428
|
1 /* Primitive operations on Lisp data types for XEmacs Lisp interpreter.
|
|
2 Copyright (C) 1985, 1986, 1988, 1992, 1993, 1994, 1995
|
|
3 Free Software Foundation, Inc.
|
1330
|
4 Copyright (C) 2000, 2001, 2002, 2003 Ben Wing.
|
428
|
5
|
|
6 This file is part of XEmacs.
|
|
7
|
|
8 XEmacs is free software; you can redistribute it and/or modify it
|
|
9 under the terms of the GNU General Public License as published by the
|
|
10 Free Software Foundation; either version 2, or (at your option) any
|
|
11 later version.
|
|
12
|
|
13 XEmacs is distributed in the hope that it will be useful, but WITHOUT
|
|
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
16 for more details.
|
|
17
|
|
18 You should have received a copy of the GNU General Public License
|
|
19 along with XEmacs; see the file COPYING. If not, write to
|
|
20 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
21 Boston, MA 02111-1307, USA. */
|
|
22
|
|
23 /* Synched up with: Mule 2.0, FSF 19.30. Some of FSF's data.c is in
|
|
24 XEmacs' symbols.c. */
|
|
25
|
|
26 /* This file has been Mule-ized. */
|
|
27
|
|
28 #include <config.h>
|
|
29 #include "lisp.h"
|
|
30
|
|
31 #include "buffer.h"
|
|
32 #include "bytecode.h"
|
|
33 #include "syssignal.h"
|
771
|
34 #include "sysfloat.h"
|
428
|
35
|
|
36 Lisp_Object Qnil, Qt, Qquote, Qlambda, Qunbound;
|
|
37 Lisp_Object Qerror_conditions, Qerror_message;
|
442
|
38 Lisp_Object Qerror, Qquit, Qsyntax_error, Qinvalid_read_syntax;
|
563
|
39 Lisp_Object Qlist_formation_error, Qstructure_formation_error;
|
442
|
40 Lisp_Object Qmalformed_list, Qmalformed_property_list;
|
|
41 Lisp_Object Qcircular_list, Qcircular_property_list;
|
563
|
42 Lisp_Object Qinvalid_argument, Qinvalid_constant, Qwrong_type_argument;
|
|
43 Lisp_Object Qargs_out_of_range;
|
442
|
44 Lisp_Object Qwrong_number_of_arguments, Qinvalid_function, Qno_catch;
|
563
|
45 Lisp_Object Qinternal_error, Qinvalid_state, Qstack_overflow, Qout_of_memory;
|
428
|
46 Lisp_Object Qvoid_variable, Qcyclic_variable_indirection;
|
|
47 Lisp_Object Qvoid_function, Qcyclic_function_indirection;
|
563
|
48 Lisp_Object Qinvalid_operation, Qinvalid_change, Qprinting_unreadable_object;
|
442
|
49 Lisp_Object Qsetting_constant;
|
|
50 Lisp_Object Qediting_error;
|
|
51 Lisp_Object Qbeginning_of_buffer, Qend_of_buffer, Qbuffer_read_only;
|
563
|
52 Lisp_Object Qio_error, Qfile_error, Qconversion_error, Qend_of_file;
|
580
|
53 Lisp_Object Qtext_conversion_error;
|
428
|
54 Lisp_Object Qarith_error, Qrange_error, Qdomain_error;
|
|
55 Lisp_Object Qsingularity_error, Qoverflow_error, Qunderflow_error;
|
1983
|
56 Lisp_Object Qintegerp, Qnatnump, Qnonnegativep, Qsymbolp;
|
428
|
57 Lisp_Object Qlistp, Qtrue_list_p, Qweak_listp;
|
|
58 Lisp_Object Qconsp, Qsubrp;
|
|
59 Lisp_Object Qcharacterp, Qstringp, Qarrayp, Qsequencep, Qvectorp;
|
|
60 Lisp_Object Qchar_or_string_p, Qmarkerp, Qinteger_or_marker_p, Qbufferp;
|
|
61 Lisp_Object Qinteger_or_char_p, Qinteger_char_or_marker_p;
|
|
62 Lisp_Object Qnumberp, Qnumber_char_or_marker_p;
|
|
63 Lisp_Object Qbit_vectorp, Qbitp, Qcdr;
|
|
64
|
563
|
65 Lisp_Object Qerror_lacks_explanatory_string;
|
428
|
66 Lisp_Object Qfloatp;
|
|
67
|
|
68 #ifdef DEBUG_XEMACS
|
|
69
|
|
70 int debug_issue_ebola_notices;
|
|
71
|
458
|
72 Fixnum debug_ebola_backtrace_length;
|
428
|
73
|
|
74 int
|
|
75 eq_with_ebola_notice (Lisp_Object obj1, Lisp_Object obj2)
|
|
76 {
|
|
77 if (debug_issue_ebola_notices
|
|
78 && ((CHARP (obj1) && INTP (obj2)) || (CHARP (obj2) && INTP (obj1))))
|
|
79 {
|
|
80 /* #### It would be really nice if this were a proper warning
|
1551
|
81 instead of brain-dead print to Qexternal_debugging_output. */
|
826
|
82 write_c_string
|
|
83 (Qexternal_debugging_output,
|
|
84 "Comparison between integer and character is constant nil (");
|
428
|
85 Fprinc (obj1, Qexternal_debugging_output);
|
826
|
86 write_c_string (Qexternal_debugging_output, " and ");
|
428
|
87 Fprinc (obj2, Qexternal_debugging_output);
|
826
|
88 write_c_string (Qexternal_debugging_output, ")\n");
|
428
|
89 debug_short_backtrace (debug_ebola_backtrace_length);
|
|
90 }
|
|
91 return EQ (obj1, obj2);
|
|
92 }
|
|
93
|
|
94 #endif /* DEBUG_XEMACS */
|
|
95
|
|
96
|
|
97
|
|
98 Lisp_Object
|
|
99 wrong_type_argument (Lisp_Object predicate, Lisp_Object value)
|
|
100 {
|
|
101 /* This function can GC */
|
|
102 REGISTER Lisp_Object tem;
|
|
103 do
|
|
104 {
|
|
105 value = Fsignal (Qwrong_type_argument, list2 (predicate, value));
|
|
106 tem = call1 (predicate, value);
|
|
107 }
|
|
108 while (NILP (tem));
|
|
109 return value;
|
|
110 }
|
|
111
|
|
112 DOESNT_RETURN
|
|
113 dead_wrong_type_argument (Lisp_Object predicate, Lisp_Object value)
|
|
114 {
|
563
|
115 signal_error_1 (Qwrong_type_argument, list2 (predicate, value));
|
428
|
116 }
|
|
117
|
|
118 DEFUN ("wrong-type-argument", Fwrong_type_argument, 2, 2, 0, /*
|
|
119 Signal an error until the correct type value is given by the user.
|
|
120 This function loops, signalling a continuable `wrong-type-argument' error
|
|
121 with PREDICATE and VALUE as the data associated with the error and then
|
|
122 calling PREDICATE on the returned value, until the value gotten satisfies
|
|
123 PREDICATE. At that point, the gotten value is returned.
|
|
124 */
|
|
125 (predicate, value))
|
|
126 {
|
|
127 return wrong_type_argument (predicate, value);
|
|
128 }
|
|
129
|
|
130 DOESNT_RETURN
|
|
131 c_write_error (Lisp_Object obj)
|
|
132 {
|
563
|
133 signal_error (Qsetting_constant,
|
|
134 "Attempt to modify read-only object (c)", obj);
|
428
|
135 }
|
|
136
|
|
137 DOESNT_RETURN
|
|
138 lisp_write_error (Lisp_Object obj)
|
|
139 {
|
563
|
140 signal_error (Qsetting_constant,
|
|
141 "Attempt to modify read-only object (lisp)", obj);
|
428
|
142 }
|
|
143
|
|
144 DOESNT_RETURN
|
|
145 args_out_of_range (Lisp_Object a1, Lisp_Object a2)
|
|
146 {
|
563
|
147 signal_error_1 (Qargs_out_of_range, list2 (a1, a2));
|
428
|
148 }
|
|
149
|
|
150 DOESNT_RETURN
|
|
151 args_out_of_range_3 (Lisp_Object a1, Lisp_Object a2, Lisp_Object a3)
|
|
152 {
|
563
|
153 signal_error_1 (Qargs_out_of_range, list3 (a1, a2, a3));
|
428
|
154 }
|
|
155
|
|
156 void
|
|
157 check_int_range (EMACS_INT val, EMACS_INT min, EMACS_INT max)
|
|
158 {
|
|
159 if (val < min || val > max)
|
|
160 args_out_of_range_3 (make_int (val), make_int (min), make_int (max));
|
|
161 }
|
|
162
|
|
163 /* On some machines, XINT needs a temporary location.
|
|
164 Here it is, in case it is needed. */
|
|
165
|
|
166 EMACS_INT sign_extend_temp;
|
|
167
|
|
168 /* On a few machines, XINT can only be done by calling this. */
|
|
169 /* XEmacs: only used by m/convex.h */
|
|
170 EMACS_INT sign_extend_lisp_int (EMACS_INT num);
|
|
171 EMACS_INT
|
|
172 sign_extend_lisp_int (EMACS_INT num)
|
|
173 {
|
2039
|
174 if (num & (1L << (INT_VALBITS - 1)))
|
|
175 return num | ((-1L) << INT_VALBITS);
|
428
|
176 else
|
2039
|
177 return num & (EMACS_INT) ((1UL << INT_VALBITS) - 1);
|
428
|
178 }
|
|
179
|
|
180
|
|
181 /* Data type predicates */
|
|
182
|
|
183 DEFUN ("eq", Feq, 2, 2, 0, /*
|
|
184 Return t if the two args are the same Lisp object.
|
|
185 */
|
444
|
186 (object1, object2))
|
428
|
187 {
|
444
|
188 return EQ_WITH_EBOLA_NOTICE (object1, object2) ? Qt : Qnil;
|
428
|
189 }
|
|
190
|
|
191 DEFUN ("old-eq", Fold_eq, 2, 2, 0, /*
|
|
192 Return t if the two args are (in most cases) the same Lisp object.
|
|
193
|
|
194 Special kludge: A character is considered `old-eq' to its equivalent integer
|
|
195 even though they are not the same object and are in fact of different
|
|
196 types. This is ABSOLUTELY AND UTTERLY HORRENDOUS but is necessary to
|
|
197 preserve byte-code compatibility with v19. This kludge is known as the
|
|
198 \"char-int confoundance disease\" and appears in a number of other
|
|
199 functions with `old-foo' equivalents.
|
|
200
|
|
201 Do not use this function!
|
|
202 */
|
444
|
203 (object1, object2))
|
428
|
204 {
|
|
205 /* #### blasphemy */
|
444
|
206 return HACKEQ_UNSAFE (object1, object2) ? Qt : Qnil;
|
428
|
207 }
|
|
208
|
|
209 DEFUN ("null", Fnull, 1, 1, 0, /*
|
|
210 Return t if OBJECT is nil.
|
|
211 */
|
|
212 (object))
|
|
213 {
|
|
214 return NILP (object) ? Qt : Qnil;
|
|
215 }
|
|
216
|
|
217 DEFUN ("consp", Fconsp, 1, 1, 0, /*
|
|
218 Return t if OBJECT is a cons cell. `nil' is not a cons cell.
|
|
219 */
|
|
220 (object))
|
|
221 {
|
|
222 return CONSP (object) ? Qt : Qnil;
|
|
223 }
|
|
224
|
|
225 DEFUN ("atom", Fatom, 1, 1, 0, /*
|
|
226 Return t if OBJECT is not a cons cell. `nil' is not a cons cell.
|
|
227 */
|
|
228 (object))
|
|
229 {
|
|
230 return CONSP (object) ? Qnil : Qt;
|
|
231 }
|
|
232
|
|
233 DEFUN ("listp", Flistp, 1, 1, 0, /*
|
|
234 Return t if OBJECT is a list. `nil' is a list.
|
|
235 */
|
|
236 (object))
|
|
237 {
|
|
238 return LISTP (object) ? Qt : Qnil;
|
|
239 }
|
|
240
|
|
241 DEFUN ("nlistp", Fnlistp, 1, 1, 0, /*
|
|
242 Return t if OBJECT is not a list. `nil' is a list.
|
|
243 */
|
|
244 (object))
|
|
245 {
|
|
246 return LISTP (object) ? Qnil : Qt;
|
|
247 }
|
|
248
|
|
249 DEFUN ("true-list-p", Ftrue_list_p, 1, 1, 0, /*
|
1551
|
250 Return t if OBJECT is an acyclic, nil-terminated (ie, not dotted), list.
|
428
|
251 */
|
|
252 (object))
|
|
253 {
|
|
254 return TRUE_LIST_P (object) ? Qt : Qnil;
|
|
255 }
|
|
256
|
|
257 DEFUN ("symbolp", Fsymbolp, 1, 1, 0, /*
|
|
258 Return t if OBJECT is a symbol.
|
|
259 */
|
|
260 (object))
|
|
261 {
|
|
262 return SYMBOLP (object) ? Qt : Qnil;
|
|
263 }
|
|
264
|
|
265 DEFUN ("keywordp", Fkeywordp, 1, 1, 0, /*
|
|
266 Return t if OBJECT is a keyword.
|
|
267 */
|
|
268 (object))
|
|
269 {
|
|
270 return KEYWORDP (object) ? Qt : Qnil;
|
|
271 }
|
|
272
|
|
273 DEFUN ("vectorp", Fvectorp, 1, 1, 0, /*
|
|
274 Return t if OBJECT is a vector.
|
|
275 */
|
|
276 (object))
|
|
277 {
|
|
278 return VECTORP (object) ? Qt : Qnil;
|
|
279 }
|
|
280
|
|
281 DEFUN ("bit-vector-p", Fbit_vector_p, 1, 1, 0, /*
|
|
282 Return t if OBJECT is a bit vector.
|
|
283 */
|
|
284 (object))
|
|
285 {
|
|
286 return BIT_VECTORP (object) ? Qt : Qnil;
|
|
287 }
|
|
288
|
|
289 DEFUN ("stringp", Fstringp, 1, 1, 0, /*
|
|
290 Return t if OBJECT is a string.
|
|
291 */
|
|
292 (object))
|
|
293 {
|
|
294 return STRINGP (object) ? Qt : Qnil;
|
|
295 }
|
|
296
|
|
297 DEFUN ("arrayp", Farrayp, 1, 1, 0, /*
|
|
298 Return t if OBJECT is an array (string, vector, or bit vector).
|
|
299 */
|
|
300 (object))
|
|
301 {
|
|
302 return (VECTORP (object) ||
|
|
303 STRINGP (object) ||
|
|
304 BIT_VECTORP (object))
|
|
305 ? Qt : Qnil;
|
|
306 }
|
|
307
|
|
308 DEFUN ("sequencep", Fsequencep, 1, 1, 0, /*
|
|
309 Return t if OBJECT is a sequence (list or array).
|
|
310 */
|
|
311 (object))
|
|
312 {
|
|
313 return (LISTP (object) ||
|
|
314 VECTORP (object) ||
|
|
315 STRINGP (object) ||
|
|
316 BIT_VECTORP (object))
|
|
317 ? Qt : Qnil;
|
|
318 }
|
|
319
|
|
320 DEFUN ("markerp", Fmarkerp, 1, 1, 0, /*
|
|
321 Return t if OBJECT is a marker (editor pointer).
|
|
322 */
|
|
323 (object))
|
|
324 {
|
|
325 return MARKERP (object) ? Qt : Qnil;
|
|
326 }
|
|
327
|
|
328 DEFUN ("subrp", Fsubrp, 1, 1, 0, /*
|
|
329 Return t if OBJECT is a built-in function.
|
|
330 */
|
|
331 (object))
|
|
332 {
|
|
333 return SUBRP (object) ? Qt : Qnil;
|
|
334 }
|
|
335
|
|
336 DEFUN ("subr-min-args", Fsubr_min_args, 1, 1, 0, /*
|
|
337 Return minimum number of args built-in function SUBR may be called with.
|
|
338 */
|
|
339 (subr))
|
|
340 {
|
|
341 CHECK_SUBR (subr);
|
|
342 return make_int (XSUBR (subr)->min_args);
|
|
343 }
|
|
344
|
|
345 DEFUN ("subr-max-args", Fsubr_max_args, 1, 1, 0, /*
|
|
346 Return maximum number of args built-in function SUBR may be called with,
|
|
347 or nil if it takes an arbitrary number of arguments or is a special form.
|
|
348 */
|
|
349 (subr))
|
|
350 {
|
|
351 int nargs;
|
|
352 CHECK_SUBR (subr);
|
|
353 nargs = XSUBR (subr)->max_args;
|
|
354 if (nargs == MANY || nargs == UNEVALLED)
|
|
355 return Qnil;
|
|
356 else
|
|
357 return make_int (nargs);
|
|
358 }
|
|
359
|
|
360 DEFUN ("subr-interactive", Fsubr_interactive, 1, 1, 0, /*
|
444
|
361 Return the interactive spec of the subr object SUBR, or nil.
|
428
|
362 If non-nil, the return value will be a list whose first element is
|
|
363 `interactive' and whose second element is the interactive spec.
|
|
364 */
|
|
365 (subr))
|
|
366 {
|
867
|
367 const CIbyte *prompt;
|
428
|
368 CHECK_SUBR (subr);
|
|
369 prompt = XSUBR (subr)->prompt;
|
771
|
370 return prompt ? list2 (Qinteractive, build_msg_string (prompt)) : Qnil;
|
428
|
371 }
|
|
372
|
|
373
|
|
374 DEFUN ("characterp", Fcharacterp, 1, 1, 0, /*
|
|
375 Return t if OBJECT is a character.
|
|
376 Unlike in XEmacs v19 and FSF Emacs, a character is its own primitive type.
|
|
377 Any character can be converted into an equivalent integer using
|
|
378 `char-int'. To convert the other way, use `int-char'; however,
|
|
379 only some integers can be converted into characters. Such an integer
|
|
380 is called a `char-int'; see `char-int-p'.
|
|
381
|
|
382 Some functions that work on integers (e.g. the comparison functions
|
|
383 <, <=, =, /=, etc. and the arithmetic functions +, -, *, etc.)
|
|
384 accept characters and implicitly convert them into integers. In
|
|
385 general, functions that work on characters also accept char-ints and
|
|
386 implicitly convert them into characters. WARNING: Neither of these
|
|
387 behaviors is very desirable, and they are maintained for backward
|
|
388 compatibility with old E-Lisp programs that confounded characters and
|
|
389 integers willy-nilly. These behaviors may change in the future; therefore,
|
|
390 do not rely on them. Instead, use the character-specific functions such
|
|
391 as `char='.
|
|
392 */
|
|
393 (object))
|
|
394 {
|
|
395 return CHARP (object) ? Qt : Qnil;
|
|
396 }
|
|
397
|
|
398 DEFUN ("char-to-int", Fchar_to_int, 1, 1, 0, /*
|
444
|
399 Convert CHARACTER into an equivalent integer.
|
428
|
400 The resulting integer will always be non-negative. The integers in
|
|
401 the range 0 - 255 map to characters as follows:
|
|
402
|
|
403 0 - 31 Control set 0
|
|
404 32 - 127 ASCII
|
|
405 128 - 159 Control set 1
|
|
406 160 - 255 Right half of ISO-8859-1
|
|
407
|
|
408 If support for Mule does not exist, these are the only valid character
|
|
409 values. When Mule support exists, the values assigned to other characters
|
|
410 may vary depending on the particular version of XEmacs, the order in which
|
|
411 character sets were loaded, etc., and you should not depend on them.
|
|
412 */
|
444
|
413 (character))
|
428
|
414 {
|
444
|
415 CHECK_CHAR (character);
|
|
416 return make_int (XCHAR (character));
|
428
|
417 }
|
|
418
|
|
419 DEFUN ("int-to-char", Fint_to_char, 1, 1, 0, /*
|
444
|
420 Convert integer INTEGER into the equivalent character.
|
428
|
421 Not all integers correspond to valid characters; use `char-int-p' to
|
|
422 determine whether this is the case. If the integer cannot be converted,
|
|
423 nil is returned.
|
|
424 */
|
|
425 (integer))
|
|
426 {
|
|
427 CHECK_INT (integer);
|
|
428 if (CHAR_INTP (integer))
|
|
429 return make_char (XINT (integer));
|
|
430 else
|
|
431 return Qnil;
|
|
432 }
|
|
433
|
|
434 DEFUN ("char-int-p", Fchar_int_p, 1, 1, 0, /*
|
|
435 Return t if OBJECT is an integer that can be converted into a character.
|
|
436 See `char-int'.
|
|
437 */
|
|
438 (object))
|
|
439 {
|
|
440 return CHAR_INTP (object) ? Qt : Qnil;
|
|
441 }
|
|
442
|
|
443 DEFUN ("char-or-char-int-p", Fchar_or_char_int_p, 1, 1, 0, /*
|
|
444 Return t if OBJECT is a character or an integer that can be converted into one.
|
|
445 */
|
|
446 (object))
|
|
447 {
|
|
448 return CHAR_OR_CHAR_INTP (object) ? Qt : Qnil;
|
|
449 }
|
|
450
|
|
451 DEFUN ("char-or-string-p", Fchar_or_string_p, 1, 1, 0, /*
|
|
452 Return t if OBJECT is a character (or a char-int) or a string.
|
|
453 It is semi-hateful that we allow a char-int here, as it goes against
|
|
454 the name of this function, but it makes the most sense considering the
|
|
455 other steps we take to maintain compatibility with the old character/integer
|
|
456 confoundedness in older versions of E-Lisp.
|
|
457 */
|
|
458 (object))
|
|
459 {
|
|
460 return CHAR_OR_CHAR_INTP (object) || STRINGP (object) ? Qt : Qnil;
|
|
461 }
|
|
462
|
1983
|
463 #ifdef HAVE_BIGNUM
|
|
464 /* In this case, integerp is defined in number.c. */
|
|
465 DEFUN ("fixnump", Ffixnump, 1, 1, 0, /*
|
|
466 Return t if OBJECT is a fixnum.
|
|
467 */
|
|
468 (object))
|
|
469 {
|
|
470 return INTP (object) ? Qt : Qnil;
|
|
471 }
|
|
472 #else
|
428
|
473 DEFUN ("integerp", Fintegerp, 1, 1, 0, /*
|
|
474 Return t if OBJECT is an integer.
|
|
475 */
|
|
476 (object))
|
|
477 {
|
|
478 return INTP (object) ? Qt : Qnil;
|
|
479 }
|
1983
|
480 #endif
|
428
|
481
|
|
482 DEFUN ("integer-or-marker-p", Finteger_or_marker_p, 1, 1, 0, /*
|
|
483 Return t if OBJECT is an integer or a marker (editor pointer).
|
|
484 */
|
|
485 (object))
|
|
486 {
|
|
487 return INTP (object) || MARKERP (object) ? Qt : Qnil;
|
|
488 }
|
|
489
|
|
490 DEFUN ("integer-or-char-p", Finteger_or_char_p, 1, 1, 0, /*
|
|
491 Return t if OBJECT is an integer or a character.
|
|
492 */
|
|
493 (object))
|
|
494 {
|
|
495 return INTP (object) || CHARP (object) ? Qt : Qnil;
|
|
496 }
|
|
497
|
|
498 DEFUN ("integer-char-or-marker-p", Finteger_char_or_marker_p, 1, 1, 0, /*
|
|
499 Return t if OBJECT is an integer, character or a marker (editor pointer).
|
|
500 */
|
|
501 (object))
|
|
502 {
|
|
503 return INTP (object) || CHARP (object) || MARKERP (object) ? Qt : Qnil;
|
|
504 }
|
|
505
|
|
506 DEFUN ("natnump", Fnatnump, 1, 1, 0, /*
|
|
507 Return t if OBJECT is a nonnegative integer.
|
|
508 */
|
|
509 (object))
|
|
510 {
|
1983
|
511 return NATNUMP (object)
|
|
512 #ifdef HAVE_BIGNUM
|
|
513 || (BIGNUMP (object) && bignum_sign (XBIGNUM_DATA (object)) >= 0)
|
|
514 #endif
|
|
515 ? Qt : Qnil;
|
|
516 }
|
|
517
|
|
518 DEFUN ("nonnegativep", Fnonnegativep, 1, 1, 0, /*
|
|
519 Return t if OBJECT is a nonnegative number.
|
|
520 */
|
|
521 (object))
|
|
522 {
|
|
523 return NATNUMP (object)
|
|
524 #ifdef HAVE_BIGNUM
|
|
525 || (BIGNUMP (object) && bignum_sign (XBIGNUM_DATA (object)) >= 0)
|
|
526 #endif
|
|
527 #ifdef HAVE_RATIO
|
|
528 || (RATIOP (object) && ratio_sign (XRATIO_DATA (object)) >= 0)
|
|
529 #endif
|
|
530 #ifdef HAVE_BIGFLOAT
|
|
531 || (BIGFLOATP (object) && bigfloat_sign (XBIGFLOAT_DATA (object)) >= 0)
|
|
532 #endif
|
|
533 ? Qt : Qnil;
|
428
|
534 }
|
|
535
|
|
536 DEFUN ("bitp", Fbitp, 1, 1, 0, /*
|
|
537 Return t if OBJECT is a bit (0 or 1).
|
|
538 */
|
|
539 (object))
|
|
540 {
|
|
541 return BITP (object) ? Qt : Qnil;
|
|
542 }
|
|
543
|
|
544 DEFUN ("numberp", Fnumberp, 1, 1, 0, /*
|
|
545 Return t if OBJECT is a number (floating point or integer).
|
|
546 */
|
|
547 (object))
|
|
548 {
|
1983
|
549 #ifdef WITH_NUMBER_TYPES
|
|
550 return NUMBERP (object) ? Qt : Qnil;
|
|
551 #else
|
428
|
552 return INT_OR_FLOATP (object) ? Qt : Qnil;
|
1983
|
553 #endif
|
428
|
554 }
|
|
555
|
|
556 DEFUN ("number-or-marker-p", Fnumber_or_marker_p, 1, 1, 0, /*
|
|
557 Return t if OBJECT is a number or a marker.
|
|
558 */
|
|
559 (object))
|
|
560 {
|
|
561 return INT_OR_FLOATP (object) || MARKERP (object) ? Qt : Qnil;
|
|
562 }
|
|
563
|
|
564 DEFUN ("number-char-or-marker-p", Fnumber_char_or_marker_p, 1, 1, 0, /*
|
|
565 Return t if OBJECT is a number, character or a marker.
|
|
566 */
|
|
567 (object))
|
|
568 {
|
|
569 return (INT_OR_FLOATP (object) ||
|
|
570 CHARP (object) ||
|
|
571 MARKERP (object))
|
|
572 ? Qt : Qnil;
|
|
573 }
|
|
574
|
|
575 DEFUN ("floatp", Ffloatp, 1, 1, 0, /*
|
|
576 Return t if OBJECT is a floating point number.
|
|
577 */
|
|
578 (object))
|
|
579 {
|
|
580 return FLOATP (object) ? Qt : Qnil;
|
|
581 }
|
|
582
|
|
583 DEFUN ("type-of", Ftype_of, 1, 1, 0, /*
|
|
584 Return a symbol representing the type of OBJECT.
|
|
585 */
|
|
586 (object))
|
|
587 {
|
|
588 switch (XTYPE (object))
|
|
589 {
|
|
590 case Lisp_Type_Record:
|
|
591 return intern (XRECORD_LHEADER_IMPLEMENTATION (object)->name);
|
|
592
|
|
593 case Lisp_Type_Char: return Qcharacter;
|
|
594
|
|
595 default: return Qinteger;
|
|
596 }
|
|
597 }
|
|
598
|
|
599
|
|
600 /* Extract and set components of lists */
|
|
601
|
|
602 DEFUN ("car", Fcar, 1, 1, 0, /*
|
|
603 Return the car of LIST. If arg is nil, return nil.
|
|
604 Error if arg is not nil and not a cons cell. See also `car-safe'.
|
|
605 */
|
|
606 (list))
|
|
607 {
|
|
608 while (1)
|
|
609 {
|
|
610 if (CONSP (list))
|
|
611 return XCAR (list);
|
|
612 else if (NILP (list))
|
|
613 return Qnil;
|
|
614 else
|
|
615 list = wrong_type_argument (Qlistp, list);
|
|
616 }
|
|
617 }
|
|
618
|
|
619 DEFUN ("car-safe", Fcar_safe, 1, 1, 0, /*
|
|
620 Return the car of OBJECT if it is a cons cell, or else nil.
|
|
621 */
|
|
622 (object))
|
|
623 {
|
|
624 return CONSP (object) ? XCAR (object) : Qnil;
|
|
625 }
|
|
626
|
|
627 DEFUN ("cdr", Fcdr, 1, 1, 0, /*
|
|
628 Return the cdr of LIST. If arg is nil, return nil.
|
|
629 Error if arg is not nil and not a cons cell. See also `cdr-safe'.
|
|
630 */
|
|
631 (list))
|
|
632 {
|
|
633 while (1)
|
|
634 {
|
|
635 if (CONSP (list))
|
|
636 return XCDR (list);
|
|
637 else if (NILP (list))
|
|
638 return Qnil;
|
|
639 else
|
|
640 list = wrong_type_argument (Qlistp, list);
|
|
641 }
|
|
642 }
|
|
643
|
|
644 DEFUN ("cdr-safe", Fcdr_safe, 1, 1, 0, /*
|
|
645 Return the cdr of OBJECT if it is a cons cell, else nil.
|
|
646 */
|
|
647 (object))
|
|
648 {
|
|
649 return CONSP (object) ? XCDR (object) : Qnil;
|
|
650 }
|
|
651
|
|
652 DEFUN ("setcar", Fsetcar, 2, 2, 0, /*
|
444
|
653 Set the car of CONS-CELL to be NEWCAR. Return NEWCAR.
|
428
|
654 */
|
444
|
655 (cons_cell, newcar))
|
428
|
656 {
|
444
|
657 if (!CONSP (cons_cell))
|
|
658 cons_cell = wrong_type_argument (Qconsp, cons_cell);
|
428
|
659
|
444
|
660 XCAR (cons_cell) = newcar;
|
428
|
661 return newcar;
|
|
662 }
|
|
663
|
|
664 DEFUN ("setcdr", Fsetcdr, 2, 2, 0, /*
|
444
|
665 Set the cdr of CONS-CELL to be NEWCDR. Return NEWCDR.
|
428
|
666 */
|
444
|
667 (cons_cell, newcdr))
|
428
|
668 {
|
444
|
669 if (!CONSP (cons_cell))
|
|
670 cons_cell = wrong_type_argument (Qconsp, cons_cell);
|
428
|
671
|
444
|
672 XCDR (cons_cell) = newcdr;
|
428
|
673 return newcdr;
|
|
674 }
|
|
675
|
|
676 /* Find the function at the end of a chain of symbol function indirections.
|
|
677
|
|
678 If OBJECT is a symbol, find the end of its function chain and
|
|
679 return the value found there. If OBJECT is not a symbol, just
|
|
680 return it. If there is a cycle in the function chain, signal a
|
|
681 cyclic-function-indirection error.
|
|
682
|
442
|
683 This is like Findirect_function when VOID_FUNCTION_ERRORP is true.
|
|
684 When VOID_FUNCTION_ERRORP is false, no error is signaled if the end
|
|
685 of the chain ends up being Qunbound. */
|
428
|
686 Lisp_Object
|
442
|
687 indirect_function (Lisp_Object object, int void_function_errorp)
|
428
|
688 {
|
|
689 #define FUNCTION_INDIRECTION_SUSPICION_LENGTH 16
|
|
690 Lisp_Object tortoise, hare;
|
|
691 int count;
|
|
692
|
|
693 for (hare = tortoise = object, count = 0;
|
|
694 SYMBOLP (hare);
|
|
695 hare = XSYMBOL (hare)->function, count++)
|
|
696 {
|
|
697 if (count < FUNCTION_INDIRECTION_SUSPICION_LENGTH) continue;
|
|
698
|
|
699 if (count & 1)
|
|
700 tortoise = XSYMBOL (tortoise)->function;
|
|
701 if (EQ (hare, tortoise))
|
|
702 return Fsignal (Qcyclic_function_indirection, list1 (object));
|
|
703 }
|
|
704
|
442
|
705 if (void_function_errorp && UNBOUNDP (hare))
|
436
|
706 return signal_void_function_error (object);
|
428
|
707
|
|
708 return hare;
|
|
709 }
|
|
710
|
|
711 DEFUN ("indirect-function", Findirect_function, 1, 1, 0, /*
|
|
712 Return the function at the end of OBJECT's function chain.
|
|
713 If OBJECT is a symbol, follow all function indirections and return
|
|
714 the final function binding.
|
|
715 If OBJECT is not a symbol, just return it.
|
|
716 Signal a void-function error if the final symbol is unbound.
|
|
717 Signal a cyclic-function-indirection error if there is a loop in the
|
|
718 function chain of symbols.
|
|
719 */
|
|
720 (object))
|
|
721 {
|
|
722 return indirect_function (object, 1);
|
|
723 }
|
|
724
|
|
725 /* Extract and set vector and string elements */
|
|
726
|
|
727 DEFUN ("aref", Faref, 2, 2, 0, /*
|
|
728 Return the element of ARRAY at index INDEX.
|
|
729 ARRAY may be a vector, bit vector, or string. INDEX starts at 0.
|
|
730 */
|
|
731 (array, index_))
|
|
732 {
|
|
733 EMACS_INT idx;
|
|
734
|
|
735 retry:
|
|
736
|
|
737 if (INTP (index_)) idx = XINT (index_);
|
|
738 else if (CHARP (index_)) idx = XCHAR (index_); /* yuck! */
|
|
739 else
|
|
740 {
|
|
741 index_ = wrong_type_argument (Qinteger_or_char_p, index_);
|
|
742 goto retry;
|
|
743 }
|
|
744
|
|
745 if (idx < 0) goto range_error;
|
|
746
|
|
747 if (VECTORP (array))
|
|
748 {
|
|
749 if (idx >= XVECTOR_LENGTH (array)) goto range_error;
|
|
750 return XVECTOR_DATA (array)[idx];
|
|
751 }
|
|
752 else if (BIT_VECTORP (array))
|
|
753 {
|
647
|
754 if (idx >= (EMACS_INT) bit_vector_length (XBIT_VECTOR (array)))
|
|
755 goto range_error;
|
428
|
756 return make_int (bit_vector_bit (XBIT_VECTOR (array), idx));
|
|
757 }
|
|
758 else if (STRINGP (array))
|
|
759 {
|
826
|
760 if (idx >= string_char_length (array)) goto range_error;
|
867
|
761 return make_char (string_ichar (array, idx));
|
428
|
762 }
|
|
763 #ifdef LOSING_BYTECODE
|
|
764 else if (COMPILED_FUNCTIONP (array))
|
|
765 {
|
|
766 /* Weird, gross compatibility kludge */
|
|
767 return Felt (array, index_);
|
|
768 }
|
|
769 #endif
|
|
770 else
|
|
771 {
|
|
772 check_losing_bytecode ("aref", array);
|
|
773 array = wrong_type_argument (Qarrayp, array);
|
|
774 goto retry;
|
|
775 }
|
|
776
|
|
777 range_error:
|
|
778 args_out_of_range (array, index_);
|
1204
|
779 RETURN_NOT_REACHED (Qnil);
|
428
|
780 }
|
|
781
|
|
782 DEFUN ("aset", Faset, 3, 3, 0, /*
|
|
783 Store into the element of ARRAY at index INDEX the value NEWVAL.
|
|
784 ARRAY may be a vector, bit vector, or string. INDEX starts at 0.
|
|
785 */
|
|
786 (array, index_, newval))
|
|
787 {
|
|
788 EMACS_INT idx;
|
|
789
|
|
790 retry:
|
|
791
|
|
792 if (INTP (index_)) idx = XINT (index_);
|
|
793 else if (CHARP (index_)) idx = XCHAR (index_); /* yuck! */
|
|
794 else
|
|
795 {
|
|
796 index_ = wrong_type_argument (Qinteger_or_char_p, index_);
|
|
797 goto retry;
|
|
798 }
|
|
799
|
|
800 if (idx < 0) goto range_error;
|
|
801
|
771
|
802 CHECK_LISP_WRITEABLE (array);
|
428
|
803 if (VECTORP (array))
|
|
804 {
|
|
805 if (idx >= XVECTOR_LENGTH (array)) goto range_error;
|
|
806 XVECTOR_DATA (array)[idx] = newval;
|
|
807 }
|
|
808 else if (BIT_VECTORP (array))
|
|
809 {
|
647
|
810 if (idx >= (EMACS_INT) bit_vector_length (XBIT_VECTOR (array)))
|
|
811 goto range_error;
|
428
|
812 CHECK_BIT (newval);
|
|
813 set_bit_vector_bit (XBIT_VECTOR (array), idx, !ZEROP (newval));
|
|
814 }
|
|
815 else if (STRINGP (array))
|
|
816 {
|
|
817 CHECK_CHAR_COERCE_INT (newval);
|
826
|
818 if (idx >= string_char_length (array)) goto range_error;
|
793
|
819 set_string_char (array, idx, XCHAR (newval));
|
428
|
820 bump_string_modiff (array);
|
|
821 }
|
|
822 else
|
|
823 {
|
|
824 array = wrong_type_argument (Qarrayp, array);
|
|
825 goto retry;
|
|
826 }
|
|
827
|
|
828 return newval;
|
|
829
|
|
830 range_error:
|
|
831 args_out_of_range (array, index_);
|
1204
|
832 RETURN_NOT_REACHED (Qnil);
|
428
|
833 }
|
|
834
|
|
835
|
|
836 /**********************************************************************/
|
|
837 /* Arithmetic functions */
|
|
838 /**********************************************************************/
|
2001
|
839 #ifndef WITH_NUMBER_TYPES
|
428
|
840 typedef struct
|
|
841 {
|
|
842 int int_p;
|
|
843 union
|
|
844 {
|
|
845 EMACS_INT ival;
|
|
846 double dval;
|
|
847 } c;
|
|
848 } int_or_double;
|
|
849
|
|
850 static void
|
|
851 number_char_or_marker_to_int_or_double (Lisp_Object obj, int_or_double *p)
|
|
852 {
|
|
853 retry:
|
|
854 p->int_p = 1;
|
|
855 if (INTP (obj)) p->c.ival = XINT (obj);
|
|
856 else if (CHARP (obj)) p->c.ival = XCHAR (obj);
|
|
857 else if (MARKERP (obj)) p->c.ival = marker_position (obj);
|
|
858 else if (FLOATP (obj)) p->c.dval = XFLOAT_DATA (obj), p->int_p = 0;
|
|
859 else
|
|
860 {
|
|
861 obj = wrong_type_argument (Qnumber_char_or_marker_p, obj);
|
|
862 goto retry;
|
|
863 }
|
|
864 }
|
|
865
|
|
866 static double
|
|
867 number_char_or_marker_to_double (Lisp_Object obj)
|
|
868 {
|
|
869 retry:
|
|
870 if (INTP (obj)) return (double) XINT (obj);
|
|
871 else if (CHARP (obj)) return (double) XCHAR (obj);
|
|
872 else if (MARKERP (obj)) return (double) marker_position (obj);
|
|
873 else if (FLOATP (obj)) return XFLOAT_DATA (obj);
|
|
874 else
|
|
875 {
|
|
876 obj = wrong_type_argument (Qnumber_char_or_marker_p, obj);
|
|
877 goto retry;
|
|
878 }
|
|
879 }
|
2001
|
880 #endif /* WITH_NUMBER_TYPES */
|
428
|
881
|
|
882 static EMACS_INT
|
|
883 integer_char_or_marker_to_int (Lisp_Object obj)
|
|
884 {
|
|
885 retry:
|
|
886 if (INTP (obj)) return XINT (obj);
|
|
887 else if (CHARP (obj)) return XCHAR (obj);
|
|
888 else if (MARKERP (obj)) return marker_position (obj);
|
|
889 else
|
|
890 {
|
|
891 obj = wrong_type_argument (Qinteger_char_or_marker_p, obj);
|
|
892 goto retry;
|
|
893 }
|
|
894 }
|
|
895
|
1983
|
896 #ifdef WITH_NUMBER_TYPES
|
|
897
|
|
898 #ifdef HAVE_BIGNUM
|
|
899 #define BIGNUM_CASE(op) \
|
|
900 case BIGNUM_T: \
|
|
901 if (!bignum_##op (XBIGNUM_DATA (obj1), XBIGNUM_DATA (obj2))) \
|
|
902 return Qnil; \
|
|
903 break;
|
|
904 #else
|
|
905 #define BIGNUM_CASE(op)
|
|
906 #endif /* HAVE_BIGNUM */
|
|
907
|
|
908 #ifdef HAVE_RATIO
|
|
909 #define RATIO_CASE(op) \
|
|
910 case RATIO_T: \
|
|
911 if (!ratio_##op (XRATIO_DATA (obj1), XRATIO_DATA (obj2))) \
|
|
912 return Qnil; \
|
|
913 break;
|
|
914 #else
|
|
915 #define RATIO_CASE(op)
|
|
916 #endif /* HAVE_RATIO */
|
|
917
|
|
918 #ifdef HAVE_BIGFLOAT
|
|
919 #define BIGFLOAT_CASE(op) \
|
|
920 case BIGFLOAT_T: \
|
|
921 if (!bigfloat_##op (XBIGFLOAT_DATA (obj1), XBIGFLOAT_DATA (obj2))) \
|
|
922 return Qnil; \
|
|
923 break;
|
|
924 #else
|
|
925 #define BIGFLOAT_CASE(op)
|
|
926 #endif /* HAVE_BIGFLOAT */
|
|
927
|
|
928 #define ARITHCOMPARE_MANY(c_op,op) \
|
|
929 { \
|
|
930 REGISTER int i; \
|
|
931 Lisp_Object obj1, obj2; \
|
|
932 \
|
|
933 for (i = 1; i < nargs; i++) \
|
|
934 { \
|
|
935 obj1 = args[i - 1]; \
|
|
936 obj2 = args[i]; \
|
|
937 switch (promote_args (&obj1, &obj2)) \
|
|
938 { \
|
|
939 case FIXNUM_T: \
|
|
940 if (!(XREALINT (obj1) c_op XREALINT (obj2))) \
|
|
941 return Qnil; \
|
|
942 break; \
|
|
943 BIGNUM_CASE (op) \
|
|
944 RATIO_CASE (op) \
|
|
945 case FLOAT_T: \
|
|
946 if (!(XFLOAT_DATA (obj1) c_op XFLOAT_DATA (obj2))) \
|
|
947 return Qnil; \
|
|
948 break; \
|
|
949 BIGFLOAT_CASE (op) \
|
|
950 } \
|
|
951 } \
|
|
952 return Qt; \
|
|
953 }
|
|
954 #else /* !WITH_NUMBER_TYPES */
|
|
955 #define ARITHCOMPARE_MANY(c_op,op) \
|
428
|
956 { \
|
|
957 int_or_double iod1, iod2, *p = &iod1, *q = &iod2; \
|
|
958 Lisp_Object *args_end = args + nargs; \
|
|
959 \
|
|
960 number_char_or_marker_to_int_or_double (*args++, p); \
|
|
961 \
|
|
962 while (args < args_end) \
|
|
963 { \
|
|
964 number_char_or_marker_to_int_or_double (*args++, q); \
|
|
965 \
|
|
966 if (!((p->int_p && q->int_p) ? \
|
1983
|
967 (p->c.ival c_op q->c.ival) : \
|
|
968 ((p->int_p ? (double) p->c.ival : p->c.dval) c_op \
|
428
|
969 (q->int_p ? (double) q->c.ival : q->c.dval)))) \
|
|
970 return Qnil; \
|
|
971 \
|
|
972 { /* swap */ int_or_double *r = p; p = q; q = r; } \
|
|
973 } \
|
|
974 return Qt; \
|
|
975 }
|
1983
|
976 #endif /* WITH_NUMBER_TYPES */
|
428
|
977
|
|
978 DEFUN ("=", Feqlsign, 1, MANY, 0, /*
|
|
979 Return t if all the arguments are numerically equal.
|
|
980 The arguments may be numbers, characters or markers.
|
|
981 */
|
|
982 (int nargs, Lisp_Object *args))
|
|
983 {
|
1983
|
984 ARITHCOMPARE_MANY (==, eql)
|
428
|
985 }
|
|
986
|
|
987 DEFUN ("<", Flss, 1, MANY, 0, /*
|
|
988 Return t if the sequence of arguments is monotonically increasing.
|
|
989 The arguments may be numbers, characters or markers.
|
|
990 */
|
|
991 (int nargs, Lisp_Object *args))
|
|
992 {
|
1983
|
993 ARITHCOMPARE_MANY (<, lt)
|
428
|
994 }
|
|
995
|
|
996 DEFUN (">", Fgtr, 1, MANY, 0, /*
|
|
997 Return t if the sequence of arguments is monotonically decreasing.
|
|
998 The arguments may be numbers, characters or markers.
|
|
999 */
|
|
1000 (int nargs, Lisp_Object *args))
|
|
1001 {
|
1983
|
1002 ARITHCOMPARE_MANY (>, gt)
|
428
|
1003 }
|
|
1004
|
|
1005 DEFUN ("<=", Fleq, 1, MANY, 0, /*
|
|
1006 Return t if the sequence of arguments is monotonically nondecreasing.
|
|
1007 The arguments may be numbers, characters or markers.
|
|
1008 */
|
|
1009 (int nargs, Lisp_Object *args))
|
|
1010 {
|
1983
|
1011 ARITHCOMPARE_MANY (<=, le)
|
428
|
1012 }
|
|
1013
|
|
1014 DEFUN (">=", Fgeq, 1, MANY, 0, /*
|
|
1015 Return t if the sequence of arguments is monotonically nonincreasing.
|
|
1016 The arguments may be numbers, characters or markers.
|
|
1017 */
|
|
1018 (int nargs, Lisp_Object *args))
|
|
1019 {
|
1983
|
1020 ARITHCOMPARE_MANY (>=, ge)
|
428
|
1021 }
|
|
1022
|
1983
|
1023 /* Unlike all the other comparisons, this is an O(N*N) algorithm. But who
|
|
1024 cares? Inspection of all elisp code distributed by xemacs.org shows that
|
|
1025 it is almost always called with 2 arguments, rarely with 3, and never with
|
|
1026 more than 3. The constant factors of algorithms with better asymptotic
|
|
1027 complexity are higher, which means that those algorithms will run SLOWER
|
|
1028 than this one in the common case. Optimize the common case! */
|
428
|
1029 DEFUN ("/=", Fneq, 1, MANY, 0, /*
|
|
1030 Return t if no two arguments are numerically equal.
|
|
1031 The arguments may be numbers, characters or markers.
|
|
1032 */
|
|
1033 (int nargs, Lisp_Object *args))
|
|
1034 {
|
1983
|
1035 #ifdef WITH_NUMBER_TYPES
|
|
1036 REGISTER int i, j;
|
|
1037 Lisp_Object obj1, obj2;
|
|
1038
|
|
1039 for (i = 0; i < nargs - 1; i++)
|
|
1040 {
|
|
1041 obj1 = args[i];
|
|
1042 for (j = i + 1; j < nargs; j++)
|
|
1043 {
|
|
1044 obj2 = args[j];
|
|
1045 switch (promote_args (&obj1, &obj2))
|
|
1046 {
|
|
1047 case FIXNUM_T:
|
|
1048 if (XREALINT (obj1) == XREALINT (obj2))
|
|
1049 return Qnil;
|
|
1050 break;
|
|
1051 #ifdef HAVE_BIGNUM
|
|
1052 case BIGNUM_T:
|
|
1053 if (bignum_eql (XBIGNUM_DATA (obj1), XBIGNUM_DATA (obj2)))
|
|
1054 return Qnil;
|
|
1055 break;
|
|
1056 #endif
|
|
1057 #ifdef HAVE_RATIO
|
|
1058 case RATIO_T:
|
|
1059 if (ratio_eql (XRATIO_DATA (obj1), XRATIO_DATA (obj2)))
|
|
1060 return Qnil;
|
|
1061 break;
|
|
1062 #endif
|
|
1063 case FLOAT_T:
|
|
1064 if (XFLOAT_DATA (obj1) == XFLOAT_DATA (obj2))
|
|
1065 return Qnil;
|
|
1066 break;
|
|
1067 #ifdef HAVE_BIGFLOAT
|
|
1068 case BIGFLOAT_T:
|
|
1069 if (bigfloat_eql (XBIGFLOAT_DATA (obj1), XBIGFLOAT_DATA (obj2)))
|
|
1070 return Qnil;
|
|
1071 break;
|
|
1072 #endif
|
|
1073 }
|
|
1074 }
|
|
1075 }
|
|
1076 return Qt;
|
|
1077 #else /* !WITH_NUMBER_TYPES */
|
428
|
1078 Lisp_Object *args_end = args + nargs;
|
|
1079 Lisp_Object *p, *q;
|
|
1080
|
|
1081 /* Unlike all the other comparisons, this is an N*N algorithm.
|
|
1082 We could use a hash table for nargs > 50 to make this linear. */
|
|
1083 for (p = args; p < args_end; p++)
|
|
1084 {
|
|
1085 int_or_double iod1, iod2;
|
|
1086 number_char_or_marker_to_int_or_double (*p, &iod1);
|
|
1087
|
|
1088 for (q = p + 1; q < args_end; q++)
|
|
1089 {
|
|
1090 number_char_or_marker_to_int_or_double (*q, &iod2);
|
|
1091
|
|
1092 if (!((iod1.int_p && iod2.int_p) ?
|
|
1093 (iod1.c.ival != iod2.c.ival) :
|
|
1094 ((iod1.int_p ? (double) iod1.c.ival : iod1.c.dval) !=
|
|
1095 (iod2.int_p ? (double) iod2.c.ival : iod2.c.dval))))
|
|
1096 return Qnil;
|
|
1097 }
|
|
1098 }
|
|
1099 return Qt;
|
1983
|
1100 #endif /* WITH_NUMBER_TYPES */
|
428
|
1101 }
|
|
1102
|
|
1103 DEFUN ("zerop", Fzerop, 1, 1, 0, /*
|
|
1104 Return t if NUMBER is zero.
|
|
1105 */
|
|
1106 (number))
|
|
1107 {
|
|
1108 retry:
|
|
1109 if (INTP (number))
|
|
1110 return EQ (number, Qzero) ? Qt : Qnil;
|
1983
|
1111 #ifdef HAVE_BIGNUM
|
|
1112 else if (BIGNUMP (number))
|
|
1113 return bignum_sign (XBIGNUM_DATA (number)) == 0 ? Qt : Qnil;
|
|
1114 #endif
|
|
1115 #ifdef HAVE_RATIO
|
|
1116 else if (RATIOP (number))
|
|
1117 return ratio_sign (XRATIO_DATA (number)) == 0 ? Qt : Qnil;
|
|
1118 #endif
|
428
|
1119 else if (FLOATP (number))
|
|
1120 return XFLOAT_DATA (number) == 0.0 ? Qt : Qnil;
|
1983
|
1121 #ifdef HAVE_BIGFLOAT
|
|
1122 else if (BIGFLOATP (number))
|
|
1123 return bigfloat_sign (XBIGFLOAT_DATA (number)) == 0 ? Qt : Qnil;
|
|
1124 #endif
|
428
|
1125 else
|
|
1126 {
|
|
1127 number = wrong_type_argument (Qnumberp, number);
|
|
1128 goto retry;
|
|
1129 }
|
|
1130 }
|
|
1131
|
|
1132 /* Convert between a 32-bit value and a cons of two 16-bit values.
|
|
1133 This is used to pass 32-bit integers to and from the user.
|
|
1134 Use time_to_lisp() and lisp_to_time() for time values.
|
|
1135
|
|
1136 If you're thinking of using this to store a pointer into a Lisp Object
|
|
1137 for internal purposes (such as when calling record_unwind_protect()),
|
|
1138 try using make_opaque_ptr()/get_opaque_ptr() instead. */
|
|
1139 Lisp_Object
|
|
1140 word_to_lisp (unsigned int item)
|
|
1141 {
|
|
1142 return Fcons (make_int (item >> 16), make_int (item & 0xffff));
|
|
1143 }
|
|
1144
|
|
1145 unsigned int
|
|
1146 lisp_to_word (Lisp_Object item)
|
|
1147 {
|
|
1148 if (INTP (item))
|
|
1149 return XINT (item);
|
|
1150 else
|
|
1151 {
|
|
1152 Lisp_Object top = Fcar (item);
|
|
1153 Lisp_Object bot = Fcdr (item);
|
|
1154 CHECK_INT (top);
|
|
1155 CHECK_INT (bot);
|
|
1156 return (XINT (top) << 16) | (XINT (bot) & 0xffff);
|
|
1157 }
|
|
1158 }
|
|
1159
|
|
1160
|
|
1161 DEFUN ("number-to-string", Fnumber_to_string, 1, 1, 0, /*
|
444
|
1162 Convert NUMBER to a string by printing it in decimal.
|
428
|
1163 Uses a minus sign if negative.
|
444
|
1164 NUMBER may be an integer or a floating point number.
|
1983
|
1165 If supported, it may also be a ratio.
|
428
|
1166 */
|
444
|
1167 (number))
|
428
|
1168 {
|
1983
|
1169 #ifdef WITH_NUMBER_TYPES
|
|
1170 CHECK_NUMBER (number);
|
|
1171 #else
|
444
|
1172 CHECK_INT_OR_FLOAT (number);
|
1983
|
1173 #endif
|
428
|
1174
|
444
|
1175 if (FLOATP (number))
|
428
|
1176 {
|
|
1177 char pigbuf[350]; /* see comments in float_to_string */
|
|
1178
|
444
|
1179 float_to_string (pigbuf, XFLOAT_DATA (number));
|
428
|
1180 return build_string (pigbuf);
|
|
1181 }
|
1983
|
1182 #ifdef HAVE_BIGNUM
|
|
1183 if (BIGNUMP (number))
|
|
1184 {
|
|
1185 char *str = bignum_to_string (XBIGNUM_DATA (number), 10);
|
|
1186 Lisp_Object retval = build_string (str);
|
|
1187 xfree (str, char *);
|
|
1188 return retval;
|
|
1189 }
|
|
1190 #endif
|
|
1191 #ifdef HAVE_RATIO
|
|
1192 if (RATIOP (number))
|
|
1193 {
|
|
1194 char *str = ratio_to_string (XRATIO_DATA (number), 10);
|
|
1195 Lisp_Object retval = build_string (str);
|
|
1196 xfree (str, char *);
|
|
1197 return retval;
|
|
1198 }
|
|
1199 #endif
|
|
1200 #ifdef HAVE_BIGFLOAT
|
|
1201 if (BIGFLOATP (number))
|
|
1202 {
|
|
1203 char *str = bigfloat_to_string (XBIGFLOAT_DATA (number), 10);
|
|
1204 Lisp_Object retval = build_string (str);
|
|
1205 xfree (str, char *);
|
|
1206 return retval;
|
|
1207 }
|
|
1208 #endif
|
428
|
1209
|
603
|
1210 {
|
|
1211 char buffer[DECIMAL_PRINT_SIZE (long)];
|
|
1212
|
|
1213 long_to_string (buffer, XINT (number));
|
|
1214 return build_string (buffer);
|
|
1215 }
|
428
|
1216 }
|
|
1217
|
2001
|
1218 #ifndef HAVE_BIGNUM
|
428
|
1219 static int
|
|
1220 digit_to_number (int character, int base)
|
|
1221 {
|
|
1222 /* Assumes ASCII */
|
|
1223 int digit = ((character >= '0' && character <= '9') ? character - '0' :
|
|
1224 (character >= 'a' && character <= 'z') ? character - 'a' + 10 :
|
|
1225 (character >= 'A' && character <= 'Z') ? character - 'A' + 10 :
|
|
1226 -1);
|
|
1227
|
|
1228 return digit >= base ? -1 : digit;
|
|
1229 }
|
2001
|
1230 #endif
|
428
|
1231
|
|
1232 DEFUN ("string-to-number", Fstring_to_number, 1, 2, 0, /*
|
444
|
1233 Convert STRING to a number by parsing it as a number in base BASE.
|
428
|
1234 This parses both integers and floating point numbers.
|
1983
|
1235 If they are supported, it also reads ratios.
|
428
|
1236 It ignores leading spaces and tabs.
|
|
1237
|
444
|
1238 If BASE is nil or omitted, base 10 is used.
|
|
1239 BASE must be an integer between 2 and 16 (inclusive).
|
428
|
1240 Floating point numbers always use base 10.
|
|
1241 */
|
|
1242 (string, base))
|
|
1243 {
|
1995
|
1244 Ibyte *p;
|
428
|
1245 int b;
|
|
1246
|
|
1247 CHECK_STRING (string);
|
|
1248
|
|
1249 if (NILP (base))
|
|
1250 b = 10;
|
|
1251 else
|
|
1252 {
|
|
1253 CHECK_INT (base);
|
|
1254 b = XINT (base);
|
|
1255 check_int_range (b, 2, 16);
|
|
1256 }
|
|
1257
|
1995
|
1258 p = XSTRING_DATA (string);
|
428
|
1259
|
|
1260 /* Skip any whitespace at the front of the number. Some versions of
|
|
1261 atoi do this anyway, so we might as well make Emacs lisp consistent. */
|
|
1262 while (*p == ' ' || *p == '\t')
|
|
1263 p++;
|
|
1264
|
1995
|
1265 if (isfloat_string ((const char *) p) && b == 10)
|
1983
|
1266 {
|
|
1267 #ifdef HAVE_BIGFLOAT
|
|
1268 if (ZEROP (Vdefault_float_precision))
|
|
1269 #endif
|
1995
|
1270 return make_float (atof ((const char *) p));
|
1983
|
1271 #ifdef HAVE_BIGFLOAT
|
|
1272 else
|
|
1273 {
|
2013
|
1274 /* The GMP version of bigfloat_set_string (mpf_set_str) has the
|
|
1275 following limitation: if p starts with a '+' sign, it does
|
|
1276 nothing; i.e., it leaves its bigfloat argument untouched.
|
|
1277 Therefore, move p past any leading '+' signs. */
|
2010
|
1278 if (*p == '+')
|
|
1279 p++;
|
1983
|
1280 bigfloat_set_prec (scratch_bigfloat, bigfloat_get_default_prec ());
|
1995
|
1281 bigfloat_set_string (scratch_bigfloat, (const char *) p, b);
|
1983
|
1282 return make_bigfloat_bf (scratch_bigfloat);
|
|
1283 }
|
|
1284 #endif
|
|
1285 }
|
|
1286
|
|
1287 #ifdef HAVE_RATIO
|
|
1288 if (qxestrchr (p, '/') != NULL)
|
|
1289 {
|
2013
|
1290 /* The GMP version of ratio_set_string (mpq_set_str) has the following
|
|
1291 limitations:
|
|
1292 - If p starts with a '+' sign, it does nothing; i.e., it leaves its
|
|
1293 ratio argument untouched.
|
|
1294 - If p has a '+' sign after the '/' (e.g., 300/+400), it sets the
|
|
1295 numerator from the string, but *leaves the denominator unchanged*.
|
|
1296 - If p has trailing nonnumeric characters, it sets the numerator from
|
|
1297 the string, but leaves the denominator unchanged.
|
|
1298 - If p has more than one '/', (e.g., 1/2/3), then it sets the
|
|
1299 numerator from the string, but leaves the denominator unchanged.
|
|
1300
|
|
1301 Therefore, move p past any leading '+' signs, temporarily drop a null
|
|
1302 after the numeric characters we are trying to convert, and then put
|
|
1303 the nulled character back afterward. I am not going to fix problem
|
|
1304 #2; just don't write ratios that look like that. */
|
|
1305 Ibyte *end, save;
|
|
1306
|
2010
|
1307 if (*p == '+')
|
|
1308 p++;
|
2013
|
1309
|
2014
|
1310 end = p;
|
|
1311 if (*end == '-')
|
|
1312 end++;
|
|
1313 while ((*end >= '0' && *end <= '9') ||
|
2013
|
1314 (b > 10 && *end >= 'a' && *end <= 'a' + b - 11) ||
|
2014
|
1315 (b > 10 && *end >= 'A' && *end <= 'A' + b - 11))
|
|
1316 end++;
|
2013
|
1317 if (*end == '/')
|
2014
|
1318 {
|
|
1319 end++;
|
|
1320 if (*end == '-')
|
|
1321 end++;
|
|
1322 while ((*end >= '0' && *end <= '9') ||
|
|
1323 (b > 10 && *end >= 'a' && *end <= 'a' + b - 11) ||
|
|
1324 (b > 10 && *end >= 'A' && *end <= 'A' + b - 11))
|
|
1325 end++;
|
|
1326 }
|
2013
|
1327 save = *end;
|
|
1328 *end = '\0';
|
1995
|
1329 ratio_set_string (scratch_ratio, (const char *) p, b);
|
2013
|
1330 *end = save;
|
|
1331 ratio_canonicalize (scratch_ratio);
|
1983
|
1332 return make_ratio_rt (scratch_ratio);
|
|
1333 }
|
|
1334 #endif /* HAVE_RATIO */
|
|
1335
|
|
1336 #ifdef HAVE_BIGNUM
|
2013
|
1337 {
|
|
1338 /* The GMP version of bignum_set_string (mpz_set_str) has the following
|
|
1339 limitations:
|
|
1340 - If p starts with a '+' sign, it does nothing; i.e., it leaves its
|
|
1341 bignum argument untouched.
|
|
1342 - If p is the empty string, it does nothing.
|
|
1343 - If p has trailing nonnumeric characters, it does nothing.
|
|
1344
|
|
1345 Therefore, move p past any leading '+' signs, temporarily drop a null
|
|
1346 after the numeric characters we are trying to convert, special case the
|
|
1347 empty string, and then put the nulled character back afterward. */
|
|
1348 Ibyte *end, save;
|
|
1349 Lisp_Object retval;
|
|
1350
|
|
1351 if (*p == '+')
|
|
1352 p++;
|
2014
|
1353 end = p;
|
|
1354 if (*end == '-')
|
|
1355 end++;
|
|
1356 while ((*end >= '0' && *end <= '9') ||
|
2013
|
1357 (b > 10 && *end >= 'a' && *end <= 'a' + b - 11) ||
|
2014
|
1358 (b > 10 && *end >= 'A' && *end <= 'A' + b - 11))
|
|
1359 end++;
|
2013
|
1360 save = *end;
|
|
1361 *end = '\0';
|
|
1362 if (*p == '\0')
|
|
1363 retval = make_int (0);
|
|
1364 else
|
|
1365 {
|
|
1366 bignum_set_string (scratch_bignum, (const char *) p, b);
|
|
1367 retval = Fcanonicalize_number (make_bignum_bg (scratch_bignum));
|
|
1368 }
|
|
1369 *end = save;
|
|
1370 return retval;
|
|
1371 }
|
1983
|
1372 #else
|
428
|
1373 if (b == 10)
|
|
1374 {
|
|
1375 /* Use the system-provided functions for base 10. */
|
|
1376 #if SIZEOF_EMACS_INT == SIZEOF_INT
|
2054
|
1377 return make_int (atoi ((char*) p));
|
428
|
1378 #elif SIZEOF_EMACS_INT == SIZEOF_LONG
|
2054
|
1379 return make_int (atol ((char*) p));
|
428
|
1380 #elif SIZEOF_EMACS_INT == SIZEOF_LONG_LONG
|
2054
|
1381 return make_int (atoll ((char*) p));
|
428
|
1382 #endif
|
|
1383 }
|
|
1384 else
|
|
1385 {
|
444
|
1386 int negative = 1;
|
428
|
1387 EMACS_INT v = 0;
|
|
1388
|
|
1389 if (*p == '-')
|
|
1390 {
|
|
1391 negative = -1;
|
|
1392 p++;
|
|
1393 }
|
|
1394 else if (*p == '+')
|
|
1395 p++;
|
|
1396 while (1)
|
|
1397 {
|
444
|
1398 int digit = digit_to_number (*p++, b);
|
428
|
1399 if (digit < 0)
|
|
1400 break;
|
|
1401 v = v * b + digit;
|
|
1402 }
|
|
1403 return make_int (negative * v);
|
|
1404 }
|
1983
|
1405 #endif /* HAVE_BIGNUM */
|
428
|
1406 }
|
|
1407
|
|
1408
|
|
1409 DEFUN ("+", Fplus, 0, MANY, 0, /*
|
|
1410 Return sum of any number of arguments.
|
|
1411 The arguments should all be numbers, characters or markers.
|
|
1412 */
|
|
1413 (int nargs, Lisp_Object *args))
|
|
1414 {
|
1983
|
1415 #ifdef WITH_NUMBER_TYPES
|
|
1416 REGISTER int i;
|
|
1417 Lisp_Object accum = make_int (0), addend;
|
|
1418
|
|
1419 for (i = 0; i < nargs; i++)
|
|
1420 {
|
|
1421 addend = args[i];
|
|
1422 switch (promote_args (&accum, &addend))
|
|
1423 {
|
|
1424 case FIXNUM_T:
|
|
1425 accum = make_integer (XREALINT (accum) + XREALINT (addend));
|
|
1426 break;
|
|
1427 #ifdef HAVE_BIGNUM
|
|
1428 case BIGNUM_T:
|
|
1429 bignum_add (scratch_bignum, XBIGNUM_DATA (accum),
|
|
1430 XBIGNUM_DATA (addend));
|
|
1431 accum = make_bignum_bg (scratch_bignum);
|
|
1432 break;
|
|
1433 #endif
|
|
1434 #ifdef HAVE_RATIO
|
|
1435 case RATIO_T:
|
|
1436 ratio_add (scratch_ratio, XRATIO_DATA (accum),
|
|
1437 XRATIO_DATA (addend));
|
|
1438 accum = make_ratio_rt (scratch_ratio);
|
|
1439 break;
|
|
1440 #endif
|
|
1441 case FLOAT_T:
|
|
1442 accum = make_float (XFLOAT_DATA (accum) + XFLOAT_DATA (addend));
|
|
1443 break;
|
|
1444 #ifdef HAVE_BIGFLOAT
|
|
1445 case BIGFLOAT_T:
|
|
1446 bigfloat_set_prec (scratch_bigfloat,
|
|
1447 max (XBIGFLOAT_GET_PREC (addend),
|
|
1448 XBIGFLOAT_GET_PREC (accum)));
|
|
1449 bigfloat_add (scratch_bigfloat, XBIGFLOAT_DATA (accum),
|
|
1450 XBIGFLOAT_DATA (addend));
|
|
1451 accum = make_bigfloat_bf (scratch_bigfloat);
|
|
1452 break;
|
|
1453 #endif
|
|
1454 }
|
|
1455 }
|
|
1456 return Fcanonicalize_number (accum);
|
|
1457 #else /* !WITH_NUMBER_TYPES */
|
428
|
1458 EMACS_INT iaccum = 0;
|
|
1459 Lisp_Object *args_end = args + nargs;
|
|
1460
|
|
1461 while (args < args_end)
|
|
1462 {
|
|
1463 int_or_double iod;
|
|
1464 number_char_or_marker_to_int_or_double (*args++, &iod);
|
|
1465 if (iod.int_p)
|
|
1466 iaccum += iod.c.ival;
|
|
1467 else
|
|
1468 {
|
|
1469 double daccum = (double) iaccum + iod.c.dval;
|
|
1470 while (args < args_end)
|
|
1471 daccum += number_char_or_marker_to_double (*args++);
|
|
1472 return make_float (daccum);
|
|
1473 }
|
|
1474 }
|
|
1475
|
|
1476 return make_int (iaccum);
|
1983
|
1477 #endif /* WITH_NUMBER_TYPES */
|
428
|
1478 }
|
|
1479
|
|
1480 DEFUN ("-", Fminus, 1, MANY, 0, /*
|
|
1481 Negate number or subtract numbers, characters or markers.
|
|
1482 With one arg, negates it. With more than one arg,
|
|
1483 subtracts all but the first from the first.
|
|
1484 */
|
|
1485 (int nargs, Lisp_Object *args))
|
|
1486 {
|
1983
|
1487 #ifdef WITH_NUMBER_TYPES
|
|
1488 REGISTER int i;
|
|
1489 Lisp_Object accum = args[0], subtrahend;
|
|
1490
|
|
1491 if (nargs == 1)
|
|
1492 {
|
|
1493 if (CHARP (accum))
|
|
1494 accum = make_int (XCHAR (accum));
|
|
1495 else if (MARKERP (accum))
|
|
1496 accum = make_int (marker_position (accum));
|
|
1497
|
|
1498 /* Invert the sign of accum */
|
|
1499 CHECK_NUMBER (accum);
|
|
1500 switch (get_number_type (accum))
|
|
1501 {
|
|
1502 case FIXNUM_T:
|
|
1503 return make_integer (-XREALINT (accum));
|
|
1504 #ifdef HAVE_BIGNUM
|
|
1505 case BIGNUM_T:
|
|
1506 bignum_neg (scratch_bignum, XBIGNUM_DATA (accum));
|
|
1507 return Fcanonicalize_number (make_bignum_bg (scratch_bignum));
|
|
1508 #endif
|
|
1509 #ifdef HAVE_RATIO
|
|
1510 case RATIO_T:
|
|
1511 ratio_neg (scratch_ratio, XRATIO_DATA (accum));
|
|
1512 return make_ratio_rt (scratch_ratio);
|
|
1513 #endif
|
|
1514 case FLOAT_T:
|
|
1515 return make_float (-XFLOAT_DATA (accum));
|
|
1516 #ifdef HAVE_BIGFLOAT
|
|
1517 case BIGFLOAT_T:
|
|
1518 bigfloat_set_prec (scratch_bigfloat, XBIGFLOAT_GET_PREC (accum));
|
|
1519 bigfloat_neg (scratch_bigfloat, XBIGFLOAT_DATA (accum));
|
|
1520 return make_bigfloat_bf (scratch_bigfloat);
|
|
1521 #endif
|
|
1522 }
|
|
1523 }
|
|
1524 else
|
|
1525 {
|
|
1526 /* Subtrace the remaining arguments from accum */
|
|
1527 for (i = 1; i < nargs; i++)
|
|
1528 {
|
|
1529 subtrahend = args[i];
|
|
1530 switch (promote_args (&accum, &subtrahend))
|
|
1531 {
|
|
1532 case FIXNUM_T:
|
|
1533 accum = make_integer (XREALINT (accum) - XREALINT (subtrahend));
|
|
1534 break;
|
|
1535 #ifdef HAVE_BIGNUM
|
|
1536 case BIGNUM_T:
|
|
1537 bignum_sub (scratch_bignum, XBIGNUM_DATA (accum),
|
|
1538 XBIGNUM_DATA (subtrahend));
|
|
1539 accum = make_bignum_bg (scratch_bignum);
|
|
1540 break;
|
|
1541 #endif
|
|
1542 #ifdef HAVE_RATIO
|
|
1543 case RATIO_T:
|
|
1544 ratio_sub (scratch_ratio, XRATIO_DATA (accum),
|
|
1545 XRATIO_DATA (subtrahend));
|
|
1546 accum = make_ratio_rt (scratch_ratio);
|
|
1547 break;
|
|
1548 #endif
|
|
1549 case FLOAT_T:
|
|
1550 accum =
|
|
1551 make_float (XFLOAT_DATA (accum) - XFLOAT_DATA (subtrahend));
|
|
1552 break;
|
|
1553 #ifdef HAVE_BIGFLOAT
|
|
1554 case BIGFLOAT_T:
|
|
1555 bigfloat_set_prec (scratch_bigfloat,
|
|
1556 max (XBIGFLOAT_GET_PREC (subtrahend),
|
|
1557 XBIGFLOAT_GET_PREC (accum)));
|
|
1558 bigfloat_sub (scratch_bigfloat, XBIGFLOAT_DATA (accum),
|
|
1559 XBIGFLOAT_DATA (subtrahend));
|
|
1560 accum = make_bigfloat_bf (scratch_bigfloat);
|
|
1561 break;
|
|
1562 #endif
|
|
1563 }
|
|
1564 }
|
|
1565 }
|
|
1566 return Fcanonicalize_number (accum);
|
|
1567 #else /* !WITH_NUMBER_TYPES */
|
428
|
1568 EMACS_INT iaccum;
|
|
1569 double daccum;
|
|
1570 Lisp_Object *args_end = args + nargs;
|
|
1571 int_or_double iod;
|
|
1572
|
|
1573 number_char_or_marker_to_int_or_double (*args++, &iod);
|
|
1574 if (iod.int_p)
|
|
1575 iaccum = nargs > 1 ? iod.c.ival : - iod.c.ival;
|
|
1576 else
|
|
1577 {
|
|
1578 daccum = nargs > 1 ? iod.c.dval : - iod.c.dval;
|
|
1579 goto do_float;
|
|
1580 }
|
|
1581
|
|
1582 while (args < args_end)
|
|
1583 {
|
|
1584 number_char_or_marker_to_int_or_double (*args++, &iod);
|
|
1585 if (iod.int_p)
|
|
1586 iaccum -= iod.c.ival;
|
|
1587 else
|
|
1588 {
|
|
1589 daccum = (double) iaccum - iod.c.dval;
|
|
1590 goto do_float;
|
|
1591 }
|
|
1592 }
|
|
1593
|
|
1594 return make_int (iaccum);
|
|
1595
|
|
1596 do_float:
|
|
1597 for (; args < args_end; args++)
|
|
1598 daccum -= number_char_or_marker_to_double (*args);
|
|
1599 return make_float (daccum);
|
1983
|
1600 #endif /* WITH_NUMBER_TYPES */
|
428
|
1601 }
|
|
1602
|
|
1603 DEFUN ("*", Ftimes, 0, MANY, 0, /*
|
|
1604 Return product of any number of arguments.
|
|
1605 The arguments should all be numbers, characters or markers.
|
|
1606 */
|
|
1607 (int nargs, Lisp_Object *args))
|
|
1608 {
|
1983
|
1609 #ifdef WITH_NUMBER_TYPES
|
|
1610 REGISTER int i;
|
|
1611 /* Start with a bignum to avoid overflow */
|
|
1612 Lisp_Object accum = make_bignum (1L), multiplier;
|
|
1613
|
|
1614 for (i = 0; i < nargs; i++)
|
|
1615 {
|
|
1616 multiplier = args[i];
|
|
1617 switch (promote_args (&accum, &multiplier))
|
|
1618 {
|
|
1619 #ifdef HAVE_BIGNUM
|
|
1620 case BIGNUM_T:
|
|
1621 bignum_mul (scratch_bignum, XBIGNUM_DATA (accum),
|
|
1622 XBIGNUM_DATA (multiplier));
|
|
1623 accum = make_bignum_bg (scratch_bignum);
|
|
1624 break;
|
|
1625 #endif
|
|
1626 #ifdef HAVE_RATIO
|
|
1627 case RATIO_T:
|
|
1628 ratio_mul (scratch_ratio, XRATIO_DATA (accum),
|
|
1629 XRATIO_DATA (multiplier));
|
|
1630 accum = make_ratio_rt (scratch_ratio);
|
|
1631 break;
|
|
1632 #endif
|
|
1633 case FLOAT_T:
|
|
1634 accum = make_float (XFLOAT_DATA (accum) * XFLOAT_DATA (multiplier));
|
|
1635 break;
|
|
1636 #ifdef HAVE_BIGFLOAT
|
|
1637 case BIGFLOAT_T:
|
|
1638 bigfloat_set_prec (scratch_bigfloat,
|
|
1639 max (XBIGFLOAT_GET_PREC (multiplier),
|
|
1640 XBIGFLOAT_GET_PREC (accum)));
|
|
1641 bigfloat_mul (scratch_bigfloat, XBIGFLOAT_DATA (accum),
|
|
1642 XBIGFLOAT_DATA (multiplier));
|
|
1643 accum = make_bigfloat_bf (scratch_bigfloat);
|
|
1644 break;
|
|
1645 #endif
|
|
1646 }
|
|
1647 }
|
|
1648 return Fcanonicalize_number (accum);
|
|
1649 #else /* !WITH_NUMBER_TYPES */
|
428
|
1650 EMACS_INT iaccum = 1;
|
|
1651 Lisp_Object *args_end = args + nargs;
|
|
1652
|
|
1653 while (args < args_end)
|
|
1654 {
|
|
1655 int_or_double iod;
|
|
1656 number_char_or_marker_to_int_or_double (*args++, &iod);
|
|
1657 if (iod.int_p)
|
|
1658 iaccum *= iod.c.ival;
|
|
1659 else
|
|
1660 {
|
|
1661 double daccum = (double) iaccum * iod.c.dval;
|
|
1662 while (args < args_end)
|
|
1663 daccum *= number_char_or_marker_to_double (*args++);
|
|
1664 return make_float (daccum);
|
|
1665 }
|
|
1666 }
|
|
1667
|
|
1668 return make_int (iaccum);
|
1983
|
1669 #endif /* WITH_NUMBER_TYPES */
|
428
|
1670 }
|
|
1671
|
1983
|
1672 #ifdef HAVE_RATIO
|
|
1673 DEFUN ("div", Fdiv, 1, MANY, 0, /*
|
|
1674 Same as `/', but dividing integers creates a ratio instead of truncating.
|
|
1675 Note that this is a departure from Common Lisp, where / creates ratios when
|
|
1676 dividing integers. Having a separate function lets us avoid breaking existing
|
|
1677 Emacs Lisp code that expects / to do integer division.
|
|
1678 */
|
|
1679 (int nargs, Lisp_Object *args))
|
|
1680 {
|
|
1681 REGISTER int i;
|
|
1682 Lisp_Object accum, divisor;
|
|
1683
|
|
1684 if (nargs == 1)
|
|
1685 {
|
|
1686 i = 0;
|
|
1687 accum = make_int (1);
|
|
1688 }
|
|
1689 else
|
|
1690 {
|
|
1691 i = 1;
|
|
1692 accum = args[0];
|
|
1693 }
|
|
1694 for (; i < nargs; i++)
|
|
1695 {
|
|
1696 divisor = args[i];
|
|
1697 switch (promote_args (&accum, &divisor))
|
|
1698 {
|
|
1699 case FIXNUM_T:
|
|
1700 if (XREALINT (divisor) == 0) goto divide_by_zero;
|
|
1701 bignum_set_long (scratch_bignum, XREALINT (accum));
|
|
1702 bignum_set_long (scratch_bignum2, XREALINT (divisor));
|
|
1703 accum = make_ratio_bg (scratch_bignum, scratch_bignum2);
|
|
1704 break;
|
|
1705 case BIGNUM_T:
|
|
1706 if (bignum_sign (XBIGNUM_DATA (divisor)) == 0) goto divide_by_zero;
|
|
1707 accum = make_ratio_bg (XBIGNUM_DATA (accum), XBIGNUM_DATA (divisor));
|
|
1708 break;
|
|
1709 case RATIO_T:
|
|
1710 if (ratio_sign (XRATIO_DATA (divisor)) == 0) goto divide_by_zero;
|
|
1711 ratio_div (scratch_ratio, XRATIO_DATA (accum),
|
|
1712 XRATIO_DATA (divisor));
|
|
1713 accum = make_ratio_rt (scratch_ratio);
|
|
1714 break;
|
|
1715 case FLOAT_T:
|
|
1716 if (XFLOAT_DATA (divisor) == 0.0) goto divide_by_zero;
|
|
1717 accum = make_float (XFLOAT_DATA (accum) / XFLOAT_DATA (divisor));
|
|
1718 break;
|
|
1719 #ifdef HAVE_BIGFLOAT
|
|
1720 case BIGFLOAT_T:
|
|
1721 if (bigfloat_sign (XBIGFLOAT_DATA (divisor)) == 0)
|
|
1722 goto divide_by_zero;
|
|
1723 bigfloat_set_prec (scratch_bigfloat,
|
|
1724 max (XBIGFLOAT_GET_PREC (divisor),
|
|
1725 XBIGFLOAT_GET_PREC (accum)));
|
|
1726 bigfloat_div (scratch_bigfloat, XBIGFLOAT_DATA (accum),
|
|
1727 XBIGFLOAT_DATA (divisor));
|
|
1728 accum = make_bigfloat_bf (scratch_bigfloat);
|
|
1729 break;
|
|
1730 #endif
|
|
1731 }
|
|
1732 }
|
|
1733 return Fcanonicalize_number (accum);
|
|
1734
|
|
1735 divide_by_zero:
|
|
1736 Fsignal (Qarith_error, Qnil);
|
|
1737 return Qnil; /* not (usually) reached */
|
|
1738 }
|
|
1739 #endif /* HAVE_RATIO */
|
|
1740
|
428
|
1741 DEFUN ("/", Fquo, 1, MANY, 0, /*
|
|
1742 Return first argument divided by all the remaining arguments.
|
|
1743 The arguments must be numbers, characters or markers.
|
|
1744 With one argument, reciprocates the argument.
|
|
1745 */
|
|
1746 (int nargs, Lisp_Object *args))
|
|
1747 {
|
1983
|
1748 #ifdef WITH_NUMBER_TYPES
|
|
1749 REGISTER int i;
|
|
1750 Lisp_Object accum, divisor;
|
|
1751
|
|
1752 if (nargs == 1)
|
|
1753 {
|
|
1754 i = 0;
|
|
1755 accum = make_int (1);
|
|
1756 }
|
|
1757 else
|
|
1758 {
|
|
1759 i = 1;
|
|
1760 accum = args[0];
|
|
1761 }
|
|
1762 for (; i < nargs; i++)
|
|
1763 {
|
|
1764 divisor = args[i];
|
|
1765 switch (promote_args (&accum, &divisor))
|
|
1766 {
|
|
1767 case FIXNUM_T:
|
|
1768 if (XREALINT (divisor) == 0) goto divide_by_zero;
|
|
1769 accum = make_integer (XREALINT (accum) / XREALINT (divisor));
|
|
1770 break;
|
|
1771 #ifdef HAVE_BIGNUM
|
|
1772 case BIGNUM_T:
|
|
1773 if (bignum_sign (XBIGNUM_DATA (divisor)) == 0) goto divide_by_zero;
|
|
1774 bignum_div (scratch_bignum, XBIGNUM_DATA (accum),
|
|
1775 XBIGNUM_DATA (divisor));
|
|
1776 accum = make_bignum_bg (scratch_bignum);
|
|
1777 break;
|
|
1778 #endif
|
|
1779 #ifdef HAVE_RATIO
|
|
1780 case RATIO_T:
|
|
1781 if (ratio_sign (XRATIO_DATA (divisor)) == 0) goto divide_by_zero;
|
|
1782 ratio_div (scratch_ratio, XRATIO_DATA (accum),
|
|
1783 XRATIO_DATA (divisor));
|
|
1784 accum = make_ratio_rt (scratch_ratio);
|
|
1785 break;
|
|
1786 #endif
|
|
1787 case FLOAT_T:
|
|
1788 if (XFLOAT_DATA (divisor) == 0.0) goto divide_by_zero;
|
|
1789 accum = make_float (XFLOAT_DATA (accum) / XFLOAT_DATA (divisor));
|
|
1790 break;
|
|
1791 #ifdef HAVE_BIGFLOAT
|
|
1792 case BIGFLOAT_T:
|
|
1793 if (bigfloat_sign (XBIGFLOAT_DATA (divisor)) == 0)
|
|
1794 goto divide_by_zero;
|
|
1795 bigfloat_set_prec (scratch_bigfloat,
|
|
1796 max (XBIGFLOAT_GET_PREC (divisor),
|
|
1797 XBIGFLOAT_GET_PREC (accum)));
|
|
1798 bigfloat_div (scratch_bigfloat, XBIGFLOAT_DATA (accum),
|
|
1799 XBIGFLOAT_DATA (divisor));
|
|
1800 accum = make_bigfloat_bf (scratch_bigfloat);
|
|
1801 break;
|
|
1802 #endif
|
|
1803 }
|
|
1804 }
|
|
1805 return Fcanonicalize_number (accum);
|
|
1806 #else /* !WITH_NUMBER_TYPES */
|
428
|
1807 EMACS_INT iaccum;
|
|
1808 double daccum;
|
|
1809 Lisp_Object *args_end = args + nargs;
|
|
1810 int_or_double iod;
|
|
1811
|
|
1812 if (nargs == 1)
|
|
1813 iaccum = 1;
|
|
1814 else
|
|
1815 {
|
|
1816 number_char_or_marker_to_int_or_double (*args++, &iod);
|
|
1817 if (iod.int_p)
|
|
1818 iaccum = iod.c.ival;
|
|
1819 else
|
|
1820 {
|
|
1821 daccum = iod.c.dval;
|
|
1822 goto divide_floats;
|
|
1823 }
|
|
1824 }
|
|
1825
|
|
1826 while (args < args_end)
|
|
1827 {
|
|
1828 number_char_or_marker_to_int_or_double (*args++, &iod);
|
|
1829 if (iod.int_p)
|
|
1830 {
|
|
1831 if (iod.c.ival == 0) goto divide_by_zero;
|
|
1832 iaccum /= iod.c.ival;
|
|
1833 }
|
|
1834 else
|
|
1835 {
|
|
1836 if (iod.c.dval == 0) goto divide_by_zero;
|
|
1837 daccum = (double) iaccum / iod.c.dval;
|
|
1838 goto divide_floats;
|
|
1839 }
|
|
1840 }
|
|
1841
|
|
1842 return make_int (iaccum);
|
|
1843
|
|
1844 divide_floats:
|
|
1845 for (; args < args_end; args++)
|
|
1846 {
|
|
1847 double dval = number_char_or_marker_to_double (*args);
|
|
1848 if (dval == 0) goto divide_by_zero;
|
|
1849 daccum /= dval;
|
|
1850 }
|
|
1851 return make_float (daccum);
|
1983
|
1852 #endif /* WITH_NUMBER_TYPES */
|
428
|
1853
|
|
1854 divide_by_zero:
|
|
1855 Fsignal (Qarith_error, Qnil);
|
801
|
1856 return Qnil; /* not (usually) reached */
|
428
|
1857 }
|
|
1858
|
|
1859 DEFUN ("max", Fmax, 1, MANY, 0, /*
|
|
1860 Return largest of all the arguments.
|
1983
|
1861 All arguments must be real numbers, characters or markers.
|
428
|
1862 The value is always a number; markers and characters are converted
|
|
1863 to numbers.
|
|
1864 */
|
|
1865 (int nargs, Lisp_Object *args))
|
|
1866 {
|
1983
|
1867 #ifdef WITH_NUMBER_TYPES
|
|
1868 REGISTER int i, maxindex = 0;
|
|
1869 Lisp_Object comp1, comp2;
|
|
1870
|
|
1871 while (!(CHARP (args[0]) || MARKERP (args[0]) || REALP (args[0])))
|
|
1872 args[0] = wrong_type_argument (Qnumber_char_or_marker_p, args[0]);
|
|
1873 if (CHARP (args[0]))
|
|
1874 args[0] = make_int (XCHAR (args[0]));
|
|
1875 else if (MARKERP (args[0]))
|
|
1876 args[0] = make_int (marker_position (args[0]));
|
|
1877 for (i = 1; i < nargs; i++)
|
|
1878 {
|
|
1879 comp1 = args[maxindex];
|
|
1880 comp2 = args[i];
|
|
1881 switch (promote_args (&comp1, &comp2))
|
|
1882 {
|
|
1883 case FIXNUM_T:
|
|
1884 if (XREALINT (comp1) < XREALINT (comp2))
|
|
1885 maxindex = i;
|
|
1886 break;
|
|
1887 #ifdef HAVE_BIGNUM
|
|
1888 case BIGNUM_T:
|
|
1889 if (bignum_lt (XBIGNUM_DATA (comp1), XBIGNUM_DATA (comp2)))
|
|
1890 maxindex = i;
|
|
1891 break;
|
|
1892 #endif
|
|
1893 #ifdef HAVE_RATIO
|
|
1894 case RATIO_T:
|
|
1895 if (ratio_lt (XRATIO_DATA (comp1), XRATIO_DATA (comp2)))
|
|
1896 maxindex = i;
|
|
1897 break;
|
|
1898 #endif
|
|
1899 case FLOAT_T:
|
|
1900 if (XFLOAT_DATA (comp1) < XFLOAT_DATA (comp2))
|
|
1901 maxindex = i;
|
|
1902 break;
|
|
1903 #ifdef HAVE_BIGFLOAT
|
|
1904 case BIGFLOAT_T:
|
|
1905 if (bigfloat_lt (XBIGFLOAT_DATA (comp1), XBIGFLOAT_DATA (comp2)))
|
|
1906 maxindex = i;
|
|
1907 break;
|
|
1908 #endif
|
|
1909 }
|
|
1910 }
|
|
1911 return args[maxindex];
|
|
1912 #else /* !WITH_NUMBER_TYPES */
|
428
|
1913 EMACS_INT imax;
|
|
1914 double dmax;
|
|
1915 Lisp_Object *args_end = args + nargs;
|
|
1916 int_or_double iod;
|
|
1917
|
|
1918 number_char_or_marker_to_int_or_double (*args++, &iod);
|
|
1919 if (iod.int_p)
|
|
1920 imax = iod.c.ival;
|
|
1921 else
|
|
1922 {
|
|
1923 dmax = iod.c.dval;
|
|
1924 goto max_floats;
|
|
1925 }
|
|
1926
|
|
1927 while (args < args_end)
|
|
1928 {
|
|
1929 number_char_or_marker_to_int_or_double (*args++, &iod);
|
|
1930 if (iod.int_p)
|
|
1931 {
|
|
1932 if (imax < iod.c.ival) imax = iod.c.ival;
|
|
1933 }
|
|
1934 else
|
|
1935 {
|
|
1936 dmax = (double) imax;
|
|
1937 if (dmax < iod.c.dval) dmax = iod.c.dval;
|
|
1938 goto max_floats;
|
|
1939 }
|
|
1940 }
|
|
1941
|
|
1942 return make_int (imax);
|
|
1943
|
|
1944 max_floats:
|
|
1945 while (args < args_end)
|
|
1946 {
|
|
1947 double dval = number_char_or_marker_to_double (*args++);
|
|
1948 if (dmax < dval) dmax = dval;
|
|
1949 }
|
|
1950 return make_float (dmax);
|
1983
|
1951 #endif /* WITH_NUMBER_TYPES */
|
428
|
1952 }
|
|
1953
|
|
1954 DEFUN ("min", Fmin, 1, MANY, 0, /*
|
|
1955 Return smallest of all the arguments.
|
|
1956 All arguments must be numbers, characters or markers.
|
|
1957 The value is always a number; markers and characters are converted
|
|
1958 to numbers.
|
|
1959 */
|
|
1960 (int nargs, Lisp_Object *args))
|
|
1961 {
|
1983
|
1962 #ifdef WITH_NUMBER_TYPES
|
|
1963 REGISTER int i, minindex = 0;
|
|
1964 Lisp_Object comp1, comp2;
|
|
1965
|
|
1966 while (!(CHARP (args[0]) || MARKERP (args[0]) || REALP (args[0])))
|
|
1967 args[0] = wrong_type_argument (Qnumber_char_or_marker_p, args[0]);
|
|
1968 if (CHARP (args[0]))
|
|
1969 args[0] = make_int (XCHAR (args[0]));
|
|
1970 else if (MARKERP (args[0]))
|
|
1971 args[0] = make_int (marker_position (args[0]));
|
|
1972 for (i = 1; i < nargs; i++)
|
|
1973 {
|
|
1974 comp1 = args[minindex];
|
|
1975 comp2 = args[i];
|
|
1976 switch (promote_args (&comp1, &comp2))
|
|
1977 {
|
|
1978 case FIXNUM_T:
|
|
1979 if (XREALINT (comp1) > XREALINT (comp2))
|
|
1980 minindex = i;
|
|
1981 break;
|
|
1982 #ifdef HAVE_BIGNUM
|
|
1983 case BIGNUM_T:
|
|
1984 if (bignum_gt (XBIGNUM_DATA (comp1), XBIGNUM_DATA (comp2)))
|
|
1985 minindex = i;
|
|
1986 break;
|
|
1987 #endif
|
|
1988 #ifdef HAVE_RATIO
|
|
1989 case RATIO_T:
|
|
1990 if (ratio_gt (XRATIO_DATA (comp1), XRATIO_DATA (comp2)))
|
|
1991 minindex = i;
|
|
1992 break;
|
|
1993 #endif
|
|
1994 case FLOAT_T:
|
|
1995 if (XFLOAT_DATA (comp1) > XFLOAT_DATA (comp2))
|
|
1996 minindex = i;
|
|
1997 break;
|
|
1998 #ifdef HAVE_BIGFLOAT
|
|
1999 case BIGFLOAT_T:
|
|
2000 if (bigfloat_gt (XBIGFLOAT_DATA (comp1), XBIGFLOAT_DATA (comp2)))
|
|
2001 minindex = i;
|
|
2002 break;
|
|
2003 #endif
|
|
2004 }
|
|
2005 }
|
|
2006 return args[minindex];
|
|
2007 #else /* !WITH_NUMBER_TYPES */
|
428
|
2008 EMACS_INT imin;
|
|
2009 double dmin;
|
|
2010 Lisp_Object *args_end = args + nargs;
|
|
2011 int_or_double iod;
|
|
2012
|
|
2013 number_char_or_marker_to_int_or_double (*args++, &iod);
|
|
2014 if (iod.int_p)
|
|
2015 imin = iod.c.ival;
|
|
2016 else
|
|
2017 {
|
|
2018 dmin = iod.c.dval;
|
|
2019 goto min_floats;
|
|
2020 }
|
|
2021
|
|
2022 while (args < args_end)
|
|
2023 {
|
|
2024 number_char_or_marker_to_int_or_double (*args++, &iod);
|
|
2025 if (iod.int_p)
|
|
2026 {
|
|
2027 if (imin > iod.c.ival) imin = iod.c.ival;
|
|
2028 }
|
|
2029 else
|
|
2030 {
|
|
2031 dmin = (double) imin;
|
|
2032 if (dmin > iod.c.dval) dmin = iod.c.dval;
|
|
2033 goto min_floats;
|
|
2034 }
|
|
2035 }
|
|
2036
|
|
2037 return make_int (imin);
|
|
2038
|
|
2039 min_floats:
|
|
2040 while (args < args_end)
|
|
2041 {
|
|
2042 double dval = number_char_or_marker_to_double (*args++);
|
|
2043 if (dmin > dval) dmin = dval;
|
|
2044 }
|
|
2045 return make_float (dmin);
|
1983
|
2046 #endif /* WITH_NUMBER_TYPES */
|
428
|
2047 }
|
|
2048
|
|
2049 DEFUN ("logand", Flogand, 0, MANY, 0, /*
|
|
2050 Return bitwise-and of all the arguments.
|
|
2051 Arguments may be integers, or markers or characters converted to integers.
|
|
2052 */
|
|
2053 (int nargs, Lisp_Object *args))
|
|
2054 {
|
1983
|
2055 #ifdef HAVE_BIGNUM
|
|
2056 REGISTER int i;
|
|
2057 Lisp_Object result, other;
|
|
2058
|
|
2059 if (nargs == 0)
|
|
2060 return make_int (~0);
|
|
2061
|
|
2062 while (!(CHARP (args[0]) || MARKERP (args[0]) || INTEGERP (args[0])))
|
|
2063 args[0] = wrong_type_argument (Qnumber_char_or_marker_p, args[0]);
|
|
2064
|
|
2065 result = args[0];
|
|
2066 if (CHARP (result))
|
|
2067 result = make_int (XCHAR (result));
|
|
2068 else if (MARKERP (result))
|
|
2069 result = make_int (marker_position (result));
|
|
2070 for (i = 1; i < nargs; i++)
|
|
2071 {
|
|
2072 while (!(CHARP (args[i]) || MARKERP (args[i]) || INTEGERP (args[i])))
|
|
2073 args[i] = wrong_type_argument (Qnumber_char_or_marker_p, args[i]);
|
|
2074 other = args[i];
|
1995
|
2075 switch (promote_args (&result, &other))
|
1983
|
2076 {
|
|
2077 case FIXNUM_T:
|
1995
|
2078 result = make_int (XREALINT (result) & XREALINT (other));
|
1983
|
2079 break;
|
|
2080 case BIGNUM_T:
|
|
2081 bignum_and (scratch_bignum, XBIGNUM_DATA (result),
|
|
2082 XBIGNUM_DATA (other));
|
|
2083 result = make_bignum_bg (scratch_bignum);
|
|
2084 break;
|
|
2085 }
|
|
2086 }
|
|
2087 return Fcanonicalize_number (result);
|
|
2088 #else /* !HAVE_BIGNUM */
|
428
|
2089 EMACS_INT bits = ~0;
|
|
2090 Lisp_Object *args_end = args + nargs;
|
|
2091
|
|
2092 while (args < args_end)
|
|
2093 bits &= integer_char_or_marker_to_int (*args++);
|
|
2094
|
|
2095 return make_int (bits);
|
1983
|
2096 #endif /* HAVE_BIGNUM */
|
428
|
2097 }
|
|
2098
|
|
2099 DEFUN ("logior", Flogior, 0, MANY, 0, /*
|
|
2100 Return bitwise-or of all the arguments.
|
|
2101 Arguments may be integers, or markers or characters converted to integers.
|
|
2102 */
|
|
2103 (int nargs, Lisp_Object *args))
|
|
2104 {
|
1983
|
2105 #ifdef HAVE_BIGNUM
|
|
2106 REGISTER int i;
|
|
2107 Lisp_Object result, other;
|
|
2108
|
|
2109 if (nargs == 0)
|
|
2110 return make_int (0);
|
|
2111
|
|
2112 while (!(CHARP (args[0]) || MARKERP (args[0]) || INTEGERP (args[0])))
|
|
2113 args[0] = wrong_type_argument (Qnumber_char_or_marker_p, args[0]);
|
|
2114
|
|
2115 result = args[0];
|
|
2116 if (CHARP (result))
|
|
2117 result = make_int (XCHAR (result));
|
|
2118 else if (MARKERP (result))
|
|
2119 result = make_int (marker_position (result));
|
|
2120 for (i = 1; i < nargs; i++)
|
|
2121 {
|
|
2122 while (!(CHARP (args[i]) || MARKERP (args[i]) || INTEGERP (args[i])))
|
|
2123 args[i] = wrong_type_argument (Qnumber_char_or_marker_p, args[i]);
|
|
2124 other = args[i];
|
|
2125 switch (promote_args (&result, &other))
|
|
2126 {
|
|
2127 case FIXNUM_T:
|
1992
|
2128 result = make_int (XREALINT (result) | XREALINT (other));
|
1983
|
2129 break;
|
|
2130 case BIGNUM_T:
|
|
2131 bignum_ior (scratch_bignum, XBIGNUM_DATA (result),
|
|
2132 XBIGNUM_DATA (other));
|
|
2133 result = make_bignum_bg (scratch_bignum);
|
|
2134 break;
|
|
2135 }
|
|
2136 }
|
|
2137 return Fcanonicalize_number (result);
|
|
2138 #else /* !HAVE_BIGNUM */
|
428
|
2139 EMACS_INT bits = 0;
|
|
2140 Lisp_Object *args_end = args + nargs;
|
|
2141
|
|
2142 while (args < args_end)
|
|
2143 bits |= integer_char_or_marker_to_int (*args++);
|
|
2144
|
|
2145 return make_int (bits);
|
1983
|
2146 #endif /* HAVE_BIGNUM */
|
428
|
2147 }
|
|
2148
|
|
2149 DEFUN ("logxor", Flogxor, 0, MANY, 0, /*
|
|
2150 Return bitwise-exclusive-or of all the arguments.
|
|
2151 Arguments may be integers, or markers or characters converted to integers.
|
|
2152 */
|
|
2153 (int nargs, Lisp_Object *args))
|
|
2154 {
|
1983
|
2155 #ifdef HAVE_BIGNUM
|
|
2156 REGISTER int i;
|
|
2157 Lisp_Object result, other;
|
|
2158
|
|
2159 if (nargs == 0)
|
|
2160 return make_int (0);
|
|
2161
|
|
2162 while (!(CHARP (args[0]) || MARKERP (args[0]) || INTEGERP (args[0])))
|
|
2163 args[0] = wrong_type_argument (Qnumber_char_or_marker_p, args[0]);
|
|
2164
|
|
2165 result = args[0];
|
|
2166 if (CHARP (result))
|
|
2167 result = make_int (XCHAR (result));
|
|
2168 else if (MARKERP (result))
|
|
2169 result = make_int (marker_position (result));
|
|
2170 for (i = 1; i < nargs; i++)
|
|
2171 {
|
|
2172 while (!(CHARP (args[i]) || MARKERP (args[i]) || INTEGERP (args[i])))
|
|
2173 args[i] = wrong_type_argument (Qnumber_char_or_marker_p, args[i]);
|
|
2174 other = args[i];
|
|
2175 if (promote_args (&result, &other) == FIXNUM_T)
|
|
2176 {
|
|
2177 result = make_int (XREALINT (result) ^ XREALINT (other));
|
|
2178 }
|
|
2179 else
|
|
2180 {
|
|
2181 bignum_xor (scratch_bignum, XBIGNUM_DATA (result),
|
|
2182 XBIGNUM_DATA (other));
|
|
2183 result = make_bignum_bg (scratch_bignum);
|
|
2184 }
|
|
2185 }
|
|
2186 return Fcanonicalize_number (result);
|
|
2187 #else /* !HAVE_BIGNUM */
|
428
|
2188 EMACS_INT bits = 0;
|
|
2189 Lisp_Object *args_end = args + nargs;
|
|
2190
|
|
2191 while (args < args_end)
|
|
2192 bits ^= integer_char_or_marker_to_int (*args++);
|
|
2193
|
|
2194 return make_int (bits);
|
1983
|
2195 #endif /* !HAVE_BIGNUM */
|
428
|
2196 }
|
|
2197
|
|
2198 DEFUN ("lognot", Flognot, 1, 1, 0, /*
|
|
2199 Return the bitwise complement of NUMBER.
|
|
2200 NUMBER may be an integer, marker or character converted to integer.
|
|
2201 */
|
|
2202 (number))
|
|
2203 {
|
1983
|
2204 #ifdef HAVE_BIGNUM
|
|
2205 if (BIGNUMP (number))
|
|
2206 {
|
|
2207 bignum_not (scratch_bignum, XBIGNUM_DATA (number));
|
|
2208 return make_bignum_bg (scratch_bignum);
|
|
2209 }
|
|
2210 #endif /* HAVE_BIGNUM */
|
428
|
2211 return make_int (~ integer_char_or_marker_to_int (number));
|
|
2212 }
|
|
2213
|
|
2214 DEFUN ("%", Frem, 2, 2, 0, /*
|
|
2215 Return remainder of first arg divided by second.
|
|
2216 Both must be integers, characters or markers.
|
|
2217 */
|
444
|
2218 (number1, number2))
|
428
|
2219 {
|
1983
|
2220 #ifdef HAVE_BIGNUM
|
|
2221 while (!(CHARP (number1) || MARKERP (number1) || INTEGERP (number1)))
|
|
2222 number1 = wrong_type_argument (Qnumber_char_or_marker_p, number1);
|
|
2223 while (!(CHARP (number2) || MARKERP (number2) || INTEGERP (number2)))
|
|
2224 number2 = wrong_type_argument (Qnumber_char_or_marker_p, number2);
|
|
2225
|
|
2226 if (promote_args (&number1, &number2) == FIXNUM_T)
|
|
2227 {
|
|
2228 if (XREALINT (number2) == 0)
|
|
2229 Fsignal (Qarith_error, Qnil);
|
|
2230 return make_int (XREALINT (number1) % XREALINT (number2));
|
|
2231 }
|
|
2232 else
|
|
2233 {
|
|
2234 if (bignum_sign (XBIGNUM_DATA (number2)) == 0)
|
|
2235 Fsignal (Qarith_error, Qnil);
|
|
2236 bignum_mod (scratch_bignum, XBIGNUM_DATA (number1),
|
|
2237 XBIGNUM_DATA (number2));
|
|
2238 return Fcanonicalize_number (make_bignum_bg (scratch_bignum));
|
|
2239 }
|
|
2240 #else /* !HAVE_BIGNUM */
|
444
|
2241 EMACS_INT ival1 = integer_char_or_marker_to_int (number1);
|
|
2242 EMACS_INT ival2 = integer_char_or_marker_to_int (number2);
|
428
|
2243
|
|
2244 if (ival2 == 0)
|
|
2245 Fsignal (Qarith_error, Qnil);
|
|
2246
|
|
2247 return make_int (ival1 % ival2);
|
1983
|
2248 #endif /* HAVE_BIGNUM */
|
428
|
2249 }
|
|
2250
|
|
2251 /* Note, ANSI *requires* the presence of the fmod() library routine.
|
|
2252 If your system doesn't have it, complain to your vendor, because
|
|
2253 that is a bug. */
|
|
2254
|
|
2255 #ifndef HAVE_FMOD
|
|
2256 double
|
|
2257 fmod (double f1, double f2)
|
|
2258 {
|
|
2259 if (f2 < 0.0)
|
|
2260 f2 = -f2;
|
|
2261 return f1 - f2 * floor (f1/f2);
|
|
2262 }
|
|
2263 #endif /* ! HAVE_FMOD */
|
|
2264
|
|
2265
|
|
2266 DEFUN ("mod", Fmod, 2, 2, 0, /*
|
|
2267 Return X modulo Y.
|
|
2268 The result falls between zero (inclusive) and Y (exclusive).
|
|
2269 Both X and Y must be numbers, characters or markers.
|
|
2270 If either argument is a float, a float will be returned.
|
|
2271 */
|
|
2272 (x, y))
|
|
2273 {
|
1983
|
2274 #ifdef WITH_NUMBER_TYPES
|
|
2275 while (!(CHARP (x) || MARKERP (x) || REALP (x)))
|
|
2276 x = wrong_type_argument (Qnumber_char_or_marker_p, x);
|
|
2277 while (!(CHARP (y) || MARKERP (y) || REALP (y)))
|
|
2278 y = wrong_type_argument (Qnumber_char_or_marker_p, y);
|
|
2279 switch (promote_args (&x, &y))
|
|
2280 {
|
|
2281 case FIXNUM_T:
|
|
2282 {
|
|
2283 EMACS_INT ival;
|
|
2284 if (XREALINT (y) == 0) goto divide_by_zero;
|
|
2285 ival = XREALINT (x) % XREALINT (y);
|
|
2286 /* If the "remainder" comes out with the wrong sign, fix it. */
|
|
2287 if (XREALINT (y) < 0 ? ival > 0 : ival < 0)
|
|
2288 ival += XREALINT (y);
|
|
2289 return make_int (ival);
|
|
2290 }
|
|
2291 #ifdef HAVE_BIGNUM
|
|
2292 case BIGNUM_T:
|
|
2293 if (bignum_sign (XBIGNUM_DATA (y)) == 0) goto divide_by_zero;
|
|
2294 bignum_mod (scratch_bignum, XBIGNUM_DATA (x), XBIGNUM_DATA (y));
|
|
2295 return Fcanonicalize_number (make_bignum_bg (scratch_bignum));
|
|
2296 #endif
|
|
2297 #ifdef HAVE_RATIO
|
|
2298 case RATIO_T:
|
|
2299 if (ratio_sign (XRATIO_DATA (y)) == 0) goto divide_by_zero;
|
|
2300 ratio_div (scratch_ratio, XRATIO_DATA (x), XRATIO_DATA (y));
|
|
2301 bignum_div (scratch_bignum, ratio_numerator (scratch_ratio),
|
|
2302 ratio_denominator (scratch_ratio));
|
|
2303 ratio_set_bignum (scratch_ratio, scratch_bignum);
|
|
2304 ratio_mul (scratch_ratio, scratch_ratio, XRATIO_DATA (y));
|
|
2305 ratio_sub (scratch_ratio, XRATIO_DATA (x), scratch_ratio);
|
|
2306 return Fcanonicalize_number (make_ratio_rt (scratch_ratio));
|
|
2307 #endif
|
|
2308 case FLOAT_T:
|
|
2309 {
|
|
2310 double dval;
|
|
2311 if (XFLOAT_DATA (y) == 0.0) goto divide_by_zero;
|
|
2312 dval = fmod (XFLOAT_DATA (x), XFLOAT_DATA (y));
|
|
2313 /* If the "remainder" comes out with the wrong sign, fix it. */
|
|
2314 if (XFLOAT_DATA (y) < 0 ? dval > 0 : dval < 0)
|
|
2315 dval += XFLOAT_DATA (y);
|
|
2316 return make_float (dval);
|
|
2317 }
|
|
2318 #ifdef HAVE_BIGFLOAT
|
|
2319 case BIGFLOAT_T:
|
|
2320 bigfloat_set_prec (scratch_bigfloat,
|
|
2321 max (XBIGFLOAT_GET_PREC (x), XBIGFLOAT_GET_PREC (y)));
|
|
2322 bigfloat_div (scratch_bigfloat, XBIGFLOAT_DATA (x), XBIGFLOAT_DATA (y));
|
|
2323 bigfloat_trunc (scratch_bigfloat, scratch_bigfloat);
|
|
2324 bigfloat_mul (scratch_bigfloat, scratch_bigfloat, XBIGFLOAT_DATA (y));
|
|
2325 bigfloat_sub (scratch_bigfloat, XBIGFLOAT_DATA (x), scratch_bigfloat);
|
|
2326 return make_bigfloat_bf (scratch_bigfloat);
|
|
2327 #endif
|
|
2328 }
|
|
2329 #else /* !WITH_NUMBER_TYPES */
|
428
|
2330 int_or_double iod1, iod2;
|
|
2331 number_char_or_marker_to_int_or_double (x, &iod1);
|
|
2332 number_char_or_marker_to_int_or_double (y, &iod2);
|
|
2333
|
|
2334 if (!iod1.int_p || !iod2.int_p)
|
|
2335 {
|
|
2336 double dval1 = iod1.int_p ? (double) iod1.c.ival : iod1.c.dval;
|
|
2337 double dval2 = iod2.int_p ? (double) iod2.c.ival : iod2.c.dval;
|
|
2338 if (dval2 == 0) goto divide_by_zero;
|
|
2339 dval1 = fmod (dval1, dval2);
|
|
2340
|
|
2341 /* If the "remainder" comes out with the wrong sign, fix it. */
|
|
2342 if (dval2 < 0 ? dval1 > 0 : dval1 < 0)
|
|
2343 dval1 += dval2;
|
|
2344
|
|
2345 return make_float (dval1);
|
|
2346 }
|
1104
|
2347
|
428
|
2348 {
|
|
2349 EMACS_INT ival;
|
|
2350 if (iod2.c.ival == 0) goto divide_by_zero;
|
|
2351
|
|
2352 ival = iod1.c.ival % iod2.c.ival;
|
|
2353
|
|
2354 /* If the "remainder" comes out with the wrong sign, fix it. */
|
|
2355 if (iod2.c.ival < 0 ? ival > 0 : ival < 0)
|
|
2356 ival += iod2.c.ival;
|
|
2357
|
|
2358 return make_int (ival);
|
|
2359 }
|
1983
|
2360 #endif /* WITH_NUMBER_TYPES */
|
428
|
2361
|
|
2362 divide_by_zero:
|
|
2363 Fsignal (Qarith_error, Qnil);
|
801
|
2364 return Qnil; /* not (usually) reached */
|
428
|
2365 }
|
|
2366
|
|
2367 DEFUN ("ash", Fash, 2, 2, 0, /*
|
|
2368 Return VALUE with its bits shifted left by COUNT.
|
|
2369 If COUNT is negative, shifting is actually to the right.
|
|
2370 In this case, the sign bit is duplicated.
|
1983
|
2371 This function cannot be applied to bignums, as there is no leftmost sign bit
|
|
2372 to be duplicated. Use `lsh' instead.
|
428
|
2373 */
|
|
2374 (value, count))
|
|
2375 {
|
|
2376 CHECK_INT_COERCE_CHAR (value);
|
|
2377 CONCHECK_INT (count);
|
|
2378
|
|
2379 return make_int (XINT (count) > 0 ?
|
|
2380 XINT (value) << XINT (count) :
|
|
2381 XINT (value) >> -XINT (count));
|
|
2382 }
|
|
2383
|
|
2384 DEFUN ("lsh", Flsh, 2, 2, 0, /*
|
|
2385 Return VALUE with its bits shifted left by COUNT.
|
|
2386 If COUNT is negative, shifting is actually to the right.
|
|
2387 In this case, zeros are shifted in on the left.
|
|
2388 */
|
|
2389 (value, count))
|
|
2390 {
|
1983
|
2391 #ifdef HAVE_BIGNUM
|
|
2392 while (!(CHARP (value) || MARKERP (value) || INTEGERP (value)))
|
|
2393 wrong_type_argument (Qnumber_char_or_marker_p, value);
|
|
2394 CONCHECK_INTEGER (count);
|
|
2395
|
|
2396 if (promote_args (&value, &count) == FIXNUM_T)
|
|
2397 {
|
|
2398 if (XREALINT (count) <= 0)
|
|
2399 return make_int (XREALINT (value) >> -XREALINT (count));
|
|
2400 /* Use bignums to avoid overflow */
|
|
2401 bignum_set_long (scratch_bignum2, XREALINT (value));
|
|
2402 bignum_lshift (scratch_bignum, scratch_bignum2, XREALINT (count));
|
|
2403 return Fcanonicalize_number (make_bignum_bg (scratch_bignum));
|
|
2404 }
|
|
2405 else
|
|
2406 {
|
|
2407 if (bignum_sign (XBIGNUM_DATA (count)) <= 0)
|
|
2408 {
|
|
2409 bignum_neg (scratch_bignum, XBIGNUM_DATA (count));
|
|
2410 if (!bignum_fits_ulong_p (scratch_bignum))
|
|
2411 args_out_of_range (Qnumber_char_or_marker_p, count);
|
|
2412 bignum_rshift (scratch_bignum2, XBIGNUM_DATA (value),
|
|
2413 bignum_to_ulong (scratch_bignum));
|
|
2414 }
|
|
2415 else
|
|
2416 {
|
|
2417 if (!bignum_fits_ulong_p (XBIGNUM_DATA (count)))
|
|
2418 args_out_of_range (Qnumber_char_or_marker_p, count);
|
|
2419 bignum_lshift (scratch_bignum2, XBIGNUM_DATA (value),
|
|
2420 bignum_to_ulong (XBIGNUM_DATA (count)));
|
|
2421 }
|
|
2422 return Fcanonicalize_number (make_bignum_bg (scratch_bignum2));
|
|
2423 }
|
|
2424 #else /* !HAVE_BIGNUM */
|
428
|
2425 CHECK_INT_COERCE_CHAR (value);
|
|
2426 CONCHECK_INT (count);
|
|
2427
|
|
2428 return make_int (XINT (count) > 0 ?
|
|
2429 XUINT (value) << XINT (count) :
|
|
2430 XUINT (value) >> -XINT (count));
|
1983
|
2431 #endif /* HAVE_BIGNUM */
|
428
|
2432 }
|
|
2433
|
|
2434 DEFUN ("1+", Fadd1, 1, 1, 0, /*
|
|
2435 Return NUMBER plus one. NUMBER may be a number, character or marker.
|
|
2436 Markers and characters are converted to integers.
|
|
2437 */
|
|
2438 (number))
|
|
2439 {
|
|
2440 retry:
|
|
2441
|
1983
|
2442 if (INTP (number)) return make_integer (XINT (number) + 1);
|
|
2443 if (CHARP (number)) return make_integer (XCHAR (number) + 1);
|
|
2444 if (MARKERP (number)) return make_integer (marker_position (number) + 1);
|
428
|
2445 if (FLOATP (number)) return make_float (XFLOAT_DATA (number) + 1.0);
|
1983
|
2446 #ifdef HAVE_BIGNUM
|
|
2447 if (BIGNUMP (number))
|
|
2448 {
|
|
2449 bignum_set_long (scratch_bignum, 1L);
|
|
2450 bignum_add (scratch_bignum2, XBIGNUM_DATA (number), scratch_bignum);
|
|
2451 return Fcanonicalize_number (make_bignum_bg (scratch_bignum2));
|
|
2452 }
|
|
2453 #endif
|
|
2454 #ifdef HAVE_RATIO
|
|
2455 if (RATIOP (number))
|
|
2456 {
|
|
2457 ratio_set_long (scratch_ratio, 1L);
|
|
2458 ratio_add (scratch_ratio, XRATIO_DATA (number), scratch_ratio);
|
|
2459 /* No need to canonicalize after adding 1 */
|
|
2460 return make_ratio_rt (scratch_ratio);
|
|
2461 }
|
|
2462 #endif
|
|
2463 #ifdef HAVE_BIGFLOAT
|
|
2464 if (BIGFLOATP (number))
|
|
2465 {
|
|
2466 bigfloat_set_prec (scratch_bigfloat, XBIGFLOAT_GET_PREC (number));
|
|
2467 bigfloat_set_long (scratch_bigfloat, 1L);
|
|
2468 bigfloat_add (scratch_bigfloat, XBIGFLOAT_DATA (number),
|
|
2469 scratch_bigfloat);
|
|
2470 return make_bigfloat_bf (scratch_bigfloat);
|
|
2471 }
|
|
2472 #endif
|
428
|
2473
|
|
2474 number = wrong_type_argument (Qnumber_char_or_marker_p, number);
|
|
2475 goto retry;
|
|
2476 }
|
|
2477
|
|
2478 DEFUN ("1-", Fsub1, 1, 1, 0, /*
|
|
2479 Return NUMBER minus one. NUMBER may be a number, character or marker.
|
|
2480 Markers and characters are converted to integers.
|
|
2481 */
|
|
2482 (number))
|
|
2483 {
|
|
2484 retry:
|
|
2485
|
1983
|
2486 if (INTP (number)) return make_integer (XINT (number) - 1);
|
|
2487 if (CHARP (number)) return make_integer (XCHAR (number) - 1);
|
|
2488 if (MARKERP (number)) return make_integer (marker_position (number) - 1);
|
428
|
2489 if (FLOATP (number)) return make_float (XFLOAT_DATA (number) - 1.0);
|
1983
|
2490 #ifdef HAVE_BIGNUM
|
|
2491 if (BIGNUMP (number))
|
|
2492 {
|
|
2493 bignum_set_long (scratch_bignum, 1L);
|
|
2494 bignum_sub (scratch_bignum2, XBIGNUM_DATA (number), scratch_bignum);
|
|
2495 return Fcanonicalize_number (make_bignum_bg (scratch_bignum2));
|
|
2496 }
|
|
2497 #endif
|
|
2498 #ifdef HAVE_RATIO
|
|
2499 if (RATIOP (number))
|
|
2500 {
|
|
2501 ratio_set_long (scratch_ratio, 1L);
|
|
2502 ratio_sub (scratch_ratio, XRATIO_DATA (number), scratch_ratio);
|
|
2503 /* No need to canonicalize after subtracting 1 */
|
|
2504 return make_ratio_rt (scratch_ratio);
|
|
2505 }
|
|
2506 #endif
|
|
2507 #ifdef HAVE_BIGFLOAT
|
|
2508 if (BIGFLOATP (number))
|
|
2509 {
|
|
2510 bigfloat_set_prec (scratch_bigfloat, XBIGFLOAT_GET_PREC (number));
|
|
2511 bigfloat_set_long (scratch_bigfloat, 1L);
|
|
2512 bigfloat_sub (scratch_bigfloat, XBIGFLOAT_DATA (number),
|
|
2513 scratch_bigfloat);
|
|
2514 return make_bigfloat_bf (scratch_bigfloat);
|
|
2515 }
|
|
2516 #endif
|
428
|
2517
|
|
2518 number = wrong_type_argument (Qnumber_char_or_marker_p, number);
|
|
2519 goto retry;
|
|
2520 }
|
|
2521
|
|
2522
|
|
2523 /************************************************************************/
|
|
2524 /* weak lists */
|
|
2525 /************************************************************************/
|
|
2526
|
|
2527 /* A weak list is like a normal list except that elements automatically
|
|
2528 disappear when no longer in use, i.e. when no longer GC-protected.
|
|
2529 The basic idea is that we don't mark the elements during GC, but
|
|
2530 wait for them to be marked elsewhere. If they're not marked, we
|
|
2531 remove them. This is analogous to weak hash tables; see the explanation
|
|
2532 there for more info. */
|
|
2533
|
|
2534 static Lisp_Object Vall_weak_lists; /* Gemarke es nicht!!! */
|
|
2535
|
|
2536 static Lisp_Object encode_weak_list_type (enum weak_list_type type);
|
|
2537
|
|
2538 static Lisp_Object
|
2286
|
2539 mark_weak_list (Lisp_Object UNUSED (obj))
|
428
|
2540 {
|
|
2541 return Qnil; /* nichts ist gemarkt */
|
|
2542 }
|
|
2543
|
|
2544 static void
|
2286
|
2545 print_weak_list (Lisp_Object obj, Lisp_Object printcharfun,
|
|
2546 int UNUSED (escapeflag))
|
428
|
2547 {
|
|
2548 if (print_readably)
|
563
|
2549 printing_unreadable_object ("#<weak-list>");
|
428
|
2550
|
800
|
2551 write_fmt_string_lisp (printcharfun, "#<weak-list %s %S>", 2,
|
|
2552 encode_weak_list_type (XWEAK_LIST (obj)->type),
|
|
2553 XWEAK_LIST (obj)->list);
|
428
|
2554 }
|
|
2555
|
|
2556 static int
|
|
2557 weak_list_equal (Lisp_Object obj1, Lisp_Object obj2, int depth)
|
|
2558 {
|
|
2559 struct weak_list *w1 = XWEAK_LIST (obj1);
|
|
2560 struct weak_list *w2 = XWEAK_LIST (obj2);
|
|
2561
|
|
2562 return ((w1->type == w2->type) &&
|
|
2563 internal_equal (w1->list, w2->list, depth + 1));
|
|
2564 }
|
|
2565
|
665
|
2566 static Hashcode
|
428
|
2567 weak_list_hash (Lisp_Object obj, int depth)
|
|
2568 {
|
|
2569 struct weak_list *w = XWEAK_LIST (obj);
|
|
2570
|
665
|
2571 return HASH2 ((Hashcode) w->type,
|
428
|
2572 internal_hash (w->list, depth + 1));
|
|
2573 }
|
|
2574
|
|
2575 Lisp_Object
|
|
2576 make_weak_list (enum weak_list_type type)
|
|
2577 {
|
|
2578 Lisp_Object result;
|
|
2579 struct weak_list *wl =
|
|
2580 alloc_lcrecord_type (struct weak_list, &lrecord_weak_list);
|
|
2581
|
|
2582 wl->list = Qnil;
|
|
2583 wl->type = type;
|
793
|
2584 result = wrap_weak_list (wl);
|
428
|
2585 wl->next_weak = Vall_weak_lists;
|
|
2586 Vall_weak_lists = result;
|
|
2587 return result;
|
|
2588 }
|
|
2589
|
1204
|
2590 static const struct memory_description weak_list_description[] = {
|
1598
|
2591 { XD_LISP_OBJECT, offsetof (struct weak_list, list),
|
2551
|
2592 0, { 0 }, XD_FLAG_NO_KKCC },
|
1598
|
2593 { XD_LO_LINK, offsetof (struct weak_list, next_weak),
|
2551
|
2594 0, { 0 }, XD_FLAG_NO_KKCC },
|
428
|
2595 { XD_END }
|
|
2596 };
|
|
2597
|
934
|
2598 DEFINE_LRECORD_IMPLEMENTATION ("weak-list", weak_list,
|
|
2599 1, /*dumpable-flag*/
|
|
2600 mark_weak_list, print_weak_list,
|
|
2601 0, weak_list_equal, weak_list_hash,
|
|
2602 weak_list_description,
|
|
2603 struct weak_list);
|
428
|
2604 /*
|
|
2605 -- we do not mark the list elements (either the elements themselves
|
|
2606 or the cons cells that hold them) in the normal marking phase.
|
|
2607 -- at the end of marking, we go through all weak lists that are
|
|
2608 marked, and mark the cons cells that hold all marked
|
|
2609 objects, and possibly parts of the objects themselves.
|
|
2610 (See alloc.c, "after-mark".)
|
|
2611 -- after that, we prune away all the cons cells that are not marked.
|
|
2612
|
|
2613 WARNING WARNING WARNING WARNING WARNING:
|
|
2614
|
|
2615 The code in the following two functions is *unbelievably* tricky.
|
|
2616 Don't mess with it. You'll be sorry.
|
|
2617
|
|
2618 Linked lists just majorly suck, d'ya know?
|
|
2619 */
|
|
2620
|
|
2621 int
|
|
2622 finish_marking_weak_lists (void)
|
|
2623 {
|
|
2624 Lisp_Object rest;
|
|
2625 int did_mark = 0;
|
|
2626
|
|
2627 for (rest = Vall_weak_lists;
|
|
2628 !NILP (rest);
|
|
2629 rest = XWEAK_LIST (rest)->next_weak)
|
|
2630 {
|
|
2631 Lisp_Object rest2;
|
|
2632 enum weak_list_type type = XWEAK_LIST (rest)->type;
|
|
2633
|
|
2634 if (! marked_p (rest))
|
|
2635 /* The weak list is probably garbage. Ignore it. */
|
|
2636 continue;
|
|
2637
|
|
2638 for (rest2 = XWEAK_LIST (rest)->list;
|
|
2639 /* We need to be trickier since we're inside of GC;
|
|
2640 use CONSP instead of !NILP in case of user-visible
|
|
2641 imperfect lists */
|
|
2642 CONSP (rest2);
|
|
2643 rest2 = XCDR (rest2))
|
|
2644 {
|
|
2645 Lisp_Object elem;
|
|
2646 /* If the element is "marked" (meaning depends on the type
|
|
2647 of weak list), we need to mark the cons containing the
|
|
2648 element, and maybe the element itself (if only some part
|
|
2649 was already marked). */
|
|
2650 int need_to_mark_cons = 0;
|
|
2651 int need_to_mark_elem = 0;
|
|
2652
|
|
2653 /* If a cons is already marked, then its car is already marked
|
|
2654 (either because of an external pointer or because of
|
|
2655 a previous call to this function), and likewise for all
|
|
2656 the rest of the elements in the list, so we can stop now. */
|
|
2657 if (marked_p (rest2))
|
|
2658 break;
|
|
2659
|
|
2660 elem = XCAR (rest2);
|
|
2661
|
|
2662 switch (type)
|
|
2663 {
|
|
2664 case WEAK_LIST_SIMPLE:
|
|
2665 if (marked_p (elem))
|
|
2666 need_to_mark_cons = 1;
|
|
2667 break;
|
|
2668
|
|
2669 case WEAK_LIST_ASSOC:
|
|
2670 if (!CONSP (elem))
|
|
2671 {
|
|
2672 /* just leave bogus elements there */
|
|
2673 need_to_mark_cons = 1;
|
|
2674 need_to_mark_elem = 1;
|
|
2675 }
|
|
2676 else if (marked_p (XCAR (elem)) &&
|
|
2677 marked_p (XCDR (elem)))
|
|
2678 {
|
|
2679 need_to_mark_cons = 1;
|
|
2680 /* We still need to mark elem, because it's
|
|
2681 probably not marked. */
|
|
2682 need_to_mark_elem = 1;
|
|
2683 }
|
|
2684 break;
|
|
2685
|
|
2686 case WEAK_LIST_KEY_ASSOC:
|
|
2687 if (!CONSP (elem))
|
|
2688 {
|
|
2689 /* just leave bogus elements there */
|
|
2690 need_to_mark_cons = 1;
|
|
2691 need_to_mark_elem = 1;
|
|
2692 }
|
|
2693 else if (marked_p (XCAR (elem)))
|
|
2694 {
|
|
2695 need_to_mark_cons = 1;
|
|
2696 /* We still need to mark elem and XCDR (elem);
|
|
2697 marking elem does both */
|
|
2698 need_to_mark_elem = 1;
|
|
2699 }
|
|
2700 break;
|
|
2701
|
|
2702 case WEAK_LIST_VALUE_ASSOC:
|
|
2703 if (!CONSP (elem))
|
|
2704 {
|
|
2705 /* just leave bogus elements there */
|
|
2706 need_to_mark_cons = 1;
|
|
2707 need_to_mark_elem = 1;
|
|
2708 }
|
|
2709 else if (marked_p (XCDR (elem)))
|
|
2710 {
|
|
2711 need_to_mark_cons = 1;
|
|
2712 /* We still need to mark elem and XCAR (elem);
|
|
2713 marking elem does both */
|
|
2714 need_to_mark_elem = 1;
|
|
2715 }
|
|
2716 break;
|
|
2717
|
442
|
2718 case WEAK_LIST_FULL_ASSOC:
|
|
2719 if (!CONSP (elem))
|
|
2720 {
|
|
2721 /* just leave bogus elements there */
|
|
2722 need_to_mark_cons = 1;
|
|
2723 need_to_mark_elem = 1;
|
|
2724 }
|
|
2725 else if (marked_p (XCAR (elem)) ||
|
|
2726 marked_p (XCDR (elem)))
|
|
2727 {
|
|
2728 need_to_mark_cons = 1;
|
|
2729 /* We still need to mark elem and XCAR (elem);
|
|
2730 marking elem does both */
|
|
2731 need_to_mark_elem = 1;
|
|
2732 }
|
|
2733 break;
|
|
2734
|
428
|
2735 default:
|
2500
|
2736 ABORT ();
|
428
|
2737 }
|
|
2738
|
|
2739 if (need_to_mark_elem && ! marked_p (elem))
|
|
2740 {
|
1598
|
2741 #ifdef USE_KKCC
|
|
2742 kkcc_gc_stack_push_lisp_object (elem);
|
|
2743 #else /* NOT USE_KKCC */
|
428
|
2744 mark_object (elem);
|
1598
|
2745 #endif /* NOT USE_KKCC */
|
428
|
2746 did_mark = 1;
|
|
2747 }
|
|
2748
|
|
2749 /* We also need to mark the cons that holds the elem or
|
|
2750 assoc-pair. We do *not* want to call (mark_object) here
|
|
2751 because that will mark the entire list; we just want to
|
|
2752 mark the cons itself.
|
|
2753 */
|
|
2754 if (need_to_mark_cons)
|
|
2755 {
|
|
2756 Lisp_Cons *c = XCONS (rest2);
|
|
2757 if (!CONS_MARKED_P (c))
|
|
2758 {
|
|
2759 MARK_CONS (c);
|
|
2760 did_mark = 1;
|
|
2761 }
|
|
2762 }
|
|
2763 }
|
|
2764
|
|
2765 /* In case of imperfect list, need to mark the final cons
|
|
2766 because we're not removing it */
|
|
2767 if (!NILP (rest2) && ! marked_p (rest2))
|
|
2768 {
|
1598
|
2769 #ifdef USE_KKCC
|
|
2770 kkcc_gc_stack_push_lisp_object (rest2);
|
|
2771 #else /* NOT USE_KKCC */
|
428
|
2772 mark_object (rest2);
|
1598
|
2773 #endif /* NOT USE_KKCC */
|
428
|
2774 did_mark = 1;
|
|
2775 }
|
|
2776 }
|
|
2777
|
|
2778 return did_mark;
|
|
2779 }
|
|
2780
|
|
2781 void
|
|
2782 prune_weak_lists (void)
|
|
2783 {
|
|
2784 Lisp_Object rest, prev = Qnil;
|
|
2785
|
|
2786 for (rest = Vall_weak_lists;
|
|
2787 !NILP (rest);
|
|
2788 rest = XWEAK_LIST (rest)->next_weak)
|
|
2789 {
|
|
2790 if (! (marked_p (rest)))
|
|
2791 {
|
|
2792 /* This weak list itself is garbage. Remove it from the list. */
|
|
2793 if (NILP (prev))
|
|
2794 Vall_weak_lists = XWEAK_LIST (rest)->next_weak;
|
|
2795 else
|
|
2796 XWEAK_LIST (prev)->next_weak =
|
|
2797 XWEAK_LIST (rest)->next_weak;
|
|
2798 }
|
|
2799 else
|
|
2800 {
|
|
2801 Lisp_Object rest2, prev2 = Qnil;
|
|
2802 Lisp_Object tortoise;
|
|
2803 int go_tortoise = 0;
|
|
2804
|
|
2805 for (rest2 = XWEAK_LIST (rest)->list, tortoise = rest2;
|
|
2806 /* We need to be trickier since we're inside of GC;
|
|
2807 use CONSP instead of !NILP in case of user-visible
|
|
2808 imperfect lists */
|
|
2809 CONSP (rest2);)
|
|
2810 {
|
|
2811 /* It suffices to check the cons for marking,
|
|
2812 regardless of the type of weak list:
|
|
2813
|
|
2814 -- if the cons is pointed to somewhere else,
|
|
2815 then it should stay around and will be marked.
|
|
2816 -- otherwise, if it should stay around, it will
|
|
2817 have been marked in finish_marking_weak_lists().
|
|
2818 -- otherwise, it's not marked and should disappear.
|
|
2819 */
|
|
2820 if (! marked_p (rest2))
|
|
2821 {
|
|
2822 /* bye bye :-( */
|
|
2823 if (NILP (prev2))
|
|
2824 XWEAK_LIST (rest)->list = XCDR (rest2);
|
|
2825 else
|
|
2826 XCDR (prev2) = XCDR (rest2);
|
|
2827 rest2 = XCDR (rest2);
|
|
2828 /* Ouch. Circularity checking is even trickier
|
|
2829 than I thought. When we cut out a link
|
|
2830 like this, we can't advance the turtle or
|
|
2831 it'll catch up to us. Imagine that we're
|
|
2832 standing on floor tiles and moving forward --
|
|
2833 what we just did here is as if the floor
|
|
2834 tile under us just disappeared and all the
|
|
2835 ones ahead of us slid one tile towards us.
|
|
2836 In other words, we didn't move at all;
|
|
2837 if the tortoise was one step behind us
|
|
2838 previously, it still is, and therefore
|
|
2839 it must not move. */
|
|
2840 }
|
|
2841 else
|
|
2842 {
|
|
2843 prev2 = rest2;
|
|
2844
|
|
2845 /* Implementing circularity checking is trickier here
|
|
2846 than in other places because we have to guarantee
|
|
2847 that we've processed all elements before exiting
|
|
2848 due to a circularity. (In most places, an error
|
|
2849 is issued upon encountering a circularity, so it
|
|
2850 doesn't really matter if all elements are processed.)
|
|
2851 The idea is that we process along with the hare
|
|
2852 rather than the tortoise. If at any point in
|
|
2853 our forward process we encounter the tortoise,
|
|
2854 we must have already visited the spot, so we exit.
|
|
2855 (If we process with the tortoise, we can fail to
|
|
2856 process cases where a cons points to itself, or
|
|
2857 where cons A points to cons B, which points to
|
|
2858 cons A.) */
|
|
2859
|
|
2860 rest2 = XCDR (rest2);
|
|
2861 if (go_tortoise)
|
|
2862 tortoise = XCDR (tortoise);
|
|
2863 go_tortoise = !go_tortoise;
|
|
2864 if (EQ (rest2, tortoise))
|
|
2865 break;
|
|
2866 }
|
|
2867 }
|
|
2868
|
|
2869 prev = rest;
|
|
2870 }
|
|
2871 }
|
|
2872 }
|
|
2873
|
|
2874 static enum weak_list_type
|
|
2875 decode_weak_list_type (Lisp_Object symbol)
|
|
2876 {
|
|
2877 CHECK_SYMBOL (symbol);
|
|
2878 if (EQ (symbol, Qsimple)) return WEAK_LIST_SIMPLE;
|
|
2879 if (EQ (symbol, Qassoc)) return WEAK_LIST_ASSOC;
|
|
2880 if (EQ (symbol, Qold_assoc)) return WEAK_LIST_ASSOC; /* EBOLA ALERT! */
|
|
2881 if (EQ (symbol, Qkey_assoc)) return WEAK_LIST_KEY_ASSOC;
|
|
2882 if (EQ (symbol, Qvalue_assoc)) return WEAK_LIST_VALUE_ASSOC;
|
442
|
2883 if (EQ (symbol, Qfull_assoc)) return WEAK_LIST_FULL_ASSOC;
|
428
|
2884
|
563
|
2885 invalid_constant ("Invalid weak list type", symbol);
|
1204
|
2886 RETURN_NOT_REACHED (WEAK_LIST_SIMPLE);
|
428
|
2887 }
|
|
2888
|
|
2889 static Lisp_Object
|
|
2890 encode_weak_list_type (enum weak_list_type type)
|
|
2891 {
|
|
2892 switch (type)
|
|
2893 {
|
|
2894 case WEAK_LIST_SIMPLE: return Qsimple;
|
|
2895 case WEAK_LIST_ASSOC: return Qassoc;
|
|
2896 case WEAK_LIST_KEY_ASSOC: return Qkey_assoc;
|
|
2897 case WEAK_LIST_VALUE_ASSOC: return Qvalue_assoc;
|
442
|
2898 case WEAK_LIST_FULL_ASSOC: return Qfull_assoc;
|
428
|
2899 default:
|
2500
|
2900 ABORT ();
|
428
|
2901 }
|
|
2902
|
801
|
2903 return Qnil; /* not (usually) reached */
|
428
|
2904 }
|
|
2905
|
|
2906 DEFUN ("weak-list-p", Fweak_list_p, 1, 1, 0, /*
|
|
2907 Return non-nil if OBJECT is a weak list.
|
|
2908 */
|
|
2909 (object))
|
|
2910 {
|
|
2911 return WEAK_LISTP (object) ? Qt : Qnil;
|
|
2912 }
|
|
2913
|
|
2914 DEFUN ("make-weak-list", Fmake_weak_list, 0, 1, 0, /*
|
|
2915 Return a new weak list object of type TYPE.
|
|
2916 A weak list object is an object that contains a list. This list behaves
|
|
2917 like any other list except that its elements do not count towards
|
456
|
2918 garbage collection -- if the only pointer to an object is inside a weak
|
428
|
2919 list (other than pointers in similar objects such as weak hash tables),
|
|
2920 the object is garbage collected and automatically removed from the list.
|
|
2921 This is used internally, for example, to manage the list holding the
|
|
2922 children of an extent -- an extent that is unused but has a parent will
|
|
2923 still be reclaimed, and will automatically be removed from its parent's
|
|
2924 list of children.
|
|
2925
|
|
2926 Optional argument TYPE specifies the type of the weak list, and defaults
|
|
2927 to `simple'. Recognized types are
|
|
2928
|
|
2929 `simple' Objects in the list disappear if not pointed to.
|
|
2930 `assoc' Objects in the list disappear if they are conses
|
|
2931 and either the car or the cdr of the cons is not
|
|
2932 pointed to.
|
|
2933 `key-assoc' Objects in the list disappear if they are conses
|
|
2934 and the car is not pointed to.
|
|
2935 `value-assoc' Objects in the list disappear if they are conses
|
|
2936 and the cdr is not pointed to.
|
442
|
2937 `full-assoc' Objects in the list disappear if they are conses
|
|
2938 and neither the car nor the cdr is pointed to.
|
428
|
2939 */
|
|
2940 (type))
|
|
2941 {
|
|
2942 if (NILP (type))
|
|
2943 type = Qsimple;
|
|
2944
|
|
2945 return make_weak_list (decode_weak_list_type (type));
|
|
2946 }
|
|
2947
|
|
2948 DEFUN ("weak-list-type", Fweak_list_type, 1, 1, 0, /*
|
|
2949 Return the type of the given weak-list object.
|
|
2950 */
|
|
2951 (weak))
|
|
2952 {
|
|
2953 CHECK_WEAK_LIST (weak);
|
|
2954 return encode_weak_list_type (XWEAK_LIST (weak)->type);
|
|
2955 }
|
|
2956
|
|
2957 DEFUN ("weak-list-list", Fweak_list_list, 1, 1, 0, /*
|
|
2958 Return the list contained in a weak-list object.
|
|
2959 */
|
|
2960 (weak))
|
|
2961 {
|
|
2962 CHECK_WEAK_LIST (weak);
|
|
2963 return XWEAK_LIST_LIST (weak);
|
|
2964 }
|
|
2965
|
|
2966 DEFUN ("set-weak-list-list", Fset_weak_list_list, 2, 2, 0, /*
|
|
2967 Change the list contained in a weak-list object.
|
|
2968 */
|
|
2969 (weak, new_list))
|
|
2970 {
|
|
2971 CHECK_WEAK_LIST (weak);
|
|
2972 XWEAK_LIST_LIST (weak) = new_list;
|
|
2973 return new_list;
|
|
2974 }
|
|
2975
|
888
|
2976
|
858
|
2977 /************************************************************************/
|
|
2978 /* weak boxes */
|
|
2979 /************************************************************************/
|
|
2980
|
|
2981 static Lisp_Object Vall_weak_boxes; /* Gemarke es niemals ever!!! */
|
|
2982
|
|
2983 void
|
|
2984 prune_weak_boxes (void)
|
|
2985 {
|
|
2986 Lisp_Object rest, prev = Qnil;
|
888
|
2987 int removep = 0;
|
858
|
2988
|
|
2989 for (rest = Vall_weak_boxes;
|
|
2990 !NILP(rest);
|
|
2991 rest = XWEAK_BOX (rest)->next_weak_box)
|
|
2992 {
|
|
2993 if (! (marked_p (rest)))
|
888
|
2994 /* This weak box itself is garbage. */
|
|
2995 removep = 1;
|
|
2996
|
|
2997 if (! marked_p (XWEAK_BOX (rest)->value))
|
|
2998 {
|
|
2999 XSET_WEAK_BOX (rest, Qnil);
|
|
3000 removep = 1;
|
|
3001 }
|
|
3002
|
|
3003 if (removep)
|
|
3004 {
|
|
3005 /* Remove weak box from list. */
|
|
3006 if (NILP (prev))
|
|
3007 Vall_weak_boxes = XWEAK_BOX (rest)->next_weak_box;
|
|
3008 else
|
|
3009 XWEAK_BOX (prev)->next_weak_box = XWEAK_BOX (rest)->next_weak_box;
|
|
3010 removep = 0;
|
|
3011 }
|
|
3012 else
|
|
3013 prev = rest;
|
858
|
3014 }
|
|
3015 }
|
|
3016
|
|
3017 static Lisp_Object
|
2286
|
3018 mark_weak_box (Lisp_Object UNUSED (obj))
|
858
|
3019 {
|
|
3020 return Qnil;
|
|
3021 }
|
|
3022
|
|
3023 static void
|
2286
|
3024 print_weak_box (Lisp_Object UNUSED (obj), Lisp_Object printcharfun,
|
|
3025 int UNUSED (escapeflag))
|
858
|
3026 {
|
|
3027 if (print_readably)
|
|
3028 printing_unreadable_object ("#<weak_box>");
|
|
3029 write_fmt_string (printcharfun, "#<weak_box>");
|
|
3030 }
|
|
3031
|
|
3032 static int
|
|
3033 weak_box_equal (Lisp_Object obj1, Lisp_Object obj2, int depth)
|
|
3034 {
|
888
|
3035 struct weak_box *wb1 = XWEAK_BOX (obj1);
|
|
3036 struct weak_box *wb2 = XWEAK_BOX (obj2);
|
858
|
3037
|
888
|
3038 return (internal_equal (wb1->value, wb2->value, depth + 1));
|
858
|
3039 }
|
|
3040
|
|
3041 static Hashcode
|
|
3042 weak_box_hash (Lisp_Object obj, int depth)
|
|
3043 {
|
888
|
3044 struct weak_box *wb = XWEAK_BOX (obj);
|
858
|
3045
|
888
|
3046 return internal_hash (wb->value, depth + 1);
|
858
|
3047 }
|
|
3048
|
|
3049 Lisp_Object
|
|
3050 make_weak_box (Lisp_Object value)
|
|
3051 {
|
|
3052 Lisp_Object result;
|
|
3053
|
|
3054 struct weak_box *wb =
|
|
3055 alloc_lcrecord_type (struct weak_box, &lrecord_weak_box);
|
|
3056
|
|
3057 wb->value = value;
|
|
3058 result = wrap_weak_box (wb);
|
|
3059 wb->next_weak_box = Vall_weak_boxes;
|
|
3060 Vall_weak_boxes = result;
|
|
3061 return result;
|
|
3062 }
|
|
3063
|
1204
|
3064 static const struct memory_description weak_box_description[] = {
|
858
|
3065 { XD_LO_LINK, offsetof (struct weak_box, value) },
|
888
|
3066 { XD_END}
|
858
|
3067 };
|
|
3068
|
934
|
3069 DEFINE_LRECORD_IMPLEMENTATION ("weak_box", weak_box,
|
|
3070 0, /*dumpable-flag*/
|
|
3071 mark_weak_box, print_weak_box,
|
|
3072 0, weak_box_equal, weak_box_hash,
|
|
3073 weak_box_description,
|
|
3074 struct weak_box);
|
858
|
3075
|
|
3076 DEFUN ("make-weak-box", Fmake_weak_box, 1, 1, 0, /*
|
|
3077 Return a new weak box from value CONTENTS.
|
|
3078 The weak box is a reference to CONTENTS which may be extracted with
|
|
3079 `weak-box-ref'. However, the weak box does not contribute to the
|
|
3080 reachability of CONTENTS. When CONTENTS is garbage-collected,
|
|
3081 `weak-box-ref' will return NIL.
|
|
3082 */
|
|
3083 (value))
|
|
3084 {
|
|
3085 return make_weak_box(value);
|
|
3086 }
|
|
3087
|
|
3088 DEFUN ("weak-box-ref", Fweak_box_ref, 1, 1, 0, /*
|
|
3089 Return the contents of weak box WEAK-BOX.
|
|
3090 If the contents have been GCed, return NIL.
|
|
3091 */
|
888
|
3092 (wb))
|
858
|
3093 {
|
888
|
3094 return XWEAK_BOX (wb)->value;
|
858
|
3095 }
|
|
3096
|
|
3097 DEFUN ("weak-box-p", Fweak_boxp, 1, 1, 0, /*
|
|
3098 Return non-nil if OBJECT is a weak box.
|
|
3099 */
|
|
3100 (object))
|
|
3101 {
|
|
3102 return WEAK_BOXP (object) ? Qt : Qnil;
|
|
3103 }
|
|
3104
|
888
|
3105 /************************************************************************/
|
|
3106 /* ephemerons */
|
|
3107 /************************************************************************/
|
|
3108
|
993
|
3109 /* The concept of ephemerons is due to:
|
|
3110 * Barry Hayes: Ephemerons: A New Finalization Mechanism. OOPSLA 1997: 176-183
|
|
3111 * The original idea is due to George Bosworth of Digitalk, Inc.
|
|
3112 *
|
|
3113 * For a discussion of finalization and weakness that also reviews
|
|
3114 * ephemerons, refer to:
|
|
3115 * Simon Peyton Jones, Simon Marlow, Conal Elliot:
|
|
3116 * Stretching the storage manager
|
|
3117 * Implementation of Functional Languages, 1999
|
|
3118 */
|
|
3119
|
888
|
3120 static Lisp_Object Vall_ephemerons; /* Gemarke es niemals ever!!! */
|
1590
|
3121 static Lisp_Object Vnew_all_ephemerons;
|
888
|
3122 static Lisp_Object Vfinalize_list;
|
|
3123
|
1590
|
3124 void
|
|
3125 init_marking_ephemerons(void)
|
|
3126 {
|
|
3127 Vnew_all_ephemerons = Qnil;
|
|
3128 }
|
|
3129
|
|
3130 /* Move all live ephemerons with live keys over to
|
|
3131 * Vnew_all_ephemerons, marking the values and finalizers along the
|
|
3132 * way. */
|
|
3133
|
|
3134 int
|
|
3135 continue_marking_ephemerons(void)
|
|
3136 {
|
|
3137 Lisp_Object rest = Vall_ephemerons, next, prev = Qnil;
|
|
3138 int did_mark = 0;
|
|
3139
|
|
3140 while (!NILP (rest))
|
|
3141 {
|
|
3142 next = XEPHEMERON_NEXT (rest);
|
|
3143
|
|
3144 if (marked_p (rest))
|
|
3145 {
|
|
3146 MARK_CONS (XCONS (XEPHEMERON (rest)->cons_chain));
|
|
3147 if (marked_p (XEPHEMERON (rest)->key))
|
|
3148 {
|
1598
|
3149 #ifdef USE_KKCC
|
|
3150 kkcc_gc_stack_push_lisp_object
|
|
3151 (XCAR (XEPHEMERON (rest)->cons_chain));
|
|
3152 #else /* NOT USE_KKCC */
|
1590
|
3153 mark_object (XCAR (XEPHEMERON (rest)->cons_chain));
|
1598
|
3154 #endif /* NOT USE_KKCC */
|
1590
|
3155 did_mark = 1;
|
|
3156 XSET_EPHEMERON_NEXT (rest, Vnew_all_ephemerons);
|
|
3157 Vnew_all_ephemerons = rest;
|
|
3158 if (NILP (prev))
|
|
3159 Vall_ephemerons = next;
|
|
3160 else
|
|
3161 XSET_EPHEMERON_NEXT (prev, next);
|
|
3162 }
|
|
3163 else
|
|
3164 prev = rest;
|
|
3165 }
|
|
3166 else
|
|
3167 prev = rest;
|
|
3168
|
|
3169 rest = next;
|
|
3170 }
|
|
3171
|
|
3172 return did_mark;
|
|
3173 }
|
|
3174
|
|
3175 /* At this point, everything that's in Vall_ephemerons is dead.
|
|
3176 * Well, almost: we still need to run the finalizers, so we need to
|
|
3177 * resurrect them.
|
|
3178 */
|
|
3179
|
888
|
3180 int
|
|
3181 finish_marking_ephemerons(void)
|
|
3182 {
|
1590
|
3183 Lisp_Object rest = Vall_ephemerons, next, prev = Qnil;
|
888
|
3184 int did_mark = 0;
|
|
3185
|
|
3186 while (! NILP (rest))
|
|
3187 {
|
|
3188 next = XEPHEMERON_NEXT (rest);
|
|
3189
|
|
3190 if (marked_p (rest))
|
1590
|
3191 /* The ephemeron itself is live, but its key is garbage */
|
888
|
3192 {
|
1590
|
3193 /* tombstone */
|
|
3194 XSET_EPHEMERON_VALUE (rest, Qnil);
|
|
3195
|
|
3196 if (! NILP (XEPHEMERON_FINALIZER (rest)))
|
888
|
3197 {
|
1590
|
3198 MARK_CONS (XCONS (XEPHEMERON (rest)->cons_chain));
|
1598
|
3199 #ifdef USE_KKCC
|
|
3200 kkcc_gc_stack_push_lisp_object
|
|
3201 (XCAR (XEPHEMERON (rest)->cons_chain));
|
|
3202 #else /* NOT USE_KKCC */
|
1590
|
3203 mark_object (XCAR (XEPHEMERON (rest)->cons_chain));
|
1598
|
3204 #endif /* NOT USE_KKCC */
|
1590
|
3205
|
|
3206 /* Register the finalizer */
|
|
3207 XSET_EPHEMERON_NEXT (rest, Vfinalize_list);
|
|
3208 Vfinalize_list = XEPHEMERON (rest)->cons_chain;
|
|
3209 did_mark = 1;
|
888
|
3210 }
|
|
3211
|
|
3212 /* Remove it from the list. */
|
|
3213 if (NILP (prev))
|
|
3214 Vall_ephemerons = next;
|
|
3215 else
|
|
3216 XSET_EPHEMERON_NEXT (prev, next);
|
|
3217 }
|
|
3218 else
|
|
3219 prev = rest;
|
|
3220
|
|
3221 rest = next;
|
|
3222 }
|
1590
|
3223
|
|
3224 return did_mark;
|
|
3225 }
|
|
3226
|
|
3227 void
|
|
3228 prune_ephemerons(void)
|
|
3229 {
|
|
3230 Vall_ephemerons = Vnew_all_ephemerons;
|
888
|
3231 }
|
|
3232
|
|
3233 Lisp_Object
|
|
3234 zap_finalize_list(void)
|
|
3235 {
|
|
3236 Lisp_Object finalizers = Vfinalize_list;
|
|
3237
|
|
3238 Vfinalize_list = Qnil;
|
|
3239
|
|
3240 return finalizers;
|
|
3241 }
|
|
3242
|
|
3243 static Lisp_Object
|
2286
|
3244 mark_ephemeron (Lisp_Object UNUSED (obj))
|
888
|
3245 {
|
|
3246 return Qnil;
|
|
3247 }
|
|
3248
|
|
3249 static void
|
2286
|
3250 print_ephemeron (Lisp_Object UNUSED (obj), Lisp_Object printcharfun,
|
|
3251 int UNUSED (escapeflag))
|
888
|
3252 {
|
|
3253 if (print_readably)
|
|
3254 printing_unreadable_object ("#<ephemeron>");
|
|
3255 write_fmt_string (printcharfun, "#<ephemeron>");
|
|
3256 }
|
|
3257
|
|
3258 static int
|
|
3259 ephemeron_equal (Lisp_Object obj1, Lisp_Object obj2, int depth)
|
|
3260 {
|
|
3261 return
|
|
3262 internal_equal (XEPHEMERON_REF (obj1), XEPHEMERON_REF(obj2), depth + 1);
|
|
3263 }
|
|
3264
|
|
3265 static Hashcode
|
|
3266 ephemeron_hash(Lisp_Object obj, int depth)
|
|
3267 {
|
|
3268 return internal_hash (XEPHEMERON_REF (obj), depth + 1);
|
|
3269 }
|
|
3270
|
|
3271 Lisp_Object
|
|
3272 make_ephemeron(Lisp_Object key, Lisp_Object value, Lisp_Object finalizer)
|
|
3273 {
|
|
3274 Lisp_Object result, temp = Qnil;
|
|
3275 struct gcpro gcpro1, gcpro2;
|
|
3276
|
|
3277 struct ephemeron *eph =
|
|
3278 alloc_lcrecord_type (struct ephemeron, &lrecord_ephemeron);
|
|
3279
|
|
3280 eph->key = Qnil;
|
|
3281 eph->cons_chain = Qnil;
|
|
3282 eph->value = Qnil;
|
|
3283
|
|
3284 result = wrap_ephemeron(eph);
|
|
3285 GCPRO2 (result, temp);
|
|
3286
|
|
3287 eph->key = key;
|
|
3288 temp = Fcons(value, finalizer);
|
|
3289 eph->cons_chain = Fcons(temp, Vall_ephemerons);
|
|
3290 eph->value = value;
|
|
3291
|
|
3292 Vall_ephemerons = result;
|
|
3293
|
|
3294 UNGCPRO;
|
|
3295 return result;
|
|
3296 }
|
|
3297
|
1598
|
3298 /* Ephemerons are special cases in the KKCC mark algorithm, so nothing
|
|
3299 is marked here. */
|
1204
|
3300 static const struct memory_description ephemeron_description[] = {
|
|
3301 { XD_LISP_OBJECT, offsetof(struct ephemeron, key),
|
2551
|
3302 0, { 0 }, XD_FLAG_NO_KKCC },
|
1204
|
3303 { XD_LISP_OBJECT, offsetof(struct ephemeron, cons_chain),
|
2551
|
3304 0, { 0 }, XD_FLAG_NO_KKCC },
|
1204
|
3305 { XD_LISP_OBJECT, offsetof(struct ephemeron, value),
|
2551
|
3306 0, { 0 }, XD_FLAG_NO_KKCC },
|
888
|
3307 { XD_END }
|
|
3308 };
|
|
3309
|
934
|
3310 DEFINE_LRECORD_IMPLEMENTATION ("ephemeron", ephemeron,
|
|
3311 0, /*dumpable-flag*/
|
|
3312 mark_ephemeron, print_ephemeron,
|
|
3313 0, ephemeron_equal, ephemeron_hash,
|
|
3314 ephemeron_description,
|
|
3315 struct ephemeron);
|
888
|
3316
|
|
3317 DEFUN ("make-ephemeron", Fmake_ephemeron, 2, 3, 0, /*
|
1590
|
3318 Return a new ephemeron with key KEY, value VALUE, and finalizer FINALIZER.
|
|
3319 The ephemeron is a reference to VALUE which may be extracted with
|
|
3320 `ephemeron-ref'. VALUE is only reachable through the ephemeron as
|
888
|
3321 long as KEY is reachable; the ephemeron does not contribute to the
|
|
3322 reachability of KEY. When KEY becomes unreachable while the ephemeron
|
1590
|
3323 itself is still reachable, VALUE is queued for finalization: FINALIZER
|
|
3324 will possibly be called on VALUE some time in the future. Moreover,
|
888
|
3325 future calls to `ephemeron-ref' will return NIL.
|
|
3326 */
|
|
3327 (key, value, finalizer))
|
|
3328 {
|
|
3329 return make_ephemeron(key, value, finalizer);
|
|
3330 }
|
|
3331
|
|
3332 DEFUN ("ephemeron-ref", Fephemeron_ref, 1, 1, 0, /*
|
|
3333 Return the contents of ephemeron EPHEMERON.
|
|
3334 If the contents have been GCed, return NIL.
|
|
3335 */
|
|
3336 (eph))
|
|
3337 {
|
|
3338 return XEPHEMERON_REF (eph);
|
|
3339 }
|
|
3340
|
|
3341 DEFUN ("ephemeron-p", Fephemeronp, 1, 1, 0, /*
|
|
3342 Return non-nil if OBJECT is an ephemeron.
|
|
3343 */
|
|
3344 (object))
|
|
3345 {
|
|
3346 return EPHEMERONP (object) ? Qt : Qnil;
|
|
3347 }
|
428
|
3348
|
|
3349 /************************************************************************/
|
|
3350 /* initialization */
|
|
3351 /************************************************************************/
|
|
3352
|
|
3353 static SIGTYPE
|
|
3354 arith_error (int signo)
|
|
3355 {
|
|
3356 EMACS_REESTABLISH_SIGNAL (signo, arith_error);
|
|
3357 EMACS_UNBLOCK_SIGNAL (signo);
|
563
|
3358 signal_error (Qarith_error, 0, Qunbound);
|
428
|
3359 }
|
|
3360
|
|
3361 void
|
|
3362 init_data_very_early (void)
|
|
3363 {
|
|
3364 /* Don't do this if just dumping out.
|
|
3365 We don't want to call `signal' in this case
|
|
3366 so that we don't have trouble with dumping
|
|
3367 signal-delivering routines in an inconsistent state. */
|
|
3368 if (!initialized)
|
|
3369 return;
|
613
|
3370 EMACS_SIGNAL (SIGFPE, arith_error);
|
428
|
3371 #ifdef uts
|
613
|
3372 EMACS_SIGNAL (SIGEMT, arith_error);
|
428
|
3373 #endif /* uts */
|
|
3374 }
|
|
3375
|
|
3376 void
|
|
3377 init_errors_once_early (void)
|
|
3378 {
|
442
|
3379 DEFSYMBOL (Qerror_conditions);
|
|
3380 DEFSYMBOL (Qerror_message);
|
428
|
3381
|
|
3382 /* We declare the errors here because some other deferrors depend
|
|
3383 on some of the errors below. */
|
|
3384
|
|
3385 /* ERROR is used as a signaler for random errors for which nothing
|
|
3386 else is right */
|
|
3387
|
442
|
3388 DEFERROR (Qerror, "error", Qnil);
|
|
3389 DEFERROR_STANDARD (Qquit, Qnil);
|
428
|
3390
|
563
|
3391 DEFERROR_STANDARD (Qinvalid_argument, Qerror);
|
|
3392
|
|
3393 DEFERROR_STANDARD (Qsyntax_error, Qinvalid_argument);
|
442
|
3394 DEFERROR_STANDARD (Qinvalid_read_syntax, Qsyntax_error);
|
563
|
3395 DEFERROR_STANDARD (Qstructure_formation_error, Qsyntax_error);
|
|
3396 DEFERROR_STANDARD (Qlist_formation_error, Qstructure_formation_error);
|
442
|
3397 DEFERROR_STANDARD (Qmalformed_list, Qlist_formation_error);
|
|
3398 DEFERROR_STANDARD (Qmalformed_property_list, Qmalformed_list);
|
|
3399 DEFERROR_STANDARD (Qcircular_list, Qlist_formation_error);
|
|
3400 DEFERROR_STANDARD (Qcircular_property_list, Qcircular_list);
|
428
|
3401
|
442
|
3402 DEFERROR_STANDARD (Qwrong_type_argument, Qinvalid_argument);
|
|
3403 DEFERROR_STANDARD (Qargs_out_of_range, Qinvalid_argument);
|
|
3404 DEFERROR_STANDARD (Qwrong_number_of_arguments, Qinvalid_argument);
|
|
3405 DEFERROR_STANDARD (Qinvalid_function, Qinvalid_argument);
|
563
|
3406 DEFERROR_STANDARD (Qinvalid_constant, Qinvalid_argument);
|
442
|
3407 DEFERROR (Qno_catch, "No catch for tag", Qinvalid_argument);
|
|
3408
|
563
|
3409 DEFERROR_STANDARD (Qinvalid_state, Qerror);
|
442
|
3410 DEFERROR (Qvoid_function, "Symbol's function definition is void",
|
|
3411 Qinvalid_state);
|
|
3412 DEFERROR (Qcyclic_function_indirection,
|
|
3413 "Symbol's chain of function indirections contains a loop",
|
|
3414 Qinvalid_state);
|
|
3415 DEFERROR (Qvoid_variable, "Symbol's value as variable is void",
|
|
3416 Qinvalid_state);
|
|
3417 DEFERROR (Qcyclic_variable_indirection,
|
|
3418 "Symbol's chain of variable indirections contains a loop",
|
|
3419 Qinvalid_state);
|
563
|
3420 DEFERROR_STANDARD (Qstack_overflow, Qinvalid_state);
|
|
3421 DEFERROR_STANDARD (Qinternal_error, Qinvalid_state);
|
|
3422 DEFERROR_STANDARD (Qout_of_memory, Qinvalid_state);
|
428
|
3423
|
563
|
3424 DEFERROR_STANDARD (Qinvalid_operation, Qerror);
|
|
3425 DEFERROR_STANDARD (Qinvalid_change, Qinvalid_operation);
|
442
|
3426 DEFERROR (Qsetting_constant, "Attempt to set a constant symbol",
|
|
3427 Qinvalid_change);
|
563
|
3428 DEFERROR_STANDARD (Qprinting_unreadable_object, Qinvalid_operation);
|
|
3429 DEFERROR (Qunimplemented, "Feature not yet implemented", Qinvalid_operation);
|
442
|
3430
|
563
|
3431 DEFERROR_STANDARD (Qediting_error, Qinvalid_operation);
|
442
|
3432 DEFERROR_STANDARD (Qbeginning_of_buffer, Qediting_error);
|
|
3433 DEFERROR_STANDARD (Qend_of_buffer, Qediting_error);
|
|
3434 DEFERROR (Qbuffer_read_only, "Buffer is read-only", Qediting_error);
|
|
3435
|
|
3436 DEFERROR (Qio_error, "IO Error", Qinvalid_operation);
|
563
|
3437 DEFERROR_STANDARD (Qfile_error, Qio_error);
|
|
3438 DEFERROR (Qend_of_file, "End of file or stream", Qfile_error);
|
|
3439 DEFERROR_STANDARD (Qconversion_error, Qio_error);
|
580
|
3440 DEFERROR_STANDARD (Qtext_conversion_error, Qconversion_error);
|
442
|
3441
|
|
3442 DEFERROR (Qarith_error, "Arithmetic error", Qinvalid_operation);
|
|
3443 DEFERROR (Qrange_error, "Arithmetic range error", Qarith_error);
|
|
3444 DEFERROR (Qdomain_error, "Arithmetic domain error", Qarith_error);
|
|
3445 DEFERROR (Qsingularity_error, "Arithmetic singularity error", Qdomain_error);
|
|
3446 DEFERROR (Qoverflow_error, "Arithmetic overflow error", Qdomain_error);
|
|
3447 DEFERROR (Qunderflow_error, "Arithmetic underflow error", Qdomain_error);
|
428
|
3448 }
|
|
3449
|
|
3450 void
|
|
3451 syms_of_data (void)
|
|
3452 {
|
442
|
3453 INIT_LRECORD_IMPLEMENTATION (weak_list);
|
888
|
3454 INIT_LRECORD_IMPLEMENTATION (ephemeron);
|
858
|
3455 INIT_LRECORD_IMPLEMENTATION (weak_box);
|
442
|
3456
|
|
3457 DEFSYMBOL (Qquote);
|
|
3458 DEFSYMBOL (Qlambda);
|
|
3459 DEFSYMBOL (Qlistp);
|
|
3460 DEFSYMBOL (Qtrue_list_p);
|
|
3461 DEFSYMBOL (Qconsp);
|
|
3462 DEFSYMBOL (Qsubrp);
|
|
3463 DEFSYMBOL (Qsymbolp);
|
|
3464 DEFSYMBOL (Qintegerp);
|
|
3465 DEFSYMBOL (Qcharacterp);
|
|
3466 DEFSYMBOL (Qnatnump);
|
1983
|
3467 DEFSYMBOL (Qnonnegativep);
|
442
|
3468 DEFSYMBOL (Qstringp);
|
|
3469 DEFSYMBOL (Qarrayp);
|
|
3470 DEFSYMBOL (Qsequencep);
|
|
3471 DEFSYMBOL (Qbufferp);
|
|
3472 DEFSYMBOL (Qbitp);
|
|
3473 DEFSYMBOL_MULTIWORD_PREDICATE (Qbit_vectorp);
|
|
3474 DEFSYMBOL (Qvectorp);
|
|
3475 DEFSYMBOL (Qchar_or_string_p);
|
|
3476 DEFSYMBOL (Qmarkerp);
|
|
3477 DEFSYMBOL (Qinteger_or_marker_p);
|
|
3478 DEFSYMBOL (Qinteger_or_char_p);
|
|
3479 DEFSYMBOL (Qinteger_char_or_marker_p);
|
|
3480 DEFSYMBOL (Qnumberp);
|
|
3481 DEFSYMBOL (Qnumber_char_or_marker_p);
|
|
3482 DEFSYMBOL (Qcdr);
|
563
|
3483 DEFSYMBOL (Qerror_lacks_explanatory_string);
|
442
|
3484 DEFSYMBOL_MULTIWORD_PREDICATE (Qweak_listp);
|
|
3485 DEFSYMBOL (Qfloatp);
|
428
|
3486
|
|
3487 DEFSUBR (Fwrong_type_argument);
|
|
3488
|
1983
|
3489 #ifdef HAVE_RATIO
|
|
3490 DEFSUBR (Fdiv);
|
|
3491 #endif
|
428
|
3492 DEFSUBR (Feq);
|
|
3493 DEFSUBR (Fold_eq);
|
|
3494 DEFSUBR (Fnull);
|
|
3495 Ffset (intern ("not"), intern ("null"));
|
|
3496 DEFSUBR (Flistp);
|
|
3497 DEFSUBR (Fnlistp);
|
|
3498 DEFSUBR (Ftrue_list_p);
|
|
3499 DEFSUBR (Fconsp);
|
|
3500 DEFSUBR (Fatom);
|
|
3501 DEFSUBR (Fchar_or_string_p);
|
|
3502 DEFSUBR (Fcharacterp);
|
|
3503 DEFSUBR (Fchar_int_p);
|
|
3504 DEFSUBR (Fchar_to_int);
|
|
3505 DEFSUBR (Fint_to_char);
|
|
3506 DEFSUBR (Fchar_or_char_int_p);
|
1983
|
3507 #ifdef HAVE_BIGNUM
|
|
3508 DEFSUBR (Ffixnump);
|
|
3509 #else
|
428
|
3510 DEFSUBR (Fintegerp);
|
1983
|
3511 #endif
|
428
|
3512 DEFSUBR (Finteger_or_marker_p);
|
|
3513 DEFSUBR (Finteger_or_char_p);
|
|
3514 DEFSUBR (Finteger_char_or_marker_p);
|
|
3515 DEFSUBR (Fnumberp);
|
|
3516 DEFSUBR (Fnumber_or_marker_p);
|
|
3517 DEFSUBR (Fnumber_char_or_marker_p);
|
|
3518 DEFSUBR (Ffloatp);
|
|
3519 DEFSUBR (Fnatnump);
|
1983
|
3520 DEFSUBR (Fnonnegativep);
|
428
|
3521 DEFSUBR (Fsymbolp);
|
|
3522 DEFSUBR (Fkeywordp);
|
|
3523 DEFSUBR (Fstringp);
|
|
3524 DEFSUBR (Fvectorp);
|
|
3525 DEFSUBR (Fbitp);
|
|
3526 DEFSUBR (Fbit_vector_p);
|
|
3527 DEFSUBR (Farrayp);
|
|
3528 DEFSUBR (Fsequencep);
|
|
3529 DEFSUBR (Fmarkerp);
|
|
3530 DEFSUBR (Fsubrp);
|
|
3531 DEFSUBR (Fsubr_min_args);
|
|
3532 DEFSUBR (Fsubr_max_args);
|
|
3533 DEFSUBR (Fsubr_interactive);
|
|
3534 DEFSUBR (Ftype_of);
|
|
3535 DEFSUBR (Fcar);
|
|
3536 DEFSUBR (Fcdr);
|
|
3537 DEFSUBR (Fcar_safe);
|
|
3538 DEFSUBR (Fcdr_safe);
|
|
3539 DEFSUBR (Fsetcar);
|
|
3540 DEFSUBR (Fsetcdr);
|
|
3541 DEFSUBR (Findirect_function);
|
|
3542 DEFSUBR (Faref);
|
|
3543 DEFSUBR (Faset);
|
|
3544
|
|
3545 DEFSUBR (Fnumber_to_string);
|
|
3546 DEFSUBR (Fstring_to_number);
|
|
3547 DEFSUBR (Feqlsign);
|
|
3548 DEFSUBR (Flss);
|
|
3549 DEFSUBR (Fgtr);
|
|
3550 DEFSUBR (Fleq);
|
|
3551 DEFSUBR (Fgeq);
|
|
3552 DEFSUBR (Fneq);
|
|
3553 DEFSUBR (Fzerop);
|
|
3554 DEFSUBR (Fplus);
|
|
3555 DEFSUBR (Fminus);
|
|
3556 DEFSUBR (Ftimes);
|
|
3557 DEFSUBR (Fquo);
|
|
3558 DEFSUBR (Frem);
|
|
3559 DEFSUBR (Fmod);
|
|
3560 DEFSUBR (Fmax);
|
|
3561 DEFSUBR (Fmin);
|
|
3562 DEFSUBR (Flogand);
|
|
3563 DEFSUBR (Flogior);
|
|
3564 DEFSUBR (Flogxor);
|
|
3565 DEFSUBR (Flsh);
|
|
3566 DEFSUBR (Fash);
|
|
3567 DEFSUBR (Fadd1);
|
|
3568 DEFSUBR (Fsub1);
|
|
3569 DEFSUBR (Flognot);
|
|
3570
|
|
3571 DEFSUBR (Fweak_list_p);
|
|
3572 DEFSUBR (Fmake_weak_list);
|
|
3573 DEFSUBR (Fweak_list_type);
|
|
3574 DEFSUBR (Fweak_list_list);
|
|
3575 DEFSUBR (Fset_weak_list_list);
|
858
|
3576
|
888
|
3577 DEFSUBR (Fmake_ephemeron);
|
|
3578 DEFSUBR (Fephemeron_ref);
|
|
3579 DEFSUBR (Fephemeronp);
|
858
|
3580 DEFSUBR (Fmake_weak_box);
|
|
3581 DEFSUBR (Fweak_box_ref);
|
|
3582 DEFSUBR (Fweak_boxp);
|
428
|
3583 }
|
|
3584
|
|
3585 void
|
|
3586 vars_of_data (void)
|
|
3587 {
|
|
3588 /* This must not be staticpro'd */
|
|
3589 Vall_weak_lists = Qnil;
|
452
|
3590 dump_add_weak_object_chain (&Vall_weak_lists);
|
428
|
3591
|
888
|
3592 Vall_ephemerons = Qnil;
|
|
3593 dump_add_weak_object_chain (&Vall_ephemerons);
|
|
3594
|
|
3595 Vfinalize_list = Qnil;
|
|
3596 staticpro (&Vfinalize_list);
|
|
3597
|
858
|
3598 Vall_weak_boxes = Qnil;
|
|
3599 dump_add_weak_object_chain (&Vall_weak_boxes);
|
|
3600
|
428
|
3601 #ifdef DEBUG_XEMACS
|
|
3602 DEFVAR_BOOL ("debug-issue-ebola-notices", &debug_issue_ebola_notices /*
|
|
3603 If non-zero, note when your code may be suffering from char-int confoundance.
|
|
3604 That is to say, if XEmacs encounters a usage of `eq', `memq', `equal',
|
|
3605 etc. where an int and a char with the same value are being compared,
|
|
3606 it will issue a notice on stderr to this effect, along with a backtrace.
|
|
3607 In such situations, the result would be different in XEmacs 19 versus
|
|
3608 XEmacs 20, and you probably don't want this.
|
|
3609
|
|
3610 Note that in order to see these notices, you have to byte compile your
|
|
3611 code under XEmacs 20 -- any code byte-compiled under XEmacs 19 will
|
|
3612 have its chars and ints all confounded in the byte code, making it
|
|
3613 impossible to accurately determine Ebola infection.
|
|
3614 */ );
|
|
3615
|
|
3616 debug_issue_ebola_notices = 0;
|
|
3617
|
|
3618 DEFVAR_INT ("debug-ebola-backtrace-length",
|
|
3619 &debug_ebola_backtrace_length /*
|
|
3620 Length (in stack frames) of short backtrace printed out in Ebola notices.
|
|
3621 See `debug-issue-ebola-notices'.
|
|
3622 */ );
|
|
3623 debug_ebola_backtrace_length = 32;
|
|
3624
|
|
3625 #endif /* DEBUG_XEMACS */
|
|
3626 }
|