428
|
1 /* Hash tables.
|
|
2 Copyright (C) 1992, 1993, 1994 Free Software Foundation, Inc.
|
2515
|
3 Copyright (C) 2003, 2004 Ben Wing.
|
428
|
4
|
|
5 This file is part of XEmacs.
|
|
6
|
|
7 XEmacs is free software; you can redistribute it and/or modify it
|
|
8 under the terms of the GNU General Public License as published by the
|
|
9 Free Software Foundation; either version 2, or (at your option) any
|
|
10 later version.
|
|
11
|
|
12 XEmacs is distributed in the hope that it will be useful, but WITHOUT
|
|
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
15 for more details.
|
|
16
|
|
17 You should have received a copy of the GNU General Public License
|
|
18 along with XEmacs; see the file COPYING. If not, write to
|
|
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
20 Boston, MA 02111-1307, USA. */
|
|
21
|
|
22 /* Synched up with: Not in FSF. */
|
|
23
|
1292
|
24 /* Author: Lost in the mists of history. At least back to Lucid 19.3,
|
|
25 circa Sep 1992. */
|
|
26
|
428
|
27 #include <config.h>
|
|
28 #include "lisp.h"
|
|
29 #include "hash.h"
|
|
30
|
1204
|
31 #define NULL_ENTRY ((void *) 0xdeadbeef) /* -559038737 base 10 */
|
428
|
32
|
|
33 #define COMFORTABLE_SIZE(size) (21 * (size) / 16)
|
|
34
|
3025
|
35 #define KEYS_DIFFER_P(old, new_, testfun) \
|
|
36 (((old) != (new_)) && (!(testfun) || !(testfun) ((old),(new_))))
|
428
|
37
|
665
|
38 static void rehash (hentry *harray, struct hash_table *ht, Elemcount size);
|
428
|
39
|
665
|
40 Hashcode
|
|
41 memory_hash (const void *xv, Bytecount size)
|
428
|
42 {
|
665
|
43 Hashcode h = 0;
|
442
|
44 unsigned const char *x = (unsigned const char *) xv;
|
428
|
45
|
|
46 if (!x) return 0;
|
|
47
|
|
48 while (size--)
|
|
49 {
|
665
|
50 Hashcode g;
|
428
|
51 h = (h << 4) + *x++;
|
|
52 if ((g = h & 0xf0000000) != 0)
|
|
53 h = (h ^ (g >> 24)) ^ g;
|
|
54 }
|
|
55
|
|
56 return h;
|
|
57 }
|
|
58
|
2515
|
59 static int
|
|
60 string_equal (const void *st1, const void *st2)
|
|
61 {
|
|
62 if (!st1)
|
|
63 return st2 ? 0 : 1;
|
|
64 else if (!st2)
|
|
65 return 0;
|
|
66 else
|
|
67 return !strcmp ((const char *) st1, (const char *) st2);
|
|
68 }
|
|
69
|
|
70 static Hashcode
|
|
71 string_hash (const void *xv)
|
442
|
72 {
|
665
|
73 Hashcode h = 0;
|
442
|
74 unsigned const char *x = (unsigned const char *) xv;
|
|
75
|
|
76 if (!x) return 0;
|
|
77
|
|
78 while (*x)
|
|
79 {
|
665
|
80 Hashcode g;
|
442
|
81 h = (h << 4) + *x++;
|
|
82 if ((g = h & 0xf0000000) != 0)
|
|
83 h = (h ^ (g >> 24)) ^ g;
|
|
84 }
|
|
85
|
|
86 return h;
|
|
87 }
|
|
88
|
428
|
89 /* Return a suitable size for a hash table, with at least SIZE slots. */
|
665
|
90 static Elemcount
|
|
91 hash_table_size (Elemcount requested_size)
|
428
|
92 {
|
|
93 /* Return some prime near, but greater than or equal to, SIZE.
|
|
94 Decades from the time of writing, someone will have a system large
|
|
95 enough that the list below will be too short... */
|
665
|
96 static const Elemcount primes [] =
|
428
|
97 {
|
|
98 19, 29, 41, 59, 79, 107, 149, 197, 263, 347, 457, 599, 787, 1031,
|
|
99 1361, 1777, 2333, 3037, 3967, 5167, 6719, 8737, 11369, 14783,
|
|
100 19219, 24989, 32491, 42257, 54941, 71429, 92861, 120721, 156941,
|
|
101 204047, 265271, 344857, 448321, 582821, 757693, 985003, 1280519,
|
|
102 1664681, 2164111, 2813353, 3657361, 4754591, 6180989, 8035301,
|
|
103 10445899, 13579681, 17653589, 22949669, 29834603, 38784989,
|
|
104 50420551, 65546729, 85210757, 110774011, 144006217, 187208107,
|
|
105 243370577, 316381771, 411296309, 534685237, 695090819, 903618083,
|
647
|
106 1174703521, 1527114613, 1985248999 /* , 2580823717UL, 3355070839UL */
|
428
|
107 };
|
|
108 /* We've heard of binary search. */
|
|
109 int low, high;
|
|
110 for (low = 0, high = countof (primes) - 1; high - low > 1;)
|
|
111 {
|
|
112 /* Loop Invariant: size < primes [high] */
|
|
113 int mid = (low + high) / 2;
|
|
114 if (primes [mid] < requested_size)
|
|
115 low = mid;
|
|
116 else
|
|
117 high = mid;
|
|
118 }
|
|
119 return primes [high];
|
|
120 }
|
|
121
|
442
|
122 const void *
|
|
123 gethash (const void *key, struct hash_table *hash_table, const void **ret_value)
|
428
|
124 {
|
|
125 if (!key)
|
|
126 {
|
|
127 *ret_value = hash_table->zero_entry;
|
|
128 return (void *) hash_table->zero_set;
|
|
129 }
|
|
130 else
|
|
131 {
|
|
132 hentry *harray = hash_table->harray;
|
|
133 hash_table_test_function test_function = hash_table->test_function;
|
665
|
134 Elemcount size = hash_table->size;
|
|
135 Hashcode hcode_initial =
|
428
|
136 hash_table->hash_function ?
|
|
137 hash_table->hash_function (key) :
|
665
|
138 (Hashcode) key;
|
|
139 Elemcount hcode = (Elemcount) (hcode_initial % size);
|
428
|
140 hentry *e = &harray [hcode];
|
442
|
141 const void *e_key = e->key;
|
428
|
142
|
|
143 if (e_key ?
|
|
144 KEYS_DIFFER_P (e_key, key, test_function) :
|
|
145 e->contents == NULL_ENTRY)
|
|
146 {
|
665
|
147 Elemcount h2 = size - 2;
|
|
148 Elemcount incr = (Elemcount) (1 + (hcode_initial % h2));
|
428
|
149 do
|
|
150 {
|
|
151 hcode += incr; if (hcode >= size) hcode -= size;
|
|
152 e = &harray [hcode];
|
|
153 e_key = e->key;
|
|
154 }
|
|
155 while (e_key ?
|
|
156 KEYS_DIFFER_P (e_key, key, test_function) :
|
|
157 e->contents == NULL_ENTRY);
|
|
158 }
|
|
159
|
|
160 *ret_value = e->contents;
|
|
161 return e->key;
|
|
162 }
|
|
163 }
|
|
164
|
|
165 void
|
|
166 clrhash (struct hash_table *hash_table)
|
|
167 {
|
|
168 memset (hash_table->harray, 0, sizeof (hentry) * hash_table->size);
|
|
169 hash_table->zero_entry = 0;
|
|
170 hash_table->zero_set = 0;
|
|
171 hash_table->fullness = 0;
|
|
172 }
|
|
173
|
|
174 void
|
|
175 free_hash_table (struct hash_table *hash_table)
|
|
176 {
|
1726
|
177 xfree (hash_table->harray, hentry *);
|
|
178 xfree (hash_table, struct hash_table *);
|
428
|
179 }
|
|
180
|
2515
|
181 struct hash_table *
|
665
|
182 make_hash_table (Elemcount size)
|
428
|
183 {
|
|
184 struct hash_table *hash_table = xnew_and_zero (struct hash_table);
|
|
185 hash_table->size = hash_table_size (COMFORTABLE_SIZE (size));
|
|
186 hash_table->harray = xnew_array (hentry, hash_table->size);
|
|
187 clrhash (hash_table);
|
|
188 return hash_table;
|
|
189 }
|
|
190
|
|
191 struct hash_table *
|
2515
|
192 make_string_hash_table (Elemcount size)
|
|
193 {
|
|
194 return make_general_hash_table (size, string_hash, string_equal);
|
|
195 }
|
|
196
|
|
197 struct hash_table *
|
665
|
198 make_general_hash_table (Elemcount size,
|
428
|
199 hash_table_hash_function hash_function,
|
|
200 hash_table_test_function test_function)
|
|
201 {
|
|
202 struct hash_table* hash_table = make_hash_table (size);
|
|
203 hash_table->hash_function = hash_function;
|
|
204 hash_table->test_function = test_function;
|
|
205 return hash_table;
|
|
206 }
|
|
207
|
|
208 static void
|
665
|
209 grow_hash_table (struct hash_table *hash_table, Elemcount new_size)
|
428
|
210 {
|
665
|
211 Elemcount old_size = hash_table->size;
|
428
|
212 hentry *old_harray = hash_table->harray;
|
|
213
|
|
214 hash_table->size = hash_table_size (new_size);
|
|
215 hash_table->harray = xnew_array (hentry, hash_table->size);
|
|
216
|
|
217 /* do the rehash on the "grown" table */
|
|
218 {
|
|
219 long old_zero_set = hash_table->zero_set;
|
|
220 void *old_zero_entry = hash_table->zero_entry;
|
|
221 clrhash (hash_table);
|
|
222 hash_table->zero_set = old_zero_set;
|
|
223 hash_table->zero_entry = old_zero_entry;
|
|
224 rehash (old_harray, hash_table, old_size);
|
|
225 }
|
|
226
|
1726
|
227 xfree (old_harray, hentry *);
|
428
|
228 }
|
|
229
|
|
230 void
|
1292
|
231 pregrow_hash_table_if_necessary (struct hash_table *hash_table,
|
|
232 Elemcount breathing_room)
|
|
233 {
|
|
234 Elemcount comfortable_size = COMFORTABLE_SIZE (hash_table->fullness);
|
|
235 if (hash_table->size < comfortable_size - breathing_room)
|
|
236 grow_hash_table (hash_table, comfortable_size + 1);
|
|
237 }
|
|
238
|
|
239 void
|
442
|
240 puthash (const void *key, void *contents, struct hash_table *hash_table)
|
428
|
241 {
|
|
242 if (!key)
|
|
243 {
|
|
244 hash_table->zero_entry = contents;
|
|
245 hash_table->zero_set = 1;
|
|
246 }
|
|
247 else
|
|
248 {
|
|
249 hash_table_test_function test_function = hash_table->test_function;
|
665
|
250 Elemcount size = hash_table->size;
|
428
|
251 hentry *harray = hash_table->harray;
|
665
|
252 Hashcode hcode_initial =
|
428
|
253 hash_table->hash_function ?
|
|
254 hash_table->hash_function (key) :
|
665
|
255 (Hashcode) key;
|
|
256 Elemcount hcode = (Elemcount) (hcode_initial % size);
|
|
257 Elemcount h2 = size - 2;
|
|
258 Elemcount incr = (Elemcount) (1 + (hcode_initial % h2));
|
442
|
259 const void *e_key = harray [hcode].key;
|
|
260 const void *oldcontents;
|
428
|
261
|
|
262 if (e_key && KEYS_DIFFER_P (e_key, key, test_function))
|
|
263 {
|
|
264 do
|
|
265 {
|
|
266 hcode += incr; if (hcode >= size) hcode -= size;
|
|
267 e_key = harray [hcode].key;
|
|
268 }
|
|
269 while (e_key && KEYS_DIFFER_P (e_key, key, test_function));
|
|
270 }
|
|
271 oldcontents = harray [hcode].contents;
|
|
272 harray [hcode].key = key;
|
|
273 harray [hcode].contents = contents;
|
|
274 /* If the entry that we used was a deleted entry,
|
|
275 check for a non deleted entry of the same key,
|
|
276 then delete it. */
|
|
277 if (!e_key && oldcontents == NULL_ENTRY)
|
|
278 {
|
|
279 hentry *e;
|
|
280
|
|
281 do
|
|
282 {
|
|
283 hcode += incr; if (hcode >= size) hcode -= size;
|
|
284 e = &harray [hcode];
|
|
285 e_key = e->key;
|
|
286 }
|
|
287 while (e_key ?
|
|
288 KEYS_DIFFER_P (e_key, key, test_function):
|
|
289 e->contents == NULL_ENTRY);
|
|
290
|
|
291 if (e_key)
|
|
292 {
|
|
293 e->key = 0;
|
|
294 e->contents = NULL_ENTRY;
|
|
295 }
|
|
296 }
|
|
297
|
|
298 /* only increment the fullness when we used up a new hentry */
|
|
299 if (!e_key || KEYS_DIFFER_P (e_key, key, test_function))
|
|
300 {
|
665
|
301 Elemcount comfortable_size = COMFORTABLE_SIZE (++(hash_table->fullness));
|
428
|
302 if (hash_table->size < comfortable_size)
|
|
303 grow_hash_table (hash_table, comfortable_size + 1);
|
|
304 }
|
|
305 }
|
|
306 }
|
|
307
|
|
308 static void
|
665
|
309 rehash (hentry *harray, struct hash_table *hash_table, Elemcount size)
|
428
|
310 {
|
|
311 hentry *limit = harray + size;
|
|
312 hentry *e;
|
|
313 for (e = harray; e < limit; e++)
|
|
314 {
|
|
315 if (e->key)
|
|
316 puthash (e->key, e->contents, hash_table);
|
|
317 }
|
|
318 }
|
|
319
|
|
320 void
|
442
|
321 remhash (const void *key, struct hash_table *hash_table)
|
428
|
322 {
|
|
323 if (!key)
|
|
324 {
|
|
325 hash_table->zero_entry = 0;
|
|
326 hash_table->zero_set = 0;
|
|
327 }
|
|
328 else
|
|
329 {
|
|
330 hentry *harray = hash_table->harray;
|
|
331 hash_table_test_function test_function = hash_table->test_function;
|
665
|
332 Elemcount size = hash_table->size;
|
|
333 Hashcode hcode_initial =
|
428
|
334 (hash_table->hash_function) ?
|
|
335 (hash_table->hash_function (key)) :
|
665
|
336 ((Hashcode) key);
|
|
337 Elemcount hcode = (Elemcount) (hcode_initial % size);
|
428
|
338 hentry *e = &harray [hcode];
|
442
|
339 const void *e_key = e->key;
|
428
|
340
|
|
341 if (e_key ?
|
|
342 KEYS_DIFFER_P (e_key, key, test_function) :
|
|
343 e->contents == NULL_ENTRY)
|
|
344 {
|
665
|
345 Elemcount h2 = size - 2;
|
|
346 Elemcount incr = (Elemcount) (1 + (hcode_initial % h2));
|
428
|
347 do
|
|
348 {
|
|
349 hcode += incr; if (hcode >= size) hcode -= size;
|
|
350 e = &harray [hcode];
|
|
351 e_key = e->key;
|
|
352 }
|
|
353 while (e_key?
|
|
354 KEYS_DIFFER_P (e_key, key, test_function):
|
|
355 e->contents == NULL_ENTRY);
|
|
356 }
|
|
357 if (e_key)
|
|
358 {
|
|
359 e->key = 0;
|
|
360 e->contents = NULL_ENTRY;
|
|
361 /* Note: you can't do fullness-- here, it breaks the world. */
|
|
362 }
|
|
363 }
|
|
364 }
|
|
365
|
|
366 void
|
|
367 maphash (maphash_function mf, struct hash_table *hash_table, void *arg)
|
|
368 {
|
|
369 hentry *e;
|
|
370 hentry *limit;
|
|
371
|
|
372 if (hash_table->zero_set)
|
|
373 {
|
|
374 if (mf (0, hash_table->zero_entry, arg))
|
|
375 return;
|
|
376 }
|
|
377
|
|
378 for (e = hash_table->harray, limit = e + hash_table->size; e < limit; e++)
|
|
379 {
|
|
380 if (e->key && mf (e->key, e->contents, arg))
|
|
381 return;
|
|
382 }
|
|
383 }
|
|
384
|
|
385 void
|
|
386 map_remhash (remhash_predicate predicate, struct hash_table *hash_table, void *arg)
|
|
387 {
|
|
388 hentry *e;
|
|
389 hentry *limit;
|
|
390
|
|
391 if (hash_table->zero_set && predicate (0, hash_table->zero_entry, arg))
|
|
392 {
|
|
393 hash_table->zero_set = 0;
|
|
394 hash_table->zero_entry = 0;
|
|
395 }
|
|
396
|
|
397 for (e = hash_table->harray, limit = e + hash_table->size; e < limit; e++)
|
|
398 if (predicate (e->key, e->contents, arg))
|
|
399 {
|
|
400 e->key = 0;
|
|
401 e->contents = NULL_ENTRY;
|
|
402 }
|
|
403 }
|