4493 re_char *old_d = d; | |
867 | 4494 Ibyte tempch[MAX_ICHAR_LEN]; |
4495 Ichar buf_ch = itext_ichar_fmt (d, fmt, lispobj); | |
4496 set_itext_ichar (tempch, buf_ch); | |
826 | 4497 if (fastmap[*tempch]) |
4498 break; | |
867 | 4499 INC_IBYTEPTR_FMT (d, fmt); |
826 | 4500 range -= (d - old_d); |
4501 #if 1 | |
1333 | 4502 assert (!forward_search_p || range >= 0); |
826 | 4503 #endif |
4504 } | |
4505 } | |
4506 #endif /* MULE */ | |
428 | 4507 else |
826 | 4508 { |
4509 while (range > lim && !fastmap[*d]) | |
4510 { | |
4511 re_char *old_d = d; | |
867 | 4512 INC_IBYTEPTR (d); |
826 | 4513 range -= (d - old_d); |
4514 #if 1 | |
4515 assert (!forward_search_p || range >= 0); | |
4516 #endif | |
4517 } | |
4518 } | |
428 | 4519 |
4520 startpos += irange - range; | |
4521 } | |
4522 else /* Searching backwards. */ | |
4523 { | |
826 | 4524 /* #### It's not clear why we don't just write a loop, like |
4525 for the moving-forward case. Perhaps the writer got lazy, | |
4526 since backward searches aren't so common. */ | |
4527 d = ((const unsigned char *) | |
4528 (startpos >= size1 ? string2 - size1 : string1) + startpos); | |
428 | 4529 #ifdef MULE |
826 | 4530 { |
867 | 4531 Ibyte tempch[MAX_ICHAR_LEN]; |
4532 Ichar buf_ch = | |
4533 RE_TRANSLATE (itext_ichar_fmt (d, fmt, lispobj)); | |
4534 set_itext_ichar (tempch, buf_ch); | |
826 | 4535 if (!fastmap[*tempch]) |
4536 goto advance; | |
4537 } | |
428 | 4538 #else |
826 | 4539 if (!fastmap[(unsigned char) RE_TRANSLATE (*d)]) |
446 | 4540 goto advance; |
826 | 4541 #endif /* MULE */ |
428 | 4542 } |
4543 } | |
4544 | |
4545 /* If can't match the null string, and that's all we have left, fail. */ | |
4546 if (range >= 0 && startpos == total_size && fastmap | |
4547 && !bufp->can_be_null) | |
1333 | 4548 { |
4549 UNBIND_REGEX_MALLOC_CHECK (); | |
4550 return -1; | |
4551 } | |
428 | 4552 |
4553 #ifdef emacs /* XEmacs added, w/removal of immediate_quit */ | |
4554 if (!no_quit_in_re_search) | |
1333 | 4555 { |
4556 BEGIN_REGEX_MALLOC_OK (); | |
4557 QUIT; | |
4558 END_REGEX_MALLOC_OK (); | |
4559 RE_SEARCH_RELOCATE_MOVEABLE_DATA_POINTERS (); | |
4560 } | |
4561 | |
428 | 4562 #endif |
1333 | 4563 BEGIN_REGEX_MALLOC_OK (); |
428 | 4564 val = re_match_2_internal (bufp, string1, size1, string2, size2, |
826 | 4565 startpos, regs, stop |
4566 RE_LISP_CONTEXT_ARGS); | |
428 | 4567 #ifndef REGEX_MALLOC |
1333 | 4568 ALLOCA_GARBAGE_COLLECT (); |
428 | 4569 #endif |
1333 | 4570 END_REGEX_MALLOC_OK (); |
4571 RE_SEARCH_RELOCATE_MOVEABLE_DATA_POINTERS (); | |
428 | 4572 |
4573 if (val >= 0) | |
1333 | 4574 { |
4575 UNBIND_REGEX_MALLOC_CHECK (); | |
4576 return startpos; | |
4577 } | |
428 | 4578 |
4579 if (val == -2) | |
1333 | 4580 { |
4581 UNBIND_REGEX_MALLOC_CHECK (); | |
4582 return -2; | |
4583 } | |
4584 | |
4585 RE_SEARCH_RELOCATE_MOVEABLE_DATA_POINTERS (); | |
428 | 4586 advance: |
4587 if (!range) | |
4588 break; | |
4589 else if (range > 0) | |
4590 { | |
826 | 4591 Bytecount d_size; |
442 | 4592 d = ((const unsigned char *) |
428 | 4593 (startpos >= size1 ? string2 - size1 : string1) + startpos); |
867 | 4594 d_size = itext_ichar_len_fmt (d, fmt); |
428 | 4595 range -= d_size; |
826 | 4596 #if 1 |
4597 assert (!forward_search_p || range >= 0); | |
4598 #endif | |
428 | 4599 startpos += d_size; |
4600 } | |
4601 else | |
4602 { | |
826 | 4603 Bytecount d_size; |
428 | 4604 /* Note startpos > size1 not >=. If we are on the |
4605 string1/string2 boundary, we want to backup into string1. */ | |
442 | 4606 d = ((const unsigned char *) |
428 | 4607 (startpos > size1 ? string2 - size1 : string1) + startpos); |
867 | 4608 DEC_IBYTEPTR_FMT (d, fmt); |
4609 d_size = itext_ichar_len_fmt (d, fmt); | |
428 | 4610 range += d_size; |
826 | 4611 #if 1 |
4612 assert (!forward_search_p || range >= 0); | |
4613 #endif | |
428 | 4614 startpos -= d_size; |
4615 } | |
4616 } | |
1333 | 4617 UNBIND_REGEX_MALLOC_CHECK (); |
428 | 4618 return -1; |
4619 } /* re_search_2 */ | |
826 | 4620 |
428 | 4621 |
4622 /* Declarations and macros for re_match_2. */ | |
4623 | |
4624 /* This converts PTR, a pointer into one of the search strings `string1' | |
4625 and `string2' into an offset from the beginning of that string. */ | |
4626 #define POINTER_TO_OFFSET(ptr) \ | |
4627 (FIRST_STRING_P (ptr) \ | |
4628 ? ((regoff_t) ((ptr) - string1)) \ | |
4629 : ((regoff_t) ((ptr) - string2 + size1))) | |
4630 | |
4631 /* Macros for dealing with the split strings in re_match_2. */ | |
4632 | |
4633 #define MATCHING_IN_FIRST_STRING (dend == end_match_1) | |
4634 | |
4635 /* Call before fetching a character with *d. This switches over to | |
4636 string2 if necessary. */ | |
826 | 4637 #define REGEX_PREFETCH() \ |
428 | 4638 while (d == dend) \ |
4639 { \ | |
4640 /* End of string2 => fail. */ \ | |
4641 if (dend == end_match_2) \ | |
4642 goto fail; \ | |
4643 /* End of string1 => advance to string2. */ \ | |
4644 d = string2; \ | |
4645 dend = end_match_2; \ | |
4646 } | |
4647 | |
4648 | |
4649 /* Test if at very beginning or at very end of the virtual concatenation | |
4650 of `string1' and `string2'. If only one string, it's `string2'. */ | |
4651 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2) | |
4652 #define AT_STRINGS_END(d) ((d) == end2) | |
4653 | |
4654 /* XEmacs change: | |
4655 If the given position straddles the string gap, return the equivalent | |
4656 position that is before or after the gap, respectively; otherwise, | |
4657 return the same position. */ | |
4658 #define POS_BEFORE_GAP_UNSAFE(d) ((d) == string2 ? end1 : (d)) | |
4659 #define POS_AFTER_GAP_UNSAFE(d) ((d) == end1 ? string2 : (d)) | |
4660 | |
4661 /* Test if CH is a word-constituent character. (XEmacs change) */ | |
826 | 4662 #define WORDCHAR_P(ch) \ |
4663 (SYNTAX (BUFFER_MIRROR_SYNTAX_TABLE (lispbuf), ch) == Sword) | |
428 | 4664 |
4665 /* Free everything we malloc. */ | |
4666 #ifdef MATCH_MAY_ALLOCATE | |
1726 | 4667 #define FREE_VAR(var,type) if (var) REGEX_FREE (var, type); var = NULL |
428 | 4668 #define FREE_VARIABLES() \ |
4669 do { \ | |
1333 | 4670 UNBIND_REGEX_MALLOC_CHECK (); \ |
428 | 4671 REGEX_FREE_STACK (fail_stack.stack); \ |
1726 | 4672 FREE_VAR (regstart, re_char **); \ |
4673 FREE_VAR (regend, re_char **); \ | |
4674 FREE_VAR (old_regstart, re_char **); \ | |
4675 FREE_VAR (old_regend, re_char **); \ | |
4676 FREE_VAR (best_regstart, re_char **); \ | |
4677 FREE_VAR (best_regend, re_char **); \ | |
4678 FREE_VAR (reg_info, register_info_type *); \ | |
4679 FREE_VAR (reg_dummy, re_char **); \ | |
4680 FREE_VAR (reg_info_dummy, register_info_type *); \ | |
428 | 4681 } while (0) |
446 | 4682 #else /* not MATCH_MAY_ALLOCATE */ |
1333 | 4683 #define FREE_VARIABLES() \ |
4684 do { \ | |
4685 UNBIND_REGEX_MALLOC_CHECK (); \ | |
4686 } while (0) | |
446 | 4687 #endif /* MATCH_MAY_ALLOCATE */ |
428 | 4688 |
4689 /* These values must meet several constraints. They must not be valid | |
4690 register values; since we have a limit of 255 registers (because | |
4691 we use only one byte in the pattern for the register number), we can | |
4692 use numbers larger than 255. They must differ by 1, because of | |
4693 NUM_FAILURE_ITEMS above. And the value for the lowest register must | |
4694 be larger than the value for the highest register, so we do not try | |
4695 to actually save any registers when none are active. */ | |
4696 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH) | |
4697 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1) | |
4698 | |
4699 /* Matching routines. */ | |
4700 | |
826 | 4701 #ifndef emacs /* XEmacs never uses this. */ |
428 | 4702 /* re_match is like re_match_2 except it takes only a single string. */ |
4703 | |
4704 int | |
442 | 4705 re_match (struct re_pattern_buffer *bufp, const char *string, int size, |
826 | 4706 int pos, struct re_registers *regs |
4707 RE_LISP_CONTEXT_ARGS_DECL) | |
428 | 4708 { |
446 | 4709 int result = re_match_2_internal (bufp, NULL, 0, (re_char *) string, size, |
826 | 4710 pos, regs, size |
4711 RE_LISP_CONTEXT_ARGS); | |
1333 | 4712 ALLOCA_GARBAGE_COLLECT (); |
428 | 4713 return result; |
4714 } | |
4715 #endif /* not emacs */ | |
4716 | |
4717 /* re_match_2 matches the compiled pattern in BUFP against the | |
4718 (virtual) concatenation of STRING1 and STRING2 (of length SIZE1 and | |
4719 SIZE2, respectively). We start matching at POS, and stop matching | |
4720 at STOP. | |
4721 | |
4722 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we | |
4723 store offsets for the substring each group matched in REGS. See the | |
4724 documentation for exactly how many groups we fill. | |
4725 | |
4726 We return -1 if no match, -2 if an internal error (such as the | |
4727 failure stack overflowing). Otherwise, we return the length of the | |
4728 matched substring. */ | |
4729 | |
4730 int | |
442 | 4731 re_match_2 (struct re_pattern_buffer *bufp, const char *string1, |
4732 int size1, const char *string2, int size2, int pos, | |
826 | 4733 struct re_registers *regs, int stop |
4734 RE_LISP_CONTEXT_ARGS_DECL) | |
428 | 4735 { |
460 | 4736 int result; |
4737 | |
4738 #ifdef emacs | |
826 | 4739 scache = setup_syntax_cache (scache, lispobj, lispbuf, |
4740 offset_to_charxpos (lispobj, pos), | |
4741 1); | |
460 | 4742 #endif |
4743 | |
4744 result = re_match_2_internal (bufp, (re_char *) string1, size1, | |
4745 (re_char *) string2, size2, | |
826 | 4746 pos, regs, stop |
4747 RE_LISP_CONTEXT_ARGS); | |
460 | 4748 |
1333 | 4749 ALLOCA_GARBAGE_COLLECT (); |
428 | 4750 return result; |
4751 } | |
4752 | |
4753 /* This is a separate function so that we can force an alloca cleanup | |
4754 afterwards. */ | |
4755 static int | |
446 | 4756 re_match_2_internal (struct re_pattern_buffer *bufp, re_char *string1, |
4757 int size1, re_char *string2, int size2, int pos, | |
826 | 4758 struct re_registers *regs, int stop |
2333 | 4759 RE_LISP_CONTEXT_ARGS_MULE_DECL) |
428 | 4760 { |
4761 /* General temporaries. */ | |
4762 int mcnt; | |
4763 unsigned char *p1; | |
4764 int should_succeed; /* XEmacs change */ | |
4765 | |
4766 /* Just past the end of the corresponding string. */ | |
446 | 4767 re_char *end1, *end2; |
428 | 4768 |
4769 /* Pointers into string1 and string2, just past the last characters in | |
4770 each to consider matching. */ | |
446 | 4771 re_char *end_match_1, *end_match_2; |
428 | 4772 |
4773 /* Where we are in the data, and the end of the current string. */ | |
446 | 4774 re_char *d, *dend; |
428 | 4775 |
4776 /* Where we are in the pattern, and the end of the pattern. */ | |
4777 unsigned char *p = bufp->buffer; | |
4778 REGISTER unsigned char *pend = p + bufp->used; | |
4779 | |
4780 /* Mark the opcode just after a start_memory, so we can test for an | |
4781 empty subpattern when we get to the stop_memory. */ | |
446 | 4782 re_char *just_past_start_mem = 0; |
428 | 4783 |
4784 /* We use this to map every character in the string. */ | |
446 | 4785 RE_TRANSLATE_TYPE translate = bufp->translate; |
428 | 4786 |
4787 /* Failure point stack. Each place that can handle a failure further | |
4788 down the line pushes a failure point on this stack. It consists of | |
4789 restart, regend, and reg_info for all registers corresponding to | |
4790 the subexpressions we're currently inside, plus the number of such | |
4791 registers, and, finally, two char *'s. The first char * is where | |
4792 to resume scanning the pattern; the second one is where to resume | |
4793 scanning the strings. If the latter is zero, the failure point is | |
4794 a ``dummy''; if a failure happens and the failure point is a dummy, | |
4795 it gets discarded and the next one is tried. */ | |
4796 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */ | |
4797 fail_stack_type fail_stack; | |
4798 #endif | |
4799 #ifdef DEBUG | |
647 | 4800 static int failure_id; |
4801 int nfailure_points_pushed = 0, nfailure_points_popped = 0; | |
428 | 4802 #endif |
4803 | |
771 | 4804 #ifdef REGEX_REL_ALLOC |
428 | 4805 /* This holds the pointer to the failure stack, when |
4806 it is allocated relocatably. */ | |
4807 fail_stack_elt_t *failure_stack_ptr; | |
4808 #endif | |
4809 | |
4810 /* We fill all the registers internally, independent of what we | |
4811 return, for use in backreferences. The number here includes | |
4812 an element for register zero. */ | |
647 | 4813 int num_regs = bufp->re_ngroups + 1; |
428 | 4814 |
4815 /* The currently active registers. */ | |
647 | 4816 int lowest_active_reg = NO_LOWEST_ACTIVE_REG; |
4817 int highest_active_reg = NO_HIGHEST_ACTIVE_REG; | |
428 | 4818 |
4819 /* Information on the contents of registers. These are pointers into | |
4820 the input strings; they record just what was matched (on this | |
4821 attempt) by a subexpression part of the pattern, that is, the | |
4822 regnum-th regstart pointer points to where in the pattern we began | |
4823 matching and the regnum-th regend points to right after where we | |
4824 stopped matching the regnum-th subexpression. (The zeroth register | |
4825 keeps track of what the whole pattern matches.) */ | |
4826 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */ | |
446 | 4827 re_char **regstart, **regend; |
428 | 4828 #endif |
4829 | |
4830 /* If a group that's operated upon by a repetition operator fails to | |
4831 match anything, then the register for its start will need to be | |
4832 restored because it will have been set to wherever in the string we | |
4833 are when we last see its open-group operator. Similarly for a | |
4834 register's end. */ | |
4835 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */ | |
446 | 4836 re_char **old_regstart, **old_regend; |
428 | 4837 #endif |
4838 | |
4839 /* The is_active field of reg_info helps us keep track of which (possibly | |
4840 nested) subexpressions we are currently in. The matched_something | |
4841 field of reg_info[reg_num] helps us tell whether or not we have | |
4842 matched any of the pattern so far this time through the reg_num-th | |
4843 subexpression. These two fields get reset each time through any | |
4844 loop their register is in. */ | |
4845 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */ | |
4846 register_info_type *reg_info; | |
4847 #endif | |
4848 | |
4849 /* The following record the register info as found in the above | |
4850 variables when we find a match better than any we've seen before. | |
4851 This happens as we backtrack through the failure points, which in | |
4852 turn happens only if we have not yet matched the entire string. */ | |
647 | 4853 int best_regs_set = false; |
428 | 4854 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */ |
446 | 4855 re_char **best_regstart, **best_regend; |
428 | 4856 #endif |
4857 | |
4858 /* Logically, this is `best_regend[0]'. But we don't want to have to | |
4859 allocate space for that if we're not allocating space for anything | |
4860 else (see below). Also, we never need info about register 0 for | |
4861 any of the other register vectors, and it seems rather a kludge to | |
4862 treat `best_regend' differently than the rest. So we keep track of | |
4863 the end of the best match so far in a separate variable. We | |
4864 initialize this to NULL so that when we backtrack the first time | |
4865 and need to test it, it's not garbage. */ | |
446 | 4866 re_char *match_end = NULL; |
428 | 4867 |
4868 /* This helps SET_REGS_MATCHED avoid doing redundant work. */ | |
4869 int set_regs_matched_done = 0; | |
4870 | |
4871 /* Used when we pop values we don't care about. */ | |
4872 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */ | |
446 | 4873 re_char **reg_dummy; |
428 | 4874 register_info_type *reg_info_dummy; |
4875 #endif | |
4876 | |
4877 #ifdef DEBUG | |
4878 /* Counts the total number of registers pushed. */ | |
647 | 4879 int num_regs_pushed = 0; |
428 | 4880 #endif |
4881 | |
4882 /* 1 if this match ends in the same string (string1 or string2) | |
4883 as the best previous match. */ | |
460 | 4884 re_bool same_str_p; |
428 | 4885 |
4886 /* 1 if this match is the best seen so far. */ | |
460 | 4887 re_bool best_match_p; |
428 | 4888 |
826 | 4889 #ifdef emacs |
4890 Internal_Format fmt = buffer_or_other_internal_format (lispobj); | |
1346 | 4891 #ifdef REL_ALLOC |
4892 Ibyte *orig_buftext = | |
4893 BUFFERP (lispobj) ? | |
4894 BYTE_BUF_BYTE_ADDRESS (XBUFFER (lispobj), | |
4895 BYTE_BUF_BEGV (XBUFFER (lispobj))) : | |
4896 0; | |
4897 #endif | |
4898 | |
1333 | 4899 #ifdef ERROR_CHECK_MALLOC |
4900 int depth = bind_regex_malloc_disallowed (1); | |
4901 #endif | |
826 | 4902 #endif /* emacs */ |
771 | 4903 |
428 | 4904 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n"); |
4905 | |
1333 | 4906 BEGIN_REGEX_MALLOC_OK (); |
428 | 4907 INIT_FAIL_STACK (); |
1333 | 4908 END_REGEX_MALLOC_OK (); |
428 | 4909 |
4910 #ifdef MATCH_MAY_ALLOCATE | |
4911 /* Do not bother to initialize all the register variables if there are | |
4912 no groups in the pattern, as it takes a fair amount of time. If | |
4913 there are groups, we include space for register 0 (the whole | |
4914 pattern), even though we never use it, since it simplifies the | |
4915 array indexing. We should fix this. */ | |
502 | 4916 if (bufp->re_ngroups) |
428 | 4917 { |
1333 | 4918 BEGIN_REGEX_MALLOC_OK (); |
446 | 4919 regstart = REGEX_TALLOC (num_regs, re_char *); |
4920 regend = REGEX_TALLOC (num_regs, re_char *); | |
4921 old_regstart = REGEX_TALLOC (num_regs, re_char *); | |
4922 old_regend = REGEX_TALLOC (num_regs, re_char *); | |
4923 best_regstart = REGEX_TALLOC (num_regs, re_char *); | |
4924 best_regend = REGEX_TALLOC (num_regs, re_char *); | |
428 | 4925 reg_info = REGEX_TALLOC (num_regs, register_info_type); |
446 | 4926 reg_dummy = REGEX_TALLOC (num_regs, re_char *); |
428 | 4927 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type); |
1333 | 4928 END_REGEX_MALLOC_OK (); |
428 | 4929 |
4930 if (!(regstart && regend && old_regstart && old_regend && reg_info | |
4931 && best_regstart && best_regend && reg_dummy && reg_info_dummy)) | |
4932 { | |
4933 FREE_VARIABLES (); | |
4934 return -2; | |
4935 } | |
4936 } | |
4937 else | |
4938 { | |
4939 /* We must initialize all our variables to NULL, so that | |
4940 `FREE_VARIABLES' doesn't try to free them. */ | |
4941 regstart = regend = old_regstart = old_regend = best_regstart | |
4942 = best_regend = reg_dummy = NULL; | |
4943 reg_info = reg_info_dummy = (register_info_type *) NULL; | |
4944 } | |
4945 #endif /* MATCH_MAY_ALLOCATE */ | |
4946 | |
1333 | 4947 #if defined (emacs) && defined (REL_ALLOC) |
4948 { | |
4949 /* If the allocations above (or the call to setup_syntax_cache() in | |
4950 re_match_2) caused a rel-alloc relocation, then fix up the data | |
4951 pointers */ | |
1346 | 4952 Bytecount offset = offset_post_relocation (lispobj, orig_buftext); |
1333 | 4953 if (offset) |
4954 { | |
4955 string1 += offset; | |
4956 string2 += offset; | |
4957 } | |
4958 } | |
4959 #endif /* defined (emacs) && defined (REL_ALLOC) */ | |
4960 | |
428 | 4961 /* The starting position is bogus. */ |
4962 if (pos < 0 || pos > size1 + size2) | |
4963 { | |
4964 FREE_VARIABLES (); | |
4965 return -1; | |
4966 } | |
4967 | |
4968 /* Initialize subexpression text positions to -1 to mark ones that no | |
4969 start_memory/stop_memory has been seen for. Also initialize the | |
4970 register information struct. */ | |
4971 for (mcnt = 1; mcnt < num_regs; mcnt++) | |
4972 { | |
4973 regstart[mcnt] = regend[mcnt] | |
4974 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE; | |
4975 | |
4976 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE; | |
4977 IS_ACTIVE (reg_info[mcnt]) = 0; | |
4978 MATCHED_SOMETHING (reg_info[mcnt]) = 0; | |
4979 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0; | |
4980 } | |
4981 /* We move `string1' into `string2' if the latter's empty -- but not if | |
4982 `string1' is null. */ | |
4983 if (size2 == 0 && string1 != NULL) | |
4984 { | |
4985 string2 = string1; | |
4986 size2 = size1; | |
4987 string1 = 0; | |
4988 size1 = 0; | |
4989 } | |
4990 end1 = string1 + size1; | |
4991 end2 = string2 + size2; | |
4992 | |
4993 /* Compute where to stop matching, within the two strings. */ | |
4994 if (stop <= size1) | |
4995 { | |
4996 end_match_1 = string1 + stop; | |
4997 end_match_2 = string2; | |
4998 } | |
4999 else | |
5000 { | |
5001 end_match_1 = end1; | |
5002 end_match_2 = string2 + stop - size1; | |
5003 } | |
5004 | |
5005 /* `p' scans through the pattern as `d' scans through the data. | |
5006 `dend' is the end of the input string that `d' points within. `d' | |
5007 is advanced into the following input string whenever necessary, but | |
5008 this happens before fetching; therefore, at the beginning of the | |
5009 loop, `d' can be pointing at the end of a string, but it cannot | |
5010 equal `string2'. */ | |
5011 if (size1 > 0 && pos <= size1) | |
5012 { | |
5013 d = string1 + pos; | |
5014 dend = end_match_1; | |
5015 } | |
5016 else | |
5017 { | |
5018 d = string2 + pos - size1; | |
5019 dend = end_match_2; | |
5020 } | |
5021 | |
446 | 5022 DEBUG_PRINT1 ("The compiled pattern is: \n"); |
428 | 5023 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend); |
5024 DEBUG_PRINT1 ("The string to match is: `"); | |
5025 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2); | |
5026 DEBUG_PRINT1 ("'\n"); | |
5027 | |
5028 /* This loops over pattern commands. It exits by returning from the | |
5029 function if the match is complete, or it drops through if the match | |
5030 fails at this starting point in the input data. */ | |
5031 for (;;) | |
5032 { | |
5033 DEBUG_PRINT2 ("\n0x%lx: ", (long) p); | |
5034 #ifdef emacs /* XEmacs added, w/removal of immediate_quit */ | |
5035 if (!no_quit_in_re_search) | |
1333 | 5036 { |
5037 BEGIN_REGEX_MALLOC_OK (); | |
5038 QUIT; | |
5039 END_REGEX_MALLOC_OK (); | |
1346 | 5040 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS (); |
1333 | 5041 } |
428 | 5042 #endif |
5043 | |
5044 if (p == pend) | |
5045 { /* End of pattern means we might have succeeded. */ | |
5046 DEBUG_PRINT1 ("end of pattern ... "); | |
5047 | |
5048 /* If we haven't matched the entire string, and we want the | |
5049 longest match, try backtracking. */ | |
5050 if (d != end_match_2) | |
5051 { | |
5052 same_str_p = (FIRST_STRING_P (match_end) | |
5053 == MATCHING_IN_FIRST_STRING); | |
5054 | |
5055 /* AIX compiler got confused when this was combined | |
5056 with the previous declaration. */ | |
5057 if (same_str_p) | |
5058 best_match_p = d > match_end; | |
5059 else | |
5060 best_match_p = !MATCHING_IN_FIRST_STRING; | |
5061 | |
5062 DEBUG_PRINT1 ("backtracking.\n"); | |
5063 | |
5064 if (!FAIL_STACK_EMPTY ()) | |
5065 { /* More failure points to try. */ | |
5066 | |
5067 /* If exceeds best match so far, save it. */ | |
5068 if (!best_regs_set || best_match_p) | |
5069 { | |
5070 best_regs_set = true; | |
5071 match_end = d; | |
5072 | |
5073 DEBUG_PRINT1 ("\nSAVING match as best so far.\n"); | |
5074 | |
5075 for (mcnt = 1; mcnt < num_regs; mcnt++) | |
5076 { | |
5077 best_regstart[mcnt] = regstart[mcnt]; | |
5078 best_regend[mcnt] = regend[mcnt]; | |
5079 } | |
5080 } | |
5081 goto fail; | |
5082 } | |
5083 | |
5084 /* If no failure points, don't restore garbage. And if | |
5085 last match is real best match, don't restore second | |
5086 best one. */ | |
5087 else if (best_regs_set && !best_match_p) | |
5088 { | |
5089 restore_best_regs: | |
5090 /* Restore best match. It may happen that `dend == | |
5091 end_match_1' while the restored d is in string2. | |
5092 For example, the pattern `x.*y.*z' against the | |
5093 strings `x-' and `y-z-', if the two strings are | |
5094 not consecutive in memory. */ | |
5095 DEBUG_PRINT1 ("Restoring best registers.\n"); | |
5096 | |
5097 d = match_end; | |
5098 dend = ((d >= string1 && d <= end1) | |
5099 ? end_match_1 : end_match_2); | |
5100 | |
5101 for (mcnt = 1; mcnt < num_regs; mcnt++) | |
5102 { | |
5103 regstart[mcnt] = best_regstart[mcnt]; | |
5104 regend[mcnt] = best_regend[mcnt]; | |
5105 } | |
5106 } | |
5107 } /* d != end_match_2 */ | |
5108 | |
5109 succeed_label: | |
5110 DEBUG_PRINT1 ("Accepting match.\n"); | |
5111 | |
5112 /* If caller wants register contents data back, do it. */ | |
1028 | 5113 { |
5114 int num_nonshy_regs = bufp->re_nsub + 1; | |
5115 if (regs && !bufp->no_sub) | |
5116 { | |
5117 /* Have the register data arrays been allocated? */ | |
5118 if (bufp->regs_allocated == REGS_UNALLOCATED) | |
5119 { /* No. So allocate them with malloc. We need one | |
5120 extra element beyond `num_regs' for the `-1' marker | |
5121 GNU code uses. */ | |
5122 regs->num_regs = MAX (RE_NREGS, num_nonshy_regs + 1); | |
1333 | 5123 BEGIN_REGEX_MALLOC_OK (); |
1028 | 5124 regs->start = TALLOC (regs->num_regs, regoff_t); |
5125 regs->end = TALLOC (regs->num_regs, regoff_t); | |
1333 | 5126 END_REGEX_MALLOC_OK (); |
5127 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS (); | |
1028 | 5128 if (regs->start == NULL || regs->end == NULL) |
5129 { | |
5130 FREE_VARIABLES (); | |
5131 return -2; | |
5132 } | |
5133 bufp->regs_allocated = REGS_REALLOCATE; | |
5134 } | |
5135 else if (bufp->regs_allocated == REGS_REALLOCATE) | |
5136 { /* Yes. If we need more elements than were already | |
5137 allocated, reallocate them. If we need fewer, just | |
5138 leave it alone. */ | |
5139 if (regs->num_regs < num_nonshy_regs + 1) | |
5140 { | |
5141 regs->num_regs = num_nonshy_regs + 1; | |
1333 | 5142 BEGIN_REGEX_MALLOC_OK (); |
1028 | 5143 RETALLOC (regs->start, regs->num_regs, regoff_t); |
5144 RETALLOC (regs->end, regs->num_regs, regoff_t); | |
1333 | 5145 END_REGEX_MALLOC_OK (); |
5146 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS (); | |
1028 | 5147 if (regs->start == NULL || regs->end == NULL) |
5148 { | |
5149 FREE_VARIABLES (); | |
5150 return -2; | |
5151 } | |
5152 } | |
5153 } | |
5154 else | |
5155 { | |
5156 /* The braces fend off a "empty body in an else-statement" | |
5157 warning under GCC when assert expands to nothing. */ | |
5158 assert (bufp->regs_allocated == REGS_FIXED); | |
5159 } | |
5160 | |
5161 /* Convert the pointer data in `regstart' and `regend' to | |
5162 indices. Register zero has to be set differently, | |
5163 since we haven't kept track of any info for it. */ | |
5164 if (regs->num_regs > 0) | |
5165 { | |
5166 regs->start[0] = pos; | |
5167 regs->end[0] = (MATCHING_IN_FIRST_STRING | |
5168 ? ((regoff_t) (d - string1)) | |
5169 : ((regoff_t) (d - string2 + size1))); | |
5170 } | |
5171 | |
2639 | 5172 /* Map over the NUM_NONSHY_REGS non-shy internal registers. |
5173 Copy each into the corresponding external register. | |
5174 MCNT indexes external registers. */ | |
1028 | 5175 for (mcnt = 1; mcnt < MIN (num_nonshy_regs, regs->num_regs); |
5176 mcnt++) | |
5177 { | |
5178 int internal_reg = bufp->external_to_internal_register[mcnt]; | |
5179 if (REG_UNSET (regstart[internal_reg]) || | |
5180 REG_UNSET (regend[internal_reg])) | |
5181 regs->start[mcnt] = regs->end[mcnt] = -1; | |
5182 else | |
5183 { | |
5184 regs->start[mcnt] = | |
5185 (regoff_t) POINTER_TO_OFFSET (regstart[internal_reg]); | |
5186 regs->end[mcnt] = | |
5187 (regoff_t) POINTER_TO_OFFSET (regend[internal_reg]); | |
5188 } | |
5189 } | |
5190 } /* regs && !bufp->no_sub */ | |
5191 | |
5192 /* If we have regs and the regs structure has more elements than | |
2639 | 5193 were in the pattern, set the extra elements starting with |
5194 NUM_NONSHY_REGS to -1. If we (re)allocated the registers, | |
5195 this is the case, because we always allocate enough to have | |
5196 at least one -1 at the end. | |
1028 | 5197 |
5198 We do this even when no_sub is set because some applications | |
5199 (XEmacs) reuse register structures which may contain stale | |
5200 information, and permit attempts to access those registers. | |
5201 | |
5202 It would be possible to require the caller to do this, but we'd | |
5203 have to change the API for this function to reflect that, and | |
1425 | 5204 audit all callers. Note: as of 2003-04-17 callers in XEmacs |
5205 do clear the registers, but it's safer to leave this code in | |
5206 because of reallocation. | |
5207 */ | |
1028 | 5208 if (regs && regs->num_regs > 0) |
5209 for (mcnt = num_nonshy_regs; mcnt < regs->num_regs; mcnt++) | |
5210 regs->start[mcnt] = regs->end[mcnt] = -1; | |
5211 } | |
428 | 5212 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n", |
5213 nfailure_points_pushed, nfailure_points_popped, | |
5214 nfailure_points_pushed - nfailure_points_popped); | |
5215 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed); | |
5216 | |
5217 mcnt = d - pos - (MATCHING_IN_FIRST_STRING | |
5218 ? string1 | |
5219 : string2 - size1); | |
5220 | |
5221 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt); | |
5222 | |
5223 FREE_VARIABLES (); | |
5224 return mcnt; | |
5225 } | |
5226 | |
5227 /* Otherwise match next pattern command. */ | |
4759
aa5ed11f473b
Remove support for obsolete systems. See xemacs-patches message with ID
Jerry James <james@xemacs.org>
parents:
4750
diff
changeset
|
5228 switch ((re_opcode_t) *p++) |
428 | 5229 { |
5230 /* Ignore these. Used to ignore the n of succeed_n's which | |
5231 currently have n == 0. */ | |
5232 case no_op: | |
5233 DEBUG_PRINT1 ("EXECUTING no_op.\n"); | |
5234 break; | |
5235 | |
5236 case succeed: | |
5237 DEBUG_PRINT1 ("EXECUTING succeed.\n"); | |
5238 goto succeed_label; | |
5239 | |
826 | 5240 /* Match exactly a string of length n in the pattern. The |
5241 following byte in the pattern defines n, and the n bytes after | |
5242 that make up the string to match. (Under Mule, this will be in | |
5243 the default internal format.) */ | |
428 | 5244 case exactn: |
5245 mcnt = *p++; | |
5246 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt); | |
5247 | |
5248 /* This is written out as an if-else so we don't waste time | |
5249 testing `translate' inside the loop. */ | |
446 | 5250 if (TRANSLATE_P (translate)) |
428 | 5251 { |
5252 do | |
5253 { | |
446 | 5254 #ifdef MULE |
5255 Bytecount pat_len; | |
5256 | |
450 | 5257 REGEX_PREFETCH (); |
867 | 5258 if (RE_TRANSLATE_1 (itext_ichar_fmt (d, fmt, lispobj)) |
5259 != itext_ichar (p)) | |
428 | 5260 goto fail; |
446 | 5261 |
867 | 5262 pat_len = itext_ichar_len (p); |
446 | 5263 p += pat_len; |
867 | 5264 INC_IBYTEPTR_FMT (d, fmt); |
446 | 5265 |
5266 mcnt -= pat_len; | |
5267 #else /* not MULE */ | |
450 | 5268 REGEX_PREFETCH (); |
826 | 5269 if ((unsigned char) RE_TRANSLATE_1 (*d++) != *p++) |
446 | 5270 goto fail; |
5271 mcnt--; | |
5272 #endif | |
428 | 5273 } |
446 | 5274 while (mcnt > 0); |
428 | 5275 } |
5276 else | |
5277 { | |
826 | 5278 #ifdef MULE |
5279 /* If buffer format is default, then we can shortcut and just | |
5280 compare the text directly, byte by byte. Otherwise, we | |
5281 need to go character by character. */ | |
5282 if (fmt != FORMAT_DEFAULT) | |
428 | 5283 { |
826 | 5284 do |
5285 { | |
5286 Bytecount pat_len; | |
5287 | |
5288 REGEX_PREFETCH (); | |
867 | 5289 if (itext_ichar_fmt (d, fmt, lispobj) != |
5290 itext_ichar (p)) | |
826 | 5291 goto fail; |
5292 | |
867 | 5293 pat_len = itext_ichar_len (p); |
826 | 5294 p += pat_len; |
867 | 5295 INC_IBYTEPTR_FMT (d, fmt); |
826 | 5296 |
5297 mcnt -= pat_len; | |
5298 } | |
5299 while (mcnt > 0); | |
428 | 5300 } |
826 | 5301 else |
5302 #endif | |
5303 { | |
5304 do | |
5305 { | |
5306 REGEX_PREFETCH (); | |
5307 if (*d++ != *p++) goto fail; | |
5308 mcnt--; | |
5309 } | |
5310 while (mcnt > 0); | |
5311 } | |
428 | 5312 } |
5313 SET_REGS_MATCHED (); | |
5314 break; | |
5315 | |
5316 | |
5317 /* Match any character except possibly a newline or a null. */ | |
5318 case anychar: | |
5319 DEBUG_PRINT1 ("EXECUTING anychar.\n"); | |
5320 | |
450 | 5321 REGEX_PREFETCH (); |
428 | 5322 |
826 | 5323 if ((!(bufp->syntax & RE_DOT_NEWLINE) && |
867 | 5324 RE_TRANSLATE (itext_ichar_fmt (d, fmt, lispobj)) == '\n') |
826 | 5325 || (bufp->syntax & RE_DOT_NOT_NULL && |
867 | 5326 RE_TRANSLATE (itext_ichar_fmt (d, fmt, lispobj)) == |
826 | 5327 '\000')) |
428 | 5328 goto fail; |
5329 | |
5330 SET_REGS_MATCHED (); | |
5331 DEBUG_PRINT2 (" Matched `%d'.\n", *d); | |
867 | 5332 INC_IBYTEPTR_FMT (d, fmt); /* XEmacs change */ |
428 | 5333 break; |
5334 | |
5335 | |
5336 case charset: | |
5337 case charset_not: | |
5338 { | |
1414 | 5339 REGISTER Ichar c; |
460 | 5340 re_bool not_p = (re_opcode_t) *(p - 1) == charset_not; |
458 | 5341 |
5342 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not_p ? "_not" : ""); | |
428 | 5343 |
450 | 5344 REGEX_PREFETCH (); |
867 | 5345 c = itext_ichar_fmt (d, fmt, lispobj); |
826 | 5346 c = RE_TRANSLATE (c); /* The character to match. */ |
428 | 5347 |
647 | 5348 /* Cast to `unsigned int' instead of `unsigned char' in case the |
428 | 5349 bit list is a full 32 bytes long. */ |
1414 | 5350 if ((unsigned int)c < (unsigned int) (*p * BYTEWIDTH) |
428 | 5351 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH))) |
458 | 5352 not_p = !not_p; |
428 | 5353 |
5354 p += 1 + *p; | |
5355 | |
458 | 5356 if (!not_p) goto fail; |
428 | 5357 |
5358 SET_REGS_MATCHED (); | |
867 | 5359 INC_IBYTEPTR_FMT (d, fmt); /* XEmacs change */ |
428 | 5360 break; |
5361 } | |
5362 | |
5363 #ifdef MULE | |
5364 case charset_mule: | |
5365 case charset_mule_not: | |
5366 { | |
867 | 5367 REGISTER Ichar c; |
460 | 5368 re_bool not_p = (re_opcode_t) *(p - 1) == charset_mule_not; |
458 | 5369 |
5370 DEBUG_PRINT2 ("EXECUTING charset_mule%s.\n", not_p ? "_not" : ""); | |
428 | 5371 |
450 | 5372 REGEX_PREFETCH (); |
867 | 5373 c = itext_ichar_fmt (d, fmt, lispobj); |
826 | 5374 c = RE_TRANSLATE (c); /* The character to match. */ |
428 | 5375 |
5376 if (EQ (Qt, unified_range_table_lookup (p, c, Qnil))) | |
458 | 5377 not_p = !not_p; |
428 | 5378 |
5379 p += unified_range_table_bytes_used (p); | |
5380 | |
458 | 5381 if (!not_p) goto fail; |
428 | 5382 |
5383 SET_REGS_MATCHED (); | |
867 | 5384 INC_IBYTEPTR_FMT (d, fmt); |
428 | 5385 break; |
5386 } | |
5387 #endif /* MULE */ | |
5388 | |
5389 | |
5390 /* The beginning of a group is represented by start_memory. | |
5391 The arguments are the register number in the next byte, and the | |
5392 number of groups inner to this one in the next. The text | |
5393 matched within the group is recorded (in the internal | |
5394 registers data structure) under the register number. */ | |
5395 case start_memory: | |
5396 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]); | |
5397 | |
5398 /* Find out if this group can match the empty string. */ | |
5399 p1 = p; /* To send to group_match_null_string_p. */ | |
5400 | |
5401 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE) | |
2639 | 5402 REG_MATCH_NULL_STRING_P (reg_info[*p]) |
5403 = group_match_null_string_p (&p1, pend, reg_info); | |
5404 | |
5405 DEBUG_PRINT2 (" group CAN%s match null string\n", | |
5406 REG_MATCH_NULL_STRING_P (reg_info[*p]) ? "NOT" : ""); | |
428 | 5407 |
5408 /* Save the position in the string where we were the last time | |
5409 we were at this open-group operator in case the group is | |
5410 operated upon by a repetition operator, e.g., with `(a*)*b' | |
5411 against `ab'; then we want to ignore where we are now in | |
5412 the string in case this attempt to match fails. */ | |
5413 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p]) | |
5414 ? REG_UNSET (regstart[*p]) ? d : regstart[*p] | |
5415 : regstart[*p]; | |
5416 DEBUG_PRINT2 (" old_regstart: %d\n", | |
5417 POINTER_TO_OFFSET (old_regstart[*p])); | |
5418 | |
5419 regstart[*p] = d; | |
5420 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p])); | |
5421 | |
5422 IS_ACTIVE (reg_info[*p]) = 1; | |
5423 MATCHED_SOMETHING (reg_info[*p]) = 0; | |
5424 | |
5425 /* Clear this whenever we change the register activity status. */ | |
5426 set_regs_matched_done = 0; | |
5427 | |
5428 /* This is the new highest active register. */ | |
5429 highest_active_reg = *p; | |
5430 | |
5431 /* If nothing was active before, this is the new lowest active | |
5432 register. */ | |
5433 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG) | |
5434 lowest_active_reg = *p; | |
5435 | |
5436 /* Move past the register number and inner group count. */ | |
5437 p += 2; | |
5438 just_past_start_mem = p; | |
5439 | |
5440 break; | |
5441 | |
5442 | |
5443 /* The stop_memory opcode represents the end of a group. Its | |
5444 arguments are the same as start_memory's: the register | |
5445 number, and the number of inner groups. */ | |
5446 case stop_memory: | |
5447 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]); | |
5448 | |
5449 /* We need to save the string position the last time we were at | |
5450 this close-group operator in case the group is operated | |
5451 upon by a repetition operator, e.g., with `((a*)*(b*)*)*' | |
5452 against `aba'; then we want to ignore where we are now in | |
5453 the string in case this attempt to match fails. */ | |
5454 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p]) | |
5455 ? REG_UNSET (regend[*p]) ? d : regend[*p] | |
5456 : regend[*p]; | |
5457 DEBUG_PRINT2 (" old_regend: %d\n", | |
5458 POINTER_TO_OFFSET (old_regend[*p])); | |
5459 | |
5460 regend[*p] = d; | |
5461 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p])); | |
5462 | |
5463 /* This register isn't active anymore. */ | |
5464 IS_ACTIVE (reg_info[*p]) = 0; | |
5465 | |
5466 /* Clear this whenever we change the register activity status. */ | |
5467 set_regs_matched_done = 0; | |
5468 | |
5469 /* If this was the only register active, nothing is active | |
5470 anymore. */ | |
5471 if (lowest_active_reg == highest_active_reg) | |
5472 { | |
5473 lowest_active_reg = NO_LOWEST_ACTIVE_REG; | |
5474 highest_active_reg = NO_HIGHEST_ACTIVE_REG; | |
5475 } | |
5476 else | |
5477 { /* We must scan for the new highest active register, since | |
5478 it isn't necessarily one less than now: consider | |
5479 (a(b)c(d(e)f)g). When group 3 ends, after the f), the | |
5480 new highest active register is 1. */ | |
5481 unsigned char r = *p - 1; | |
5482 while (r > 0 && !IS_ACTIVE (reg_info[r])) | |
5483 r--; | |
5484 | |
5485 /* If we end up at register zero, that means that we saved | |
5486 the registers as the result of an `on_failure_jump', not | |
5487 a `start_memory', and we jumped to past the innermost | |
5488 `stop_memory'. For example, in ((.)*) we save | |
5489 registers 1 and 2 as a result of the *, but when we pop | |
5490 back to the second ), we are at the stop_memory 1. | |
5491 Thus, nothing is active. */ | |
5492 if (r == 0) | |
5493 { | |
5494 lowest_active_reg = NO_LOWEST_ACTIVE_REG; | |
5495 highest_active_reg = NO_HIGHEST_ACTIVE_REG; | |
5496 } | |
5497 else | |
5498 { | |
5499 highest_active_reg = r; | |
5500 | |
5501 /* 98/9/21 jhod: We've also gotta set lowest_active_reg, don't we? */ | |
5502 r = 1; | |
5503 while (r < highest_active_reg && !IS_ACTIVE(reg_info[r])) | |
5504 r++; | |
5505 lowest_active_reg = r; | |
5506 } | |
5507 } | |
5508 | |
5509 /* If just failed to match something this time around with a | |
5510 group that's operated on by a repetition operator, try to | |
5511 force exit from the ``loop'', and restore the register | |
5512 information for this group that we had before trying this | |
5513 last match. */ | |
5514 if ((!MATCHED_SOMETHING (reg_info[*p]) | |
5515 || just_past_start_mem == p - 1) | |
5516 && (p + 2) < pend) | |
5517 { | |
460 | 5518 re_bool is_a_jump_n = false; |
428 | 5519 |
5520 p1 = p + 2; | |
5521 mcnt = 0; | |
5522 switch ((re_opcode_t) *p1++) | |
5523 { | |
5524 case jump_n: | |
5525 is_a_jump_n = true; | |
5526 case pop_failure_jump: | |
5527 case maybe_pop_jump: | |
5528 case jump: | |
5529 case dummy_failure_jump: | |
5530 EXTRACT_NUMBER_AND_INCR (mcnt, p1); | |
5531 if (is_a_jump_n) | |
5532 p1 += 2; | |
5533 break; | |
5534 | |
5535 default: | |
5536 /* do nothing */ ; | |
5537 } | |
5538 p1 += mcnt; | |
5539 | |
5540 /* If the next operation is a jump backwards in the pattern | |
5541 to an on_failure_jump right before the start_memory | |
5542 corresponding to this stop_memory, exit from the loop | |
5543 by forcing a failure after pushing on the stack the | |
5544 on_failure_jump's jump in the pattern, and d. */ | |
5545 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump | |
5546 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p) | |
5547 { | |
5548 /* If this group ever matched anything, then restore | |
5549 what its registers were before trying this last | |
5550 failed match, e.g., with `(a*)*b' against `ab' for | |
5551 regstart[1], and, e.g., with `((a*)*(b*)*)*' | |
5552 against `aba' for regend[3]. | |
5553 | |
5554 Also restore the registers for inner groups for, | |
5555 e.g., `((a*)(b*))*' against `aba' (register 3 would | |
5556 otherwise get trashed). */ | |
5557 | |
5558 if (EVER_MATCHED_SOMETHING (reg_info[*p])) | |
5559 { | |
647 | 5560 int r; |
428 | 5561 |
5562 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0; | |
5563 | |
5564 /* Restore this and inner groups' (if any) registers. */ | |
5565 for (r = *p; r < *p + *(p + 1); r++) | |
5566 { | |
5567 regstart[r] = old_regstart[r]; | |
5568 | |
5569 /* xx why this test? */ | |
5570 if (old_regend[r] >= regstart[r]) | |
5571 regend[r] = old_regend[r]; | |
5572 } | |
5573 } | |
5574 p1++; | |
5575 EXTRACT_NUMBER_AND_INCR (mcnt, p1); | |
5576 PUSH_FAILURE_POINT (p1 + mcnt, d, -2); | |
5577 | |
5578 goto fail; | |
5579 } | |
5580 } | |
5581 | |
5582 /* Move past the register number and the inner group count. */ | |
5583 p += 2; | |
5584 break; | |
5585 | |
5586 | |
5587 /* \<digit> has been turned into a `duplicate' command which is | |
502 | 5588 followed by the numeric value of <digit> as the register number. |
5589 (Already passed through external-to-internal-register mapping, | |
5590 so it refers to the actual group number, not the non-shy-only | |
5591 numbering used in the external world.) */ | |
428 | 5592 case duplicate: |
5593 { | |
446 | 5594 REGISTER re_char *d2, *dend2; |
502 | 5595 /* Get which register to match against. */ |
5596 int regno = *p++; | |
428 | 5597 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno); |
5598 | |
5599 /* Can't back reference a group which we've never matched. */ | |
5600 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno])) | |
5601 goto fail; | |
5602 | |
5603 /* Where in input to try to start matching. */ | |
5604 d2 = regstart[regno]; | |
5605 | |
5606 /* Where to stop matching; if both the place to start and | |
5607 the place to stop matching are in the same string, then | |
5608 set to the place to stop, otherwise, for now have to use | |
5609 the end of the first string. */ | |
5610 | |
5611 dend2 = ((FIRST_STRING_P (regstart[regno]) | |
5612 == FIRST_STRING_P (regend[regno])) | |
5613 ? regend[regno] : end_match_1); | |
5614 for (;;) | |
5615 { | |
5616 /* If necessary, advance to next segment in register | |
5617 contents. */ | |
5618 while (d2 == dend2) | |
5619 { | |
5620 if (dend2 == end_match_2) break; | |
5621 if (dend2 == regend[regno]) break; | |
5622 | |
5623 /* End of string1 => advance to string2. */ | |
5624 d2 = string2; | |
5625 dend2 = regend[regno]; | |
5626 } | |
5627 /* At end of register contents => success */ | |
5628 if (d2 == dend2) break; | |
5629 | |
5630 /* If necessary, advance to next segment in data. */ | |
450 | 5631 REGEX_PREFETCH (); |
428 | 5632 |
5633 /* How many characters left in this segment to match. */ | |
5634 mcnt = dend - d; | |
5635 | |
5636 /* Want how many consecutive characters we can match in | |
5637 one shot, so, if necessary, adjust the count. */ | |
5638 if (mcnt > dend2 - d2) | |
5639 mcnt = dend2 - d2; | |
5640 | |
5641 /* Compare that many; failure if mismatch, else move | |
5642 past them. */ | |
446 | 5643 if (TRANSLATE_P (translate) |
826 | 5644 ? bcmp_translate (d, d2, mcnt, translate |
5645 #ifdef emacs | |
5646 , fmt, lispobj | |
5647 #endif | |
5648 ) | |
428 | 5649 : memcmp (d, d2, mcnt)) |
5650 goto fail; | |
5651 d += mcnt, d2 += mcnt; | |
5652 | |
5653 /* Do this because we've match some characters. */ | |
5654 SET_REGS_MATCHED (); | |
5655 } | |
5656 } | |
5657 break; | |
5658 | |
5659 | |
5660 /* begline matches the empty string at the beginning of the string | |
5661 (unless `not_bol' is set in `bufp'), and, if | |
5662 `newline_anchor' is set, after newlines. */ | |
5663 case begline: | |
5664 DEBUG_PRINT1 ("EXECUTING begline.\n"); | |
5665 | |
5666 if (AT_STRINGS_BEG (d)) | |
5667 { | |
5668 if (!bufp->not_bol) break; | |
5669 } | |
826 | 5670 else |
5671 { | |
5672 re_char *d2 = d; | |
867 | 5673 DEC_IBYTEPTR (d2); |
5674 if (itext_ichar_ascii_fmt (d2, fmt, lispobj) == '\n' && | |
826 | 5675 bufp->newline_anchor) |
5676 break; | |
5677 } | |
428 | 5678 /* In all other cases, we fail. */ |
5679 goto fail; | |
5680 | |
5681 | |
5682 /* endline is the dual of begline. */ | |
5683 case endline: | |
5684 DEBUG_PRINT1 ("EXECUTING endline.\n"); | |
5685 | |
5686 if (AT_STRINGS_END (d)) | |
5687 { | |
5688 if (!bufp->not_eol) break; | |
5689 } | |
5690 | |
5691 /* We have to ``prefetch'' the next character. */ | |
826 | 5692 else if ((d == end1 ? |
867 | 5693 itext_ichar_ascii_fmt (string2, fmt, lispobj) : |
5694 itext_ichar_ascii_fmt (d, fmt, lispobj)) == '\n' | |
428 | 5695 && bufp->newline_anchor) |
5696 { | |
5697 break; | |
5698 } | |
5699 goto fail; | |
5700 | |
5701 | |
5702 /* Match at the very beginning of the data. */ | |
5703 case begbuf: | |
5704 DEBUG_PRINT1 ("EXECUTING begbuf.\n"); | |
5705 if (AT_STRINGS_BEG (d)) | |
5706 break; | |
5707 goto fail; | |
5708 | |
5709 | |
5710 /* Match at the very end of the data. */ | |
5711 case endbuf: | |
5712 DEBUG_PRINT1 ("EXECUTING endbuf.\n"); | |
5713 if (AT_STRINGS_END (d)) | |
5714 break; | |
5715 goto fail; | |
5716 | |
5717 | |
5718 /* on_failure_keep_string_jump is used to optimize `.*\n'. It | |
5719 pushes NULL as the value for the string on the stack. Then | |
5720 `pop_failure_point' will keep the current value for the | |
5721 string, instead of restoring it. To see why, consider | |
5722 matching `foo\nbar' against `.*\n'. The .* matches the foo; | |
5723 then the . fails against the \n. But the next thing we want | |
5724 to do is match the \n against the \n; if we restored the | |
5725 string value, we would be back at the foo. | |
5726 | |
5727 Because this is used only in specific cases, we don't need to | |
5728 check all the things that `on_failure_jump' does, to make | |
5729 sure the right things get saved on the stack. Hence we don't | |
5730 share its code. The only reason to push anything on the | |
5731 stack at all is that otherwise we would have to change | |
5732 `anychar's code to do something besides goto fail in this | |
5733 case; that seems worse than this. */ | |
5734 case on_failure_keep_string_jump: | |
5735 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump"); | |
5736 | |
5737 EXTRACT_NUMBER_AND_INCR (mcnt, p); | |
5738 DEBUG_PRINT3 (" %d (to 0x%lx):\n", mcnt, (long) (p + mcnt)); | |
5739 | |
446 | 5740 PUSH_FAILURE_POINT (p + mcnt, (unsigned char *) 0, -2); |
428 | 5741 break; |
5742 | |
5743 | |
5744 /* Uses of on_failure_jump: | |
5745 | |
5746 Each alternative starts with an on_failure_jump that points | |
5747 to the beginning of the next alternative. Each alternative | |
5748 except the last ends with a jump that in effect jumps past | |
5749 the rest of the alternatives. (They really jump to the | |
5750 ending jump of the following alternative, because tensioning | |
5751 these jumps is a hassle.) | |
5752 | |
5753 Repeats start with an on_failure_jump that points past both | |
5754 the repetition text and either the following jump or | |
5755 pop_failure_jump back to this on_failure_jump. */ | |
5756 case on_failure_jump: | |
5757 on_failure: | |
5758 DEBUG_PRINT1 ("EXECUTING on_failure_jump"); | |
5759 | |
5760 EXTRACT_NUMBER_AND_INCR (mcnt, p); | |
5761 DEBUG_PRINT3 (" %d (to 0x%lx)", mcnt, (long) (p + mcnt)); | |
5762 | |
5763 /* If this on_failure_jump comes right before a group (i.e., | |
5764 the original * applied to a group), save the information | |
5765 for that group and all inner ones, so that if we fail back | |
5766 to this point, the group's information will be correct. | |
5767 For example, in \(a*\)*\1, we need the preceding group, | |
5768 and in \(\(a*\)b*\)\2, we need the inner group. */ | |
5769 | |
5770 /* We can't use `p' to check ahead because we push | |
5771 a failure point to `p + mcnt' after we do this. */ | |
5772 p1 = p; | |
5773 | |
5774 /* We need to skip no_op's before we look for the | |
5775 start_memory in case this on_failure_jump is happening as | |
5776 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1 | |
5777 against aba. */ | |
5778 while (p1 < pend && (re_opcode_t) *p1 == no_op) | |
5779 p1++; | |
5780 | |
5781 if (p1 < pend && (re_opcode_t) *p1 == start_memory) | |
5782 { | |
5783 /* We have a new highest active register now. This will | |
5784 get reset at the start_memory we are about to get to, | |
5785 but we will have saved all the registers relevant to | |
5786 this repetition op, as described above. */ | |
5787 highest_active_reg = *(p1 + 1) + *(p1 + 2); | |
5788 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG) | |
5789 lowest_active_reg = *(p1 + 1); | |
5790 } | |
5791 | |
5792 DEBUG_PRINT1 (":\n"); | |
5793 PUSH_FAILURE_POINT (p + mcnt, d, -2); | |
5794 break; | |
5795 | |
5796 | |
5797 /* A smart repeat ends with `maybe_pop_jump'. | |
5798 We change it to either `pop_failure_jump' or `jump'. */ | |
5799 case maybe_pop_jump: | |
5800 EXTRACT_NUMBER_AND_INCR (mcnt, p); | |
5801 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt); | |
5802 { | |
5803 REGISTER unsigned char *p2 = p; | |
5804 | |
5805 /* Compare the beginning of the repeat with what in the | |
5806 pattern follows its end. If we can establish that there | |
5807 is nothing that they would both match, i.e., that we | |
5808 would have to backtrack because of (as in, e.g., `a*a') | |
5809 then we can change to pop_failure_jump, because we'll | |
5810 never have to backtrack. | |
5811 | |
5812 This is not true in the case of alternatives: in | |
5813 `(a|ab)*' we do need to backtrack to the `ab' alternative | |
5814 (e.g., if the string was `ab'). But instead of trying to | |
5815 detect that here, the alternative has put on a dummy | |
5816 failure point which is what we will end up popping. */ | |
5817 | |
5818 /* Skip over open/close-group commands. | |
5819 If what follows this loop is a ...+ construct, | |
5820 look at what begins its body, since we will have to | |
5821 match at least one of that. */ | |
5822 while (1) | |
5823 { | |
5824 if (p2 + 2 < pend | |
5825 && ((re_opcode_t) *p2 == stop_memory | |
5826 || (re_opcode_t) *p2 == start_memory)) | |
5827 p2 += 3; | |
5828 else if (p2 + 6 < pend | |
5829 && (re_opcode_t) *p2 == dummy_failure_jump) | |
5830 p2 += 6; | |
5831 else | |
5832 break; | |
5833 } | |
5834 | |
5835 p1 = p + mcnt; | |
5836 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding | |
5837 to the `maybe_finalize_jump' of this case. Examine what | |
5838 follows. */ | |
5839 | |
5840 /* If we're at the end of the pattern, we can change. */ | |
5841 if (p2 == pend) | |
5842 { | |
5843 /* Consider what happens when matching ":\(.*\)" | |
5844 against ":/". I don't really understand this code | |
5845 yet. */ | |
5846 p[-3] = (unsigned char) pop_failure_jump; | |
5847 DEBUG_PRINT1 | |
5848 (" End of pattern: change to `pop_failure_jump'.\n"); | |
5849 } | |
5850 | |
5851 else if ((re_opcode_t) *p2 == exactn | |
5852 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline)) | |
5853 { | |
5854 REGISTER unsigned char c | |
5855 = *p2 == (unsigned char) endline ? '\n' : p2[2]; | |
5856 | |
5857 if ((re_opcode_t) p1[3] == exactn && p1[5] != c) | |
5858 { | |
5859 p[-3] = (unsigned char) pop_failure_jump; | |
5860 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n", | |
5861 c, p1[5]); | |
5862 } | |
5863 | |
5864 else if ((re_opcode_t) p1[3] == charset | |
5865 || (re_opcode_t) p1[3] == charset_not) | |
5866 { | |
458 | 5867 int not_p = (re_opcode_t) p1[3] == charset_not; |
428 | 5868 |
5869 if (c < (unsigned char) (p1[4] * BYTEWIDTH) | |
5870 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH))) | |
458 | 5871 not_p = !not_p; |
5872 | |
5873 /* `not_p' is equal to 1 if c would match, which means | |
428 | 5874 that we can't change to pop_failure_jump. */ |
458 | 5875 if (!not_p) |
428 | 5876 { |
5877 p[-3] = (unsigned char) pop_failure_jump; | |
5878 DEBUG_PRINT1 (" No match => pop_failure_jump.\n"); | |
5879 } | |
5880 } | |
5881 } | |
5882 else if ((re_opcode_t) *p2 == charset) | |
5883 { | |
5884 #ifdef DEBUG | |
5885 REGISTER unsigned char c | |
5886 = *p2 == (unsigned char) endline ? '\n' : p2[2]; | |
5887 #endif | |
5888 | |
5889 if ((re_opcode_t) p1[3] == exactn | |
5890 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5] | |
5891 && (p2[2 + p1[5] / BYTEWIDTH] | |
5892 & (1 << (p1[5] % BYTEWIDTH))))) | |
5893 { | |
5894 p[-3] = (unsigned char) pop_failure_jump; | |
5895 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n", | |
5896 c, p1[5]); | |
5897 } | |
5898 | |
5899 else if ((re_opcode_t) p1[3] == charset_not) | |
5900 { | |
5901 int idx; | |
5902 /* We win if the charset_not inside the loop | |
5903 lists every character listed in the charset after. */ | |
5904 for (idx = 0; idx < (int) p2[1]; idx++) | |
5905 if (! (p2[2 + idx] == 0 | |
5906 || (idx < (int) p1[4] | |
5907 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0)))) | |
5908 break; | |
5909 | |
5910 if (idx == p2[1]) | |
5911 { | |
5912 p[-3] = (unsigned char) pop_failure_jump; | |
5913 DEBUG_PRINT1 (" No match => pop_failure_jump.\n"); | |
5914 } | |
5915 } | |
5916 else if ((re_opcode_t) p1[3] == charset) | |
5917 { | |
5918 int idx; | |
5919 /* We win if the charset inside the loop | |
5920 has no overlap with the one after the loop. */ | |
5921 for (idx = 0; | |
5922 idx < (int) p2[1] && idx < (int) p1[4]; | |
5923 idx++) | |
5924 if ((p2[2 + idx] & p1[5 + idx]) != 0) | |
5925 break; | |
5926 | |
5927 if (idx == p2[1] || idx == p1[4]) | |
5928 { | |
5929 p[-3] = (unsigned char) pop_failure_jump; | |
5930 DEBUG_PRINT1 (" No match => pop_failure_jump.\n"); | |
5931 } | |
5932 } | |
5933 } | |
5934 } | |
5935 p -= 2; /* Point at relative address again. */ | |
5936 if ((re_opcode_t) p[-1] != pop_failure_jump) | |
5937 { | |
5938 p[-1] = (unsigned char) jump; | |
5939 DEBUG_PRINT1 (" Match => jump.\n"); | |
5940 goto unconditional_jump; | |
5941 } | |
5942 /* Note fall through. */ | |
5943 | |
5944 | |
5945 /* The end of a simple repeat has a pop_failure_jump back to | |
5946 its matching on_failure_jump, where the latter will push a | |
5947 failure point. The pop_failure_jump takes off failure | |
5948 points put on by this pop_failure_jump's matching | |
5949 on_failure_jump; we got through the pattern to here from the | |
5950 matching on_failure_jump, so didn't fail. */ | |
5951 case pop_failure_jump: | |
5952 { | |
5953 /* We need to pass separate storage for the lowest and | |
5954 highest registers, even though we don't care about the | |
5955 actual values. Otherwise, we will restore only one | |
5956 register from the stack, since lowest will == highest in | |
5957 `pop_failure_point'. */ | |
647 | 5958 int dummy_low_reg, dummy_high_reg; |
428 | 5959 unsigned char *pdummy; |
446 | 5960 re_char *sdummy = NULL; |
428 | 5961 |
5962 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n"); | |
5963 POP_FAILURE_POINT (sdummy, pdummy, | |
5964 dummy_low_reg, dummy_high_reg, | |
5965 reg_dummy, reg_dummy, reg_info_dummy); | |
5966 } | |
5967 /* Note fall through. */ | |
5968 | |
5969 | |
5970 /* Unconditionally jump (without popping any failure points). */ | |
5971 case jump: | |
5972 unconditional_jump: | |
5973 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */ | |
5974 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt); | |
5975 p += mcnt; /* Do the jump. */ | |
5976 DEBUG_PRINT2 ("(to 0x%lx).\n", (long) p); | |
5977 break; | |
5978 | |
5979 | |
5980 /* We need this opcode so we can detect where alternatives end | |
5981 in `group_match_null_string_p' et al. */ | |
5982 case jump_past_alt: | |
5983 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n"); | |
5984 goto unconditional_jump; | |
5985 | |
5986 | |
5987 /* Normally, the on_failure_jump pushes a failure point, which | |
5988 then gets popped at pop_failure_jump. We will end up at | |
5989 pop_failure_jump, also, and with a pattern of, say, `a+', we | |
5990 are skipping over the on_failure_jump, so we have to push | |
5991 something meaningless for pop_failure_jump to pop. */ | |
5992 case dummy_failure_jump: | |
5993 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n"); | |
5994 /* It doesn't matter what we push for the string here. What | |
5995 the code at `fail' tests is the value for the pattern. */ | |
446 | 5996 PUSH_FAILURE_POINT ((unsigned char *) 0, (unsigned char *) 0, -2); |
428 | 5997 goto unconditional_jump; |
5998 | |
5999 | |
6000 /* At the end of an alternative, we need to push a dummy failure | |
6001 point in case we are followed by a `pop_failure_jump', because | |
6002 we don't want the failure point for the alternative to be | |
6003 popped. For example, matching `(a|ab)*' against `aab' | |
6004 requires that we match the `ab' alternative. */ | |
6005 case push_dummy_failure: | |
6006 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n"); | |
6007 /* See comments just above at `dummy_failure_jump' about the | |
6008 two zeroes. */ | |
446 | 6009 PUSH_FAILURE_POINT ((unsigned char *) 0, (unsigned char *) 0, -2); |
428 | 6010 break; |
6011 | |
6012 /* Have to succeed matching what follows at least n times. | |
6013 After that, handle like `on_failure_jump'. */ | |
6014 case succeed_n: | |
6015 EXTRACT_NUMBER (mcnt, p + 2); | |
6016 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt); | |
6017 | |
6018 assert (mcnt >= 0); | |
6019 /* Originally, this is how many times we HAVE to succeed. */ | |
6020 if (mcnt > 0) | |
6021 { | |
6022 mcnt--; | |
6023 p += 2; | |
6024 STORE_NUMBER_AND_INCR (p, mcnt); | |
6025 DEBUG_PRINT3 (" Setting 0x%lx to %d.\n", (long) p, mcnt); | |
6026 } | |
6027 else if (mcnt == 0) | |
6028 { | |
6029 DEBUG_PRINT2 (" Setting two bytes from 0x%lx to no_op.\n", | |
6030 (long) (p+2)); | |
6031 p[2] = (unsigned char) no_op; | |
6032 p[3] = (unsigned char) no_op; | |
6033 goto on_failure; | |
6034 } | |
6035 break; | |
6036 | |
6037 case jump_n: | |
6038 EXTRACT_NUMBER (mcnt, p + 2); | |
6039 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt); | |
6040 | |
6041 /* Originally, this is how many times we CAN jump. */ | |
6042 if (mcnt) | |
6043 { | |
6044 mcnt--; | |
6045 STORE_NUMBER (p + 2, mcnt); | |
6046 goto unconditional_jump; | |
6047 } | |
6048 /* If don't have to jump any more, skip over the rest of command. */ | |
6049 else | |
6050 p += 4; | |
6051 break; | |
6052 | |
6053 case set_number_at: | |
6054 { | |
6055 DEBUG_PRINT1 ("EXECUTING set_number_at.\n"); | |
6056 | |
6057 EXTRACT_NUMBER_AND_INCR (mcnt, p); | |
6058 p1 = p + mcnt; | |
6059 EXTRACT_NUMBER_AND_INCR (mcnt, p); | |
6060 DEBUG_PRINT3 (" Setting 0x%lx to %d.\n", (long) p1, mcnt); | |
6061 STORE_NUMBER (p1, mcnt); | |
6062 break; | |
6063 } | |
6064 | |
6065 case wordbound: | |
6066 DEBUG_PRINT1 ("EXECUTING wordbound.\n"); | |
6067 should_succeed = 1; | |
6068 matchwordbound: | |
6069 { | |
6070 /* XEmacs change */ | |
1377 | 6071 /* Straightforward and (I hope) correct implementation. |
6072 Probably should be optimized by arranging to compute | |
1497 | 6073 charpos only once. */ |
1377 | 6074 /* emch1 is the character before d, syn1 is the syntax of |
6075 emch1, emch2 is the character at d, and syn2 is the | |
6076 syntax of emch2. */ | |
6077 Ichar emch1, emch2; | |
1468 | 6078 int syn1 = 0, |
6079 syn2 = 0; | |
1377 | 6080 re_char *d_before, *d_after; |
6081 int result, | |
6082 at_beg = AT_STRINGS_BEG (d), | |
6083 at_end = AT_STRINGS_END (d); | |
6084 #ifdef emacs | |
1497 | 6085 Charxpos charpos; |
1377 | 6086 #endif |
6087 | |
6088 if (at_beg && at_end) | |
6089 { | |
6090 result = 0; | |
6091 } | |
428 | 6092 else |
6093 { | |
1377 | 6094 if (!at_beg) |
6095 { | |
6096 d_before = POS_BEFORE_GAP_UNSAFE (d); | |
6097 DEC_IBYTEPTR_FMT (d_before, fmt); | |
6098 emch1 = itext_ichar_fmt (d_before, fmt, lispobj); | |
460 | 6099 #ifdef emacs |
1497 | 6100 charpos = offset_to_charxpos (lispobj, |
6101 PTR_TO_OFFSET (d)) - 1; | |
1377 | 6102 BEGIN_REGEX_MALLOC_OK (); |
1497 | 6103 UPDATE_SYNTAX_CACHE (scache, charpos); |
460 | 6104 #endif |
1377 | 6105 syn1 = SYNTAX_FROM_CACHE (scache, emch1); |
6106 END_REGEX_MALLOC_OK (); | |
6107 } | |
6108 if (!at_end) | |
6109 { | |
6110 d_after = POS_AFTER_GAP_UNSAFE (d); | |
6111 emch2 = itext_ichar_fmt (d_after, fmt, lispobj); | |
460 | 6112 #ifdef emacs |
1497 | 6113 charpos = offset_to_charxpos (lispobj, PTR_TO_OFFSET (d)); |
1377 | 6114 BEGIN_REGEX_MALLOC_OK (); |
1497 | 6115 UPDATE_SYNTAX_CACHE_FORWARD (scache, charpos); |
460 | 6116 #endif |
1377 | 6117 syn2 = SYNTAX_FROM_CACHE (scache, emch2); |
6118 END_REGEX_MALLOC_OK (); | |
6119 } | |
1333 | 6120 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS (); |
1377 | 6121 |
6122 if (at_beg) | |
6123 result = (syn2 == Sword); | |
6124 else if (at_end) | |
6125 result = (syn1 == Sword); | |
6126 else | |
6127 result = ((syn1 == Sword) != (syn2 == Sword)); | |
428 | 6128 } |
1377 | 6129 |
428 | 6130 if (result == should_succeed) |
6131 break; | |
6132 goto fail; | |
6133 } | |
6134 | |
6135 case notwordbound: | |
6136 DEBUG_PRINT1 ("EXECUTING notwordbound.\n"); | |
6137 should_succeed = 0; | |
6138 goto matchwordbound; | |
6139 | |
6140 case wordbeg: | |
6141 DEBUG_PRINT1 ("EXECUTING wordbeg.\n"); | |
460 | 6142 if (AT_STRINGS_END (d)) |
6143 goto fail; | |
428 | 6144 { |
6145 /* XEmacs: this originally read: | |
6146 | |
6147 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1))) | |
6148 break; | |
6149 | |
6150 */ | |
460 | 6151 re_char *dtmp = POS_AFTER_GAP_UNSAFE (d); |
867 | 6152 Ichar emch = itext_ichar_fmt (dtmp, fmt, lispobj); |
1333 | 6153 int tempres; |
1347 | 6154 #ifdef emacs |
6155 Charxpos charpos = offset_to_charxpos (lispobj, PTR_TO_OFFSET (d)); | |
6156 #endif | |
1333 | 6157 BEGIN_REGEX_MALLOC_OK (); |
460 | 6158 #ifdef emacs |
826 | 6159 UPDATE_SYNTAX_CACHE (scache, charpos); |
460 | 6160 #endif |
1333 | 6161 tempres = (SYNTAX_FROM_CACHE (scache, emch) != Sword); |
6162 END_REGEX_MALLOC_OK (); | |
6163 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS (); | |
6164 if (tempres) | |
428 | 6165 goto fail; |
6166 if (AT_STRINGS_BEG (d)) | |
6167 break; | |
460 | 6168 dtmp = POS_BEFORE_GAP_UNSAFE (d); |
867 | 6169 DEC_IBYTEPTR_FMT (dtmp, fmt); |
6170 emch = itext_ichar_fmt (dtmp, fmt, lispobj); | |
1333 | 6171 BEGIN_REGEX_MALLOC_OK (); |
460 | 6172 #ifdef emacs |
826 | 6173 UPDATE_SYNTAX_CACHE_BACKWARD (scache, charpos - 1); |
460 | 6174 #endif |
1333 | 6175 tempres = (SYNTAX_FROM_CACHE (scache, emch) != Sword); |
6176 END_REGEX_MALLOC_OK (); | |
6177 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS (); | |
6178 if (tempres) | |
428 | 6179 break; |
6180 goto fail; | |
6181 } | |
6182 | |
6183 case wordend: | |
6184 DEBUG_PRINT1 ("EXECUTING wordend.\n"); | |
460 | 6185 if (AT_STRINGS_BEG (d)) |
6186 goto fail; | |
428 | 6187 { |
6188 /* XEmacs: this originally read: | |
6189 | |
6190 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1) | |
6191 && (!WORDCHAR_P (d) || AT_STRINGS_END (d))) | |
6192 break; | |
6193 | |
6194 The or condition is incorrect (reversed). | |
6195 */ | |
460 | 6196 re_char *dtmp; |
867 | 6197 Ichar emch; |
1333 | 6198 int tempres; |
460 | 6199 #ifdef emacs |
826 | 6200 Charxpos charpos = offset_to_charxpos (lispobj, PTR_TO_OFFSET (d)); |
1347 | 6201 BEGIN_REGEX_MALLOC_OK (); |
826 | 6202 UPDATE_SYNTAX_CACHE (scache, charpos); |
1333 | 6203 END_REGEX_MALLOC_OK (); |
6204 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS (); | |
1347 | 6205 #endif |
460 | 6206 dtmp = POS_BEFORE_GAP_UNSAFE (d); |
867 | 6207 DEC_IBYTEPTR_FMT (dtmp, fmt); |
6208 emch = itext_ichar_fmt (dtmp, fmt, lispobj); | |
1333 | 6209 BEGIN_REGEX_MALLOC_OK (); |
6210 tempres = (SYNTAX_FROM_CACHE (scache, emch) != Sword); | |
6211 END_REGEX_MALLOC_OK (); | |
6212 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS (); | |
6213 if (tempres) | |
428 | 6214 goto fail; |
6215 if (AT_STRINGS_END (d)) | |
6216 break; | |
460 | 6217 dtmp = POS_AFTER_GAP_UNSAFE (d); |
867 | 6218 emch = itext_ichar_fmt (dtmp, fmt, lispobj); |
1333 | 6219 BEGIN_REGEX_MALLOC_OK (); |
460 | 6220 #ifdef emacs |
826 | 6221 UPDATE_SYNTAX_CACHE_FORWARD (scache, charpos + 1); |
460 | 6222 #endif |
1333 | 6223 tempres = (SYNTAX_FROM_CACHE (scache, emch) != Sword); |
6224 END_REGEX_MALLOC_OK (); | |
6225 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS (); | |
6226 if (tempres) | |
428 | 6227 break; |
6228 goto fail; | |
6229 } | |
6230 | |
6231 #ifdef emacs | |
6232 case before_dot: | |
6233 DEBUG_PRINT1 ("EXECUTING before_dot.\n"); | |
826 | 6234 if (!BUFFERP (lispobj) |
6235 || (BUF_PTR_BYTE_POS (XBUFFER (lispobj), (unsigned char *) d) | |
6236 >= BUF_PT (XBUFFER (lispobj)))) | |
428 | 6237 goto fail; |
6238 break; | |
6239 | |
6240 case at_dot: | |
6241 DEBUG_PRINT1 ("EXECUTING at_dot.\n"); | |
826 | 6242 if (!BUFFERP (lispobj) |
6243 || (BUF_PTR_BYTE_POS (XBUFFER (lispobj), (unsigned char *) d) | |
6244 != BUF_PT (XBUFFER (lispobj)))) | |
428 | 6245 goto fail; |
6246 break; | |
6247 | |
6248 case after_dot: | |
6249 DEBUG_PRINT1 ("EXECUTING after_dot.\n"); | |
826 | 6250 if (!BUFFERP (lispobj) |
6251 || (BUF_PTR_BYTE_POS (XBUFFER (lispobj), (unsigned char *) d) | |
6252 <= BUF_PT (XBUFFER (lispobj)))) | |
428 | 6253 goto fail; |
6254 break; | |
6255 | |
6256 case syntaxspec: | |
6257 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt); | |
6258 mcnt = *p++; | |
6259 goto matchsyntax; | |
6260 | |
6261 case wordchar: | |
6262 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n"); | |
6263 mcnt = (int) Sword; | |
6264 matchsyntax: | |
6265 should_succeed = 1; | |
6266 matchornotsyntax: | |
6267 { | |
6268 int matches; | |
867 | 6269 Ichar emch; |
428 | 6270 |
450 | 6271 REGEX_PREFETCH (); |
1333 | 6272 BEGIN_REGEX_MALLOC_OK (); |
826 | 6273 UPDATE_SYNTAX_CACHE |
6274 (scache, offset_to_charxpos (lispobj, PTR_TO_OFFSET (d))); | |
1333 | 6275 END_REGEX_MALLOC_OK (); |
6276 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS (); | |
826 | 6277 |
867 | 6278 emch = itext_ichar_fmt (d, fmt, lispobj); |
1333 | 6279 BEGIN_REGEX_MALLOC_OK (); |
826 | 6280 matches = (SYNTAX_FROM_CACHE (scache, emch) == |
6281 (enum syntaxcode) mcnt); | |
1333 | 6282 END_REGEX_MALLOC_OK (); |
6283 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS (); | |
867 | 6284 INC_IBYTEPTR_FMT (d, fmt); |
428 | 6285 if (matches != should_succeed) |
6286 goto fail; | |
6287 SET_REGS_MATCHED (); | |
6288 } | |
6289 break; | |
6290 | |
6291 case notsyntaxspec: | |
6292 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt); | |
6293 mcnt = *p++; | |
6294 goto matchnotsyntax; | |
6295 | |
6296 case notwordchar: | |
6297 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n"); | |
6298 mcnt = (int) Sword; | |
6299 matchnotsyntax: | |
6300 should_succeed = 0; | |
6301 goto matchornotsyntax; | |
6302 | |
6303 #ifdef MULE | |
6304 /* 97/2/17 jhod Mule category code patch */ | |
6305 case categoryspec: | |
6306 should_succeed = 1; | |
6307 matchornotcategory: | |
6308 { | |
867 | 6309 Ichar emch; |
428 | 6310 |
6311 mcnt = *p++; | |
450 | 6312 REGEX_PREFETCH (); |
867 | 6313 emch = itext_ichar_fmt (d, fmt, lispobj); |
6314 INC_IBYTEPTR_FMT (d, fmt); | |
826 | 6315 if (check_category_char (emch, BUFFER_CATEGORY_TABLE (lispbuf), |
6316 mcnt, should_succeed)) | |
428 | 6317 goto fail; |
6318 SET_REGS_MATCHED (); | |
6319 } | |
6320 break; | |
6321 | |
6322 case notcategoryspec: | |
6323 should_succeed = 0; | |
6324 goto matchornotcategory; | |
6325 /* end of category patch */ | |
6326 #endif /* MULE */ | |
6327 #else /* not emacs */ | |
6328 case wordchar: | |
6329 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n"); | |
450 | 6330 REGEX_PREFETCH (); |
826 | 6331 if (!WORDCHAR_P ((int) (*d))) |
428 | 6332 goto fail; |
6333 SET_REGS_MATCHED (); | |
6334 d++; | |
6335 break; | |
6336 | |
6337 case notwordchar: | |
6338 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n"); | |
450 | 6339 REGEX_PREFETCH (); |
826 | 6340 if (!WORDCHAR_P ((int) (*d))) |
428 | 6341 goto fail; |
6342 SET_REGS_MATCHED (); | |
6343 d++; | |
6344 break; | |
446 | 6345 #endif /* emacs */ |
428 | 6346 |
6347 default: | |
2500 | 6348 ABORT (); |
428 | 6349 } |
6350 continue; /* Successfully executed one pattern command; keep going. */ | |
6351 | |
6352 | |
6353 /* We goto here if a matching operation fails. */ | |
6354 fail: | |
6355 if (!FAIL_STACK_EMPTY ()) | |
6356 { /* A restart point is known. Restore to that state. */ | |
6357 DEBUG_PRINT1 ("\nFAIL:\n"); | |
6358 POP_FAILURE_POINT (d, p, | |
6359 lowest_active_reg, highest_active_reg, | |
6360 regstart, regend, reg_info); | |
6361 | |
6362 /* If this failure point is a dummy, try the next one. */ | |
6363 if (!p) | |
6364 goto fail; | |
6365 | |
6366 /* If we failed to the end of the pattern, don't examine *p. */ | |
6367 assert (p <= pend); | |
6368 if (p < pend) | |
6369 { | |
460 | 6370 re_bool is_a_jump_n = false; |
428 | 6371 |
6372 /* If failed to a backwards jump that's part of a repetition | |
6373 loop, need to pop this failure point and use the next one. */ | |
6374 switch ((re_opcode_t) *p) | |
6375 { | |
6376 case jump_n: | |
6377 is_a_jump_n = true; | |
6378 case maybe_pop_jump: | |
6379 case pop_failure_jump: | |
6380 case jump: | |
6381 p1 = p + 1; | |
6382 EXTRACT_NUMBER_AND_INCR (mcnt, p1); | |
6383 p1 += mcnt; | |
6384 | |
6385 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n) | |
6386 || (!is_a_jump_n | |
6387 && (re_opcode_t) *p1 == on_failure_jump)) | |
6388 goto fail; | |
6389 break; | |
6390 default: | |
6391 /* do nothing */ ; | |
6392 } | |
6393 } | |
6394 | |
6395 if (d >= string1 && d <= end1) | |
6396 dend = end_match_1; | |
6397 } | |
6398 else | |
6399 break; /* Matching at this starting point really fails. */ | |
6400 } /* for (;;) */ | |
6401 | |
6402 if (best_regs_set) | |
6403 goto restore_best_regs; | |
6404 | |
6405 FREE_VARIABLES (); | |
6406 | |
6407 return -1; /* Failure to match. */ | |
1333 | 6408 } /* re_match_2_internal */ |
428 | 6409 |
6410 /* Subroutine definitions for re_match_2. */ | |
6411 | |
6412 | |
6413 /* We are passed P pointing to a register number after a start_memory. | |
6414 | |
6415 Return true if the pattern up to the corresponding stop_memory can | |
6416 match the empty string, and false otherwise. | |
6417 | |
6418 If we find the matching stop_memory, sets P to point to one past its number. | |
6419 Otherwise, sets P to an undefined byte less than or equal to END. | |
6420 | |
6421 We don't handle duplicates properly (yet). */ | |
6422 | |
460 | 6423 static re_bool |
428 | 6424 group_match_null_string_p (unsigned char **p, unsigned char *end, |
6425 register_info_type *reg_info) | |
6426 { | |
6427 int mcnt; | |
6428 /* Point to after the args to the start_memory. */ | |
6429 unsigned char *p1 = *p + 2; | |
6430 | |
6431 while (p1 < end) | |
6432 { | |
6433 /* Skip over opcodes that can match nothing, and return true or | |
6434 false, as appropriate, when we get to one that can't, or to the | |
6435 matching stop_memory. */ | |
6436 | |
6437 switch ((re_opcode_t) *p1) | |
6438 { | |
6439 /* Could be either a loop or a series of alternatives. */ | |
6440 case on_failure_jump: | |
6441 p1++; | |
6442 EXTRACT_NUMBER_AND_INCR (mcnt, p1); | |
6443 | |
6444 /* If the next operation is not a jump backwards in the | |
6445 pattern. */ | |
6446 | |
6447 if (mcnt >= 0) | |
6448 { | |
6449 /* Go through the on_failure_jumps of the alternatives, | |
6450 seeing if any of the alternatives cannot match nothing. | |
6451 The last alternative starts with only a jump, | |
6452 whereas the rest start with on_failure_jump and end | |
6453 with a jump, e.g., here is the pattern for `a|b|c': | |
6454 | |
6455 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6 | |
6456 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3 | |
6457 /exactn/1/c | |
6458 | |
6459 So, we have to first go through the first (n-1) | |
6460 alternatives and then deal with the last one separately. */ | |
6461 | |
6462 | |
6463 /* Deal with the first (n-1) alternatives, which start | |
6464 with an on_failure_jump (see above) that jumps to right | |
6465 past a jump_past_alt. */ | |
6466 | |
6467 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt) | |
6468 { | |
6469 /* `mcnt' holds how many bytes long the alternative | |
6470 is, including the ending `jump_past_alt' and | |
6471 its number. */ | |
6472 | |
6473 if (!alt_match_null_string_p (p1, p1 + mcnt - 3, | |
6474 reg_info)) | |
6475 return false; | |
6476 | |
6477 /* Move to right after this alternative, including the | |
6478 jump_past_alt. */ | |
6479 p1 += mcnt; | |
6480 | |
6481 /* Break if it's the beginning of an n-th alternative | |
6482 that doesn't begin with an on_failure_jump. */ | |
6483 if ((re_opcode_t) *p1 != on_failure_jump) | |
6484 break; | |
6485 | |
6486 /* Still have to check that it's not an n-th | |
6487 alternative that starts with an on_failure_jump. */ | |
6488 p1++; | |
6489 EXTRACT_NUMBER_AND_INCR (mcnt, p1); | |
6490 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt) | |
6491 { | |
6492 /* Get to the beginning of the n-th alternative. */ | |
6493 p1 -= 3; | |
6494 break; | |
6495 } | |
6496 } | |
6497 | |
6498 /* Deal with the last alternative: go back and get number | |
6499 of the `jump_past_alt' just before it. `mcnt' contains | |
6500 the length of the alternative. */ | |
6501 EXTRACT_NUMBER (mcnt, p1 - 2); | |
6502 | |
6503 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info)) | |
6504 return false; | |
6505 | |
6506 p1 += mcnt; /* Get past the n-th alternative. */ | |
6507 } /* if mcnt > 0 */ | |
6508 break; | |
6509 | |
6510 | |
6511 case stop_memory: | |
6512 assert (p1[1] == **p); | |
6513 *p = p1 + 2; | |
6514 return true; | |
6515 | |
6516 | |
6517 default: | |
6518 if (!common_op_match_null_string_p (&p1, end, reg_info)) | |
6519 return false; | |
6520 } | |
6521 } /* while p1 < end */ | |
6522 | |
6523 return false; | |
6524 } /* group_match_null_string_p */ | |
6525 | |
6526 | |
6527 /* Similar to group_match_null_string_p, but doesn't deal with alternatives: | |
6528 It expects P to be the first byte of a single alternative and END one | |
6529 byte past the last. The alternative can contain groups. */ | |
6530 | |
460 | 6531 static re_bool |
428 | 6532 alt_match_null_string_p (unsigned char *p, unsigned char *end, |
6533 register_info_type *reg_info) | |
6534 { | |
6535 int mcnt; | |
6536 unsigned char *p1 = p; | |
6537 | |
6538 while (p1 < end) | |
6539 { | |
6540 /* Skip over opcodes that can match nothing, and break when we get | |
6541 to one that can't. */ | |
6542 | |
6543 switch ((re_opcode_t) *p1) | |
6544 { | |
6545 /* It's a loop. */ | |
6546 case on_failure_jump: | |
6547 p1++; | |
6548 EXTRACT_NUMBER_AND_INCR (mcnt, p1); | |
6549 p1 += mcnt; | |
6550 break; | |
6551 | |
6552 default: | |
6553 if (!common_op_match_null_string_p (&p1, end, reg_info)) | |
6554 return false; | |
6555 } | |
6556 } /* while p1 < end */ | |
6557 | |
6558 return true; | |
6559 } /* alt_match_null_string_p */ | |
6560 | |
6561 | |
6562 /* Deals with the ops common to group_match_null_string_p and | |
6563 alt_match_null_string_p. | |
6564 | |
6565 Sets P to one after the op and its arguments, if any. */ | |
6566 | |
460 | 6567 static re_bool |
428 | 6568 common_op_match_null_string_p (unsigned char **p, unsigned char *end, |
6569 register_info_type *reg_info) | |
6570 { | |
6571 int mcnt; | |
460 | 6572 re_bool ret; |
428 | 6573 int reg_no; |
6574 unsigned char *p1 = *p; | |
6575 | |
6576 switch ((re_opcode_t) *p1++) | |
6577 { | |
6578 case no_op: | |
6579 case begline: | |
6580 case endline: | |
6581 case begbuf: | |
6582 case endbuf: | |
6583 case wordbeg: | |
6584 case wordend: | |
6585 case wordbound: | |
6586 case notwordbound: | |
6587 #ifdef emacs | |
6588 case before_dot: | |
6589 case at_dot: | |
6590 case after_dot: | |
6591 #endif | |
6592 break; | |
6593 | |
6594 case start_memory: | |
6595 reg_no = *p1; | |
6596 assert (reg_no > 0 && reg_no <= MAX_REGNUM); | |
6597 ret = group_match_null_string_p (&p1, end, reg_info); | |
6598 | |
6599 /* Have to set this here in case we're checking a group which | |
6600 contains a group and a back reference to it. */ | |
6601 | |
6602 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE) | |
6603 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret; | |
6604 | |
6605 if (!ret) | |
6606 return false; | |
6607 break; | |
6608 | |
6609 /* If this is an optimized succeed_n for zero times, make the jump. */ | |
6610 case jump: | |
6611 EXTRACT_NUMBER_AND_INCR (mcnt, p1); | |
6612 if (mcnt >= 0) | |
6613 p1 += mcnt; | |
6614 else | |
6615 return false; | |
6616 break; | |
6617 | |
6618 case succeed_n: | |
6619 /* Get to the number of times to succeed. */ | |
6620 p1 += 2; | |
6621 EXTRACT_NUMBER_AND_INCR (mcnt, p1); | |
6622 | |
6623 if (mcnt == 0) | |
6624 { | |
6625 p1 -= 4; | |
6626 EXTRACT_NUMBER_AND_INCR (mcnt, p1); | |
6627 p1 += mcnt; | |
6628 } | |
6629 else | |
6630 return false; | |
6631 break; | |
6632 | |
6633 case duplicate: | |
6634 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1])) | |
6635 return false; | |
6636 break; | |
6637 | |
6638 case set_number_at: | |
6639 p1 += 4; | |
6640 | |
6641 default: | |
6642 /* All other opcodes mean we cannot match the empty string. */ | |
6643 return false; | |
6644 } | |
6645 | |
6646 *p = p1; | |
6647 return true; | |
6648 } /* common_op_match_null_string_p */ | |
6649 | |
6650 | |
6651 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN | |
6652 bytes; nonzero otherwise. */ | |
6653 | |
6654 static int | |
446 | 6655 bcmp_translate (re_char *s1, re_char *s2, |
826 | 6656 REGISTER int len, RE_TRANSLATE_TYPE translate |
6657 #ifdef emacs | |
2333 | 6658 , Internal_Format USED_IF_MULE (fmt), |
6659 Lisp_Object USED_IF_MULE (lispobj) | |
826 | 6660 #endif |
6661 ) | |
428 | 6662 { |
826 | 6663 REGISTER re_char *p1 = s1, *p2 = s2; |
446 | 6664 #ifdef MULE |
826 | 6665 re_char *p1_end = s1 + len; |
6666 re_char *p2_end = s2 + len; | |
446 | 6667 |
6668 while (p1 != p1_end && p2 != p2_end) | |
6669 { | |
867 | 6670 Ichar p1_ch, p2_ch; |
6671 | |
6672 p1_ch = itext_ichar_fmt (p1, fmt, lispobj); | |
6673 p2_ch = itext_ichar_fmt (p2, fmt, lispobj); | |
826 | 6674 |
6675 if (RE_TRANSLATE_1 (p1_ch) | |
6676 != RE_TRANSLATE_1 (p2_ch)) | |
446 | 6677 return 1; |
867 | 6678 INC_IBYTEPTR_FMT (p1, fmt); |
6679 INC_IBYTEPTR_FMT (p2, fmt); | |
446 | 6680 } |
6681 #else /* not MULE */ | |
428 | 6682 while (len) |
6683 { | |
826 | 6684 if (RE_TRANSLATE_1 (*p1++) != RE_TRANSLATE_1 (*p2++)) return 1; |
428 | 6685 len--; |
6686 } | |
446 | 6687 #endif /* MULE */ |
428 | 6688 return 0; |
6689 } | |
6690 | |
6691 /* Entry points for GNU code. */ | |
6692 | |
6693 /* re_compile_pattern is the GNU regular expression compiler: it | |
6694 compiles PATTERN (of length SIZE) and puts the result in BUFP. | |
6695 Returns 0 if the pattern was valid, otherwise an error string. | |
6696 | |
6697 Assumes the `allocated' (and perhaps `buffer') and `translate' fields | |
6698 are set in BUFP on entry. | |
6699 | |
6700 We call regex_compile to do the actual compilation. */ | |
6701 | |
442 | 6702 const char * |
6703 re_compile_pattern (const char *pattern, int length, | |
428 | 6704 struct re_pattern_buffer *bufp) |
6705 { | |
6706 reg_errcode_t ret; | |
6707 | |
6708 /* GNU code is written to assume at least RE_NREGS registers will be set | |
6709 (and at least one extra will be -1). */ | |
6710 bufp->regs_allocated = REGS_UNALLOCATED; | |
6711 | |
6712 /* And GNU code determines whether or not to get register information | |
6713 by passing null for the REGS argument to re_match, etc., not by | |
6714 setting no_sub. */ | |
6715 bufp->no_sub = 0; | |
6716 | |
6717 /* Match anchors at newline. */ | |
6718 bufp->newline_anchor = 1; | |
6719 | |
826 | 6720 ret = regex_compile ((unsigned char *) pattern, length, re_syntax_options, |
6721 bufp); | |
428 | 6722 |
6723 if (!ret) | |
6724 return NULL; | |
6725 return gettext (re_error_msgid[(int) ret]); | |
6726 } | |
6727 | |
6728 /* Entry points compatible with 4.2 BSD regex library. We don't define | |
6729 them unless specifically requested. */ | |
6730 | |
6731 #ifdef _REGEX_RE_COMP | |
6732 | |
6733 /* BSD has one and only one pattern buffer. */ | |
6734 static struct re_pattern_buffer re_comp_buf; | |
6735 | |
6736 char * | |
442 | 6737 re_comp (const char *s) |
428 | 6738 { |
6739 reg_errcode_t ret; | |
6740 | |
6741 if (!s) | |
6742 { | |
6743 if (!re_comp_buf.buffer) | |
6744 return gettext ("No previous regular expression"); | |
6745 return 0; | |
6746 } | |
6747 | |
6748 if (!re_comp_buf.buffer) | |
6749 { | |
1333 | 6750 re_comp_buf.buffer = (unsigned char *) xmalloc (200); |
428 | 6751 if (re_comp_buf.buffer == NULL) |
6752 return gettext (re_error_msgid[(int) REG_ESPACE]); | |
6753 re_comp_buf.allocated = 200; | |
6754 | |
1333 | 6755 re_comp_buf.fastmap = (char *) xmalloc (1 << BYTEWIDTH); |
428 | 6756 if (re_comp_buf.fastmap == NULL) |
6757 return gettext (re_error_msgid[(int) REG_ESPACE]); | |
6758 } | |
6759 | |
6760 /* Since `re_exec' always passes NULL for the `regs' argument, we | |
6761 don't need to initialize the pattern buffer fields which affect it. */ | |
6762 | |
6763 /* Match anchors at newlines. */ | |
6764 re_comp_buf.newline_anchor = 1; | |
6765 | |
826 | 6766 ret = regex_compile ((unsigned char *)s, strlen (s), re_syntax_options, |
6767 &re_comp_buf); | |
428 | 6768 |
6769 if (!ret) | |
6770 return NULL; | |
6771 | |
442 | 6772 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */ |
428 | 6773 return (char *) gettext (re_error_msgid[(int) ret]); |
6774 } | |
6775 | |
6776 | |
6777 int | |
442 | 6778 re_exec (const char *s) |
428 | 6779 { |
442 | 6780 const int len = strlen (s); |
428 | 6781 return |
6782 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0); | |
6783 } | |
6784 #endif /* _REGEX_RE_COMP */ | |
6785 | |
6786 /* POSIX.2 functions. Don't define these for Emacs. */ | |
6787 | |
6788 #ifndef emacs | |
6789 | |
6790 /* regcomp takes a regular expression as a string and compiles it. | |
6791 | |
6792 PREG is a regex_t *. We do not expect any fields to be initialized, | |
6793 since POSIX says we shouldn't. Thus, we set | |
6794 | |
6795 `buffer' to the compiled pattern; | |
6796 `used' to the length of the compiled pattern; | |
6797 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the | |
6798 REG_EXTENDED bit in CFLAGS is set; otherwise, to | |
6799 RE_SYNTAX_POSIX_BASIC; | |
6800 `newline_anchor' to REG_NEWLINE being set in CFLAGS; | |
6801 `fastmap' and `fastmap_accurate' to zero; | |
6802 `re_nsub' to the number of subexpressions in PATTERN. | |
502 | 6803 (non-shy of course. POSIX probably doesn't know about |
6804 shy ones, and in any case they should be invisible.) | |
428 | 6805 |
6806 PATTERN is the address of the pattern string. | |
6807 | |
6808 CFLAGS is a series of bits which affect compilation. | |
6809 | |
6810 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we | |
6811 use POSIX basic syntax. | |
6812 | |
6813 If REG_NEWLINE is set, then . and [^...] don't match newline. | |
6814 Also, regexec will try a match beginning after every newline. | |
6815 | |
6816 If REG_ICASE is set, then we considers upper- and lowercase | |
6817 versions of letters to be equivalent when matching. | |
6818 | |
6819 If REG_NOSUB is set, then when PREG is passed to regexec, that | |
6820 routine will report only success or failure, and nothing about the | |
6821 registers. | |
6822 | |
6823 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for | |
6824 the return codes and their meanings.) */ | |
6825 | |
6826 int | |
442 | 6827 regcomp (regex_t *preg, const char *pattern, int cflags) |
428 | 6828 { |
6829 reg_errcode_t ret; | |
647 | 6830 unsigned int syntax |
428 | 6831 = (cflags & REG_EXTENDED) ? |
6832 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC; | |
6833 | |
6834 /* regex_compile will allocate the space for the compiled pattern. */ | |
6835 preg->buffer = 0; | |
6836 preg->allocated = 0; | |
6837 preg->used = 0; | |
6838 | |
6839 /* Don't bother to use a fastmap when searching. This simplifies the | |
6840 REG_NEWLINE case: if we used a fastmap, we'd have to put all the | |
6841 characters after newlines into the fastmap. This way, we just try | |
6842 every character. */ | |
6843 preg->fastmap = 0; | |
6844 | |
6845 if (cflags & REG_ICASE) | |
6846 { | |
647 | 6847 int i; |
428 | 6848 |
1333 | 6849 preg->translate = (char *) xmalloc (CHAR_SET_SIZE); |
428 | 6850 if (preg->translate == NULL) |
6851 return (int) REG_ESPACE; | |
6852 | |
6853 /* Map uppercase characters to corresponding lowercase ones. */ | |
6854 for (i = 0; i < CHAR_SET_SIZE; i++) | |
6855 preg->translate[i] = ISUPPER (i) ? tolower (i) : i; | |
6856 } | |
6857 else | |
6858 preg->translate = NULL; | |
6859 | |
6860 /* If REG_NEWLINE is set, newlines are treated differently. */ | |
6861 if (cflags & REG_NEWLINE) | |
6862 { /* REG_NEWLINE implies neither . nor [^...] match newline. */ | |
6863 syntax &= ~RE_DOT_NEWLINE; | |
6864 syntax |= RE_HAT_LISTS_NOT_NEWLINE; | |
6865 /* It also changes the matching behavior. */ | |
6866 preg->newline_anchor = 1; | |
6867 } | |
6868 else | |
6869 preg->newline_anchor = 0; | |
6870 | |
6871 preg->no_sub = !!(cflags & REG_NOSUB); | |
6872 | |
6873 /* POSIX says a null character in the pattern terminates it, so we | |
6874 can use strlen here in compiling the pattern. */ | |
446 | 6875 ret = regex_compile ((unsigned char *) pattern, strlen (pattern), syntax, preg); |
428 | 6876 |
6877 /* POSIX doesn't distinguish between an unmatched open-group and an | |
6878 unmatched close-group: both are REG_EPAREN. */ | |
6879 if (ret == REG_ERPAREN) ret = REG_EPAREN; | |
6880 | |
6881 return (int) ret; | |
6882 } | |
6883 | |
6884 | |
6885 /* regexec searches for a given pattern, specified by PREG, in the | |
6886 string STRING. | |
6887 | |
6888 If NMATCH is zero or REG_NOSUB was set in the cflags argument to | |
6889 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at | |
6890 least NMATCH elements, and we set them to the offsets of the | |
6891 corresponding matched substrings. | |
6892 | |
6893 EFLAGS specifies `execution flags' which affect matching: if | |
6894 REG_NOTBOL is set, then ^ does not match at the beginning of the | |
6895 string; if REG_NOTEOL is set, then $ does not match at the end. | |
6896 | |
6897 We return 0 if we find a match and REG_NOMATCH if not. */ | |
6898 | |
6899 int | |
442 | 6900 regexec (const regex_t *preg, const char *string, size_t nmatch, |
428 | 6901 regmatch_t pmatch[], int eflags) |
6902 { | |
6903 int ret; | |
6904 struct re_registers regs; | |
6905 regex_t private_preg; | |
6906 int len = strlen (string); | |
460 | 6907 re_bool want_reg_info = !preg->no_sub && nmatch > 0; |
428 | 6908 |
6909 private_preg = *preg; | |
6910 | |
6911 private_preg.not_bol = !!(eflags & REG_NOTBOL); | |
6912 private_preg.not_eol = !!(eflags & REG_NOTEOL); | |
6913 | |
6914 /* The user has told us exactly how many registers to return | |
6915 information about, via `nmatch'. We have to pass that on to the | |
6916 matching routines. */ | |
6917 private_preg.regs_allocated = REGS_FIXED; | |
6918 | |
6919 if (want_reg_info) | |
6920 { | |
647 | 6921 regs.num_regs = (int) nmatch; |
6922 regs.start = TALLOC ((int) nmatch, regoff_t); | |
6923 regs.end = TALLOC ((int) nmatch, regoff_t); | |
428 | 6924 if (regs.start == NULL || regs.end == NULL) |
6925 return (int) REG_NOMATCH; | |
6926 } | |
6927 | |
6928 /* Perform the searching operation. */ | |
6929 ret = re_search (&private_preg, string, len, | |
6930 /* start: */ 0, /* range: */ len, | |
6931 want_reg_info ? ®s : (struct re_registers *) 0); | |
6932 | |
6933 /* Copy the register information to the POSIX structure. */ | |
6934 if (want_reg_info) | |
6935 { | |
6936 if (ret >= 0) | |
6937 { | |
647 | 6938 int r; |
6939 | |
6940 for (r = 0; r < (int) nmatch; r++) | |
428 | 6941 { |
6942 pmatch[r].rm_so = regs.start[r]; | |
6943 pmatch[r].rm_eo = regs.end[r]; | |
6944 } | |
6945 } | |
6946 | |
6947 /* If we needed the temporary register info, free the space now. */ | |
1726 | 6948 xfree (regs.start, regoff_t *); |
6949 xfree (regs.end, regoff_t *); | |
428 | 6950 } |
6951 | |
6952 /* We want zero return to mean success, unlike `re_search'. */ | |
6953 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH; | |
6954 } | |
6955 | |
6956 | |
6957 /* Returns a message corresponding to an error code, ERRCODE, returned | |
6958 from either regcomp or regexec. We don't use PREG here. */ | |
6959 | |
6960 size_t | |
2286 | 6961 regerror (int errcode, const regex_t *UNUSED (preg), char *errbuf, |
647 | 6962 size_t errbuf_size) |
428 | 6963 { |
442 | 6964 const char *msg; |
665 | 6965 Bytecount msg_size; |
428 | 6966 |
6967 if (errcode < 0 | |
647 | 6968 || errcode >= (int) (sizeof (re_error_msgid) / |
6969 sizeof (re_error_msgid[0]))) | |
428 | 6970 /* Only error codes returned by the rest of the code should be passed |
6971 to this routine. If we are given anything else, or if other regex | |
6972 code generates an invalid error code, then the program has a bug. | |
6973 Dump core so we can fix it. */ | |
2500 | 6974 ABORT (); |
428 | 6975 |
6976 msg = gettext (re_error_msgid[errcode]); | |
6977 | |
6978 msg_size = strlen (msg) + 1; /* Includes the null. */ | |
6979 | |
6980 if (errbuf_size != 0) | |
6981 { | |
665 | 6982 if (msg_size > (Bytecount) errbuf_size) |
428 | 6983 { |
6984 strncpy (errbuf, msg, errbuf_size - 1); | |
6985 errbuf[errbuf_size - 1] = 0; | |
6986 } | |
6987 else | |
6988 strcpy (errbuf, msg); | |
6989 } | |
6990 | |
647 | 6991 return (size_t) msg_size; |
428 | 6992 } |
6993 | |
6994 | |
6995 /* Free dynamically allocated space used by PREG. */ | |
6996 | |
6997 void | |
6998 regfree (regex_t *preg) | |
6999 { | |
7000 if (preg->buffer != NULL) | |
1726 | 7001 xfree (preg->buffer, unsigned char *); |
428 | 7002 preg->buffer = NULL; |
7003 | |
7004 preg->allocated = 0; | |
7005 preg->used = 0; | |
7006 | |
7007 if (preg->fastmap != NULL) | |
1726 | 7008 xfree (preg->fastmap, char *); |
428 | 7009 preg->fastmap = NULL; |
7010 preg->fastmap_accurate = 0; | |
7011 | |
7012 if (preg->translate != NULL) | |
1726 | 7013 xfree (preg->translate, RE_TRANSLATE_TYPE); |
428 | 7014 preg->translate = NULL; |
7015 } | |
7016 | |
7017 #endif /* not emacs */ | |
7018 |