Mercurial > hg > xemacs-beta
annotate src/keymap.c @ 4722:dfc9fe46c294
Add BSD header to lib-src/insert-data-in-exec.c, with permission of Olivier
Galibert.
author | Jerry James <james@xemacs.org> |
---|---|
date | Mon, 26 Oct 2009 15:41:26 -0600 |
parents | a2af1ff1761f |
children | 2fd201d73a92 |
rev | line source |
---|---|
428 | 1 /* Manipulation of keymaps |
2 Copyright (C) 1985, 1991-1995 Free Software Foundation, Inc. | |
3 Copyright (C) 1995 Board of Trustees, University of Illinois. | |
4 Copyright (C) 1995 Sun Microsystems, Inc. | |
793 | 5 Copyright (C) 2001, 2002 Ben Wing. |
428 | 6 Totally redesigned by jwz in 1991. |
7 | |
8 This file is part of XEmacs. | |
9 | |
10 XEmacs is free software; you can redistribute it and/or modify it | |
11 under the terms of the GNU General Public License as published by the | |
12 Free Software Foundation; either version 2, or (at your option) any | |
13 later version. | |
14 | |
15 XEmacs is distributed in the hope that it will be useful, but WITHOUT | |
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |
18 for more details. | |
19 | |
20 You should have received a copy of the GNU General Public License | |
21 along with XEmacs; see the file COPYING. If not, write to | |
22 the Free Software Foundation, Inc., 59 Temple Place - Suite 330, | |
23 Boston, MA 02111-1307, USA. */ | |
24 | |
25 /* Synched up with: Mule 2.0. Not synched with FSF. Substantially | |
26 different from FSF. */ | |
27 | |
28 | |
29 #include <config.h> | |
30 #include "lisp.h" | |
31 | |
32 #include "buffer.h" | |
33 #include "bytecode.h" | |
872 | 34 #include "console-impl.h" |
428 | 35 #include "elhash.h" |
36 #include "events.h" | |
872 | 37 #include "extents.h" |
428 | 38 #include "frame.h" |
39 #include "insdel.h" | |
40 #include "keymap.h" | |
41 #include "window.h" | |
42 | |
43 | |
44 /* A keymap contains six slots: | |
45 | |
46 parents Ordered list of keymaps to search after | |
47 this one if no match is found. | |
48 Keymaps can thus be arranged in a hierarchy. | |
49 | |
50 table A hash table, hashing keysyms to their bindings. | |
51 It will be one of the following: | |
52 | |
3025 | 53 -- a symbol, e.g. `home' |
428 | 54 -- a character, representing something printable |
55 (not ?\C-c meaning C-c, for instance) | |
56 -- an integer representing a modifier combination | |
57 | |
58 inverse_table A hash table, hashing bindings to the list of keysyms | |
59 in this keymap which are bound to them. This is to make | |
60 the Fwhere_is_internal() function be fast. It needs to be | |
61 fast because we want to be able to call it in realtime to | |
62 update the keyboard-equivalents on the pulldown menus. | |
63 Values of the table are either atoms (keysyms) | |
64 or a dotted list of keysyms. | |
65 | |
66 sub_maps_cache An alist; for each entry in this keymap whose binding is | |
67 a keymap (that is, Fkeymapp()) this alist associates that | |
68 keysym with that binding. This is used to optimize both | |
69 Fwhere_is_internal() and Faccessible_keymaps(). This slot | |
70 gets set to the symbol `t' every time a change is made to | |
71 this keymap, causing it to be recomputed when next needed. | |
72 | |
73 prompt See `set-keymap-prompt'. | |
74 | |
75 default_binding See `set-keymap-default-binding'. | |
76 | |
77 Sequences of keys are stored in the obvious way: if the sequence of keys | |
78 "abc" was bound to some command `foo', the hierarchy would look like | |
79 | |
80 keymap-1: associates "a" with keymap-2 | |
81 keymap-2: associates "b" with keymap-3 | |
82 keymap-3: associates "c" with foo | |
83 | |
84 However, bucky bits ("modifiers" to the X-minded) are represented in the | |
85 keymap hierarchy as well. (This lets us use EQable objects as hash keys.) | |
86 Each combination of modifiers (e.g. control-hyper) gets its own submap | |
87 off of the main map. The hash key for a modifier combination is | |
88 an integer, computed by MAKE_MODIFIER_HASH_KEY(). | |
89 | |
90 If the key `C-a' was bound to some command, the hierarchy would look like | |
91 | |
442 | 92 keymap-1: associates the integer XEMACS_MOD_CONTROL with keymap-2 |
428 | 93 keymap-2: associates "a" with the command |
94 | |
95 Similarly, if the key `C-H-a' was bound to some command, the hierarchy | |
96 would look like | |
97 | |
442 | 98 keymap-1: associates the integer (XEMACS_MOD_CONTROL | XEMACS_MOD_HYPER) |
428 | 99 with keymap-2 |
100 keymap-2: associates "a" with the command | |
101 | |
102 Note that a special exception is made for the meta modifier, in order | |
103 to deal with ESC/meta lossage. Any key combination containing the | |
104 meta modifier is first indexed off of the main map into the meta | |
442 | 105 submap (with hash key XEMACS_MOD_META) and then indexed off of the |
428 | 106 meta submap with the meta modifier removed from the key combination. |
107 For example, when associating a command with C-M-H-a, we'd have | |
108 | |
442 | 109 keymap-1: associates the integer XEMACS_MOD_META with keymap-2 |
110 keymap-2: associates the integer (XEMACS_MOD_CONTROL | XEMACS_MOD_HYPER) | |
428 | 111 with keymap-3 |
112 keymap-3: associates "a" with the command | |
113 | |
114 Note that keymap-2 might have normal bindings in it; these would be | |
115 for key combinations containing only the meta modifier, such as | |
116 M-y or meta-backspace. | |
117 | |
118 If the command that "a" was bound to in keymap-3 was itself a keymap, | |
119 then that would make the key "C-M-H-a" be a prefix character. | |
120 | |
121 Note that this new model of keymaps takes much of the magic away from | |
122 the Escape key: the value of the variable `esc-map' is no longer indexed | |
123 in the `global-map' under the ESC key. It's indexed under the integer | |
442 | 124 XEMACS_MOD_META. This is not user-visible, however; none of the "bucky" |
428 | 125 maps are. |
126 | |
127 There is a hack in Flookup_key() that makes (lookup-key global-map "\^[") | |
128 and (define-key some-random-map "\^[" my-esc-map) work as before, for | |
129 compatibility. | |
130 | |
131 Since keymaps are opaque, the only way to extract information from them | |
132 is with the functions lookup-key, key-binding, local-key-binding, and | |
133 global-key-binding, which work just as before, and the new function | |
440 | 134 map-keymap, which is roughly analogous to maphash. |
428 | 135 |
136 Note that map-keymap perpetuates the illusion that the "bucky" submaps | |
137 don't exist: if you map over a keymap with bucky submaps, it will also | |
138 map over those submaps. It does not, however, map over other random | |
139 submaps of the keymap, just the bucky ones. | |
140 | |
141 One implication of this is that when you map over `global-map', you will | |
142 also map over `esc-map'. It is merely for compatibility that the esc-map | |
143 is accessible at all; I think that's a bad thing, since it blurs the | |
144 distinction between ESC and "meta" even more. "M-x" is no more a two- | |
145 key sequence than "C-x" is. | |
146 | |
147 */ | |
148 | |
440 | 149 struct Lisp_Keymap |
428 | 150 { |
3017 | 151 struct LCRECORD_HEADER header; |
440 | 152 Lisp_Object parents; /* Keymaps to be searched after this one. |
153 An ordered list */ | |
428 | 154 Lisp_Object prompt; /* Qnil or a string to print in the minibuffer |
440 | 155 when reading from this keymap */ |
428 | 156 Lisp_Object table; /* The contents of this keymap */ |
157 Lisp_Object inverse_table; /* The inverse mapping of the above */ | |
158 Lisp_Object default_binding; /* Use this if no other binding is found | |
440 | 159 (this overrides parent maps and the |
160 normal global-map lookup). */ | |
428 | 161 Lisp_Object sub_maps_cache; /* Cache of directly inferior keymaps; |
162 This holds an alist, of the key and the | |
163 maps, or the modifier bit and the map. | |
164 If this is the symbol t, then the cache | |
440 | 165 needs to be recomputed. */ |
428 | 166 Lisp_Object name; /* Just for debugging convenience */ |
440 | 167 }; |
428 | 168 |
169 #define MAKE_MODIFIER_HASH_KEY(modifier) make_int (modifier) | |
170 #define MODIFIER_HASH_KEY_BITS(x) (INTP (x) ? XINT (x) : 0) | |
171 | |
172 | |
173 | |
174 /* Actually allocate storage for these variables */ | |
175 | |
440 | 176 Lisp_Object Vcurrent_global_map; /* Always a keymap */ |
428 | 177 |
771 | 178 static Lisp_Object Vglobal_tty_map, Vglobal_window_system_map; |
179 | |
428 | 180 static Lisp_Object Vmouse_grabbed_buffer; |
181 | |
182 /* Alist of minor mode variables and keymaps. */ | |
183 static Lisp_Object Qminor_mode_map_alist; | |
184 | |
185 static Lisp_Object Voverriding_local_map; | |
186 | |
187 static Lisp_Object Vkey_translation_map; | |
188 | |
189 static Lisp_Object Vvertical_divider_map; | |
190 | |
191 /* This is incremented whenever a change is made to a keymap. This is | |
192 so that things which care (such as the menubar code) can recompute | |
193 privately-cached data when the user has changed keybindings. | |
194 */ | |
458 | 195 Fixnum keymap_tick; |
428 | 196 |
197 /* Prefixing a key with this character is the same as sending a meta bit. */ | |
198 Lisp_Object Vmeta_prefix_char; | |
199 | |
200 Lisp_Object Qkeymapp; | |
201 Lisp_Object Vsingle_space_string; | |
202 Lisp_Object Qsuppress_keymap; | |
203 Lisp_Object Qmodeline_map; | |
204 Lisp_Object Qtoolbar_map; | |
205 | |
206 EXFUN (Fkeymap_fullness, 1); | |
207 EXFUN (Fset_keymap_name, 2); | |
208 EXFUN (Fsingle_key_description, 1); | |
209 | |
210 static void describe_command (Lisp_Object definition, Lisp_Object buffer); | |
211 static void describe_map (Lisp_Object keymap, Lisp_Object elt_prefix, | |
212 void (*elt_describer) (Lisp_Object, Lisp_Object), | |
213 int partial, | |
214 Lisp_Object shadow, | |
215 int mice_only_p, | |
216 Lisp_Object buffer); | |
440 | 217 static Lisp_Object keymap_submaps (Lisp_Object keymap); |
428 | 218 |
219 Lisp_Object Qcontrol, Qctrl, Qmeta, Qsuper, Qhyper, Qalt, Qshift; | |
4272 | 220 Lisp_Object Qbutton0; |
221 Lisp_Object Qbutton1, Qbutton2, Qbutton3, Qbutton4, Qbutton5; | |
222 Lisp_Object Qbutton6, Qbutton7, Qbutton8, Qbutton9, Qbutton10; | |
223 Lisp_Object Qbutton11, Qbutton12, Qbutton13, Qbutton14, Qbutton15; | |
224 Lisp_Object Qbutton16, Qbutton17, Qbutton18, Qbutton19, Qbutton20; | |
225 Lisp_Object Qbutton21, Qbutton22, Qbutton23, Qbutton24, Qbutton25; | |
226 Lisp_Object Qbutton26; | |
227 Lisp_Object Qbutton0up; | |
228 Lisp_Object Qbutton1up, Qbutton2up, Qbutton3up, Qbutton4up, Qbutton5up; | |
229 Lisp_Object Qbutton6up, Qbutton7up, Qbutton8up, Qbutton9up, Qbutton10up; | |
230 Lisp_Object Qbutton11up, Qbutton12up, Qbutton13up, Qbutton14up, Qbutton15up; | |
231 Lisp_Object Qbutton16up, Qbutton17up, Qbutton18up, Qbutton19up, Qbutton20up; | |
232 Lisp_Object Qbutton21up, Qbutton22up, Qbutton23up, Qbutton24up, Qbutton25up; | |
233 Lisp_Object Qbutton26up; | |
428 | 234 |
235 Lisp_Object Qmenu_selection; | |
236 /* Emacs compatibility */ | |
458 | 237 Lisp_Object Qdown_mouse_1, Qmouse_1; |
238 Lisp_Object Qdown_mouse_2, Qmouse_2; | |
239 Lisp_Object Qdown_mouse_3, Qmouse_3; | |
240 Lisp_Object Qdown_mouse_4, Qmouse_4; | |
241 Lisp_Object Qdown_mouse_5, Qmouse_5; | |
242 Lisp_Object Qdown_mouse_6, Qmouse_6; | |
243 Lisp_Object Qdown_mouse_7, Qmouse_7; | |
4272 | 244 Lisp_Object Qdown_mouse_8, Qmouse_8; |
245 Lisp_Object Qdown_mouse_9, Qmouse_9; | |
246 Lisp_Object Qdown_mouse_10, Qmouse_10; | |
247 Lisp_Object Qdown_mouse_11, Qmouse_11; | |
248 Lisp_Object Qdown_mouse_12, Qmouse_12; | |
249 Lisp_Object Qdown_mouse_13, Qmouse_13; | |
250 Lisp_Object Qdown_mouse_14, Qmouse_14; | |
251 Lisp_Object Qdown_mouse_15, Qmouse_15; | |
252 Lisp_Object Qdown_mouse_16, Qmouse_16; | |
253 Lisp_Object Qdown_mouse_17, Qmouse_17; | |
254 Lisp_Object Qdown_mouse_18, Qmouse_18; | |
255 Lisp_Object Qdown_mouse_19, Qmouse_19; | |
256 Lisp_Object Qdown_mouse_20, Qmouse_20; | |
257 Lisp_Object Qdown_mouse_21, Qmouse_21; | |
258 Lisp_Object Qdown_mouse_22, Qmouse_22; | |
259 Lisp_Object Qdown_mouse_23, Qmouse_23; | |
260 Lisp_Object Qdown_mouse_24, Qmouse_24; | |
261 Lisp_Object Qdown_mouse_25, Qmouse_25; | |
262 Lisp_Object Qdown_mouse_26, Qmouse_26; | |
428 | 263 |
264 /* Kludge kludge kludge */ | |
265 Lisp_Object QLFD, QTAB, QRET, QESC, QDEL, QSPC, QBS; | |
266 | |
267 | |
268 /************************************************************************/ | |
269 /* The keymap Lisp object */ | |
270 /************************************************************************/ | |
271 | |
272 static Lisp_Object | |
273 mark_keymap (Lisp_Object obj) | |
274 { | |
275 Lisp_Keymap *keymap = XKEYMAP (obj); | |
276 mark_object (keymap->parents); | |
277 mark_object (keymap->prompt); | |
278 mark_object (keymap->inverse_table); | |
279 mark_object (keymap->sub_maps_cache); | |
280 mark_object (keymap->default_binding); | |
281 mark_object (keymap->name); | |
282 return keymap->table; | |
283 } | |
284 | |
285 static void | |
2286 | 286 print_keymap (Lisp_Object obj, Lisp_Object printcharfun, |
287 int UNUSED (escapeflag)) | |
428 | 288 { |
289 /* This function can GC */ | |
290 Lisp_Keymap *keymap = XKEYMAP (obj); | |
291 if (print_readably) | |
563 | 292 printing_unreadable_object ("#<keymap 0x%x>", keymap->header.uid); |
826 | 293 write_c_string (printcharfun, "#<keymap "); |
428 | 294 if (!NILP (keymap->name)) |
440 | 295 { |
800 | 296 write_fmt_string_lisp (printcharfun, "%S ", 1, keymap->name); |
440 | 297 } |
800 | 298 write_fmt_string (printcharfun, "size %ld 0x%x>", |
299 (long) XINT (Fkeymap_fullness (obj)), keymap->header.uid); | |
428 | 300 } |
301 | |
1204 | 302 static const struct memory_description keymap_description[] = { |
440 | 303 { XD_LISP_OBJECT, offsetof (Lisp_Keymap, parents) }, |
304 { XD_LISP_OBJECT, offsetof (Lisp_Keymap, prompt) }, | |
305 { XD_LISP_OBJECT, offsetof (Lisp_Keymap, table) }, | |
306 { XD_LISP_OBJECT, offsetof (Lisp_Keymap, inverse_table) }, | |
307 { XD_LISP_OBJECT, offsetof (Lisp_Keymap, default_binding) }, | |
308 { XD_LISP_OBJECT, offsetof (Lisp_Keymap, sub_maps_cache) }, | |
309 { XD_LISP_OBJECT, offsetof (Lisp_Keymap, name) }, | |
428 | 310 { XD_END } |
311 }; | |
312 | |
313 /* No need for keymap_equal #### Why not? */ | |
934 | 314 DEFINE_LRECORD_IMPLEMENTATION ("keymap", keymap, |
315 1, /*dumpable-flag*/ | |
316 mark_keymap, print_keymap, 0, 0, 0, | |
317 keymap_description, | |
318 Lisp_Keymap); | |
428 | 319 |
320 /************************************************************************/ | |
321 /* Traversing keymaps and their parents */ | |
322 /************************************************************************/ | |
323 | |
324 static Lisp_Object | |
325 traverse_keymaps (Lisp_Object start_keymap, Lisp_Object start_parents, | |
326 Lisp_Object (*mapper) (Lisp_Object keymap, void *mapper_arg), | |
327 void *mapper_arg) | |
328 { | |
329 /* This function can GC */ | |
330 Lisp_Object keymap; | |
331 Lisp_Object tail = start_parents; | |
332 Lisp_Object malloc_sucks[10]; | |
333 Lisp_Object malloc_bites = Qnil; | |
334 int stack_depth = 0; | |
335 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4; | |
336 GCPRO4 (*malloc_sucks, malloc_bites, start_keymap, tail); | |
337 gcpro1.nvars = 0; | |
338 | |
339 start_keymap = get_keymap (start_keymap, 1, 1); | |
340 keymap = start_keymap; | |
341 /* Hack special-case parents at top-level */ | |
440 | 342 tail = !NILP (tail) ? tail : XKEYMAP (keymap)->parents; |
428 | 343 |
344 for (;;) | |
345 { | |
346 Lisp_Object result; | |
347 | |
348 QUIT; | |
440 | 349 result = mapper (keymap, mapper_arg); |
428 | 350 if (!NILP (result)) |
351 { | |
352 while (CONSP (malloc_bites)) | |
353 { | |
853 | 354 Lisp_Object victim = malloc_bites; |
355 malloc_bites = XCDR (victim); | |
428 | 356 free_cons (victim); |
357 } | |
358 UNGCPRO; | |
359 return result; | |
360 } | |
361 if (NILP (tail)) | |
362 { | |
363 if (stack_depth == 0) | |
364 { | |
365 UNGCPRO; | |
366 return Qnil; /* Nothing found */ | |
367 } | |
368 stack_depth--; | |
369 if (CONSP (malloc_bites)) | |
370 { | |
853 | 371 Lisp_Object victim = malloc_bites; |
372 tail = XCAR (victim); | |
373 malloc_bites = XCDR (victim); | |
428 | 374 free_cons (victim); |
375 } | |
376 else | |
377 { | |
378 tail = malloc_sucks[stack_depth]; | |
379 gcpro1.nvars = stack_depth; | |
380 } | |
381 keymap = XCAR (tail); | |
382 tail = XCDR (tail); | |
383 } | |
384 else | |
385 { | |
386 Lisp_Object parents; | |
387 | |
388 keymap = XCAR (tail); | |
389 tail = XCDR (tail); | |
390 parents = XKEYMAP (keymap)->parents; | |
391 if (!CONSP (parents)) | |
392 ; | |
393 else if (NILP (tail)) | |
394 /* Tail-recurse */ | |
395 tail = parents; | |
396 else | |
397 { | |
398 if (CONSP (malloc_bites)) | |
399 malloc_bites = noseeum_cons (tail, malloc_bites); | |
400 else if (stack_depth < countof (malloc_sucks)) | |
401 { | |
402 malloc_sucks[stack_depth++] = tail; | |
403 gcpro1.nvars = stack_depth; | |
404 } | |
405 else | |
406 { | |
407 /* *&@##[*&^$ C. @#[$*&@# Unix. Losers all. */ | |
408 int i; | |
409 for (i = 0, malloc_bites = Qnil; | |
410 i < countof (malloc_sucks); | |
411 i++) | |
412 malloc_bites = noseeum_cons (malloc_sucks[i], | |
413 malloc_bites); | |
414 gcpro1.nvars = 0; | |
415 } | |
416 tail = parents; | |
417 } | |
418 } | |
419 keymap = get_keymap (keymap, 1, 1); | |
420 if (EQ (keymap, start_keymap)) | |
421 { | |
563 | 422 invalid_argument ("Cyclic keymap indirection", start_keymap); |
428 | 423 } |
424 } | |
425 } | |
426 | |
427 | |
428 /************************************************************************/ | |
429 /* Some low-level functions */ | |
430 /************************************************************************/ | |
431 | |
442 | 432 static int |
428 | 433 bucky_sym_to_bucky_bit (Lisp_Object sym) |
434 { | |
442 | 435 if (EQ (sym, Qcontrol)) return XEMACS_MOD_CONTROL; |
436 if (EQ (sym, Qmeta)) return XEMACS_MOD_META; | |
437 if (EQ (sym, Qsuper)) return XEMACS_MOD_SUPER; | |
438 if (EQ (sym, Qhyper)) return XEMACS_MOD_HYPER; | |
439 if (EQ (sym, Qalt)) return XEMACS_MOD_ALT; | |
440 if (EQ (sym, Qsymbol)) return XEMACS_MOD_ALT; /* #### - reverse compat */ | |
441 if (EQ (sym, Qshift)) return XEMACS_MOD_SHIFT; | |
428 | 442 |
443 return 0; | |
444 } | |
445 | |
446 static Lisp_Object | |
442 | 447 control_meta_superify (Lisp_Object frob, int modifiers) |
428 | 448 { |
449 if (modifiers == 0) | |
450 return frob; | |
451 frob = Fcons (frob, Qnil); | |
442 | 452 if (modifiers & XEMACS_MOD_SHIFT) frob = Fcons (Qshift, frob); |
453 if (modifiers & XEMACS_MOD_ALT) frob = Fcons (Qalt, frob); | |
454 if (modifiers & XEMACS_MOD_HYPER) frob = Fcons (Qhyper, frob); | |
455 if (modifiers & XEMACS_MOD_SUPER) frob = Fcons (Qsuper, frob); | |
456 if (modifiers & XEMACS_MOD_CONTROL) frob = Fcons (Qcontrol, frob); | |
457 if (modifiers & XEMACS_MOD_META) frob = Fcons (Qmeta, frob); | |
428 | 458 return frob; |
459 } | |
460 | |
461 static Lisp_Object | |
934 | 462 make_key_description (const Lisp_Key_Data *key, int prettify) |
463 { | |
1204 | 464 Lisp_Object keysym = KEY_DATA_KEYSYM (key); |
934 | 465 int modifiers = KEY_DATA_MODIFIERS (key); |
428 | 466 if (prettify && CHARP (keysym)) |
467 { | |
468 /* This is a little slow, but (control a) is prettier than (control 65). | |
469 It's now ok to do this for digit-chars too, since we've fixed the | |
470 bug where \9 read as the integer 9 instead of as the symbol with | |
471 "9" as its name. | |
472 */ | |
473 /* !!#### I'm not sure how correct this is. */ | |
867 | 474 Ibyte str [1 + MAX_ICHAR_LEN]; |
475 Bytecount count = set_itext_ichar (str, XCHAR (keysym)); | |
428 | 476 str[count] = 0; |
771 | 477 keysym = intern_int (str); |
428 | 478 } |
479 return control_meta_superify (keysym, modifiers); | |
480 } | |
481 | |
482 | |
483 /************************************************************************/ | |
484 /* Low-level keymap-store functions */ | |
485 /************************************************************************/ | |
486 | |
487 static Lisp_Object | |
488 raw_lookup_key (Lisp_Object keymap, | |
934 | 489 const Lisp_Key_Data *raw_keys, int raw_keys_count, |
428 | 490 int keys_so_far, int accept_default); |
491 | |
492 /* Relies on caller to gc-protect args */ | |
493 static Lisp_Object | |
494 keymap_lookup_directly (Lisp_Object keymap, | |
442 | 495 Lisp_Object keysym, int modifiers) |
428 | 496 { |
497 Lisp_Keymap *k; | |
498 | |
442 | 499 modifiers &= ~(XEMACS_MOD_BUTTON1 | XEMACS_MOD_BUTTON2 | XEMACS_MOD_BUTTON3 |
4272 | 500 | XEMACS_MOD_BUTTON4 | XEMACS_MOD_BUTTON5 | XEMACS_MOD_BUTTON6 |
501 | XEMACS_MOD_BUTTON7 | XEMACS_MOD_BUTTON8 | XEMACS_MOD_BUTTON9 | |
502 | XEMACS_MOD_BUTTON10 | XEMACS_MOD_BUTTON11 | XEMACS_MOD_BUTTON12 | |
503 | XEMACS_MOD_BUTTON13 | XEMACS_MOD_BUTTON14 | XEMACS_MOD_BUTTON15 | |
504 | XEMACS_MOD_BUTTON16 | XEMACS_MOD_BUTTON17 | XEMACS_MOD_BUTTON18 | |
505 | XEMACS_MOD_BUTTON19 | XEMACS_MOD_BUTTON20 | XEMACS_MOD_BUTTON21 | |
506 | XEMACS_MOD_BUTTON22 | XEMACS_MOD_BUTTON23 | XEMACS_MOD_BUTTON24 | |
507 | XEMACS_MOD_BUTTON25 | XEMACS_MOD_BUTTON26); | |
442 | 508 if ((modifiers & ~(XEMACS_MOD_CONTROL | XEMACS_MOD_META | XEMACS_MOD_SUPER |
509 | XEMACS_MOD_HYPER | XEMACS_MOD_ALT | XEMACS_MOD_SHIFT)) | |
510 != 0) | |
2500 | 511 ABORT (); |
428 | 512 |
513 k = XKEYMAP (keymap); | |
514 | |
515 /* If the keysym is a one-character symbol, use the char code instead. */ | |
826 | 516 if (SYMBOLP (keysym) && string_char_length (XSYMBOL (keysym)->name) == 1) |
428 | 517 { |
518 Lisp_Object i_fart_on_gcc = | |
867 | 519 make_char (string_ichar (XSYMBOL (keysym)->name, 0)); |
428 | 520 keysym = i_fart_on_gcc; |
521 } | |
522 | |
442 | 523 if (modifiers & XEMACS_MOD_META) /* Utterly hateful ESC lossage */ |
428 | 524 { |
442 | 525 Lisp_Object submap = Fgethash (MAKE_MODIFIER_HASH_KEY (XEMACS_MOD_META), |
428 | 526 k->table, Qnil); |
527 if (NILP (submap)) | |
528 return Qnil; | |
529 k = XKEYMAP (submap); | |
442 | 530 modifiers &= ~XEMACS_MOD_META; |
428 | 531 } |
532 | |
533 if (modifiers != 0) | |
534 { | |
535 Lisp_Object submap = Fgethash (MAKE_MODIFIER_HASH_KEY (modifiers), | |
536 k->table, Qnil); | |
537 if (NILP (submap)) | |
538 return Qnil; | |
539 k = XKEYMAP (submap); | |
540 } | |
541 return Fgethash (keysym, k->table, Qnil); | |
542 } | |
543 | |
544 static void | |
545 keymap_store_inverse_internal (Lisp_Object inverse_table, | |
546 Lisp_Object keysym, | |
547 Lisp_Object value) | |
548 { | |
549 Lisp_Object keys = Fgethash (value, inverse_table, Qunbound); | |
550 | |
551 if (UNBOUNDP (keys)) | |
552 { | |
553 keys = keysym; | |
554 /* Don't cons this unless necessary */ | |
555 /* keys = Fcons (keysym, Qnil); */ | |
556 Fputhash (value, keys, inverse_table); | |
557 } | |
558 else if (!CONSP (keys)) | |
559 { | |
560 /* Now it's necessary to cons */ | |
561 keys = Fcons (keys, keysym); | |
562 Fputhash (value, keys, inverse_table); | |
563 } | |
564 else | |
565 { | |
566 while (CONSP (XCDR (keys))) | |
567 keys = XCDR (keys); | |
568 XCDR (keys) = Fcons (XCDR (keys), keysym); | |
569 /* No need to call puthash because we've destructively | |
570 modified the list tail in place */ | |
571 } | |
572 } | |
573 | |
574 | |
575 static void | |
576 keymap_delete_inverse_internal (Lisp_Object inverse_table, | |
577 Lisp_Object keysym, | |
578 Lisp_Object value) | |
579 { | |
580 Lisp_Object keys = Fgethash (value, inverse_table, Qunbound); | |
581 Lisp_Object new_keys = keys; | |
582 Lisp_Object tail; | |
583 Lisp_Object *prev; | |
584 | |
585 if (UNBOUNDP (keys)) | |
2500 | 586 ABORT (); |
428 | 587 |
588 for (prev = &new_keys, tail = new_keys; | |
589 ; | |
590 prev = &(XCDR (tail)), tail = XCDR (tail)) | |
591 { | |
592 if (EQ (tail, keysym)) | |
593 { | |
594 *prev = Qnil; | |
595 break; | |
596 } | |
597 else if (EQ (keysym, XCAR (tail))) | |
598 { | |
599 *prev = XCDR (tail); | |
600 break; | |
601 } | |
602 } | |
603 | |
604 if (NILP (new_keys)) | |
605 Fremhash (value, inverse_table); | |
606 else if (!EQ (keys, new_keys)) | |
607 /* Removed the first elt */ | |
608 Fputhash (value, new_keys, inverse_table); | |
609 /* else the list's tail has been modified, so we don't need to | |
610 touch the hash table again (the pointer in there is ok). | |
611 */ | |
612 } | |
613 | |
440 | 614 /* Prevent luser from shooting herself in the foot using something like |
615 (define-key ctl-x-4-map "p" global-map) */ | |
616 static void | |
617 check_keymap_definition_loop (Lisp_Object def, Lisp_Keymap *to_keymap) | |
618 { | |
619 def = get_keymap (def, 0, 0); | |
620 | |
621 if (KEYMAPP (def)) | |
622 { | |
623 Lisp_Object maps; | |
624 | |
625 if (XKEYMAP (def) == to_keymap) | |
563 | 626 invalid_argument ("Cyclic keymap definition", def); |
440 | 627 |
628 for (maps = keymap_submaps (def); | |
629 CONSP (maps); | |
630 maps = XCDR (maps)) | |
631 check_keymap_definition_loop (XCDR (XCAR (maps)), to_keymap); | |
632 } | |
633 } | |
428 | 634 |
635 static void | |
636 keymap_store_internal (Lisp_Object keysym, Lisp_Keymap *keymap, | |
440 | 637 Lisp_Object def) |
428 | 638 { |
440 | 639 Lisp_Object prev_def = Fgethash (keysym, keymap->table, Qnil); |
640 | |
641 if (EQ (prev_def, def)) | |
428 | 642 return; |
440 | 643 |
644 check_keymap_definition_loop (def, keymap); | |
645 | |
646 if (!NILP (prev_def)) | |
428 | 647 keymap_delete_inverse_internal (keymap->inverse_table, |
440 | 648 keysym, prev_def); |
649 if (NILP (def)) | |
428 | 650 { |
651 Fremhash (keysym, keymap->table); | |
652 } | |
653 else | |
654 { | |
440 | 655 Fputhash (keysym, def, keymap->table); |
428 | 656 keymap_store_inverse_internal (keymap->inverse_table, |
440 | 657 keysym, def); |
428 | 658 } |
659 keymap_tick++; | |
660 } | |
661 | |
662 | |
663 static Lisp_Object | |
442 | 664 create_bucky_submap (Lisp_Keymap *k, int modifiers, |
428 | 665 Lisp_Object parent_for_debugging_info) |
666 { | |
667 Lisp_Object submap = Fmake_sparse_keymap (Qnil); | |
668 /* User won't see this, but it is nice for debugging Emacs */ | |
669 XKEYMAP (submap)->name | |
670 = control_meta_superify (parent_for_debugging_info, modifiers); | |
671 /* Invalidate cache */ | |
672 k->sub_maps_cache = Qt; | |
673 keymap_store_internal (MAKE_MODIFIER_HASH_KEY (modifiers), k, submap); | |
674 return submap; | |
675 } | |
676 | |
677 | |
678 /* Relies on caller to gc-protect keymap, keysym, value */ | |
679 static void | |
934 | 680 keymap_store (Lisp_Object keymap, const Lisp_Key_Data *key, |
428 | 681 Lisp_Object value) |
682 { | |
934 | 683 Lisp_Object keysym = KEY_DATA_KEYSYM (key); |
684 int modifiers = KEY_DATA_MODIFIERS (key); | |
440 | 685 Lisp_Keymap *k = XKEYMAP (keymap); |
686 | |
442 | 687 modifiers &= ~(XEMACS_MOD_BUTTON1 | XEMACS_MOD_BUTTON2 | XEMACS_MOD_BUTTON3 |
4272 | 688 | XEMACS_MOD_BUTTON4 | XEMACS_MOD_BUTTON5 | XEMACS_MOD_BUTTON6 |
689 | XEMACS_MOD_BUTTON7 | XEMACS_MOD_BUTTON8 | XEMACS_MOD_BUTTON9 | |
690 | XEMACS_MOD_BUTTON10 | XEMACS_MOD_BUTTON11 | XEMACS_MOD_BUTTON12 | |
691 | XEMACS_MOD_BUTTON13 | XEMACS_MOD_BUTTON14 | XEMACS_MOD_BUTTON15 | |
692 | XEMACS_MOD_BUTTON16 | XEMACS_MOD_BUTTON17 | XEMACS_MOD_BUTTON18 | |
693 | XEMACS_MOD_BUTTON19 | XEMACS_MOD_BUTTON20 | XEMACS_MOD_BUTTON21 | |
694 | XEMACS_MOD_BUTTON22 | XEMACS_MOD_BUTTON23 | XEMACS_MOD_BUTTON24 | |
695 | XEMACS_MOD_BUTTON25 | XEMACS_MOD_BUTTON26); | |
442 | 696 assert ((modifiers & ~(XEMACS_MOD_CONTROL | XEMACS_MOD_META |
697 | XEMACS_MOD_SUPER | XEMACS_MOD_HYPER | |
698 | XEMACS_MOD_ALT | XEMACS_MOD_SHIFT)) == 0); | |
428 | 699 |
700 /* If the keysym is a one-character symbol, use the char code instead. */ | |
826 | 701 if (SYMBOLP (keysym) && string_char_length (XSYMBOL (keysym)->name) == 1) |
867 | 702 keysym = make_char (string_ichar (XSYMBOL (keysym)->name, 0)); |
428 | 703 |
442 | 704 if (modifiers & XEMACS_MOD_META) /* Utterly hateful ESC lossage */ |
428 | 705 { |
442 | 706 Lisp_Object submap = Fgethash (MAKE_MODIFIER_HASH_KEY (XEMACS_MOD_META), |
428 | 707 k->table, Qnil); |
708 if (NILP (submap)) | |
442 | 709 submap = create_bucky_submap (k, XEMACS_MOD_META, keymap); |
428 | 710 k = XKEYMAP (submap); |
442 | 711 modifiers &= ~XEMACS_MOD_META; |
428 | 712 } |
713 | |
714 if (modifiers != 0) | |
715 { | |
716 Lisp_Object submap = Fgethash (MAKE_MODIFIER_HASH_KEY (modifiers), | |
717 k->table, Qnil); | |
718 if (NILP (submap)) | |
719 submap = create_bucky_submap (k, modifiers, keymap); | |
720 k = XKEYMAP (submap); | |
721 } | |
722 k->sub_maps_cache = Qt; /* Invalidate cache */ | |
723 keymap_store_internal (keysym, k, value); | |
724 } | |
725 | |
726 | |
727 /************************************************************************/ | |
728 /* Listing the submaps of a keymap */ | |
729 /************************************************************************/ | |
730 | |
731 struct keymap_submaps_closure | |
732 { | |
733 Lisp_Object *result_locative; | |
734 }; | |
735 | |
736 static int | |
2286 | 737 keymap_submaps_mapper_0 (Lisp_Object UNUSED (key), Lisp_Object value, |
738 void *UNUSED (keymap_submaps_closure)) | |
428 | 739 { |
740 /* This function can GC */ | |
741 /* Perform any autoloads, etc */ | |
742 Fkeymapp (value); | |
743 return 0; | |
744 } | |
745 | |
746 static int | |
747 keymap_submaps_mapper (Lisp_Object key, Lisp_Object value, | |
748 void *keymap_submaps_closure) | |
749 { | |
750 /* This function can GC */ | |
751 Lisp_Object *result_locative; | |
752 struct keymap_submaps_closure *cl = | |
753 (struct keymap_submaps_closure *) keymap_submaps_closure; | |
754 result_locative = cl->result_locative; | |
755 | |
756 if (!NILP (Fkeymapp (value))) | |
757 *result_locative = Fcons (Fcons (key, value), *result_locative); | |
758 return 0; | |
759 } | |
760 | |
761 static int map_keymap_sort_predicate (Lisp_Object obj1, Lisp_Object obj2, | |
762 Lisp_Object pred); | |
763 | |
764 static Lisp_Object | |
765 keymap_submaps (Lisp_Object keymap) | |
766 { | |
767 /* This function can GC */ | |
768 Lisp_Keymap *k = XKEYMAP (keymap); | |
769 | |
770 if (EQ (k->sub_maps_cache, Qt)) /* Unknown */ | |
771 { | |
772 Lisp_Object result = Qnil; | |
773 struct gcpro gcpro1, gcpro2; | |
774 struct keymap_submaps_closure keymap_submaps_closure; | |
775 | |
776 GCPRO2 (keymap, result); | |
777 keymap_submaps_closure.result_locative = &result; | |
778 /* Do this first pass to touch (and load) any autoloaded maps */ | |
779 elisp_maphash (keymap_submaps_mapper_0, k->table, | |
780 &keymap_submaps_closure); | |
781 result = Qnil; | |
782 elisp_maphash (keymap_submaps_mapper, k->table, | |
783 &keymap_submaps_closure); | |
784 /* keep it sorted so that the result of accessible-keymaps is ordered */ | |
785 k->sub_maps_cache = list_sort (result, | |
786 Qnil, | |
787 map_keymap_sort_predicate); | |
788 UNGCPRO; | |
789 } | |
790 return k->sub_maps_cache; | |
791 } | |
792 | |
793 | |
794 /************************************************************************/ | |
795 /* Basic operations on keymaps */ | |
796 /************************************************************************/ | |
797 | |
798 static Lisp_Object | |
665 | 799 make_keymap (Elemcount size) |
428 | 800 { |
801 Lisp_Object result; | |
3017 | 802 Lisp_Keymap *keymap = ALLOC_LCRECORD_TYPE (Lisp_Keymap, &lrecord_keymap); |
428 | 803 |
793 | 804 result = wrap_keymap (keymap); |
428 | 805 |
806 keymap->parents = Qnil; | |
807 keymap->prompt = Qnil; | |
808 keymap->table = Qnil; | |
809 keymap->inverse_table = Qnil; | |
810 keymap->default_binding = Qnil; | |
811 keymap->sub_maps_cache = Qnil; /* No possible submaps */ | |
812 keymap->name = Qnil; | |
813 | |
814 if (size != 0) /* hack for copy-keymap */ | |
815 { | |
816 keymap->table = | |
817 make_lisp_hash_table (size, HASH_TABLE_NON_WEAK, HASH_TABLE_EQ); | |
818 /* Inverse table is often less dense because of duplicate key-bindings. | |
819 If not, it will grow anyway. */ | |
820 keymap->inverse_table = | |
647 | 821 make_lisp_hash_table (size * 3 / 4, HASH_TABLE_NON_WEAK, |
822 HASH_TABLE_EQ); | |
428 | 823 } |
824 return result; | |
825 } | |
826 | |
827 DEFUN ("make-keymap", Fmake_keymap, 0, 1, 0, /* | |
828 Construct and return a new keymap object. | |
829 All entries in it are nil, meaning "command undefined". | |
830 | |
831 Optional argument NAME specifies a name to assign to the keymap, | |
832 as in `set-keymap-name'. This name is only a debugging convenience; | |
833 it is not used except when printing the keymap. | |
834 */ | |
835 (name)) | |
836 { | |
837 Lisp_Object keymap = make_keymap (60); | |
838 if (!NILP (name)) | |
839 Fset_keymap_name (keymap, name); | |
840 return keymap; | |
841 } | |
842 | |
843 DEFUN ("make-sparse-keymap", Fmake_sparse_keymap, 0, 1, 0, /* | |
844 Construct and return a new keymap object. | |
845 All entries in it are nil, meaning "command undefined". The only | |
444 | 846 difference between this function and `make-keymap' is that this function |
428 | 847 returns a "smaller" keymap (one that is expected to contain fewer |
444 | 848 entries). As keymaps dynamically resize, this distinction is not great. |
428 | 849 |
850 Optional argument NAME specifies a name to assign to the keymap, | |
851 as in `set-keymap-name'. This name is only a debugging convenience; | |
852 it is not used except when printing the keymap. | |
853 */ | |
854 (name)) | |
855 { | |
856 Lisp_Object keymap = make_keymap (8); | |
857 if (!NILP (name)) | |
858 Fset_keymap_name (keymap, name); | |
859 return keymap; | |
860 } | |
861 | |
862 DEFUN ("keymap-parents", Fkeymap_parents, 1, 1, 0, /* | |
863 Return the `parent' keymaps of KEYMAP, or nil. | |
864 The parents of a keymap are searched for keybindings when a key sequence | |
865 isn't bound in this one. `(current-global-map)' is the default parent | |
866 of all keymaps. | |
867 */ | |
868 (keymap)) | |
869 { | |
870 keymap = get_keymap (keymap, 1, 1); | |
871 return Fcopy_sequence (XKEYMAP (keymap)->parents); | |
872 } | |
873 | |
874 | |
875 | |
876 static Lisp_Object | |
2286 | 877 traverse_keymaps_noop (Lisp_Object UNUSED (keymap), void *UNUSED (arg)) |
428 | 878 { |
879 return Qnil; | |
880 } | |
881 | |
882 DEFUN ("set-keymap-parents", Fset_keymap_parents, 2, 2, 0, /* | |
883 Set the `parent' keymaps of KEYMAP to PARENTS. | |
884 The parents of a keymap are searched for keybindings when a key sequence | |
885 isn't bound in this one. `(current-global-map)' is the default parent | |
886 of all keymaps. | |
887 */ | |
888 (keymap, parents)) | |
889 { | |
890 /* This function can GC */ | |
891 Lisp_Object k; | |
892 struct gcpro gcpro1, gcpro2; | |
893 | |
894 GCPRO2 (keymap, parents); | |
895 keymap = get_keymap (keymap, 1, 1); | |
896 | |
897 if (KEYMAPP (parents)) /* backwards-compatibility */ | |
898 parents = list1 (parents); | |
899 if (!NILP (parents)) | |
900 { | |
901 Lisp_Object tail = parents; | |
902 while (!NILP (tail)) | |
903 { | |
904 QUIT; | |
905 CHECK_CONS (tail); | |
906 k = XCAR (tail); | |
907 /* Require that it be an actual keymap object, rather than a symbol | |
908 with a (crockish) symbol-function which is a keymap */ | |
909 CHECK_KEYMAP (k); /* get_keymap (k, 1, 1); */ | |
910 tail = XCDR (tail); | |
911 } | |
912 } | |
913 | |
914 /* Check for circularities */ | |
915 traverse_keymaps (keymap, parents, traverse_keymaps_noop, 0); | |
916 keymap_tick++; | |
917 XKEYMAP (keymap)->parents = Fcopy_sequence (parents); | |
918 UNGCPRO; | |
919 return parents; | |
920 } | |
921 | |
922 DEFUN ("set-keymap-name", Fset_keymap_name, 2, 2, 0, /* | |
923 Set the `name' of the KEYMAP to NEW-NAME. | |
924 The name is only a debugging convenience; it is not used except | |
925 when printing the keymap. | |
926 */ | |
927 (keymap, new_name)) | |
928 { | |
929 keymap = get_keymap (keymap, 1, 1); | |
930 | |
931 XKEYMAP (keymap)->name = new_name; | |
932 return new_name; | |
933 } | |
934 | |
935 DEFUN ("keymap-name", Fkeymap_name, 1, 1, 0, /* | |
936 Return the `name' of KEYMAP. | |
937 The name is only a debugging convenience; it is not used except | |
938 when printing the keymap. | |
939 */ | |
940 (keymap)) | |
941 { | |
942 keymap = get_keymap (keymap, 1, 1); | |
943 | |
944 return XKEYMAP (keymap)->name; | |
945 } | |
946 | |
947 DEFUN ("set-keymap-prompt", Fset_keymap_prompt, 2, 2, 0, /* | |
948 Set the `prompt' of KEYMAP to string NEW-PROMPT, or `nil' | |
949 if no prompt is desired. The prompt is shown in the echo-area | |
950 when reading a key-sequence to be looked-up in this keymap. | |
951 */ | |
952 (keymap, new_prompt)) | |
953 { | |
954 keymap = get_keymap (keymap, 1, 1); | |
955 | |
956 if (!NILP (new_prompt)) | |
957 CHECK_STRING (new_prompt); | |
958 | |
959 XKEYMAP (keymap)->prompt = new_prompt; | |
960 return new_prompt; | |
961 } | |
962 | |
963 static Lisp_Object | |
2286 | 964 keymap_prompt_mapper (Lisp_Object keymap, void *UNUSED (arg)) |
428 | 965 { |
966 return XKEYMAP (keymap)->prompt; | |
967 } | |
968 | |
969 | |
970 DEFUN ("keymap-prompt", Fkeymap_prompt, 1, 2, 0, /* | |
971 Return the `prompt' of KEYMAP. | |
972 If non-nil, the prompt is shown in the echo-area | |
973 when reading a key-sequence to be looked-up in this keymap. | |
974 */ | |
975 (keymap, use_inherited)) | |
976 { | |
977 /* This function can GC */ | |
978 Lisp_Object prompt; | |
979 | |
980 keymap = get_keymap (keymap, 1, 1); | |
981 prompt = XKEYMAP (keymap)->prompt; | |
982 if (!NILP (prompt) || NILP (use_inherited)) | |
983 return prompt; | |
984 else | |
985 return traverse_keymaps (keymap, Qnil, keymap_prompt_mapper, 0); | |
986 } | |
987 | |
988 DEFUN ("set-keymap-default-binding", Fset_keymap_default_binding, 2, 2, 0, /* | |
989 Sets the default binding of KEYMAP to COMMAND, or `nil' | |
990 if no default is desired. The default-binding is returned when | |
991 no other binding for a key-sequence is found in the keymap. | |
992 If a keymap has a non-nil default-binding, neither the keymap's | |
993 parents nor the current global map are searched for key bindings. | |
994 */ | |
995 (keymap, command)) | |
996 { | |
997 /* This function can GC */ | |
998 keymap = get_keymap (keymap, 1, 1); | |
999 | |
1000 XKEYMAP (keymap)->default_binding = command; | |
1001 return command; | |
1002 } | |
1003 | |
1004 DEFUN ("keymap-default-binding", Fkeymap_default_binding, 1, 1, 0, /* | |
1005 Return the default binding of KEYMAP, or `nil' if it has none. | |
1006 The default-binding is returned when no other binding for a key-sequence | |
1007 is found in the keymap. | |
1008 If a keymap has a non-nil default-binding, neither the keymap's | |
1009 parents nor the current global map are searched for key bindings. | |
1010 */ | |
1011 (keymap)) | |
1012 { | |
1013 /* This function can GC */ | |
1014 keymap = get_keymap (keymap, 1, 1); | |
1015 return XKEYMAP (keymap)->default_binding; | |
1016 } | |
1017 | |
1018 DEFUN ("keymapp", Fkeymapp, 1, 1, 0, /* | |
444 | 1019 Return t if OBJECT is a keymap object. |
428 | 1020 The keymap may be autoloaded first if necessary. |
1021 */ | |
1022 (object)) | |
1023 { | |
1024 /* This function can GC */ | |
1025 return KEYMAPP (get_keymap (object, 0, 0)) ? Qt : Qnil; | |
1026 } | |
1027 | |
1028 /* Check that OBJECT is a keymap (after dereferencing through any | |
1029 symbols). If it is, return it. | |
1030 | |
1031 If AUTOLOAD is non-zero and OBJECT is a symbol whose function value | |
1032 is an autoload form, do the autoload and try again. | |
1033 If AUTOLOAD is nonzero, callers must assume GC is possible. | |
1034 | |
1035 ERRORP controls how we respond if OBJECT isn't a keymap. | |
1036 If ERRORP is non-zero, signal an error; otherwise, just return Qnil. | |
1037 | |
1038 Note that most of the time, we don't want to pursue autoloads. | |
1039 Functions like Faccessible_keymaps which scan entire keymap trees | |
1040 shouldn't load every autoloaded keymap. I'm not sure about this, | |
1041 but it seems to me that only read_key_sequence, Flookup_key, and | |
1042 Fdefine_key should cause keymaps to be autoloaded. */ | |
1043 | |
1044 Lisp_Object | |
1045 get_keymap (Lisp_Object object, int errorp, int autoload) | |
1046 { | |
1047 /* This function can GC */ | |
1048 while (1) | |
1049 { | |
1050 Lisp_Object tem = indirect_function (object, 0); | |
1051 | |
1052 if (KEYMAPP (tem)) | |
1053 return tem; | |
1054 /* Should we do an autoload? */ | |
1055 else if (autoload | |
1056 /* (autoload "filename" doc nil keymap) */ | |
1057 && SYMBOLP (object) | |
1058 && CONSP (tem) | |
1059 && EQ (XCAR (tem), Qautoload) | |
1060 && EQ (Fcar (Fcdr (Fcdr (Fcdr (Fcdr (tem))))), Qkeymap)) | |
1061 { | |
970 | 1062 /* do_autoload GCPROs both arguments */ |
428 | 1063 do_autoload (tem, object); |
1064 } | |
1065 else if (errorp) | |
1066 object = wrong_type_argument (Qkeymapp, object); | |
1067 else | |
1068 return Qnil; | |
1069 } | |
1070 } | |
1071 | |
1072 /* Given OBJECT which was found in a slot in a keymap, | |
1073 trace indirect definitions to get the actual definition of that slot. | |
1074 An indirect definition is a list of the form | |
1075 (KEYMAP . INDEX), where KEYMAP is a keymap or a symbol defined as one | |
1076 and INDEX is an ASCII code, or a cons of (KEYSYM . MODIFIERS). | |
1077 */ | |
1078 static Lisp_Object | |
1079 get_keyelt (Lisp_Object object, int accept_default) | |
1080 { | |
1081 /* This function can GC */ | |
1082 Lisp_Object map; | |
1083 | |
1084 tail_recurse: | |
1085 if (!CONSP (object)) | |
1086 return object; | |
1087 | |
1088 { | |
1089 struct gcpro gcpro1; | |
1090 GCPRO1 (object); | |
1091 map = XCAR (object); | |
1092 map = get_keymap (map, 0, 1); | |
1093 UNGCPRO; | |
1094 } | |
1095 /* If the contents are (KEYMAP . ELEMENT), go indirect. */ | |
1096 if (!NILP (map)) | |
1097 { | |
1098 Lisp_Object idx = Fcdr (object); | |
934 | 1099 Lisp_Key_Data indirection; |
428 | 1100 if (CHARP (idx)) |
1101 { | |
934 | 1102 Lisp_Object event = Fmake_event (Qnil, Qnil); |
1103 struct gcpro gcpro1; | |
1104 GCPRO1 (event); | |
1105 character_to_event (XCHAR (idx), XEVENT (event), | |
1106 XCONSOLE (Vselected_console), 0, 0); | |
1204 | 1107 indirection.keysym = XEVENT_KEY_KEYSYM (event); |
1108 indirection.modifiers = XEVENT_KEY_MODIFIERS (event); | |
1109 UNGCPRO; | |
428 | 1110 } |
1111 else if (CONSP (idx)) | |
1112 { | |
1113 if (!INTP (XCDR (idx))) | |
1114 return Qnil; | |
1115 indirection.keysym = XCAR (idx); | |
442 | 1116 indirection.modifiers = (unsigned char) XINT (XCDR (idx)); |
428 | 1117 } |
1118 else if (SYMBOLP (idx)) | |
1119 { | |
1120 indirection.keysym = idx; | |
934 | 1121 SET_KEY_DATA_MODIFIERS (&indirection, XINT (XCDR (idx))); |
428 | 1122 } |
1123 else | |
1124 { | |
1125 /* Random junk */ | |
1126 return Qnil; | |
1127 } | |
1128 return raw_lookup_key (map, &indirection, 1, 0, accept_default); | |
1129 } | |
1130 else if (STRINGP (XCAR (object))) | |
1131 { | |
1132 /* If the keymap contents looks like (STRING . DEFN), | |
1133 use DEFN. | |
1134 Keymap alist elements like (CHAR MENUSTRING . DEFN) | |
1135 will be used by HierarKey menus. */ | |
1136 object = XCDR (object); | |
1137 goto tail_recurse; | |
1138 } | |
1139 else | |
1140 { | |
1141 /* Anything else is really the value. */ | |
1142 return object; | |
1143 } | |
1144 } | |
1145 | |
1146 static Lisp_Object | |
934 | 1147 keymap_lookup_1 (Lisp_Object keymap, const Lisp_Key_Data *key, |
428 | 1148 int accept_default) |
1149 { | |
1150 /* This function can GC */ | |
934 | 1151 return get_keyelt (keymap_lookup_directly (keymap, |
1152 KEY_DATA_KEYSYM (key), | |
1153 KEY_DATA_MODIFIERS (key)), | |
1154 accept_default); | |
428 | 1155 } |
1156 | |
1157 | |
1158 /************************************************************************/ | |
1159 /* Copying keymaps */ | |
1160 /************************************************************************/ | |
1161 | |
1162 struct copy_keymap_inverse_closure | |
1163 { | |
1164 Lisp_Object inverse_table; | |
1165 }; | |
1166 | |
1167 static int | |
1168 copy_keymap_inverse_mapper (Lisp_Object key, Lisp_Object value, | |
1169 void *copy_keymap_inverse_closure) | |
1170 { | |
1171 struct copy_keymap_inverse_closure *closure = | |
1172 (struct copy_keymap_inverse_closure *) copy_keymap_inverse_closure; | |
1173 | |
1174 /* copy-sequence deals with dotted lists. */ | |
1175 if (CONSP (value)) | |
1176 value = Fcopy_list (value); | |
1177 Fputhash (key, value, closure->inverse_table); | |
1178 | |
1179 return 0; | |
1180 } | |
1181 | |
1182 | |
1183 static Lisp_Object | |
1184 copy_keymap_internal (Lisp_Keymap *keymap) | |
1185 { | |
1186 Lisp_Object nkm = make_keymap (0); | |
1187 Lisp_Keymap *new_keymap = XKEYMAP (nkm); | |
1188 struct copy_keymap_inverse_closure copy_keymap_inverse_closure; | |
1189 copy_keymap_inverse_closure.inverse_table = keymap->inverse_table; | |
1190 | |
1191 new_keymap->parents = Fcopy_sequence (keymap->parents); | |
1192 new_keymap->sub_maps_cache = Qnil; /* No submaps */ | |
1193 new_keymap->table = Fcopy_hash_table (keymap->table); | |
1194 new_keymap->inverse_table = Fcopy_hash_table (keymap->inverse_table); | |
1195 new_keymap->default_binding = keymap->default_binding; | |
1196 /* After copying the inverse map, we need to copy the conses which | |
1197 are its values, lest they be shared by the copy, and mangled. | |
1198 */ | |
1199 elisp_maphash (copy_keymap_inverse_mapper, keymap->inverse_table, | |
1200 ©_keymap_inverse_closure); | |
1201 return nkm; | |
1202 } | |
1203 | |
1204 | |
1205 static Lisp_Object copy_keymap (Lisp_Object keymap); | |
1206 | |
1207 struct copy_keymap_closure | |
1208 { | |
1209 Lisp_Keymap *self; | |
1210 }; | |
1211 | |
1212 static int | |
1213 copy_keymap_mapper (Lisp_Object key, Lisp_Object value, | |
1214 void *copy_keymap_closure) | |
1215 { | |
1216 /* This function can GC */ | |
1217 struct copy_keymap_closure *closure = | |
1218 (struct copy_keymap_closure *) copy_keymap_closure; | |
1219 | |
1220 /* When we encounter a keymap which is indirected through a | |
1221 symbol, we need to copy the sub-map. In v18, the form | |
1222 (lookup-key (copy-keymap global-map) "\C-x") | |
3025 | 1223 returned a new keymap, not the symbol `Control-X-prefix'. |
428 | 1224 */ |
1225 value = get_keymap (value, 0, 1); /* #### autoload GC-safe here? */ | |
1226 if (KEYMAPP (value)) | |
1227 keymap_store_internal (key, closure->self, | |
1228 copy_keymap (value)); | |
1229 return 0; | |
1230 } | |
1231 | |
1232 static Lisp_Object | |
1233 copy_keymap (Lisp_Object keymap) | |
1234 { | |
1235 /* This function can GC */ | |
1236 struct copy_keymap_closure copy_keymap_closure; | |
1237 | |
1238 keymap = copy_keymap_internal (XKEYMAP (keymap)); | |
1239 copy_keymap_closure.self = XKEYMAP (keymap); | |
1240 elisp_maphash (copy_keymap_mapper, | |
1241 XKEYMAP (keymap)->table, | |
1242 ©_keymap_closure); | |
1243 return keymap; | |
1244 } | |
1245 | |
1246 DEFUN ("copy-keymap", Fcopy_keymap, 1, 1, 0, /* | |
1247 Return a copy of the keymap KEYMAP. | |
1248 The copy starts out with the same definitions of KEYMAP, | |
1249 but changing either the copy or KEYMAP does not affect the other. | |
1250 Any key definitions that are subkeymaps are recursively copied. | |
1251 */ | |
1252 (keymap)) | |
1253 { | |
1254 /* This function can GC */ | |
1255 keymap = get_keymap (keymap, 1, 1); | |
1256 return copy_keymap (keymap); | |
1257 } | |
1258 | |
1259 | |
1260 static int | |
1261 keymap_fullness (Lisp_Object keymap) | |
1262 { | |
1263 /* This function can GC */ | |
1264 int fullness; | |
1265 Lisp_Object sub_maps; | |
1266 struct gcpro gcpro1, gcpro2; | |
1267 | |
1268 keymap = get_keymap (keymap, 1, 1); | |
440 | 1269 fullness = XINT (Fhash_table_count (XKEYMAP (keymap)->table)); |
428 | 1270 GCPRO2 (keymap, sub_maps); |
440 | 1271 for (sub_maps = keymap_submaps (keymap); |
1272 !NILP (sub_maps); | |
1273 sub_maps = XCDR (sub_maps)) | |
428 | 1274 { |
1275 if (MODIFIER_HASH_KEY_BITS (XCAR (XCAR (sub_maps))) != 0) | |
1276 { | |
440 | 1277 Lisp_Object bucky_map = XCDR (XCAR (sub_maps)); |
1278 fullness--; /* don't count bucky maps themselves. */ | |
1279 fullness += keymap_fullness (bucky_map); | |
428 | 1280 } |
1281 } | |
1282 UNGCPRO; | |
1283 return fullness; | |
1284 } | |
1285 | |
1286 DEFUN ("keymap-fullness", Fkeymap_fullness, 1, 1, 0, /* | |
1287 Return the number of bindings in the keymap. | |
1288 */ | |
1289 (keymap)) | |
1290 { | |
1291 /* This function can GC */ | |
1292 return make_int (keymap_fullness (get_keymap (keymap, 1, 1))); | |
1293 } | |
1294 | |
1295 | |
1296 /************************************************************************/ | |
1297 /* Defining keys in keymaps */ | |
1298 /************************************************************************/ | |
1299 | |
1300 /* Given a keysym (should be a symbol, int, char), make sure it's valid | |
1301 and perform any necessary canonicalization. */ | |
1302 | |
1303 static void | |
1304 define_key_check_and_coerce_keysym (Lisp_Object spec, | |
1305 Lisp_Object *keysym, | |
442 | 1306 int modifiers) |
428 | 1307 { |
1308 /* Now, check and massage the trailing keysym specifier. */ | |
1309 if (SYMBOLP (*keysym)) | |
1310 { | |
826 | 1311 if (string_char_length (XSYMBOL (*keysym)->name) == 1) |
428 | 1312 { |
1313 Lisp_Object ream_gcc_up_the_ass = | |
867 | 1314 make_char (string_ichar (XSYMBOL (*keysym)->name, 0)); |
428 | 1315 *keysym = ream_gcc_up_the_ass; |
1316 goto fixnum_keysym; | |
1317 } | |
1318 } | |
1319 else if (CHAR_OR_CHAR_INTP (*keysym)) | |
1320 { | |
1321 CHECK_CHAR_COERCE_INT (*keysym); | |
1322 fixnum_keysym: | |
1323 if (XCHAR (*keysym) < ' ' | |
1324 /* || (XCHAR (*keysym) >= 128 && XCHAR (*keysym) < 160) */) | |
1325 /* yuck! Can't make the above restriction; too many compatibility | |
1326 problems ... */ | |
563 | 1327 invalid_argument ("keysym char must be printable", *keysym); |
428 | 1328 /* #### This bites! I want to be able to write (control shift a) */ |
442 | 1329 if (modifiers & XEMACS_MOD_SHIFT) |
563 | 1330 invalid_argument |
428 | 1331 ("The `shift' modifier may not be applied to ASCII keysyms", |
1332 spec); | |
1333 } | |
1334 else | |
1335 { | |
563 | 1336 invalid_argument ("Unknown keysym specifier", *keysym); |
428 | 1337 } |
1338 | |
1339 if (SYMBOLP (*keysym)) | |
1340 { | |
867 | 1341 Ibyte *name = XSTRING_DATA (XSYMBOL (*keysym)->name); |
428 | 1342 |
3025 | 1343 /* GNU Emacs uses symbols with the printed representation of keysyms in |
1344 their names, like `M-x', and we use the syntax '(meta x). So, to | |
1345 avoid confusion, notice the M-x syntax and signal an error - | |
1346 because otherwise it would be interpreted as a regular keysym, and | |
1347 would even show up in the list-buffers output, causing confusion | |
1348 to the naive. | |
428 | 1349 |
1350 We can get away with this because none of the X keysym names contain | |
1351 a hyphen (some contain underscore, however). | |
1352 | |
1353 It might be useful to reject keysyms which are not x-valid-keysym- | |
1354 name-p, but that would interfere with various tricks we do to | |
1355 sanitize the Sun keyboards, and would make it trickier to | |
1356 conditionalize a .emacs file for multiple X servers. | |
1357 */ | |
793 | 1358 if (((int) qxestrlen (name) >= 2 && name[1] == '-') |
428 | 1359 #if 1 |
1360 || | |
1361 /* Ok, this is a bit more dubious - prevent people from doing things | |
1362 like (global-set-key 'RET 'something) because that will have the | |
1363 same problem as above. (Gag!) Maybe we should just silently | |
1364 accept these as aliases for the "real" names? | |
1365 */ | |
793 | 1366 (XSTRING_LENGTH (XSYMBOL (*keysym)->name) <= 3 && |
2367 | 1367 (!qxestrcmp_ascii (name, "LFD") || |
1368 !qxestrcmp_ascii (name, "TAB") || | |
1369 !qxestrcmp_ascii (name, "RET") || | |
1370 !qxestrcmp_ascii (name, "ESC") || | |
1371 !qxestrcmp_ascii (name, "DEL") || | |
1372 !qxestrcmp_ascii (name, "SPC") || | |
1373 !qxestrcmp_ascii (name, "BS"))) | |
428 | 1374 #endif /* unused */ |
1375 ) | |
563 | 1376 invalid_argument |
3086 | 1377 ("Invalid (GNU Emacs) key format (see doc of define-key)", |
428 | 1378 *keysym); |
1379 | |
1380 /* #### Ok, this is a bit more dubious - make people not lose if they | |
1381 do things like (global-set-key 'RET 'something) because that would | |
1382 otherwise have the same problem as above. (Gag!) We silently | |
1383 accept these as aliases for the "real" names. | |
1384 */ | |
2367 | 1385 else if (!qxestrncmp_ascii (name, "kp_", 3)) |
793 | 1386 { |
1387 /* Likewise, the obsolete keysym binding of kp_.* should not lose. */ | |
1388 DECLARE_EISTRING (temp); | |
1389 eicpy_raw (temp, name, qxestrlen (name)); | |
1390 eisetch_char (temp, 2, '-'); | |
4355
a2af1ff1761f
Provide a DEFAULT argument in #'intern-soft.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4272
diff
changeset
|
1391 *keysym = Fintern_soft (eimake_string (temp), Qnil, Qnil); |
793 | 1392 } |
1393 else if (EQ (*keysym, QLFD)) | |
428 | 1394 *keysym = QKlinefeed; |
1395 else if (EQ (*keysym, QTAB)) | |
1396 *keysym = QKtab; | |
1397 else if (EQ (*keysym, QRET)) | |
1398 *keysym = QKreturn; | |
1399 else if (EQ (*keysym, QESC)) | |
1400 *keysym = QKescape; | |
1401 else if (EQ (*keysym, QDEL)) | |
1402 *keysym = QKdelete; | |
1403 else if (EQ (*keysym, QSPC)) | |
1404 *keysym = QKspace; | |
1405 else if (EQ (*keysym, QBS)) | |
1406 *keysym = QKbackspace; | |
1407 /* Emacs compatibility */ | |
1408 else if (EQ(*keysym, Qdown_mouse_1)) | |
4272 | 1409 *keysym = Qbutton1; |
428 | 1410 else if (EQ(*keysym, Qdown_mouse_2)) |
1411 *keysym = Qbutton2; | |
1412 else if (EQ(*keysym, Qdown_mouse_3)) | |
1413 *keysym = Qbutton3; | |
1414 else if (EQ(*keysym, Qdown_mouse_4)) | |
1415 *keysym = Qbutton4; | |
1416 else if (EQ(*keysym, Qdown_mouse_5)) | |
1417 *keysym = Qbutton5; | |
458 | 1418 else if (EQ(*keysym, Qdown_mouse_6)) |
1419 *keysym = Qbutton6; | |
1420 else if (EQ(*keysym, Qdown_mouse_7)) | |
1421 *keysym = Qbutton7; | |
4272 | 1422 else if (EQ(*keysym, Qdown_mouse_8)) |
1423 *keysym = Qbutton8; | |
1424 else if (EQ(*keysym, Qdown_mouse_9)) | |
1425 *keysym = Qbutton9; | |
1426 else if (EQ(*keysym, Qdown_mouse_10)) | |
1427 *keysym = Qbutton10; | |
1428 else if (EQ(*keysym, Qdown_mouse_11)) | |
1429 *keysym = Qbutton11; | |
1430 else if (EQ(*keysym, Qdown_mouse_12)) | |
1431 *keysym = Qbutton12; | |
1432 else if (EQ(*keysym, Qdown_mouse_13)) | |
1433 *keysym = Qbutton13; | |
1434 else if (EQ(*keysym, Qdown_mouse_14)) | |
1435 *keysym = Qbutton14; | |
1436 else if (EQ(*keysym, Qdown_mouse_15)) | |
1437 *keysym = Qbutton15; | |
1438 else if (EQ(*keysym, Qdown_mouse_16)) | |
1439 *keysym = Qbutton16; | |
1440 else if (EQ(*keysym, Qdown_mouse_17)) | |
1441 *keysym = Qbutton17; | |
1442 else if (EQ(*keysym, Qdown_mouse_18)) | |
1443 *keysym = Qbutton18; | |
1444 else if (EQ(*keysym, Qdown_mouse_19)) | |
1445 *keysym = Qbutton19; | |
1446 else if (EQ(*keysym, Qdown_mouse_20)) | |
1447 *keysym = Qbutton20; | |
1448 else if (EQ(*keysym, Qdown_mouse_21)) | |
1449 *keysym = Qbutton21; | |
1450 else if (EQ(*keysym, Qdown_mouse_22)) | |
1451 *keysym = Qbutton22; | |
1452 else if (EQ(*keysym, Qdown_mouse_23)) | |
1453 *keysym = Qbutton23; | |
1454 else if (EQ(*keysym, Qdown_mouse_24)) | |
1455 *keysym = Qbutton24; | |
1456 else if (EQ(*keysym, Qdown_mouse_25)) | |
1457 *keysym = Qbutton25; | |
1458 else if (EQ(*keysym, Qdown_mouse_26)) | |
1459 *keysym = Qbutton26; | |
428 | 1460 else if (EQ(*keysym, Qmouse_1)) |
1461 *keysym = Qbutton1up; | |
1462 else if (EQ(*keysym, Qmouse_2)) | |
1463 *keysym = Qbutton2up; | |
1464 else if (EQ(*keysym, Qmouse_3)) | |
1465 *keysym = Qbutton3up; | |
1466 else if (EQ(*keysym, Qmouse_4)) | |
1467 *keysym = Qbutton4up; | |
1468 else if (EQ(*keysym, Qmouse_5)) | |
1469 *keysym = Qbutton5up; | |
458 | 1470 else if (EQ(*keysym, Qmouse_6)) |
1471 *keysym = Qbutton6up; | |
1472 else if (EQ(*keysym, Qmouse_7)) | |
1473 *keysym = Qbutton7up; | |
4272 | 1474 else if (EQ(*keysym, Qmouse_8)) |
1475 *keysym = Qbutton8up; | |
1476 else if (EQ(*keysym, Qmouse_9)) | |
1477 *keysym = Qbutton9up; | |
1478 else if (EQ(*keysym, Qmouse_10)) | |
1479 *keysym = Qbutton10up; | |
1480 else if (EQ(*keysym, Qmouse_11)) | |
1481 *keysym = Qbutton11up; | |
1482 else if (EQ(*keysym, Qmouse_12)) | |
1483 *keysym = Qbutton12up; | |
1484 else if (EQ(*keysym, Qmouse_13)) | |
1485 *keysym = Qbutton13up; | |
1486 else if (EQ(*keysym, Qmouse_14)) | |
1487 *keysym = Qbutton14up; | |
1488 else if (EQ(*keysym, Qmouse_15)) | |
1489 *keysym = Qbutton15up; | |
1490 else if (EQ(*keysym, Qmouse_16)) | |
1491 *keysym = Qbutton16up; | |
1492 else if (EQ(*keysym, Qmouse_17)) | |
1493 *keysym = Qbutton17up; | |
1494 else if (EQ(*keysym, Qmouse_18)) | |
1495 *keysym = Qbutton18up; | |
1496 else if (EQ(*keysym, Qmouse_19)) | |
1497 *keysym = Qbutton19up; | |
1498 else if (EQ(*keysym, Qmouse_20)) | |
1499 *keysym = Qbutton20up; | |
1500 else if (EQ(*keysym, Qmouse_21)) | |
1501 *keysym = Qbutton21up; | |
1502 else if (EQ(*keysym, Qmouse_22)) | |
1503 *keysym = Qbutton22up; | |
1504 else if (EQ(*keysym, Qmouse_23)) | |
1505 *keysym = Qbutton23up; | |
1506 else if (EQ(*keysym, Qmouse_24)) | |
1507 *keysym = Qbutton24up; | |
1508 else if (EQ(*keysym, Qmouse_25)) | |
1509 *keysym = Qbutton25up; | |
1510 else if (EQ(*keysym, Qmouse_26)) | |
1511 *keysym = Qbutton26up; | |
428 | 1512 } |
1513 } | |
1514 | |
1515 | |
1516 /* Given any kind of key-specifier, return a keysym and modifier mask. | |
1517 Proper canonicalization is performed: | |
1518 | |
1519 -- integers are converted into the equivalent characters. | |
1520 -- one-character strings are converted into the equivalent characters. | |
1521 */ | |
1522 | |
1523 static void | |
934 | 1524 define_key_parser (Lisp_Object spec, Lisp_Key_Data *returned_value) |
428 | 1525 { |
1526 if (CHAR_OR_CHAR_INTP (spec)) | |
1527 { | |
934 | 1528 Lisp_Object event = Fmake_event (Qnil, Qnil); |
1529 struct gcpro gcpro1; | |
1530 GCPRO1 (event); | |
1531 character_to_event (XCHAR_OR_CHAR_INT (spec), XEVENT (event), | |
1532 XCONSOLE (Vselected_console), 0, 0); | |
1204 | 1533 SET_KEY_DATA_KEYSYM (returned_value, XEVENT_KEY_KEYSYM (event)); |
934 | 1534 SET_KEY_DATA_MODIFIERS (returned_value, |
1204 | 1535 XEVENT_KEY_MODIFIERS (event)); |
1536 UNGCPRO; | |
428 | 1537 } |
1538 else if (EVENTP (spec)) | |
1539 { | |
934 | 1540 switch (XEVENT_TYPE (spec)) |
428 | 1541 { |
1542 case key_press_event: | |
1543 { | |
1204 | 1544 SET_KEY_DATA_KEYSYM (returned_value, XEVENT_KEY_KEYSYM (spec)); |
1545 SET_KEY_DATA_MODIFIERS (returned_value, XEVENT_KEY_MODIFIERS (spec)); | |
428 | 1546 break; |
1547 } | |
1548 case button_press_event: | |
1549 case button_release_event: | |
1550 { | |
934 | 1551 int down = (XEVENT_TYPE (spec) == button_press_event); |
1204 | 1552 switch (XEVENT_BUTTON_BUTTON (spec)) |
934 | 1553 { |
1554 case 1: | |
1555 SET_KEY_DATA_KEYSYM (returned_value, (down ? Qbutton1 : Qbutton1up)); | |
1556 break; | |
1557 case 2: | |
1558 SET_KEY_DATA_KEYSYM (returned_value, (down ? Qbutton2 : Qbutton2up)); | |
1559 break; | |
1560 case 3: | |
1561 SET_KEY_DATA_KEYSYM (returned_value, (down ? Qbutton3 : Qbutton3up)); | |
1562 break; | |
1563 case 4: | |
1564 SET_KEY_DATA_KEYSYM (returned_value, (down ? Qbutton4 : Qbutton4up)); | |
1565 break; | |
1566 case 5: | |
1567 SET_KEY_DATA_KEYSYM (returned_value, (down ? Qbutton5 : Qbutton5up)); | |
1568 break; | |
1569 case 6: | |
1570 SET_KEY_DATA_KEYSYM (returned_value, (down ? Qbutton6 : Qbutton6up)); | |
1571 break; | |
1572 case 7: | |
1573 SET_KEY_DATA_KEYSYM (returned_value, (down ? Qbutton7 : Qbutton7up)); | |
1574 break; | |
4272 | 1575 case 8: |
1576 SET_KEY_DATA_KEYSYM(returned_value, (down ? Qbutton8 : Qbutton8up)); | |
1577 break; | |
1578 case 9: | |
1579 SET_KEY_DATA_KEYSYM(returned_value, (down ? Qbutton9 : Qbutton9up)); | |
1580 break; | |
1581 case 10: | |
1582 SET_KEY_DATA_KEYSYM(returned_value, (down ? Qbutton10 : Qbutton10up)); | |
1583 break; | |
1584 case 11: | |
1585 SET_KEY_DATA_KEYSYM(returned_value, (down ? Qbutton11 : Qbutton11up)); | |
1586 break; | |
1587 case 12: | |
1588 SET_KEY_DATA_KEYSYM(returned_value, (down ? Qbutton12 : Qbutton12up)); | |
1589 break; | |
1590 case 13: | |
1591 SET_KEY_DATA_KEYSYM(returned_value, (down ? Qbutton13 : Qbutton13up)); | |
1592 break; | |
1593 case 14: | |
1594 SET_KEY_DATA_KEYSYM(returned_value, (down ? Qbutton14 : Qbutton14up)); | |
1595 break; | |
1596 case 15: | |
1597 SET_KEY_DATA_KEYSYM(returned_value, (down ? Qbutton15 : Qbutton15up)); | |
1598 break; | |
1599 case 16: | |
1600 SET_KEY_DATA_KEYSYM(returned_value, (down ? Qbutton16 : Qbutton16up)); | |
1601 break; | |
1602 case 17: | |
1603 SET_KEY_DATA_KEYSYM(returned_value, (down ? Qbutton17 : Qbutton17up)); | |
1604 break; | |
1605 case 18: | |
1606 SET_KEY_DATA_KEYSYM(returned_value, (down ? Qbutton18 : Qbutton18up)); | |
1607 break; | |
1608 case 19: | |
1609 SET_KEY_DATA_KEYSYM(returned_value, (down ? Qbutton19 : Qbutton19up)); | |
1610 break; | |
1611 case 20: | |
1612 SET_KEY_DATA_KEYSYM(returned_value, (down ? Qbutton20 : Qbutton20up)); | |
1613 break; | |
1614 case 21: | |
1615 SET_KEY_DATA_KEYSYM(returned_value, (down ? Qbutton21 : Qbutton21up)); | |
1616 break; | |
1617 case 22: | |
1618 SET_KEY_DATA_KEYSYM(returned_value, (down ? Qbutton22 : Qbutton22up)); | |
1619 break; | |
1620 case 23: | |
1621 SET_KEY_DATA_KEYSYM(returned_value, (down ? Qbutton23 : Qbutton23up)); | |
1622 break; | |
1623 case 24: | |
1624 SET_KEY_DATA_KEYSYM(returned_value, (down ? Qbutton24 : Qbutton24up)); | |
1625 break; | |
1626 case 25: | |
1627 SET_KEY_DATA_KEYSYM(returned_value, (down ? Qbutton25 : Qbutton25up)); | |
1628 break; | |
1629 case 26: | |
1630 SET_KEY_DATA_KEYSYM(returned_value, (down ? Qbutton26 : Qbutton26up)); | |
1631 break; | |
934 | 1632 default: |
1633 SET_KEY_DATA_KEYSYM (returned_value, (down ? Qbutton0 : Qbutton0up)); | |
1634 break; | |
1635 } | |
1204 | 1636 SET_KEY_DATA_MODIFIERS (returned_value, XEVENT_BUTTON_MODIFIERS (spec)); |
428 | 1637 break; |
1638 } | |
1639 default: | |
563 | 1640 wtaerror ("unable to bind this type of event", spec); |
428 | 1641 } |
1642 } | |
1643 else if (SYMBOLP (spec)) | |
1644 { | |
1645 /* Be nice, allow = to mean (=) */ | |
1646 if (bucky_sym_to_bucky_bit (spec) != 0) | |
563 | 1647 invalid_argument ("Key is a modifier name", spec); |
428 | 1648 define_key_check_and_coerce_keysym (spec, &spec, 0); |
934 | 1649 SET_KEY_DATA_KEYSYM (returned_value, spec); |
1650 SET_KEY_DATA_MODIFIERS (returned_value, 0); | |
428 | 1651 } |
1652 else if (CONSP (spec)) | |
1653 { | |
442 | 1654 int modifiers = 0; |
428 | 1655 Lisp_Object keysym = Qnil; |
1656 Lisp_Object rest = spec; | |
1657 | |
1658 /* First, parse out the leading modifier symbols. */ | |
1659 while (CONSP (rest)) | |
1660 { | |
442 | 1661 int modifier; |
428 | 1662 |
1663 keysym = XCAR (rest); | |
1664 modifier = bucky_sym_to_bucky_bit (keysym); | |
1665 modifiers |= modifier; | |
1666 if (!NILP (XCDR (rest))) | |
1667 { | |
1668 if (! modifier) | |
563 | 1669 invalid_argument ("Unknown modifier", keysym); |
428 | 1670 } |
1671 else | |
1672 { | |
1673 if (modifier) | |
563 | 1674 sferror ("Nothing but modifiers here", |
428 | 1675 spec); |
1676 } | |
1677 rest = XCDR (rest); | |
1678 QUIT; | |
1679 } | |
1680 if (!NILP (rest)) | |
563 | 1681 signal_error (Qlist_formation_error, |
1682 "List must be nil-terminated", spec); | |
428 | 1683 |
1684 define_key_check_and_coerce_keysym (spec, &keysym, modifiers); | |
934 | 1685 SET_KEY_DATA_KEYSYM(returned_value, keysym); |
1686 SET_KEY_DATA_MODIFIERS (returned_value, modifiers); | |
428 | 1687 } |
1688 else | |
1689 { | |
563 | 1690 invalid_argument ("Unknown key-sequence specifier", |
428 | 1691 spec); |
1692 } | |
1693 } | |
1694 | |
1695 /* Used by character-to-event */ | |
1696 void | |
1697 key_desc_list_to_event (Lisp_Object list, Lisp_Object event, | |
1698 int allow_menu_events) | |
1699 { | |
934 | 1700 Lisp_Key_Data raw_key; |
428 | 1701 |
1702 if (allow_menu_events && | |
1703 CONSP (list) && | |
1704 /* #### where the hell does this come from? */ | |
1705 EQ (XCAR (list), Qmenu_selection)) | |
1706 { | |
1707 Lisp_Object fn, arg; | |
1708 if (! NILP (Fcdr (Fcdr (list)))) | |
563 | 1709 invalid_argument ("Invalid menu event desc", list); |
428 | 1710 arg = Fcar (Fcdr (list)); |
1711 if (SYMBOLP (arg)) | |
1712 fn = Qcall_interactively; | |
1713 else | |
1714 fn = Qeval; | |
934 | 1715 XSET_EVENT_TYPE (event, misc_user_event); |
1204 | 1716 XSET_EVENT_CHANNEL (event, wrap_frame (selected_frame ())); |
1717 XSET_EVENT_MISC_USER_FUNCTION (event, fn); | |
1718 XSET_EVENT_MISC_USER_OBJECT (event, arg); | |
428 | 1719 return; |
1720 } | |
1721 | |
1722 define_key_parser (list, &raw_key); | |
1723 | |
1724 if (EQ (raw_key.keysym, Qbutton0) || EQ (raw_key.keysym, Qbutton0up) || | |
1725 EQ (raw_key.keysym, Qbutton1) || EQ (raw_key.keysym, Qbutton1up) || | |
1726 EQ (raw_key.keysym, Qbutton2) || EQ (raw_key.keysym, Qbutton2up) || | |
1727 EQ (raw_key.keysym, Qbutton3) || EQ (raw_key.keysym, Qbutton3up) || | |
1728 EQ (raw_key.keysym, Qbutton4) || EQ (raw_key.keysym, Qbutton4up) || | |
1729 EQ (raw_key.keysym, Qbutton5) || EQ (raw_key.keysym, Qbutton5up) || | |
1730 EQ (raw_key.keysym, Qbutton6) || EQ (raw_key.keysym, Qbutton6up) || | |
4272 | 1731 EQ (raw_key.keysym, Qbutton7) || EQ (raw_key.keysym, Qbutton7up) || |
1732 EQ (raw_key.keysym, Qbutton8) || EQ (raw_key.keysym, Qbutton8up) || | |
1733 EQ (raw_key.keysym, Qbutton9) || EQ (raw_key.keysym, Qbutton9up) || | |
1734 EQ (raw_key.keysym, Qbutton10) || EQ (raw_key.keysym, Qbutton10up) || | |
1735 EQ (raw_key.keysym, Qbutton11) || EQ (raw_key.keysym, Qbutton11up) || | |
1736 EQ (raw_key.keysym, Qbutton12) || EQ (raw_key.keysym, Qbutton12up) || | |
1737 EQ (raw_key.keysym, Qbutton13) || EQ (raw_key.keysym, Qbutton13up) || | |
1738 EQ (raw_key.keysym, Qbutton14) || EQ (raw_key.keysym, Qbutton14up) || | |
1739 EQ (raw_key.keysym, Qbutton15) || EQ (raw_key.keysym, Qbutton15up) || | |
1740 EQ (raw_key.keysym, Qbutton16) || EQ (raw_key.keysym, Qbutton16up) || | |
1741 EQ (raw_key.keysym, Qbutton17) || EQ (raw_key.keysym, Qbutton17up) || | |
1742 EQ (raw_key.keysym, Qbutton18) || EQ (raw_key.keysym, Qbutton18up) || | |
1743 EQ (raw_key.keysym, Qbutton19) || EQ (raw_key.keysym, Qbutton19up) || | |
1744 EQ (raw_key.keysym, Qbutton20) || EQ (raw_key.keysym, Qbutton20up) || | |
1745 EQ (raw_key.keysym, Qbutton21) || EQ (raw_key.keysym, Qbutton21up) || | |
1746 EQ (raw_key.keysym, Qbutton22) || EQ (raw_key.keysym, Qbutton22up) || | |
1747 EQ (raw_key.keysym, Qbutton23) || EQ (raw_key.keysym, Qbutton23up) || | |
1748 EQ (raw_key.keysym, Qbutton24) || EQ (raw_key.keysym, Qbutton24up) || | |
1749 EQ (raw_key.keysym, Qbutton25) || EQ (raw_key.keysym, Qbutton25up) || | |
1750 EQ (raw_key.keysym, Qbutton26) || EQ (raw_key.keysym, Qbutton26up)) | |
563 | 1751 invalid_operation ("Mouse-clicks can't appear in saved keyboard macros", |
1752 Qunbound); | |
428 | 1753 |
934 | 1754 XSET_EVENT_CHANNEL (event, Vselected_console); |
1755 XSET_EVENT_TYPE (event, key_press_event); | |
1204 | 1756 XSET_EVENT_KEY_KEYSYM (event, raw_key.keysym); |
1757 XSET_EVENT_KEY_MODIFIERS (event, KEY_DATA_MODIFIERS (&raw_key)); | |
428 | 1758 } |
1759 | |
1760 | |
1761 int | |
1204 | 1762 event_matches_key_specifier_p (Lisp_Object event, Lisp_Object key_specifier) |
428 | 1763 { |
446 | 1764 Lisp_Object event2 = Qnil; |
428 | 1765 int retval; |
1766 struct gcpro gcpro1; | |
1767 | |
1204 | 1768 if (XEVENT_TYPE (event) != key_press_event || NILP (key_specifier) || |
428 | 1769 (INTP (key_specifier) && !CHAR_INTP (key_specifier))) |
1770 return 0; | |
1771 | |
1772 /* if the specifier is an integer such as 27, then it should match | |
3025 | 1773 both of the events `escape' and `control ['. Calling |
1774 Fcharacter_to_event() will only match `escape'. */ | |
428 | 1775 if (CHAR_OR_CHAR_INTP (key_specifier)) |
1776 return (XCHAR_OR_CHAR_INT (key_specifier) | |
2828 | 1777 == event_to_character (event, 0, 0)); |
428 | 1778 |
1779 /* Otherwise, we cannot call event_to_character() because we may | |
1780 be dealing with non-ASCII keystrokes. In any case, if I ask | |
3025 | 1781 for `control [' then I should get exactly that, and not |
1782 `escape'. | |
1783 | |
1784 However, we have to behave differently on TTY's, where `control [' | |
1785 is silently converted into `escape' by the keyboard driver. | |
428 | 1786 In this case, ASCII is the only thing we know about, so we have |
1787 to compare the ASCII values. */ | |
1788 | |
1789 GCPRO1 (event2); | |
1204 | 1790 if (EVENTP (key_specifier)) |
1791 event2 = Fcopy_event (key_specifier, Qnil); | |
1792 else | |
1793 event2 = Fcharacter_to_event (key_specifier, Qnil, Qnil, Qnil); | |
428 | 1794 if (XEVENT (event2)->event_type != key_press_event) |
1795 retval = 0; | |
1204 | 1796 else if (CONSOLE_TTY_P (XCONSOLE (XEVENT_CHANNEL (event)))) |
428 | 1797 { |
1798 int ch1, ch2; | |
1799 | |
2828 | 1800 ch1 = event_to_character (event, 0, 0); |
1801 ch2 = event_to_character (event2, 0, 0); | |
428 | 1802 retval = (ch1 >= 0 && ch2 >= 0 && ch1 == ch2); |
1803 } | |
1204 | 1804 else if (EQ (XEVENT_KEY_KEYSYM (event), XEVENT_KEY_KEYSYM (event2)) && |
1805 XEVENT_KEY_MODIFIERS (event) == XEVENT_KEY_MODIFIERS (event2)) | |
428 | 1806 retval = 1; |
1807 else | |
1808 retval = 0; | |
1809 Fdeallocate_event (event2); | |
1810 UNGCPRO; | |
1811 return retval; | |
1812 } | |
1813 | |
1814 static int | |
934 | 1815 meta_prefix_char_p (const Lisp_Key_Data *key) |
428 | 1816 { |
934 | 1817 Lisp_Object event = Fmake_event (Qnil, Qnil); |
1818 struct gcpro gcpro1; | |
1204 | 1819 int retval; |
1820 | |
934 | 1821 GCPRO1 (event); |
1822 | |
1823 XSET_EVENT_TYPE (event, key_press_event); | |
1824 XSET_EVENT_CHANNEL (event, Vselected_console); | |
1204 | 1825 XSET_EVENT_KEY_KEYSYM (event, KEY_DATA_KEYSYM (key)); |
1826 XSET_EVENT_KEY_MODIFIERS (event, KEY_DATA_MODIFIERS (key)); | |
1827 retval = event_matches_key_specifier_p (event, Vmeta_prefix_char); | |
1828 UNGCPRO; | |
1829 return retval; | |
428 | 1830 } |
1831 | |
1832 DEFUN ("event-matches-key-specifier-p", Fevent_matches_key_specifier_p, 2, 2, 0, /* | |
1833 Return non-nil if EVENT matches KEY-SPECIFIER. | |
1834 This can be useful, e.g., to determine if the user pressed `help-char' or | |
1835 `quit-char'. | |
1204 | 1836 |
1837 KEY-SPECIFIER can be a character, integer, a symbol, a list of modifiers | |
1838 and symbols, or an event. | |
1839 | |
1840 What this actually happens is this: | |
1841 | |
1842 \(1) Return no, if EVENT is not a key press event or if KEY-SPECIFIER is nil | |
1843 or an integer that cannot be converted to a character. | |
1844 | |
1845 \(2) If KEY-SPECIFIER is a character or integer, | |
1846 (event-to-character EVENT nil nil nil) is called, and the characters are | |
1847 compared to get the result. The reason for special-casing this and doing | |
1848 it this way is to ensure that, e.g., a KEY-SPECIFIER of 27 matches both | |
1849 a key-press `escape' and a key-press `control ['. #### Think about META | |
1850 argument to event-to-character. | |
1851 | |
1852 \(3) If KEY-SPECIFIER is an event, fine; else, convert to an event using | |
1853 \(character-to-event KEY-SPECIFIER nil nil nil). If EVENT is not on a TTY, | |
1854 we just compare keysyms and modifiers and return yes if both are equal. | |
1855 For TTY, we do character-level comparison by converting both to a character | |
1856 with (event-to-character ... nil nil nil) and comparing the characters. | |
1857 | |
428 | 1858 */ |
1859 (event, key_specifier)) | |
1860 { | |
1861 CHECK_LIVE_EVENT (event); | |
1204 | 1862 return (event_matches_key_specifier_p (event, key_specifier) ? Qt : Qnil); |
428 | 1863 } |
1204 | 1864 #define MACROLET(k, m) do { \ |
1865 SET_KEY_DATA_KEYSYM (returned_value, k); \ | |
1866 SET_KEY_DATA_MODIFIERS (returned_value, m); \ | |
1867 RETURN_SANS_WARNINGS; \ | |
934 | 1868 } while (0) |
428 | 1869 /* ASCII grunge. |
1870 Given a keysym, return another keysym/modifier pair which could be | |
1871 considered the same key in an ASCII world. Backspace returns ^H, for | |
1872 example. | |
1873 */ | |
1874 static void | |
934 | 1875 define_key_alternate_name (Lisp_Key_Data *key, |
1876 Lisp_Key_Data *returned_value) | |
428 | 1877 { |
934 | 1878 Lisp_Object keysym = KEY_DATA_KEYSYM (key); |
1879 int modifiers = KEY_DATA_MODIFIERS (key); | |
442 | 1880 int modifiers_sans_control = (modifiers & (~XEMACS_MOD_CONTROL)); |
1881 int modifiers_sans_meta = (modifiers & (~XEMACS_MOD_META)); | |
934 | 1882 SET_KEY_DATA_KEYSYM (returned_value, Qnil); /* By default, no "alternate" key */ |
1883 SET_KEY_DATA_MODIFIERS (returned_value, 0); | |
442 | 1884 if (modifiers_sans_meta == XEMACS_MOD_CONTROL) |
428 | 1885 { |
722 | 1886 if (EQ (keysym, QKspace)) |
428 | 1887 MACROLET (make_char ('@'), modifiers); |
1888 else if (!CHARP (keysym)) | |
1889 return; | |
1890 else switch (XCHAR (keysym)) | |
1891 { | |
1892 case '@': /* c-@ => c-space */ | |
1893 MACROLET (QKspace, modifiers); | |
1894 case 'h': /* c-h => backspace */ | |
1895 MACROLET (QKbackspace, modifiers_sans_control); | |
1896 case 'i': /* c-i => tab */ | |
1897 MACROLET (QKtab, modifiers_sans_control); | |
1898 case 'j': /* c-j => linefeed */ | |
1899 MACROLET (QKlinefeed, modifiers_sans_control); | |
1900 case 'm': /* c-m => return */ | |
1901 MACROLET (QKreturn, modifiers_sans_control); | |
1902 case '[': /* c-[ => escape */ | |
1903 MACROLET (QKescape, modifiers_sans_control); | |
1904 default: | |
1905 return; | |
1906 } | |
1907 } | |
1908 else if (modifiers_sans_meta != 0) | |
1909 return; | |
1910 else if (EQ (keysym, QKbackspace)) /* backspace => c-h */ | |
442 | 1911 MACROLET (make_char ('h'), (modifiers | XEMACS_MOD_CONTROL)); |
428 | 1912 else if (EQ (keysym, QKtab)) /* tab => c-i */ |
442 | 1913 MACROLET (make_char ('i'), (modifiers | XEMACS_MOD_CONTROL)); |
428 | 1914 else if (EQ (keysym, QKlinefeed)) /* linefeed => c-j */ |
442 | 1915 MACROLET (make_char ('j'), (modifiers | XEMACS_MOD_CONTROL)); |
428 | 1916 else if (EQ (keysym, QKreturn)) /* return => c-m */ |
442 | 1917 MACROLET (make_char ('m'), (modifiers | XEMACS_MOD_CONTROL)); |
428 | 1918 else if (EQ (keysym, QKescape)) /* escape => c-[ */ |
442 | 1919 MACROLET (make_char ('['), (modifiers | XEMACS_MOD_CONTROL)); |
428 | 1920 else |
1921 return; | |
1922 #undef MACROLET | |
1923 } | |
1924 | |
1925 static void | |
1926 ensure_meta_prefix_char_keymapp (Lisp_Object keys, int indx, | |
1927 Lisp_Object keymap) | |
1928 { | |
1929 /* This function can GC */ | |
1930 Lisp_Object new_keys; | |
1931 int i; | |
1932 Lisp_Object mpc_binding; | |
934 | 1933 Lisp_Key_Data meta_key; |
428 | 1934 if (NILP (Vmeta_prefix_char) || |
1935 (INTP (Vmeta_prefix_char) && !CHAR_INTP (Vmeta_prefix_char))) | |
1936 return; | |
1937 | |
1938 define_key_parser (Vmeta_prefix_char, &meta_key); | |
1939 mpc_binding = keymap_lookup_1 (keymap, &meta_key, 0); | |
1940 if (NILP (mpc_binding) || !NILP (Fkeymapp (mpc_binding))) | |
1941 return; | |
1942 | |
1943 if (indx == 0) | |
1944 new_keys = keys; | |
1945 else if (STRINGP (keys)) | |
1946 new_keys = Fsubstring (keys, Qzero, make_int (indx)); | |
1947 else if (VECTORP (keys)) | |
1948 { | |
1949 new_keys = make_vector (indx, Qnil); | |
1950 for (i = 0; i < indx; i++) | |
1951 XVECTOR_DATA (new_keys) [i] = XVECTOR_DATA (keys) [i]; | |
1952 } | |
1953 else | |
442 | 1954 { |
1955 new_keys = Qnil; | |
2500 | 1956 ABORT (); |
442 | 1957 } |
428 | 1958 |
1959 if (EQ (keys, new_keys)) | |
563 | 1960 signal_ferror_with_frob (Qinvalid_operation, mpc_binding, |
1961 "can't bind %s: %s has a non-keymap binding", | |
1962 (char *) XSTRING_DATA (Fkey_description (keys)), | |
1963 (char *) XSTRING_DATA (Fsingle_key_description | |
1964 (Vmeta_prefix_char))); | |
428 | 1965 else |
563 | 1966 signal_ferror_with_frob (Qinvalid_operation, mpc_binding, |
1967 "can't bind %s: %s %s has a non-keymap binding", | |
1968 (char *) XSTRING_DATA (Fkey_description (keys)), | |
1969 (char *) XSTRING_DATA (Fkey_description | |
1970 (new_keys)), | |
1971 (char *) XSTRING_DATA (Fsingle_key_description | |
1972 (Vmeta_prefix_char))); | |
428 | 1973 } |
1974 | |
1975 DEFUN ("define-key", Fdefine_key, 3, 3, 0, /* | |
1976 Define key sequence KEYS, in KEYMAP, as DEF. | |
1977 KEYMAP is a keymap object. | |
3086 | 1978 KEYS is the key sequence to bind, described below. |
428 | 1979 DEF is anything that can be a key's definition: |
1980 nil (means key is undefined in this keymap); | |
1981 a command (a Lisp function suitable for interactive calling); | |
1982 a string or key sequence vector (treated as a keyboard macro); | |
1983 a keymap (to define a prefix key); | |
1984 a symbol; when the key is looked up, the symbol will stand for its | |
1985 function definition, that should at that time be one of the above, | |
1986 or another symbol whose function definition is used, and so on. | |
1987 a cons (STRING . DEFN), meaning that DEFN is the definition | |
1988 (DEFN should be a valid definition in its own right); | |
1989 or a cons (KEYMAP . CHAR), meaning use definition of CHAR in map KEYMAP. | |
1990 | |
3086 | 1991 A `key sequence' is a vector of one or more keystrokes. |
1992 A `keystroke' is a list containing a key and zero or more modifiers. The | |
1993 key must be the last element of the list. | |
1994 A `key' is a symbol corresponding to a key on the keyboard, or to a mouse | |
1995 gesture. Mouse clicks are denoted by symbols prefixed with "button", | |
1996 followed by a digit for which button, and optionally "up". Thus `button1' | |
1997 means the down-stroke and `button1up' means the up-stroke when clicking | |
1998 mouse button 1. | |
1999 A `modifier' is a symbol naming a physical key which is only "noticed" by | |
2000 XEmacs when chorded with another key. The `shift' modifier is a special | |
2001 case. You cannot use `(meta shift a)' to mean `(meta A)', since for | |
2002 characters that have ASCII equivalents, the state of the shift key is | |
2003 implicit in the keysym (a vs. A). You also cannot say `(shift =)' to mean | |
2004 `+', as that correspondence varies from keyboard to keyboard. The shift | |
2005 modifier can only be applied to keys that do not have a second keysym on the | |
2006 same key, such as `backspace' and `tab'. A mouse click may be combined with | |
2007 modifiers to create a compound "keystroke". | |
2008 | |
2009 The keys, mouse gestures, and modifiers that are available depend on your | |
2010 console and its driver. At a minimum the ASCII graphic characters will be | |
2011 available as keys, and shift, control, and meta as modifiers. | |
2012 | |
2013 To find out programmatically what a key is bound to, use `key-binding' to | |
2014 check all applicable keymaps, or `lookup-key' to check a specific keymap. | |
2015 The documentation for `key-binding' also contains a description of which | |
2016 keymaps are applicable in various situations. `where-is-internal' does | |
2017 the opposite of `key-binding', i.e. searches keymaps for the keys that | |
2018 map to a particular binding. | |
2019 | |
2020 If you are confused about why a particular key sequence is generating a | |
2021 particular binding, and looking through the keymaps doesn't help, setting | |
2022 the variable `debug-emacs-events' may help. If not, try checking | |
2023 what's in `function-key-map' and `key-translation-map'. | |
2024 | |
2025 When running under a window system, typically the repertoire of keys is | |
2026 vastly expanded. XEmacs does its best to use the names defined on each | |
2027 platform. Also, when running under a window system, XEmacs can tell the | |
2028 difference between the keystrokes control-h, control-shift-h, and backspace. | |
2029 If the symbols differ, you can bind different actions to each. For mouse | |
2030 clicks, different commands may be bound to the up and down strokes, though | |
2031 that is probably not what you want, so be careful. | |
2032 | |
2033 Variant representations: | |
2034 | |
2035 Besides the canonical representation as a vector of lists of symbols, | |
2036 `define-key' also accepts a number of abbreviations, aliases, and variants | |
2037 for convenience, compatibility, and internal use. | |
2038 | |
2039 A keystroke may be represented by a key; this is treated as though it were a | |
2040 list containing that key as the only element. A keystroke may also be | |
2041 represented by an event object, as returned by the `next-command-event' and | |
2042 `read-key-sequence' functions. A key sequence may be represented by a | |
2043 single keystroke; this is treated as a vector containing that keystroke as | |
2044 its only element. | |
2045 | |
2046 A key may be represented by a character or its equivalent integer code, | |
2047 if and only if it is equivalent to a character with a code in the range | |
2048 32 - 255. | |
2049 | |
2050 For backward compatibility, a key sequence may also be represented by a | |
2051 string. In this case, it represents the key sequence(s) that would | |
2052 produce that sequence of ASCII characters in a purely ASCII world. An | |
2053 alternative string representation is keyboard macro notation, which can | |
2054 be translated to the canonical representation with `kbd'. | |
2055 | |
2056 Examples: | |
2057 | |
2058 The key sequence `A' (which invokes `self-insert-command') is represented | |
2059 by all of these forms: | |
428 | 2060 A ?A 65 (A) (?A) (65) |
2061 [A] [?A] [65] [(A)] [(?A)] [(65)] | |
2062 | |
3086 | 2063 The key sequence `control-a' is represented by these forms: |
428 | 2064 (control A) (control ?A) (control 65) |
2065 [(control A)] [(control ?A)] [(control 65)] | |
3086 | 2066 |
2067 The key sequence `control-c control-a' is represented by these forms: | |
428 | 2068 [(control c) (control a)] [(control ?c) (control ?a)] |
2069 [(control 99) (control 65)] etc. | |
2070 | |
3086 | 2071 The keystroke `control-b' *may not* be represented by the number 2 (the |
2072 ASCII code for ^B) or the character `?\^B'. | |
2073 | |
2074 The `break' key may be represented only by the symbol `break'. | |
2075 | |
428 | 2076 Mouse button clicks work just like keypresses: (control button1) means |
2077 pressing the left mouse button while holding down the control key. | |
3086 | 2078 |
2079 A string containing the ASCII backspace character, "\\^H", would represent | |
2080 two key sequences: `(control h)' and `backspace'. Binding a | |
428 | 2081 command to this will actually bind both of those key sequences. Likewise |
2082 for the following pairs: | |
2083 | |
2084 control h backspace | |
2085 control i tab | |
2086 control m return | |
2087 control j linefeed | |
2088 control [ escape | |
2089 control @ control space | |
2090 | |
2091 After binding a command to two key sequences with a form like | |
2092 | |
2093 (define-key global-map "\\^X\\^I" \'command-1) | |
2094 | |
2095 it is possible to redefine only one of those sequences like so: | |
2096 | |
2097 (define-key global-map [(control x) (control i)] \'command-2) | |
2098 (define-key global-map [(control x) tab] \'command-3) | |
2099 */ | |
2100 (keymap, keys, def)) | |
2101 { | |
2102 /* This function can GC */ | |
2103 int idx; | |
2104 int metized = 0; | |
2105 int len; | |
2106 int ascii_hack; | |
2107 struct gcpro gcpro1, gcpro2, gcpro3; | |
2108 | |
2109 if (VECTORP (keys)) | |
2110 len = XVECTOR_LENGTH (keys); | |
2111 else if (STRINGP (keys)) | |
826 | 2112 len = string_char_length (keys); |
428 | 2113 else if (CHAR_OR_CHAR_INTP (keys) || SYMBOLP (keys) || CONSP (keys)) |
2114 { | |
2115 if (!CONSP (keys)) keys = list1 (keys); | |
2116 len = 1; | |
2117 keys = make_vector (1, keys); /* this is kinda sleazy. */ | |
2118 } | |
2119 else | |
2120 { | |
2121 keys = wrong_type_argument (Qsequencep, keys); | |
2122 len = XINT (Flength (keys)); | |
2123 } | |
2124 if (len == 0) | |
2125 return Qnil; | |
2126 | |
2127 GCPRO3 (keymap, keys, def); | |
2128 | |
2129 /* ASCII grunge. | |
2130 When the user defines a key which, in a strictly ASCII world, would be | |
2131 produced by two different keys (^J and linefeed, or ^H and backspace, | |
2132 for example) then the binding will be made for both keysyms. | |
2133 | |
2134 This is done if the user binds a command to a string, as in | |
3086 | 2135 (define-key map "\^H" 'something), but not when using the canonical |
2136 syntax (define-key map '(control h) 'something). | |
428 | 2137 */ |
2138 ascii_hack = (STRINGP (keys)); | |
2139 | |
2140 keymap = get_keymap (keymap, 1, 1); | |
2141 | |
2142 idx = 0; | |
2143 while (1) | |
2144 { | |
2145 Lisp_Object c; | |
934 | 2146 Lisp_Key_Data raw_key1; |
2147 Lisp_Key_Data raw_key2; | |
428 | 2148 if (STRINGP (keys)) |
867 | 2149 c = make_char (string_ichar (keys, idx)); |
428 | 2150 else |
2151 c = XVECTOR_DATA (keys) [idx]; | |
2152 | |
2153 define_key_parser (c, &raw_key1); | |
2154 | |
2155 if (!metized && ascii_hack && meta_prefix_char_p (&raw_key1)) | |
2156 { | |
2157 if (idx == (len - 1)) | |
2158 { | |
2159 /* This is a hack to prevent a binding for the meta-prefix-char | |
2160 from being made in a map which already has a non-empty "meta" | |
2161 submap. That is, we can't let both "escape" and "meta" have | |
2162 a binding in the same keymap. This implies that the idiom | |
2163 (define-key my-map "\e" my-escape-map) | |
2164 (define-key my-escape-map "a" 'my-command) | |
2165 no longer works. That's ok. Instead the luser should do | |
2166 (define-key my-map "\ea" 'my-command) | |
2167 or, more correctly | |
2168 (define-key my-map "\M-a" 'my-command) | |
2169 and then perhaps | |
2170 (defvar my-escape-map (lookup-key my-map "\e")) | |
2171 if the luser really wants the map in a variable. | |
2172 */ | |
440 | 2173 Lisp_Object meta_map; |
428 | 2174 struct gcpro ngcpro1; |
2175 | |
2176 NGCPRO1 (c); | |
442 | 2177 meta_map = Fgethash (MAKE_MODIFIER_HASH_KEY (XEMACS_MOD_META), |
440 | 2178 XKEYMAP (keymap)->table, Qnil); |
2179 if (!NILP (meta_map) | |
2180 && keymap_fullness (meta_map) != 0) | |
563 | 2181 invalid_operation_2 |
440 | 2182 ("Map contains meta-bindings, can't bind", |
2183 Fsingle_key_description (Vmeta_prefix_char), keymap); | |
428 | 2184 NUNGCPRO; |
2185 } | |
2186 else | |
2187 { | |
2188 metized = 1; | |
2189 idx++; | |
2190 continue; | |
2191 } | |
2192 } | |
2193 | |
2194 if (ascii_hack) | |
2195 define_key_alternate_name (&raw_key1, &raw_key2); | |
2196 else | |
2197 { | |
2198 raw_key2.keysym = Qnil; | |
2199 raw_key2.modifiers = 0; | |
2200 } | |
2201 | |
2202 if (metized) | |
2203 { | |
442 | 2204 raw_key1.modifiers |= XEMACS_MOD_META; |
2205 raw_key2.modifiers |= XEMACS_MOD_META; | |
428 | 2206 metized = 0; |
2207 } | |
2208 | |
2209 /* This crap is to make sure that someone doesn't bind something like | |
2210 "C-x M-a" while "C-x ESC" has a non-keymap binding. */ | |
442 | 2211 if (raw_key1.modifiers & XEMACS_MOD_META) |
428 | 2212 ensure_meta_prefix_char_keymapp (keys, idx, keymap); |
2213 | |
2214 if (++idx == len) | |
2215 { | |
2216 keymap_store (keymap, &raw_key1, def); | |
2217 if (ascii_hack && !NILP (raw_key2.keysym)) | |
2218 keymap_store (keymap, &raw_key2, def); | |
2219 UNGCPRO; | |
2220 return def; | |
2221 } | |
2222 | |
2223 { | |
2224 Lisp_Object cmd; | |
2225 struct gcpro ngcpro1; | |
2226 NGCPRO1 (c); | |
2227 | |
2228 cmd = keymap_lookup_1 (keymap, &raw_key1, 0); | |
2229 if (NILP (cmd)) | |
2230 { | |
2231 cmd = Fmake_sparse_keymap (Qnil); | |
2232 XKEYMAP (cmd)->name /* for debugging */ | |
2233 = list2 (make_key_description (&raw_key1, 1), keymap); | |
2234 keymap_store (keymap, &raw_key1, cmd); | |
2235 } | |
2236 if (NILP (Fkeymapp (cmd))) | |
563 | 2237 sferror_2 ("Invalid prefix keys in sequence", |
428 | 2238 c, keys); |
2239 | |
2240 if (ascii_hack && !NILP (raw_key2.keysym) && | |
2241 NILP (keymap_lookup_1 (keymap, &raw_key2, 0))) | |
2242 keymap_store (keymap, &raw_key2, cmd); | |
2243 | |
2244 keymap = get_keymap (cmd, 1, 1); | |
2245 NUNGCPRO; | |
2246 } | |
2247 } | |
2248 } | |
2249 | |
2250 | |
2251 /************************************************************************/ | |
2252 /* Looking up keys in keymaps */ | |
2253 /************************************************************************/ | |
2254 | |
2255 /* We need a very fast (i.e., non-consing) version of lookup-key in order | |
2256 to make where-is-internal really fly. */ | |
2257 | |
2258 struct raw_lookup_key_mapper_closure | |
2259 { | |
2260 int remaining; | |
934 | 2261 const Lisp_Key_Data *raw_keys; |
428 | 2262 int raw_keys_count; |
2263 int keys_so_far; | |
2264 int accept_default; | |
2265 }; | |
2266 | |
2267 static Lisp_Object raw_lookup_key_mapper (Lisp_Object k, void *); | |
2268 | |
2269 /* Caller should gc-protect args (keymaps may autoload) */ | |
2270 static Lisp_Object | |
2271 raw_lookup_key (Lisp_Object keymap, | |
934 | 2272 const Lisp_Key_Data *raw_keys, int raw_keys_count, |
428 | 2273 int keys_so_far, int accept_default) |
2274 { | |
2275 /* This function can GC */ | |
2276 struct raw_lookup_key_mapper_closure c; | |
2277 c.remaining = raw_keys_count - 1; | |
2278 c.raw_keys = raw_keys; | |
2279 c.raw_keys_count = raw_keys_count; | |
2280 c.keys_so_far = keys_so_far; | |
2281 c.accept_default = accept_default; | |
2282 | |
2283 return traverse_keymaps (keymap, Qnil, raw_lookup_key_mapper, &c); | |
2284 } | |
2285 | |
2286 static Lisp_Object | |
2287 raw_lookup_key_mapper (Lisp_Object k, void *arg) | |
2288 { | |
2289 /* This function can GC */ | |
2290 struct raw_lookup_key_mapper_closure *c = | |
2291 (struct raw_lookup_key_mapper_closure *) arg; | |
2292 int accept_default = c->accept_default; | |
2293 int remaining = c->remaining; | |
2294 int keys_so_far = c->keys_so_far; | |
934 | 2295 const Lisp_Key_Data *raw_keys = c->raw_keys; |
428 | 2296 Lisp_Object cmd; |
2297 | |
2298 if (! meta_prefix_char_p (&(raw_keys[0]))) | |
2299 { | |
2300 /* Normal case: every case except the meta-hack (see below). */ | |
2301 cmd = keymap_lookup_1 (k, &(raw_keys[0]), accept_default); | |
2302 | |
2303 if (remaining == 0) | |
2304 /* Return whatever we found if we're out of keys */ | |
2305 ; | |
2306 else if (NILP (cmd)) | |
2307 /* Found nothing (though perhaps parent map may have binding) */ | |
2308 ; | |
2309 else if (NILP (Fkeymapp (cmd))) | |
2310 /* Didn't find a keymap, and we have more keys. | |
2311 * Return a fixnum to indicate that keys were too long. | |
2312 */ | |
2313 cmd = make_int (keys_so_far + 1); | |
2314 else | |
2315 cmd = raw_lookup_key (cmd, raw_keys + 1, remaining, | |
2316 keys_so_far + 1, accept_default); | |
2317 } | |
2318 else | |
2319 { | |
2320 /* This is a hack so that looking up a key-sequence whose last | |
2321 * element is the meta-prefix-char will return the keymap that | |
2322 * the "meta" keys are stored in, if there is no binding for | |
2323 * the meta-prefix-char (and if this map has a "meta" submap). | |
2324 * If this map doesn't have a "meta" submap, then the | |
2325 * meta-prefix-char is looked up just like any other key. | |
2326 */ | |
2327 if (remaining == 0) | |
2328 { | |
2329 /* First look for the prefix-char directly */ | |
2330 cmd = keymap_lookup_1 (k, &(raw_keys[0]), accept_default); | |
2331 if (NILP (cmd)) | |
2332 { | |
2333 /* Do kludgy return of the meta-map */ | |
442 | 2334 cmd = Fgethash (MAKE_MODIFIER_HASH_KEY (XEMACS_MOD_META), |
428 | 2335 XKEYMAP (k)->table, Qnil); |
2336 } | |
2337 } | |
2338 else | |
2339 { | |
2340 /* Search for the prefix-char-prefixed sequence directly */ | |
2341 cmd = keymap_lookup_1 (k, &(raw_keys[0]), accept_default); | |
2342 cmd = get_keymap (cmd, 0, 1); | |
2343 if (!NILP (cmd)) | |
2344 cmd = raw_lookup_key (cmd, raw_keys + 1, remaining, | |
2345 keys_so_far + 1, accept_default); | |
442 | 2346 else if ((raw_keys[1].modifiers & XEMACS_MOD_META) == 0) |
428 | 2347 { |
934 | 2348 Lisp_Key_Data metified; |
428 | 2349 metified.keysym = raw_keys[1].keysym; |
442 | 2350 metified.modifiers = raw_keys[1].modifiers | |
2351 (unsigned char) XEMACS_MOD_META; | |
428 | 2352 |
2353 /* Search for meta-next-char sequence directly */ | |
2354 cmd = keymap_lookup_1 (k, &metified, accept_default); | |
2355 if (remaining == 1) | |
2356 ; | |
2357 else | |
2358 { | |
2359 cmd = get_keymap (cmd, 0, 1); | |
2360 if (!NILP (cmd)) | |
2361 cmd = raw_lookup_key (cmd, raw_keys + 2, remaining - 1, | |
2362 keys_so_far + 2, | |
2363 accept_default); | |
2364 } | |
2365 } | |
2366 } | |
2367 } | |
2368 if (accept_default && NILP (cmd)) | |
2369 cmd = XKEYMAP (k)->default_binding; | |
2370 return cmd; | |
2371 } | |
2372 | |
2373 /* Value is number if `keys' is too long; NIL if valid but has no definition.*/ | |
2374 /* Caller should gc-protect arguments */ | |
2375 static Lisp_Object | |
2376 lookup_keys (Lisp_Object keymap, int nkeys, Lisp_Object *keys, | |
2377 int accept_default) | |
2378 { | |
2379 /* This function can GC */ | |
934 | 2380 Lisp_Key_Data kkk[20]; |
2381 Lisp_Key_Data *raw_keys; | |
428 | 2382 int i; |
2383 | |
2384 if (nkeys == 0) | |
2385 return Qnil; | |
2386 | |
438 | 2387 if (nkeys < countof (kkk)) |
428 | 2388 raw_keys = kkk; |
2389 else | |
934 | 2390 raw_keys = alloca_array (Lisp_Key_Data, nkeys); |
428 | 2391 |
2392 for (i = 0; i < nkeys; i++) | |
2393 { | |
2394 define_key_parser (keys[i], &(raw_keys[i])); | |
2395 } | |
2396 return raw_lookup_key (keymap, raw_keys, nkeys, 0, accept_default); | |
2397 } | |
2398 | |
2399 static Lisp_Object | |
2400 lookup_events (Lisp_Object event_head, int nmaps, Lisp_Object keymaps[], | |
2401 int accept_default) | |
2402 { | |
2403 /* This function can GC */ | |
934 | 2404 Lisp_Key_Data kkk[20]; |
428 | 2405 Lisp_Object event; |
2406 | |
2407 int nkeys; | |
934 | 2408 Lisp_Key_Data *raw_keys; |
428 | 2409 Lisp_Object tem = Qnil; |
2410 struct gcpro gcpro1, gcpro2; | |
2411 int iii; | |
2412 | |
2413 CHECK_LIVE_EVENT (event_head); | |
2414 | |
2415 nkeys = event_chain_count (event_head); | |
2416 | |
438 | 2417 if (nkeys < countof (kkk)) |
428 | 2418 raw_keys = kkk; |
2419 else | |
934 | 2420 raw_keys = alloca_array (Lisp_Key_Data, nkeys); |
428 | 2421 |
2422 nkeys = 0; | |
2423 EVENT_CHAIN_LOOP (event, event_head) | |
2424 define_key_parser (event, &(raw_keys[nkeys++])); | |
2425 GCPRO2 (keymaps[0], event_head); | |
2426 gcpro1.nvars = nmaps; | |
2427 /* ####raw_keys[].keysym slots aren't gc-protected. We rely (but shouldn't) | |
2428 * on somebody else somewhere (obarray) having a pointer to all keysyms. */ | |
2429 for (iii = 0; iii < nmaps; iii++) | |
2430 { | |
2431 tem = raw_lookup_key (keymaps[iii], raw_keys, nkeys, 0, | |
2432 accept_default); | |
2433 if (INTP (tem)) | |
2434 { | |
2435 /* Too long in some local map means don't look at global map */ | |
2436 tem = Qnil; | |
2437 break; | |
2438 } | |
2439 else if (!NILP (tem)) | |
2440 break; | |
2441 } | |
2442 UNGCPRO; | |
2443 return tem; | |
2444 } | |
2445 | |
2446 DEFUN ("lookup-key", Flookup_key, 2, 3, 0, /* | |
2447 In keymap KEYMAP, look up key-sequence KEYS. Return the definition. | |
2448 Nil is returned if KEYS is unbound. See documentation of `define-key' | |
2449 for valid key definitions and key-sequence specifications. | |
2450 A number is returned if KEYS is "too long"; that is, the leading | |
2451 characters fail to be a valid sequence of prefix characters in KEYMAP. | |
444 | 2452 The number is how many key strokes at the front of KEYS it takes to |
2453 reach a non-prefix command. | |
428 | 2454 */ |
2455 (keymap, keys, accept_default)) | |
2456 { | |
2457 /* This function can GC */ | |
2458 if (VECTORP (keys)) | |
2459 return lookup_keys (keymap, | |
2460 XVECTOR_LENGTH (keys), | |
2461 XVECTOR_DATA (keys), | |
2462 !NILP (accept_default)); | |
2463 else if (SYMBOLP (keys) || CHAR_OR_CHAR_INTP (keys) || CONSP (keys)) | |
2464 return lookup_keys (keymap, 1, &keys, !NILP (accept_default)); | |
2465 else if (STRINGP (keys)) | |
2466 { | |
826 | 2467 int length = string_char_length (keys); |
428 | 2468 int i; |
934 | 2469 Lisp_Key_Data *raw_keys = alloca_array (Lisp_Key_Data, length); |
428 | 2470 if (length == 0) |
2471 return Qnil; | |
2472 | |
2473 for (i = 0; i < length; i++) | |
2474 { | |
867 | 2475 Ichar n = string_ichar (keys, i); |
428 | 2476 define_key_parser (make_char (n), &(raw_keys[i])); |
2477 } | |
2478 return raw_lookup_key (keymap, raw_keys, length, 0, | |
2479 !NILP (accept_default)); | |
2480 } | |
2481 else | |
2482 { | |
2483 keys = wrong_type_argument (Qsequencep, keys); | |
2484 return Flookup_key (keymap, keys, accept_default); | |
2485 } | |
2486 } | |
2487 | |
2488 /* Given a key sequence, returns a list of keymaps to search for bindings. | |
2489 Does all manner of semi-hairy heuristics, like looking in the current | |
2490 buffer's map before looking in the global map and looking in the local | |
2491 map of the buffer in which the mouse was clicked in event0 is a click. | |
2492 | |
2493 It would be kind of nice if this were in Lisp so that this semi-hairy | |
2494 semi-heuristic command-lookup behavior could be readily understood and | |
2495 customised. However, this needs to be pretty fast, or performance of | |
2496 keyboard macros goes to shit; putting this in lisp slows macros down | |
2497 2-3x. And they're already slower than v18 by 5-6x. | |
2498 */ | |
2499 | |
2500 struct relevant_maps | |
2501 { | |
2502 int nmaps; | |
647 | 2503 int max_maps; |
428 | 2504 Lisp_Object *maps; |
2505 struct gcpro *gcpro; | |
2506 }; | |
2507 | |
2508 static void get_relevant_extent_keymaps (Lisp_Object pos, | |
2509 Lisp_Object buffer_or_string, | |
2510 Lisp_Object glyph, | |
2511 struct relevant_maps *closure); | |
2512 static void get_relevant_minor_maps (Lisp_Object buffer, | |
2513 struct relevant_maps *closure); | |
2514 | |
2515 static void | |
2516 relevant_map_push (Lisp_Object map, struct relevant_maps *closure) | |
2517 { | |
647 | 2518 int nmaps = closure->nmaps; |
428 | 2519 |
2520 if (!KEYMAPP (map)) | |
2521 return; | |
2522 closure->nmaps = nmaps + 1; | |
2523 if (nmaps < closure->max_maps) | |
2524 { | |
2525 closure->maps[nmaps] = map; | |
2526 closure->gcpro->nvars = nmaps; | |
2527 } | |
2528 } | |
2529 | |
2530 static int | |
2531 get_relevant_keymaps (Lisp_Object keys, | |
2532 int max_maps, Lisp_Object maps[]) | |
2533 { | |
2534 /* This function can GC */ | |
2535 Lisp_Object terminal = Qnil; | |
2536 struct gcpro gcpro1; | |
2537 struct relevant_maps closure; | |
2538 struct console *con; | |
2539 | |
2540 GCPRO1 (*maps); | |
2541 gcpro1.nvars = 0; | |
2542 closure.nmaps = 0; | |
2543 closure.max_maps = max_maps; | |
2544 closure.maps = maps; | |
2545 closure.gcpro = &gcpro1; | |
2546 | |
2547 if (EVENTP (keys)) | |
2548 terminal = event_chain_tail (keys); | |
2549 else if (VECTORP (keys)) | |
2550 { | |
2551 int len = XVECTOR_LENGTH (keys); | |
2552 if (len > 0) | |
2553 terminal = XVECTOR_DATA (keys)[len - 1]; | |
2554 } | |
2555 | |
2556 if (EVENTP (terminal)) | |
2557 { | |
2558 CHECK_LIVE_EVENT (terminal); | |
2559 con = event_console_or_selected (terminal); | |
2560 } | |
2561 else | |
2562 con = XCONSOLE (Vselected_console); | |
2563 | |
2564 if (KEYMAPP (con->overriding_terminal_local_map) | |
2565 || KEYMAPP (Voverriding_local_map)) | |
2566 { | |
2567 if (KEYMAPP (con->overriding_terminal_local_map)) | |
2568 relevant_map_push (con->overriding_terminal_local_map, &closure); | |
2569 if (KEYMAPP (Voverriding_local_map)) | |
2570 relevant_map_push (Voverriding_local_map, &closure); | |
2571 } | |
2572 else if (!EVENTP (terminal) | |
2573 || (XEVENT (terminal)->event_type != button_press_event | |
2574 && XEVENT (terminal)->event_type != button_release_event)) | |
2575 { | |
793 | 2576 Lisp_Object tem = wrap_buffer (current_buffer); |
2577 | |
428 | 2578 /* It's not a mouse event; order of keymaps searched is: |
2579 o keymap of any/all extents under the mouse | |
2580 o minor-mode maps | |
2581 o local-map of current-buffer | |
771 | 2582 o global-tty-map or global-window-system-map |
428 | 2583 o global-map |
2584 */ | |
2585 /* The terminal element of the lookup may be nil or a keysym. | |
2586 In those cases we don't want to check for an extent | |
2587 keymap. */ | |
2588 if (EVENTP (terminal)) | |
2589 { | |
2590 get_relevant_extent_keymaps (make_int (BUF_PT (current_buffer)), | |
2591 tem, Qnil, &closure); | |
2592 } | |
2593 get_relevant_minor_maps (tem, &closure); | |
2594 | |
2595 tem = current_buffer->keymap; | |
2596 if (!NILP (tem)) | |
2597 relevant_map_push (tem, &closure); | |
2598 } | |
2599 #ifdef HAVE_WINDOW_SYSTEM | |
2600 else | |
2601 { | |
2602 /* It's a mouse event; order of keymaps searched is: | |
2603 o vertical-divider-map, if event is over a divider | |
2604 o local-map of mouse-grabbed-buffer | |
2605 o keymap of any/all extents under the mouse | |
2606 if the mouse is over a modeline: | |
2607 o modeline-map of buffer corresponding to that modeline | |
2608 o else, local-map of buffer under the mouse | |
2609 o minor-mode maps | |
2610 o local-map of current-buffer | |
771 | 2611 o global-tty-map or global-window-system-map |
428 | 2612 o global-map |
2613 */ | |
2614 Lisp_Object window = Fevent_window (terminal); | |
2615 | |
2616 if (!NILP (Fevent_over_vertical_divider_p (terminal))) | |
2617 { | |
2618 if (KEYMAPP (Vvertical_divider_map)) | |
2619 relevant_map_push (Vvertical_divider_map, &closure); | |
2620 } | |
2621 | |
2622 if (BUFFERP (Vmouse_grabbed_buffer)) | |
2623 { | |
2624 Lisp_Object map = XBUFFER (Vmouse_grabbed_buffer)->keymap; | |
2625 | |
2626 get_relevant_minor_maps (Vmouse_grabbed_buffer, &closure); | |
2627 if (!NILP (map)) | |
2628 relevant_map_push (map, &closure); | |
2629 } | |
2630 | |
2631 if (!NILP (window)) | |
2632 { | |
2633 Lisp_Object buffer = Fwindow_buffer (window); | |
2634 | |
2635 if (!NILP (buffer)) | |
2636 { | |
2637 if (!NILP (Fevent_over_modeline_p (terminal))) | |
2638 { | |
2639 Lisp_Object map = symbol_value_in_buffer (Qmodeline_map, | |
2640 buffer); | |
2641 | |
2642 get_relevant_extent_keymaps | |
2643 (Fevent_modeline_position (terminal), | |
2644 XBUFFER (buffer)->generated_modeline_string, | |
438 | 2645 Fevent_glyph_extent (terminal), &closure); |
428 | 2646 |
2647 if (!UNBOUNDP (map) && !NILP (map)) | |
2648 relevant_map_push (get_keymap (map, 1, 1), &closure); | |
2649 } | |
2650 else | |
2651 { | |
2652 get_relevant_extent_keymaps (Fevent_point (terminal), buffer, | |
2653 Fevent_glyph_extent (terminal), | |
2654 &closure); | |
2655 } | |
2656 | |
2657 if (!EQ (buffer, Vmouse_grabbed_buffer)) /* already pushed */ | |
2658 { | |
2659 Lisp_Object map = XBUFFER (buffer)->keymap; | |
2660 | |
2661 get_relevant_minor_maps (buffer, &closure); | |
2662 if (!NILP(map)) | |
2663 relevant_map_push (map, &closure); | |
2664 } | |
2665 } | |
2666 } | |
2667 else if (!NILP (Fevent_over_toolbar_p (terminal))) | |
2668 { | |
2669 Lisp_Object map = Fsymbol_value (Qtoolbar_map); | |
2670 | |
2671 if (!UNBOUNDP (map) && !NILP (map)) | |
2672 relevant_map_push (map, &closure); | |
2673 } | |
2674 } | |
2675 #endif /* HAVE_WINDOW_SYSTEM */ | |
2676 | |
771 | 2677 if (CONSOLE_TTY_P (con)) |
2678 relevant_map_push (Vglobal_tty_map, &closure); | |
2679 else | |
2680 relevant_map_push (Vglobal_window_system_map, &closure); | |
2681 | |
428 | 2682 { |
2683 int nmaps = closure.nmaps; | |
2684 /* Silently truncate at 100 keymaps to prevent infinite lossage */ | |
2685 if (nmaps >= max_maps && max_maps > 0) | |
2686 maps[max_maps - 1] = Vcurrent_global_map; | |
2687 else | |
2688 maps[nmaps] = Vcurrent_global_map; | |
2689 UNGCPRO; | |
2690 return nmaps + 1; | |
2691 } | |
2692 } | |
2693 | |
2694 /* Returns a set of keymaps extracted from the extents at POS in | |
2695 BUFFER_OR_STRING. The GLYPH arg, if specified, is one more extent | |
2696 to look for a keymap in, and if it has one, its keymap will be the | |
2697 first element in the list returned. This is so we can correctly | |
2698 search the keymaps associated with glyphs which may be physically | |
2699 disjoint from their extents: for example, if a glyph is out in the | |
2700 margin, we should still consult the keymap of that glyph's extent, | |
2701 which may not itself be under the mouse. | |
2702 */ | |
2703 | |
2704 static void | |
2705 get_relevant_extent_keymaps (Lisp_Object pos, Lisp_Object buffer_or_string, | |
2706 Lisp_Object glyph, | |
2707 struct relevant_maps *closure) | |
2708 { | |
2709 /* This function can GC */ | |
2710 /* the glyph keymap, if any, comes first. | |
2711 (Processing it twice is no big deal: noop.) */ | |
2712 if (!NILP (glyph)) | |
2713 { | |
2714 Lisp_Object keymap = Fextent_property (glyph, Qkeymap, Qnil); | |
2715 if (!NILP (keymap)) | |
2716 relevant_map_push (get_keymap (keymap, 1, 1), closure); | |
2717 } | |
2718 | |
2719 /* Next check the extents at the text position, if any */ | |
2720 if (!NILP (pos)) | |
2721 { | |
2722 Lisp_Object extent; | |
2723 for (extent = Fextent_at (pos, buffer_or_string, Qkeymap, Qnil, Qnil); | |
2724 !NILP (extent); | |
2725 extent = Fextent_at (pos, buffer_or_string, Qkeymap, extent, Qnil)) | |
2726 { | |
2727 Lisp_Object keymap = Fextent_property (extent, Qkeymap, Qnil); | |
2728 if (!NILP (keymap)) | |
2729 relevant_map_push (get_keymap (keymap, 1, 1), closure); | |
2730 QUIT; | |
2731 } | |
2732 } | |
2733 } | |
2734 | |
2735 static Lisp_Object | |
2736 minor_mode_keymap_predicate (Lisp_Object assoc, Lisp_Object buffer) | |
2737 { | |
2738 /* This function can GC */ | |
2739 if (CONSP (assoc)) | |
2740 { | |
2741 Lisp_Object sym = XCAR (assoc); | |
2742 if (SYMBOLP (sym)) | |
2743 { | |
2744 Lisp_Object val = symbol_value_in_buffer (sym, buffer); | |
2745 if (!NILP (val) && !UNBOUNDP (val)) | |
2746 { | |
793 | 2747 return get_keymap (XCDR (assoc), 0, 1); |
428 | 2748 } |
2749 } | |
2750 } | |
2751 return Qnil; | |
2752 } | |
2753 | |
2754 static void | |
2755 get_relevant_minor_maps (Lisp_Object buffer, struct relevant_maps *closure) | |
2756 { | |
2757 /* This function can GC */ | |
2758 Lisp_Object alist; | |
2759 | |
2760 /* Will you ever lose badly if you make this circular! */ | |
2761 for (alist = symbol_value_in_buffer (Qminor_mode_map_alist, buffer); | |
2762 CONSP (alist); | |
2763 alist = XCDR (alist)) | |
2764 { | |
2765 Lisp_Object m = minor_mode_keymap_predicate (XCAR (alist), | |
2766 buffer); | |
2767 if (!NILP (m)) relevant_map_push (m, closure); | |
2768 QUIT; | |
2769 } | |
2770 } | |
2771 | |
2772 /* #### Would map-current-keymaps be a better thing?? */ | |
2773 DEFUN ("current-keymaps", Fcurrent_keymaps, 0, 1, 0, /* | |
2774 Return a list of the current keymaps that will be searched for bindings. | |
2775 This lists keymaps such as the current local map and the minor-mode maps, | |
2776 but does not list the parents of those keymaps. | |
2777 EVENT-OR-KEYS controls which keymaps will be listed. | |
2778 If EVENT-OR-KEYS is a mouse event (or a vector whose last element is a | |
2779 mouse event), the keymaps for that mouse event will be listed (see | |
2780 `key-binding'). Otherwise, the keymaps for key presses will be listed. | |
771 | 2781 See `key-binding' for a description of which keymaps are searched in |
2782 various situations. | |
428 | 2783 */ |
2784 (event_or_keys)) | |
2785 { | |
2786 /* This function can GC */ | |
2787 struct gcpro gcpro1; | |
2788 Lisp_Object maps[100]; | |
2789 Lisp_Object *gubbish = maps; | |
2790 int nmaps; | |
2791 | |
2792 GCPRO1 (event_or_keys); | |
2793 nmaps = get_relevant_keymaps (event_or_keys, countof (maps), | |
2794 gubbish); | |
2795 if (nmaps > countof (maps)) | |
2796 { | |
2797 gubbish = alloca_array (Lisp_Object, nmaps); | |
2798 nmaps = get_relevant_keymaps (event_or_keys, nmaps, gubbish); | |
2799 } | |
2800 UNGCPRO; | |
2801 return Flist (nmaps, gubbish); | |
2802 } | |
2803 | |
2804 DEFUN ("key-binding", Fkey_binding, 1, 2, 0, /* | |
2805 Return the binding for command KEYS in current keymaps. | |
2806 KEYS is a string, a vector of events, or a vector of key-description lists | |
2807 as described in the documentation for the `define-key' function. | |
2808 The binding is probably a symbol with a function definition; see | |
2809 the documentation for `lookup-key' for more information. | |
2810 | |
2811 For key-presses, the order of keymaps searched is: | |
2812 - the `keymap' property of any extent(s) at point; | |
2813 - any applicable minor-mode maps; | |
444 | 2814 - the current local map of the current-buffer; |
771 | 2815 - either `global-tty-map' or `global-window-system-map', depending on |
2816 whether the current console is a TTY or non-TTY console; | |
428 | 2817 - the current global map. |
2818 | |
2819 For mouse-clicks, the order of keymaps searched is: | |
2820 - the current-local-map of the `mouse-grabbed-buffer' if any; | |
2821 - vertical-divider-map, if the event happened over a vertical divider | |
2822 - the `keymap' property of any extent(s) at the position of the click | |
2823 (this includes modeline extents); | |
2824 - the modeline-map of the buffer corresponding to the modeline under | |
2825 the mouse (if the click happened over a modeline); | |
444 | 2826 - the value of `toolbar-map' in the current-buffer (if the click |
428 | 2827 happened over a toolbar); |
444 | 2828 - the current local map of the buffer under the mouse (does not |
428 | 2829 apply to toolbar clicks); |
2830 - any applicable minor-mode maps; | |
771 | 2831 - either `global-tty-map' or `global-window-system-map', depending on |
2832 whether the current console is a TTY or non-TTY console; | |
428 | 2833 - the current global map. |
2834 | |
2835 Note that if `overriding-local-map' or `overriding-terminal-local-map' | |
2836 is non-nil, *only* those two maps and the current global map are searched. | |
771 | 2837 |
2838 Note also that key sequences actually received from the keyboard driver | |
2839 may be processed in various ways to generate the key sequence that is | |
2840 actually looked up in the keymaps. In particular: | |
2841 | |
2842 -- Keysyms are individually passed through `keyboard-translate-table' before | |
2843 any other processing. | |
2844 -- After this, key sequences as a whole are passed through | |
2845 `key-translation-map'. | |
2846 -- The resulting key sequence is actually looked up in the keymaps. | |
2847 -- If there's no binding found, the key sequence is passed through | |
2848 `function-key-map' and looked up again. | |
2849 -- If no binding is found and `retry-undefined-key-binding-unshifted' is | |
2850 set (it usually is) and the final keysym is an uppercase character, | |
2851 we lowercase it and start over from the `key-translation-map' stage. | |
2852 -- If no binding is found and we're on MS Windows and have international | |
2853 support, we successively remap the key sequence using the keyboard layouts | |
2854 of various default locales (current language environment, user default, | |
2855 system default, US ASCII) and try again. This makes (e.g.) sequences | |
2856 such as `C-x b' work in a Russian locale, where the alphabetic keys are | |
2857 actually generating Russian characters and not the Roman letters written | |
2858 on the keycaps. (Not yet implemented) | |
2859 -- Finally, if the last keystroke matches `help-char', we automatically | |
2860 generate and display a list of possible key sequences and bindings | |
2861 given the prefix so far generated. | |
428 | 2862 */ |
2863 (keys, accept_default)) | |
2864 { | |
2865 /* This function can GC */ | |
2866 int i; | |
2867 Lisp_Object maps[100]; | |
2868 int nmaps; | |
2869 struct gcpro gcpro1, gcpro2; | |
2870 GCPRO2 (keys, accept_default); /* get_relevant_keymaps may autoload */ | |
2871 | |
2872 nmaps = get_relevant_keymaps (keys, countof (maps), maps); | |
2873 | |
2874 UNGCPRO; | |
2875 | |
2876 if (EVENTP (keys)) /* unadvertised "feature" for the future */ | |
2877 return lookup_events (keys, nmaps, maps, !NILP (accept_default)); | |
2878 | |
2879 for (i = 0; i < nmaps; i++) | |
2880 { | |
2881 Lisp_Object tem = Flookup_key (maps[i], keys, | |
2882 accept_default); | |
2883 if (INTP (tem)) | |
2884 { | |
2885 /* Too long in some local map means don't look at global map */ | |
2886 return Qnil; | |
2887 } | |
2888 else if (!NILP (tem)) | |
2889 return tem; | |
2890 } | |
2891 return Qnil; | |
2892 } | |
2893 | |
2894 static Lisp_Object | |
2895 process_event_binding_result (Lisp_Object result) | |
2896 { | |
2897 if (EQ (result, Qundefined)) | |
3025 | 2898 /* The suppress-keymap function binds keys to `undefined' - special-case |
428 | 2899 that here, so that being bound to that has the same error-behavior as |
2900 not being defined at all. | |
2901 */ | |
2902 result = Qnil; | |
2903 if (!NILP (result)) | |
2904 { | |
2905 Lisp_Object map; | |
2906 /* Snap out possible keymap indirections */ | |
2907 map = get_keymap (result, 0, 1); | |
2908 if (!NILP (map)) | |
2909 result = map; | |
2910 } | |
2911 | |
2912 return result; | |
2913 } | |
2914 | |
2915 /* Attempts to find a command corresponding to the event-sequence | |
2916 whose head is event0 (sequence is threaded though event_next). | |
2917 | |
2918 The return value will be | |
2919 | |
2920 -- nil (there is no binding; this will also be returned | |
2921 whenever the event chain is "too long", i.e. there | |
2922 is a non-nil, non-keymap binding for a prefix of | |
2923 the event chain) | |
2924 -- a keymap (part of a command has been specified) | |
2925 -- a command (anything that satisfies `commandp'; this includes | |
2926 some symbols, lists, subrs, strings, vectors, and | |
2927 compiled-function objects) */ | |
2928 Lisp_Object | |
2929 event_binding (Lisp_Object event0, int accept_default) | |
2930 { | |
2931 /* This function can GC */ | |
2932 Lisp_Object maps[100]; | |
2933 int nmaps; | |
2934 | |
2935 assert (EVENTP (event0)); | |
2936 | |
2937 nmaps = get_relevant_keymaps (event0, countof (maps), maps); | |
2938 if (nmaps > countof (maps)) | |
2939 nmaps = countof (maps); | |
2940 return process_event_binding_result (lookup_events (event0, nmaps, maps, | |
2941 accept_default)); | |
2942 } | |
2943 | |
2944 /* like event_binding, but specify a keymap to search */ | |
2945 | |
2946 Lisp_Object | |
2947 event_binding_in (Lisp_Object event0, Lisp_Object keymap, int accept_default) | |
2948 { | |
2949 /* This function can GC */ | |
2950 if (!KEYMAPP (keymap)) | |
2951 return Qnil; | |
2952 | |
2953 return process_event_binding_result (lookup_events (event0, 1, &keymap, | |
2954 accept_default)); | |
2955 } | |
2956 | |
2957 /* Attempts to find a function key mapping corresponding to the | |
2958 event-sequence whose head is event0 (sequence is threaded through | |
2959 event_next). The return value will be the same as for event_binding(). */ | |
2960 Lisp_Object | |
2961 munging_key_map_event_binding (Lisp_Object event0, | |
2962 enum munge_me_out_the_door munge) | |
2963 { | |
2964 Lisp_Object keymap = (munge == MUNGE_ME_FUNCTION_KEY) ? | |
2965 CONSOLE_FUNCTION_KEY_MAP (event_console_or_selected (event0)) : | |
2966 Vkey_translation_map; | |
2967 | |
2968 if (NILP (keymap)) | |
2969 return Qnil; | |
2970 | |
2971 return process_event_binding_result (lookup_events (event0, 1, &keymap, 1)); | |
2972 } | |
2973 | |
2974 | |
2975 /************************************************************************/ | |
2976 /* Setting/querying the global and local maps */ | |
2977 /************************************************************************/ | |
2978 | |
2979 DEFUN ("use-global-map", Fuse_global_map, 1, 1, 0, /* | |
2980 Select KEYMAP as the global keymap. | |
2981 */ | |
2982 (keymap)) | |
2983 { | |
2984 /* This function can GC */ | |
2985 keymap = get_keymap (keymap, 1, 1); | |
2986 Vcurrent_global_map = keymap; | |
2987 return Qnil; | |
2988 } | |
2989 | |
2990 DEFUN ("use-local-map", Fuse_local_map, 1, 2, 0, /* | |
2991 Select KEYMAP as the local keymap in BUFFER. | |
2992 If KEYMAP is nil, that means no local keymap. | |
2993 If BUFFER is nil, the current buffer is assumed. | |
2994 */ | |
2995 (keymap, buffer)) | |
2996 { | |
2997 /* This function can GC */ | |
2998 struct buffer *b = decode_buffer (buffer, 0); | |
2999 if (!NILP (keymap)) | |
3000 keymap = get_keymap (keymap, 1, 1); | |
3001 | |
3002 b->keymap = keymap; | |
3003 | |
3004 return Qnil; | |
3005 } | |
3006 | |
3007 DEFUN ("current-local-map", Fcurrent_local_map, 0, 1, 0, /* | |
3008 Return BUFFER's local keymap, or nil if it has none. | |
3009 If BUFFER is nil, the current buffer is assumed. | |
3010 */ | |
3011 (buffer)) | |
3012 { | |
3013 struct buffer *b = decode_buffer (buffer, 0); | |
3014 return b->keymap; | |
3015 } | |
3016 | |
3017 DEFUN ("current-global-map", Fcurrent_global_map, 0, 0, 0, /* | |
3018 Return the current global keymap. | |
3019 */ | |
3020 ()) | |
3021 { | |
3022 return Vcurrent_global_map; | |
3023 } | |
3024 | |
3025 | |
3026 /************************************************************************/ | |
3027 /* Mapping over keymap elements */ | |
3028 /************************************************************************/ | |
3029 | |
3030 /* Since keymaps are arranged in a hierarchy, one keymap per bucky bit or | |
3031 prefix key, it's not entirely obvious what map-keymap should do, but | |
3032 what it does is: map over all keys in this map; then recursively map | |
3033 over all submaps of this map that are "bucky" submaps. This means that, | |
3034 when mapping over a keymap, it appears that "x" and "C-x" are in the | |
3035 same map, although "C-x" is really in the "control" submap of this one. | |
3036 However, since we don't recursively descend the submaps that are bound | |
3037 to prefix keys (like C-x, C-h, etc) the caller will have to recurse on | |
3038 those explicitly, if that's what they want. | |
3039 | |
3040 So the end result of this is that the bucky keymaps (the ones indexed | |
3041 under the large integers returned from MAKE_MODIFIER_HASH_KEY()) are | |
3042 invisible from elisp. They're just an implementation detail that code | |
3043 outside of this file doesn't need to know about. | |
3044 */ | |
3045 | |
3046 struct map_keymap_unsorted_closure | |
3047 { | |
934 | 3048 void (*fn) (const Lisp_Key_Data *, Lisp_Object binding, void *arg); |
428 | 3049 void *arg; |
442 | 3050 int modifiers; |
428 | 3051 }; |
3052 | |
3053 /* used by map_keymap() */ | |
3054 static int | |
3055 map_keymap_unsorted_mapper (Lisp_Object keysym, Lisp_Object value, | |
3056 void *map_keymap_unsorted_closure) | |
3057 { | |
3058 /* This function can GC */ | |
3059 struct map_keymap_unsorted_closure *closure = | |
3060 (struct map_keymap_unsorted_closure *) map_keymap_unsorted_closure; | |
442 | 3061 int modifiers = closure->modifiers; |
3062 int mod_bit; | |
428 | 3063 mod_bit = MODIFIER_HASH_KEY_BITS (keysym); |
3064 if (mod_bit != 0) | |
3065 { | |
3066 int omod = modifiers; | |
3067 closure->modifiers = (modifiers | mod_bit); | |
3068 value = get_keymap (value, 1, 0); | |
3069 elisp_maphash (map_keymap_unsorted_mapper, | |
3070 XKEYMAP (value)->table, | |
3071 map_keymap_unsorted_closure); | |
3072 closure->modifiers = omod; | |
3073 } | |
3074 else | |
3075 { | |
934 | 3076 Lisp_Key_Data key; |
428 | 3077 key.keysym = keysym; |
3078 key.modifiers = modifiers; | |
3079 ((*closure->fn) (&key, value, closure->arg)); | |
3080 } | |
3081 return 0; | |
3082 } | |
3083 | |
3084 | |
3085 struct map_keymap_sorted_closure | |
3086 { | |
3087 Lisp_Object *result_locative; | |
3088 }; | |
3089 | |
3090 /* used by map_keymap_sorted() */ | |
3091 static int | |
3092 map_keymap_sorted_mapper (Lisp_Object key, Lisp_Object value, | |
3093 void *map_keymap_sorted_closure) | |
3094 { | |
3095 struct map_keymap_sorted_closure *cl = | |
3096 (struct map_keymap_sorted_closure *) map_keymap_sorted_closure; | |
3097 Lisp_Object *list = cl->result_locative; | |
3098 *list = Fcons (Fcons (key, value), *list); | |
3099 return 0; | |
3100 } | |
3101 | |
3102 | |
3103 /* used by map_keymap_sorted(), describe_map_sort_predicate(), | |
3104 and keymap_submaps(). | |
3105 */ | |
3106 static int | |
3107 map_keymap_sort_predicate (Lisp_Object obj1, Lisp_Object obj2, | |
2286 | 3108 Lisp_Object UNUSED (pred)) |
428 | 3109 { |
3110 /* obj1 and obj2 are conses with keysyms in their cars. Cdrs are ignored. | |
3111 */ | |
442 | 3112 int bit1, bit2; |
428 | 3113 int sym1_p = 0; |
3114 int sym2_p = 0; | |
2828 | 3115 extern Lisp_Object Qcharacter_of_keysym; |
3116 | |
428 | 3117 obj1 = XCAR (obj1); |
3118 obj2 = XCAR (obj2); | |
3119 | |
3120 if (EQ (obj1, obj2)) | |
3121 return -1; | |
3122 bit1 = MODIFIER_HASH_KEY_BITS (obj1); | |
3123 bit2 = MODIFIER_HASH_KEY_BITS (obj2); | |
3124 | |
2828 | 3125 /* If either is a symbol with a Qcharacter_of_keysym property, then sort it by |
428 | 3126 that code instead of alphabetically. |
3127 */ | |
3128 if (! bit1 && SYMBOLP (obj1)) | |
3129 { | |
2828 | 3130 Lisp_Object code = Fget (obj1, Qcharacter_of_keysym, Qnil); |
428 | 3131 if (CHAR_OR_CHAR_INTP (code)) |
3132 { | |
3133 obj1 = code; | |
3134 CHECK_CHAR_COERCE_INT (obj1); | |
3135 sym1_p = 1; | |
3136 } | |
3137 } | |
3138 if (! bit2 && SYMBOLP (obj2)) | |
3139 { | |
2828 | 3140 Lisp_Object code = Fget (obj2, Qcharacter_of_keysym, Qnil); |
428 | 3141 if (CHAR_OR_CHAR_INTP (code)) |
3142 { | |
3143 obj2 = code; | |
3144 CHECK_CHAR_COERCE_INT (obj2); | |
3145 sym2_p = 1; | |
3146 } | |
3147 } | |
3148 | |
3149 /* all symbols (non-ASCIIs) come after characters (ASCIIs) */ | |
3150 if (XTYPE (obj1) != XTYPE (obj2)) | |
3151 return SYMBOLP (obj2) ? 1 : -1; | |
3152 | |
3153 if (! bit1 && CHARP (obj1)) /* they're both ASCII */ | |
3154 { | |
3155 int o1 = XCHAR (obj1); | |
3156 int o2 = XCHAR (obj2); | |
3157 if (o1 == o2 && /* If one started out as a symbol and the */ | |
3158 sym1_p != sym2_p) /* other didn't, the symbol comes last. */ | |
3159 return sym2_p ? 1 : -1; | |
3160 | |
3161 return o1 < o2 ? 1 : -1; /* else just compare them */ | |
3162 } | |
3163 | |
3164 /* else they're both symbols. If they're both buckys, then order them. */ | |
3165 if (bit1 && bit2) | |
3166 return bit1 < bit2 ? 1 : -1; | |
3167 | |
3168 /* if only one is a bucky, then it comes later */ | |
3169 if (bit1 || bit2) | |
3170 return bit2 ? 1 : -1; | |
3171 | |
3172 /* otherwise, string-sort them. */ | |
3173 { | |
867 | 3174 Ibyte *s1 = XSTRING_DATA (XSYMBOL (obj1)->name); |
3175 Ibyte *s2 = XSTRING_DATA (XSYMBOL (obj2)->name); | |
793 | 3176 return 0 > qxestrcmp (s1, s2) ? 1 : -1; |
428 | 3177 } |
3178 } | |
3179 | |
3180 | |
3181 /* used by map_keymap() */ | |
3182 static void | |
3183 map_keymap_sorted (Lisp_Object keymap_table, | |
442 | 3184 int modifiers, |
934 | 3185 void (*function) (const Lisp_Key_Data *key, |
428 | 3186 Lisp_Object binding, |
3187 void *map_keymap_sorted_closure), | |
3188 void *map_keymap_sorted_closure) | |
3189 { | |
3190 /* This function can GC */ | |
3191 struct gcpro gcpro1; | |
3192 Lisp_Object contents = Qnil; | |
3193 | |
3194 if (XINT (Fhash_table_count (keymap_table)) == 0) | |
3195 return; | |
3196 | |
3197 GCPRO1 (contents); | |
3198 | |
3199 { | |
3200 struct map_keymap_sorted_closure c1; | |
3201 c1.result_locative = &contents; | |
3202 elisp_maphash (map_keymap_sorted_mapper, keymap_table, &c1); | |
3203 } | |
3204 contents = list_sort (contents, Qnil, map_keymap_sort_predicate); | |
3205 for (; !NILP (contents); contents = XCDR (contents)) | |
3206 { | |
3207 Lisp_Object keysym = XCAR (XCAR (contents)); | |
3208 Lisp_Object binding = XCDR (XCAR (contents)); | |
442 | 3209 int sub_bits = MODIFIER_HASH_KEY_BITS (keysym); |
428 | 3210 if (sub_bits != 0) |
3211 map_keymap_sorted (XKEYMAP (get_keymap (binding, | |
3212 1, 1))->table, | |
3213 (modifiers | sub_bits), | |
3214 function, | |
3215 map_keymap_sorted_closure); | |
3216 else | |
3217 { | |
934 | 3218 Lisp_Key_Data k; |
428 | 3219 k.keysym = keysym; |
3220 k.modifiers = modifiers; | |
3221 ((*function) (&k, binding, map_keymap_sorted_closure)); | |
3222 } | |
3223 } | |
3224 UNGCPRO; | |
3225 } | |
3226 | |
3227 | |
3228 /* used by Fmap_keymap() */ | |
3229 static void | |
934 | 3230 map_keymap_mapper (const Lisp_Key_Data *key, |
428 | 3231 Lisp_Object binding, |
3232 void *function) | |
3233 { | |
3234 /* This function can GC */ | |
3235 Lisp_Object fn; | |
826 | 3236 fn = VOID_TO_LISP (function); |
428 | 3237 call2 (fn, make_key_description (key, 1), binding); |
3238 } | |
3239 | |
3240 | |
3241 static void | |
3242 map_keymap (Lisp_Object keymap_table, int sort_first, | |
934 | 3243 void (*function) (const Lisp_Key_Data *key, |
428 | 3244 Lisp_Object binding, |
3245 void *fn_arg), | |
3246 void *fn_arg) | |
3247 { | |
3248 /* This function can GC */ | |
3249 if (sort_first) | |
3250 map_keymap_sorted (keymap_table, 0, function, fn_arg); | |
3251 else | |
3252 { | |
3253 struct map_keymap_unsorted_closure map_keymap_unsorted_closure; | |
3254 map_keymap_unsorted_closure.fn = function; | |
3255 map_keymap_unsorted_closure.arg = fn_arg; | |
3256 map_keymap_unsorted_closure.modifiers = 0; | |
3257 elisp_maphash (map_keymap_unsorted_mapper, keymap_table, | |
3258 &map_keymap_unsorted_closure); | |
3259 } | |
3260 } | |
3261 | |
3262 DEFUN ("map-keymap", Fmap_keymap, 2, 3, 0, /* | |
3263 Apply FUNCTION to each element of KEYMAP. | |
3264 FUNCTION will be called with two arguments: a key-description list, and | |
3265 the binding. The order in which the elements of the keymap are passed to | |
3266 the function is unspecified. If the function inserts new elements into | |
3267 the keymap, it may or may not be called with them later. No element of | |
3268 the keymap will ever be passed to the function more than once. | |
3269 | |
3270 The function will not be called on elements of this keymap's parents | |
3271 \(see the function `keymap-parents') or upon keymaps which are contained | |
3272 within this keymap (multi-character definitions). | |
3273 It will be called on "meta" characters since they are not really | |
3274 two-character sequences. | |
3275 | |
3276 If the optional third argument SORT-FIRST is non-nil, then the elements of | |
3277 the keymap will be passed to the mapper function in a canonical order. | |
3278 Otherwise, they will be passed in hash (that is, random) order, which is | |
3279 faster. | |
3280 */ | |
3281 (function, keymap, sort_first)) | |
3282 { | |
3283 /* This function can GC */ | |
489 | 3284 struct gcpro gcpro1, gcpro2; |
428 | 3285 |
3286 /* tolerate obviously transposed args */ | |
3287 if (!NILP (Fkeymapp (function))) | |
3288 { | |
3289 Lisp_Object tmp = function; | |
3290 function = keymap; | |
3291 keymap = tmp; | |
3292 } | |
489 | 3293 GCPRO2 (function, keymap); |
428 | 3294 keymap = get_keymap (keymap, 1, 1); |
489 | 3295 map_keymap (XKEYMAP (keymap)->table, !NILP (sort_first), |
428 | 3296 map_keymap_mapper, LISP_TO_VOID (function)); |
3297 UNGCPRO; | |
3298 return Qnil; | |
3299 } | |
3300 | |
3301 | |
3302 | |
3303 /************************************************************************/ | |
3304 /* Accessible keymaps */ | |
3305 /************************************************************************/ | |
3306 | |
3307 struct accessible_keymaps_closure | |
3308 { | |
3309 Lisp_Object tail; | |
3310 }; | |
3311 | |
3312 | |
3313 static void | |
3314 accessible_keymaps_mapper_1 (Lisp_Object keysym, Lisp_Object contents, | |
442 | 3315 int modifiers, |
428 | 3316 struct accessible_keymaps_closure *closure) |
3317 { | |
3318 /* This function can GC */ | |
442 | 3319 int subbits = MODIFIER_HASH_KEY_BITS (keysym); |
428 | 3320 |
3321 if (subbits != 0) | |
3322 { | |
3323 Lisp_Object submaps; | |
3324 | |
3325 contents = get_keymap (contents, 1, 1); | |
3326 submaps = keymap_submaps (contents); | |
3327 for (; !NILP (submaps); submaps = XCDR (submaps)) | |
3328 { | |
3329 accessible_keymaps_mapper_1 (XCAR (XCAR (submaps)), | |
3330 XCDR (XCAR (submaps)), | |
3331 (subbits | modifiers), | |
3332 closure); | |
3333 } | |
3334 } | |
3335 else | |
3336 { | |
3337 Lisp_Object thisseq = Fcar (Fcar (closure->tail)); | |
3338 Lisp_Object cmd = get_keyelt (contents, 1); | |
3339 Lisp_Object vec; | |
3340 int j; | |
3341 int len; | |
934 | 3342 Lisp_Key_Data key; |
428 | 3343 key.keysym = keysym; |
3344 key.modifiers = modifiers; | |
3345 | |
3346 if (NILP (cmd)) | |
2500 | 3347 ABORT (); |
428 | 3348 cmd = get_keymap (cmd, 0, 1); |
3349 if (!KEYMAPP (cmd)) | |
2500 | 3350 ABORT (); |
428 | 3351 |
3352 vec = make_vector (XVECTOR_LENGTH (thisseq) + 1, Qnil); | |
3353 len = XVECTOR_LENGTH (thisseq); | |
3354 for (j = 0; j < len; j++) | |
3355 XVECTOR_DATA (vec) [j] = XVECTOR_DATA (thisseq) [j]; | |
3356 XVECTOR_DATA (vec) [j] = make_key_description (&key, 1); | |
3357 | |
3358 nconc2 (closure->tail, list1 (Fcons (vec, cmd))); | |
3359 } | |
3360 } | |
3361 | |
3362 | |
3363 static Lisp_Object | |
3364 accessible_keymaps_keymap_mapper (Lisp_Object thismap, void *arg) | |
3365 { | |
3366 /* This function can GC */ | |
3367 struct accessible_keymaps_closure *closure = | |
3368 (struct accessible_keymaps_closure *) arg; | |
3369 Lisp_Object submaps = keymap_submaps (thismap); | |
3370 | |
3371 for (; !NILP (submaps); submaps = XCDR (submaps)) | |
3372 { | |
3373 accessible_keymaps_mapper_1 (XCAR (XCAR (submaps)), | |
3374 XCDR (XCAR (submaps)), | |
3375 0, | |
3376 closure); | |
3377 } | |
3378 return Qnil; | |
3379 } | |
3380 | |
3381 | |
3382 DEFUN ("accessible-keymaps", Faccessible_keymaps, 1, 2, 0, /* | |
3383 Find all keymaps accessible via prefix characters from KEYMAP. | |
3384 Returns a list of elements of the form (KEYS . MAP), where the sequence | |
3385 KEYS starting from KEYMAP gets you to MAP. These elements are ordered | |
3386 so that the KEYS increase in length. The first element is ([] . KEYMAP). | |
3387 An optional argument PREFIX, if non-nil, should be a key sequence; | |
3388 then the value includes only maps for prefixes that start with PREFIX. | |
3389 */ | |
3390 (keymap, prefix)) | |
3391 { | |
3392 /* This function can GC */ | |
3393 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4; | |
3394 Lisp_Object accessible_keymaps = Qnil; | |
3395 struct accessible_keymaps_closure c; | |
3396 c.tail = Qnil; | |
3397 GCPRO4 (accessible_keymaps, c.tail, prefix, keymap); | |
3398 | |
440 | 3399 keymap = get_keymap (keymap, 1, 1); |
3400 | |
428 | 3401 retry: |
3402 if (NILP (prefix)) | |
3403 { | |
440 | 3404 prefix = make_vector (0, Qnil); |
428 | 3405 } |
440 | 3406 else if (VECTORP (prefix) || STRINGP (prefix)) |
428 | 3407 { |
3408 int len = XINT (Flength (prefix)); | |
440 | 3409 Lisp_Object def; |
428 | 3410 Lisp_Object p; |
3411 int iii; | |
3412 struct gcpro ngcpro1; | |
3413 | |
440 | 3414 if (len == 0) |
3415 { | |
3416 prefix = Qnil; | |
3417 goto retry; | |
3418 } | |
3419 | |
3420 def = Flookup_key (keymap, prefix, Qnil); | |
428 | 3421 def = get_keymap (def, 0, 1); |
3422 if (!KEYMAPP (def)) | |
3423 goto RETURN; | |
3424 | |
3425 keymap = def; | |
3426 p = make_vector (len, Qnil); | |
3427 NGCPRO1 (p); | |
3428 for (iii = 0; iii < len; iii++) | |
3429 { | |
934 | 3430 Lisp_Key_Data key; |
428 | 3431 define_key_parser (Faref (prefix, make_int (iii)), &key); |
3432 XVECTOR_DATA (p)[iii] = make_key_description (&key, 1); | |
3433 } | |
3434 NUNGCPRO; | |
3435 prefix = p; | |
3436 } | |
440 | 3437 else |
3438 { | |
3439 prefix = wrong_type_argument (Qarrayp, prefix); | |
3440 goto retry; | |
3441 } | |
428 | 3442 |
3443 accessible_keymaps = list1 (Fcons (prefix, keymap)); | |
3444 | |
440 | 3445 /* For each map in the list maps, look at any other maps it points |
3446 to and stick them at the end if they are not already in the list */ | |
428 | 3447 |
3448 for (c.tail = accessible_keymaps; | |
3449 !NILP (c.tail); | |
3450 c.tail = XCDR (c.tail)) | |
3451 { | |
3452 Lisp_Object thismap = Fcdr (Fcar (c.tail)); | |
3453 CHECK_KEYMAP (thismap); | |
3454 traverse_keymaps (thismap, Qnil, | |
3455 accessible_keymaps_keymap_mapper, &c); | |
3456 } | |
3457 RETURN: | |
3458 UNGCPRO; | |
3459 return accessible_keymaps; | |
3460 } | |
3461 | |
3462 | |
3463 | |
3464 /************************************************************************/ | |
3465 /* Pretty descriptions of key sequences */ | |
3466 /************************************************************************/ | |
3467 | |
3468 DEFUN ("key-description", Fkey_description, 1, 1, 0, /* | |
3469 Return a pretty description of key-sequence KEYS. | |
3470 Control characters turn into "C-foo" sequences, meta into "M-foo", | |
3471 spaces are put between sequence elements, etc... | |
3472 */ | |
3473 (keys)) | |
3474 { | |
3475 if (CHAR_OR_CHAR_INTP (keys) || CONSP (keys) || SYMBOLP (keys) | |
3476 || EVENTP (keys)) | |
3477 { | |
3478 return Fsingle_key_description (keys); | |
3479 } | |
3480 else if (VECTORP (keys) || | |
3481 STRINGP (keys)) | |
3482 { | |
3483 Lisp_Object string = Qnil; | |
3484 /* Lisp_Object sep = Qnil; */ | |
3485 int size = XINT (Flength (keys)); | |
3486 int i; | |
3487 | |
3488 for (i = 0; i < size; i++) | |
3489 { | |
3490 Lisp_Object s2 = Fsingle_key_description | |
3491 (STRINGP (keys) | |
867 | 3492 ? make_char (string_ichar (keys, i)) |
428 | 3493 : XVECTOR_DATA (keys)[i]); |
3494 | |
3495 if (i == 0) | |
3496 string = s2; | |
3497 else | |
3498 { | |
3499 /* if (NILP (sep)) Lisp_Object sep = build_string (" ") */; | |
3500 string = concat2 (string, concat2 (Vsingle_space_string, s2)); | |
3501 } | |
3502 } | |
3503 return string; | |
3504 } | |
3505 return Fkey_description (wrong_type_argument (Qsequencep, keys)); | |
3506 } | |
3507 | |
3508 DEFUN ("single-key-description", Fsingle_key_description, 1, 1, 0, /* | |
3509 Return a pretty description of command character KEY. | |
3510 Control characters turn into C-whatever, etc. | |
3511 This differs from `text-char-description' in that it returns a description | |
3512 of a key read from the user rather than a character from a buffer. | |
3513 */ | |
3514 (key)) | |
3515 { | |
3516 if (SYMBOLP (key)) | |
3517 key = Fcons (key, Qnil); /* sleaze sleaze */ | |
3518 | |
3519 if (EVENTP (key) || CHAR_OR_CHAR_INTP (key)) | |
3520 { | |
793 | 3521 DECLARE_EISTRING_MALLOC (buf); |
3522 Lisp_Object str; | |
3523 | |
428 | 3524 if (!EVENTP (key)) |
3525 { | |
934 | 3526 Lisp_Object event = Fmake_event (Qnil, Qnil); |
3527 CHECK_CHAR_COERCE_INT (key); | |
1204 | 3528 character_to_event (XCHAR (key), XEVENT (event), |
934 | 3529 XCONSOLE (Vselected_console), 0, 1); |
3530 format_event_object (buf, event, 1); | |
1204 | 3531 Fdeallocate_event (event); |
934 | 3532 } |
3533 else | |
3534 format_event_object (buf, key, 1); | |
793 | 3535 str = eimake_string (buf); |
3536 eifree (buf); | |
3537 return str; | |
428 | 3538 } |
3539 | |
3540 if (CONSP (key)) | |
3541 { | |
793 | 3542 DECLARE_EISTRING (bufp); |
3543 | |
428 | 3544 Lisp_Object rest; |
3545 LIST_LOOP (rest, key) | |
3546 { | |
3547 Lisp_Object keysym = XCAR (rest); | |
2421 | 3548 if (EQ (keysym, Qcontrol)) eicat_ascii (bufp, "C-"); |
3549 else if (EQ (keysym, Qctrl)) eicat_ascii (bufp, "C-"); | |
3550 else if (EQ (keysym, Qmeta)) eicat_ascii (bufp, "M-"); | |
3551 else if (EQ (keysym, Qsuper)) eicat_ascii (bufp, "S-"); | |
3552 else if (EQ (keysym, Qhyper)) eicat_ascii (bufp, "H-"); | |
3553 else if (EQ (keysym, Qalt)) eicat_ascii (bufp, "A-"); | |
3554 else if (EQ (keysym, Qshift)) eicat_ascii (bufp, "Sh-"); | |
428 | 3555 else if (CHAR_OR_CHAR_INTP (keysym)) |
793 | 3556 eicat_ch (bufp, XCHAR_OR_CHAR_INT (keysym)); |
428 | 3557 else |
3558 { | |
3559 CHECK_SYMBOL (keysym); | |
3560 #if 0 /* This is bogus */ | |
2421 | 3561 if (EQ (keysym, QKlinefeed)) eicat_ascii (bufp, "LFD"); |
3562 else if (EQ (keysym, QKtab)) eicat_ascii (bufp, "TAB"); | |
3563 else if (EQ (keysym, QKreturn)) eicat_ascii (bufp, "RET"); | |
3564 else if (EQ (keysym, QKescape)) eicat_ascii (bufp, "ESC"); | |
3565 else if (EQ (keysym, QKdelete)) eicat_ascii (bufp, "DEL"); | |
3566 else if (EQ (keysym, QKspace)) eicat_ascii (bufp, "SPC"); | |
3567 else if (EQ (keysym, QKbackspace)) eicat_ascii (bufp, "BS"); | |
428 | 3568 else |
3569 #endif | |
793 | 3570 eicat_lstr (bufp, XSYMBOL (keysym)->name); |
428 | 3571 if (!NILP (XCDR (rest))) |
793 | 3572 invalid_argument ("Invalid key description", key); |
428 | 3573 } |
3574 } | |
793 | 3575 return eimake_string (bufp); |
428 | 3576 } |
3577 return Fsingle_key_description | |
3578 (wrong_type_argument (intern ("char-or-event-p"), key)); | |
3579 } | |
3580 | |
3581 DEFUN ("text-char-description", Ftext_char_description, 1, 1, 0, /* | |
3582 Return a pretty description of file-character CHR. | |
3583 Unprintable characters turn into "^char" or \\NNN, depending on the value | |
3584 of the `ctl-arrow' variable. | |
3585 This differs from `single-key-description' in that it returns a description | |
3586 of a character from a buffer rather than a key read from the user. | |
3587 */ | |
3588 (chr)) | |
3589 { | |
867 | 3590 Ibyte buf[200]; |
3591 Ibyte *p; | |
3592 Ichar c; | |
428 | 3593 Lisp_Object ctl_arrow = current_buffer->ctl_arrow; |
3594 int ctl_p = !NILP (ctl_arrow); | |
867 | 3595 Ichar printable_min = (CHAR_OR_CHAR_INTP (ctl_arrow) |
428 | 3596 ? XCHAR_OR_CHAR_INT (ctl_arrow) |
3597 : ((EQ (ctl_arrow, Qt) || NILP (ctl_arrow)) | |
3598 ? 256 : 160)); | |
3599 | |
3600 if (EVENTP (chr)) | |
3601 { | |
2862 | 3602 Lisp_Object ch = Fevent_to_character (chr, Qnil, Qnil, Qnil); |
428 | 3603 if (NILP (ch)) |
3604 return | |
563 | 3605 signal_continuable_error |
3606 (Qinvalid_argument, | |
2828 | 3607 "key has no character equivalent (that we know of)", |
3608 Fcopy_event (chr, Qnil)); | |
428 | 3609 chr = ch; |
3610 } | |
3611 | |
3612 CHECK_CHAR_COERCE_INT (chr); | |
3613 | |
3614 c = XCHAR (chr); | |
3615 p = buf; | |
3616 | |
3617 if (c >= printable_min) | |
3618 { | |
867 | 3619 p += set_itext_ichar (p, c); |
428 | 3620 } |
3621 else if (c < 040 && ctl_p) | |
3622 { | |
3623 *p++ = '^'; | |
3624 *p++ = c + 64; /* 'A' - 1 */ | |
3625 } | |
3626 else if (c == 0177) | |
3627 { | |
3628 *p++ = '^'; | |
3629 *p++ = '?'; | |
3630 } | |
3631 else if (c >= 0200 || c < 040) | |
3632 { | |
3633 *p++ = '\\'; | |
3634 #ifdef MULE | |
3635 /* !!#### This syntax is not readable. It will | |
3636 be interpreted as a 3-digit octal number rather | |
3637 than a 7-digit octal number. */ | |
3638 if (c >= 0400) | |
3639 { | |
3640 *p++ = '0' + ((c & 07000000) >> 18); | |
3641 *p++ = '0' + ((c & 0700000) >> 15); | |
3642 *p++ = '0' + ((c & 070000) >> 12); | |
3643 *p++ = '0' + ((c & 07000) >> 9); | |
3644 } | |
3645 #endif | |
3646 *p++ = '0' + ((c & 0700) >> 6); | |
3647 *p++ = '0' + ((c & 0070) >> 3); | |
3648 *p++ = '0' + ((c & 0007)); | |
3649 } | |
3650 else | |
3651 { | |
867 | 3652 p += set_itext_ichar (p, c); |
428 | 3653 } |
3654 | |
3655 *p = 0; | |
3656 return build_string ((char *) buf); | |
3657 } | |
3658 | |
3659 | |
3660 /************************************************************************/ | |
3661 /* where-is (mapping bindings to keys) */ | |
3662 /************************************************************************/ | |
3663 | |
3664 static Lisp_Object | |
3665 where_is_internal (Lisp_Object definition, Lisp_Object *maps, int nmaps, | |
793 | 3666 Lisp_Object firstonly, Eistring *target_buffer); |
428 | 3667 |
3668 DEFUN ("where-is-internal", Fwhere_is_internal, 1, 5, 0, /* | |
3669 Return list of keys that invoke DEFINITION in KEYMAPS. | |
3670 KEYMAPS can be either a keymap (meaning search in that keymap and the | |
3671 current global keymap) or a list of keymaps (meaning search in exactly | |
3096 | 3672 those keymaps and no others). |
428 | 3673 |
3674 If optional 3rd arg FIRSTONLY is non-nil, return a vector representing | |
3675 the first key sequence found, rather than a list of all possible key | |
3676 sequences. | |
3677 | |
3096 | 3678 Optional 4th argument NOINDIRECT is ignored. (GNU Emacs uses it to allow |
3679 searching for an indirect keymap by inhibiting following of indirections to | |
3680 keymaps or slots, but XEmacs doesn't need it because keymaps are a type.) | |
3681 | |
3682 If optional 5th argument EVENT-OR-KEYS is non-nil and KEYMAPS is nil, | |
3683 search in the currently applicable maps for EVENT-OR-KEYS (this is | |
3684 equivalent to specifying `(current-keymaps EVENT-OR-KEYS)' as the | |
3685 argument to KEYMAPS). | |
428 | 3686 */ |
2286 | 3687 (definition, keymaps, firstonly, UNUSED (noindirect), event_or_keys)) |
428 | 3688 { |
3689 /* This function can GC */ | |
3690 Lisp_Object maps[100]; | |
3691 Lisp_Object *gubbish = maps; | |
3692 int nmaps; | |
3693 | |
3694 /* Get keymaps as an array */ | |
3695 if (NILP (keymaps)) | |
3696 { | |
3697 nmaps = get_relevant_keymaps (event_or_keys, countof (maps), | |
3698 gubbish); | |
3699 if (nmaps > countof (maps)) | |
3700 { | |
3701 gubbish = alloca_array (Lisp_Object, nmaps); | |
3702 nmaps = get_relevant_keymaps (event_or_keys, nmaps, gubbish); | |
3703 } | |
3704 } | |
3705 else if (CONSP (keymaps)) | |
3706 { | |
3707 Lisp_Object rest; | |
3708 int i; | |
3709 | |
3710 nmaps = XINT (Flength (keymaps)); | |
3711 if (nmaps > countof (maps)) | |
3712 { | |
3713 gubbish = alloca_array (Lisp_Object, nmaps); | |
3714 } | |
3715 for (rest = keymaps, i = 0; !NILP (rest); | |
3716 rest = XCDR (keymaps), i++) | |
3717 { | |
3718 gubbish[i] = get_keymap (XCAR (keymaps), 1, 1); | |
3719 } | |
3720 } | |
3721 else | |
3722 { | |
3723 nmaps = 1; | |
3724 gubbish[0] = get_keymap (keymaps, 1, 1); | |
3725 if (!EQ (gubbish[0], Vcurrent_global_map)) | |
3726 { | |
3727 gubbish[1] = Vcurrent_global_map; | |
3728 nmaps++; | |
3729 } | |
3730 } | |
3731 | |
3732 return where_is_internal (definition, gubbish, nmaps, firstonly, 0); | |
3733 } | |
3734 | |
3735 /* This function is like | |
3736 (key-description (where-is-internal definition nil t)) | |
3737 except that it writes its output into a (char *) buffer that you | |
3738 provide; it doesn't cons (or allocate memory) at all, so it's | |
3739 very fast. This is used by menubar.c. | |
3740 */ | |
3741 void | |
793 | 3742 where_is_to_char (Lisp_Object definition, Eistring *buffer) |
428 | 3743 { |
3744 /* This function can GC */ | |
3745 Lisp_Object maps[100]; | |
3746 Lisp_Object *gubbish = maps; | |
3747 int nmaps; | |
3748 | |
3749 /* Get keymaps as an array */ | |
3750 nmaps = get_relevant_keymaps (Qnil, countof (maps), gubbish); | |
3751 if (nmaps > countof (maps)) | |
3752 { | |
3753 gubbish = alloca_array (Lisp_Object, nmaps); | |
3754 nmaps = get_relevant_keymaps (Qnil, nmaps, gubbish); | |
3755 } | |
3756 | |
3757 where_is_internal (definition, maps, nmaps, Qt, buffer); | |
3758 } | |
3759 | |
3760 | |
3761 static Lisp_Object | |
934 | 3762 raw_keys_to_keys (Lisp_Key_Data *keys, int count) |
428 | 3763 { |
3764 Lisp_Object result = make_vector (count, Qnil); | |
3765 while (count--) | |
3766 XVECTOR_DATA (result) [count] = make_key_description (&(keys[count]), 1); | |
3767 return result; | |
3768 } | |
3769 | |
3770 | |
3771 static void | |
934 | 3772 format_raw_keys (Lisp_Key_Data *keys, int count, Eistring *buf) |
428 | 3773 { |
3774 int i; | |
934 | 3775 Lisp_Object event = Fmake_event (Qnil, Qnil); |
3776 XSET_EVENT_TYPE (event, key_press_event); | |
3777 XSET_EVENT_CHANNEL (event, Vselected_console); | |
428 | 3778 for (i = 0; i < count; i++) |
3779 { | |
1204 | 3780 XSET_EVENT_KEY_KEYSYM (event, keys[i].keysym); |
3781 XSET_EVENT_KEY_MODIFIERS (event, KEY_DATA_MODIFIERS (&keys[i])); | |
934 | 3782 format_event_object (buf, event, 1); |
793 | 3783 if (i < count - 1) |
2421 | 3784 eicat_ascii (buf, " "); |
428 | 3785 } |
1204 | 3786 Fdeallocate_event (event); |
428 | 3787 } |
3788 | |
3789 | |
3790 /* definition is the thing to look for. | |
3791 map is a keymap. | |
3792 shadow is an array of shadow_count keymaps; if there is a different | |
3793 binding in any of the keymaps of a key that we are considering | |
3794 returning, then we reconsider. | |
3795 firstonly means give up after finding the first match; | |
3796 keys_so_far and modifiers_so_far describe which map we're looking in; | |
3797 If we're in the "meta" submap of the map that "C-x 4" is bound to, | |
3798 then keys_so_far will be {(control x), \4}, and modifiers_so_far | |
442 | 3799 will be XEMACS_MOD_META. That is, keys_so_far is the chain of keys that we |
428 | 3800 have followed, and modifiers_so_far_so_far is the bits (partial keys) |
3801 beyond that. | |
3802 | |
3803 (keys_so_far is a global buffer and the keys_count arg says how much | |
3804 of it we're currently interested in.) | |
3805 | |
3806 If target_buffer is provided, then we write a key-description into it, | |
3807 to avoid consing a string. This only works with firstonly on. | |
3808 */ | |
3809 | |
3810 struct where_is_closure | |
3811 { | |
3812 Lisp_Object definition; | |
3813 Lisp_Object *shadow; | |
3814 int shadow_count; | |
3815 int firstonly; | |
3816 int keys_count; | |
442 | 3817 int modifiers_so_far; |
793 | 3818 Eistring *target_buffer; |
934 | 3819 Lisp_Key_Data *keys_so_far; |
428 | 3820 int keys_so_far_total_size; |
3821 int keys_so_far_malloced; | |
3822 }; | |
3823 | |
3824 static Lisp_Object where_is_recursive_mapper (Lisp_Object map, void *arg); | |
3825 | |
3826 static Lisp_Object | |
3827 where_is_recursive_mapper (Lisp_Object map, void *arg) | |
3828 { | |
3829 /* This function can GC */ | |
3830 struct where_is_closure *c = (struct where_is_closure *) arg; | |
3831 Lisp_Object definition = c->definition; | |
442 | 3832 const int firstonly = c->firstonly; |
3833 const int keys_count = c->keys_count; | |
3834 const int modifiers_so_far = c->modifiers_so_far; | |
793 | 3835 Eistring *target_buffer = c->target_buffer; |
428 | 3836 Lisp_Object keys = Fgethash (definition, |
3837 XKEYMAP (map)->inverse_table, | |
3838 Qnil); | |
3839 Lisp_Object submaps; | |
3840 Lisp_Object result = Qnil; | |
3841 | |
3842 if (!NILP (keys)) | |
3843 { | |
3844 /* One or more keys in this map match the definition we're looking for. | |
3845 Verify that these bindings aren't shadowed by other bindings | |
3846 in the shadow maps. Either nil or number as value from | |
3847 raw_lookup_key() means undefined. */ | |
934 | 3848 Lisp_Key_Data *so_far = c->keys_so_far; |
428 | 3849 |
3850 for (;;) /* loop over all keys that match */ | |
3851 { | |
3852 Lisp_Object k = CONSP (keys) ? XCAR (keys) : keys; | |
3853 int i; | |
3854 | |
3855 so_far [keys_count].keysym = k; | |
934 | 3856 SET_KEY_DATA_MODIFIERS (&so_far [keys_count], modifiers_so_far); |
428 | 3857 |
3858 /* now loop over all shadow maps */ | |
3859 for (i = 0; i < c->shadow_count; i++) | |
3860 { | |
3861 Lisp_Object shadowed = raw_lookup_key (c->shadow[i], | |
3862 so_far, | |
3863 keys_count + 1, | |
3864 0, 1); | |
3865 | |
3866 if (NILP (shadowed) || CHARP (shadowed) || | |
3867 EQ (shadowed, definition)) | |
3868 continue; /* we passed this test; it's not shadowed here. */ | |
3869 else | |
3870 /* ignore this key binding, since it actually has a | |
3871 different binding in a shadowing map */ | |
3872 goto c_doesnt_have_proper_loop_exit_statements; | |
3873 } | |
3874 | |
3875 /* OK, the key is for real */ | |
3876 if (target_buffer) | |
3877 { | |
2500 | 3878 if (!firstonly) ABORT (); |
428 | 3879 format_raw_keys (so_far, keys_count + 1, target_buffer); |
3880 return make_int (1); | |
3881 } | |
3882 else if (firstonly) | |
3883 return raw_keys_to_keys (so_far, keys_count + 1); | |
3884 else | |
3885 result = Fcons (raw_keys_to_keys (so_far, keys_count + 1), | |
3886 result); | |
3887 | |
3888 c_doesnt_have_proper_loop_exit_statements: | |
3889 /* now on to the next matching key ... */ | |
3890 if (!CONSP (keys)) break; | |
3891 keys = XCDR (keys); | |
3892 } | |
3893 } | |
3894 | |
3895 /* Now search the sub-keymaps of this map. | |
3896 If we're in "firstonly" mode and have already found one, this | |
3897 point is not reached. If we get one from lower down, either | |
3898 return it immediately (in firstonly mode) or tack it onto the | |
3899 end of the ones we've gotten so far. | |
3900 */ | |
3901 for (submaps = keymap_submaps (map); | |
3902 !NILP (submaps); | |
3903 submaps = XCDR (submaps)) | |
3904 { | |
3905 Lisp_Object key = XCAR (XCAR (submaps)); | |
3906 Lisp_Object submap = XCDR (XCAR (submaps)); | |
442 | 3907 int lower_modifiers; |
428 | 3908 int lower_keys_count = keys_count; |
442 | 3909 int bucky; |
428 | 3910 |
3911 submap = get_keymap (submap, 0, 0); | |
3912 | |
3913 if (EQ (submap, map)) | |
3914 /* Arrgh! Some loser has introduced a loop... */ | |
3915 continue; | |
3916 | |
3917 /* If this is not a keymap, then that's probably because someone | |
3918 did an `fset' of a symbol that used to point to a map such that | |
3919 it no longer does. Sigh. Ignore this, and invalidate the cache | |
3920 so that it doesn't happen to us next time too. | |
3921 */ | |
3922 if (NILP (submap)) | |
3923 { | |
3924 XKEYMAP (map)->sub_maps_cache = Qt; | |
3925 continue; | |
3926 } | |
3927 | |
3928 /* If the map is a "bucky" map, then add a bit to the | |
3929 modifiers_so_far list. | |
3930 Otherwise, add a new raw_key onto the end of keys_so_far. | |
3931 */ | |
3932 bucky = MODIFIER_HASH_KEY_BITS (key); | |
3933 if (bucky != 0) | |
3934 lower_modifiers = (modifiers_so_far | bucky); | |
3935 else | |
3936 { | |
934 | 3937 Lisp_Key_Data *so_far = c->keys_so_far; |
428 | 3938 lower_modifiers = 0; |
3939 so_far [lower_keys_count].keysym = key; | |
934 | 3940 SET_KEY_DATA_MODIFIERS (&so_far [lower_keys_count], modifiers_so_far); |
428 | 3941 lower_keys_count++; |
3942 } | |
3943 | |
3944 if (lower_keys_count >= c->keys_so_far_total_size) | |
3945 { | |
3946 int size = lower_keys_count + 50; | |
3947 if (! c->keys_so_far_malloced) | |
3948 { | |
3025 | 3949 Lisp_Key_Data *new_ = xnew_array (Lisp_Key_Data, size); |
3950 memcpy ((void *)new_, (const void *)c->keys_so_far, | |
934 | 3951 c->keys_so_far_total_size * sizeof (Lisp_Key_Data)); |
3550 | 3952 xfree (c->keys_so_far, Lisp_Key_Data); |
3953 c->keys_so_far = new_; | |
428 | 3954 } |
3955 else | |
934 | 3956 XREALLOC_ARRAY (c->keys_so_far, Lisp_Key_Data, size); |
428 | 3957 |
3958 c->keys_so_far_total_size = size; | |
3959 c->keys_so_far_malloced = 1; | |
3960 } | |
3961 | |
3962 { | |
3963 Lisp_Object lower; | |
3964 | |
3965 c->keys_count = lower_keys_count; | |
3966 c->modifiers_so_far = lower_modifiers; | |
3967 | |
3968 lower = traverse_keymaps (submap, Qnil, where_is_recursive_mapper, c); | |
3969 | |
3970 c->keys_count = keys_count; | |
3971 c->modifiers_so_far = modifiers_so_far; | |
3972 | |
3973 if (!firstonly) | |
3974 result = nconc2 (lower, result); | |
3975 else if (!NILP (lower)) | |
3976 return lower; | |
3977 } | |
3978 } | |
3979 return result; | |
3980 } | |
3981 | |
3982 | |
3983 static Lisp_Object | |
3984 where_is_internal (Lisp_Object definition, Lisp_Object *maps, int nmaps, | |
793 | 3985 Lisp_Object firstonly, Eistring *target_buffer) |
428 | 3986 { |
3987 /* This function can GC */ | |
3988 Lisp_Object result = Qnil; | |
3989 int i; | |
934 | 3990 Lisp_Key_Data raw[20]; |
428 | 3991 struct where_is_closure c; |
3992 | |
3993 c.definition = definition; | |
3994 c.shadow = maps; | |
3995 c.firstonly = !NILP (firstonly); | |
3996 c.target_buffer = target_buffer; | |
3997 c.keys_so_far = raw; | |
3998 c.keys_so_far_total_size = countof (raw); | |
3999 c.keys_so_far_malloced = 0; | |
4000 | |
4001 /* Loop over each of the maps, accumulating the keys found. | |
4002 For each map searched, all previous maps shadow this one | |
4003 so that bogus keys aren't listed. */ | |
4004 for (i = 0; i < nmaps; i++) | |
4005 { | |
4006 Lisp_Object this_result; | |
4007 c.shadow_count = i; | |
4008 /* Reset the things set in each iteration */ | |
4009 c.keys_count = 0; | |
4010 c.modifiers_so_far = 0; | |
4011 | |
4012 this_result = traverse_keymaps (maps[i], Qnil, where_is_recursive_mapper, | |
4013 &c); | |
4014 if (!NILP (firstonly)) | |
4015 { | |
4016 result = this_result; | |
4017 if (!NILP (result)) | |
4018 break; | |
4019 } | |
4020 else | |
4021 result = nconc2 (this_result, result); | |
4022 } | |
4023 | |
4024 if (NILP (firstonly)) | |
4025 result = Fnreverse (result); | |
4026 | |
4027 if (c.keys_so_far_malloced) | |
1726 | 4028 xfree (c.keys_so_far, Lisp_Key_Data *); |
428 | 4029 return result; |
4030 } | |
4031 | |
4032 | |
4033 /************************************************************************/ | |
4034 /* Describing keymaps */ | |
4035 /************************************************************************/ | |
4036 | |
4037 DEFUN ("describe-bindings-internal", Fdescribe_bindings_internal, 1, 5, 0, /* | |
4038 Insert a list of all defined keys and their definitions in MAP. | |
4039 Optional second argument ALL says whether to include even "uninteresting" | |
4040 definitions (ie symbols with a non-nil `suppress-keymap' property. | |
4041 Third argument SHADOW is a list of keymaps whose bindings shadow those | |
4042 of map; if a binding is present in any shadowing map, it is not printed. | |
4043 Fourth argument PREFIX, if non-nil, should be a key sequence; | |
4044 only bindings which start with that key sequence will be printed. | |
4045 Fifth argument MOUSE-ONLY-P says to only print bindings for mouse clicks. | |
4046 */ | |
4047 (map, all, shadow, prefix, mouse_only_p)) | |
4048 { | |
4049 /* This function can GC */ | |
4050 | |
4051 /* #### At some point, this function should be changed to accept a | |
4052 BUFFER argument. Currently, the BUFFER argument to | |
4053 describe_map_tree is being used only internally. */ | |
4054 describe_map_tree (map, NILP (all), shadow, prefix, | |
4055 !NILP (mouse_only_p), Fcurrent_buffer ()); | |
4056 return Qnil; | |
4057 } | |
4058 | |
4059 | |
4060 /* Insert a description of the key bindings in STARTMAP, | |
4061 followed by those of all maps reachable through STARTMAP. | |
4062 If PARTIAL is nonzero, omit certain "uninteresting" commands | |
4063 (such as `undefined'). | |
4064 If SHADOW is non-nil, it is a list of other maps; | |
4065 don't mention keys which would be shadowed by any of them | |
4066 If PREFIX is non-nil, only list bindings which start with those keys. | |
4067 */ | |
4068 | |
4069 void | |
4070 describe_map_tree (Lisp_Object startmap, int partial, Lisp_Object shadow, | |
4071 Lisp_Object prefix, int mice_only_p, Lisp_Object buffer) | |
4072 { | |
4073 /* This function can GC */ | |
4074 Lisp_Object maps = Qnil; | |
4075 struct gcpro gcpro1, gcpro2; /* get_keymap may autoload */ | |
4076 GCPRO2 (maps, shadow); | |
4077 | |
4078 maps = Faccessible_keymaps (startmap, prefix); | |
4079 | |
4080 for (; !NILP (maps); maps = Fcdr (maps)) | |
4081 { | |
4082 Lisp_Object sub_shadow = Qnil; | |
4083 Lisp_Object elt = Fcar (maps); | |
4084 Lisp_Object tail; | |
4085 int no_prefix = (VECTORP (Fcar (elt)) | |
4086 && XINT (Flength (Fcar (elt))) == 0); | |
4087 struct gcpro ngcpro1, ngcpro2, ngcpro3; | |
4088 NGCPRO3 (sub_shadow, elt, tail); | |
4089 | |
4090 for (tail = shadow; CONSP (tail); tail = XCDR (tail)) | |
4091 { | |
4092 Lisp_Object shmap = XCAR (tail); | |
4093 | |
4094 /* If the sequence by which we reach this keymap is zero-length, | |
4095 then the shadow maps for this keymap are just SHADOW. */ | |
4096 if (no_prefix) | |
4097 ; | |
4098 /* If the sequence by which we reach this keymap actually has | |
4099 some elements, then the sequence's definition in SHADOW is | |
4100 what we should use. */ | |
4101 else | |
4102 { | |
4103 shmap = Flookup_key (shmap, Fcar (elt), Qt); | |
4104 if (CHARP (shmap)) | |
4105 shmap = Qnil; | |
4106 } | |
4107 | |
4108 if (!NILP (shmap)) | |
4109 { | |
4110 Lisp_Object shm = get_keymap (shmap, 0, 1); | |
4111 /* If shmap is not nil and not a keymap, it completely | |
4112 shadows this map, so don't describe this map at all. */ | |
4113 if (!KEYMAPP (shm)) | |
4114 goto SKIP; | |
4115 sub_shadow = Fcons (shm, sub_shadow); | |
4116 } | |
4117 } | |
4118 | |
4119 { | |
4120 /* Describe the contents of map MAP, assuming that this map | |
4121 itself is reached by the sequence of prefix keys KEYS (a vector). | |
4122 PARTIAL and SHADOW are as in `describe_map_tree'. */ | |
4123 Lisp_Object keysdesc | |
4124 = ((!no_prefix) | |
4125 ? concat2 (Fkey_description (Fcar (elt)), Vsingle_space_string) | |
4126 : Qnil); | |
4127 describe_map (Fcdr (elt), keysdesc, | |
4128 describe_command, | |
4129 partial, | |
4130 sub_shadow, | |
4131 mice_only_p, | |
4132 buffer); | |
4133 } | |
4134 SKIP: | |
4135 NUNGCPRO; | |
4136 } | |
4137 UNGCPRO; | |
4138 } | |
4139 | |
4140 | |
4141 static void | |
4142 describe_command (Lisp_Object definition, Lisp_Object buffer) | |
4143 { | |
4144 /* This function can GC */ | |
4145 int keymapp = !NILP (Fkeymapp (definition)); | |
4146 struct gcpro gcpro1; | |
4147 GCPRO1 (definition); | |
4148 | |
4149 Findent_to (make_int (16), make_int (3), buffer); | |
4150 if (keymapp) | |
4151 buffer_insert_c_string (XBUFFER (buffer), "<< "); | |
4152 | |
4153 if (SYMBOLP (definition)) | |
4154 { | |
4155 buffer_insert1 (XBUFFER (buffer), Fsymbol_name (definition)); | |
4156 } | |
4157 else if (STRINGP (definition) || VECTORP (definition)) | |
4158 { | |
4159 buffer_insert_c_string (XBUFFER (buffer), "Kbd Macro: "); | |
4160 buffer_insert1 (XBUFFER (buffer), Fkey_description (definition)); | |
4161 } | |
4162 else if (COMPILED_FUNCTIONP (definition)) | |
4163 buffer_insert_c_string (XBUFFER (buffer), "Anonymous Compiled Function"); | |
4164 else if (CONSP (definition) && EQ (XCAR (definition), Qlambda)) | |
4165 buffer_insert_c_string (XBUFFER (buffer), "Anonymous Lambda"); | |
4166 else if (KEYMAPP (definition)) | |
4167 { | |
4168 Lisp_Object name = XKEYMAP (definition)->name; | |
4169 if (STRINGP (name) || (SYMBOLP (name) && !NILP (name))) | |
4170 { | |
4171 buffer_insert_c_string (XBUFFER (buffer), "Prefix command "); | |
4172 if (SYMBOLP (name) | |
4173 && EQ (find_symbol_value (name), definition)) | |
4174 buffer_insert1 (XBUFFER (buffer), Fsymbol_name (name)); | |
4175 else | |
4176 { | |
4177 buffer_insert1 (XBUFFER (buffer), Fprin1_to_string (name, Qnil)); | |
4178 } | |
4179 } | |
4180 else | |
4181 buffer_insert_c_string (XBUFFER (buffer), "Prefix Command"); | |
4182 } | |
4183 else | |
4184 buffer_insert_c_string (XBUFFER (buffer), "??"); | |
4185 | |
4186 if (keymapp) | |
4187 buffer_insert_c_string (XBUFFER (buffer), " >>"); | |
4188 buffer_insert_c_string (XBUFFER (buffer), "\n"); | |
4189 UNGCPRO; | |
4190 } | |
4191 | |
4192 struct describe_map_closure | |
4193 { | |
4194 Lisp_Object *list; /* pointer to the list to update */ | |
4195 Lisp_Object partial; /* whether to ignore suppressed commands */ | |
4196 Lisp_Object shadow; /* list of maps shadowing this one */ | |
4197 Lisp_Object self; /* this map */ | |
4198 Lisp_Object self_root; /* this map, or some map that has this map as | |
4199 a parent. this is the base of the tree */ | |
4200 int mice_only_p; /* whether we are to display only button bindings */ | |
4201 }; | |
4202 | |
4203 struct describe_map_shadow_closure | |
4204 { | |
934 | 4205 const Lisp_Key_Data *raw_key; |
428 | 4206 Lisp_Object self; |
4207 }; | |
4208 | |
4209 static Lisp_Object | |
4210 describe_map_mapper_shadow_search (Lisp_Object map, void *arg) | |
4211 { | |
4212 struct describe_map_shadow_closure *c = | |
4213 (struct describe_map_shadow_closure *) arg; | |
4214 | |
4215 if (EQ (map, c->self)) | |
4216 return Qzero; /* Not shadowed; terminate search */ | |
4217 | |
934 | 4218 return !NILP (keymap_lookup_directly (map, |
4219 KEY_DATA_KEYSYM (c->raw_key), | |
4220 KEY_DATA_MODIFIERS (c->raw_key))) | |
428 | 4221 ? Qt : Qnil; |
4222 } | |
4223 | |
4224 | |
4225 static Lisp_Object | |
4226 keymap_lookup_inherited_mapper (Lisp_Object km, void *arg) | |
4227 { | |
934 | 4228 Lisp_Key_Data *k = (Lisp_Key_Data *) arg; |
4229 return keymap_lookup_directly (km, KEY_DATA_KEYSYM (k), KEY_DATA_MODIFIERS (k)); | |
428 | 4230 } |
4231 | |
4232 | |
4233 static void | |
934 | 4234 describe_map_mapper (const Lisp_Key_Data *key, |
428 | 4235 Lisp_Object binding, |
4236 void *describe_map_closure) | |
4237 { | |
4238 /* This function can GC */ | |
4239 struct describe_map_closure *closure = | |
4240 (struct describe_map_closure *) describe_map_closure; | |
934 | 4241 Lisp_Object keysym = KEY_DATA_KEYSYM (key); |
4242 int modifiers = KEY_DATA_MODIFIERS (key); | |
428 | 4243 |
4244 /* Don't mention suppressed commands. */ | |
4245 if (SYMBOLP (binding) | |
4246 && !NILP (closure->partial) | |
4247 && !NILP (Fget (binding, closure->partial, Qnil))) | |
4248 return; | |
4249 | |
4250 /* If we're only supposed to display mouse bindings and this isn't one, | |
4251 then bug out. */ | |
4252 if (closure->mice_only_p && | |
4253 (! (EQ (keysym, Qbutton0) || | |
4254 EQ (keysym, Qbutton1) || | |
4255 EQ (keysym, Qbutton2) || | |
4256 EQ (keysym, Qbutton3) || | |
4257 EQ (keysym, Qbutton4) || | |
4258 EQ (keysym, Qbutton5) || | |
4259 EQ (keysym, Qbutton6) || | |
4260 EQ (keysym, Qbutton7) || | |
4272 | 4261 EQ (keysym, Qbutton8) || |
4262 EQ (keysym, Qbutton9) || | |
4263 EQ (keysym, Qbutton10) || | |
4264 EQ (keysym, Qbutton11) || | |
4265 EQ (keysym, Qbutton12) || | |
4266 EQ (keysym, Qbutton13) || | |
4267 EQ (keysym, Qbutton14) || | |
4268 EQ (keysym, Qbutton15) || | |
4269 EQ (keysym, Qbutton16) || | |
4270 EQ (keysym, Qbutton17) || | |
4271 EQ (keysym, Qbutton18) || | |
4272 EQ (keysym, Qbutton19) || | |
4273 EQ (keysym, Qbutton20) || | |
4274 EQ (keysym, Qbutton21) || | |
4275 EQ (keysym, Qbutton22) || | |
4276 EQ (keysym, Qbutton23) || | |
4277 EQ (keysym, Qbutton24) || | |
4278 EQ (keysym, Qbutton25) || | |
4279 EQ (keysym, Qbutton26) || | |
428 | 4280 EQ (keysym, Qbutton0up) || |
4281 EQ (keysym, Qbutton1up) || | |
4282 EQ (keysym, Qbutton2up) || | |
4283 EQ (keysym, Qbutton3up) || | |
4284 EQ (keysym, Qbutton4up) || | |
4285 EQ (keysym, Qbutton5up) || | |
4272 | 4286 EQ (keysym, Qbutton6up) || |
4287 EQ (keysym, Qbutton7up) || | |
4288 EQ (keysym, Qbutton8up) || | |
4289 EQ (keysym, Qbutton9up) || | |
4290 EQ (keysym, Qbutton10up) || | |
4291 EQ (keysym, Qbutton11up) || | |
4292 EQ (keysym, Qbutton12up) || | |
4293 EQ (keysym, Qbutton13up) || | |
4294 EQ (keysym, Qbutton14up) || | |
4295 EQ (keysym, Qbutton15up) || | |
4296 EQ (keysym, Qbutton16up) || | |
4297 EQ (keysym, Qbutton17up) || | |
4298 EQ (keysym, Qbutton18up) || | |
4299 EQ (keysym, Qbutton19up) || | |
4300 EQ (keysym, Qbutton20up) || | |
4301 EQ (keysym, Qbutton21up) || | |
4302 EQ (keysym, Qbutton22up) || | |
4303 EQ (keysym, Qbutton23up) || | |
4304 EQ (keysym, Qbutton24up) || | |
4305 EQ (keysym, Qbutton25up) || | |
4306 EQ (keysym, Qbutton26up)))) | |
428 | 4307 return; |
4308 | |
4309 /* If this command in this map is shadowed by some other map, ignore it. */ | |
4310 { | |
4311 Lisp_Object tail; | |
4312 | |
4313 for (tail = closure->shadow; CONSP (tail); tail = XCDR (tail)) | |
4314 { | |
4315 QUIT; | |
4316 if (!NILP (traverse_keymaps (XCAR (tail), Qnil, | |
4317 keymap_lookup_inherited_mapper, | |
4318 /* Cast to discard `const' */ | |
4319 (void *)key))) | |
4320 return; | |
4321 } | |
4322 } | |
4323 | |
4324 /* If this key is in some map of which this map is a parent, then ignore | |
4325 it (in that case, it has been shadowed). | |
4326 */ | |
4327 { | |
4328 Lisp_Object sh; | |
4329 struct describe_map_shadow_closure c; | |
4330 c.raw_key = key; | |
4331 c.self = closure->self; | |
4332 | |
4333 sh = traverse_keymaps (closure->self_root, Qnil, | |
4334 describe_map_mapper_shadow_search, &c); | |
4335 if (!NILP (sh) && !ZEROP (sh)) | |
4336 return; | |
4337 } | |
4338 | |
4339 /* Otherwise add it to the list to be sorted. */ | |
4340 *(closure->list) = Fcons (Fcons (Fcons (keysym, make_int (modifiers)), | |
4341 binding), | |
4342 *(closure->list)); | |
4343 } | |
4344 | |
4345 | |
4346 static int | |
4347 describe_map_sort_predicate (Lisp_Object obj1, Lisp_Object obj2, | |
4348 Lisp_Object pred) | |
4349 { | |
4350 /* obj1 and obj2 are conses of the form | |
4351 ( ( <keysym> . <modifiers> ) . <binding> ) | |
4352 keysym and modifiers are used, binding is ignored. | |
4353 */ | |
442 | 4354 int bit1, bit2; |
428 | 4355 obj1 = XCAR (obj1); |
4356 obj2 = XCAR (obj2); | |
4357 bit1 = XINT (XCDR (obj1)); | |
4358 bit2 = XINT (XCDR (obj2)); | |
4359 if (bit1 != bit2) | |
4360 return bit1 < bit2 ? 1 : -1; | |
4361 else | |
4362 return map_keymap_sort_predicate (obj1, obj2, pred); | |
4363 } | |
4364 | |
4365 /* Elide 2 or more consecutive numeric keysyms bound to the same thing, | |
4366 or 2 or more symbolic keysyms that are bound to the same thing and | |
4367 have consecutive character-set-properties. | |
4368 */ | |
4369 static int | |
4370 elide_next_two_p (Lisp_Object list) | |
4371 { | |
4372 Lisp_Object s1, s2; | |
2828 | 4373 extern Lisp_Object Qcharacter_of_keysym; |
428 | 4374 |
4375 if (NILP (XCDR (list))) | |
4376 return 0; | |
4377 | |
4378 /* next two bindings differ */ | |
4379 if (!EQ (XCDR (XCAR (list)), | |
4380 XCDR (XCAR (XCDR (list))))) | |
4381 return 0; | |
4382 | |
4383 /* next two modifier-sets differ */ | |
4384 if (!EQ (XCDR (XCAR (XCAR (list))), | |
4385 XCDR (XCAR (XCAR (XCDR (list)))))) | |
4386 return 0; | |
4387 | |
4388 s1 = XCAR (XCAR (XCAR (list))); | |
4389 s2 = XCAR (XCAR (XCAR (XCDR (list)))); | |
4390 | |
4391 if (SYMBOLP (s1)) | |
4392 { | |
2828 | 4393 Lisp_Object code = Fget (s1, Qcharacter_of_keysym, Qnil); |
428 | 4394 if (CHAR_OR_CHAR_INTP (code)) |
4395 { | |
4396 s1 = code; | |
4397 CHECK_CHAR_COERCE_INT (s1); | |
4398 } | |
4399 else return 0; | |
4400 } | |
4401 if (SYMBOLP (s2)) | |
4402 { | |
2828 | 4403 Lisp_Object code = Fget (s2, Qcharacter_of_keysym, Qnil); |
428 | 4404 if (CHAR_OR_CHAR_INTP (code)) |
4405 { | |
4406 s2 = code; | |
4407 CHECK_CHAR_COERCE_INT (s2); | |
4408 } | |
4409 else return 0; | |
4410 } | |
4411 | |
4412 return (XCHAR (s1) == XCHAR (s2) || | |
4413 XCHAR (s1) + 1 == XCHAR (s2)); | |
4414 } | |
4415 | |
4416 | |
4417 static Lisp_Object | |
4418 describe_map_parent_mapper (Lisp_Object keymap, void *arg) | |
4419 { | |
4420 /* This function can GC */ | |
4421 struct describe_map_closure *describe_map_closure = | |
4422 (struct describe_map_closure *) arg; | |
4423 describe_map_closure->self = keymap; | |
4424 map_keymap (XKEYMAP (keymap)->table, | |
4425 0, /* don't sort: we'll do it later */ | |
4426 describe_map_mapper, describe_map_closure); | |
4427 return Qnil; | |
4428 } | |
4429 | |
4430 | |
4431 /* Describe the contents of map MAP, assuming that this map itself is | |
4432 reached by the sequence of prefix keys KEYS (a string or vector). | |
4433 PARTIAL, SHADOW, NOMENU are as in `describe_map_tree' above. */ | |
4434 | |
4435 static void | |
4436 describe_map (Lisp_Object keymap, Lisp_Object elt_prefix, | |
4437 void (*elt_describer) (Lisp_Object, Lisp_Object), | |
4438 int partial, | |
4439 Lisp_Object shadow, | |
4440 int mice_only_p, | |
4441 Lisp_Object buffer) | |
4442 { | |
4443 /* This function can GC */ | |
4444 struct describe_map_closure describe_map_closure; | |
4445 Lisp_Object list = Qnil; | |
4446 struct buffer *buf = XBUFFER (buffer); | |
867 | 4447 Ichar printable_min = (CHAR_OR_CHAR_INTP (buf->ctl_arrow) |
428 | 4448 ? XCHAR_OR_CHAR_INT (buf->ctl_arrow) |
4449 : ((EQ (buf->ctl_arrow, Qt) | |
4450 || EQ (buf->ctl_arrow, Qnil)) | |
4451 ? 256 : 160)); | |
4452 int elided = 0; | |
4453 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4; | |
2828 | 4454 extern Lisp_Object Qcharacter_of_keysym; |
428 | 4455 |
4456 keymap = get_keymap (keymap, 1, 1); | |
4457 describe_map_closure.partial = (partial ? Qsuppress_keymap : Qnil); | |
4458 describe_map_closure.shadow = shadow; | |
4459 describe_map_closure.list = &list; | |
4460 describe_map_closure.self_root = keymap; | |
4461 describe_map_closure.mice_only_p = mice_only_p; | |
4462 | |
4463 GCPRO4 (keymap, elt_prefix, shadow, list); | |
4464 | |
4465 traverse_keymaps (keymap, Qnil, | |
4466 describe_map_parent_mapper, &describe_map_closure); | |
4467 | |
4468 if (!NILP (list)) | |
4469 { | |
4470 list = list_sort (list, Qnil, describe_map_sort_predicate); | |
4471 buffer_insert_c_string (buf, "\n"); | |
4472 while (!NILP (list)) | |
4473 { | |
4474 Lisp_Object elt = XCAR (XCAR (list)); | |
4475 Lisp_Object keysym = XCAR (elt); | |
442 | 4476 int modifiers = XINT (XCDR (elt)); |
428 | 4477 |
4478 if (!NILP (elt_prefix)) | |
4479 buffer_insert_lisp_string (buf, elt_prefix); | |
4480 | |
442 | 4481 if (modifiers & XEMACS_MOD_META) |
4482 buffer_insert_c_string (buf, "M-"); | |
4483 if (modifiers & XEMACS_MOD_CONTROL) | |
4484 buffer_insert_c_string (buf, "C-"); | |
4485 if (modifiers & XEMACS_MOD_SUPER) | |
4486 buffer_insert_c_string (buf, "S-"); | |
4487 if (modifiers & XEMACS_MOD_HYPER) | |
4488 buffer_insert_c_string (buf, "H-"); | |
4489 if (modifiers & XEMACS_MOD_ALT) | |
4490 buffer_insert_c_string (buf, "Alt-"); | |
4491 if (modifiers & XEMACS_MOD_SHIFT) | |
4492 buffer_insert_c_string (buf, "Sh-"); | |
428 | 4493 if (SYMBOLP (keysym)) |
4494 { | |
2828 | 4495 Lisp_Object code = Fget (keysym, Qcharacter_of_keysym, Qnil); |
867 | 4496 Ichar c = (CHAR_OR_CHAR_INTP (code) |
4497 ? XCHAR_OR_CHAR_INT (code) : (Ichar) -1); | |
428 | 4498 /* Calling Fsingle_key_description() would cons more */ |
4499 #if 0 /* This is bogus */ | |
4500 if (EQ (keysym, QKlinefeed)) | |
4501 buffer_insert_c_string (buf, "LFD"); | |
4502 else if (EQ (keysym, QKtab)) | |
4503 buffer_insert_c_string (buf, "TAB"); | |
4504 else if (EQ (keysym, QKreturn)) | |
4505 buffer_insert_c_string (buf, "RET"); | |
4506 else if (EQ (keysym, QKescape)) | |
4507 buffer_insert_c_string (buf, "ESC"); | |
4508 else if (EQ (keysym, QKdelete)) | |
4509 buffer_insert_c_string (buf, "DEL"); | |
4510 else if (EQ (keysym, QKspace)) | |
4511 buffer_insert_c_string (buf, "SPC"); | |
4512 else if (EQ (keysym, QKbackspace)) | |
4513 buffer_insert_c_string (buf, "BS"); | |
4514 else | |
4515 #endif | |
4516 if (c >= printable_min) | |
4517 buffer_insert_emacs_char (buf, c); | |
4518 else buffer_insert1 (buf, Fsymbol_name (keysym)); | |
4519 } | |
4520 else if (CHARP (keysym)) | |
4521 buffer_insert_emacs_char (buf, XCHAR (keysym)); | |
4522 else | |
4523 buffer_insert_c_string (buf, "---bad keysym---"); | |
4524 | |
4525 if (elided) | |
4526 elided = 0; | |
4527 else | |
4528 { | |
4529 int k = 0; | |
4530 | |
4531 while (elide_next_two_p (list)) | |
4532 { | |
4533 k++; | |
4534 list = XCDR (list); | |
4535 } | |
4536 if (k != 0) | |
4537 { | |
4538 if (k == 1) | |
4539 buffer_insert_c_string (buf, ", "); | |
4540 else | |
4541 buffer_insert_c_string (buf, " .. "); | |
4542 elided = 1; | |
4543 continue; | |
4544 } | |
4545 } | |
4546 | |
4547 /* Print a description of the definition of this character. */ | |
4548 (*elt_describer) (XCDR (XCAR (list)), buffer); | |
4549 list = XCDR (list); | |
4550 } | |
4551 } | |
4552 UNGCPRO; | |
4553 } | |
4554 | |
4555 | |
4556 void | |
4557 syms_of_keymap (void) | |
4558 { | |
442 | 4559 INIT_LRECORD_IMPLEMENTATION (keymap); |
4560 | |
502 | 4561 DEFSYMBOL (Qminor_mode_map_alist); |
4562 | |
4563 DEFSYMBOL (Qkeymapp); | |
4564 | |
4565 DEFSYMBOL (Qsuppress_keymap); | |
4566 | |
4567 DEFSYMBOL (Qmodeline_map); | |
4568 DEFSYMBOL (Qtoolbar_map); | |
428 | 4569 |
4570 DEFSUBR (Fkeymap_parents); | |
4571 DEFSUBR (Fset_keymap_parents); | |
4572 DEFSUBR (Fkeymap_name); | |
4573 DEFSUBR (Fset_keymap_name); | |
4574 DEFSUBR (Fkeymap_prompt); | |
4575 DEFSUBR (Fset_keymap_prompt); | |
4576 DEFSUBR (Fkeymap_default_binding); | |
4577 DEFSUBR (Fset_keymap_default_binding); | |
4578 | |
4579 DEFSUBR (Fkeymapp); | |
4580 DEFSUBR (Fmake_keymap); | |
4581 DEFSUBR (Fmake_sparse_keymap); | |
4582 | |
4583 DEFSUBR (Fcopy_keymap); | |
4584 DEFSUBR (Fkeymap_fullness); | |
4585 DEFSUBR (Fmap_keymap); | |
4586 DEFSUBR (Fevent_matches_key_specifier_p); | |
4587 DEFSUBR (Fdefine_key); | |
4588 DEFSUBR (Flookup_key); | |
4589 DEFSUBR (Fkey_binding); | |
4590 DEFSUBR (Fuse_global_map); | |
4591 DEFSUBR (Fuse_local_map); | |
4592 DEFSUBR (Fcurrent_local_map); | |
4593 DEFSUBR (Fcurrent_global_map); | |
4594 DEFSUBR (Fcurrent_keymaps); | |
4595 DEFSUBR (Faccessible_keymaps); | |
4596 DEFSUBR (Fkey_description); | |
4597 DEFSUBR (Fsingle_key_description); | |
4598 DEFSUBR (Fwhere_is_internal); | |
4599 DEFSUBR (Fdescribe_bindings_internal); | |
4600 | |
4601 DEFSUBR (Ftext_char_description); | |
4602 | |
502 | 4603 DEFSYMBOL (Qcontrol); |
4604 DEFSYMBOL (Qctrl); | |
4605 DEFSYMBOL (Qmeta); | |
4606 DEFSYMBOL (Qsuper); | |
4607 DEFSYMBOL (Qhyper); | |
4608 DEFSYMBOL (Qalt); | |
4609 DEFSYMBOL (Qshift); | |
4610 DEFSYMBOL (Qbutton0); | |
4611 DEFSYMBOL (Qbutton1); | |
4612 DEFSYMBOL (Qbutton2); | |
4613 DEFSYMBOL (Qbutton3); | |
4614 DEFSYMBOL (Qbutton4); | |
4615 DEFSYMBOL (Qbutton5); | |
4616 DEFSYMBOL (Qbutton6); | |
4617 DEFSYMBOL (Qbutton7); | |
4272 | 4618 DEFSYMBOL (Qbutton8); |
4619 DEFSYMBOL (Qbutton9); | |
4620 DEFSYMBOL (Qbutton10); | |
4621 DEFSYMBOL (Qbutton11); | |
4622 DEFSYMBOL (Qbutton12); | |
4623 DEFSYMBOL (Qbutton13); | |
4624 DEFSYMBOL (Qbutton14); | |
4625 DEFSYMBOL (Qbutton15); | |
4626 DEFSYMBOL (Qbutton16); | |
4627 DEFSYMBOL (Qbutton17); | |
4628 DEFSYMBOL (Qbutton18); | |
4629 DEFSYMBOL (Qbutton19); | |
4630 DEFSYMBOL (Qbutton20); | |
4631 DEFSYMBOL (Qbutton21); | |
4632 DEFSYMBOL (Qbutton22); | |
4633 DEFSYMBOL (Qbutton23); | |
4634 DEFSYMBOL (Qbutton24); | |
4635 DEFSYMBOL (Qbutton25); | |
4636 DEFSYMBOL (Qbutton26); | |
502 | 4637 DEFSYMBOL (Qbutton0up); |
4638 DEFSYMBOL (Qbutton1up); | |
4639 DEFSYMBOL (Qbutton2up); | |
4640 DEFSYMBOL (Qbutton3up); | |
4641 DEFSYMBOL (Qbutton4up); | |
4642 DEFSYMBOL (Qbutton5up); | |
4643 DEFSYMBOL (Qbutton6up); | |
4644 DEFSYMBOL (Qbutton7up); | |
4272 | 4645 DEFSYMBOL (Qbutton8up); |
4646 DEFSYMBOL (Qbutton9up); | |
4647 DEFSYMBOL (Qbutton10up); | |
4648 DEFSYMBOL (Qbutton11up); | |
4649 DEFSYMBOL (Qbutton12up); | |
4650 DEFSYMBOL (Qbutton13up); | |
4651 DEFSYMBOL (Qbutton14up); | |
4652 DEFSYMBOL (Qbutton15up); | |
4653 DEFSYMBOL (Qbutton16up); | |
4654 DEFSYMBOL (Qbutton17up); | |
4655 DEFSYMBOL (Qbutton18up); | |
4656 DEFSYMBOL (Qbutton19up); | |
4657 DEFSYMBOL (Qbutton20up); | |
4658 DEFSYMBOL (Qbutton21up); | |
4659 DEFSYMBOL (Qbutton22up); | |
4660 DEFSYMBOL (Qbutton23up); | |
4661 DEFSYMBOL (Qbutton24up); | |
4662 DEFSYMBOL (Qbutton25up); | |
4663 DEFSYMBOL (Qbutton26up); | |
502 | 4664 DEFSYMBOL (Qmouse_1); |
4665 DEFSYMBOL (Qmouse_2); | |
4666 DEFSYMBOL (Qmouse_3); | |
4667 DEFSYMBOL (Qmouse_4); | |
4668 DEFSYMBOL (Qmouse_5); | |
4669 DEFSYMBOL (Qmouse_6); | |
4670 DEFSYMBOL (Qmouse_7); | |
4272 | 4671 DEFSYMBOL (Qmouse_8); |
4672 DEFSYMBOL (Qmouse_9); | |
4673 DEFSYMBOL (Qmouse_10); | |
4674 DEFSYMBOL (Qmouse_11); | |
4675 DEFSYMBOL (Qmouse_12); | |
4676 DEFSYMBOL (Qmouse_13); | |
4677 DEFSYMBOL (Qmouse_14); | |
4678 DEFSYMBOL (Qmouse_15); | |
4679 DEFSYMBOL (Qmouse_16); | |
4680 DEFSYMBOL (Qmouse_17); | |
4681 DEFSYMBOL (Qmouse_18); | |
4682 DEFSYMBOL (Qmouse_19); | |
4683 DEFSYMBOL (Qmouse_20); | |
4684 DEFSYMBOL (Qmouse_21); | |
4685 DEFSYMBOL (Qmouse_22); | |
4686 DEFSYMBOL (Qmouse_23); | |
4687 DEFSYMBOL (Qmouse_24); | |
4688 DEFSYMBOL (Qmouse_25); | |
4689 DEFSYMBOL (Qmouse_26); | |
502 | 4690 DEFSYMBOL (Qdown_mouse_1); |
4691 DEFSYMBOL (Qdown_mouse_2); | |
4692 DEFSYMBOL (Qdown_mouse_3); | |
4693 DEFSYMBOL (Qdown_mouse_4); | |
4694 DEFSYMBOL (Qdown_mouse_5); | |
4695 DEFSYMBOL (Qdown_mouse_6); | |
4696 DEFSYMBOL (Qdown_mouse_7); | |
4272 | 4697 DEFSYMBOL (Qdown_mouse_8); |
4698 DEFSYMBOL (Qdown_mouse_9); | |
4699 DEFSYMBOL (Qdown_mouse_10); | |
4700 DEFSYMBOL (Qdown_mouse_11); | |
4701 DEFSYMBOL (Qdown_mouse_12); | |
4702 DEFSYMBOL (Qdown_mouse_13); | |
4703 DEFSYMBOL (Qdown_mouse_14); | |
4704 DEFSYMBOL (Qdown_mouse_15); | |
4705 DEFSYMBOL (Qdown_mouse_16); | |
4706 DEFSYMBOL (Qdown_mouse_17); | |
4707 DEFSYMBOL (Qdown_mouse_18); | |
4708 DEFSYMBOL (Qdown_mouse_19); | |
4709 DEFSYMBOL (Qdown_mouse_20); | |
4710 DEFSYMBOL (Qdown_mouse_21); | |
4711 DEFSYMBOL (Qdown_mouse_22); | |
4712 DEFSYMBOL (Qdown_mouse_23); | |
4713 DEFSYMBOL (Qdown_mouse_24); | |
4714 DEFSYMBOL (Qdown_mouse_25); | |
4715 DEFSYMBOL (Qdown_mouse_26); | |
502 | 4716 DEFSYMBOL (Qmenu_selection); |
4717 DEFSYMBOL (QLFD); | |
4718 DEFSYMBOL (QTAB); | |
4719 DEFSYMBOL (QRET); | |
4720 DEFSYMBOL (QESC); | |
4721 DEFSYMBOL (QDEL); | |
4722 DEFSYMBOL (QSPC); | |
4723 DEFSYMBOL (QBS); | |
428 | 4724 } |
4725 | |
4726 void | |
4727 vars_of_keymap (void) | |
4728 { | |
4729 DEFVAR_LISP ("meta-prefix-char", &Vmeta_prefix_char /* | |
4730 Meta-prefix character. | |
4731 This character followed by some character `foo' turns into `Meta-foo'. | |
4732 This can be any form recognized as a single key specifier. | |
4733 To disable the meta-prefix-char, set it to a negative number. | |
4734 */ ); | |
4735 Vmeta_prefix_char = make_char (033); | |
4736 | |
4737 DEFVAR_LISP ("mouse-grabbed-buffer", &Vmouse_grabbed_buffer /* | |
4738 A buffer which should be consulted first for all mouse activity. | |
4739 When a mouse-click is processed, it will first be looked up in the | |
4740 local-map of this buffer, and then through the normal mechanism if there | |
4741 is no binding for that click. This buffer's value of `mode-motion-hook' | |
4742 will be consulted instead of the `mode-motion-hook' of the buffer of the | |
4743 window under the mouse. You should *bind* this, not set it. | |
4744 */ ); | |
4745 Vmouse_grabbed_buffer = Qnil; | |
4746 | |
4747 DEFVAR_LISP ("overriding-local-map", &Voverriding_local_map /* | |
4748 Keymap that overrides all other local keymaps. | |
4749 If this variable is non-nil, it is used as a keymap instead of the | |
4750 buffer's local map, and the minor mode keymaps and extent-local keymaps. | |
4751 You should *bind* this, not set it. | |
4752 */ ); | |
4753 Voverriding_local_map = Qnil; | |
4754 | |
4755 Fset (Qminor_mode_map_alist, Qnil); | |
4756 | |
4757 DEFVAR_LISP ("key-translation-map", &Vkey_translation_map /* | |
4758 Keymap of key translations that can override keymaps. | |
2027 | 4759 |
4760 This keymap works like `function-key-map', but is searched before it, | |
428 | 4761 and applies even for keys that have ordinary bindings. |
2027 | 4762 |
4763 The `read-key-sequence' function replaces any subsequence bound by | |
4764 `key-translation-map' with its binding. More precisely, when the active | |
4765 keymaps have no binding for the current key sequence but | |
4766 `key-translation-map' binds a suffix of the sequence to a vector or string, | |
4767 `read-key-sequence' replaces the matching suffix with its binding, and | |
4768 continues with the new sequence. See `key-binding' for details. | |
4769 | |
4770 The events that come from bindings in `key-translation-map' are not | |
4771 themselves looked up in `key-translation-map'. | |
4772 | |
4773 #### FIXME: stolen from `function-key-map'; need better example. | |
4774 #### I guess you could implement a Dvorak keyboard with this? | |
4775 For example, suppose `key-translation-map' binds `ESC O P' to [f1]. | |
4776 Typing `ESC O P' to `read-key-sequence' would return | |
4777 \[#<keypress-event f1>]. Typing `C-x ESC O P' would return | |
4778 \[#<keypress-event control-X> #<keypress-event f1>]. If [f1] | |
4779 were a prefix key, typing `ESC O P x' would return | |
4780 \[#<keypress-event f1> #<keypress-event x>]. | |
428 | 4781 */ ); |
4782 Vkey_translation_map = Qnil; | |
4783 | |
771 | 4784 DEFVAR_LISP ("global-tty-map", &Vglobal_tty_map /* |
4785 Global keymap that applies only to TTY's. | |
4786 Key bindings are looked up in this map just before looking in the global map, | |
4787 but only when the current console is a TTY console. See also | |
4788 `global-window-system-map'. | |
4789 */ ); | |
4790 Vglobal_tty_map = Qnil; | |
4791 | |
4792 DEFVAR_LISP ("global-window-system-map", &Vglobal_window_system_map /* | |
4793 Global keymap that applies only to window systems. | |
4794 Key bindings are looked up in this map just before looking in the global map, | |
4795 but only when the current console is not a TTY console. See also | |
4796 `global-tty-map'. | |
4797 */ ); | |
4798 Vglobal_window_system_map = Qnil; | |
4799 | |
428 | 4800 DEFVAR_LISP ("vertical-divider-map", &Vvertical_divider_map /* |
4801 Keymap which handles mouse clicks over vertical dividers. | |
4802 */ ); | |
4803 Vvertical_divider_map = Qnil; | |
4804 | |
4805 DEFVAR_INT ("keymap-tick", &keymap_tick /* | |
4806 Incremented for each change to any keymap. | |
4807 */ ); | |
4808 keymap_tick = 0; | |
4809 | |
4810 staticpro (&Vcurrent_global_map); | |
4811 | |
867 | 4812 Vsingle_space_string = make_string ((const Ibyte *) " ", 1); |
428 | 4813 staticpro (&Vsingle_space_string); |
4814 } | |
4815 | |
4816 void | |
4817 complex_vars_of_keymap (void) | |
4818 { | |
4819 /* This function can GC */ | |
4820 Lisp_Object ESC_prefix = intern ("ESC-prefix"); | |
4821 Lisp_Object meta_disgustitute; | |
4822 | |
4823 Vcurrent_global_map = Fmake_keymap (Qnil); | |
771 | 4824 Vglobal_tty_map = Fmake_keymap (intern ("global-tty-map")); |
4825 Vglobal_window_system_map = | |
4826 Fmake_keymap (intern ("global-window-system-map")); | |
428 | 4827 |
4828 meta_disgustitute = Fmake_keymap (Qnil); | |
4829 Ffset (ESC_prefix, meta_disgustitute); | |
4830 /* no need to protect meta_disgustitute, though */ | |
442 | 4831 keymap_store_internal (MAKE_MODIFIER_HASH_KEY (XEMACS_MOD_META), |
428 | 4832 XKEYMAP (Vcurrent_global_map), |
4833 meta_disgustitute); | |
4834 XKEYMAP (Vcurrent_global_map)->sub_maps_cache = Qt; | |
4835 | |
4836 Vkey_translation_map = Fmake_sparse_keymap (intern ("key-translation-map")); | |
4837 } |