0
|
1 /* XEmacs routines to deal with range tables.
|
|
2 Copyright (C) 1995 Sun Microsystems, Inc.
|
|
3 Copyright (C) 1995 Ben Wing.
|
|
4
|
|
5 This file is part of XEmacs.
|
|
6
|
|
7 XEmacs is free software; you can redistribute it and/or modify it
|
|
8 under the terms of the GNU General Public License as published by the
|
|
9 Free Software Foundation; either version 2, or (at your option) any
|
|
10 later version.
|
|
11
|
|
12 XEmacs is distributed in the hope that it will be useful, but WITHOUT
|
|
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
15 for more details.
|
|
16
|
|
17 You should have received a copy of the GNU General Public License
|
|
18 along with XEmacs; see the file COPYING. If not, write to
|
|
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
20 Boston, MA 02111-1307, USA. */
|
|
21
|
|
22 /* Synched up with: Not in FSF. */
|
|
23
|
|
24 /* Written by Ben Wing, August 1995. */
|
|
25
|
282
|
26 #include <config.h>
|
|
27 #include "lisp.h"
|
280
|
28 #include "rangetab.h"
|
0
|
29
|
|
30 Lisp_Object Qrange_tablep;
|
|
31 Lisp_Object Qrange_table;
|
|
32
|
|
33
|
|
34 /************************************************************************/
|
|
35 /* Range table object */
|
|
36 /************************************************************************/
|
|
37
|
|
38 /* We use a sorted array of ranges.
|
|
39
|
|
40 #### We should be using the gap array stuff from extents.c. This
|
|
41 is not hard but just requires moving that stuff out of that file. */
|
|
42
|
|
43 static Lisp_Object
|
|
44 mark_range_table (Lisp_Object obj, void (*markobj) (Lisp_Object))
|
|
45 {
|
|
46 struct Lisp_Range_Table *rt = XRANGE_TABLE (obj);
|
|
47 int i;
|
|
48
|
|
49 for (i = 0; i < Dynarr_length (rt->entries); i++)
|
380
|
50 markobj (Dynarr_at (rt->entries, i).val);
|
0
|
51 return Qnil;
|
|
52 }
|
|
53
|
|
54 static void
|
|
55 print_range_table (Lisp_Object obj, Lisp_Object printcharfun, int escapeflag)
|
|
56 {
|
|
57 struct Lisp_Range_Table *rt = XRANGE_TABLE (obj);
|
|
58 char buf[200];
|
|
59 int i;
|
|
60
|
|
61 write_c_string ("#s(range-table data (", printcharfun);
|
|
62 for (i = 0; i < Dynarr_length (rt->entries); i++)
|
|
63 {
|
|
64 struct range_table_entry *rte = Dynarr_atp (rt->entries, i);
|
|
65 if (i > 0)
|
|
66 write_c_string (" ", printcharfun);
|
|
67 if (rte->first == rte->last)
|
173
|
68 sprintf (buf, "%ld ", (long) (rte->first));
|
0
|
69 else
|
173
|
70 sprintf (buf, "(%ld %ld) ", (long) (rte->first), (long) (rte->last));
|
0
|
71 write_c_string (buf, printcharfun);
|
|
72 print_internal (rte->val, printcharfun, 1);
|
|
73 }
|
|
74 write_c_string ("))", printcharfun);
|
|
75 }
|
|
76
|
|
77 static int
|
|
78 range_table_equal (Lisp_Object obj1, Lisp_Object obj2, int depth)
|
|
79 {
|
|
80 struct Lisp_Range_Table *rt1 = XRANGE_TABLE (obj1);
|
|
81 struct Lisp_Range_Table *rt2 = XRANGE_TABLE (obj2);
|
|
82 int i;
|
|
83
|
|
84 if (Dynarr_length (rt1->entries) != Dynarr_length (rt2->entries))
|
|
85 return 0;
|
185
|
86
|
0
|
87 for (i = 0; i < Dynarr_length (rt1->entries); i++)
|
|
88 {
|
|
89 struct range_table_entry *rte1 = Dynarr_atp (rt1->entries, i);
|
|
90 struct range_table_entry *rte2 = Dynarr_atp (rt2->entries, i);
|
|
91
|
|
92 if (rte1->first != rte2->first
|
|
93 || rte1->last != rte2->last
|
|
94 || !internal_equal (rte1->val, rte2->val, depth + 1))
|
|
95 return 0;
|
|
96 }
|
|
97
|
|
98 return 1;
|
|
99 }
|
|
100
|
|
101 static unsigned long
|
|
102 range_table_entry_hash (struct range_table_entry *rte, int depth)
|
|
103 {
|
|
104 return HASH3 (rte->first, rte->last, internal_hash (rte->val, depth + 1));
|
|
105 }
|
|
106
|
|
107 static unsigned long
|
|
108 range_table_hash (Lisp_Object obj, int depth)
|
|
109 {
|
|
110 struct Lisp_Range_Table *rt = XRANGE_TABLE (obj);
|
|
111 int i;
|
|
112 int size = Dynarr_length (rt->entries);
|
|
113 unsigned long hash = size;
|
|
114
|
|
115 /* approach based on internal_array_hash(). */
|
|
116 if (size <= 5)
|
|
117 {
|
|
118 for (i = 0; i < size; i++)
|
|
119 hash = HASH2 (hash,
|
|
120 range_table_entry_hash (Dynarr_atp (rt->entries, i),
|
|
121 depth));
|
|
122 return hash;
|
|
123 }
|
185
|
124
|
0
|
125 /* just pick five elements scattered throughout the array.
|
|
126 A slightly better approach would be to offset by some
|
|
127 noise factor from the points chosen below. */
|
|
128 for (i = 0; i < 5; i++)
|
|
129 hash = HASH2 (hash, range_table_entry_hash (Dynarr_atp (rt->entries,
|
|
130 i*size/5),
|
|
131 depth));
|
|
132 return hash;
|
|
133 }
|
|
134
|
272
|
135 DEFINE_LRECORD_IMPLEMENTATION ("range-table", range_table,
|
|
136 mark_range_table, print_range_table, 0,
|
|
137 range_table_equal, range_table_hash,
|
|
138 struct Lisp_Range_Table);
|
0
|
139
|
|
140 /************************************************************************/
|
|
141 /* Range table operations */
|
|
142 /************************************************************************/
|
|
143
|
|
144 #ifdef ERROR_CHECK_TYPECHECK
|
|
145
|
|
146 static void
|
|
147 verify_range_table (struct Lisp_Range_Table *rt)
|
|
148 {
|
|
149 int i;
|
|
150
|
|
151 for (i = 0; i < Dynarr_length (rt->entries); i++)
|
|
152 {
|
|
153 struct range_table_entry *rte = Dynarr_atp (rt->entries, i);
|
|
154 assert (rte->last >= rte->first);
|
|
155 if (i > 0)
|
|
156 assert (Dynarr_at (rt->entries, i - 1).last < rte->first);
|
|
157 }
|
|
158 }
|
|
159
|
|
160 #else
|
|
161
|
|
162 #define verify_range_table(rt)
|
|
163
|
|
164 #endif
|
|
165
|
|
166 /* Look up in a range table without the Dynarr wrapper.
|
|
167 Used also by the unified range table format. */
|
|
168
|
|
169 static Lisp_Object
|
|
170 get_range_table (EMACS_INT pos, int nentries, struct range_table_entry *tab,
|
173
|
171 Lisp_Object default_)
|
0
|
172 {
|
|
173 int left = 0, right = nentries;
|
185
|
174
|
0
|
175 /* binary search for the entry. Based on similar code in
|
|
176 extent_list_locate(). */
|
|
177 while (left != right)
|
|
178 {
|
|
179 /* RIGHT might not point to a valid entry (i.e. it's at the end
|
|
180 of the list), so NEWPOS must round down. */
|
|
181 unsigned int newpos = (left + right) >> 1;
|
|
182 struct range_table_entry *entry = tab + newpos;
|
|
183 if (pos > entry->last)
|
|
184 left = newpos+1;
|
|
185 else if (pos < entry->first)
|
|
186 right = newpos;
|
|
187 else
|
|
188 return entry->val;
|
|
189 }
|
|
190
|
173
|
191 return default_;
|
0
|
192 }
|
|
193
|
20
|
194 DEFUN ("range-table-p", Frange_table_p, 1, 1, 0, /*
|
0
|
195 Return non-nil if OBJECT is a range table.
|
20
|
196 */
|
|
197 (object))
|
0
|
198 {
|
173
|
199 return RANGE_TABLEP (object) ? Qt : Qnil;
|
0
|
200 }
|
|
201
|
20
|
202 DEFUN ("make-range-table", Fmake_range_table, 0, 0, 0, /*
|
272
|
203 Return a new, empty range table.
|
0
|
204 You can manipulate it using `put-range-table', `get-range-table',
|
|
205 `remove-range-table', and `clear-range-table'.
|
20
|
206 */
|
|
207 ())
|
0
|
208 {
|
|
209 Lisp_Object obj;
|
185
|
210 struct Lisp_Range_Table *rt = alloc_lcrecord_type (struct Lisp_Range_Table,
|
|
211 lrecord_range_table);
|
|
212 rt->entries = Dynarr_new (range_table_entry);
|
0
|
213 XSETRANGE_TABLE (obj, rt);
|
|
214 return obj;
|
|
215 }
|
|
216
|
20
|
217 DEFUN ("copy-range-table", Fcopy_range_table, 1, 1, 0, /*
|
0
|
218 Make a new range table which contains the same values for the same
|
|
219 ranges as the given table. The values will not themselves be copied.
|
20
|
220 */
|
|
221 (old_table))
|
0
|
222 {
|
|
223 struct Lisp_Range_Table *rt, *rtnew;
|
272
|
224 Lisp_Object obj;
|
0
|
225
|
|
226 CHECK_RANGE_TABLE (old_table);
|
|
227 rt = XRANGE_TABLE (old_table);
|
185
|
228
|
|
229 rtnew = alloc_lcrecord_type (struct Lisp_Range_Table, lrecord_range_table);
|
|
230 rtnew->entries = Dynarr_new (range_table_entry);
|
0
|
231
|
|
232 Dynarr_add_many (rtnew->entries, Dynarr_atp (rt->entries, 0),
|
|
233 Dynarr_length (rt->entries));
|
|
234 XSETRANGE_TABLE (obj, rtnew);
|
|
235 return obj;
|
|
236 }
|
|
237
|
20
|
238 DEFUN ("get-range-table", Fget_range_table, 2, 3, 0, /*
|
0
|
239 Find value for position POS in TABLE.
|
|
240 If there is no corresponding value, return DEFAULT (defaults to nil).
|
20
|
241 */
|
173
|
242 (pos, table, default_))
|
0
|
243 {
|
|
244 struct Lisp_Range_Table *rt;
|
|
245
|
|
246 CHECK_RANGE_TABLE (table);
|
|
247 rt = XRANGE_TABLE (table);
|
|
248
|
|
249 CHECK_INT_COERCE_CHAR (pos);
|
|
250
|
380
|
251 return get_range_table (XINT (pos), Dynarr_length (rt->entries),
|
173
|
252 Dynarr_atp (rt->entries, 0), default_);
|
0
|
253 }
|
|
254
|
|
255 void
|
|
256 put_range_table (Lisp_Object table, EMACS_INT first,
|
|
257 EMACS_INT last, Lisp_Object val)
|
|
258 {
|
|
259 int i;
|
|
260 int insert_me_here = -1;
|
|
261 struct Lisp_Range_Table *rt = XRANGE_TABLE (table);
|
|
262
|
|
263 /* Now insert in the proper place. This gets tricky because
|
|
264 we may be overlapping one or more existing ranges and need
|
|
265 to fix them up. */
|
|
266
|
|
267 /* First delete all sections of any existing ranges that overlap
|
|
268 the new range. */
|
|
269 for (i = 0; i < Dynarr_length (rt->entries); i++)
|
|
270 {
|
|
271 struct range_table_entry *entry = Dynarr_atp (rt->entries, i);
|
|
272 /* We insert before the first range that begins at or after the
|
|
273 new range. */
|
|
274 if (entry->first >= first && insert_me_here < 0)
|
|
275 insert_me_here = i;
|
|
276 if (entry->last < first)
|
|
277 /* completely before the new range. */
|
|
278 continue;
|
|
279 if (entry->first > last)
|
|
280 /* completely after the new range. No more possibilities of
|
|
281 finding overlapping ranges. */
|
|
282 break;
|
|
283 if (entry->first < first && entry->last <= last)
|
|
284 {
|
|
285 /* looks like:
|
|
286
|
|
287 [ NEW ]
|
|
288 [ EXISTING ]
|
|
289
|
|
290 */
|
|
291 /* truncate the end off of it. */
|
|
292 entry->last = first - 1;
|
|
293 }
|
|
294 else if (entry->first < first && entry->last > last)
|
|
295 /* looks like:
|
|
296
|
|
297 [ NEW ]
|
|
298 [ EXISTING ]
|
185
|
299
|
0
|
300 */
|
|
301 /* need to split this one in two. */
|
|
302 {
|
|
303 struct range_table_entry insert_me_too;
|
185
|
304
|
0
|
305 insert_me_too.first = last + 1;
|
|
306 insert_me_too.last = entry->last;
|
|
307 insert_me_too.val = entry->val;
|
|
308 entry->last = first - 1;
|
|
309 Dynarr_insert_many (rt->entries, &insert_me_too, 1, i + 1);
|
|
310 }
|
|
311 else if (entry->last > last)
|
|
312 {
|
|
313 /* looks like:
|
185
|
314
|
0
|
315 [ NEW ]
|
|
316 [ EXISTING ]
|
|
317
|
|
318 */
|
|
319 /* truncate the start off of it. */
|
|
320 entry->first = last + 1;
|
|
321 }
|
|
322 else
|
|
323 {
|
|
324 /* existing is entirely within new. */
|
|
325 Dynarr_delete_many (rt->entries, i, 1);
|
|
326 i--; /* back up since everything shifted one to the left. */
|
|
327 }
|
|
328 }
|
|
329
|
|
330 /* Someone asked us to delete the range, not insert it. */
|
|
331 if (UNBOUNDP (val))
|
|
332 return;
|
185
|
333
|
0
|
334 /* Now insert the new entry, maybe at the end. */
|
185
|
335
|
0
|
336 if (insert_me_here < 0)
|
|
337 insert_me_here = i;
|
|
338
|
|
339 {
|
|
340 struct range_table_entry insert_me;
|
185
|
341
|
0
|
342 insert_me.first = first;
|
|
343 insert_me.last = last;
|
|
344 insert_me.val = val;
|
|
345
|
|
346 Dynarr_insert_many (rt->entries, &insert_me, 1, insert_me_here);
|
|
347 }
|
|
348
|
|
349 /* Now see if we can combine this entry with adjacent ones just
|
|
350 before or after. */
|
185
|
351
|
0
|
352 if (insert_me_here > 0)
|
|
353 {
|
|
354 struct range_table_entry *entry = Dynarr_atp (rt->entries,
|
|
355 insert_me_here - 1);
|
|
356 if (EQ (val, entry->val) && entry->last == first - 1)
|
|
357 {
|
|
358 entry->last = last;
|
|
359 Dynarr_delete_many (rt->entries, insert_me_here, 1);
|
|
360 insert_me_here--;
|
|
361 /* We have morphed into a larger range. Update our records
|
|
362 in case we also combine with the one after. */
|
|
363 first = entry->first;
|
|
364 }
|
|
365 }
|
|
366
|
|
367 if (insert_me_here < Dynarr_length (rt->entries) - 1)
|
|
368 {
|
|
369 struct range_table_entry *entry = Dynarr_atp (rt->entries,
|
|
370 insert_me_here + 1);
|
|
371 if (EQ (val, entry->val) && entry->first == last + 1)
|
|
372 {
|
|
373 entry->first = first;
|
|
374 Dynarr_delete_many (rt->entries, insert_me_here, 1);
|
|
375 }
|
|
376 }
|
|
377 }
|
|
378
|
20
|
379 DEFUN ("put-range-table", Fput_range_table, 4, 4, 0, /*
|
0
|
380 Set the value for range (START, END) to be VAL in TABLE.
|
20
|
381 */
|
|
382 (start, end, val, table))
|
0
|
383 {
|
|
384 EMACS_INT first, last;
|
|
385
|
|
386 CHECK_RANGE_TABLE (table);
|
|
387 CHECK_INT_COERCE_CHAR (start);
|
|
388 first = XINT (start);
|
|
389 CHECK_INT_COERCE_CHAR (end);
|
|
390 last = XINT (end);
|
|
391 if (first > last)
|
|
392 signal_simple_error_2 ("start must be <= end", start, end);
|
|
393
|
|
394 put_range_table (table, first, last, val);
|
|
395 verify_range_table (XRANGE_TABLE (table));
|
|
396 return Qnil;
|
|
397 }
|
|
398
|
20
|
399 DEFUN ("remove-range-table", Fremove_range_table, 3, 3, 0, /*
|
0
|
400 Remove the value for range (START, END) in TABLE.
|
20
|
401 */
|
|
402 (start, end, table))
|
0
|
403 {
|
|
404 return Fput_range_table (start, end, Qunbound, table);
|
|
405 }
|
|
406
|
20
|
407 DEFUN ("clear-range-table", Fclear_range_table, 1, 1, 0, /*
|
0
|
408 Flush TABLE.
|
20
|
409 */
|
|
410 (table))
|
0
|
411 {
|
|
412 CHECK_RANGE_TABLE (table);
|
|
413 Dynarr_reset (XRANGE_TABLE (table)->entries);
|
|
414 return Qnil;
|
|
415 }
|
|
416
|
20
|
417 DEFUN ("map-range-table", Fmap_range_table, 2, 2, 0, /*
|
0
|
418 Map FUNCTION over entries in TABLE, calling it with three args,
|
|
419 the beginning and end of the range and the corresponding value.
|
20
|
420 */
|
|
421 (function, table))
|
0
|
422 {
|
|
423 error ("not yet implemented");
|
|
424 return Qnil;
|
|
425 }
|
|
426
|
|
427
|
|
428 /************************************************************************/
|
|
429 /* Range table read syntax */
|
|
430 /************************************************************************/
|
|
431
|
|
432 static int
|
|
433 rangetab_data_validate (Lisp_Object keyword, Lisp_Object value,
|
|
434 Error_behavior errb)
|
|
435 {
|
|
436 Lisp_Object rest;
|
|
437
|
|
438 /* #### should deal with errb */
|
|
439 EXTERNAL_LIST_LOOP (rest, value)
|
|
440 {
|
|
441 Lisp_Object range = XCAR (rest);
|
|
442 rest = XCDR (rest);
|
|
443 if (!CONSP (rest))
|
|
444 signal_simple_error ("Invalid list format", value);
|
|
445 if (!INTP (range) && !CHARP (range)
|
|
446 && !(CONSP (range) && CONSP (XCDR (range))
|
|
447 && NILP (XCDR (XCDR (range)))
|
|
448 && (INTP (XCAR (range)) || CHARP (XCAR (range)))
|
|
449 && (INTP (XCAR (XCDR (range))) || CHARP (XCAR (XCDR (range))))))
|
|
450 signal_simple_error ("Invalid range format", range);
|
|
451 }
|
|
452
|
|
453 return 1;
|
|
454 }
|
|
455
|
|
456 static Lisp_Object
|
|
457 rangetab_instantiate (Lisp_Object data)
|
|
458 {
|
|
459 Lisp_Object rangetab = Fmake_range_table ();
|
|
460
|
|
461 if (!NILP (data))
|
|
462 {
|
|
463 data = Fcar (Fcdr (data)); /* skip over 'data keyword */
|
|
464 while (!NILP (data))
|
|
465 {
|
|
466 Lisp_Object range = Fcar (data);
|
|
467 Lisp_Object val = Fcar (Fcdr (data));
|
185
|
468
|
0
|
469 data = Fcdr (Fcdr (data));
|
|
470 if (CONSP (range))
|
|
471 Fput_range_table (Fcar (range), Fcar (Fcdr (range)), val,
|
|
472 rangetab);
|
|
473 else
|
|
474 Fput_range_table (range, range, val, rangetab);
|
|
475 }
|
|
476 }
|
|
477
|
|
478 return rangetab;
|
|
479 }
|
|
480
|
|
481
|
|
482 /************************************************************************/
|
|
483 /* Unified range tables */
|
|
484 /************************************************************************/
|
|
485
|
|
486 /* A "unified range table" is a format for storing range tables
|
|
487 as contiguous blocks of memory. This is used by the regexp
|
|
488 code, which needs to use range tables to properly handle []
|
|
489 constructs in the presence of extended characters but wants to
|
|
490 store an entire compiled pattern as a contiguous block of memory.
|
|
491
|
|
492 Unified range tables are designed so that they can be placed
|
|
493 at an arbitrary (possibly mis-aligned) place in memory.
|
|
494 (Dealing with alignment is a pain in the ass.)
|
|
495
|
|
496 WARNING: No provisions for garbage collection are currently made.
|
|
497 This means that there must not be any Lisp objects in a unified
|
|
498 range table that need to be marked for garbage collection.
|
|
499 Good candidates for objects that can go into a range table are
|
|
500
|
|
501 -- numbers and characters (do not need to be marked)
|
|
502 -- nil, t (marked elsewhere)
|
|
503 -- charsets and coding systems (automatically marked because
|
|
504 they are in a marked list,
|
|
505 and can't be removed)
|
|
506
|
|
507 Good but slightly less so:
|
|
508
|
|
509 -- symbols (could be uninterned, but that is not likely)
|
|
510
|
|
511 Somewhat less good:
|
|
512
|
|
513 -- buffers, frames, devices (could get deleted)
|
|
514
|
|
515
|
|
516 It is expected that you work with range tables in the normal
|
|
517 format and then convert to unified format when you are done
|
|
518 making modifications. As such, no functions are provided
|
|
519 for modifying a unified range table. The only operations
|
|
520 you can do to unified range tables are
|
|
521
|
|
522 -- look up a value
|
|
523 -- retrieve all the ranges in an iterative fashion
|
185
|
524
|
0
|
525 */
|
|
526
|
|
527 /* The format of a unified range table is as follows:
|
|
528
|
|
529 -- The first byte contains the number of bytes to skip to find the
|
|
530 actual start of the table. This deals with alignment constraints,
|
|
531 since the table might want to go at any arbitrary place in memory.
|
|
532 -- The next three bytes contain the number of bytes to skip (from the
|
|
533 *first* byte) to find the stuff after the table. It's stored in
|
|
534 little-endian format because that's how God intended things. We don't
|
|
535 necessarily start the stuff at the very end of the table because
|
|
536 we want to have at least ALIGNOF (EMACS_INT) extra space in case
|
|
537 we have to move the range table around. (It appears that some
|
|
538 architectures don't maintain alignment when reallocing.)
|
|
539 -- At the prescribed offset is a struct unified_range_table, containing
|
|
540 some number of `struct range_table_entry' entries. */
|
|
541
|
|
542 struct unified_range_table
|
|
543 {
|
|
544 int nentries;
|
|
545 struct range_table_entry first;
|
|
546 };
|
185
|
547
|
0
|
548 /* Return size in bytes needed to store the data in a range table. */
|
|
549
|
|
550 int
|
|
551 unified_range_table_bytes_needed (Lisp_Object rangetab)
|
|
552 {
|
|
553 return (sizeof (struct range_table_entry) *
|
|
554 (Dynarr_length (XRANGE_TABLE (rangetab)->entries) - 1) +
|
|
555 sizeof (struct unified_range_table) +
|
|
556 /* ALIGNOF a struct may be too big. */
|
|
557 /* We have four bytes for the size numbers, and an extra
|
|
558 four or eight bytes for making sure we get the alignment
|
|
559 OK. */
|
|
560 ALIGNOF (EMACS_INT) + 4);
|
|
561 }
|
|
562
|
|
563 /* Convert a range table into unified format and store in DEST,
|
|
564 which must be able to hold the number of bytes returned by
|
|
565 range_table_bytes_needed(). */
|
|
566
|
|
567 void
|
|
568 unified_range_table_copy_data (Lisp_Object rangetab, void *dest)
|
|
569 {
|
|
570 /* We cast to the above structure rather than just casting to
|
|
571 char * and adding sizeof(int), because that will lead to
|
|
572 mis-aligned data on the Alpha machines. */
|
|
573 struct unified_range_table *un;
|
|
574 range_table_entry_dynarr *rted = XRANGE_TABLE (rangetab)->entries;
|
|
575 int total_needed = unified_range_table_bytes_needed (rangetab);
|
|
576 void *new_dest = ALIGN_PTR ((char *) dest + 4, ALIGNOF (EMACS_INT));
|
|
577
|
|
578 * (char *) dest = (char) ((char *) new_dest - (char *) dest);
|
|
579 * ((unsigned char *) dest + 1) = total_needed & 0xFF;
|
|
580 total_needed >>= 8;
|
|
581 * ((unsigned char *) dest + 2) = total_needed & 0xFF;
|
|
582 total_needed >>= 8;
|
|
583 * ((unsigned char *) dest + 3) = total_needed & 0xFF;
|
|
584 un = (struct unified_range_table *) new_dest;
|
|
585 un->nentries = Dynarr_length (rted);
|
|
586 memcpy (&un->first, Dynarr_atp (rted, 0),
|
|
587 sizeof (struct range_table_entry) * Dynarr_length (rted));
|
|
588 }
|
|
589
|
|
590 /* Return number of bytes actually used by a unified range table. */
|
|
591
|
|
592 int
|
|
593 unified_range_table_bytes_used (void *unrangetab)
|
|
594 {
|
|
595 return ((* ((unsigned char *) unrangetab + 1))
|
|
596 + ((* ((unsigned char *) unrangetab + 2)) << 8)
|
|
597 + ((* ((unsigned char *) unrangetab + 3)) << 16));
|
|
598 }
|
|
599
|
185
|
600 /* Make sure the table is aligned, and move it around if it's not. */
|
0
|
601 static void
|
|
602 align_the_damn_table (void *unrangetab)
|
|
603 {
|
|
604 void *cur_dest = (char *) unrangetab + * (char *) unrangetab;
|
|
605 #if LONGBITS == 64
|
|
606 if ((((long) cur_dest) & 7) != 0)
|
|
607 #else
|
|
608 if ((((int) cur_dest) & 3) != 0)
|
|
609 #endif
|
|
610 {
|
|
611 int count = (unified_range_table_bytes_used (unrangetab) - 4
|
|
612 - ALIGNOF (EMACS_INT));
|
|
613 /* Find the proper location, just like above. */
|
|
614 void *new_dest = ALIGN_PTR ((char *) unrangetab + 4,
|
|
615 ALIGNOF (EMACS_INT));
|
|
616 /* memmove() works in the presence of overlapping data. */
|
|
617 memmove (new_dest, cur_dest, count);
|
|
618 * (char *) unrangetab = (char) ((char *) new_dest - (char *) unrangetab);
|
|
619 }
|
|
620 }
|
185
|
621
|
0
|
622 /* Look up a value in a unified range table. */
|
|
623
|
|
624 Lisp_Object
|
|
625 unified_range_table_lookup (void *unrangetab, EMACS_INT pos,
|
173
|
626 Lisp_Object default_)
|
0
|
627 {
|
|
628 void *new_dest;
|
|
629 struct unified_range_table *un;
|
|
630
|
|
631 align_the_damn_table (unrangetab);
|
|
632 new_dest = (char *) unrangetab + * (char *) unrangetab;
|
|
633 un = (struct unified_range_table *) new_dest;
|
|
634
|
173
|
635 return get_range_table (pos, un->nentries, &un->first, default_);
|
0
|
636 }
|
|
637
|
|
638 /* Return number of entries in a unified range table. */
|
|
639
|
|
640 int
|
|
641 unified_range_table_nentries (void *unrangetab)
|
|
642 {
|
|
643 void *new_dest;
|
|
644 struct unified_range_table *un;
|
|
645
|
|
646 align_the_damn_table (unrangetab);
|
|
647 new_dest = (char *) unrangetab + * (char *) unrangetab;
|
|
648 un = (struct unified_range_table *) new_dest;
|
|
649 return un->nentries;
|
|
650 }
|
|
651
|
|
652 /* Return the OFFSETth range (counting from 0) in UNRANGETAB. */
|
|
653 void
|
|
654 unified_range_table_get_range (void *unrangetab, int offset,
|
|
655 EMACS_INT *min, EMACS_INT *max,
|
|
656 Lisp_Object *val)
|
|
657 {
|
|
658 void *new_dest;
|
|
659 struct unified_range_table *un;
|
|
660 struct range_table_entry *tab;
|
|
661
|
|
662 align_the_damn_table (unrangetab);
|
|
663 new_dest = (char *) unrangetab + * (char *) unrangetab;
|
|
664 un = (struct unified_range_table *) new_dest;
|
|
665
|
|
666 assert (offset >= 0 && offset < un->nentries);
|
|
667 tab = (&un->first) + offset;
|
|
668 *min = tab->first;
|
|
669 *max = tab->last;
|
|
670 *val = tab->val;
|
|
671 }
|
|
672
|
|
673
|
|
674 /************************************************************************/
|
|
675 /* Initialization */
|
|
676 /************************************************************************/
|
|
677
|
|
678 void
|
|
679 syms_of_rangetab (void)
|
|
680 {
|
|
681 defsymbol (&Qrange_tablep, "range-table-p");
|
|
682 defsymbol (&Qrange_table, "range-table");
|
|
683
|
20
|
684 DEFSUBR (Frange_table_p);
|
|
685 DEFSUBR (Fmake_range_table);
|
|
686 DEFSUBR (Fcopy_range_table);
|
|
687 DEFSUBR (Fget_range_table);
|
|
688 DEFSUBR (Fput_range_table);
|
|
689 DEFSUBR (Fremove_range_table);
|
|
690 DEFSUBR (Fclear_range_table);
|
|
691 DEFSUBR (Fmap_range_table);
|
0
|
692 }
|
|
693
|
|
694 void
|
|
695 structure_type_create_rangetab (void)
|
|
696 {
|
|
697 struct structure_type *st;
|
|
698
|
|
699 st = define_structure_type (Qrange_table, 0, rangetab_instantiate);
|
|
700
|
|
701 define_structure_type_keyword (st, Qdata, rangetab_data_validate);
|
|
702 }
|