Mercurial > hg > xemacs-beta
annotate src/ralloc.c @ 5058:eb17f0c176ac
clean up a bit the object-memory-usage-stats after gc
-------------------- ChangeLog entries follow: --------------------
src/ChangeLog addition:
2010-02-21 Ben Wing <ben@xemacs.org>
* alloc.c:
* alloc.c (pluralize_word):
New function to pluralize a word.
* alloc.c (pluralize_and_append): New function.
* alloc.c (object_memory_usage_stats):
Clean up duplication.
author | Ben Wing <ben@xemacs.org> |
---|---|
date | Sun, 21 Feb 2010 05:19:08 -0600 |
parents | 6f2158fa75ed |
children | 308d34e9f07d |
rev | line source |
---|---|
428 | 1 /* Block-relocating memory allocator. |
2 Copyright (C) 1992, 1993, 1994, 1995 Free Software Foundation, Inc. | |
5050
6f2158fa75ed
Fix quick-build, use asserts() in place of ABORT()
Ben Wing <ben@xemacs.org>
parents:
3263
diff
changeset
|
3 Copyright (C) 2010 Ben Wing. |
428 | 4 |
5 This file is part of XEmacs. | |
6 | |
7 XEmacs is free software; you can redistribute it and/or modify it | |
8 under the terms of the GNU General Public License as published by the | |
9 Free Software Foundation; either version 2, or (at your option) any | |
10 later version. | |
11 | |
12 XEmacs is distributed in the hope that it will be useful, but WITHOUT | |
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |
15 for more details. | |
16 | |
17 You should have received a copy of the GNU General Public License | |
613 | 18 along with XEmacs; see the file COPYING. If not, write to |
428 | 19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330, |
20 Boston, MA 02111-1307, USA. | |
21 | |
22 Synched Up with: FSF 20.2 (non-mmap portion only) | |
23 */ | |
24 | |
25 /* NOTES: | |
26 | |
27 Only relocate the blocs necessary for SIZE in r_alloc_sbrk, | |
28 rather than all of them. This means allowing for a possible | |
29 hole between the first bloc and the end of malloc storage. */ | |
30 | |
31 #ifdef HAVE_CONFIG_H | |
32 #include <config.h> | |
33 #endif | |
34 | |
35 #ifdef HAVE_UNISTD_H | |
36 #include <unistd.h> /* for getpagesize() */ | |
37 #endif | |
38 | |
39 #ifdef emacs | |
40 | |
41 #include "lisp.h" | |
42 | |
43 /* The important properties of this type are that 1) it's a pointer, and | |
44 2) arithmetic on it should work as if the size of the object pointed | |
45 to has a size of 1. */ | |
46 #if 0 /* Arithmetic on void* is a GCC extension. */ | |
47 #ifdef __STDC__ | |
48 typedef void *POINTER; | |
49 #else | |
50 typedef unsigned char *POINTER; | |
51 #endif | |
52 #endif /* 0 */ | |
53 | |
54 /* Unconditionally use unsigned char * for this. */ | |
55 typedef unsigned char *POINTER; | |
56 | |
57 #ifdef DOUG_LEA_MALLOC | |
58 #define M_TOP_PAD -2 | |
59 #include <malloc.h> | |
60 #endif | |
61 | |
62 #include "getpagesize.h" | |
63 | |
64 #include <string.h> | |
3263 | 65 #ifndef NEW_GC |
428 | 66 void refill_memory_reserve (void); |
3263 | 67 #endif /* not NEW_GC */ |
428 | 68 |
69 #else /* Not emacs. */ | |
70 | |
1333 | 71 #define REGEX_MALLOC_CHECK() |
72 | |
428 | 73 #include <stddef.h> |
74 | |
75 typedef void *POINTER; | |
76 | |
77 #include <unistd.h> | |
78 #include <malloc.h> | |
79 #include <string.h> | |
80 | |
81 #endif /* emacs. */ | |
82 | |
83 void init_ralloc (void); | |
84 | |
85 #define NIL ((POINTER) 0) | |
86 | |
87 | |
88 #if !defined(HAVE_MMAP) || defined(DOUG_LEA_MALLOC) | |
89 | |
90 /* A flag to indicate whether we have initialized ralloc yet. For | |
91 Emacs's sake, please do not make this local to malloc_init; on some | |
92 machines, the dumping procedure makes all static variables | |
93 read-only. On these machines, the word static is #defined to be | |
94 the empty string, meaning that r_alloc_initialized becomes an | |
95 automatic variable, and loses its value each time Emacs is started up. */ | |
96 static int r_alloc_initialized = 0; | |
97 | |
98 | |
99 /* Declarations for working with the malloc, ralloc, and system breaks. */ | |
100 | |
101 /* Function to set the real break value. */ | |
102 static POINTER (*real_morecore) (ptrdiff_t size); | |
103 | |
104 /* The break value, as seen by malloc (). */ | |
105 static POINTER virtual_break_value; | |
106 | |
107 /* The break value, viewed by the relocatable blocs. */ | |
108 static POINTER break_value; | |
109 | |
110 /* This is the size of a page. We round memory requests to this boundary. */ | |
111 static int page_size; | |
112 | |
113 /* Whenever we get memory from the system, get this many extra bytes. This | |
114 must be a multiple of page_size. */ | |
115 static int extra_bytes; | |
116 | |
117 /* Macros for rounding. Note that rounding to any value is possible | |
118 by changing the definition of PAGE. */ | |
119 #define PAGE (getpagesize ()) | |
120 #define ALIGNED(addr) (((unsigned long int) (addr) & (page_size - 1)) == 0) | |
121 #define ROUNDUP(size) (((unsigned long int) (size) + page_size - 1) \ | |
122 & ~(page_size - 1)) | |
123 #define ROUND_TO_PAGE(addr) (addr & (~(page_size - 1))) | |
124 | |
125 #define MEM_ALIGN sizeof(double) | |
126 #define MEM_ROUNDUP(addr) (((unsigned long int)(addr) + MEM_ALIGN - 1) \ | |
127 & ~(MEM_ALIGN - 1)) | |
128 | |
129 /* Data structures of heaps and blocs. */ | |
130 | |
131 /* The relocatable objects, or blocs, and the malloc data | |
132 both reside within one or more heaps. | |
133 Each heap contains malloc data, running from `start' to `bloc_start', | |
134 and relocatable objects, running from `bloc_start' to `free'. | |
135 | |
136 Relocatable objects may relocate within the same heap | |
137 or may move into another heap; the heaps themselves may grow | |
138 but they never move. | |
139 | |
140 We try to make just one heap and make it larger as necessary. | |
141 But sometimes we can't do that, because we can't get contiguous | |
142 space to add onto the heap. When that happens, we start a new heap. */ | |
143 | |
144 typedef struct heap | |
145 { | |
146 struct heap *next; | |
147 struct heap *prev; | |
148 /* Start of memory range of this heap. */ | |
149 POINTER start; | |
150 /* End of memory range of this heap. */ | |
151 POINTER end; | |
152 /* Start of relocatable data in this heap. */ | |
153 POINTER bloc_start; | |
154 /* Start of unused space in this heap. */ | |
155 POINTER free; | |
156 /* First bloc in this heap. */ | |
157 struct bp *first_bloc; | |
158 /* Last bloc in this heap. */ | |
159 struct bp *last_bloc; | |
160 } *heap_ptr; | |
161 | |
162 #define NIL_HEAP ((heap_ptr) 0) | |
163 #define HEAP_PTR_SIZE (sizeof (struct heap)) | |
164 | |
165 /* This is the first heap object. | |
166 If we need additional heap objects, each one resides at the beginning of | |
167 the space it covers. */ | |
168 static struct heap heap_base; | |
169 | |
170 /* Head and tail of the list of heaps. */ | |
171 static heap_ptr first_heap, last_heap; | |
172 | |
173 /* These structures are allocated in the malloc arena. | |
174 The linked list is kept in order of increasing '.data' members. | |
175 The data blocks abut each other; if b->next is non-nil, then | |
176 b->data + b->size == b->next->data. | |
177 | |
178 An element with variable==NIL denotes a freed block, which has not yet | |
179 been collected. They may only appear while r_alloc_freeze > 0, and will be | |
180 freed when the arena is thawed. Currently, these blocs are not reusable, | |
181 while the arena is frozen. Very inefficient. */ | |
182 | |
183 typedef struct bp | |
184 { | |
185 struct bp *next; | |
186 struct bp *prev; | |
187 POINTER *variable; | |
188 POINTER data; | |
440 | 189 size_t size; |
428 | 190 POINTER new_data; /* temporarily used for relocation */ |
191 struct heap *heap; /* Heap this bloc is in. */ | |
192 } *bloc_ptr; | |
193 | |
194 #define NIL_BLOC ((bloc_ptr) 0) | |
195 #define BLOC_PTR_SIZE (sizeof (struct bp)) | |
196 | |
197 /* Head and tail of the list of relocatable blocs. */ | |
198 static bloc_ptr first_bloc, last_bloc; | |
199 | |
200 static int use_relocatable_buffers; | |
201 | |
202 /* If >0, no relocation whatsoever takes place. */ | |
203 static int r_alloc_freeze_level; | |
204 | |
205 /* Obtain SIZE bytes of space. If enough space is not presently available | |
206 in our process reserve, (i.e., (page_break_value - break_value)), | |
207 this means getting more page-aligned space from the system. | |
208 | |
209 Return non-zero if all went well, or zero if we couldn't allocate | |
210 the memory. */ | |
211 | |
212 /* Functions to get and return memory from the system. */ | |
213 | |
214 /* Find the heap that ADDRESS falls within. */ | |
215 | |
216 static heap_ptr | |
217 find_heap (POINTER address) | |
218 { | |
219 heap_ptr heap; | |
220 | |
221 for (heap = last_heap; heap; heap = heap->prev) | |
222 { | |
223 if (heap->start <= address && address <= heap->end) | |
224 return heap; | |
225 } | |
226 | |
227 return NIL_HEAP; | |
228 } | |
229 | |
230 /* Find SIZE bytes of space in a heap. | |
231 Try to get them at ADDRESS (which must fall within some heap's range) | |
232 if we can get that many within one heap. | |
233 | |
234 If enough space is not presently available in our reserve, this means | |
235 getting more page-aligned space from the system. If the returned space | |
236 is not contiguous to the last heap, allocate a new heap, and append it | |
237 | |
238 obtain does not try to keep track of whether space is in use | |
239 or not in use. It just returns the address of SIZE bytes that | |
240 fall within a single heap. If you call obtain twice in a row | |
241 with the same arguments, you typically get the same value. | |
242 to the heap list. It's the caller's responsibility to keep | |
243 track of what space is in use. | |
244 | |
245 Return the address of the space if all went well, or zero if we couldn't | |
246 allocate the memory. */ | |
247 | |
248 static POINTER | |
440 | 249 obtain (POINTER address, size_t size) |
428 | 250 { |
251 heap_ptr heap; | |
440 | 252 size_t already_available; |
428 | 253 |
254 /* Find the heap that ADDRESS falls within. */ | |
255 for (heap = last_heap; heap; heap = heap->prev) | |
256 { | |
257 if (heap->start <= address && address <= heap->end) | |
258 break; | |
259 } | |
260 | |
5050
6f2158fa75ed
Fix quick-build, use asserts() in place of ABORT()
Ben Wing <ben@xemacs.org>
parents:
3263
diff
changeset
|
261 assert (heap); |
428 | 262 |
263 /* If we can't fit SIZE bytes in that heap, | |
264 try successive later heaps. */ | |
265 while (heap && address + size > heap->end) | |
266 { | |
267 heap = heap->next; | |
268 if (heap == NIL_HEAP) | |
269 break; | |
270 address = heap->bloc_start; | |
271 } | |
272 | |
273 /* If we can't fit them within any existing heap, | |
274 get more space. */ | |
275 if (heap == NIL_HEAP) | |
276 { | |
3025 | 277 POINTER new_ = (*real_morecore)(0); |
440 | 278 size_t get; |
428 | 279 |
280 already_available = (char *)last_heap->end - (char *)address; | |
281 | |
3025 | 282 if (new_ != last_heap->end) |
428 | 283 { |
284 /* Someone else called sbrk. Make a new heap. */ | |
285 | |
3025 | 286 heap_ptr new_heap = (heap_ptr) MEM_ROUNDUP (new_); |
428 | 287 POINTER bloc_start = (POINTER) MEM_ROUNDUP ((POINTER)(new_heap + 1)); |
288 | |
3025 | 289 if ((*real_morecore) (bloc_start - new_) != new_) |
428 | 290 return 0; |
291 | |
3025 | 292 new_heap->start = new_; |
428 | 293 new_heap->end = bloc_start; |
294 new_heap->bloc_start = bloc_start; | |
295 new_heap->free = bloc_start; | |
296 new_heap->next = NIL_HEAP; | |
297 new_heap->prev = last_heap; | |
298 new_heap->first_bloc = NIL_BLOC; | |
299 new_heap->last_bloc = NIL_BLOC; | |
300 last_heap->next = new_heap; | |
301 last_heap = new_heap; | |
302 | |
303 address = bloc_start; | |
304 already_available = 0; | |
305 } | |
306 | |
307 /* Add space to the last heap (which we may have just created). | |
308 Get some extra, so we can come here less often. */ | |
309 | |
310 get = size + extra_bytes - already_available; | |
311 get = (char *) ROUNDUP ((char *)last_heap->end + get) | |
312 - (char *) last_heap->end; | |
313 | |
314 if ((*real_morecore) (get) != last_heap->end) | |
315 return 0; | |
316 | |
317 last_heap->end += get; | |
318 } | |
319 | |
320 return address; | |
321 } | |
322 | |
323 #if 0 | |
324 /* Obtain SIZE bytes of space and return a pointer to the new area. | |
325 If we could not allocate the space, return zero. */ | |
326 | |
327 static POINTER | |
440 | 328 get_more_space (size_t size) |
428 | 329 { |
330 POINTER ptr = break_value; | |
331 if (obtain (size)) | |
332 return ptr; | |
333 else | |
334 return 0; | |
335 } | |
336 #endif | |
337 | |
338 /* Note that SIZE bytes of space have been relinquished by the process. | |
339 If SIZE is more than a page, return the space to the system. */ | |
340 | |
341 static void | |
342 relinquish (void) | |
343 { | |
344 register heap_ptr h; | |
345 int excess = 0; | |
346 | |
347 /* Add the amount of space beyond break_value | |
348 in all heaps which have extend beyond break_value at all. */ | |
349 | |
350 for (h = last_heap; h && break_value < h->end; h = h->prev) | |
351 { | |
352 excess += (char *) h->end - (char *) ((break_value < h->bloc_start) | |
353 ? h->bloc_start : break_value); | |
354 } | |
355 | |
356 if (excess > extra_bytes * 2 && (*real_morecore) (0) == last_heap->end) | |
357 { | |
358 /* Keep extra_bytes worth of empty space. | |
359 And don't free anything unless we can free at least extra_bytes. */ | |
360 excess -= extra_bytes; | |
361 | |
362 if ((char *)last_heap->end - (char *)last_heap->bloc_start <= excess) | |
363 { | |
364 /* This heap should have no blocs in it. */ | |
5050
6f2158fa75ed
Fix quick-build, use asserts() in place of ABORT()
Ben Wing <ben@xemacs.org>
parents:
3263
diff
changeset
|
365 assert (last_heap->first_bloc == NIL_BLOC && |
6f2158fa75ed
Fix quick-build, use asserts() in place of ABORT()
Ben Wing <ben@xemacs.org>
parents:
3263
diff
changeset
|
366 last_heap->last_bloc == NIL_BLOC); |
428 | 367 |
368 /* Return the last heap, with its header, to the system. */ | |
369 excess = (char *)last_heap->end - (char *)last_heap->start; | |
370 last_heap = last_heap->prev; | |
371 last_heap->next = NIL_HEAP; | |
372 } | |
373 else | |
374 { | |
375 excess = (char *) last_heap->end | |
376 - (char *) ROUNDUP ((char *)last_heap->end - excess); | |
377 last_heap->end -= excess; | |
378 } | |
379 | |
380 if ((*real_morecore) (- excess) == 0) | |
2500 | 381 ABORT (); |
428 | 382 } |
383 } | |
384 | |
385 /* Return the total size in use by relocating allocator, | |
386 above where malloc gets space. */ | |
387 | |
388 long r_alloc_size_in_use (void); | |
389 long | |
440 | 390 r_alloc_size_in_use (void) |
428 | 391 { |
392 return break_value - virtual_break_value; | |
393 } | |
394 | |
395 /* The meat - allocating, freeing, and relocating blocs. */ | |
396 | |
397 | |
398 /* Find the bloc referenced by the address in PTR. Returns a pointer | |
399 to that block. */ | |
400 | |
401 static bloc_ptr | |
402 find_bloc (POINTER *ptr) | |
403 { | |
404 register bloc_ptr p = first_bloc; | |
405 | |
406 while (p != NIL_BLOC) | |
407 { | |
408 if (p->variable == ptr && p->data == *ptr) | |
409 return p; | |
410 | |
411 p = p->next; | |
412 } | |
413 | |
414 return p; | |
415 } | |
416 | |
417 /* Allocate a bloc of SIZE bytes and append it to the chain of blocs. | |
418 Returns a pointer to the new bloc, or zero if we couldn't allocate | |
419 memory for the new block. */ | |
420 | |
421 static bloc_ptr | |
440 | 422 get_bloc (size_t size) |
428 | 423 { |
424 register bloc_ptr new_bloc; | |
425 register heap_ptr heap; | |
426 | |
427 if (! (new_bloc = (bloc_ptr) malloc (BLOC_PTR_SIZE)) | |
428 || ! (new_bloc->data = obtain (break_value, size))) | |
429 { | |
430 if (new_bloc) | |
431 free (new_bloc); | |
432 | |
433 return 0; | |
434 } | |
435 | |
436 break_value = new_bloc->data + size; | |
437 | |
438 new_bloc->size = size; | |
439 new_bloc->next = NIL_BLOC; | |
440 new_bloc->variable = (POINTER *) NIL; | |
441 new_bloc->new_data = 0; | |
442 | |
443 /* Record in the heap that this space is in use. */ | |
444 heap = find_heap (new_bloc->data); | |
445 heap->free = break_value; | |
446 | |
447 /* Maintain the correspondence between heaps and blocs. */ | |
448 new_bloc->heap = heap; | |
449 heap->last_bloc = new_bloc; | |
450 if (heap->first_bloc == NIL_BLOC) | |
451 heap->first_bloc = new_bloc; | |
452 | |
453 /* Put this bloc on the doubly-linked list of blocs. */ | |
454 if (first_bloc) | |
455 { | |
456 new_bloc->prev = last_bloc; | |
457 last_bloc->next = new_bloc; | |
458 last_bloc = new_bloc; | |
459 } | |
460 else | |
461 { | |
462 first_bloc = last_bloc = new_bloc; | |
463 new_bloc->prev = NIL_BLOC; | |
464 } | |
465 | |
466 return new_bloc; | |
467 } | |
468 | |
469 /* Calculate new locations of blocs in the list beginning with BLOC, | |
470 relocating it to start at ADDRESS, in heap HEAP. If enough space is | |
471 not presently available in our reserve, call obtain for | |
472 more space. | |
473 | |
474 Store the new location of each bloc in its new_data field. | |
475 Do not touch the contents of blocs or break_value. */ | |
476 | |
477 static int | |
478 relocate_blocs (bloc_ptr bloc, heap_ptr heap, POINTER address) | |
479 { | |
480 register bloc_ptr b = bloc; | |
481 | |
482 /* No need to ever call this if arena is frozen, bug somewhere! */ | |
5050
6f2158fa75ed
Fix quick-build, use asserts() in place of ABORT()
Ben Wing <ben@xemacs.org>
parents:
3263
diff
changeset
|
483 assert (!r_alloc_freeze_level); |
428 | 484 |
485 while (b) | |
486 { | |
487 /* If bloc B won't fit within HEAP, | |
488 move to the next heap and try again. */ | |
489 while (heap && address + b->size > heap->end) | |
490 { | |
491 heap = heap->next; | |
492 if (heap == NIL_HEAP) | |
493 break; | |
494 address = heap->bloc_start; | |
495 } | |
496 | |
497 /* If BLOC won't fit in any heap, | |
498 get enough new space to hold BLOC and all following blocs. */ | |
499 if (heap == NIL_HEAP) | |
500 { | |
501 register bloc_ptr tb = b; | |
440 | 502 register size_t s = 0; |
428 | 503 |
504 /* Add up the size of all the following blocs. */ | |
505 while (tb != NIL_BLOC) | |
506 { | |
507 if (tb->variable) | |
508 s += tb->size; | |
509 | |
510 tb = tb->next; | |
511 } | |
512 | |
513 /* Get that space. */ | |
514 address = obtain (address, s); | |
515 if (address == 0) | |
516 return 0; | |
517 | |
518 heap = last_heap; | |
519 } | |
520 | |
521 /* Record the new address of this bloc | |
522 and update where the next bloc can start. */ | |
523 b->new_data = address; | |
524 if (b->variable) | |
525 address += b->size; | |
526 b = b->next; | |
527 } | |
528 | |
529 return 1; | |
530 } | |
531 | |
532 #if 0 /* unused */ | |
533 /* Reorder the bloc BLOC to go before bloc BEFORE in the doubly linked list. | |
534 This is necessary if we put the memory of space of BLOC | |
535 before that of BEFORE. */ | |
536 | |
537 static void | |
538 reorder_bloc (bloc_ptr bloc, bloc_ptr before) | |
539 { | |
540 bloc_ptr prev, next; | |
541 | |
542 /* Splice BLOC out from where it is. */ | |
543 prev = bloc->prev; | |
544 next = bloc->next; | |
545 | |
546 if (prev) | |
547 prev->next = next; | |
548 if (next) | |
549 next->prev = prev; | |
550 | |
551 /* Splice it in before BEFORE. */ | |
552 prev = before->prev; | |
553 | |
554 if (prev) | |
555 prev->next = bloc; | |
556 bloc->prev = prev; | |
557 | |
558 before->prev = bloc; | |
559 bloc->next = before; | |
560 } | |
561 #endif /* unused */ | |
562 | |
563 /* Update the records of which heaps contain which blocs, starting | |
564 with heap HEAP and bloc BLOC. */ | |
565 | |
566 static void | |
567 update_heap_bloc_correspondence (bloc_ptr bloc, heap_ptr heap) | |
568 { | |
569 register bloc_ptr b; | |
570 | |
571 /* Initialize HEAP's status to reflect blocs before BLOC. */ | |
572 if (bloc != NIL_BLOC && bloc->prev != NIL_BLOC && bloc->prev->heap == heap) | |
573 { | |
574 /* The previous bloc is in HEAP. */ | |
575 heap->last_bloc = bloc->prev; | |
576 heap->free = bloc->prev->data + bloc->prev->size; | |
577 } | |
578 else | |
579 { | |
580 /* HEAP contains no blocs before BLOC. */ | |
581 heap->first_bloc = NIL_BLOC; | |
582 heap->last_bloc = NIL_BLOC; | |
583 heap->free = heap->bloc_start; | |
584 } | |
585 | |
586 /* Advance through blocs one by one. */ | |
587 for (b = bloc; b != NIL_BLOC; b = b->next) | |
588 { | |
589 /* Advance through heaps, marking them empty, | |
590 till we get to the one that B is in. */ | |
591 while (heap) | |
592 { | |
593 if (heap->bloc_start <= b->data && b->data <= heap->end) | |
594 break; | |
595 heap = heap->next; | |
596 /* We know HEAP is not null now, | |
597 because there has to be space for bloc B. */ | |
598 heap->first_bloc = NIL_BLOC; | |
599 heap->last_bloc = NIL_BLOC; | |
600 heap->free = heap->bloc_start; | |
601 } | |
602 | |
603 /* Update HEAP's status for bloc B. */ | |
604 heap->free = b->data + b->size; | |
605 heap->last_bloc = b; | |
606 if (heap->first_bloc == NIL_BLOC) | |
607 heap->first_bloc = b; | |
608 | |
609 /* Record that B is in HEAP. */ | |
610 b->heap = heap; | |
611 } | |
612 | |
613 /* If there are any remaining heaps and no blocs left, | |
614 mark those heaps as empty. */ | |
615 heap = heap->next; | |
616 while (heap) | |
617 { | |
618 heap->first_bloc = NIL_BLOC; | |
619 heap->last_bloc = NIL_BLOC; | |
620 heap->free = heap->bloc_start; | |
621 heap = heap->next; | |
622 } | |
623 } | |
624 | |
625 /* Resize BLOC to SIZE bytes. This relocates the blocs | |
626 that come after BLOC in memory. */ | |
627 | |
628 static int | |
440 | 629 resize_bloc (bloc_ptr bloc, size_t size) |
428 | 630 { |
631 register bloc_ptr b; | |
632 heap_ptr heap; | |
633 POINTER address; | |
440 | 634 size_t old_size; |
428 | 635 |
636 /* No need to ever call this if arena is frozen, bug somewhere! */ | |
5050
6f2158fa75ed
Fix quick-build, use asserts() in place of ABORT()
Ben Wing <ben@xemacs.org>
parents:
3263
diff
changeset
|
637 assert (!r_alloc_freeze_level); |
428 | 638 |
639 if (bloc == NIL_BLOC || size == bloc->size) | |
640 return 1; | |
641 | |
642 for (heap = first_heap; heap != NIL_HEAP; heap = heap->next) | |
643 { | |
644 if (heap->bloc_start <= bloc->data && bloc->data <= heap->end) | |
645 break; | |
646 } | |
647 | |
5050
6f2158fa75ed
Fix quick-build, use asserts() in place of ABORT()
Ben Wing <ben@xemacs.org>
parents:
3263
diff
changeset
|
648 assert (heap != NIL_HEAP); |
428 | 649 |
650 old_size = bloc->size; | |
651 bloc->size = size; | |
652 | |
653 /* Note that bloc could be moved into the previous heap. */ | |
654 address = (bloc->prev ? bloc->prev->data + bloc->prev->size | |
655 : first_heap->bloc_start); | |
656 while (heap) | |
657 { | |
658 if (heap->bloc_start <= address && address <= heap->end) | |
659 break; | |
660 heap = heap->prev; | |
661 } | |
662 | |
663 if (! relocate_blocs (bloc, heap, address)) | |
664 { | |
665 bloc->size = old_size; | |
666 return 0; | |
667 } | |
668 | |
669 if (size > old_size) | |
670 { | |
671 for (b = last_bloc; b != bloc; b = b->prev) | |
672 { | |
673 if (!b->variable) | |
674 { | |
675 b->size = 0; | |
676 b->data = b->new_data; | |
677 } | |
678 else | |
679 { | |
440 | 680 memmove (b->new_data, b->data, b->size); |
428 | 681 *b->variable = b->data = b->new_data; |
682 } | |
683 } | |
684 if (!bloc->variable) | |
685 { | |
686 bloc->size = 0; | |
687 bloc->data = bloc->new_data; | |
688 } | |
689 else | |
690 { | |
440 | 691 memmove (bloc->new_data, bloc->data, old_size); |
428 | 692 memset (bloc->new_data + old_size, 0, size - old_size); |
693 *bloc->variable = bloc->data = bloc->new_data; | |
694 } | |
695 } | |
696 else | |
697 { | |
698 for (b = bloc; b != NIL_BLOC; b = b->next) | |
699 { | |
700 if (!b->variable) | |
701 { | |
702 b->size = 0; | |
703 b->data = b->new_data; | |
704 } | |
705 else | |
706 { | |
440 | 707 memmove (b->new_data, b->data, b->size); |
428 | 708 *b->variable = b->data = b->new_data; |
709 } | |
710 } | |
711 } | |
712 | |
713 update_heap_bloc_correspondence (bloc, heap); | |
714 | |
715 break_value = (last_bloc ? last_bloc->data + last_bloc->size | |
716 : first_heap->bloc_start); | |
717 return 1; | |
718 } | |
719 | |
720 /* Free BLOC from the chain of blocs, relocating any blocs above it | |
721 and returning BLOC->size bytes to the free area. */ | |
722 | |
723 static void | |
724 free_bloc (bloc_ptr bloc) | |
725 { | |
726 heap_ptr heap = bloc->heap; | |
727 | |
728 if (r_alloc_freeze_level) | |
729 { | |
730 bloc->variable = (POINTER *) NIL; | |
731 return; | |
732 } | |
733 | |
734 resize_bloc (bloc, 0); | |
735 | |
736 if (bloc == first_bloc && bloc == last_bloc) | |
737 { | |
738 first_bloc = last_bloc = NIL_BLOC; | |
739 } | |
740 else if (bloc == last_bloc) | |
741 { | |
742 last_bloc = bloc->prev; | |
743 last_bloc->next = NIL_BLOC; | |
744 } | |
745 else if (bloc == first_bloc) | |
746 { | |
747 first_bloc = bloc->next; | |
748 first_bloc->prev = NIL_BLOC; | |
749 } | |
750 else | |
751 { | |
752 bloc->next->prev = bloc->prev; | |
753 bloc->prev->next = bloc->next; | |
754 } | |
755 | |
756 /* Update the records of which blocs are in HEAP. */ | |
757 if (heap->first_bloc == bloc) | |
758 { | |
759 if (bloc->next != 0 && bloc->next->heap == heap) | |
760 heap->first_bloc = bloc->next; | |
761 else | |
762 heap->first_bloc = heap->last_bloc = NIL_BLOC; | |
763 } | |
764 if (heap->last_bloc == bloc) | |
765 { | |
766 if (bloc->prev != 0 && bloc->prev->heap == heap) | |
767 heap->last_bloc = bloc->prev; | |
768 else | |
769 heap->first_bloc = heap->last_bloc = NIL_BLOC; | |
770 } | |
771 | |
772 relinquish (); | |
773 free (bloc); | |
774 } | |
775 | |
776 /* Interface routines. */ | |
777 | |
778 /* Obtain SIZE bytes of storage from the free pool, or the system, as | |
779 necessary. If relocatable blocs are in use, this means relocating | |
780 them. This function gets plugged into the GNU malloc's __morecore | |
781 hook. | |
782 | |
783 We provide hysteresis, never relocating by less than extra_bytes. | |
784 | |
785 If we're out of memory, we should return zero, to imitate the other | |
786 __morecore hook values - in particular, __default_morecore in the | |
787 GNU malloc package. */ | |
788 | |
789 POINTER r_alloc_sbrk (ptrdiff_t size); | |
790 POINTER | |
791 r_alloc_sbrk (ptrdiff_t size) | |
792 { | |
793 register bloc_ptr b; | |
794 POINTER address; | |
795 | |
796 if (! r_alloc_initialized) | |
797 init_ralloc (); | |
798 | |
799 if (! use_relocatable_buffers) | |
800 return (*real_morecore) (size); | |
801 | |
802 if (size == 0) | |
803 return virtual_break_value; | |
804 | |
805 if (size > 0) | |
806 { | |
807 /* Allocate a page-aligned space. GNU malloc would reclaim an | |
808 extra space if we passed an unaligned one. But we could | |
809 not always find a space which is contiguous to the previous. */ | |
810 POINTER new_bloc_start; | |
811 heap_ptr h = first_heap; | |
440 | 812 size_t get = ROUNDUP (size); |
428 | 813 |
814 address = (POINTER) ROUNDUP (virtual_break_value); | |
815 | |
816 /* Search the list upward for a heap which is large enough. */ | |
817 while ((char *) h->end < (char *) MEM_ROUNDUP ((char *)address + get)) | |
818 { | |
819 h = h->next; | |
820 if (h == NIL_HEAP) | |
821 break; | |
822 address = (POINTER) ROUNDUP (h->start); | |
823 } | |
824 | |
825 /* If not found, obtain more space. */ | |
826 if (h == NIL_HEAP) | |
827 { | |
828 get += extra_bytes + page_size; | |
829 | |
830 if (! obtain (address, get)) | |
831 return 0; | |
832 | |
833 if (first_heap == last_heap) | |
834 address = (POINTER) ROUNDUP (virtual_break_value); | |
835 else | |
836 address = (POINTER) ROUNDUP (last_heap->start); | |
837 h = last_heap; | |
838 } | |
839 | |
840 new_bloc_start = (POINTER) MEM_ROUNDUP ((char *)address + get); | |
841 | |
842 if (first_heap->bloc_start < new_bloc_start) | |
843 { | |
844 /* This is no clean solution - no idea how to do it better. */ | |
845 if (r_alloc_freeze_level) | |
846 return NIL; | |
847 | |
848 /* There is a bug here: if the above obtain call succeeded, but the | |
849 relocate_blocs call below does not succeed, we need to free | |
850 the memory that we got with obtain. */ | |
851 | |
852 /* Move all blocs upward. */ | |
853 if (! relocate_blocs (first_bloc, h, new_bloc_start)) | |
854 return 0; | |
855 | |
856 /* Note that (POINTER)(h+1) <= new_bloc_start since | |
857 get >= page_size, so the following does not destroy the heap | |
858 header. */ | |
859 for (b = last_bloc; b != NIL_BLOC; b = b->prev) | |
860 { | |
440 | 861 memmove (b->new_data, b->data, b->size); |
428 | 862 *b->variable = b->data = b->new_data; |
863 } | |
864 | |
865 h->bloc_start = new_bloc_start; | |
866 | |
867 update_heap_bloc_correspondence (first_bloc, h); | |
868 } | |
869 if (h != first_heap) | |
870 { | |
871 /* Give up managing heaps below the one the new | |
872 virtual_break_value points to. */ | |
873 first_heap->prev = NIL_HEAP; | |
874 first_heap->next = h->next; | |
875 first_heap->start = h->start; | |
876 first_heap->end = h->end; | |
877 first_heap->free = h->free; | |
878 first_heap->first_bloc = h->first_bloc; | |
879 first_heap->last_bloc = h->last_bloc; | |
880 first_heap->bloc_start = h->bloc_start; | |
881 | |
882 if (first_heap->next) | |
883 first_heap->next->prev = first_heap; | |
884 else | |
885 last_heap = first_heap; | |
886 } | |
887 | |
888 memset (address, 0, size); | |
889 } | |
890 else /* size < 0 */ | |
891 { | |
440 | 892 size_t excess = (char *)first_heap->bloc_start |
428 | 893 - ((char *)virtual_break_value + size); |
894 | |
895 address = virtual_break_value; | |
896 | |
897 if (r_alloc_freeze_level == 0 && excess > 2 * extra_bytes) | |
898 { | |
899 excess -= extra_bytes; | |
900 first_heap->bloc_start | |
901 = (POINTER) MEM_ROUNDUP ((char *)first_heap->bloc_start - excess); | |
902 | |
903 relocate_blocs (first_bloc, first_heap, first_heap->bloc_start); | |
904 | |
905 for (b = first_bloc; b != NIL_BLOC; b = b->next) | |
906 { | |
440 | 907 memmove (b->new_data, b->data, b->size); |
428 | 908 *b->variable = b->data = b->new_data; |
909 } | |
910 } | |
911 | |
912 if ((char *)virtual_break_value + size < (char *)first_heap->start) | |
913 { | |
914 /* We found an additional space below the first heap */ | |
915 first_heap->start = (POINTER) ((char *)virtual_break_value + size); | |
916 } | |
917 } | |
918 | |
919 virtual_break_value = (POINTER) ((char *)address + size); | |
920 break_value = (last_bloc | |
921 ? last_bloc->data + last_bloc->size | |
922 : first_heap->bloc_start); | |
923 if (size < 0) | |
924 relinquish (); | |
925 | |
926 return address; | |
927 } | |
928 | |
929 /* Allocate a relocatable bloc of storage of size SIZE. A pointer to | |
930 the data is returned in *PTR. PTR is thus the address of some variable | |
931 which will use the data area. | |
932 | |
933 The allocation of 0 bytes is valid. | |
934 In case r_alloc_freeze is set, a best fit of unused blocs could be done | |
935 before allocating a new area. Not yet done. | |
936 | |
937 If we can't allocate the necessary memory, set *PTR to zero, and | |
938 return zero. */ | |
939 | |
440 | 940 POINTER r_alloc (POINTER *ptr, size_t size); |
428 | 941 POINTER |
440 | 942 r_alloc (POINTER *ptr, size_t size) |
428 | 943 { |
944 bloc_ptr new_bloc; | |
945 | |
1333 | 946 REGEX_MALLOC_CHECK (); |
947 | |
428 | 948 if (! r_alloc_initialized) |
949 init_ralloc (); | |
950 | |
951 new_bloc = get_bloc (size); | |
952 if (new_bloc) | |
953 { | |
954 new_bloc->variable = ptr; | |
955 *ptr = new_bloc->data; | |
956 } | |
957 else | |
958 *ptr = 0; | |
959 | |
960 return *ptr; | |
961 } | |
962 | |
963 /* Free a bloc of relocatable storage whose data is pointed to by PTR. | |
964 Store 0 in *PTR to show there's no block allocated. */ | |
965 | |
966 void r_alloc_free (POINTER *ptr); | |
967 void | |
968 r_alloc_free (POINTER *ptr) | |
969 { | |
970 register bloc_ptr dead_bloc; | |
971 | |
1333 | 972 REGEX_MALLOC_CHECK (); |
973 | |
428 | 974 if (! r_alloc_initialized) |
975 init_ralloc (); | |
976 | |
977 dead_bloc = find_bloc (ptr); | |
5050
6f2158fa75ed
Fix quick-build, use asserts() in place of ABORT()
Ben Wing <ben@xemacs.org>
parents:
3263
diff
changeset
|
978 assert (dead_bloc != NIL_BLOC); |
428 | 979 |
980 free_bloc (dead_bloc); | |
981 *ptr = 0; | |
982 | |
983 #ifdef emacs | |
3263 | 984 #ifndef NEW_GC |
428 | 985 refill_memory_reserve (); |
3263 | 986 #endif /* not NEW_GC */ |
428 | 987 #endif |
988 } | |
989 | |
990 /* Given a pointer at address PTR to relocatable data, resize it to SIZE. | |
991 Do this by shifting all blocks above this one up in memory, unless | |
992 SIZE is less than or equal to the current bloc size, in which case | |
993 do nothing. | |
994 | |
995 In case r_alloc_freeze is set, a new bloc is allocated, and the | |
996 memory copied to it. Not very efficient. We could traverse the | |
997 bloc_list for a best fit of free blocs first. | |
998 | |
999 Change *PTR to reflect the new bloc, and return this value. | |
1000 | |
1001 If more memory cannot be allocated, then leave *PTR unchanged, and | |
1002 return zero. */ | |
1003 | |
440 | 1004 POINTER r_re_alloc (POINTER *ptr, size_t size); |
428 | 1005 POINTER |
440 | 1006 r_re_alloc (POINTER *ptr, size_t size) |
428 | 1007 { |
1008 register bloc_ptr bloc; | |
1009 | |
1333 | 1010 REGEX_MALLOC_CHECK (); |
1011 | |
428 | 1012 if (! r_alloc_initialized) |
1013 init_ralloc (); | |
1014 | |
1015 if (!*ptr) | |
1016 return r_alloc (ptr, size); | |
1017 if (!size) | |
1018 { | |
1019 r_alloc_free (ptr); | |
1020 return r_alloc (ptr, 0); | |
1021 } | |
1022 | |
1023 bloc = find_bloc (ptr); | |
5050
6f2158fa75ed
Fix quick-build, use asserts() in place of ABORT()
Ben Wing <ben@xemacs.org>
parents:
3263
diff
changeset
|
1024 assert (bloc != NIL_BLOC); |
428 | 1025 |
1026 if (size < bloc->size) | |
1027 { | |
1028 /* Wouldn't it be useful to actually resize the bloc here? */ | |
1029 /* I think so too, but not if it's too expensive... */ | |
1030 if ((bloc->size - MEM_ROUNDUP (size) >= page_size) | |
1031 && r_alloc_freeze_level == 0) | |
1032 { | |
1033 resize_bloc (bloc, MEM_ROUNDUP (size)); | |
1034 /* Never mind if this fails, just do nothing... */ | |
1035 /* It *should* be infallible! */ | |
1036 } | |
1037 } | |
1038 else if (size > bloc->size) | |
1039 { | |
1040 if (r_alloc_freeze_level) | |
1041 { | |
1042 bloc_ptr new_bloc; | |
1043 new_bloc = get_bloc (MEM_ROUNDUP (size)); | |
1044 if (new_bloc) | |
1045 { | |
1046 new_bloc->variable = ptr; | |
1047 *ptr = new_bloc->data; | |
1048 bloc->variable = (POINTER *) NIL; | |
1049 } | |
1050 else | |
1051 return NIL; | |
1052 } | |
1053 else | |
1054 { | |
1055 if (! resize_bloc (bloc, MEM_ROUNDUP (size))) | |
1056 return NIL; | |
1057 } | |
1058 } | |
1059 return *ptr; | |
1060 } | |
1061 | |
1062 /* Disable relocations, after making room for at least SIZE bytes | |
1063 of non-relocatable heap if possible. The relocatable blocs are | |
1064 guaranteed to hold still until thawed, even if this means that | |
1065 malloc must return a null pointer. */ | |
1066 | |
1067 void r_alloc_freeze (long size); | |
1068 void | |
1069 r_alloc_freeze (long size) | |
1070 { | |
1071 if (! r_alloc_initialized) | |
1072 init_ralloc (); | |
1073 | |
1074 /* If already frozen, we can't make any more room, so don't try. */ | |
1075 if (r_alloc_freeze_level > 0) | |
1076 size = 0; | |
1077 /* If we can't get the amount requested, half is better than nothing. */ | |
1078 while (size > 0 && r_alloc_sbrk (size) == 0) | |
1079 size /= 2; | |
1080 ++r_alloc_freeze_level; | |
1081 if (size > 0) | |
1082 r_alloc_sbrk (-size); | |
1083 } | |
1084 | |
1085 void r_alloc_thaw (void); | |
1086 void | |
1087 r_alloc_thaw (void) | |
1088 { | |
1089 | |
1090 if (! r_alloc_initialized) | |
1091 init_ralloc (); | |
1092 | |
5050
6f2158fa75ed
Fix quick-build, use asserts() in place of ABORT()
Ben Wing <ben@xemacs.org>
parents:
3263
diff
changeset
|
1093 assert (--r_alloc_freeze_level >= 0); |
428 | 1094 |
1095 /* This frees all unused blocs. It is not too inefficient, as the resize | |
440 | 1096 and memmove is done only once. Afterwards, all unreferenced blocs are |
428 | 1097 already shrunk to zero size. */ |
1098 if (!r_alloc_freeze_level) | |
1099 { | |
1100 bloc_ptr *b = &first_bloc; | |
1101 while (*b) | |
1102 if (!(*b)->variable) | |
1103 free_bloc (*b); | |
1104 else | |
1105 b = &(*b)->next; | |
1106 } | |
1107 } | |
1108 | |
1109 | |
1110 /* The hook `malloc' uses for the function which gets more space | |
1111 from the system. */ | |
1112 #ifndef DOUG_LEA_MALLOC | |
1113 extern POINTER (*__morecore) (ptrdiff_t size); | |
1114 #endif | |
1115 | |
1116 /* Initialize various things for memory allocation. */ | |
1117 | |
1118 void | |
1119 init_ralloc (void) | |
1120 { | |
1121 if (r_alloc_initialized) | |
1122 return; | |
1123 | |
1124 r_alloc_initialized = 1; | |
1125 real_morecore = (POINTER (*) (ptrdiff_t)) __morecore; | |
1126 __morecore = | |
1799 | 1127 #ifdef TYPEOF |
1128 (TYPEOF (__morecore)) | |
428 | 1129 #endif |
1130 r_alloc_sbrk; | |
1131 | |
1132 first_heap = last_heap = &heap_base; | |
1133 first_heap->next = first_heap->prev = NIL_HEAP; | |
1134 first_heap->start = first_heap->bloc_start | |
1135 = virtual_break_value = break_value = (*real_morecore) (0); | |
5050
6f2158fa75ed
Fix quick-build, use asserts() in place of ABORT()
Ben Wing <ben@xemacs.org>
parents:
3263
diff
changeset
|
1136 assert (break_value != NIL); |
428 | 1137 |
1138 page_size = PAGE; | |
1139 extra_bytes = ROUNDUP (50000); | |
1140 | |
1141 #ifdef DOUG_LEA_MALLOC | |
1142 mallopt (M_TOP_PAD, 64 * 4096); | |
1143 #else | |
1144 #if 0 /* Hasn't been synched yet */ | |
1145 /* Give GNU malloc's morecore some hysteresis | |
1146 so that we move all the relocatable blocks much less often. */ | |
1147 __malloc_extra_blocks = 64; | |
1148 #endif | |
1149 #endif | |
1150 | |
1151 first_heap->end = (POINTER) ROUNDUP (first_heap->start); | |
1152 | |
1153 /* The extra call to real_morecore guarantees that the end of the | |
1154 address space is a multiple of page_size, even if page_size is | |
1155 not really the page size of the system running the binary in | |
1156 which page_size is stored. This allows a binary to be built on a | |
1157 system with one page size and run on a system with a smaller page | |
1158 size. */ | |
1159 (*real_morecore) (first_heap->end - first_heap->start); | |
1160 | |
1161 /* Clear the rest of the last page; this memory is in our address space | |
1162 even though it is after the sbrk value. */ | |
1163 /* Doubly true, with the additional call that explicitly adds the | |
1164 rest of that page to the address space. */ | |
1165 memset (first_heap->start, 0, first_heap->end - first_heap->start); | |
1166 virtual_break_value = break_value = first_heap->bloc_start = first_heap->end; | |
1167 use_relocatable_buffers = 1; | |
1168 } | |
1169 | |
1170 #if defined (emacs) && defined (DOUG_LEA_MALLOC) | |
1171 | |
1172 /* Reinitialize the morecore hook variables after restarting a dumped | |
1173 Emacs. This is needed when using Doug Lea's malloc from GNU libc. */ | |
1174 void r_alloc_reinit (void); | |
1175 void | |
1176 r_alloc_reinit (void) | |
1177 { | |
1178 /* Only do this if the hook has been reset, so that we don't get an | |
1179 infinite loop, in case Emacs was linked statically. */ | |
1180 if ( (POINTER (*) (ptrdiff_t)) __morecore != r_alloc_sbrk) | |
1181 { | |
1182 real_morecore = (POINTER (*) (ptrdiff_t)) __morecore; | |
1183 __morecore = | |
1799 | 1184 #ifdef TYPEOF |
1185 (TYPEOF (__morecore)) | |
428 | 1186 #endif |
1187 r_alloc_sbrk; | |
1188 } | |
1189 } | |
1190 #if 0 | |
1191 #ifdef DEBUG | |
1192 | |
1193 void | |
1194 r_alloc_check (void) | |
1195 { | |
1196 int found = 0; | |
1197 heap_ptr h, ph = 0; | |
1198 bloc_ptr b, pb = 0; | |
1199 | |
1200 if (!r_alloc_initialized) | |
1201 return; | |
1202 | |
1203 assert (first_heap); | |
1204 assert (last_heap->end <= (POINTER) sbrk (0)); | |
1205 assert ((POINTER) first_heap < first_heap->start); | |
1206 assert (first_heap->start <= virtual_break_value); | |
1207 assert (virtual_break_value <= first_heap->end); | |
1208 | |
1209 for (h = first_heap; h; h = h->next) | |
1210 { | |
1211 assert (h->prev == ph); | |
1212 assert ((POINTER) ROUNDUP (h->end) == h->end); | |
1213 #if 0 /* ??? The code in ralloc.c does not really try to ensure | |
1214 the heap start has any sort of alignment. | |
1215 Perhaps it should. */ | |
1216 assert ((POINTER) MEM_ROUNDUP (h->start) == h->start); | |
1217 #endif | |
1218 assert ((POINTER) MEM_ROUNDUP (h->bloc_start) == h->bloc_start); | |
1219 assert (h->start <= h->bloc_start && h->bloc_start <= h->end); | |
1220 | |
1221 if (ph) | |
1222 { | |
1223 assert (ph->end < h->start); | |
1224 assert (h->start <= (POINTER)h && (POINTER)(h+1) <= h->bloc_start); | |
1225 } | |
1226 | |
1227 if (h->bloc_start <= break_value && break_value <= h->end) | |
1228 found = 1; | |
1229 | |
1230 ph = h; | |
1231 } | |
1232 | |
1233 assert (found); | |
1234 assert (last_heap == ph); | |
1235 | |
1236 for (b = first_bloc; b; b = b->next) | |
1237 { | |
1238 assert (b->prev == pb); | |
1239 assert ((POINTER) MEM_ROUNDUP (b->data) == b->data); | |
440 | 1240 assert ((size_t) MEM_ROUNDUP (b->size) == b->size); |
428 | 1241 |
1242 ph = 0; | |
1243 for (h = first_heap; h; h = h->next) | |
1244 { | |
1245 if (h->bloc_start <= b->data && b->data + b->size <= h->end) | |
1246 break; | |
1247 ph = h; | |
1248 } | |
1249 | |
1250 assert (h); | |
1251 | |
1252 if (pb && pb->data + pb->size != b->data) | |
1253 { | |
1254 assert (ph && b->data == h->bloc_start); | |
1255 while (ph) | |
1256 { | |
1257 if (ph->bloc_start <= pb->data | |
1258 && pb->data + pb->size <= ph->end) | |
1259 { | |
1260 assert (pb->data + pb->size + b->size > ph->end); | |
1261 break; | |
1262 } | |
1263 else | |
1264 { | |
1265 assert (ph->bloc_start + b->size > ph->end); | |
1266 } | |
1267 ph = ph->prev; | |
1268 } | |
1269 } | |
1270 pb = b; | |
1271 } | |
1272 | |
1273 assert (last_bloc == pb); | |
1274 | |
1275 if (last_bloc) | |
1276 assert (last_bloc->data + last_bloc->size == break_value); | |
1277 else | |
1278 assert (first_heap->bloc_start == break_value); | |
1279 } | |
1280 #endif /* DEBUG */ | |
1281 #endif /* 0 */ | |
1282 | |
1283 #endif | |
1284 | |
1285 #else /* HAVE_MMAP */ | |
1286 | |
1287 /* | |
1288 A relocating allocator built using the mmap(2) facility available | |
1289 in some OSes. Based on another version written by Paul Flinders, | |
1290 from which code (and comments) are snarfed. | |
1291 | |
1292 The OS should support mmap() with MAP_ANONYMOUS attribute, or have | |
1293 /dev/zero. It should support private memory mapping. | |
1294 | |
1295 Paul Flinders wrote a version which works well for systems that | |
1296 allow callers to specify (virtual) addresses to mmap(). | |
1297 Unfortunately, such a scheme doesn't work for certain systems like | |
1298 HP-UX that have a system-wide virtual->real address map, and | |
1299 consequently impose restrictions on the virtual address values | |
1300 permitted. | |
1301 | |
1302 NB: The mapping scheme in HP-UX is motivated by the inverted page | |
1303 table design in some HP processors. | |
1304 | |
1305 This alternate implementation allows for the addresses to be | |
1306 optionally chosen by the system. Fortunately, buffer allocation | |
1307 doesn't insist upon contiguous memory which Flinders' scheme | |
1308 provides, and this one doesn't. | |
1309 | |
1310 We don't really provide for hysteresis here, but add some metering | |
1311 to monitor how poorly the allocator actually works. See the | |
1312 documentation for `mmap-hysteresis'. | |
1313 | |
1314 This implementation actually cycles through the blocks allocated | |
1315 via mmap() and only sends it to free() if it wasn't one of them. | |
1316 Unfortunately, this is O(n) in the number of mmapped blocks. (Not | |
1317 really, as we have a hash table which tries to reduce the cost.) | |
1318 Also, this dereferences the pointer passed, so it would cause a | |
1319 segfault if garbage was passed to it. */ | |
1320 | |
1321 #include <fcntl.h> | |
1322 #include <sys/mman.h> | |
1323 #include <stdio.h> | |
1324 | |
1325 typedef void *VM_ADDR; /* VM addresses */ | |
442 | 1326 static const VM_ADDR VM_FAILURE_ADDR = (VM_ADDR) -1; /* mmap returns this when it fails. */ |
428 | 1327 |
1328 /* Configuration for relocating allocator. */ | |
1329 | |
1330 /* #define MMAP_GENERATE_ADDRESSES */ | |
1331 /* Define this if you want Emacs to manage the address table. | |
1332 It is not recommended unless you have major problems with the | |
1333 default scheme, which allows the OS to pick addresses. */ | |
1334 | |
1335 /* USELESS_LOWER_ADDRESS_BITS defines the number of bits which can be | |
1336 discarded while computing the hash, as they're always zero. The | |
1337 default is appropriate for a page size of 4096 bytes. */ | |
1338 | |
1339 #define USELESS_LOWER_ADDRESS_BITS 12 | |
1340 | |
1341 | |
1342 /* Size of hash table for inverted VM_ADDR->MMAP_HANDLE lookup */ | |
1343 | |
1344 #define MHASH_PRIME 89 | |
1345 | |
1346 | |
1347 /* Whether we want to enable metering of some ralloc performance. | |
1348 This incurs a constant penalty for each mmap operation. */ | |
1349 | |
1350 #define MMAP_METERING | |
1351 | |
1352 | |
1353 /* Rename the following to protect against a some smartness elsewhere. | |
1354 We need access to the allocator used for non-mmap allocation | |
1355 elsewhere, in case we get passed a handle that we didn't allocate | |
1356 ourselves. Currently, this default allocator is also used to | |
1357 maintain local structures for relocatable blocks. */ | |
1358 | |
1359 #define UNDERLYING_MALLOC malloc | |
1360 #define UNDERLYING_FREE free | |
1361 #define UNDERLYING_REALLOC realloc | |
1362 | |
1363 /* MAP_ADDRCHOICE_FLAG is set to MAP_FIXED if MMAP_GENERATE_ADDRESSES | |
1364 is defined, and MAP_VARIABLE otherwise. Some losing systems don't | |
1365 define the _FIXED/_VARIABLE flags, in which case it is set to 0 */ | |
1366 | |
1367 #ifdef MMAP_GENERATE_ADDRESSES | |
1368 # ifdef MAP_FIXED | |
1369 # define MAP_ADDRCHOICE_FLAG MAP_FIXED | |
1370 # endif | |
1371 #else /* !MMAP_GENERATE_ADDRESSES */ | |
1372 # ifdef MAP_VARIABLE | |
1373 # define MAP_ADDRCHOICE_FLAG MAP_VARIABLE | |
1374 # endif | |
1375 #endif /* MMAP_GENERATE_ADDRESSES */ | |
1376 | |
1377 /* Default case. */ | |
1378 #ifndef MAP_ADDRCHOICE_FLAG | |
1379 # define MAP_ADDRCHOICE_FLAG 0 | |
1380 #endif /* MAP_ADDRCHOICE_FLAG */ | |
1381 | |
1382 #ifdef MAP_ANONYMOUS | |
1383 # define MAP_FLAGS (MAP_PRIVATE | MAP_ADDRCHOICE_FLAG | MAP_ANONYMOUS) | |
1384 #else | |
1385 # define MAP_FLAGS (MAP_PRIVATE | MAP_ADDRCHOICE_FLAG) | |
1386 #endif /* MAP_ANONYMOUS */ | |
1387 | |
1388 | |
1389 /* (ptf): A flag to indicate whether we have initialized ralloc yet. For | |
1390 Emacs's sake, please do not make this local to malloc_init; on some | |
1391 machines, the dumping procedure makes all static variables | |
1392 read-only. On these machines, the word static is #defined to be | |
1393 the empty string, meaning that r_alloc_initialized becomes an | |
1394 automatic variable, and loses its value each time Emacs is started up. | |
1395 | |
1396 If we're using mmap this flag has three possible values | |
1397 0 - initial value | |
1398 1 - Normal value when running temacs. In this case buffers | |
1399 are allocated using malloc so that any data that they | |
1400 contain becomes part of the undumped executable. | |
1401 2 - Normal value when running emacs */ | |
1402 static int r_alloc_initialized = 0; | |
1403 | |
1404 /* (ptf): Macros for rounding. Note that rounding to any value is possible | |
1405 by changing the definition of PAGE. */ | |
1406 #define PAGE (getpagesize ()) | |
1407 #define PAGES_FOR(size) (((unsigned long int) (size) + page_size - 1)/page_size) | |
1408 #define ROUNDUP(size) ((unsigned long int)PAGES_FOR(size)*page_size) | |
1409 | |
1410 | |
1411 /* DEV_ZERO_FD is -1 normally, but for systems without MAP_ANONYMOUS | |
1412 points to a file descriptor opened on /dev/zero */ | |
1413 | |
1414 static int DEV_ZERO_FD = -1; | |
1415 | |
1416 | |
1417 /* We actually need a data structure that can be usefully structured | |
1418 based on the VM address, and allows an ~O(1) lookup on an arbitrary | |
1419 address, i.e. a hash table. Maybe the XEmacs hash table can be | |
1420 coaxed enough. At the moment, we use lookup on a hash table to | |
1421 decide whether to do an O(n) search on the malloced block list. | |
1422 Addresses are hashed to a bucket modulo MHASH_PRIME. */ | |
1423 | |
1424 | |
1425 /* We settle for a standard doubly-linked-list. The dynarr type isn't | |
1426 very amenable to deletion of items in the middle, so we conjure up | |
1427 yet another stupid datastructure. The structure is maintained as a | |
1428 ring, and the singleton ring has the sole element as its left and | |
1429 right neighbours. */ | |
1430 | |
1431 static void init_MHASH_table (void); /* Forward reference */ | |
1432 | |
1433 typedef struct alloc_dll | |
1434 { | |
1435 size_t size; /* #bytes currently in use */ | |
1436 size_t space_for; /* #bytes we really have */ | |
1437 POINTER* aliased_address; /* Address of aliased variable, to tweak if relocating */ | |
1438 VM_ADDR vm_addr; /* VM address returned by mmap */ | |
1439 struct alloc_dll *left; /* Left link in circular doubly linked list */ | |
1440 struct alloc_dll *right; | |
1441 } *MMAP_HANDLE; | |
1442 | |
1443 static MMAP_HANDLE mmap_start = 0; /* Head of linked list */ | |
1444 static size_t page_size = 0; /* Size of VM pages */ | |
458 | 1445 static Fixnum mmap_hysteresis; /* Logically a "size_t" */ |
428 | 1446 |
1447 /* Get a new handle for a fresh block. */ | |
1448 static MMAP_HANDLE | |
1449 new_mmap_handle (size_t nsiz) | |
1450 { | |
1451 MMAP_HANDLE h = (MMAP_HANDLE) UNDERLYING_MALLOC( sizeof (struct alloc_dll)); | |
1452 if ( h == 0) return 0; | |
1453 h->size = nsiz; | |
1454 if (mmap_start == 0) | |
1455 { | |
1456 init_MHASH_table (); | |
1457 mmap_start = h; mmap_start->left = h; mmap_start->right = h; | |
1458 } | |
1459 { | |
1460 MMAP_HANDLE prev = mmap_start->left; | |
1461 MMAP_HANDLE nex = mmap_start; | |
1462 | |
1463 /* Four pointers need fixing. */ | |
1464 h->right = nex; | |
1465 h->left = prev; | |
1466 prev->right = h; | |
1467 nex->left = h; | |
1468 } | |
1469 return h; | |
1470 } | |
1471 | |
1472 /* Find a handle given the aliased address using linear search. */ | |
1473 static MMAP_HANDLE | |
1474 find_mmap_handle_lsearch (POINTER *alias) | |
1475 { | |
1476 MMAP_HANDLE h = mmap_start; | |
1477 if (h == 0) return 0; | |
1478 do { | |
1479 if (h->aliased_address == alias && *alias == h->vm_addr) | |
1480 return h; | |
1481 h = h->right; | |
1482 } while( h != mmap_start ); | |
1483 return 0; /* Bogus alias passed. */ | |
1484 } | |
1485 | |
1486 /* Free a handle. */ | |
1487 static void | |
1488 free_mmap_handle (MMAP_HANDLE h) | |
1489 { | |
1490 MMAP_HANDLE prev = h->left; | |
1491 MMAP_HANDLE nex = h->right; | |
1492 if (prev == h || nex == h) /* In fact, this should be && */ | |
1493 { /* We're the singleton dll */ | |
1494 UNDERLYING_FREE( h ); /* Free the sole item */ | |
1495 mmap_start = 0; return; | |
1496 } | |
1497 else if (h == mmap_start) | |
1498 { | |
1499 mmap_start = nex; /* Make sure mmap_start isn't bogus. */ | |
1500 } | |
1501 prev->right = nex; | |
1502 nex->left = prev; | |
1503 UNDERLYING_FREE( h ); | |
1504 } | |
1505 | |
1506 /* A simple hash table to speed up the inverted lookup of | |
1507 VM_ADDR->MMAP_HANDLE. We maintain the number of hits for a | |
1508 particular bucket. We invalidate a hash table entry during block | |
1509 deletion if the hash has cached the deleted block's address. */ | |
1510 | |
1511 /* Simple hash check. */ | |
1512 struct { | |
1513 int n_hits; /* How many addresses map to this? */ | |
1514 MMAP_HANDLE handle; /* What is the current handle? */ | |
1515 VM_ADDR addr; /* What is its VM address? */ | |
1516 } MHASH_HITS[ MHASH_PRIME ]; | |
1517 | |
1518 static void | |
1519 init_MHASH_table (void) | |
1520 { | |
1521 int i = 0; | |
1522 for (; i < MHASH_PRIME; i++) | |
1523 { | |
1524 MHASH_HITS[i].n_hits = 0; | |
1525 MHASH_HITS[i].addr = 0; | |
1526 MHASH_HITS[i].handle = 0; | |
1527 } | |
1528 } | |
1529 | |
1530 /* Compute the hash value for an address. */ | |
1531 static int | |
1532 MHASH (VM_ADDR addr) | |
1533 { | |
1534 #if (LONGBITS == 64) | |
1535 unsigned long int addr_shift = (unsigned long int)(addr) >> USELESS_LOWER_ADDRESS_BITS; | |
1536 #else | |
1537 unsigned int addr_shift = (unsigned int)(addr) >> USELESS_LOWER_ADDRESS_BITS; | |
1538 #endif | |
1539 int hval = addr_shift % MHASH_PRIME; /* We could have addresses which are -ve | |
1540 when converted to signed ints */ | |
1541 return ((hval >= 0) ? hval : MHASH_PRIME + hval); | |
1542 } | |
1543 | |
1544 /* Add a VM address with its corresponding handle to the table. */ | |
1545 static void | |
1546 MHASH_ADD (VM_ADDR addr, MMAP_HANDLE h) | |
1547 { | |
1548 int kVal = MHASH( addr ); | |
1549 if (MHASH_HITS[kVal].n_hits++ == 0) | |
1550 { /* Only overwrite the table if there were no hits so far. */ | |
1551 MHASH_HITS[kVal].addr = addr; | |
1552 MHASH_HITS[kVal].handle = h; | |
1553 } | |
1554 } | |
1555 | |
1556 /* Delete a VM address entry from the hash table. */ | |
1557 static void | |
1558 MHASH_DEL (VM_ADDR addr) | |
1559 { | |
1560 int kVal = MHASH( addr ); | |
1561 MHASH_HITS[kVal].n_hits--; | |
1562 if (addr == MHASH_HITS[kVal].addr) | |
1563 { | |
1564 MHASH_HITS[kVal].addr = 0; /* Invalidate cache. */ | |
1565 MHASH_HITS[kVal].handle = 0; | |
1566 } | |
1567 } | |
1568 | |
1569 /* End of hash buckets */ | |
1570 | |
1571 /* Metering malloc performance. */ | |
1572 #ifdef MMAP_METERING | |
1573 /* If we're metering, we introduce some extra symbols to aid the noble | |
1574 cause of bloating XEmacs core size. */ | |
1575 | |
1576 static Lisp_Object Qmmap_times_mapped; | |
1577 static Lisp_Object Qmmap_pages_mapped; | |
1578 static Lisp_Object Qmmap_times_unmapped; | |
1579 static Lisp_Object Qmmap_times_remapped; | |
1580 static Lisp_Object Qmmap_didnt_copy; | |
1581 static Lisp_Object Qmmap_pages_copied; | |
1582 static Lisp_Object Qmmap_average_bumpval; | |
1583 static Lisp_Object Qmmap_wastage; | |
1584 static Lisp_Object Qmmap_live_pages; | |
1585 static Lisp_Object Qmmap_addr_looked_up; | |
1586 static Lisp_Object Qmmap_hash_worked; | |
1587 static Lisp_Object Qmmap_addrlist_size; | |
1588 | |
1589 #define M_Map 0 /* How many times allocated? */ | |
1590 #define M_Pages_Map 1 /* How many pages allocated? */ | |
1591 #define M_Unmap 2 /* How many times freed? */ | |
1592 #define M_Remap 3 /* How many times increased in size? */ | |
1593 #define M_Didnt_Copy 4 /* How many times didn't need to copy? */ | |
1594 #define M_Copy_Pages 5 /* Total # pages copied */ | |
1595 #define M_Average_Bumpval 6 /* Average bump value */ | |
1596 #define M_Wastage 7 /* Remaining (unused space) */ | |
1597 #define M_Live_Pages 8 /* #live pages */ | |
1598 #define M_Address_Lookup 9 /* How many times did we need to check if an addr is in the block? */ | |
1599 #define M_Hash_Worked 10 /* How many times did the simple hash check work? */ | |
1600 #define M_Addrlist_Size 11 /* What is the size of the XEmacs memory map? */ | |
1601 | |
1602 #define N_Meterables 12 /* Total number of meterables */ | |
1603 #define MEMMETER(x) {x;} | |
1604 #define MVAL(x) (meter[x]) | |
1605 #define MLVAL(x) (make_int (meter[x])) | |
1606 static int meter[N_Meterables]; | |
1607 | |
1608 DEFUN ("mmap-allocator-status", Fmmap_allocator_status, 0, 0, 0, /* | |
1609 Return some information about mmap-based allocator. | |
1610 | |
1611 mmap-times-mapped: number of times r_alloc was called. | |
1612 mmap-pages-mapped: number of pages mapped by r_alloc calls only. | |
1613 mmap-times-unmapped: number of times r_free was called. | |
1614 mmap-times-remapped: number of times r_re_alloc was called. | |
1615 mmap-didnt-copy: number of times re-alloc did NOT have to move the block. | |
1616 mmap-pages-copied: total number of pages copied. | |
1617 mmap-average-bumpval: average increase in size demanded to re-alloc. | |
1618 mmap-wastage: total number of bytes allocated, but not currently in use. | |
1619 mmap-live-pages: total number of pages live. | |
1620 mmap-addr-looked-up: total number of times needed to check if addr is in block. | |
1621 mmap-hash-worked: total number of times the simple hash check worked. | |
1622 mmap-addrlist-size: number of entries in address picking list. | |
1623 */ | |
1624 ()) | |
1625 { | |
1626 Lisp_Object result = Qnil; | |
1627 | |
1628 result = cons3 (Qmmap_addrlist_size, MLVAL (M_Addrlist_Size), result); | |
1629 result = cons3 (Qmmap_hash_worked, MLVAL (M_Hash_Worked), result); | |
1630 result = cons3 (Qmmap_addr_looked_up, MLVAL (M_Address_Lookup), result); | |
1631 result = cons3 (Qmmap_live_pages, MLVAL (M_Live_Pages), result); | |
1632 result = cons3 (Qmmap_wastage, MLVAL (M_Wastage), result); | |
1633 result = cons3 (Qmmap_average_bumpval,MLVAL (M_Average_Bumpval), result); | |
1634 result = cons3 (Qmmap_pages_copied, MLVAL (M_Copy_Pages), result); | |
1635 result = cons3 (Qmmap_didnt_copy, MLVAL (M_Didnt_Copy), result); | |
1636 result = cons3 (Qmmap_times_remapped, MLVAL (M_Remap), result); | |
1637 result = cons3 (Qmmap_times_unmapped, MLVAL (M_Unmap), result); | |
1638 result = cons3 (Qmmap_pages_mapped, MLVAL (M_Pages_Map), result); | |
1639 result = cons3 (Qmmap_times_mapped, MLVAL (M_Map), result); | |
1640 | |
1641 return result; | |
1642 } | |
1643 | |
1644 #else /* !MMAP_METERING */ | |
1645 | |
1646 #define MEMMETER(x) | |
1647 #define MVAL(x) | |
1648 | |
1649 #endif /* MMAP_METERING */ | |
1650 | |
1651 static MMAP_HANDLE | |
1652 find_mmap_handle (POINTER *alias) | |
1653 { | |
1654 int kval = MHASH( *alias ); | |
1655 MEMMETER( MVAL(M_Address_Lookup)++ ) | |
1656 switch( MHASH_HITS[kval].n_hits) | |
1657 { | |
1658 case 0: | |
1659 MEMMETER( MVAL( M_Hash_Worked )++ ) | |
1660 return 0; | |
1661 | |
1662 case 1: | |
1663 if (*alias == MHASH_HITS[kval].addr) | |
1664 { | |
1665 MEMMETER( MVAL( M_Hash_Worked) ++ ); | |
1666 return MHASH_HITS[kval].handle; | |
1667 } | |
1668 /* FALL THROUGH */ | |
1669 default: | |
1670 return find_mmap_handle_lsearch( alias ); | |
1671 } /* switch */ | |
1672 } | |
1673 | |
1674 /* | |
1675 Some kernels don't like being asked to pick addresses for mapping | |
1676 themselves---IRIX is known to become extremely slow if mmap is | |
1677 passed a ZERO as the first argument. In such cases, we use an | |
1678 address map which is managed local to the XEmacs process. The | |
1679 address map maintains an ordered linked list of (address, size, | |
1680 occupancy) triples ordered by the absolute address. Initially, a | |
1681 large address area is marked as being empty. The address picking | |
1682 scheme takes bites off the first block which is still empty and | |
1683 large enough. If mmap with the specified address fails, it is | |
1684 marked unavailable and not attempted thereafter. The scheme will | |
1685 keep fragmenting the large empty block until it finds an address | |
1686 which can be successfully mmapped, or until there are no free | |
1687 blocks of the given size left. | |
1688 | |
1689 Note that this scheme, given its first-fit strategy, is prone to | |
1690 fragmentation of the first part of memory earmarked for this | |
1691 purpose. [ACP Vol I]. We can't use the workaround of using a | |
1692 randomized first fit because we don't want to presume too much | |
1693 about the memory map. Instead, we try to coalesce empty or | |
1694 unavailable blocks at any available opportunity. */ | |
1695 | |
1696 /* Initialization procedure for address picking scheme */ | |
1697 static void Addr_Block_initialize(void); | |
1698 | |
1699 /* Get a suitable VM_ADDR via mmap */ | |
440 | 1700 static VM_ADDR New_Addr_Block (size_t sz); |
428 | 1701 |
1702 /* Free a VM_ADDR allocated via New_Addr_Block */ | |
440 | 1703 static void Free_Addr_Block (VM_ADDR addr, size_t sz); |
428 | 1704 |
1705 #ifdef MMAP_GENERATE_ADDRESSES | |
1706 /* Implementation of the three calls for address picking when XEmacs is incharge */ | |
1707 | |
1708 /* The enum denotes the status of the following block. */ | |
1709 typedef enum { empty = 0, occupied, unavailable } addr_status; | |
1710 | |
1711 typedef struct addr_chain | |
1712 { | |
1713 POINTER addr; | |
440 | 1714 size_t sz; |
428 | 1715 addr_status flag; |
1716 struct addr_chain *next; | |
1717 } ADDRESS_BLOCK, *ADDRESS_CHAIN; | |
1718 /* NB: empty and unavailable blocks are concatenated. */ | |
1719 | |
1720 static ADDRESS_CHAIN addr_chain = 0; | |
1721 /* Start off the address block chain with a humongous address block | |
1722 which is empty to start with. Note that addr_chain is invariant | |
1723 WRT the addition/deletion of address blocks because of the assert | |
1724 in Coalesce() and the strict ordering of blocks by their address | |
1725 */ | |
440 | 1726 static void |
1727 Addr_Block_initialize (void) | |
428 | 1728 { |
1729 MEMMETER( MVAL( M_Addrlist_Size )++) | |
1730 addr_chain = (ADDRESS_CHAIN) UNDERLYING_MALLOC( sizeof( ADDRESS_BLOCK )); | |
1731 addr_chain->next = 0; /* Last block in chain */ | |
1732 addr_chain->sz = 0x0c000000; /* Size */ | |
442 | 1733 addr_chain->addr = (POINTER) (0x04000000); |
428 | 1734 addr_chain->flag = empty; |
1735 } | |
1736 | |
1737 /* Coalesce address blocks if they are contiguous. Only empty and | |
1738 unavailable slots are coalesced. */ | |
440 | 1739 static void |
1740 Coalesce_Addr_Blocks (void) | |
428 | 1741 { |
1742 ADDRESS_CHAIN p; | |
1743 for (p = addr_chain; p; p = p->next) | |
1744 { | |
1745 while (p->next && p->flag == p->next->flag) | |
1746 { | |
1747 ADDRESS_CHAIN np; | |
1748 np = p->next; | |
1749 | |
1750 if (p->flag == occupied) break; /* No cigar */ | |
1751 | |
1752 /* Check if the addresses are contiguous. */ | |
1753 if (p->addr + p->sz != np->addr) break; | |
1754 | |
1755 MEMMETER( MVAL( M_Addrlist_Size )--) | |
1756 /* We can coalesce these two. */ | |
1757 p->sz += np->sz; | |
1758 p->next = np->next; | |
1759 assert( np != addr_chain ); /* We're not freeing the head of the list. */ | |
1760 UNDERLYING_FREE( np ); | |
1761 } | |
1762 } /* for all p */ | |
1763 } | |
1764 | |
1765 /* Get an empty address block of specified size. */ | |
440 | 1766 static VM_ADDR |
1767 New_Addr_Block (size_t sz) | |
428 | 1768 { |
1769 ADDRESS_CHAIN p = addr_chain; | |
1770 VM_ADDR new_addr = VM_FAILURE_ADDR; | |
1771 for (; p; p = p->next) | |
1772 { | |
1773 if (p->flag == empty && p->sz > sz) | |
1774 { | |
1775 /* Create a new entry following p which is empty. */ | |
1776 ADDRESS_CHAIN remainder = (ADDRESS_CHAIN) UNDERLYING_MALLOC( sizeof( ADDRESS_BLOCK ) ); | |
1777 remainder->next = p->next; | |
1778 remainder->flag = empty; | |
1779 remainder->addr = p->addr + sz; | |
1780 remainder->sz = p->sz - sz; | |
1781 | |
1782 MEMMETER( MVAL( M_Addrlist_Size )++) | |
1783 | |
1784 /* Now make p become an occupied block with the appropriate size */ | |
1785 p->next = remainder; | |
1786 p->sz = sz; | |
1787 new_addr = mmap( (VM_ADDR) p->addr, p->sz, PROT_READ|PROT_WRITE, | |
1788 MAP_FLAGS, DEV_ZERO_FD, 0 ); | |
1789 if (new_addr == VM_FAILURE_ADDR) | |
1790 { | |
1791 p->flag = unavailable; | |
1792 continue; | |
1793 } | |
1794 p->flag = occupied; | |
1795 break; | |
1796 } | |
1797 } | |
1798 Coalesce_Addr_Blocks(); | |
1799 return new_addr; | |
1800 } | |
1801 | |
1802 /* Free an address block. We mark the block as being empty, and attempt to | |
1803 do any coalescing that may have resulted from this. */ | |
440 | 1804 static void |
1805 Free_Addr_Block (VM_ADDR addr, size_t sz) | |
428 | 1806 { |
1807 ADDRESS_CHAIN p = addr_chain; | |
1808 for (; p; p = p->next ) | |
1809 { | |
1810 if (p->addr == addr) | |
1811 { | |
5050
6f2158fa75ed
Fix quick-build, use asserts() in place of ABORT()
Ben Wing <ben@xemacs.org>
parents:
3263
diff
changeset
|
1812 assert (p->sz == sz); /* ACK! Shouldn't happen at all. */ |
428 | 1813 munmap( (VM_ADDR) p->addr, p->sz ); |
1814 p->flag = empty; | |
1815 break; | |
1816 } | |
1817 } | |
5050
6f2158fa75ed
Fix quick-build, use asserts() in place of ABORT()
Ben Wing <ben@xemacs.org>
parents:
3263
diff
changeset
|
1818 assert (p); /* Can't happen... we've got a block to free which is not in |
428 | 1819 the address list. */ |
1820 Coalesce_Addr_Blocks(); | |
1821 } | |
1822 #else /* !MMAP_GENERATE_ADDRESSES */ | |
1823 /* This is an alternate (simpler) implementation in cases where the | |
1824 address is picked by the kernel. */ | |
1825 | |
440 | 1826 static void |
1827 Addr_Block_initialize (void) | |
428 | 1828 { |
1829 /* Nothing. */ | |
1830 } | |
1831 | |
440 | 1832 static VM_ADDR |
1833 New_Addr_Block (size_t sz) | |
428 | 1834 { |
1835 return mmap (0, sz, PROT_READ|PROT_WRITE, MAP_FLAGS, | |
1836 DEV_ZERO_FD, 0 ); | |
1837 } | |
1838 | |
440 | 1839 static void |
1840 Free_Addr_Block (VM_ADDR addr, size_t sz) | |
428 | 1841 { |
1842 munmap ((caddr_t) addr, sz ); | |
1843 } | |
1844 | |
1845 #endif /* MMAP_GENERATE_ADDRESSES */ | |
1846 | |
1847 | |
1848 /* IMPLEMENTATION OF EXPORTED RELOCATOR INTERFACE */ | |
1849 | |
1850 /* | |
440 | 1851 r_alloc (POINTER, SIZE): Allocate a relocatable area with the start |
428 | 1852 address aliased to the first parameter. |
1853 */ | |
1854 | |
440 | 1855 POINTER r_alloc (POINTER *ptr, size_t size); |
428 | 1856 POINTER |
440 | 1857 r_alloc (POINTER *ptr, size_t size) |
428 | 1858 { |
1859 MMAP_HANDLE mh; | |
1860 | |
1333 | 1861 REGEX_MALLOC_CHECK (); |
1862 | |
428 | 1863 switch(r_alloc_initialized) |
1864 { | |
1865 case 0: | |
2500 | 1866 ABORT(); |
428 | 1867 case 1: |
1868 *ptr = (POINTER) UNDERLYING_MALLOC(size); | |
1869 break; | |
1870 default: | |
1871 mh = new_mmap_handle( size ); | |
1872 if (mh) | |
1873 { | |
440 | 1874 size_t hysteresis = (mmap_hysteresis > 0 ? mmap_hysteresis : 0); |
1875 size_t mmapped_size = ROUNDUP( size + hysteresis ); | |
428 | 1876 MEMMETER( MVAL(M_Map)++ ) |
1877 MEMMETER( MVAL(M_Pages_Map) += (mmapped_size/page_size) ) | |
1878 MEMMETER( MVAL(M_Wastage) += mmapped_size - size ) | |
1879 MEMMETER( MVAL(M_Live_Pages) += (mmapped_size/page_size) ) | |
1880 mh->vm_addr = New_Addr_Block( mmapped_size ); | |
1881 if (mh->vm_addr == VM_FAILURE_ADDR) { | |
1882 free_mmap_handle( mh ); /* Free the loser */ | |
1883 *ptr = 0; | |
1884 return 0; /* ralloc failed due to mmap() failure. */ | |
1885 } | |
1886 MHASH_ADD( mh->vm_addr, mh ); | |
1887 mh->space_for = mmapped_size; | |
1888 mh->aliased_address = ptr; | |
1889 *ptr = (POINTER) mh->vm_addr; | |
1890 } | |
1891 else | |
1892 *ptr = 0; /* Malloc of block failed */ | |
1893 break; | |
1894 } | |
1895 return *ptr; | |
1896 } | |
1897 | |
1898 /* Free a bloc of relocatable storage whose data is pointed to by PTR. | |
1899 Store 0 in *PTR to show there's no block allocated. */ | |
1900 | |
1901 void r_alloc_free (POINTER *ptr); | |
1902 void | |
1903 r_alloc_free (POINTER *ptr) | |
1904 { | |
1333 | 1905 REGEX_MALLOC_CHECK (); |
1906 | |
428 | 1907 switch( r_alloc_initialized) { |
1908 case 0: | |
2500 | 1909 ABORT(); |
428 | 1910 |
1911 case 1: | |
1912 UNDERLYING_FREE( *ptr ); /* Certain this is from the heap. */ | |
1913 break; | |
1914 | |
1915 default: | |
1916 { | |
1917 MMAP_HANDLE dead_handle = find_mmap_handle( ptr ); | |
1918 /* Check if we've got it. */ | |
1919 if (dead_handle == 0) /* Didn't find it in the list of mmap handles */ | |
1920 { | |
1921 UNDERLYING_FREE( *ptr ); | |
1922 } | |
1923 else | |
1924 { | |
1925 MEMMETER( MVAL( M_Wastage ) -= (dead_handle->space_for - dead_handle->size) ) | |
1926 MEMMETER( MVAL( M_Live_Pages ) -= (dead_handle->space_for / page_size )) | |
1927 MEMMETER(MVAL(M_Unmap)++) | |
1928 MHASH_DEL( dead_handle->vm_addr ); | |
1929 Free_Addr_Block( dead_handle->vm_addr, dead_handle->space_for ); | |
1930 free_mmap_handle (dead_handle); | |
1931 } | |
1932 } | |
1933 break; | |
1934 } /* r_alloc_initialized */ | |
1935 *ptr = 0; /* Zap the pointer's contents. */ | |
1936 } | |
1937 | |
1938 /* Given a pointer at address PTR to relocatable data, resize it to SIZE. | |
1939 | |
1940 Change *PTR to reflect the new bloc, and return this value. | |
1941 | |
1942 If more memory cannot be allocated, then leave *PTR unchanged, and | |
1943 return zero. */ | |
1944 | |
440 | 1945 POINTER r_re_alloc (POINTER *ptr, size_t sz); |
428 | 1946 POINTER |
440 | 1947 r_re_alloc (POINTER *ptr, size_t sz) |
428 | 1948 { |
1333 | 1949 REGEX_MALLOC_CHECK (); |
1950 | |
428 | 1951 if (r_alloc_initialized == 0) |
1952 { | |
2500 | 1953 ABORT (); |
428 | 1954 return 0; /* suppress compiler warning */ |
1955 } | |
1956 else if (r_alloc_initialized == 1) | |
1957 { | |
1958 POINTER tmp = (POINTER) realloc(*ptr, sz); | |
1959 if (tmp) | |
1960 *ptr = tmp; | |
1961 return tmp; | |
1962 } | |
1963 else | |
1964 { | |
440 | 1965 size_t hysteresis = (mmap_hysteresis > 0 ? mmap_hysteresis : 0); |
1966 size_t actual_sz = ROUNDUP( sz + hysteresis ); | |
428 | 1967 MMAP_HANDLE h = find_mmap_handle( ptr ); |
1968 VM_ADDR new_vm_addr; | |
1969 | |
1970 if ( h == 0 ) /* Was allocated using malloc. */ | |
1971 { | |
1972 POINTER tmp = (POINTER) UNDERLYING_REALLOC(*ptr, sz); | |
1973 if (tmp) | |
1974 *ptr = tmp; | |
1975 return tmp; | |
1976 } | |
1977 | |
1978 MEMMETER( | |
1979 MVAL(M_Average_Bumpval) = | |
1980 (((double) MVAL(M_Remap) * MVAL(M_Average_Bumpval)) + (sz - h->size)) | |
1981 / (double) (MVAL(M_Remap) + 1)) | |
1982 MEMMETER(MVAL(M_Remap)++) | |
1983 if (h->space_for > sz) /* We've got some more room */ | |
1984 { /* Also, if a shrinkage was asked for. */ | |
1985 MEMMETER( MVAL(M_Didnt_Copy)++ ) | |
1986 MEMMETER( MVAL(M_Wastage) -= (sz - h->size)) | |
1987 /* We're pretty dumb at handling shrinkage. We should check for | |
1988 a larger gap than the standard hysteresis allowable, and if so, | |
1989 shrink the number of pages. Right now, we simply reset the size | |
1990 component and return. */ | |
1991 h->size = sz; | |
1992 return *ptr; | |
1993 } | |
1994 | |
1995 new_vm_addr = New_Addr_Block( actual_sz ); | |
1996 if (new_vm_addr == VM_FAILURE_ADDR) | |
1997 {/* Failed to realloc. */ | |
1998 /* *ptr = 0; */ | |
1999 return 0; | |
2000 } | |
2001 | |
2002 MHASH_ADD( new_vm_addr, h ); | |
2003 /* We got a block OK: now we should move the old contents to the | |
2004 new address. We use the old size of this block. */ | |
2005 memmove(new_vm_addr, h->vm_addr, h->size); | |
2006 MHASH_DEL( h->vm_addr ); | |
2007 Free_Addr_Block( h->vm_addr, h->space_for ); /* Unmap old area. */ | |
2008 | |
2009 MEMMETER( MVAL( M_Copy_Pages ) += (h->space_for/page_size) ) | |
2010 MEMMETER( MVAL( M_Live_Pages ) -= (h->space_for / page_size)) | |
2011 MEMMETER( MVAL( M_Live_Pages ) += (actual_sz / page_size)) | |
2012 MEMMETER( MVAL( M_Wastage ) -= (h->space_for - h->size)) | |
2013 MEMMETER( MVAL( M_Wastage ) += (actual_sz - sz) ) | |
2014 | |
2015 /* Update block datastructure. */ | |
2016 h->space_for = actual_sz; /* New total space */ | |
2017 h->size = sz; /* New (requested) size */ | |
2018 h->vm_addr = new_vm_addr; /* New VM start address */ | |
2019 h->aliased_address = ptr; /* Change alias to reflect block relocation. */ | |
2020 *ptr = (POINTER) h->vm_addr; | |
2021 return *ptr; | |
2022 } | |
2023 } | |
2024 | |
2025 | |
2026 /* Initialize various things for memory allocation. | |
2027 */ | |
2028 void | |
2029 init_ralloc (void) | |
2030 { | |
2031 int i = 0; | |
2032 if (r_alloc_initialized > 1) | |
2033 return; /* used to return 1 */ | |
2034 | |
909 | 2035 #ifdef PDUMP |
2036 /* Under pdump, we need to activate ralloc on the first go. */ | |
2037 ++r_alloc_initialized; | |
2038 #endif | |
428 | 2039 if (++r_alloc_initialized == 1) |
2040 return; /* used to return 1 */ | |
2041 | |
2042 Addr_Block_initialize(); /* Initialize the address picker, if required. */ | |
2043 page_size = PAGE; | |
2044 assert( page_size > 0 ); /* getpagesize() bogosity check. */ | |
2045 | |
2046 #ifndef MAP_ANONYMOUS | |
2047 DEV_ZERO_FD = open( "/dev/zero", O_RDWR ); | |
2048 if (DEV_ZERO_FD < 0) | |
2049 /* Failed. Perhaps we should abort here? */ | |
2050 return; /* used to return 0 */ | |
2051 #endif | |
2052 | |
2053 #ifdef MMAP_METERING | |
2054 for(i = 0; i < N_Meterables; i++ ) | |
2055 { | |
2056 meter[i] = 0; | |
2057 } | |
2058 #endif /* MMAP_METERING */ | |
2059 } | |
2060 | |
2061 void | |
2062 syms_of_ralloc (void) | |
2063 { | |
2064 #ifdef MMAP_METERING | |
563 | 2065 DEFSYMBOL (Qmmap_times_mapped); |
2066 DEFSYMBOL (Qmmap_pages_mapped); | |
2067 DEFSYMBOL (Qmmap_times_unmapped); | |
2068 DEFSYMBOL (Qmmap_times_remapped); | |
2069 DEFSYMBOL (Qmmap_didnt_copy); | |
2070 DEFSYMBOL (Qmmap_pages_copied); | |
2071 DEFSYMBOL (Qmmap_average_bumpval); | |
2072 DEFSYMBOL (Qmmap_wastage); | |
2073 DEFSYMBOL (Qmmap_live_pages); | |
2074 DEFSYMBOL (Qmmap_addr_looked_up); | |
2075 DEFSYMBOL (Qmmap_hash_worked); | |
2076 DEFSYMBOL (Qmmap_addrlist_size); | |
428 | 2077 DEFSUBR (Fmmap_allocator_status); |
2078 #endif /* MMAP_METERING */ | |
2079 } | |
2080 | |
2081 void | |
2082 vars_of_ralloc (void) | |
2083 { | |
2084 DEFVAR_INT ("mmap-hysteresis", &mmap_hysteresis /* | |
2085 Extra room left at the end of an allocated arena, | |
2086 so that a re-alloc requesting extra space smaller than this | |
2087 does not actually cause a new arena to be allocated. | |
2088 | |
2089 A negative value is considered equal to zero. This is the | |
2090 minimum amount of space guaranteed to be left at the end of | |
2091 the arena. Because allocation happens in multiples of the OS | |
2092 page size, it is possible for more space to be left unused. | |
2093 */ ); | |
2094 mmap_hysteresis = 0; | |
2095 } | |
2096 | |
2097 #endif /* HAVE_MMAP */ |