Mercurial > hg > xemacs-beta
annotate lib-src/qsort.c @ 5546:d54278e74d71
Add some working with Mercurial stuff.
author | Stephen J. Turnbull <stephen@xemacs.org> |
---|---|
date | Mon, 08 Aug 2011 23:10:47 +0900 |
parents | 061f4f90f874 |
children |
rev | line source |
---|---|
0 | 1 /* Plug-compatible replacement for UNIX qsort. |
2 Copyright (C) 1989 Free Software Foundation, Inc. | |
3 Written by Douglas C. Schmidt (schmidt@ics.uci.edu) | |
4 | |
5 This file is part of GNU CC. | |
6 | |
5406
061f4f90f874
Convert lib-src/ to GPLv3.
Mike Sperber <sperber@deinprogramm.de>
parents:
444
diff
changeset
|
7 GNU QSORT is free software: you can redistribute it and/or modify it |
061f4f90f874
Convert lib-src/ to GPLv3.
Mike Sperber <sperber@deinprogramm.de>
parents:
444
diff
changeset
|
8 under the terms of the GNU General Public License as published by the |
061f4f90f874
Convert lib-src/ to GPLv3.
Mike Sperber <sperber@deinprogramm.de>
parents:
444
diff
changeset
|
9 Free Software Foundation, either version 3 of the License, or (at your |
061f4f90f874
Convert lib-src/ to GPLv3.
Mike Sperber <sperber@deinprogramm.de>
parents:
444
diff
changeset
|
10 option) any later version. |
0 | 11 |
5406
061f4f90f874
Convert lib-src/ to GPLv3.
Mike Sperber <sperber@deinprogramm.de>
parents:
444
diff
changeset
|
12 GNU QSORT is distributed in the hope that it will be useful, but WITHOUT |
061f4f90f874
Convert lib-src/ to GPLv3.
Mike Sperber <sperber@deinprogramm.de>
parents:
444
diff
changeset
|
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
061f4f90f874
Convert lib-src/ to GPLv3.
Mike Sperber <sperber@deinprogramm.de>
parents:
444
diff
changeset
|
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
061f4f90f874
Convert lib-src/ to GPLv3.
Mike Sperber <sperber@deinprogramm.de>
parents:
444
diff
changeset
|
15 for more details. |
0 | 16 |
17 You should have received a copy of the GNU General Public License | |
5406
061f4f90f874
Convert lib-src/ to GPLv3.
Mike Sperber <sperber@deinprogramm.de>
parents:
444
diff
changeset
|
18 along with GNU QSORT. If not, see <http://www.gnu.org/licenses/>. */ |
0 | 19 |
20 /* Synched up with: FSF 19.28. */ | |
21 | |
22 #ifdef sparc | |
23 #include <alloca.h> | |
24 #endif | |
25 | |
26 /* Invoke the comparison function, returns either 0, < 0, or > 0. */ | |
27 #define CMP(A,B) ((*cmp)((A),(B))) | |
28 | |
29 /* Byte-wise swap two items of size SIZE. */ | |
30 #define SWAP(A,B,SIZE) do {int sz = (SIZE); char *a = (A); char *b = (B); \ | |
31 do { char _temp = *a;*a++ = *b;*b++ = _temp;} while (--sz);} while (0) | |
32 | |
33 /* Copy SIZE bytes from item B to item A. */ | |
34 #define COPY(A,B,SIZE) {int sz = (SIZE); do { *(A)++ = *(B)++; } while (--sz); } | |
35 | |
36 /* This should be replaced by a standard ANSI macro. */ | |
37 #define BYTES_PER_WORD 8 | |
38 | |
39 /* The next 4 #defines implement a very fast in-line stack abstraction. */ | |
40 #define STACK_SIZE (BYTES_PER_WORD * sizeof (long)) | |
41 #define PUSH(LOW,HIGH) do {top->lo = LOW;top++->hi = HIGH;} while (0) | |
42 #define POP(LOW,HIGH) do {LOW = (--top)->lo;HIGH = top->hi;} while (0) | |
43 #define STACK_NOT_EMPTY (stack < top) | |
44 | |
45 /* Discontinue quicksort algorithm when partition gets below this size. | |
46 This particular magic number was chosen to work best on a Sun 4/260. */ | |
47 #define MAX_THRESH 4 | |
48 | |
49 /* Stack node declarations used to store unfulfilled partition obligations. */ | |
50 typedef struct | |
51 { | |
52 char *lo; | |
53 char *hi; | |
54 } stack_node; | |
55 | |
56 /* Order size using quicksort. This implementation incorporates | |
57 four optimizations discussed in Sedgewick: | |
58 | |
59 1. Non-recursive, using an explicit stack of pointer that store the | |
60 next array partition to sort. To save time, this maximum amount | |
61 of space required to store an array of MAX_INT is allocated on the | |
62 stack. Assuming a 32-bit integer, this needs only 32 * | |
63 sizeof (stack_node) == 136 bits. Pretty cheap, actually. | |
64 | |
444 | 65 2. Choose the pivot element using a median-of-three decision tree. |
0 | 66 This reduces the probability of selecting a bad pivot value and |
67 eliminates certain extraneous comparisons. | |
68 | |
69 3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving | |
70 insertion sort to order the MAX_THRESH items within each partition. | |
71 This is a big win, since insertion sort is faster for small, mostly | |
72 sorted array segments. | |
73 | |
74 4. The larger of the two sub-partitions is always pushed onto the | |
75 stack first, with the algorithm then concentrating on the | |
76 smaller partition. This *guarantees* no more than log (n) | |
77 stack size is needed (actually O(1) in this case)! */ | |
78 | |
79 int | |
80 qsort (base_ptr, total_elems, size, cmp) | |
81 char *base_ptr; | |
82 int total_elems; | |
83 int size; | |
84 int (*cmp)(); | |
85 { | |
86 /* Allocating SIZE bytes for a pivot buffer facilitates a better | |
87 algorithm below since we can do comparisons directly on the pivot. */ | |
88 char *pivot_buffer = (char *) alloca (size); | |
89 int max_thresh = MAX_THRESH * size; | |
90 | |
91 if (total_elems > MAX_THRESH) | |
92 { | |
93 char *lo = base_ptr; | |
94 char *hi = lo + size * (total_elems - 1); | |
95 stack_node stack[STACK_SIZE]; /* Largest size needed for 32-bit int!!! */ | |
96 stack_node *top = stack + 1; | |
97 | |
98 while (STACK_NOT_EMPTY) | |
99 { | |
100 char *left_ptr; | |
101 char *right_ptr; | |
102 { | |
103 char *pivot = pivot_buffer; | |
104 { | |
105 /* Select median value from among LO, MID, and HI. Rearrange | |
106 LO and HI so the three values are sorted. This lowers the | |
107 probability of picking a pathological pivot value and | |
108 skips a comparison for both the LEFT_PTR and RIGHT_PTR. */ | |
109 | |
110 char *mid = lo + size * ((hi - lo) / size >> 1); | |
111 | |
112 if (CMP (mid, lo) < 0) | |
113 SWAP (mid, lo, size); | |
114 if (CMP (hi, mid) < 0) | |
115 SWAP (mid, hi, size); | |
116 else | |
117 goto jump_over; | |
118 if (CMP (mid, lo) < 0) | |
119 SWAP (mid, lo, size); | |
120 jump_over: | |
121 COPY (pivot, mid, size); | |
122 pivot = pivot_buffer; | |
123 } | |
124 left_ptr = lo + size; | |
125 right_ptr = hi - size; | |
126 | |
127 /* Here's the famous ``collapse the walls'' section of quicksort. | |
128 Gotta like those tight inner loops! They are the main reason | |
129 that this algorithm runs much faster than others. */ | |
130 do | |
131 { | |
132 while (CMP (left_ptr, pivot) < 0) | |
133 left_ptr += size; | |
134 | |
135 while (CMP (pivot, right_ptr) < 0) | |
136 right_ptr -= size; | |
137 | |
138 if (left_ptr < right_ptr) | |
139 { | |
140 SWAP (left_ptr, right_ptr, size); | |
141 left_ptr += size; | |
142 right_ptr -= size; | |
143 } | |
144 else if (left_ptr == right_ptr) | |
145 { | |
146 left_ptr += size; | |
147 right_ptr -= size; | |
148 break; | |
149 } | |
150 } | |
151 while (left_ptr <= right_ptr); | |
152 | |
153 } | |
154 | |
155 /* Set up pointers for next iteration. First determine whether | |
156 left and right partitions are below the threshold size. If so, | |
157 ignore one or both. Otherwise, push the larger partition's | |
158 bounds on the stack and continue sorting the smaller one. */ | |
159 | |
160 if ((right_ptr - lo) <= max_thresh) | |
161 { | |
162 if ((hi - left_ptr) <= max_thresh) /* Ignore both small partitions. */ | |
163 POP (lo, hi); | |
164 else /* Ignore small left partition. */ | |
165 lo = left_ptr; | |
166 } | |
167 else if ((hi - left_ptr) <= max_thresh) /* Ignore small right partition. */ | |
168 hi = right_ptr; | |
169 else if ((right_ptr - lo) > (hi - left_ptr)) /* Push larger left partition indices. */ | |
170 { | |
171 PUSH (lo, right_ptr); | |
172 lo = left_ptr; | |
173 } | |
174 else /* Push larger right partition indices. */ | |
175 { | |
176 PUSH (left_ptr, hi); | |
177 hi = right_ptr; | |
178 } | |
179 } | |
180 } | |
181 | |
182 /* Once the BASE_PTR array is partially sorted by quicksort the rest | |
183 is completely sorted using insertion sort, since this is efficient | |
184 for partitions below MAX_THRESH size. BASE_PTR points to the beginning | |
185 of the array to sort, and END_PTR points at the very last element in | |
186 the array (*not* one beyond it!). */ | |
187 | |
188 #define MIN(X,Y) ((X) < (Y) ? (X) : (Y)) | |
189 | |
190 { | |
191 char *end_ptr = base_ptr + size * (total_elems - 1); | |
192 char *run_ptr; | |
193 char *tmp_ptr = base_ptr; | |
194 char *thresh = MIN (end_ptr, base_ptr + max_thresh); | |
195 | |
196 /* Find smallest element in first threshold and place it at the | |
197 array's beginning. This is the smallest array element, | |
198 and the operation speeds up insertion sort's inner loop. */ | |
199 | |
200 for (run_ptr = tmp_ptr + size; run_ptr <= thresh; run_ptr += size) | |
201 if (CMP (run_ptr, tmp_ptr) < 0) | |
202 tmp_ptr = run_ptr; | |
203 | |
204 if (tmp_ptr != base_ptr) | |
205 SWAP (tmp_ptr, base_ptr, size); | |
206 | |
207 /* Insertion sort, running from left-hand-side up to `right-hand-side.' | |
208 Pretty much straight out of the original GNU qsort routine. */ | |
209 | |
210 for (run_ptr = base_ptr + size; (tmp_ptr = run_ptr += size) <= end_ptr; ) | |
211 { | |
212 | |
213 while (CMP (run_ptr, tmp_ptr -= size) < 0) | |
214 ; | |
215 | |
216 if ((tmp_ptr += size) != run_ptr) | |
217 { | |
218 char *trav; | |
219 | |
220 for (trav = run_ptr + size; --trav >= run_ptr;) | |
221 { | |
222 char c = *trav; | |
223 char *hi, *lo; | |
224 | |
225 for (hi = lo = trav; (lo -= size) >= tmp_ptr; hi = lo) | |
226 *hi = *lo; | |
227 *hi = c; | |
228 } | |
229 } | |
230 | |
231 } | |
232 } | |
233 return 1; | |
234 } | |
235 |