Mercurial > hg > xemacs-beta
annotate src/dynarr.c @ 5120:d1247f3cc363 ben-lisp-object
latest work on lisp-object workspace;
more changes eliminating LCRECORD in place of LISP_OBJECT;
now compiles and runs.
author | Ben Wing <ben@xemacs.org> |
---|---|
date | Mon, 28 Dec 2009 01:15:52 -0600 |
parents | e0db3c197671 |
children | b5df3737028a |
rev | line source |
---|---|
1318 | 1 /* Support for dynamic arrays. |
428 | 2 Copyright (C) 1993 Sun Microsystems, Inc. |
2367 | 3 Copyright (C) 2002, 2003, 2004 Ben Wing. |
428 | 4 |
5 This file is part of XEmacs. | |
6 | |
7 XEmacs is free software; you can redistribute it and/or modify it | |
8 under the terms of the GNU General Public License as published by the | |
9 Free Software Foundation; either version 2, or (at your option) any | |
10 later version. | |
11 | |
12 XEmacs is distributed in the hope that it will be useful, but WITHOUT | |
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |
15 for more details. | |
16 | |
17 You should have received a copy of the GNU General Public License | |
18 along with XEmacs; see the file COPYING. If not, write to | |
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330, | |
20 Boston, MA 02111-1307, USA. */ | |
21 | |
22 /* Synched up with: Not in FSF. */ | |
23 | |
24 /* Written by Ben Wing, December 1993. */ | |
25 | |
26 /* | |
27 | |
28 A "dynamic array" is a contiguous array of fixed-size elements where there | |
29 is no upper limit (except available memory) on the number of elements in the | |
30 array. Because the elements are maintained contiguously, space is used | |
31 efficiently (no per-element pointers necessary) and random access to a | |
32 particular element is in constant time. At any one point, the block of memory | |
33 that holds the array has an upper limit; if this limit is exceeded, the | |
34 memory is realloc()ed into a new array that is twice as big. Assuming that | |
35 the time to grow the array is on the order of the new size of the array | |
36 block, this scheme has a provably constant amortized time (i.e. average | |
37 time over all additions). | |
38 | |
39 When you add elements or retrieve elements, pointers are used. Note that | |
40 the element itself (of whatever size it is), and not the pointer to it, | |
41 is stored in the array; thus you do not have to allocate any heap memory | |
42 on your own. Also, returned pointers are only guaranteed to be valid | |
43 until the next operation that changes the length of the array. | |
44 | |
45 This is a container object. Declare a dynamic array of a specific type | |
46 as follows: | |
47 | |
2367 | 48 typedef struct |
49 { | |
50 Dynarr_declare (mytype); | |
51 } mytype_dynarr; | |
428 | 52 |
53 Use the following functions/macros: | |
54 | |
55 void *Dynarr_new(type) | |
56 [MACRO] Create a new dynamic-array object, with each element of the | |
57 specified type. The return value is cast to (type##_dynarr). | |
58 This requires following the convention that types are declared in | |
59 such a way that this type concatenation works. In particular, TYPE | |
60 must be a symbol, not an arbitrary C type. | |
61 | |
62 Dynarr_add(d, el) | |
63 [MACRO] Add an element to the end of a dynamic array. EL is a pointer | |
64 to the element; the element itself is stored in the array, however. | |
65 No function call is performed unless the array needs to be resized. | |
66 | |
67 Dynarr_add_many(d, base, len) | |
68 [MACRO] Add LEN elements to the end of the dynamic array. The elements | |
771 | 69 should be contiguous in memory, starting at BASE. If BASE if NULL, |
70 just make space for the elements; don't actually add them. | |
428 | 71 |
72 Dynarr_insert_many_at_start(d, base, len) | |
73 [MACRO] Append LEN elements to the beginning of the dynamic array. | |
74 The elements should be contiguous in memory, starting at BASE. | |
771 | 75 If BASE if NULL, just make space for the elements; don't actually |
76 add them. | |
428 | 77 |
78 Dynarr_insert_many(d, base, len, start) | |
79 Insert LEN elements to the dynamic array starting at position | |
80 START. The elements should be contiguous in memory, starting at BASE. | |
771 | 81 If BASE if NULL, just make space for the elements; don't actually |
82 add them. | |
83 | |
84 Dynarr_delete(d, i) | |
85 [MACRO] Delete an element from the dynamic array at position I. | |
86 | |
87 Dynarr_delete_many(d, start, len) | |
88 Delete LEN elements from the dynamic array starting at position | |
89 START. | |
90 | |
91 Dynarr_delete_by_pointer(d, p) | |
92 [MACRO] Delete an element from the dynamic array at pointer P, | |
93 which must point within the block of memory that stores the data. | |
94 P should be obtained using Dynarr_atp(). | |
428 | 95 |
96 int Dynarr_length(d) | |
97 [MACRO] Return the number of elements currently in a dynamic array. | |
98 | |
99 int Dynarr_largest(d) | |
100 [MACRO] Return the maximum value that Dynarr_length(d) would | |
101 ever have returned. | |
102 | |
103 type Dynarr_at(d, i) | |
104 [MACRO] Return the element at the specified index (no bounds checking | |
105 done on the index). The element itself is returned, not a pointer | |
106 to it. | |
107 | |
108 type *Dynarr_atp(d, i) | |
109 [MACRO] Return a pointer to the element at the specified index (no | |
110 bounds checking done on the index). The pointer may not be valid | |
111 after an element is added to or removed from the array. | |
112 | |
113 Dynarr_reset(d) | |
114 [MACRO] Reset the length of a dynamic array to 0. | |
115 | |
116 Dynarr_free(d) | |
117 Destroy a dynamic array and the memory allocated to it. | |
118 | |
119 Use the following global variable: | |
120 | |
121 Dynarr_min_size | |
440 | 122 Minimum allowable size for a dynamic array when it is resized. |
428 | 123 |
124 */ | |
125 | |
126 #include <config.h> | |
127 #include "lisp.h" | |
128 | |
440 | 129 static int Dynarr_min_size = 8; |
428 | 130 |
131 static void | |
3210 | 132 Dynarr_realloc (Dynarr *dy, int new_size) |
428 | 133 { |
134 if (DUMPEDP (dy->base)) | |
135 { | |
3293 | 136 void *new_base = malloc (new_size * dy->elsize); |
3210 | 137 memcpy (new_base, dy->base, |
138 (dy->max < new_size ? dy->max : new_size) * dy->elsize); | |
428 | 139 dy->base = new_base; |
140 } | |
141 else | |
3210 | 142 dy->base = xrealloc (dy->base, new_size * dy->elsize); |
428 | 143 } |
144 | |
145 void * | |
5118
e0db3c197671
merge up to latest default branch, doesn't compile yet
Ben Wing <ben@xemacs.org>
parents:
4117
diff
changeset
|
146 Dynarr_newf (Bytecount elsize) |
428 | 147 { |
148 Dynarr *d = xnew_and_zero (Dynarr); | |
149 d->elsize = elsize; | |
150 | |
151 return d; | |
152 } | |
153 | |
3092 | 154 #ifdef NEW_GC |
5118
e0db3c197671
merge up to latest default branch, doesn't compile yet
Ben Wing <ben@xemacs.org>
parents:
4117
diff
changeset
|
155 DEFINE_DUMPABLE_INTERNAL_LISP_OBJECT ("dynarr", dynarr, |
e0db3c197671
merge up to latest default branch, doesn't compile yet
Ben Wing <ben@xemacs.org>
parents:
4117
diff
changeset
|
156 0, 0, |
e0db3c197671
merge up to latest default branch, doesn't compile yet
Ben Wing <ben@xemacs.org>
parents:
4117
diff
changeset
|
157 Dynarr); |
3092 | 158 |
159 static void | |
5118
e0db3c197671
merge up to latest default branch, doesn't compile yet
Ben Wing <ben@xemacs.org>
parents:
4117
diff
changeset
|
160 Dynarr_lisp_realloc (Dynarr *dy, Elemcount new_size) |
3092 | 161 { |
5118
e0db3c197671
merge up to latest default branch, doesn't compile yet
Ben Wing <ben@xemacs.org>
parents:
4117
diff
changeset
|
162 void *new_base = |
e0db3c197671
merge up to latest default branch, doesn't compile yet
Ben Wing <ben@xemacs.org>
parents:
4117
diff
changeset
|
163 XPNTR (alloc_sized_lrecord_array (dy->elsize, new_size, dy->lisp_imp)); |
3092 | 164 if (dy->base) |
165 memcpy (new_base, dy->base, | |
3210 | 166 (dy->max < new_size ? dy->max : new_size) * dy->elsize); |
3092 | 167 dy->base = new_base; |
168 } | |
169 | |
170 void * | |
5118
e0db3c197671
merge up to latest default branch, doesn't compile yet
Ben Wing <ben@xemacs.org>
parents:
4117
diff
changeset
|
171 Dynarr_lisp_newf (Bytecount elsize, |
3092 | 172 const struct lrecord_implementation *dynarr_imp, |
173 const struct lrecord_implementation *imp) | |
174 { | |
5120
d1247f3cc363
latest work on lisp-object workspace;
Ben Wing <ben@xemacs.org>
parents:
5118
diff
changeset
|
175 Dynarr *d = (Dynarr *) XPNTR (alloc_sized_lrecord (sizeof (Dynarr), |
d1247f3cc363
latest work on lisp-object workspace;
Ben Wing <ben@xemacs.org>
parents:
5118
diff
changeset
|
176 dynarr_imp)); |
3092 | 177 d->elsize = elsize; |
178 d->lisp_imp = imp; | |
179 | |
180 return d; | |
181 } | |
182 #endif /* not NEW_GC */ | |
183 | |
428 | 184 void |
2367 | 185 Dynarr_resize (void *d, Elemcount size) |
428 | 186 { |
187 int newsize; | |
188 double multiplier; | |
1318 | 189 Dynarr *dy = (Dynarr *) Dynarr_verify (d); |
428 | 190 |
191 if (dy->max <= 8) | |
192 multiplier = 2; | |
193 else | |
194 multiplier = 1.5; | |
195 | |
196 for (newsize = dy->max; newsize < size;) | |
197 newsize = max (Dynarr_min_size, (int) (multiplier * newsize)); | |
198 | |
199 /* Don't do anything if the array is already big enough. */ | |
200 if (newsize > dy->max) | |
201 { | |
3092 | 202 #ifdef NEW_GC |
203 if (dy->lisp_imp) | |
204 Dynarr_lisp_realloc (dy, newsize); | |
205 else | |
3210 | 206 Dynarr_realloc (dy, newsize); |
3092 | 207 #else /* not NEW_GC */ |
3210 | 208 Dynarr_realloc (dy, newsize); |
3092 | 209 #endif /* not NEW_GC */ |
428 | 210 dy->max = newsize; |
211 } | |
212 } | |
213 | |
214 /* Add a number of contiguous elements to the array starting at START. */ | |
215 void | |
442 | 216 Dynarr_insert_many (void *d, const void *el, int len, int start) |
428 | 217 { |
793 | 218 Dynarr *dy = (Dynarr *) Dynarr_verify (d); |
219 | |
428 | 220 Dynarr_resize (dy, dy->cur+len); |
1318 | 221 #if 0 |
222 /* WTF? We should be catching these problems. */ | |
428 | 223 /* Silently adjust start to be valid. */ |
224 if (start > dy->cur) | |
225 start = dy->cur; | |
226 else if (start < 0) | |
227 start = 0; | |
1318 | 228 #else |
229 assert (start >= 0 && start <= dy->cur); | |
230 #endif | |
428 | 231 |
232 if (start != dy->cur) | |
233 { | |
234 memmove ((char *) dy->base + (start + len)*dy->elsize, | |
235 (char *) dy->base + start*dy->elsize, | |
236 (dy->cur - start)*dy->elsize); | |
237 } | |
771 | 238 if (el) |
239 memcpy ((char *) dy->base + start*dy->elsize, el, len*dy->elsize); | |
428 | 240 dy->cur += len; |
241 | |
242 if (dy->cur > dy->largest) | |
243 dy->largest = dy->cur; | |
244 } | |
245 | |
246 void | |
247 Dynarr_delete_many (void *d, int start, int len) | |
248 { | |
1318 | 249 Dynarr *dy = (Dynarr *) Dynarr_verify (d); |
428 | 250 |
251 assert (start >= 0 && len >= 0 && start + len <= dy->cur); | |
252 memmove ((char *) dy->base + start*dy->elsize, | |
253 (char *) dy->base + (start + len)*dy->elsize, | |
254 (dy->cur - start - len)*dy->elsize); | |
255 dy->cur -= len; | |
256 } | |
257 | |
258 void | |
259 Dynarr_free (void *d) | |
260 { | |
261 Dynarr *dy = (Dynarr *) d; | |
262 | |
3092 | 263 #ifdef NEW_GC |
264 if (dy->base && !DUMPEDP (dy->base)) | |
265 { | |
4117 | 266 if (!dy->lisp_imp) |
3092 | 267 xfree (dy->base, void *); |
268 } | |
269 if(!DUMPEDP (dy)) | |
270 { | |
4117 | 271 if (!dy->lisp_imp) |
3092 | 272 xfree (dy, Dynarr *); |
273 } | |
274 #else /* not NEW_GC */ | |
428 | 275 if (dy->base && !DUMPEDP (dy->base)) |
1726 | 276 xfree (dy->base, void *); |
428 | 277 if(!DUMPEDP (dy)) |
1726 | 278 xfree (dy, Dynarr *); |
3092 | 279 #endif /* not NEW_GC */ |
428 | 280 } |
281 | |
282 #ifdef MEMORY_USAGE_STATS | |
283 | |
284 /* Return memory usage for Dynarr D. The returned value is the total | |
285 amount of bytes actually being used for the Dynarr, including all | |
286 overhead. The extra amount of space in the Dynarr that is | |
287 allocated beyond what was requested is returned in DYNARR_OVERHEAD | |
288 in STATS. The extra amount of space that malloc() allocates beyond | |
289 what was requested of it is returned in MALLOC_OVERHEAD in STATS. | |
290 See the comment above the definition of this structure. */ | |
291 | |
665 | 292 Bytecount |
428 | 293 Dynarr_memory_usage (void *d, struct overhead_stats *stats) |
294 { | |
665 | 295 Bytecount total = 0; |
428 | 296 Dynarr *dy = (Dynarr *) d; |
297 | |
298 /* We have to be a bit tricky here because not all of the | |
299 memory that malloc() will claim as "requested" was actually | |
300 requested. */ | |
301 | |
302 if (dy->base) | |
303 { | |
665 | 304 Bytecount malloc_used = malloced_storage_size (dy->base, |
1318 | 305 dy->elsize * dy->max, 0); |
428 | 306 /* #### This may or may not be correct. Some Dynarrs would |
307 prefer that we use dy->cur instead of dy->largest here. */ | |
1318 | 308 Bytecount was_requested = dy->elsize * dy->largest; |
309 Bytecount dynarr_overhead = dy->elsize * (dy->max - dy->largest); | |
428 | 310 |
311 total += malloc_used; | |
312 stats->was_requested += was_requested; | |
313 stats->dynarr_overhead += dynarr_overhead; | |
314 /* And the remainder must be malloc overhead. */ | |
315 stats->malloc_overhead += | |
316 malloc_used - was_requested - dynarr_overhead; | |
317 } | |
318 | |
319 total += malloced_storage_size (d, sizeof (*dy), stats); | |
320 | |
321 return total; | |
322 } | |
323 | |
324 #endif /* MEMORY_USAGE_STATS */ | |
2367 | 325 |
326 /* Version of malloc() that will be extremely efficient when allocation | |
327 nearly always occurs in LIFO (stack) order. | |
328 | |
329 #### Perhaps shouldn't be in this file, but where else? */ | |
330 | |
331 typedef struct | |
332 { | |
333 Dynarr_declare (char_dynarr *); | |
334 } char_dynarr_dynarr; | |
335 | |
336 char_dynarr_dynarr *stack_like_free_list; | |
337 char_dynarr_dynarr *stack_like_in_use_list; | |
338 | |
339 void * | |
340 stack_like_malloc (Bytecount size) | |
341 { | |
342 char_dynarr *this_one; | |
343 if (!stack_like_free_list) | |
344 { | |
345 stack_like_free_list = Dynarr_new2 (char_dynarr_dynarr, | |
346 char_dynarr *); | |
347 stack_like_in_use_list = Dynarr_new2 (char_dynarr_dynarr, | |
348 char_dynarr *); | |
349 } | |
350 | |
351 if (Dynarr_length (stack_like_free_list) > 0) | |
352 this_one = Dynarr_pop (stack_like_free_list); | |
353 else | |
354 this_one = Dynarr_new (char); | |
355 Dynarr_add (stack_like_in_use_list, this_one); | |
356 Dynarr_resize (this_one, size); | |
357 return Dynarr_atp (this_one, 0); | |
358 } | |
359 | |
360 void | |
361 stack_like_free (void *val) | |
362 { | |
363 int len = Dynarr_length (stack_like_in_use_list); | |
364 assert (len > 0); | |
365 /* The vast majority of times, we will be called in a last-in first-out | |
366 order, and the item at the end of the list will be the one we're | |
367 looking for, so just check for this first and avoid any function | |
368 calls. */ | |
369 if (Dynarr_atp (Dynarr_at (stack_like_in_use_list, len - 1), 0) == val) | |
370 { | |
371 char_dynarr *this_one = Dynarr_pop (stack_like_in_use_list); | |
372 Dynarr_add (stack_like_free_list, this_one); | |
373 } | |
374 else | |
375 { | |
376 /* Find the item and delete it. */ | |
377 int i; | |
378 assert (len >= 2); | |
379 for (i = len - 2; i >= 0; i--) | |
380 if (Dynarr_atp (Dynarr_at (stack_like_in_use_list, i), 0) == | |
381 val) | |
382 { | |
383 char_dynarr *this_one = Dynarr_at (stack_like_in_use_list, i); | |
384 Dynarr_add (stack_like_free_list, this_one); | |
385 Dynarr_delete (stack_like_in_use_list, i); | |
386 return; | |
387 } | |
388 | |
2500 | 389 ABORT (); |
2367 | 390 } |
391 } |