Mercurial > hg > xemacs-beta
annotate src/text.h @ 4834:b3ea9c582280
Use new cygwin_conv_path API with Cygwin 1.7 for converting names between Win32 and POSIX, UTF-8-aware, with attendant changes elsewhere
author | Ben Wing <ben@xemacs.org> |
---|---|
date | Tue, 12 Jan 2010 01:38:04 -0600 |
parents | bc4f2511bbea |
children | d35e231d347d |
rev | line source |
---|---|
771 | 1 /* Header file for text manipulation primitives and macros. |
2 Copyright (C) 1985-1995 Free Software Foundation, Inc. | |
3 Copyright (C) 1995 Sun Microsystems, Inc. | |
3063 | 4 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005 Ben Wing. |
771 | 5 |
6 This file is part of XEmacs. | |
7 | |
8 XEmacs is free software; you can redistribute it and/or modify it | |
9 under the terms of the GNU General Public License as published by the | |
10 Free Software Foundation; either version 2, or (at your option) any | |
11 later version. | |
12 | |
13 XEmacs is distributed in the hope that it will be useful, but WITHOUT | |
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |
16 for more details. | |
17 | |
18 You should have received a copy of the GNU General Public License | |
19 along with XEmacs; see the file COPYING. If not, write to | |
20 the Free Software Foundation, Inc., 59 Temple Place - Suite 330, | |
21 Boston, MA 02111-1307, USA. */ | |
22 | |
23 /* Synched up with: FSF 19.30. */ | |
24 | |
25 /* Authorship: | |
26 | |
27 Mostly written by Ben Wing, starting around 1995. | |
28 Current TO_IN/EXTERNAL_FORMAT macros written by Martin Buchholz, | |
29 designed by Ben Wing based on earlier macros by Ben Wing. | |
30 Separated out June 18, 2000 from buffer.h into text.h. | |
31 */ | |
32 | |
33 #ifndef INCLUDED_text_h_ | |
34 #define INCLUDED_text_h_ | |
35 | |
912 | 36 #ifdef HAVE_WCHAR_H |
771 | 37 #include <wchar.h> |
912 | 38 #else |
1257 | 39 size_t wcslen (const wchar_t *); |
912 | 40 #endif |
1204 | 41 #ifndef HAVE_STRLWR |
1257 | 42 char *strlwr (char *); |
1204 | 43 #endif |
44 #ifndef HAVE_STRUPR | |
1257 | 45 char *strupr (char *); |
1204 | 46 #endif |
771 | 47 |
1743 | 48 BEGIN_C_DECLS |
1650 | 49 |
771 | 50 /* ---------------------------------------------------------------------- */ |
51 /* Super-basic character properties */ | |
52 /* ---------------------------------------------------------------------- */ | |
53 | |
54 /* These properties define the specifics of how our current encoding fits | |
55 in the basic model used for the encoding. Because this model is the same | |
56 as is used for UTF-8, all these properties could be defined for it, too. | |
57 This would instantly make the rest of this file work with UTF-8 (with | |
58 the exception of a few called functions that would need to be redefined). | |
59 | |
60 (UTF-2000 implementers, take note!) | |
61 */ | |
62 | |
63 /* If you want more than this, you need to include charset.h */ | |
64 | |
65 #ifndef MULE | |
66 | |
826 | 67 #define rep_bytes_by_first_byte(fb) 1 |
68 #define byte_ascii_p(byte) 1 | |
867 | 69 #define MAX_ICHAR_LEN 1 |
771 | 70 |
71 #else /* MULE */ | |
72 | |
73 /* These are carefully designed to work if BYTE is signed or unsigned. */ | |
74 /* Note that SPC and DEL are considered ASCII, not control. */ | |
75 | |
826 | 76 #define byte_ascii_p(byte) (((byte) & ~0x7f) == 0) |
77 #define byte_c0_p(byte) (((byte) & ~0x1f) == 0) | |
78 #define byte_c1_p(byte) (((byte) & ~0x1f) == 0x80) | |
771 | 79 |
80 /* Does BYTE represent the first byte of a character? */ | |
81 | |
826 | 82 #ifdef ERROR_CHECK_TEXT |
83 | |
84 DECLARE_INLINE_HEADER ( | |
85 int | |
867 | 86 ibyte_first_byte_p_1 (int byte, const char *file, int line) |
826 | 87 ) |
88 { | |
89 assert_at_line (byte >= 0 && byte < 256, file, line); | |
90 return byte < 0xA0; | |
91 } | |
92 | |
867 | 93 #define ibyte_first_byte_p(byte) \ |
94 ibyte_first_byte_p_1 (byte, __FILE__, __LINE__) | |
826 | 95 |
96 #else | |
97 | |
867 | 98 #define ibyte_first_byte_p(byte) ((byte) < 0xA0) |
826 | 99 |
100 #endif | |
101 | |
102 #ifdef ERROR_CHECK_TEXT | |
771 | 103 |
104 /* Does BYTE represent the first byte of a multi-byte character? */ | |
105 | |
826 | 106 DECLARE_INLINE_HEADER ( |
107 int | |
867 | 108 ibyte_leading_byte_p_1 (int byte, const char *file, int line) |
826 | 109 ) |
110 { | |
111 assert_at_line (byte >= 0 && byte < 256, file, line); | |
112 return byte_c1_p (byte); | |
113 } | |
114 | |
867 | 115 #define ibyte_leading_byte_p(byte) \ |
116 ibyte_leading_byte_p_1 (byte, __FILE__, __LINE__) | |
826 | 117 |
118 #else | |
119 | |
867 | 120 #define ibyte_leading_byte_p(byte) byte_c1_p (byte) |
826 | 121 |
122 #endif | |
771 | 123 |
124 /* Table of number of bytes in the string representation of a character | |
125 indexed by the first byte of that representation. | |
126 | |
127 This value can be derived in other ways -- e.g. something like | |
826 | 128 XCHARSET_REP_BYTES (charset_by_leading_byte (first_byte)) |
771 | 129 but it's faster this way. */ |
1632 | 130 extern MODULE_API const Bytecount rep_bytes_by_first_byte[0xA0]; |
771 | 131 |
132 /* Number of bytes in the string representation of a character. */ | |
788 | 133 |
800 | 134 #ifdef ERROR_CHECK_TEXT |
788 | 135 |
826 | 136 DECLARE_INLINE_HEADER ( |
137 Bytecount | |
138 rep_bytes_by_first_byte_1 (int fb, const char *file, int line) | |
139 ) | |
771 | 140 { |
826 | 141 assert_at_line (fb >= 0 && fb < 0xA0, file, line); |
771 | 142 return rep_bytes_by_first_byte[fb]; |
143 } | |
144 | |
826 | 145 #define rep_bytes_by_first_byte(fb) \ |
146 rep_bytes_by_first_byte_1 (fb, __FILE__, __LINE__) | |
788 | 147 |
800 | 148 #else /* ERROR_CHECK_TEXT */ |
788 | 149 |
826 | 150 #define rep_bytes_by_first_byte(fb) (rep_bytes_by_first_byte[fb]) |
788 | 151 |
800 | 152 #endif /* ERROR_CHECK_TEXT */ |
788 | 153 |
826 | 154 /* Is this character represented by more than one byte in a string in the |
155 default format? */ | |
156 | |
867 | 157 #define ichar_multibyte_p(c) ((c) >= 0x80) |
158 | |
159 #define ichar_ascii_p(c) (!ichar_multibyte_p (c)) | |
826 | 160 |
161 /* Maximum number of bytes per Emacs character when represented as text, in | |
162 any format. | |
163 */ | |
771 | 164 |
867 | 165 #define MAX_ICHAR_LEN 4 |
771 | 166 |
826 | 167 #endif /* not MULE */ |
168 | |
2367 | 169 /* For more discussion, see text.c, "handling non-default formats" */ |
170 | |
826 | 171 typedef enum internal_format |
172 { | |
173 FORMAT_DEFAULT, | |
174 FORMAT_8_BIT_FIXED, | |
175 FORMAT_16_BIT_FIXED, /* not implemented */ | |
176 FORMAT_32_BIT_FIXED /* not implemented */ | |
177 } Internal_Format; | |
178 | |
179 #ifdef MULE | |
180 /* "OBJECT" below will usually be a buffer, string, or nil. This needs to | |
181 be passed in because the interpretation of 8-bit-fixed and 16-bit-fixed | |
182 values may depend on the buffer, e.g. depending on what language the | |
183 text in the buffer is in. */ | |
184 | |
867 | 185 /* True if Ichar CH can be represented in 8-bit-fixed format. */ |
186 #define ichar_8_bit_fixed_p(ch, object) (((ch) & ~0xff) == 0) | |
187 /* Convert Ichar CH to an 8-bit int, as will be stored in the buffer. */ | |
188 #define ichar_to_raw_8_bit_fixed(ch, object) ((Ibyte) (ch)) | |
826 | 189 /* Convert the other way. */ |
867 | 190 #define raw_8_bit_fixed_to_ichar(ch, object) ((Ichar) (ch)) |
191 | |
192 #define ichar_16_bit_fixed_p(ch, object) (((ch) & ~0xffff) == 0) | |
193 /* Convert Ichar CH to a 16-bit int, as will be stored in the buffer. */ | |
194 #define ichar_to_raw_16_bit_fixed(ch, object) ((UINT_16_BIT) (ch)) | |
826 | 195 /* Convert the other way. */ |
867 | 196 #define raw_16_bit_fixed_to_ichar(ch, object) ((Ichar) (ch)) |
197 | |
198 /* Convert Ichar CH to a 32-bit int, as will be stored in the buffer. */ | |
199 #define ichar_to_raw_32_bit_fixed(ch, object) ((UINT_32_BIT) (ch)) | |
826 | 200 /* Convert the other way. */ |
867 | 201 #define raw_32_bit_fixed_to_ichar(ch, object) ((Ichar) (ch)) |
826 | 202 |
203 /* Return the "raw value" of a character as stored in the buffer. In the | |
204 default format, this is just the same as the character. In fixed-width | |
205 formats, this is the actual value in the buffer, which will be limited | |
206 to the range as established by the format. This is used when searching | |
207 for a character in a buffer -- it's faster to convert the character to | |
208 the raw value and look for that, than repeatedly convert each raw value | |
209 in the buffer into a character. */ | |
210 | |
211 DECLARE_INLINE_HEADER ( | |
867 | 212 Raw_Ichar |
2286 | 213 ichar_to_raw (Ichar ch, Internal_Format fmt, |
214 Lisp_Object UNUSED (object)) | |
826 | 215 ) |
216 { | |
217 switch (fmt) | |
218 { | |
219 case FORMAT_DEFAULT: | |
867 | 220 return (Raw_Ichar) ch; |
826 | 221 case FORMAT_16_BIT_FIXED: |
867 | 222 text_checking_assert (ichar_16_bit_fixed_p (ch, object)); |
223 return (Raw_Ichar) ichar_to_raw_16_bit_fixed (ch, object); | |
826 | 224 case FORMAT_32_BIT_FIXED: |
867 | 225 return (Raw_Ichar) ichar_to_raw_32_bit_fixed (ch, object); |
826 | 226 default: |
227 text_checking_assert (fmt == FORMAT_8_BIT_FIXED); | |
867 | 228 text_checking_assert (ichar_8_bit_fixed_p (ch, object)); |
229 return (Raw_Ichar) ichar_to_raw_8_bit_fixed (ch, object); | |
826 | 230 } |
231 } | |
232 | |
233 /* Return whether CH is representable in the given format in the given | |
234 object. */ | |
235 | |
236 DECLARE_INLINE_HEADER ( | |
237 int | |
2286 | 238 ichar_fits_in_format (Ichar ch, Internal_Format fmt, |
239 Lisp_Object UNUSED (object)) | |
826 | 240 ) |
241 { | |
242 switch (fmt) | |
243 { | |
244 case FORMAT_DEFAULT: | |
245 return 1; | |
246 case FORMAT_16_BIT_FIXED: | |
867 | 247 return ichar_16_bit_fixed_p (ch, object); |
826 | 248 case FORMAT_32_BIT_FIXED: |
249 return 1; | |
250 default: | |
251 text_checking_assert (fmt == FORMAT_8_BIT_FIXED); | |
867 | 252 return ichar_8_bit_fixed_p (ch, object); |
826 | 253 } |
254 } | |
255 | |
256 /* Assuming the formats are the same, return whether the two objects | |
257 represent text in exactly the same way. */ | |
258 | |
259 DECLARE_INLINE_HEADER ( | |
260 int | |
2286 | 261 objects_have_same_internal_representation (Lisp_Object UNUSED (srcobj), |
262 Lisp_Object UNUSED (dstobj)) | |
826 | 263 ) |
264 { | |
265 /* &&#### implement this properly when we allow per-object format | |
266 differences */ | |
267 return 1; | |
268 } | |
269 | |
270 #else | |
271 | |
867 | 272 #define ichar_to_raw(ch, fmt, object) ((Raw_Ichar) (ch)) |
273 #define ichar_fits_in_format(ch, fmt, object) 1 | |
826 | 274 #define objects_have_same_internal_representation(srcobj, dstobj) 1 |
275 | |
771 | 276 #endif /* MULE */ |
277 | |
1632 | 278 MODULE_API int dfc_coding_system_is_unicode (Lisp_Object codesys); |
771 | 279 |
280 DECLARE_INLINE_HEADER ( | |
281 Bytecount dfc_external_data_len (const void *ptr, Lisp_Object codesys) | |
282 ) | |
283 { | |
284 if (dfc_coding_system_is_unicode (codesys)) | |
285 return sizeof (wchar_t) * wcslen ((wchar_t *) ptr); | |
286 else | |
287 return strlen ((char *) ptr); | |
288 } | |
289 | |
290 | |
291 /************************************************************************/ | |
292 /* */ | |
293 /* working with raw internal-format data */ | |
294 /* */ | |
295 /************************************************************************/ | |
296 | |
826 | 297 /* |
298 Use the following functions/macros on contiguous text in any of the | |
299 internal formats. Those that take a format arg work on all internal | |
300 formats; the others work only on the default (variable-width under Mule) | |
301 format. If the text you're operating on is known to come from a buffer, | |
302 use the buffer-level functions in buffer.h, which automatically know the | |
303 correct format and handle the gap. | |
304 | |
305 Some terminology: | |
306 | |
867 | 307 "itext" appearing in the macros means "internal-format text" -- type |
308 `Ibyte *'. Operations on such pointers themselves, rather than on the | |
309 text being pointed to, have "itext" instead of "itext" in the macro | |
310 name. "ichar" in the macro names means an Ichar -- the representation | |
826 | 311 of a character as a single integer rather than a series of bytes, as part |
867 | 312 of "itext". Many of the macros below are for converting between the |
826 | 313 two representations of characters. |
314 | |
867 | 315 Note also that we try to consistently distinguish between an "Ichar" and |
826 | 316 a Lisp character. Stuff working with Lisp characters often just says |
867 | 317 "char", so we consistently use "Ichar" when that's what we're working |
826 | 318 with. */ |
319 | |
320 /* The three golden rules of macros: | |
771 | 321 |
322 1) Anything that's an lvalue can be evaluated more than once. | |
826 | 323 |
324 2) Macros where anything else can be evaluated more than once should | |
325 have the word "unsafe" in their name (exceptions may be made for | |
326 large sets of macros that evaluate arguments of certain types more | |
327 than once, e.g. struct buffer * arguments, when clearly indicated in | |
328 the macro documentation). These macros are generally meant to be | |
329 called only by other macros that have already stored the calling | |
330 values in temporary variables. | |
331 | |
332 3) Nothing else can be evaluated more than once. Use inline | |
771 | 333 functions, if necessary, to prevent multiple evaluation. |
826 | 334 |
335 NOTE: The functions and macros below are given full prototypes in their | |
336 docs, even when the implementation is a macro. In such cases, passing | |
337 an argument of a type other than expected will produce undefined | |
338 results. Also, given that macros can do things functions can't (in | |
339 particular, directly modify arguments as if they were passed by | |
340 reference), the declaration syntax has been extended to include the | |
341 call-by-reference syntax from C++, where an & after a type indicates | |
342 that the argument is an lvalue and is passed by reference, i.e. the | |
343 function can modify its value. (This is equivalent in C to passing a | |
344 pointer to the argument, but without the need to explicitly worry about | |
345 pointers.) | |
346 | |
347 When to capitalize macros: | |
348 | |
349 -- Capitalize macros doing stuff obviously impossible with (C) | |
350 functions, e.g. directly modifying arguments as if they were passed by | |
351 reference. | |
352 | |
353 -- Capitalize macros that evaluate *any* argument more than once regardless | |
354 of whether that's "allowed" (e.g. buffer arguments). | |
355 | |
356 -- Capitalize macros that directly access a field in a Lisp_Object or | |
357 its equivalent underlying structure. In such cases, access through the | |
358 Lisp_Object precedes the macro with an X, and access through the underlying | |
359 structure doesn't. | |
360 | |
361 -- Capitalize certain other basic macros relating to Lisp_Objects; e.g. | |
362 FRAMEP, CHECK_FRAME, etc. | |
363 | |
364 -- Try to avoid capitalizing any other macros. | |
771 | 365 */ |
366 | |
367 /* ---------------------------------------------------------------------- */ | |
867 | 368 /* Working with itext's (pointers to internally-formatted text) */ |
771 | 369 /* ---------------------------------------------------------------------- */ |
370 | |
867 | 371 /* Given an itext, does it point to the beginning of a character? |
826 | 372 */ |
373 | |
771 | 374 #ifdef MULE |
867 | 375 # define valid_ibyteptr_p(ptr) ibyte_first_byte_p (* (ptr)) |
771 | 376 #else |
867 | 377 # define valid_ibyteptr_p(ptr) 1 |
771 | 378 #endif |
379 | |
867 | 380 /* If error-checking is enabled, assert that the given itext points to |
826 | 381 the beginning of a character. Otherwise, do nothing. |
382 */ | |
383 | |
867 | 384 #define assert_valid_ibyteptr(ptr) text_checking_assert (valid_ibyteptr_p (ptr)) |
385 | |
386 /* Given a itext (assumed to point at the beginning of a character), | |
826 | 387 modify that pointer so it points to the beginning of the next character. |
388 | |
867 | 389 Note that INC_IBYTEPTR() and DEC_IBYTEPTR() have to be written in |
390 completely separate ways. INC_IBYTEPTR() cannot use the DEC_IBYTEPTR() | |
771 | 391 trick of looking for a valid first byte because it might run off |
867 | 392 the end of the string. DEC_IBYTEPTR() can't use the INC_IBYTEPTR() |
771 | 393 method because it doesn't have easy access to the first byte of |
394 the character it's moving over. */ | |
395 | |
867 | 396 #define INC_IBYTEPTR(ptr) do { \ |
397 assert_valid_ibyteptr (ptr); \ | |
826 | 398 (ptr) += rep_bytes_by_first_byte (* (ptr)); \ |
399 } while (0) | |
400 | |
1204 | 401 #define INC_IBYTEPTR_FMT(ptr, fmt) \ |
402 do { \ | |
403 Internal_Format __icf_fmt = (fmt); \ | |
404 switch (__icf_fmt) \ | |
405 { \ | |
406 case FORMAT_DEFAULT: \ | |
407 INC_IBYTEPTR (ptr); \ | |
408 break; \ | |
409 case FORMAT_16_BIT_FIXED: \ | |
410 text_checking_assert ((void *) ptr == ALIGN_PTR (ptr, UINT_16_BIT)); \ | |
411 (ptr) += 2; \ | |
412 break; \ | |
413 case FORMAT_32_BIT_FIXED: \ | |
414 text_checking_assert ((void *) ptr == ALIGN_PTR (ptr, UINT_32_BIT)); \ | |
415 (ptr) += 4; \ | |
416 break; \ | |
417 default: \ | |
418 text_checking_assert (fmt == FORMAT_8_BIT_FIXED); \ | |
419 (ptr)++; \ | |
420 break; \ | |
421 } \ | |
826 | 422 } while (0) |
423 | |
867 | 424 /* Given a itext (assumed to point at the beginning of a character or at |
826 | 425 the very end of the text), modify that pointer so it points to the |
426 beginning of the previous character. | |
427 */ | |
771 | 428 |
800 | 429 #ifdef ERROR_CHECK_TEXT |
826 | 430 /* We use a separate definition to avoid warnings about unused dc_ptr1 */ |
867 | 431 #define DEC_IBYTEPTR(ptr) do { \ |
1333 | 432 const Ibyte *dc_ptr1 = (ptr); \ |
826 | 433 do { \ |
434 (ptr)--; \ | |
867 | 435 } while (!valid_ibyteptr_p (ptr)); \ |
826 | 436 text_checking_assert (dc_ptr1 - (ptr) == rep_bytes_by_first_byte (*(ptr))); \ |
771 | 437 } while (0) |
826 | 438 #else |
867 | 439 #define DEC_IBYTEPTR(ptr) do { \ |
826 | 440 do { \ |
441 (ptr)--; \ | |
867 | 442 } while (!valid_ibyteptr_p (ptr)); \ |
771 | 443 } while (0) |
826 | 444 #endif /* ERROR_CHECK_TEXT */ |
445 | |
1204 | 446 #define DEC_IBYTEPTR_FMT(ptr, fmt) \ |
447 do { \ | |
448 Internal_Format __icf_fmt = (fmt); \ | |
449 switch (__icf_fmt) \ | |
450 { \ | |
451 case FORMAT_DEFAULT: \ | |
452 DEC_IBYTEPTR (ptr); \ | |
453 break; \ | |
454 case FORMAT_16_BIT_FIXED: \ | |
455 text_checking_assert ((void *) ptr == ALIGN_PTR (ptr, UINT_16_BIT)); \ | |
456 (ptr) -= 2; \ | |
457 break; \ | |
458 case FORMAT_32_BIT_FIXED: \ | |
459 text_checking_assert ((void *) ptr == ALIGN_PTR (ptr, UINT_32_BIT)); \ | |
460 (ptr) -= 4; \ | |
461 break; \ | |
462 default: \ | |
463 text_checking_assert (fmt == FORMAT_8_BIT_FIXED); \ | |
464 (ptr)--; \ | |
465 break; \ | |
466 } \ | |
771 | 467 } while (0) |
468 | |
469 #ifdef MULE | |
470 | |
826 | 471 /* Make sure that PTR is pointing to the beginning of a character. If not, |
472 back up until this is the case. Note that there are not too many places | |
473 where it is legitimate to do this sort of thing. It's an error if | |
474 you're passed an "invalid" char * pointer. NOTE: PTR *must* be pointing | |
475 to a valid part of the string (i.e. not the very end, unless the string | |
476 is zero-terminated or something) in order for this function to not cause | |
477 crashes. | |
478 */ | |
479 | |
771 | 480 /* Note that this reads the byte at *PTR! */ |
481 | |
867 | 482 #define VALIDATE_IBYTEPTR_BACKWARD(ptr) do { \ |
483 while (!valid_ibyteptr_p (ptr)) ptr--; \ | |
771 | 484 } while (0) |
485 | |
826 | 486 /* Make sure that PTR is pointing to the beginning of a character. If not, |
487 move forward until this is the case. Note that there are not too many | |
488 places where it is legitimate to do this sort of thing. It's an error | |
489 if you're passed an "invalid" char * pointer. | |
490 */ | |
771 | 491 |
867 | 492 /* This needs to be trickier than VALIDATE_IBYTEPTR_BACKWARD() to avoid the |
771 | 493 possibility of running off the end of the string. */ |
494 | |
867 | 495 #define VALIDATE_IBYTEPTR_FORWARD(ptr) do { \ |
496 Ibyte *vcf_ptr = (ptr); \ | |
497 VALIDATE_IBYTEPTR_BACKWARD (vcf_ptr); \ | |
771 | 498 if (vcf_ptr != (ptr)) \ |
499 { \ | |
500 (ptr) = vcf_ptr; \ | |
867 | 501 INC_IBYTEPTR (ptr); \ |
771 | 502 } \ |
503 } while (0) | |
504 | |
505 #else /* not MULE */ | |
867 | 506 #define VALIDATE_IBYTEPTR_BACKWARD(ptr) |
507 #define VALIDATE_IBYTEPTR_FORWARD(ptr) | |
826 | 508 #endif /* not MULE */ |
509 | |
510 #ifdef MULE | |
511 | |
867 | 512 /* Given a Ibyte string at PTR of size N, possibly with a partial |
826 | 513 character at the end, return the size of the longest substring of |
514 complete characters. Does not assume that the byte at *(PTR + N) is | |
515 readable. Note that there are not too many places where it is | |
516 legitimate to do this sort of thing. It's an error if you're passed an | |
517 "invalid" offset. */ | |
518 | |
519 DECLARE_INLINE_HEADER ( | |
520 Bytecount | |
867 | 521 validate_ibyte_string_backward (const Ibyte *ptr, Bytecount n) |
826 | 522 ) |
523 { | |
867 | 524 const Ibyte *ptr2; |
826 | 525 |
526 if (n == 0) | |
527 return n; | |
528 ptr2 = ptr + n - 1; | |
867 | 529 VALIDATE_IBYTEPTR_BACKWARD (ptr2); |
826 | 530 if (ptr2 + rep_bytes_by_first_byte (*ptr2) != ptr + n) |
531 return ptr2 - ptr; | |
532 return n; | |
533 } | |
534 | |
535 #else | |
536 | |
867 | 537 #define validate_ibyte_string_backward(ptr, n) (n) |
826 | 538 |
539 #endif /* MULE */ | |
771 | 540 |
2367 | 541 #ifdef ERROR_CHECK_TEXT |
542 #define ASSERT_ASCTEXT_ASCII_LEN(ptr, len) \ | |
543 do { \ | |
544 int aia2; \ | |
545 const Ascbyte *aia2ptr = (ptr); \ | |
546 int aia2len = (len); \ | |
547 \ | |
548 for (aia2 = 0; aia2 < aia2len; aia2++) \ | |
549 assert (aia2ptr[aia2] >= 0x00 && aia2ptr[aia2] < 0x7F); \ | |
550 } while (0) | |
551 #define ASSERT_ASCTEXT_ASCII(ptr) \ | |
552 do { \ | |
553 const Ascbyte *aiaz2 = (ptr); \ | |
554 ASSERT_ASCTEXT_ASCII_LEN (aiaz2, strlen (aiaz2)); \ | |
555 } while (0) | |
556 #else | |
557 #define ASSERT_ASCTEXT_ASCII_LEN(ptr, len) | |
558 #define ASSERT_ASCTEXT_ASCII(ptr) | |
559 #endif | |
560 | |
771 | 561 /* -------------------------------------------------------------- */ |
826 | 562 /* Working with the length (in bytes and characters) of a */ |
563 /* section of internally-formatted text */ | |
771 | 564 /* -------------------------------------------------------------- */ |
565 | |
826 | 566 #ifdef MULE |
567 | |
1632 | 568 MODULE_API Charcount |
569 bytecount_to_charcount_fun (const Ibyte *ptr, Bytecount len); | |
570 MODULE_API Bytecount | |
571 charcount_to_bytecount_fun (const Ibyte *ptr, Charcount len); | |
826 | 572 |
573 /* Given a pointer to a text string and a length in bytes, return | |
574 the equivalent length in characters. */ | |
575 | |
576 DECLARE_INLINE_HEADER ( | |
577 Charcount | |
867 | 578 bytecount_to_charcount (const Ibyte *ptr, Bytecount len) |
826 | 579 ) |
580 { | |
581 if (len < 20) /* Just a random guess, but it should be more or less correct. | |
582 If number of bytes is small, just do a simple loop, | |
583 which should be more efficient. */ | |
584 { | |
585 Charcount count = 0; | |
867 | 586 const Ibyte *end = ptr + len; |
826 | 587 while (ptr < end) |
588 { | |
867 | 589 INC_IBYTEPTR (ptr); |
826 | 590 count++; |
591 } | |
592 /* Bomb out if the specified substring ends in the middle | |
593 of a character. Note that we might have already gotten | |
594 a core dump above from an invalid reference, but at least | |
595 we will get no farther than here. | |
596 | |
597 This also catches len < 0. */ | |
598 text_checking_assert (ptr == end); | |
599 | |
600 return count; | |
601 } | |
602 else | |
603 return bytecount_to_charcount_fun (ptr, len); | |
604 } | |
605 | |
606 /* Given a pointer to a text string and a length in characters, return the | |
607 equivalent length in bytes. | |
608 */ | |
609 | |
610 DECLARE_INLINE_HEADER ( | |
611 Bytecount | |
867 | 612 charcount_to_bytecount (const Ibyte *ptr, Charcount len) |
826 | 613 ) |
614 { | |
615 text_checking_assert (len >= 0); | |
616 if (len < 20) /* See above */ | |
617 { | |
867 | 618 const Ibyte *newptr = ptr; |
826 | 619 while (len > 0) |
620 { | |
867 | 621 INC_IBYTEPTR (newptr); |
826 | 622 len--; |
623 } | |
624 return newptr - ptr; | |
625 } | |
626 else | |
627 return charcount_to_bytecount_fun (ptr, len); | |
628 } | |
629 | |
2367 | 630 MODULE_API Bytecount |
631 charcount_to_bytecount_down_fun (const Ibyte *ptr, Charcount len); | |
632 | |
633 /* Given a pointer to a text string and a length in bytes, return | |
634 the equivalent length in characters of the stretch [PTR - LEN, PTR). */ | |
635 | |
636 DECLARE_INLINE_HEADER ( | |
637 Charcount | |
638 bytecount_to_charcount_down (const Ibyte *ptr, Bytecount len) | |
639 ) | |
640 { | |
641 /* No need to be clever here */ | |
642 return bytecount_to_charcount (ptr - len, len); | |
643 } | |
644 | |
645 /* Given a pointer to a text string and a length in characters, return the | |
646 equivalent length in bytes of the stretch of characters of that length | |
647 BEFORE the pointer. | |
648 */ | |
649 | |
650 DECLARE_INLINE_HEADER ( | |
651 Bytecount | |
652 charcount_to_bytecount_down (const Ibyte *ptr, Charcount len) | |
653 ) | |
654 { | |
655 #define SLEDGEHAMMER_CHECK_TEXT | |
656 #ifdef SLEDGEHAMMER_CHECK_TEXT | |
657 Charcount len1 = len; | |
658 Bytecount ret1, ret2; | |
659 | |
660 /* To test the correctness of the function version, always do the | |
661 calculation both ways and check that the values are the same. */ | |
662 text_checking_assert (len >= 0); | |
663 { | |
664 const Ibyte *newptr = ptr; | |
665 while (len1 > 0) | |
666 { | |
667 DEC_IBYTEPTR (newptr); | |
668 len1--; | |
669 } | |
670 ret1 = ptr - newptr; | |
671 } | |
672 ret2 = charcount_to_bytecount_down_fun (ptr, len); | |
673 text_checking_assert (ret1 == ret2); | |
674 return ret1; | |
675 #else | |
676 text_checking_assert (len >= 0); | |
677 if (len < 20) /* See above */ | |
678 { | |
679 const Ibyte *newptr = ptr; | |
680 while (len > 0) | |
681 { | |
682 DEC_IBYTEPTR (newptr); | |
683 len--; | |
684 } | |
685 return ptr - newptr; | |
686 } | |
687 else | |
688 return charcount_to_bytecount_down_fun (ptr, len); | |
689 #endif /* SLEDGEHAMMER_CHECK_TEXT */ | |
690 } | |
691 | |
826 | 692 /* Given a pointer to a text string in the specified format and a length in |
693 bytes, return the equivalent length in characters. | |
694 */ | |
695 | |
696 DECLARE_INLINE_HEADER ( | |
697 Charcount | |
867 | 698 bytecount_to_charcount_fmt (const Ibyte *ptr, Bytecount len, |
826 | 699 Internal_Format fmt) |
700 ) | |
701 { | |
702 switch (fmt) | |
703 { | |
704 case FORMAT_DEFAULT: | |
705 return bytecount_to_charcount (ptr, len); | |
706 case FORMAT_16_BIT_FIXED: | |
1204 | 707 text_checking_assert ((void *) ptr == ALIGN_PTR (ptr, UINT_16_BIT)); |
826 | 708 return (Charcount) (len << 1); |
709 case FORMAT_32_BIT_FIXED: | |
1204 | 710 text_checking_assert ((void *) ptr == ALIGN_PTR (ptr, UINT_32_BIT)); |
826 | 711 return (Charcount) (len << 2); |
712 default: | |
713 text_checking_assert (fmt == FORMAT_8_BIT_FIXED); | |
714 return (Charcount) len; | |
715 } | |
716 } | |
717 | |
718 /* Given a pointer to a text string in the specified format and a length in | |
719 characters, return the equivalent length in bytes. | |
720 */ | |
721 | |
722 DECLARE_INLINE_HEADER ( | |
723 Bytecount | |
867 | 724 charcount_to_bytecount_fmt (const Ibyte *ptr, Charcount len, |
826 | 725 Internal_Format fmt) |
726 ) | |
727 { | |
728 switch (fmt) | |
729 { | |
730 case FORMAT_DEFAULT: | |
731 return charcount_to_bytecount (ptr, len); | |
732 case FORMAT_16_BIT_FIXED: | |
1204 | 733 text_checking_assert ((void *) ptr == ALIGN_PTR (ptr, UINT_16_BIT)); |
826 | 734 text_checking_assert (!(len & 1)); |
735 return (Bytecount) (len >> 1); | |
736 case FORMAT_32_BIT_FIXED: | |
737 text_checking_assert (!(len & 3)); | |
1204 | 738 text_checking_assert ((void *) ptr == ALIGN_PTR (ptr, UINT_32_BIT)); |
826 | 739 return (Bytecount) (len >> 2); |
740 default: | |
741 text_checking_assert (fmt == FORMAT_8_BIT_FIXED); | |
742 return (Bytecount) len; | |
743 } | |
744 } | |
745 | |
746 #else | |
747 | |
748 #define bytecount_to_charcount(ptr, len) ((Charcount) (len)) | |
749 #define bytecount_to_charcount_fmt(ptr, len, fmt) ((Charcount) (len)) | |
750 #define charcount_to_bytecount(ptr, len) ((Bytecount) (len)) | |
751 #define charcount_to_bytecount_fmt(ptr, len, fmt) ((Bytecount) (len)) | |
752 | |
753 #endif /* MULE */ | |
754 | |
755 /* Return the length of the first character at PTR. Equivalent to | |
756 charcount_to_bytecount (ptr, 1). | |
757 | |
758 [Since charcount_to_bytecount() is Written as inline, a smart compiler | |
759 should really optimize charcount_to_bytecount (ptr, 1) to the same as | |
760 the following, with no error checking. But since this idiom occurs so | |
761 often, we'll be helpful and define a special macro for it.] | |
762 */ | |
763 | |
867 | 764 #define itext_ichar_len(ptr) rep_bytes_by_first_byte (*(ptr)) |
826 | 765 |
766 /* Return the length of the first character at PTR, which is in the | |
767 specified internal format. Equivalent to charcount_to_bytecount_fmt | |
768 (ptr, 1, fmt). | |
769 */ | |
770 | |
771 DECLARE_INLINE_HEADER ( | |
772 Bytecount | |
2333 | 773 itext_ichar_len_fmt (const Ibyte *USED_IF_MULE_OR_CHECK_TEXT (ptr), |
774 Internal_Format fmt) | |
826 | 775 ) |
776 { | |
777 switch (fmt) | |
778 { | |
779 case FORMAT_DEFAULT: | |
867 | 780 return itext_ichar_len (ptr); |
826 | 781 case FORMAT_16_BIT_FIXED: |
1204 | 782 text_checking_assert ((void *) ptr == ALIGN_PTR (ptr, UINT_16_BIT)); |
826 | 783 return 2; |
784 case FORMAT_32_BIT_FIXED: | |
1204 | 785 text_checking_assert ((void *) ptr == ALIGN_PTR (ptr, UINT_32_BIT)); |
826 | 786 return 4; |
787 default: | |
788 text_checking_assert (fmt == FORMAT_8_BIT_FIXED); | |
789 return 1; | |
790 } | |
791 } | |
792 | |
793 /* Return a pointer to the beginning of the character offset N (in | |
794 characters) from PTR. | |
795 */ | |
796 | |
797 DECLARE_INLINE_HEADER ( | |
867 | 798 const Ibyte * |
799 itext_n_addr (const Ibyte *ptr, Charcount offset) | |
826 | 800 ) |
771 | 801 { |
802 return ptr + charcount_to_bytecount (ptr, offset); | |
803 } | |
804 | |
867 | 805 /* Given a itext and an offset into the text pointed to by the itext, |
826 | 806 modify the offset so it points to the beginning of the next character. |
807 */ | |
808 | |
809 #define INC_BYTECOUNT(ptr, pos) do { \ | |
867 | 810 assert_valid_ibyteptr (ptr); \ |
826 | 811 (pos += rep_bytes_by_first_byte (* ((ptr) + (pos)))); \ |
812 } while (0) | |
813 | |
771 | 814 /* -------------------------------------------------------------------- */ |
867 | 815 /* Retrieving or changing the character pointed to by a itext */ |
771 | 816 /* -------------------------------------------------------------------- */ |
817 | |
867 | 818 #define simple_itext_ichar(ptr) ((Ichar) (ptr)[0]) |
819 #define simple_set_itext_ichar(ptr, x) \ | |
820 ((ptr)[0] = (Ibyte) (x), (Bytecount) 1) | |
821 #define simple_itext_copy_ichar(src, dst) \ | |
814 | 822 ((dst)[0] = *(src), (Bytecount) 1) |
771 | 823 |
824 #ifdef MULE | |
825 | |
1632 | 826 MODULE_API Ichar non_ascii_itext_ichar (const Ibyte *ptr); |
827 MODULE_API Bytecount non_ascii_set_itext_ichar (Ibyte *ptr, Ichar c); | |
828 MODULE_API Bytecount non_ascii_itext_copy_ichar (const Ibyte *src, Ibyte *dst); | |
867 | 829 |
830 /* Retrieve the character pointed to by PTR as an Ichar. */ | |
826 | 831 |
832 DECLARE_INLINE_HEADER ( | |
867 | 833 Ichar |
834 itext_ichar (const Ibyte *ptr) | |
826 | 835 ) |
771 | 836 { |
826 | 837 return byte_ascii_p (*ptr) ? |
867 | 838 simple_itext_ichar (ptr) : |
839 non_ascii_itext_ichar (ptr); | |
771 | 840 } |
841 | |
826 | 842 /* Retrieve the character pointed to by PTR (a pointer to text in the |
843 format FMT, coming from OBJECT [a buffer, string?, or nil]) as an | |
867 | 844 Ichar. |
826 | 845 |
846 Note: For these and other *_fmt() functions, if you pass in a constant | |
847 FMT, the switch will be optimized out of existence. Therefore, there is | |
848 no need to create separate versions for the various formats for | |
867 | 849 "efficiency reasons". In fact, we don't really need itext_ichar() |
826 | 850 and such written separately, but they are used often so it's simpler |
851 that way. */ | |
852 | |
853 DECLARE_INLINE_HEADER ( | |
867 | 854 Ichar |
855 itext_ichar_fmt (const Ibyte *ptr, Internal_Format fmt, | |
2286 | 856 Lisp_Object UNUSED (object)) |
826 | 857 ) |
858 { | |
859 switch (fmt) | |
860 { | |
861 case FORMAT_DEFAULT: | |
867 | 862 return itext_ichar (ptr); |
826 | 863 case FORMAT_16_BIT_FIXED: |
1204 | 864 text_checking_assert ((void *) ptr == ALIGN_PTR (ptr, UINT_16_BIT)); |
867 | 865 return raw_16_bit_fixed_to_ichar (* (UINT_16_BIT *) ptr, object); |
826 | 866 case FORMAT_32_BIT_FIXED: |
1204 | 867 text_checking_assert ((void *) ptr == ALIGN_PTR (ptr, UINT_32_BIT)); |
867 | 868 return raw_32_bit_fixed_to_ichar (* (UINT_32_BIT *) ptr, object); |
826 | 869 default: |
870 text_checking_assert (fmt == FORMAT_8_BIT_FIXED); | |
867 | 871 return raw_8_bit_fixed_to_ichar (*ptr, object); |
826 | 872 } |
873 } | |
874 | |
875 /* Return the character at PTR (which is in format FMT), suitable for | |
876 comparison with an ASCII character. This guarantees that if the | |
877 character at PTR is ASCII (range 0 - 127), that character will be | |
878 returned; otherwise, some character outside of the ASCII range will be | |
879 returned, but not necessarily the character actually at PTR. This will | |
867 | 880 be faster than itext_ichar_fmt() for some formats -- in particular, |
826 | 881 FORMAT_DEFAULT. */ |
882 | |
883 DECLARE_INLINE_HEADER ( | |
867 | 884 Ichar |
885 itext_ichar_ascii_fmt (const Ibyte *ptr, Internal_Format fmt, | |
2286 | 886 Lisp_Object UNUSED (object)) |
826 | 887 ) |
888 { | |
889 switch (fmt) | |
890 { | |
891 case FORMAT_DEFAULT: | |
867 | 892 return (Ichar) *ptr; |
826 | 893 case FORMAT_16_BIT_FIXED: |
1204 | 894 text_checking_assert ((void *) ptr == ALIGN_PTR (ptr, UINT_16_BIT)); |
867 | 895 return raw_16_bit_fixed_to_ichar (* (UINT_16_BIT *) ptr, object); |
826 | 896 case FORMAT_32_BIT_FIXED: |
1204 | 897 text_checking_assert ((void *) ptr == ALIGN_PTR (ptr, UINT_32_BIT)); |
867 | 898 return raw_32_bit_fixed_to_ichar (* (UINT_32_BIT *) ptr, object); |
826 | 899 default: |
900 text_checking_assert (fmt == FORMAT_8_BIT_FIXED); | |
867 | 901 return raw_8_bit_fixed_to_ichar (*ptr, object); |
826 | 902 } |
903 } | |
904 | |
905 /* Return the "raw value" of the character at PTR, in format FMT. This is | |
906 useful when searching for a character; convert the character using | |
867 | 907 ichar_to_raw(). */ |
826 | 908 |
909 DECLARE_INLINE_HEADER ( | |
867 | 910 Raw_Ichar |
911 itext_ichar_raw_fmt (const Ibyte *ptr, Internal_Format fmt) | |
826 | 912 ) |
913 { | |
914 switch (fmt) | |
915 { | |
916 case FORMAT_DEFAULT: | |
867 | 917 return (Raw_Ichar) itext_ichar (ptr); |
826 | 918 case FORMAT_16_BIT_FIXED: |
1204 | 919 text_checking_assert ((void *) ptr == ALIGN_PTR (ptr, UINT_16_BIT)); |
867 | 920 return (Raw_Ichar) (* (UINT_16_BIT *) ptr); |
826 | 921 case FORMAT_32_BIT_FIXED: |
1204 | 922 text_checking_assert ((void *) ptr == ALIGN_PTR (ptr, UINT_32_BIT)); |
867 | 923 return (Raw_Ichar) (* (UINT_32_BIT *) ptr); |
826 | 924 default: |
925 text_checking_assert (fmt == FORMAT_8_BIT_FIXED); | |
867 | 926 return (Raw_Ichar) (*ptr); |
826 | 927 } |
928 } | |
929 | |
867 | 930 /* Store the character CH (an Ichar) as internally-formatted text starting |
826 | 931 at PTR. Return the number of bytes stored. |
932 */ | |
933 | |
934 DECLARE_INLINE_HEADER ( | |
935 Bytecount | |
867 | 936 set_itext_ichar (Ibyte *ptr, Ichar x) |
826 | 937 ) |
771 | 938 { |
867 | 939 return !ichar_multibyte_p (x) ? |
940 simple_set_itext_ichar (ptr, x) : | |
941 non_ascii_set_itext_ichar (ptr, x); | |
771 | 942 } |
943 | |
867 | 944 /* Store the character CH (an Ichar) as internally-formatted text of |
826 | 945 format FMT starting at PTR, which comes from OBJECT. Return the number |
946 of bytes stored. | |
947 */ | |
948 | |
949 DECLARE_INLINE_HEADER ( | |
950 Bytecount | |
867 | 951 set_itext_ichar_fmt (Ibyte *ptr, Ichar x, Internal_Format fmt, |
2286 | 952 Lisp_Object UNUSED (object)) |
826 | 953 ) |
771 | 954 { |
826 | 955 switch (fmt) |
956 { | |
957 case FORMAT_DEFAULT: | |
867 | 958 return set_itext_ichar (ptr, x); |
826 | 959 case FORMAT_16_BIT_FIXED: |
867 | 960 text_checking_assert (ichar_16_bit_fixed_p (x, object)); |
1204 | 961 text_checking_assert ((void *) ptr == ALIGN_PTR (ptr, UINT_16_BIT)); |
867 | 962 * (UINT_16_BIT *) ptr = ichar_to_raw_16_bit_fixed (x, object); |
826 | 963 return 2; |
964 case FORMAT_32_BIT_FIXED: | |
1204 | 965 text_checking_assert ((void *) ptr == ALIGN_PTR (ptr, UINT_32_BIT)); |
867 | 966 * (UINT_32_BIT *) ptr = ichar_to_raw_32_bit_fixed (x, object); |
826 | 967 return 4; |
968 default: | |
969 text_checking_assert (fmt == FORMAT_8_BIT_FIXED); | |
867 | 970 text_checking_assert (ichar_8_bit_fixed_p (x, object)); |
971 *ptr = ichar_to_raw_8_bit_fixed (x, object); | |
826 | 972 return 1; |
973 } | |
974 } | |
975 | |
976 /* Retrieve the character pointed to by SRC and store it as | |
977 internally-formatted text in DST. | |
978 */ | |
979 | |
980 DECLARE_INLINE_HEADER ( | |
981 Bytecount | |
867 | 982 itext_copy_ichar (const Ibyte *src, Ibyte *dst) |
826 | 983 ) |
984 { | |
985 return byte_ascii_p (*src) ? | |
867 | 986 simple_itext_copy_ichar (src, dst) : |
987 non_ascii_itext_copy_ichar (src, dst); | |
771 | 988 } |
989 | |
990 #else /* not MULE */ | |
991 | |
867 | 992 # define itext_ichar(ptr) simple_itext_ichar (ptr) |
993 # define itext_ichar_fmt(ptr, fmt, object) itext_ichar (ptr) | |
994 # define itext_ichar_ascii_fmt(ptr, fmt, object) itext_ichar (ptr) | |
995 # define itext_ichar_raw_fmt(ptr, fmt) itext_ichar (ptr) | |
996 # define set_itext_ichar(ptr, x) simple_set_itext_ichar (ptr, x) | |
997 # define set_itext_ichar_fmt(ptr, x, fmt, obj) set_itext_ichar (ptr, x) | |
998 # define itext_copy_ichar(src, dst) simple_itext_copy_ichar (src, dst) | |
771 | 999 |
1000 #endif /* not MULE */ | |
1001 | |
826 | 1002 /* Retrieve the character at offset N (in characters) from PTR, as an |
867 | 1003 Ichar. |
826 | 1004 */ |
1005 | |
867 | 1006 #define itext_ichar_n(ptr, offset) \ |
1007 itext_ichar (itext_n_addr (ptr, offset)) | |
771 | 1008 |
1009 | |
1010 /************************************************************************/ | |
1011 /* */ | |
826 | 1012 /* working with Lisp strings */ |
1013 /* */ | |
1014 /************************************************************************/ | |
1015 | |
1016 #define string_char_length(s) \ | |
1017 string_index_byte_to_char (s, XSTRING_LENGTH (s)) | |
1018 #define string_byte(s, i) (XSTRING_DATA (s)[i] + 0) | |
1019 /* In case we ever allow strings to be in a different format ... */ | |
1020 #define set_string_byte(s, i, c) (XSTRING_DATA (s)[i] = (c)) | |
1021 | |
1022 #define ASSERT_VALID_CHAR_STRING_INDEX_UNSAFE(s, x) do { \ | |
1023 text_checking_assert ((x) >= 0 && x <= string_char_length (s)); \ | |
1024 } while (0) | |
1025 | |
1026 #define ASSERT_VALID_BYTE_STRING_INDEX_UNSAFE(s, x) do { \ | |
1027 text_checking_assert ((x) >= 0 && x <= XSTRING_LENGTH (s)); \ | |
867 | 1028 text_checking_assert (valid_ibyteptr_p (string_byte_addr (s, x))); \ |
826 | 1029 } while (0) |
1030 | |
1031 /* Convert offset I in string S to a pointer to text there. */ | |
1032 #define string_byte_addr(s, i) (&(XSTRING_DATA (s)[i])) | |
1033 /* Convert pointer to text in string S into the byte offset to that text. */ | |
1034 #define string_addr_to_byte(s, ptr) ((Bytecount) ((ptr) - XSTRING_DATA (s))) | |
867 | 1035 /* Return the Ichar at *CHARACTER* offset I. */ |
1036 #define string_ichar(s, i) itext_ichar (string_char_addr (s, i)) | |
826 | 1037 |
1038 #ifdef ERROR_CHECK_TEXT | |
1039 #define SLEDGEHAMMER_CHECK_ASCII_BEGIN | |
1040 #endif | |
1041 | |
1042 #ifdef SLEDGEHAMMER_CHECK_ASCII_BEGIN | |
1043 void sledgehammer_check_ascii_begin (Lisp_Object str); | |
1044 #else | |
1045 #define sledgehammer_check_ascii_begin(str) | |
1046 #endif | |
1047 | |
1048 /* Make an alloca'd copy of a Lisp string */ | |
1049 #define LISP_STRING_TO_ALLOCA(s, lval) \ | |
1050 do { \ | |
1315 | 1051 Ibyte **_lta_ = (Ibyte **) &(lval); \ |
826 | 1052 Lisp_Object _lta_2 = (s); \ |
2367 | 1053 *_lta_ = alloca_ibytes (1 + XSTRING_LENGTH (_lta_2)); \ |
826 | 1054 memcpy (*_lta_, XSTRING_DATA (_lta_2), 1 + XSTRING_LENGTH (_lta_2)); \ |
1055 } while (0) | |
1056 | |
1057 void resize_string (Lisp_Object s, Bytecount pos, Bytecount delta); | |
1058 | |
1059 /* Convert a byte index into a string into a char index. */ | |
1060 DECLARE_INLINE_HEADER ( | |
1061 Charcount | |
2333 | 1062 string_index_byte_to_char (Lisp_Object USED_IF_MULE_OR_CHECK_TEXT (s), |
1063 Bytecount idx) | |
826 | 1064 ) |
1065 { | |
1066 Charcount retval; | |
1067 ASSERT_VALID_BYTE_STRING_INDEX_UNSAFE (s, idx); | |
1068 #ifdef MULE | |
1069 if (idx <= (Bytecount) XSTRING_ASCII_BEGIN (s)) | |
1070 retval = (Charcount) idx; | |
1071 else | |
1072 retval = (XSTRING_ASCII_BEGIN (s) + | |
1073 bytecount_to_charcount (XSTRING_DATA (s) + | |
1074 XSTRING_ASCII_BEGIN (s), | |
1075 idx - XSTRING_ASCII_BEGIN (s))); | |
1076 # ifdef SLEDGEHAMMER_CHECK_ASCII_BEGIN | |
1077 assert (retval == bytecount_to_charcount (XSTRING_DATA (s), idx)); | |
1078 # endif | |
1079 #else | |
1080 retval = (Charcount) idx; | |
1081 #endif | |
1082 /* Don't call ASSERT_VALID_CHAR_STRING_INDEX_UNSAFE() here because it will | |
1083 call string_index_byte_to_char(). */ | |
1084 return retval; | |
1085 } | |
1086 | |
1087 /* Convert a char index into a string into a byte index. */ | |
1088 DECLARE_INLINE_HEADER ( | |
1089 Bytecount | |
2333 | 1090 string_index_char_to_byte (Lisp_Object USED_IF_MULE_OR_CHECK_TEXT (s), |
1091 Charcount idx) | |
826 | 1092 ) |
1093 { | |
1094 Bytecount retval; | |
1095 ASSERT_VALID_CHAR_STRING_INDEX_UNSAFE (s, idx); | |
1096 #ifdef MULE | |
1097 if (idx <= (Charcount) XSTRING_ASCII_BEGIN (s)) | |
1098 retval = (Bytecount) idx; | |
1099 else | |
1100 retval = (XSTRING_ASCII_BEGIN (s) + | |
1101 charcount_to_bytecount (XSTRING_DATA (s) + | |
1102 XSTRING_ASCII_BEGIN (s), | |
1103 idx - XSTRING_ASCII_BEGIN (s))); | |
1104 # ifdef SLEDGEHAMMER_CHECK_ASCII_BEGIN | |
1105 assert (retval == charcount_to_bytecount (XSTRING_DATA (s), idx)); | |
1106 # endif | |
1107 #else | |
1108 retval = (Bytecount) idx; | |
1109 #endif | |
1110 ASSERT_VALID_BYTE_STRING_INDEX_UNSAFE (s, retval); | |
1111 return retval; | |
1112 } | |
1113 | |
1114 /* Convert a substring length (starting at byte offset OFF) from bytes to | |
1115 chars. */ | |
1116 DECLARE_INLINE_HEADER ( | |
1117 Charcount | |
2333 | 1118 string_offset_byte_to_char_len (Lisp_Object USED_IF_MULE_OR_CHECK_TEXT (s), |
1119 Bytecount USED_IF_MULE_OR_CHECK_TEXT (off), | |
1120 Bytecount len) | |
826 | 1121 ) |
1122 { | |
1123 Charcount retval; | |
1124 ASSERT_VALID_BYTE_STRING_INDEX_UNSAFE (s, off); | |
1125 ASSERT_VALID_BYTE_STRING_INDEX_UNSAFE (s, off + len); | |
1126 #ifdef MULE | |
1127 if (off + len <= (Bytecount) XSTRING_ASCII_BEGIN (s)) | |
1128 retval = (Charcount) len; | |
1129 else if (off < (Bytecount) XSTRING_ASCII_BEGIN (s)) | |
1130 retval = | |
1131 XSTRING_ASCII_BEGIN (s) - (Charcount) off + | |
1132 bytecount_to_charcount (XSTRING_DATA (s) + XSTRING_ASCII_BEGIN (s), | |
1133 len - (XSTRING_ASCII_BEGIN (s) - off)); | |
1134 else | |
1135 retval = bytecount_to_charcount (XSTRING_DATA (s) + off, len); | |
1136 # ifdef SLEDGEHAMMER_CHECK_ASCII_BEGIN | |
1137 assert (retval == bytecount_to_charcount (XSTRING_DATA (s) + off, len)); | |
1138 # endif | |
1139 #else | |
1140 retval = (Charcount) len; | |
1141 #endif | |
1142 return retval; | |
1143 } | |
1144 | |
1145 /* Convert a substring length (starting at byte offset OFF) from chars to | |
1146 bytes. */ | |
1147 DECLARE_INLINE_HEADER ( | |
1148 Bytecount | |
2333 | 1149 string_offset_char_to_byte_len (Lisp_Object USED_IF_MULE_OR_CHECK_TEXT (s), |
1150 Bytecount USED_IF_MULE_OR_CHECK_TEXT (off), | |
1151 Charcount len) | |
826 | 1152 ) |
1153 { | |
1154 Bytecount retval; | |
1155 ASSERT_VALID_BYTE_STRING_INDEX_UNSAFE (s, off); | |
1156 #ifdef MULE | |
1157 /* casts to avoid errors from combining Bytecount/Charcount and warnings | |
1158 from signed/unsigned comparisons */ | |
1159 if (off + (Bytecount) len <= (Bytecount) XSTRING_ASCII_BEGIN (s)) | |
1160 retval = (Bytecount) len; | |
1161 else if (off < (Bytecount) XSTRING_ASCII_BEGIN (s)) | |
1162 retval = | |
1163 XSTRING_ASCII_BEGIN (s) - off + | |
1164 charcount_to_bytecount (XSTRING_DATA (s) + XSTRING_ASCII_BEGIN (s), | |
1165 len - (XSTRING_ASCII_BEGIN (s) - | |
1166 (Charcount) off)); | |
1167 else | |
1168 retval = charcount_to_bytecount (XSTRING_DATA (s) + off, len); | |
1169 # ifdef SLEDGEHAMMER_CHECK_ASCII_BEGIN | |
1170 assert (retval == charcount_to_bytecount (XSTRING_DATA (s) + off, len)); | |
1171 # endif | |
1172 #else | |
1173 retval = (Bytecount) len; | |
1174 #endif | |
1175 ASSERT_VALID_BYTE_STRING_INDEX_UNSAFE (s, off + retval); | |
1176 return retval; | |
1177 } | |
1178 | |
1179 DECLARE_INLINE_HEADER ( | |
867 | 1180 const Ibyte * |
826 | 1181 string_char_addr (Lisp_Object s, Charcount idx) |
1182 ) | |
1183 { | |
1184 return XSTRING_DATA (s) + string_index_char_to_byte (s, idx); | |
1185 } | |
1186 | |
1187 /* WARNING: If you modify an existing string, you must call | |
1188 bump_string_modiff() afterwards. */ | |
1189 #ifdef MULE | |
867 | 1190 void set_string_char (Lisp_Object s, Charcount i, Ichar c); |
826 | 1191 #else |
1192 #define set_string_char(s, i, c) set_string_byte (s, i, c) | |
1193 #endif /* not MULE */ | |
1194 | |
1195 /* Return index to character before the one at IDX. */ | |
1196 DECLARE_INLINE_HEADER ( | |
1197 Bytecount | |
1198 prev_string_index (Lisp_Object s, Bytecount idx) | |
1199 ) | |
1200 { | |
867 | 1201 const Ibyte *ptr = string_byte_addr (s, idx); |
1202 DEC_IBYTEPTR (ptr); | |
826 | 1203 return string_addr_to_byte (s, ptr); |
1204 } | |
1205 | |
1206 /* Return index to character after the one at IDX. */ | |
1207 DECLARE_INLINE_HEADER ( | |
1208 Bytecount | |
1209 next_string_index (Lisp_Object s, Bytecount idx) | |
1210 ) | |
1211 { | |
867 | 1212 const Ibyte *ptr = string_byte_addr (s, idx); |
1213 INC_IBYTEPTR (ptr); | |
826 | 1214 return string_addr_to_byte (s, ptr); |
1215 } | |
1216 | |
1217 | |
1218 /************************************************************************/ | |
1219 /* */ | |
771 | 1220 /* working with Eistrings */ |
1221 /* */ | |
1222 /************************************************************************/ | |
1223 | |
1224 /* | |
1225 #### NOTE: This is a work in progress. Neither the API nor especially | |
1226 the implementation is finished. | |
1227 | |
1228 NOTE: An Eistring is a structure that makes it easy to work with | |
1229 internally-formatted strings of data. It provides operations similar | |
1230 in feel to the standard strcpy(), strcat(), strlen(), etc., but | |
1231 | |
1232 (a) it is Mule-correct | |
1233 (b) it does dynamic allocation so you never have to worry about size | |
793 | 1234 restrictions |
851 | 1235 (c) it comes in an ALLOCA() variety (all allocation is stack-local, |
793 | 1236 so there is no need to explicitly clean up) as well as a malloc() |
1237 variety | |
1238 (d) it knows its own length, so it does not suffer from standard null | |
1239 byte brain-damage -- but it null-terminates the data anyway, so | |
1240 it can be passed to standard routines | |
1241 (e) it provides a much more powerful set of operations and knows about | |
771 | 1242 all the standard places where string data might reside: Lisp_Objects, |
867 | 1243 other Eistrings, Ibyte * data with or without an explicit length, |
1244 ASCII strings, Ichars, etc. | |
793 | 1245 (f) it provides easy operations to convert to/from externally-formatted |
1246 data, and is easier to use than the standard TO_INTERNAL_FORMAT | |
771 | 1247 and TO_EXTERNAL_FORMAT macros. (An Eistring can store both the internal |
1248 and external version of its data, but the external version is only | |
1249 initialized or changed when you call eito_external().) | |
1250 | |
793 | 1251 The idea is to make it as easy to write Mule-correct string manipulation |
1252 code as it is to write normal string manipulation code. We also make | |
1253 the API sufficiently general that it can handle multiple internal data | |
1254 formats (e.g. some fixed-width optimizing formats and a default variable | |
1255 width format) and allows for *ANY* data format we might choose in the | |
1256 future for the default format, including UCS2. (In other words, we can't | |
1257 assume that the internal format is ASCII-compatible and we can't assume | |
1258 it doesn't have embedded null bytes. We do assume, however, that any | |
1259 chosen format will have the concept of null-termination.) All of this is | |
1260 hidden from the user. | |
771 | 1261 |
1262 #### It is really too bad that we don't have a real object-oriented | |
1263 language, or at least a language with polymorphism! | |
1264 | |
1265 | |
1266 ********************************************** | |
1267 * Declaration * | |
1268 ********************************************** | |
1269 | |
1270 To declare an Eistring, either put one of the following in the local | |
1271 variable section: | |
1272 | |
1273 DECLARE_EISTRING (name); | |
2367 | 1274 Declare a new Eistring and initialize it to the empy string. This |
1275 is a standard local variable declaration and can go anywhere in the | |
1276 variable declaration section. NAME itself is declared as an | |
1277 Eistring *, and its storage declared on the stack. | |
771 | 1278 |
1279 DECLARE_EISTRING_MALLOC (name); | |
2367 | 1280 Declare and initialize a new Eistring, which uses malloc()ed |
1281 instead of ALLOCA()ed data. This is a standard local variable | |
1282 declaration and can go anywhere in the variable declaration | |
1283 section. Once you initialize the Eistring, you will have to free | |
1284 it using eifree() to avoid memory leaks. You will need to use this | |
1285 form if you are passing an Eistring to any function that modifies | |
1286 it (otherwise, the modified data may be in stack space and get | |
1287 overwritten when the function returns). | |
771 | 1288 |
1289 or use | |
1290 | |
793 | 1291 Eistring ei; |
1292 void eiinit (Eistring *ei); | |
1293 void eiinit_malloc (Eistring *einame); | |
771 | 1294 If you need to put an Eistring elsewhere than in a local variable |
1295 declaration (e.g. in a structure), declare it as shown and then | |
1296 call one of the init macros. | |
1297 | |
1298 Also note: | |
1299 | |
793 | 1300 void eifree (Eistring *ei); |
771 | 1301 If you declared an Eistring to use malloc() to hold its data, |
1302 or converted it to the heap using eito_malloc(), then this | |
1303 releases any data in it and afterwards resets the Eistring | |
1304 using eiinit_malloc(). Otherwise, it just resets the Eistring | |
1305 using eiinit(). | |
1306 | |
1307 | |
1308 ********************************************** | |
1309 * Conventions * | |
1310 ********************************************** | |
1311 | |
1312 - The names of the functions have been chosen, where possible, to | |
1313 match the names of str*() functions in the standard C API. | |
1314 - | |
1315 | |
1316 | |
1317 ********************************************** | |
1318 * Initialization * | |
1319 ********************************************** | |
1320 | |
1321 void eireset (Eistring *eistr); | |
1322 Initialize the Eistring to the empty string. | |
1323 | |
1324 void eicpy_* (Eistring *eistr, ...); | |
1325 Initialize the Eistring from somewhere: | |
1326 | |
1327 void eicpy_ei (Eistring *eistr, Eistring *eistr2); | |
1328 ... from another Eistring. | |
1329 void eicpy_lstr (Eistring *eistr, Lisp_Object lisp_string); | |
1330 ... from a Lisp_Object string. | |
867 | 1331 void eicpy_ch (Eistring *eistr, Ichar ch); |
1332 ... from an Ichar (this can be a conventional C character). | |
771 | 1333 |
1334 void eicpy_lstr_off (Eistring *eistr, Lisp_Object lisp_string, | |
1335 Bytecount off, Charcount charoff, | |
1336 Bytecount len, Charcount charlen); | |
1337 ... from a section of a Lisp_Object string. | |
1338 void eicpy_lbuf (Eistring *eistr, Lisp_Object lisp_buf, | |
1339 Bytecount off, Charcount charoff, | |
1340 Bytecount len, Charcount charlen); | |
1341 ... from a section of a Lisp_Object buffer. | |
867 | 1342 void eicpy_raw (Eistring *eistr, const Ibyte *data, Bytecount len); |
771 | 1343 ... from raw internal-format data in the default internal format. |
867 | 1344 void eicpy_rawz (Eistring *eistr, const Ibyte *data); |
771 | 1345 ... from raw internal-format data in the default internal format |
1346 that is "null-terminated" (the meaning of this depends on the nature | |
1347 of the default internal format). | |
867 | 1348 void eicpy_raw_fmt (Eistring *eistr, const Ibyte *data, Bytecount len, |
826 | 1349 Internal_Format intfmt, Lisp_Object object); |
771 | 1350 ... from raw internal-format data in the specified format. |
867 | 1351 void eicpy_rawz_fmt (Eistring *eistr, const Ibyte *data, |
826 | 1352 Internal_Format intfmt, Lisp_Object object); |
771 | 1353 ... from raw internal-format data in the specified format that is |
1354 "null-terminated" (the meaning of this depends on the nature of | |
1355 the specific format). | |
2421 | 1356 void eicpy_ascii (Eistring *eistr, const Ascbyte *ascstr); |
771 | 1357 ... from an ASCII null-terminated string. Non-ASCII characters in |
2500 | 1358 the string are *ILLEGAL* (read ABORT() with error-checking defined). |
2421 | 1359 void eicpy_ascii_len (Eistring *eistr, const Ascbyte *ascstr, len); |
771 | 1360 ... from an ASCII string, with length specified. Non-ASCII characters |
2500 | 1361 in the string are *ILLEGAL* (read ABORT() with error-checking defined). |
771 | 1362 void eicpy_ext (Eistring *eistr, const Extbyte *extdata, |
1318 | 1363 Lisp_Object codesys); |
771 | 1364 ... from external null-terminated data, with coding system specified. |
1365 void eicpy_ext_len (Eistring *eistr, const Extbyte *extdata, | |
1318 | 1366 Bytecount extlen, Lisp_Object codesys); |
771 | 1367 ... from external data, with length and coding system specified. |
1368 void eicpy_lstream (Eistring *eistr, Lisp_Object lstream); | |
1369 ... from an lstream; reads data till eof. Data must be in default | |
1370 internal format; otherwise, interpose a decoding lstream. | |
1371 | |
1372 | |
1373 ********************************************** | |
1374 * Getting the data out of the Eistring * | |
1375 ********************************************** | |
1376 | |
867 | 1377 Ibyte *eidata (Eistring *eistr); |
771 | 1378 Return a pointer to the raw data in an Eistring. This is NOT |
1379 a copy. | |
1380 | |
1381 Lisp_Object eimake_string (Eistring *eistr); | |
1382 Make a Lisp string out of the Eistring. | |
1383 | |
1384 Lisp_Object eimake_string_off (Eistring *eistr, | |
1385 Bytecount off, Charcount charoff, | |
1386 Bytecount len, Charcount charlen); | |
1387 Make a Lisp string out of a section of the Eistring. | |
1388 | |
867 | 1389 void eicpyout_alloca (Eistring *eistr, LVALUE: Ibyte *ptr_out, |
771 | 1390 LVALUE: Bytecount len_out); |
851 | 1391 Make an ALLOCA() copy of the data in the Eistring, using the |
1392 default internal format. Due to the nature of ALLOCA(), this | |
771 | 1393 must be a macro, with all lvalues passed in as parameters. |
793 | 1394 (More specifically, not all compilers correctly handle using |
851 | 1395 ALLOCA() as the argument to a function call -- GCC on x86 |
1396 didn't used to, for example.) A pointer to the ALLOCA()ed data | |
793 | 1397 is stored in PTR_OUT, and the length of the data (not including |
1398 the terminating zero) is stored in LEN_OUT. | |
771 | 1399 |
867 | 1400 void eicpyout_alloca_fmt (Eistring *eistr, LVALUE: Ibyte *ptr_out, |
771 | 1401 LVALUE: Bytecount len_out, |
826 | 1402 Internal_Format intfmt, Lisp_Object object); |
771 | 1403 Like eicpyout_alloca(), but converts to the specified internal |
1404 format. (No formats other than FORMAT_DEFAULT are currently | |
1405 implemented, and you get an assertion failure if you try.) | |
1406 | |
867 | 1407 Ibyte *eicpyout_malloc (Eistring *eistr, Bytecount *intlen_out); |
771 | 1408 Make a malloc() copy of the data in the Eistring, using the |
1409 default internal format. This is a real function. No lvalues | |
1410 passed in. Returns the new data, and stores the length (not | |
1411 including the terminating zero) using INTLEN_OUT, unless it's | |
1412 a NULL pointer. | |
1413 | |
867 | 1414 Ibyte *eicpyout_malloc_fmt (Eistring *eistr, Internal_Format intfmt, |
826 | 1415 Bytecount *intlen_out, Lisp_Object object); |
771 | 1416 Like eicpyout_malloc(), but converts to the specified internal |
1417 format. (No formats other than FORMAT_DEFAULT are currently | |
1418 implemented, and you get an assertion failure if you try.) | |
1419 | |
1420 | |
1421 ********************************************** | |
1422 * Moving to the heap * | |
1423 ********************************************** | |
1424 | |
1425 void eito_malloc (Eistring *eistr); | |
1426 Move this Eistring to the heap. Its data will be stored in a | |
1427 malloc()ed block rather than the stack. Subsequent changes to | |
1428 this Eistring will realloc() the block as necessary. Use this | |
1429 when you want the Eistring to remain in scope past the end of | |
1430 this function call. You will have to manually free the data | |
1431 in the Eistring using eifree(). | |
1432 | |
1433 void eito_alloca (Eistring *eistr); | |
1434 Move this Eistring back to the stack, if it was moved to the | |
1435 heap with eito_malloc(). This will automatically free any | |
1436 heap-allocated data. | |
1437 | |
1438 | |
1439 | |
1440 ********************************************** | |
1441 * Retrieving the length * | |
1442 ********************************************** | |
1443 | |
1444 Bytecount eilen (Eistring *eistr); | |
1445 Return the length of the internal data, in bytes. See also | |
1446 eiextlen(), below. | |
1447 Charcount eicharlen (Eistring *eistr); | |
1448 Return the length of the internal data, in characters. | |
1449 | |
1450 | |
1451 ********************************************** | |
1452 * Working with positions * | |
1453 ********************************************** | |
1454 | |
1455 Bytecount eicharpos_to_bytepos (Eistring *eistr, Charcount charpos); | |
1456 Convert a char offset to a byte offset. | |
1457 Charcount eibytepos_to_charpos (Eistring *eistr, Bytecount bytepos); | |
1458 Convert a byte offset to a char offset. | |
1459 Bytecount eiincpos (Eistring *eistr, Bytecount bytepos); | |
1460 Increment the given position by one character. | |
1461 Bytecount eiincpos_n (Eistring *eistr, Bytecount bytepos, Charcount n); | |
1462 Increment the given position by N characters. | |
1463 Bytecount eidecpos (Eistring *eistr, Bytecount bytepos); | |
1464 Decrement the given position by one character. | |
1465 Bytecount eidecpos_n (Eistring *eistr, Bytecount bytepos, Charcount n); | |
1466 Deccrement the given position by N characters. | |
1467 | |
1468 | |
1469 ********************************************** | |
1470 * Getting the character at a position * | |
1471 ********************************************** | |
1472 | |
867 | 1473 Ichar eigetch (Eistring *eistr, Bytecount bytepos); |
771 | 1474 Return the character at a particular byte offset. |
867 | 1475 Ichar eigetch_char (Eistring *eistr, Charcount charpos); |
771 | 1476 Return the character at a particular character offset. |
1477 | |
1478 | |
1479 ********************************************** | |
1480 * Setting the character at a position * | |
1481 ********************************************** | |
1482 | |
867 | 1483 Ichar eisetch (Eistring *eistr, Bytecount bytepos, Ichar chr); |
771 | 1484 Set the character at a particular byte offset. |
867 | 1485 Ichar eisetch_char (Eistring *eistr, Charcount charpos, Ichar chr); |
771 | 1486 Set the character at a particular character offset. |
1487 | |
1488 | |
1489 ********************************************** | |
1490 * Concatenation * | |
1491 ********************************************** | |
1492 | |
1493 void eicat_* (Eistring *eistr, ...); | |
1494 Concatenate onto the end of the Eistring, with data coming from the | |
1495 same places as above: | |
1496 | |
1497 void eicat_ei (Eistring *eistr, Eistring *eistr2); | |
1498 ... from another Eistring. | |
2421 | 1499 void eicat_ascii (Eistring *eistr, Ascbyte *ascstr); |
771 | 1500 ... from an ASCII null-terminated string. Non-ASCII characters in |
2500 | 1501 the string are *ILLEGAL* (read ABORT() with error-checking defined). |
867 | 1502 void eicat_raw (ei, const Ibyte *data, Bytecount len); |
771 | 1503 ... from raw internal-format data in the default internal format. |
867 | 1504 void eicat_rawz (ei, const Ibyte *data); |
771 | 1505 ... from raw internal-format data in the default internal format |
1506 that is "null-terminated" (the meaning of this depends on the nature | |
1507 of the default internal format). | |
1508 void eicat_lstr (ei, Lisp_Object lisp_string); | |
1509 ... from a Lisp_Object string. | |
867 | 1510 void eicat_ch (ei, Ichar ch); |
1511 ... from an Ichar. | |
771 | 1512 |
1513 (All except the first variety are convenience functions. | |
1514 In the general case, create another Eistring from the source.) | |
1515 | |
1516 | |
1517 ********************************************** | |
1518 * Replacement * | |
1519 ********************************************** | |
1520 | |
1521 void eisub_* (Eistring *eistr, Bytecount off, Charcount charoff, | |
1522 Bytecount len, Charcount charlen, ...); | |
1523 Replace a section of the Eistring, specifically: | |
1524 | |
1525 void eisub_ei (Eistring *eistr, Bytecount off, Charcount charoff, | |
1526 Bytecount len, Charcount charlen, Eistring *eistr2); | |
1527 ... with another Eistring. | |
2421 | 1528 void eisub_ascii (Eistring *eistr, Bytecount off, Charcount charoff, |
1529 Bytecount len, Charcount charlen, Ascbyte *ascstr); | |
771 | 1530 ... with an ASCII null-terminated string. Non-ASCII characters in |
2500 | 1531 the string are *ILLEGAL* (read ABORT() with error-checking defined). |
771 | 1532 void eisub_ch (Eistring *eistr, Bytecount off, Charcount charoff, |
867 | 1533 Bytecount len, Charcount charlen, Ichar ch); |
1534 ... with an Ichar. | |
771 | 1535 |
1536 void eidel (Eistring *eistr, Bytecount off, Charcount charoff, | |
1537 Bytecount len, Charcount charlen); | |
1538 Delete a section of the Eistring. | |
1539 | |
1540 | |
1541 ********************************************** | |
1542 * Converting to an external format * | |
1543 ********************************************** | |
1544 | |
1318 | 1545 void eito_external (Eistring *eistr, Lisp_Object codesys); |
771 | 1546 Convert the Eistring to an external format and store the result |
1547 in the string. NOTE: Further changes to the Eistring will *NOT* | |
1548 change the external data stored in the string. You will have to | |
1549 call eito_external() again in such a case if you want the external | |
1550 data. | |
1551 | |
1552 Extbyte *eiextdata (Eistring *eistr); | |
1553 Return a pointer to the external data stored in the Eistring as | |
1554 a result of a prior call to eito_external(). | |
1555 | |
1556 Bytecount eiextlen (Eistring *eistr); | |
1557 Return the length in bytes of the external data stored in the | |
1558 Eistring as a result of a prior call to eito_external(). | |
1559 | |
1560 | |
1561 ********************************************** | |
1562 * Searching in the Eistring for a character * | |
1563 ********************************************** | |
1564 | |
867 | 1565 Bytecount eichr (Eistring *eistr, Ichar chr); |
1566 Charcount eichr_char (Eistring *eistr, Ichar chr); | |
1567 Bytecount eichr_off (Eistring *eistr, Ichar chr, Bytecount off, | |
771 | 1568 Charcount charoff); |
867 | 1569 Charcount eichr_off_char (Eistring *eistr, Ichar chr, Bytecount off, |
771 | 1570 Charcount charoff); |
867 | 1571 Bytecount eirchr (Eistring *eistr, Ichar chr); |
1572 Charcount eirchr_char (Eistring *eistr, Ichar chr); | |
1573 Bytecount eirchr_off (Eistring *eistr, Ichar chr, Bytecount off, | |
771 | 1574 Charcount charoff); |
867 | 1575 Charcount eirchr_off_char (Eistring *eistr, Ichar chr, Bytecount off, |
771 | 1576 Charcount charoff); |
1577 | |
1578 | |
1579 ********************************************** | |
1580 * Searching in the Eistring for a string * | |
1581 ********************************************** | |
1582 | |
1583 Bytecount eistr_ei (Eistring *eistr, Eistring *eistr2); | |
1584 Charcount eistr_ei_char (Eistring *eistr, Eistring *eistr2); | |
1585 Bytecount eistr_ei_off (Eistring *eistr, Eistring *eistr2, Bytecount off, | |
1586 Charcount charoff); | |
1587 Charcount eistr_ei_off_char (Eistring *eistr, Eistring *eistr2, | |
1588 Bytecount off, Charcount charoff); | |
1589 Bytecount eirstr_ei (Eistring *eistr, Eistring *eistr2); | |
1590 Charcount eirstr_ei_char (Eistring *eistr, Eistring *eistr2); | |
1591 Bytecount eirstr_ei_off (Eistring *eistr, Eistring *eistr2, Bytecount off, | |
1592 Charcount charoff); | |
1593 Charcount eirstr_ei_off_char (Eistring *eistr, Eistring *eistr2, | |
1594 Bytecount off, Charcount charoff); | |
1595 | |
2421 | 1596 Bytecount eistr_ascii (Eistring *eistr, Ascbyte *ascstr); |
1597 Charcount eistr_ascii_char (Eistring *eistr, Ascbyte *ascstr); | |
1598 Bytecount eistr_ascii_off (Eistring *eistr, Ascbyte *ascstr, Bytecount off, | |
771 | 1599 Charcount charoff); |
2421 | 1600 Charcount eistr_ascii_off_char (Eistring *eistr, Ascbyte *ascstr, |
771 | 1601 Bytecount off, Charcount charoff); |
2421 | 1602 Bytecount eirstr_ascii (Eistring *eistr, Ascbyte *ascstr); |
1603 Charcount eirstr_ascii_char (Eistring *eistr, Ascbyte *ascstr); | |
1604 Bytecount eirstr_ascii_off (Eistring *eistr, Ascbyte *ascstr, | |
771 | 1605 Bytecount off, Charcount charoff); |
2421 | 1606 Charcount eirstr_ascii_off_char (Eistring *eistr, Ascbyte *ascstr, |
771 | 1607 Bytecount off, Charcount charoff); |
1608 | |
1609 | |
1610 ********************************************** | |
1611 * Comparison * | |
1612 ********************************************** | |
1613 | |
1614 int eicmp_* (Eistring *eistr, ...); | |
1615 int eicmp_off_* (Eistring *eistr, Bytecount off, Charcount charoff, | |
1616 Bytecount len, Charcount charlen, ...); | |
1617 int eicasecmp_* (Eistring *eistr, ...); | |
1618 int eicasecmp_off_* (Eistring *eistr, Bytecount off, Charcount charoff, | |
1619 Bytecount len, Charcount charlen, ...); | |
1620 int eicasecmp_i18n_* (Eistring *eistr, ...); | |
1621 int eicasecmp_i18n_off_* (Eistring *eistr, Bytecount off, Charcount charoff, | |
1622 Bytecount len, Charcount charlen, ...); | |
1623 | |
1624 Compare the Eistring with the other data. Return value same as | |
1625 from strcmp. The `*' is either `ei' for another Eistring (in | |
1626 which case `...' is an Eistring), or `c' for a pure-ASCII string | |
1627 (in which case `...' is a pointer to that string). For anything | |
1628 more complex, first create an Eistring out of the source. | |
1629 Comparison is either simple (`eicmp_...'), ASCII case-folding | |
1630 (`eicasecmp_...'), or multilingual case-folding | |
1631 (`eicasecmp_i18n_...). | |
1632 | |
1633 | |
1634 More specifically, the prototypes are: | |
1635 | |
1636 int eicmp_ei (Eistring *eistr, Eistring *eistr2); | |
1637 int eicmp_off_ei (Eistring *eistr, Bytecount off, Charcount charoff, | |
1638 Bytecount len, Charcount charlen, Eistring *eistr2); | |
1639 int eicasecmp_ei (Eistring *eistr, Eistring *eistr2); | |
1640 int eicasecmp_off_ei (Eistring *eistr, Bytecount off, Charcount charoff, | |
1641 Bytecount len, Charcount charlen, Eistring *eistr2); | |
1642 int eicasecmp_i18n_ei (Eistring *eistr, Eistring *eistr2); | |
1643 int eicasecmp_i18n_off_ei (Eistring *eistr, Bytecount off, | |
1644 Charcount charoff, Bytecount len, | |
1645 Charcount charlen, Eistring *eistr2); | |
1646 | |
2421 | 1647 int eicmp_ascii (Eistring *eistr, Ascbyte *ascstr); |
1648 int eicmp_off_ascii (Eistring *eistr, Bytecount off, Charcount charoff, | |
1649 Bytecount len, Charcount charlen, Ascbyte *ascstr); | |
1650 int eicasecmp_ascii (Eistring *eistr, Ascbyte *ascstr); | |
1651 int eicasecmp_off_ascii (Eistring *eistr, Bytecount off, Charcount charoff, | |
771 | 1652 Bytecount len, Charcount charlen, |
2421 | 1653 Ascbyte *ascstr); |
1654 int eicasecmp_i18n_ascii (Eistring *eistr, Ascbyte *ascstr); | |
1655 int eicasecmp_i18n_off_ascii (Eistring *eistr, Bytecount off, Charcount charoff, | |
771 | 1656 Bytecount len, Charcount charlen, |
2421 | 1657 Ascbyte *ascstr); |
771 | 1658 |
1659 | |
1660 ********************************************** | |
1661 * Case-changing the Eistring * | |
1662 ********************************************** | |
1663 | |
1664 void eilwr (Eistring *eistr); | |
1665 Convert all characters in the Eistring to lowercase. | |
1666 void eiupr (Eistring *eistr); | |
1667 Convert all characters in the Eistring to uppercase. | |
1668 */ | |
1669 | |
1670 | |
1671 /* Principles for writing Eistring functions: | |
1672 | |
1673 (1) Unfortunately, we have to write most of the Eistring functions | |
851 | 1674 as macros, because of the use of ALLOCA(). The principle used |
771 | 1675 below to assure no conflict in local variables is to prefix all |
1676 local variables with "ei" plus a number, which should be unique | |
1677 among macros. In practice, when finding a new number, find the | |
1678 highest so far used, and add 1. | |
1679 | |
1680 (2) We also suffix the Eistring fields with an _ to avoid problems | |
1681 with macro parameters of the same name. (And as the standard | |
1682 signal not to access these fields directly.) | |
1683 | |
1684 (3) We maintain both the length in bytes and chars of the data in | |
1685 the Eistring at all times, for convenient retrieval by outside | |
1686 functions. That means when writing functions that manipulate | |
1687 Eistrings, you too need to keep both lengths up to date for all | |
1688 data that you work with. | |
1689 | |
1690 (4) When writing a new type of operation (e.g. substitution), you | |
1691 will often find yourself working with outside data, and thus | |
1692 have a series of related API's, for different forms that the | |
1693 outside data is in. Generally, you will want to choose a | |
1694 subset of the forms supported by eicpy_*, which has to be | |
1695 totally general because that's the fundamental way to get data | |
1696 into an Eistring, and once the data is into the string, it | |
1697 would be to create a whole series of Ei operations that work on | |
1698 nothing but Eistrings. Although theoretically nice, in | |
1699 practice it's a hassle, so we suggest that you provide | |
1700 convenience functions. In particular, there are two paths you | |
1701 can take. One is minimalist -- it only allows other Eistrings | |
867 | 1702 and ASCII data, and Ichars if the particular operation makes |
771 | 1703 sense with a character. The other provides interfaces for the |
1704 most commonly-used forms -- Eistring, ASCII data, Lisp string, | |
1705 raw internal-format string with length, raw internal-format | |
867 | 1706 string without, and possibly Ichar. (In the function names, |
771 | 1707 these are designated `ei', `c', `lstr', `raw', `rawz', and |
1708 `ch', respectively.) | |
1709 | |
1710 (5) When coding a new type of operation, such as was discussed in | |
1711 previous section, the correct approach is to declare an worker | |
1712 function that does the work of everything, and is called by the | |
1713 other "container" macros that handle the different outside data | |
1714 forms. The data coming into the worker function, which | |
1715 typically ends in `_1', is in the form of three parameters: | |
1716 DATA, LEN, CHARLEN. (See point [3] about having two lengths and | |
1717 keeping them in sync.) | |
1718 | |
1719 (6) Handling argument evaluation in macros: We take great care | |
1720 never to evaluate any argument more than once in any macro, | |
1721 except the initial Eistring parameter. This can and will be | |
1722 evaluated multiple times, but it should pretty much always just | |
1723 be a simple variable. This means, for example, that if an | |
1724 Eistring is the second (not first) argument of a macro, it | |
1725 doesn't fall under the "initial Eistring" exemption, so it | |
1726 needs protection against multi-evaluation. (Take the address of | |
1727 the Eistring structure, store in a temporary variable, and use | |
1728 temporary variable for all access to the Eistring. | |
1729 Essentially, we want it to appear as if these Eistring macros | |
1730 are functions -- we would like to declare them as functions but | |
851 | 1731 they use ALLOCA(), so we can't (and we can't make them inline |
1732 functions either -- ALLOCA() is explicitly disallowed in inline | |
771 | 1733 functions.) |
1734 | |
1735 (7) Note that our rules regarding multiple evaluation are *more* | |
1736 strict than the rules listed above under the heading "working | |
1737 with raw internal-format data". | |
1738 */ | |
1739 | |
1740 | |
1741 /* ----- Declaration ----- */ | |
1742 | |
1743 typedef struct | |
1744 { | |
1745 /* Data for the Eistring, stored in the default internal format. | |
1746 Always includes terminating null. */ | |
867 | 1747 Ibyte *data_; |
771 | 1748 /* Total number of bytes allocated in DATA (including null). */ |
1749 Bytecount max_size_allocated_; | |
1750 Bytecount bytelen_; | |
1751 Charcount charlen_; | |
1752 int mallocp_; | |
1753 | |
1754 Extbyte *extdata_; | |
1755 Bytecount extlen_; | |
1756 } Eistring; | |
1757 | |
1758 extern Eistring the_eistring_zero_init, the_eistring_malloc_zero_init; | |
1759 | |
1760 #define DECLARE_EISTRING(name) \ | |
1761 Eistring __ ## name ## __storage__ = the_eistring_zero_init; \ | |
1762 Eistring *name = & __ ## name ## __storage__ | |
1763 #define DECLARE_EISTRING_MALLOC(name) \ | |
1764 Eistring __ ## name ## __storage__ = the_eistring_malloc_zero_init; \ | |
1765 Eistring *name = & __ ## name ## __storage__ | |
1766 | |
1767 #define eiinit(ei) \ | |
1768 do { \ | |
793 | 1769 *(ei) = the_eistring_zero_init; \ |
771 | 1770 } while (0) |
1771 | |
1772 #define eiinit_malloc(ei) \ | |
1773 do { \ | |
793 | 1774 *(ei) = the_eistring_malloc_zero_init; \ |
771 | 1775 } while (0) |
1776 | |
1777 | |
1778 /* ----- Utility ----- */ | |
1779 | |
1780 /* Make sure both LEN and CHARLEN are specified, in case one is given | |
1781 as -1. PTR evaluated at most once, others multiply. */ | |
1782 #define eifixup_bytechar(ptr, len, charlen) \ | |
1783 do { \ | |
1784 if ((len) == -1) \ | |
1785 (len) = charcount_to_bytecount (ptr, charlen); \ | |
1786 else if ((charlen) == -1) \ | |
1787 (charlen) = bytecount_to_charcount (ptr, len); \ | |
1788 } while (0) | |
1789 | |
1790 /* Make sure LEN is specified, in case it's is given as -1. PTR | |
1791 evaluated at most once, others multiply. */ | |
1792 #define eifixup_byte(ptr, len, charlen) \ | |
1793 do { \ | |
1794 if ((len) == -1) \ | |
1795 (len) = charcount_to_bytecount (ptr, charlen); \ | |
1796 } while (0) | |
1797 | |
1798 /* Make sure CHARLEN is specified, in case it's is given as -1. PTR | |
1799 evaluated at most once, others multiply. */ | |
1800 #define eifixup_char(ptr, len, charlen) \ | |
1801 do { \ | |
1802 if ((charlen) == -1) \ | |
1803 (charlen) = bytecount_to_charcount (ptr, len); \ | |
1804 } while (0) | |
1805 | |
1806 | |
1807 | |
1808 /* Make sure we can hold NEWBYTELEN bytes (which is NEWCHARLEN chars) | |
1809 plus a zero terminator. Preserve existing data as much as possible, | |
1810 including existing zero terminator. Put a new zero terminator where it | |
1811 should go if NEWZ if non-zero. All args but EI are evalled only once. */ | |
1812 | |
1813 #define EI_ALLOC(ei, newbytelen, newcharlen, newz) \ | |
1814 do { \ | |
1815 int ei1oldeibytelen = (ei)->bytelen_; \ | |
1816 \ | |
1817 (ei)->charlen_ = (newcharlen); \ | |
1818 (ei)->bytelen_ = (newbytelen); \ | |
1819 \ | |
1820 if (ei1oldeibytelen != (ei)->bytelen_) \ | |
1821 { \ | |
1822 int ei1newsize = (ei)->max_size_allocated_; \ | |
1823 while (ei1newsize < (ei)->bytelen_ + 1) \ | |
1824 { \ | |
1825 ei1newsize = (int) (ei1newsize * 1.5); \ | |
1826 if (ei1newsize < 32) \ | |
1827 ei1newsize = 32; \ | |
1828 } \ | |
1829 if (ei1newsize != (ei)->max_size_allocated_) \ | |
1830 { \ | |
1831 if ((ei)->mallocp_) \ | |
1832 /* xrealloc always preserves existing data as much as possible */ \ | |
1333 | 1833 (ei)->data_ = (Ibyte *) xrealloc ((ei)->data_, ei1newsize); \ |
771 | 1834 else \ |
1835 { \ | |
851 | 1836 /* We don't have realloc, so ALLOCA() more space and copy the \ |
771 | 1837 data into it. */ \ |
867 | 1838 Ibyte *ei1oldeidata = (ei)->data_; \ |
2367 | 1839 (ei)->data_ = alloca_ibytes (ei1newsize); \ |
771 | 1840 if (ei1oldeidata) \ |
1841 memcpy ((ei)->data_, ei1oldeidata, ei1oldeibytelen + 1); \ | |
1842 } \ | |
1843 (ei)->max_size_allocated_ = ei1newsize; \ | |
1844 } \ | |
1845 if (newz) \ | |
1846 (ei)->data_[(ei)->bytelen_] = '\0'; \ | |
1847 } \ | |
1848 } while (0) | |
1849 | |
1850 #define EI_ALLOC_AND_COPY(ei, data, bytelen, charlen) \ | |
1851 do { \ | |
1852 EI_ALLOC (ei, bytelen, charlen, 1); \ | |
1853 memcpy ((ei)->data_, data, (ei)->bytelen_); \ | |
1854 } while (0) | |
1855 | |
1856 /* ----- Initialization ----- */ | |
1857 | |
1858 #define eicpy_ei(ei, eicpy) \ | |
1859 do { \ | |
1860 const Eistring *ei2 = (eicpy); \ | |
1861 EI_ALLOC_AND_COPY (ei, ei2->data_, ei2->bytelen_, ei2->charlen_); \ | |
1862 } while (0) | |
1863 | |
1864 #define eicpy_lstr(ei, lisp_string) \ | |
1865 do { \ | |
1866 Lisp_Object ei3 = (lisp_string); \ | |
1867 EI_ALLOC_AND_COPY (ei, XSTRING_DATA (ei3), XSTRING_LENGTH (ei3), \ | |
1333 | 1868 string_char_length (ei3)); \ |
771 | 1869 } while (0) |
1870 | |
1871 #define eicpy_lstr_off(ei, lisp_string, off, charoff, len, charlen) \ | |
1872 do { \ | |
1873 Lisp_Object ei23lstr = (lisp_string); \ | |
1874 int ei23off = (off); \ | |
1875 int ei23charoff = (charoff); \ | |
1876 int ei23len = (len); \ | |
1877 int ei23charlen = (charlen); \ | |
867 | 1878 const Ibyte *ei23data = XSTRING_DATA (ei23lstr); \ |
771 | 1879 \ |
1880 int ei23oldbytelen = (ei)->bytelen_; \ | |
1881 \ | |
1882 eifixup_byte (ei23data, ei23off, ei23charoff); \ | |
1883 eifixup_bytechar (ei23data + ei23off, ei23len, ei23charlen); \ | |
1884 \ | |
1885 EI_ALLOC_AND_COPY (ei, ei23data + ei23off, ei23len, ei23charlen); \ | |
1886 } while (0) | |
1887 | |
826 | 1888 #define eicpy_raw_fmt(ei, ptr, len, fmt, object) \ |
771 | 1889 do { \ |
1333 | 1890 const Ibyte *ei12ptr = (ptr); \ |
771 | 1891 Internal_Format ei12fmt = (fmt); \ |
1892 int ei12len = (len); \ | |
1893 assert (ei12fmt == FORMAT_DEFAULT); \ | |
1894 EI_ALLOC_AND_COPY (ei, ei12ptr, ei12len, \ | |
1895 bytecount_to_charcount (ei12ptr, ei12len)); \ | |
1896 } while (0) | |
1897 | |
826 | 1898 #define eicpy_raw(ei, ptr, len) \ |
1899 eicpy_raw_fmt (ei, ptr, len, FORMAT_DEFAULT, Qnil) | |
1900 | |
1901 #define eicpy_rawz_fmt(ei, ptr, fmt, object) \ | |
1902 do { \ | |
867 | 1903 const Ibyte *ei12p1ptr = (ptr); \ |
826 | 1904 Internal_Format ei12p1fmt = (fmt); \ |
1905 assert (ei12p1fmt == FORMAT_DEFAULT); \ | |
1906 eicpy_raw_fmt (ei, ei12p1ptr, qxestrlen (ei12p1ptr), fmt, object); \ | |
771 | 1907 } while (0) |
1908 | |
826 | 1909 #define eicpy_rawz(ei, ptr) eicpy_rawz_fmt (ei, ptr, FORMAT_DEFAULT, Qnil) |
771 | 1910 |
1333 | 1911 #define eicpy_ch(ei, ch) \ |
1912 do { \ | |
867 | 1913 Ibyte ei12p2[MAX_ICHAR_LEN]; \ |
1914 Bytecount ei12p2len = set_itext_ichar (ei12p2, ch); \ | |
1333 | 1915 EI_ALLOC_AND_COPY (ei, ei12p2, ei12p2len, 1); \ |
771 | 1916 } while (0) |
1917 | |
2421 | 1918 #define eicpy_ascii(ei, ascstr) \ |
771 | 1919 do { \ |
2421 | 1920 const Ascbyte *ei4 = (ascstr); \ |
771 | 1921 \ |
2367 | 1922 ASSERT_ASCTEXT_ASCII (ei4); \ |
771 | 1923 eicpy_ext (ei, ei4, Qbinary); \ |
1924 } while (0) | |
1925 | |
2421 | 1926 #define eicpy_ascii_len(ei, ascstr, c_len) \ |
771 | 1927 do { \ |
2421 | 1928 const Ascbyte *ei6 = (ascstr); \ |
771 | 1929 int ei6len = (c_len); \ |
1930 \ | |
2367 | 1931 ASSERT_ASCTEXT_ASCII_LEN (ei6, ei6len); \ |
771 | 1932 eicpy_ext_len (ei, ei6, ei6len, Qbinary); \ |
1933 } while (0) | |
1934 | |
1318 | 1935 #define eicpy_ext_len(ei, extdata, extlen, codesys) \ |
771 | 1936 do { \ |
1937 const Extbyte *ei7 = (extdata); \ | |
1938 int ei7len = (extlen); \ | |
1939 \ | |
1318 | 1940 SIZED_EXTERNAL_TO_SIZED_C_STRING (ei7, ei7len, (ei)->data_, \ |
1941 (ei)->bytelen_, codesys); \ | |
771 | 1942 (ei)->max_size_allocated_ = (ei)->bytelen_ + 1; \ |
1943 (ei)->charlen_ = bytecount_to_charcount ((ei)->data_, (ei)->bytelen_); \ | |
1944 } while (0) | |
1945 | |
1318 | 1946 #define eicpy_ext(ei, extdata, codesys) \ |
1947 do { \ | |
1948 const Extbyte *ei8 = (extdata); \ | |
1949 \ | |
1950 eicpy_ext_len (ei, ei8, dfc_external_data_len (ei8, codesys), \ | |
1951 codesys); \ | |
771 | 1952 } while (0) |
1953 | |
1954 #define eicpy_lbuf(eistr, lisp_buf, off, charoff, len, charlen) \ | |
1955 NOT YET IMPLEMENTED | |
1956 | |
1957 #define eicpy_lstream(eistr, lstream) \ | |
1958 NOT YET IMPLEMENTED | |
1959 | |
867 | 1960 #define eireset(eistr) eicpy_rawz (eistr, (Ibyte *) "") |
771 | 1961 |
1962 /* ----- Getting the data out of the Eistring ----- */ | |
1963 | |
1964 #define eidata(ei) ((ei)->data_) | |
1965 | |
1966 #define eimake_string(ei) make_string (eidata (ei), eilen (ei)) | |
1967 | |
1968 #define eimake_string_off(eistr, off, charoff, len, charlen) \ | |
1969 do { \ | |
1970 Lisp_Object ei24lstr; \ | |
1971 int ei24off = (off); \ | |
1972 int ei24charoff = (charoff); \ | |
1973 int ei24len = (len); \ | |
1974 int ei24charlen = (charlen); \ | |
1975 \ | |
1976 eifixup_byte ((eistr)->data_, ei24off, ei24charoff); \ | |
1977 eifixup_byte ((eistr)->data_ + ei24off, ei24len, ei24charlen); \ | |
1978 \ | |
1979 return make_string ((eistr)->data_ + ei24off, ei24len); \ | |
1980 } while (0) | |
1981 | |
1982 #define eicpyout_alloca(eistr, ptrout, lenout) \ | |
826 | 1983 eicpyout_alloca_fmt (eistr, ptrout, lenout, FORMAT_DEFAULT, Qnil) |
771 | 1984 #define eicpyout_malloc(eistr, lenout) \ |
826 | 1985 eicpyout_malloc_fmt (eistr, lenout, FORMAT_DEFAULT, Qnil) |
867 | 1986 Ibyte *eicpyout_malloc_fmt (Eistring *eistr, Bytecount *len_out, |
826 | 1987 Internal_Format fmt, Lisp_Object object); |
1988 #define eicpyout_alloca_fmt(eistr, ptrout, lenout, fmt, object) \ | |
771 | 1989 do { \ |
1990 Internal_Format ei23fmt = (fmt); \ | |
867 | 1991 Ibyte *ei23ptrout = &(ptrout); \ |
771 | 1992 Bytecount *ei23lenout = &(lenout); \ |
1993 \ | |
1994 assert (ei23fmt == FORMAT_DEFAULT); \ | |
1995 \ | |
1996 *ei23lenout = (eistr)->bytelen_; \ | |
2367 | 1997 *ei23ptrout = alloca_ibytes ((eistr)->bytelen_ + 1); \ |
771 | 1998 memcpy (*ei23ptrout, (eistr)->data_, (eistr)->bytelen_ + 1); \ |
1999 } while (0) | |
2000 | |
2001 /* ----- Moving to the heap ----- */ | |
2002 | |
2003 #define eifree(ei) \ | |
2004 do { \ | |
2005 if ((ei)->mallocp_) \ | |
2006 { \ | |
2007 if ((ei)->data_) \ | |
1726 | 2008 xfree ((ei)->data_, Ibyte *); \ |
771 | 2009 if ((ei)->extdata_) \ |
1726 | 2010 xfree ((ei)->extdata_, Extbyte *); \ |
771 | 2011 eiinit_malloc (ei); \ |
2012 } \ | |
2013 else \ | |
2014 eiinit (ei); \ | |
2015 } while (0) | |
2016 | |
2017 int eifind_large_enough_buffer (int oldbufsize, int needed_size); | |
2018 void eito_malloc_1 (Eistring *ei); | |
2019 | |
2020 #define eito_malloc(ei) eito_malloc_1 (ei) | |
2021 | |
2022 #define eito_alloca(ei) \ | |
2023 do { \ | |
2024 if (!(ei)->mallocp_) \ | |
2025 return; \ | |
2026 (ei)->mallocp_ = 0; \ | |
2027 if ((ei)->data_) \ | |
2028 { \ | |
867 | 2029 Ibyte *ei13newdata; \ |
771 | 2030 \ |
2031 (ei)->max_size_allocated_ = \ | |
2032 eifind_large_enough_buffer (0, (ei)->bytelen_ + 1); \ | |
2367 | 2033 ei13newdata = alloca_ibytes ((ei)->max_size_allocated_); \ |
771 | 2034 memcpy (ei13newdata, (ei)->data_, (ei)->bytelen_ + 1); \ |
1726 | 2035 xfree ((ei)->data_, Ibyte *); \ |
771 | 2036 (ei)->data_ = ei13newdata; \ |
2037 } \ | |
2038 \ | |
2039 if ((ei)->extdata_) \ | |
2040 { \ | |
2367 | 2041 Extbyte *ei13newdata = alloca_extbytes ((ei)->extlen_ + 2); \ |
771 | 2042 \ |
2043 memcpy (ei13newdata, (ei)->extdata_, (ei)->extlen_); \ | |
2044 /* Double null-terminate in case of Unicode data */ \ | |
2045 ei13newdata[(ei)->extlen_] = '\0'; \ | |
2046 ei13newdata[(ei)->extlen_ + 1] = '\0'; \ | |
1726 | 2047 xfree ((ei)->extdata_, Extbyte *); \ |
771 | 2048 (ei)->extdata_ = ei13newdata; \ |
2049 } \ | |
2050 } while (0) | |
2051 | |
2052 | |
2053 /* ----- Retrieving the length ----- */ | |
2054 | |
2055 #define eilen(ei) ((ei)->bytelen_) | |
2056 #define eicharlen(ei) ((ei)->charlen_) | |
2057 | |
2058 | |
2059 /* ----- Working with positions ----- */ | |
2060 | |
2061 #define eicharpos_to_bytepos(ei, charpos) \ | |
2062 charcount_to_bytecount ((ei)->data_, charpos) | |
2063 #define eibytepos_to_charpos(ei, bytepos) \ | |
2064 bytecount_to_charcount ((ei)->data_, bytepos) | |
2065 | |
2066 DECLARE_INLINE_HEADER (Bytecount eiincpos_1 (Eistring *eistr, | |
2067 Bytecount bytepos, | |
2068 Charcount n)) | |
2069 { | |
867 | 2070 Ibyte *pos = eistr->data_ + bytepos; |
814 | 2071 Charcount i; |
771 | 2072 |
800 | 2073 text_checking_assert (bytepos >= 0 && bytepos <= eistr->bytelen_); |
2074 text_checking_assert (n >= 0 && n <= eistr->charlen_); | |
771 | 2075 /* We could check N more correctly now, but that would require a |
2076 call to bytecount_to_charcount(), which would be needlessly | |
2077 expensive (it would convert O(N) algorithms into O(N^2) algorithms | |
800 | 2078 with ERROR_CHECK_TEXT, which would be bad). If N is bad, we are |
867 | 2079 guaranteed to catch it either inside INC_IBYTEPTR() or in the check |
771 | 2080 below. */ |
2081 for (i = 0; i < n; i++) | |
867 | 2082 INC_IBYTEPTR (pos); |
800 | 2083 text_checking_assert (pos - eistr->data_ <= eistr->bytelen_); |
771 | 2084 return pos - eistr->data_; |
2085 } | |
2086 | |
2087 #define eiincpos (ei, bytepos) eiincpos_1 (ei, bytepos, 1) | |
2088 #define eiincpos_n (ei, bytepos, n) eiincpos_1 (ei, bytepos, n) | |
2089 | |
2090 DECLARE_INLINE_HEADER (Bytecount eidecpos_1 (Eistring *eistr, | |
2091 Bytecount bytepos, | |
2092 Charcount n)) | |
2093 { | |
867 | 2094 Ibyte *pos = eistr->data_ + bytepos; |
771 | 2095 int i; |
2096 | |
800 | 2097 text_checking_assert (bytepos >= 0 && bytepos <= eistr->bytelen_); |
2098 text_checking_assert (n >= 0 && n <= eistr->charlen_); | |
771 | 2099 /* We could check N more correctly now, but ... see above. */ |
2100 for (i = 0; i < n; i++) | |
867 | 2101 DEC_IBYTEPTR (pos); |
800 | 2102 text_checking_assert (pos - eistr->data_ <= eistr->bytelen_); |
771 | 2103 return pos - eistr->data_; |
2104 } | |
2105 | |
2106 #define eidecpos (ei, bytepos) eidecpos_1 (ei, bytepos, 1) | |
2107 #define eidecpos_n (ei, bytepos, n) eidecpos_1 (ei, bytepos, n) | |
2108 | |
2109 | |
2110 /* ----- Getting the character at a position ----- */ | |
2111 | |
2112 #define eigetch(ei, bytepos) \ | |
867 | 2113 itext_ichar ((ei)->data_ + (bytepos)) |
2114 #define eigetch_char(ei, charpos) itext_ichar_n ((ei)->data_, charpos) | |
771 | 2115 |
2116 | |
2117 /* ----- Setting the character at a position ----- */ | |
2118 | |
2119 #define eisetch(ei, bytepos, chr) \ | |
2120 eisub_ch (ei, bytepos, -1, -1, 1, chr) | |
2121 #define eisetch_char(ei, charpos, chr) \ | |
2122 eisub_ch (ei, -1, charpos, -1, 1, chr) | |
2123 | |
2124 | |
2125 /* ----- Concatenation ----- */ | |
2126 | |
2127 #define eicat_1(ei, data, bytelen, charlen) \ | |
2128 do { \ | |
2129 int ei14oldeibytelen = (ei)->bytelen_; \ | |
2130 int ei14bytelen = (bytelen); \ | |
2131 EI_ALLOC (ei, (ei)->bytelen_ + ei14bytelen, \ | |
2132 (ei)->charlen_ + (charlen), 1); \ | |
2133 memcpy ((ei)->data_ + ei14oldeibytelen, (data), \ | |
2134 ei14bytelen); \ | |
2135 } while (0) | |
2136 | |
2137 #define eicat_ei(ei, ei2) \ | |
2138 do { \ | |
2139 const Eistring *ei9 = (ei2); \ | |
2140 eicat_1 (ei, ei9->data_, ei9->bytelen_, ei9->charlen_); \ | |
2141 } while (0) | |
2142 | |
2421 | 2143 #define eicat_ascii(ei, ascstr) \ |
771 | 2144 do { \ |
2421 | 2145 const Ascbyte *ei15 = (ascstr); \ |
771 | 2146 int ei15len = strlen (ei15); \ |
2147 \ | |
2367 | 2148 ASSERT_ASCTEXT_ASCII_LEN (ei15, ei15len); \ |
771 | 2149 eicat_1 (ei, ei15, ei15len, \ |
867 | 2150 bytecount_to_charcount ((Ibyte *) ei15, ei15len)); \ |
771 | 2151 } while (0) |
2152 | |
2153 #define eicat_raw(ei, data, len) \ | |
2154 do { \ | |
2155 int ei16len = (len); \ | |
867 | 2156 const Ibyte *ei16data = (data); \ |
771 | 2157 eicat_1 (ei, ei16data, ei16len, \ |
2158 bytecount_to_charcount (ei16data, ei16len)); \ | |
2159 } while (0) | |
2160 | |
2161 #define eicat_rawz(ei, ptr) \ | |
2162 do { \ | |
867 | 2163 const Ibyte *ei16p5ptr = (ptr); \ |
771 | 2164 eicat_raw (ei, ei16p5ptr, qxestrlen (ei16p5ptr)); \ |
2165 } while (0) | |
2166 | |
2167 #define eicat_lstr(ei, lisp_string) \ | |
2168 do { \ | |
2169 Lisp_Object ei17 = (lisp_string); \ | |
2170 eicat_1 (ei, XSTRING_DATA (ei17), XSTRING_LENGTH (ei17), \ | |
826 | 2171 string_char_length (ei17)); \ |
771 | 2172 } while (0) |
2173 | |
2174 #define eicat_ch(ei, ch) \ | |
2175 do { \ | |
1333 | 2176 Ibyte ei22ch[MAX_ICHAR_LEN]; \ |
867 | 2177 Bytecount ei22len = set_itext_ichar (ei22ch, ch); \ |
771 | 2178 eicat_1 (ei, ei22ch, ei22len, 1); \ |
2179 } while (0) | |
2180 | |
2181 | |
2182 /* ----- Replacement ----- */ | |
2183 | |
2184 /* Replace the section of an Eistring at (OFF, LEN) with the data at | |
2185 SRC of length LEN. All positions have corresponding character values, | |
2186 and either can be -1 -- it will be computed from the other. */ | |
2187 | |
2188 #define eisub_1(ei, off, charoff, len, charlen, src, srclen, srccharlen) \ | |
2189 do { \ | |
2190 int ei18off = (off); \ | |
2191 int ei18charoff = (charoff); \ | |
2192 int ei18len = (len); \ | |
2193 int ei18charlen = (charlen); \ | |
867 | 2194 Ibyte *ei18src = (Ibyte *) (src); \ |
771 | 2195 int ei18srclen = (srclen); \ |
2196 int ei18srccharlen = (srccharlen); \ | |
2197 \ | |
2198 int ei18oldeibytelen = (ei)->bytelen_; \ | |
2199 \ | |
2200 eifixup_bytechar ((ei)->data_, ei18off, ei18charoff); \ | |
2201 eifixup_bytechar ((ei)->data_ + ei18off, ei18len, ei18charlen); \ | |
2202 eifixup_bytechar (ei18src, ei18srclen, ei18srccharlen); \ | |
2203 \ | |
2204 EI_ALLOC (ei, (ei)->bytelen_ + ei18srclen - ei18len, \ | |
2205 (ei)->charlen_ + ei18srccharlen - ei18charlen, 0); \ | |
2206 if (ei18len != ei18srclen) \ | |
2207 memmove ((ei)->data_ + ei18off + ei18srclen, \ | |
2208 (ei)->data_ + ei18off + ei18len, \ | |
2209 /* include zero terminator. */ \ | |
2210 ei18oldeibytelen - (ei18off + ei18len) + 1); \ | |
2211 if (ei18srclen > 0) \ | |
2212 memcpy ((ei)->data_ + ei18off, ei18src, ei18srclen); \ | |
2213 } while (0) | |
2214 | |
2215 #define eisub_ei(ei, off, charoff, len, charlen, ei2) \ | |
2216 do { \ | |
1333 | 2217 const Eistring *ei19 = (ei2); \ |
771 | 2218 eisub_1 (ei, off, charoff, len, charlen, ei19->data_, ei19->bytelen_, \ |
2219 ei19->charlen_); \ | |
2220 } while (0) | |
2221 | |
2421 | 2222 #define eisub_ascii(ei, off, charoff, len, charlen, ascstr) \ |
771 | 2223 do { \ |
2421 | 2224 const Ascbyte *ei20 = (ascstr); \ |
771 | 2225 int ei20len = strlen (ei20); \ |
2367 | 2226 ASSERT_ASCTEXT_ASCII_LEN (ei20, ei20len); \ |
771 | 2227 eisub_1 (ei, off, charoff, len, charlen, ei20, ei20len, -1); \ |
2228 } while (0) | |
2229 | |
2230 #define eisub_ch(ei, off, charoff, len, charlen, ch) \ | |
2231 do { \ | |
1333 | 2232 Ibyte ei21ch[MAX_ICHAR_LEN]; \ |
867 | 2233 Bytecount ei21len = set_itext_ichar (ei21ch, ch); \ |
771 | 2234 eisub_1 (ei, off, charoff, len, charlen, ei21ch, ei21len, 1); \ |
2235 } while (0) | |
2236 | |
2237 #define eidel(ei, off, charoff, len, charlen) \ | |
2238 eisub_1(ei, off, charoff, len, charlen, NULL, 0, 0) | |
2239 | |
2240 | |
2241 /* ----- Converting to an external format ----- */ | |
2242 | |
1333 | 2243 #define eito_external(ei, codesys) \ |
771 | 2244 do { \ |
2245 if ((ei)->mallocp_) \ | |
2246 { \ | |
2247 if ((ei)->extdata_) \ | |
2248 { \ | |
1726 | 2249 xfree ((ei)->extdata_, Extbyte *); \ |
771 | 2250 (ei)->extdata_ = 0; \ |
2251 } \ | |
2252 TO_EXTERNAL_FORMAT (DATA, ((ei)->data_, (ei)->bytelen_), \ | |
2253 MALLOC, ((ei)->extdata_, (ei)->extlen_), \ | |
1333 | 2254 codesys); \ |
771 | 2255 } \ |
2256 else \ | |
2257 TO_EXTERNAL_FORMAT (DATA, ((ei)->data_, (ei)->bytelen_), \ | |
2258 ALLOCA, ((ei)->extdata_, (ei)->extlen_), \ | |
1318 | 2259 codesys); \ |
771 | 2260 } while (0) |
2261 | |
2262 #define eiextdata(ei) ((ei)->extdata_) | |
2263 #define eiextlen(ei) ((ei)->extlen_) | |
2264 | |
2265 | |
2266 /* ----- Searching in the Eistring for a character ----- */ | |
2267 | |
2268 #define eichr(eistr, chr) \ | |
2269 NOT YET IMPLEMENTED | |
2270 #define eichr_char(eistr, chr) \ | |
2271 NOT YET IMPLEMENTED | |
2272 #define eichr_off(eistr, chr, off, charoff) \ | |
2273 NOT YET IMPLEMENTED | |
2274 #define eichr_off_char(eistr, chr, off, charoff) \ | |
2275 NOT YET IMPLEMENTED | |
2276 #define eirchr(eistr, chr) \ | |
2277 NOT YET IMPLEMENTED | |
2278 #define eirchr_char(eistr, chr) \ | |
2279 NOT YET IMPLEMENTED | |
2280 #define eirchr_off(eistr, chr, off, charoff) \ | |
2281 NOT YET IMPLEMENTED | |
2282 #define eirchr_off_char(eistr, chr, off, charoff) \ | |
2283 NOT YET IMPLEMENTED | |
2284 | |
2285 | |
2286 /* ----- Searching in the Eistring for a string ----- */ | |
2287 | |
2288 #define eistr_ei(eistr, eistr2) \ | |
2289 NOT YET IMPLEMENTED | |
2290 #define eistr_ei_char(eistr, eistr2) \ | |
2291 NOT YET IMPLEMENTED | |
2292 #define eistr_ei_off(eistr, eistr2, off, charoff) \ | |
2293 NOT YET IMPLEMENTED | |
2294 #define eistr_ei_off_char(eistr, eistr2, off, charoff) \ | |
2295 NOT YET IMPLEMENTED | |
2296 #define eirstr_ei(eistr, eistr2) \ | |
2297 NOT YET IMPLEMENTED | |
2298 #define eirstr_ei_char(eistr, eistr2) \ | |
2299 NOT YET IMPLEMENTED | |
2300 #define eirstr_ei_off(eistr, eistr2, off, charoff) \ | |
2301 NOT YET IMPLEMENTED | |
2302 #define eirstr_ei_off_char(eistr, eistr2, off, charoff) \ | |
2303 NOT YET IMPLEMENTED | |
2304 | |
2421 | 2305 #define eistr_ascii(eistr, ascstr) \ |
771 | 2306 NOT YET IMPLEMENTED |
2421 | 2307 #define eistr_ascii_char(eistr, ascstr) \ |
771 | 2308 NOT YET IMPLEMENTED |
2421 | 2309 #define eistr_ascii_off(eistr, ascstr, off, charoff) \ |
771 | 2310 NOT YET IMPLEMENTED |
2421 | 2311 #define eistr_ascii_off_char(eistr, ascstr, off, charoff) \ |
771 | 2312 NOT YET IMPLEMENTED |
2421 | 2313 #define eirstr_ascii(eistr, ascstr) \ |
771 | 2314 NOT YET IMPLEMENTED |
2421 | 2315 #define eirstr_ascii_char(eistr, ascstr) \ |
771 | 2316 NOT YET IMPLEMENTED |
2421 | 2317 #define eirstr_ascii_off(eistr, ascstr, off, charoff) \ |
771 | 2318 NOT YET IMPLEMENTED |
2421 | 2319 #define eirstr_ascii_off_char(eistr, ascstr, off, charoff) \ |
771 | 2320 NOT YET IMPLEMENTED |
2321 | |
2322 | |
2323 /* ----- Comparison ----- */ | |
2324 | |
2325 int eicmp_1 (Eistring *ei, Bytecount off, Charcount charoff, | |
867 | 2326 Bytecount len, Charcount charlen, const Ibyte *data, |
2526 | 2327 const Eistring *ei2, int is_ascii, int fold_case); |
771 | 2328 |
2329 #define eicmp_ei(eistr, eistr2) \ | |
2330 eicmp_1 (eistr, 0, -1, -1, -1, 0, eistr2, 0, 0) | |
2331 #define eicmp_off_ei(eistr, off, charoff, len, charlen, eistr2) \ | |
2332 eicmp_1 (eistr, off, charoff, len, charlen, 0, eistr2, 0, 0) | |
2333 #define eicasecmp_ei(eistr, eistr2) \ | |
2334 eicmp_1 (eistr, 0, -1, -1, -1, 0, eistr2, 0, 1) | |
2335 #define eicasecmp_off_ei(eistr, off, charoff, len, charlen, eistr2) \ | |
2336 eicmp_1 (eistr, off, charoff, len, charlen, 0, eistr2, 0, 1) | |
2337 #define eicasecmp_i18n_ei(eistr, eistr2) \ | |
2338 eicmp_1 (eistr, 0, -1, -1, -1, 0, eistr2, 0, 2) | |
2339 #define eicasecmp_i18n_off_ei(eistr, off, charoff, len, charlen, eistr2) \ | |
2340 eicmp_1 (eistr, off, charoff, len, charlen, 0, eistr2, 0, 2) | |
2341 | |
2421 | 2342 #define eicmp_ascii(eistr, ascstr) \ |
2343 eicmp_1 (eistr, 0, -1, -1, -1, (const Ibyte *) ascstr, 0, 1, 0) | |
2344 #define eicmp_off_ascii(eistr, off, charoff, len, charlen, ascstr) \ | |
2345 eicmp_1 (eistr, off, charoff, len, charlen, (const Ibyte *) ascstr, 0, 1, 0) | |
2346 #define eicasecmp_ascii(eistr, ascstr) \ | |
2347 eicmp_1 (eistr, 0, -1, -1, -1, (const Ibyte *) ascstr, 0, 1, 1) | |
2348 #define eicasecmp_off_ascii(eistr, off, charoff, len, charlen, ascstr) \ | |
2349 eicmp_1 (eistr, off, charoff, len, charlen, (const Ibyte *) ascstr, 0, 1, 1) | |
2350 #define eicasecmp_i18n_ascii(eistr, ascstr) \ | |
2351 eicmp_1 (eistr, 0, -1, -1, -1, (const Ibyte *) ascstr, 0, 1, 2) | |
2352 #define eicasecmp_i18n_off_ascii(eistr, off, charoff, len, charlen, ascstr) \ | |
2353 eicmp_1 (eistr, off, charoff, len, charlen, (const Ibyte *) ascstr, 0, 1, 2) | |
771 | 2354 |
2355 | |
2356 /* ----- Case-changing the Eistring ----- */ | |
2357 | |
867 | 2358 int eistr_casefiddle_1 (Ibyte *olddata, Bytecount len, Ibyte *newdata, |
771 | 2359 int downp); |
2360 | |
2361 #define EI_CASECHANGE(ei, downp) \ | |
2362 do { \ | |
867 | 2363 int ei11new_allocmax = (ei)->charlen_ * MAX_ICHAR_LEN + 1; \ |
1333 | 2364 Ibyte *ei11storage = \ |
2367 | 2365 (Ibyte *) alloca_ibytes (ei11new_allocmax); \ |
771 | 2366 int ei11newlen = eistr_casefiddle_1 ((ei)->data_, (ei)->bytelen_, \ |
2367 ei11storage, downp); \ | |
2368 \ | |
2369 if (ei11newlen) \ | |
2370 { \ | |
2371 (ei)->max_size_allocated_ = ei11new_allocmax; \ | |
1333 | 2372 (ei)->data_ = ei11storage; \ |
771 | 2373 (ei)->bytelen_ = ei11newlen; \ |
2374 /* charlen is the same. */ \ | |
2375 } \ | |
2376 } while (0) | |
2377 | |
2378 #define eilwr(ei) EI_CASECHANGE (ei, 1) | |
2379 #define eiupr(ei) EI_CASECHANGE (ei, 0) | |
2380 | |
1743 | 2381 END_C_DECLS |
1650 | 2382 |
771 | 2383 |
2384 /************************************************************************/ | |
2385 /* */ | |
2386 /* Converting between internal and external format */ | |
2387 /* */ | |
2388 /************************************************************************/ | |
2389 /* | |
1318 | 2390 The macros below are used for converting data between different formats. |
2391 Generally, the data is textual, and the formats are related to | |
2392 internationalization (e.g. converting between internal-format text and | |
2393 UTF-8) -- but the mechanism is general, and could be used for anything, | |
2394 e.g. decoding gzipped data. | |
2395 | |
2396 In general, conversion involves a source of data, a sink, the existing | |
2397 format of the source data, and the desired format of the sink. The | |
2398 macros below, however, always require that either the source or sink is | |
2399 internal-format text. Therefore, in practice the conversions below | |
2400 involve source, sink, an external format (specified by a coding system), | |
2401 and the direction of conversion (internal->external or vice-versa). | |
2402 | |
2403 Sources and sinks can be raw data (sized or unsized -- when unsized, | |
2404 input data is assumed to be null-terminated [double null-terminated for | |
2405 Unicode-format data], and on output the length is not stored anywhere), | |
2406 Lisp strings, Lisp buffers, lstreams, and opaque data objects. When the | |
2407 output is raw data, the result can be allocated either with alloca() or | |
2408 malloc(). (There is currently no provision for writing into a fixed | |
2409 buffer. If you want this, use alloca() output and then copy the data -- | |
2410 but be careful with the size! Unless you are very sure of the encoding | |
2411 being used, upper bounds for the size are not in general computable.) | |
2412 The obvious restrictions on source and sink types apply (e.g. Lisp | |
2413 strings are a source and sink only for internal data). | |
2414 | |
2415 All raw data outputted will contain an extra null byte (two bytes for | |
2416 Unicode -- currently, in fact, all output data, whether internal or | |
2417 external, is double-null-terminated, but you can't count on this; see | |
2418 below). This means that enough space is allocated to contain the extra | |
2419 nulls; however, these nulls are not reflected in the returned output | |
2420 size. | |
2421 | |
2422 The most basic macros are TO_EXTERNAL_FORMAT and TO_INTERNAL_FORMAT. | |
2423 These can be used to convert between any kinds of sources or sinks. | |
2424 However, 99% of conversions involve raw data or Lisp strings as both | |
2425 source and sink, and usually data is output as alloca() rather than | |
2426 malloc(). For this reason, convenience macros are defined for many types | |
2427 of conversions involving raw data and/or Lisp strings, especially when | |
2428 the output is an alloca()ed string. (When the destination is a | |
2429 Lisp_String, there are other functions that should be used instead -- | |
2430 build_ext_string() and make_ext_string(), for example.) The convenience | |
2431 macros are of two types -- the older kind that store the result into a | |
2432 specified variable, and the newer kind that return the result. The newer | |
2433 kind of macros don't exist when the output is sized data, because that | |
2434 would have two return values. NOTE: All convenience macros are | |
2435 ultimately defined in terms of TO_EXTERNAL_FORMAT and TO_INTERNAL_FORMAT. | |
2436 Thus, any comments below about the workings of these macros also apply to | |
2437 all convenience macros. | |
2438 | |
2439 TO_EXTERNAL_FORMAT (source_type, source, sink_type, sink, codesys) | |
2440 TO_INTERNAL_FORMAT (source_type, source, sink_type, sink, codesys) | |
771 | 2441 |
2442 Typical use is | |
2443 | |
2367 | 2444 TO_EXTERNAL_FORMAT (LISP_STRING, str, C_STRING_MALLOC, ptr, Qfile_name); |
2445 | |
2446 which means that the contents of the lisp string `str' are written | |
2447 to a malloc'ed memory area which will be pointed to by `ptr', after the | |
2448 function returns. The conversion will be done using the `file-name' | |
2449 coding system (which will be controlled by the user indirectly by | |
2450 setting or binding the variable `file-name-coding-system'). | |
2451 | |
2452 Some sources and sinks require two C variables to specify. We use | |
2453 some preprocessor magic to allow different source and sink types, and | |
2454 even different numbers of arguments to specify different types of | |
2455 sources and sinks. | |
2456 | |
2457 So we can have a call that looks like | |
2458 | |
2459 TO_INTERNAL_FORMAT (DATA, (ptr, len), | |
2460 MALLOC, (ptr, len), | |
2461 coding_system); | |
2462 | |
2463 The parenthesized argument pairs are required to make the | |
2464 preprocessor magic work. | |
771 | 2465 |
2466 NOTE: GC is inhibited during the entire operation of these macros. This | |
2467 is because frequently the data to be converted comes from strings but | |
2468 gets passed in as just DATA, and GC may move around the string data. If | |
2469 we didn't inhibit GC, there'd have to be a lot of messy recoding, | |
2470 alloca-copying of strings and other annoying stuff. | |
2471 | |
2472 The source or sink can be specified in one of these ways: | |
2473 | |
2474 DATA, (ptr, len), // input data is a fixed buffer of size len | |
851 | 2475 ALLOCA, (ptr, len), // output data is in a ALLOCA()ed buffer of size len |
771 | 2476 MALLOC, (ptr, len), // output data is in a malloc()ed buffer of size len |
2477 C_STRING_ALLOCA, ptr, // equivalent to ALLOCA (ptr, len_ignored) on output | |
2478 C_STRING_MALLOC, ptr, // equivalent to MALLOC (ptr, len_ignored) on output | |
2479 C_STRING, ptr, // equivalent to DATA, (ptr, strlen/wcslen (ptr)) | |
2480 // on input (the Unicode version is used when correct) | |
2481 LISP_STRING, string, // input or output is a Lisp_Object of type string | |
2482 LISP_BUFFER, buffer, // output is written to (point) in lisp buffer | |
2483 LISP_LSTREAM, lstream, // input or output is a Lisp_Object of type lstream | |
2484 LISP_OPAQUE, object, // input or output is a Lisp_Object of type opaque | |
2485 | |
2486 When specifying the sink, use lvalues, since the macro will assign to them, | |
2487 except when the sink is an lstream or a lisp buffer. | |
2488 | |
2367 | 2489 For the sink types `ALLOCA' and `C_STRING_ALLOCA', the resulting text is |
2490 stored in a stack-allocated buffer, which is automatically freed on | |
2491 returning from the function. However, the sink types `MALLOC' and | |
2492 `C_STRING_MALLOC' return `xmalloc()'ed memory. The caller is responsible | |
2493 for freeing this memory using `xfree()'. | |
2494 | |
771 | 2495 The macros accept the kinds of sources and sinks appropriate for |
2496 internal and external data representation. See the type_checking_assert | |
2497 macros below for the actual allowed types. | |
2498 | |
2499 Since some sources and sinks use one argument (a Lisp_Object) to | |
2500 specify them, while others take a (pointer, length) pair, we use | |
2501 some C preprocessor trickery to allow pair arguments to be specified | |
2502 by parenthesizing them, as in the examples above. | |
2503 | |
2504 Anything prefixed by dfc_ (`data format conversion') is private. | |
2505 They are only used to implement these macros. | |
2506 | |
2507 [[Using C_STRING* is appropriate for using with external APIs that | |
2508 take null-terminated strings. For internal data, we should try to | |
2509 be '\0'-clean - i.e. allow arbitrary data to contain embedded '\0'. | |
2510 | |
2511 Sometime in the future we might allow output to C_STRING_ALLOCA or | |
2512 C_STRING_MALLOC _only_ with TO_EXTERNAL_FORMAT(), not | |
2513 TO_INTERNAL_FORMAT().]] | |
2514 | |
2515 The above comments are not true. Frequently (most of the time, in | |
2516 fact), external strings come as zero-terminated entities, where the | |
2517 zero-termination is the only way to find out the length. Even in | |
2518 cases where you can get the length, most of the time the system will | |
2519 still use the null to signal the end of the string, and there will | |
2520 still be no way to either send in or receive a string with embedded | |
2521 nulls. In such situations, it's pointless to track the length | |
2522 because null bytes can never be in the string. We have a lot of | |
2523 operations that make it easy to operate on zero-terminated strings, | |
2524 and forcing the user the deal with the length everywhere would only | |
2525 make the code uglier and more complicated, for no gain. --ben | |
2526 | |
2527 There is no problem using the same lvalue for source and sink. | |
2528 | |
2529 Also, when pointers are required, the code (currently at least) is | |
2530 lax and allows any pointer types, either in the source or the sink. | |
2531 This makes it possible, e.g., to deal with internal format data held | |
2532 in char *'s or external format data held in WCHAR * (i.e. Unicode). | |
2533 | |
2534 Finally, whenever storage allocation is called for, extra space is | |
2535 allocated for a terminating zero, and such a zero is stored in the | |
2536 appropriate place, regardless of whether the source data was | |
2537 specified using a length or was specified as zero-terminated. This | |
2538 allows you to freely pass the resulting data, no matter how | |
2539 obtained, to a routine that expects zero termination (modulo, of | |
2540 course, that any embedded zeros in the resulting text will cause | |
2541 truncation). In fact, currently two embedded zeros are allocated | |
2542 and stored after the data result. This is to allow for the | |
2543 possibility of storing a Unicode value on output, which needs the | |
2544 two zeros. Currently, however, the two zeros are stored regardless | |
2545 of whether the conversion is internal or external and regardless of | |
2546 whether the external coding system is in fact Unicode. This | |
2547 behavior may change in the future, and you cannot rely on this -- | |
2548 the most you can rely on is that sink data in Unicode format will | |
2549 have two terminating nulls, which combine to form one Unicode null | |
2367 | 2550 character. |
2551 | |
2552 NOTE: You might ask, why are these not written as functions that | |
2553 *RETURN* the converted string, since that would allow them to be used | |
2554 much more conveniently, without having to constantly declare temporary | |
2555 variables? The answer is that in fact I originally did write the | |
2556 routines that way, but that required either | |
2557 | |
2558 (a) calling alloca() inside of a function call, or | |
2559 (b) using expressions separated by commas and a global temporary variable, or | |
2560 (c) using the GCC extension ({ ... }). | |
2561 | |
2562 Turned out that all of the above had bugs, all caused by GCC (hence the | |
2563 comments about "those GCC wankers" and "ream gcc up the ass"). As for | |
2564 (a), some versions of GCC (especially on Intel platforms), which had | |
2565 buggy implementations of alloca() that couldn't handle being called | |
2566 inside of a function call -- they just decremented the stack right in the | |
2567 middle of pushing args. Oops, crash with stack trashing, very bad. (b) | |
2568 was an attempt to fix (a), and that led to further GCC crashes, esp. when | |
2569 you had two such calls in a single subexpression, because GCC couldn't be | |
2570 counted upon to follow even a minimally reasonable order of execution. | |
2571 True, you can't count on one argument being evaluated before another, but | |
2572 GCC would actually interleave them so that the temp var got stomped on by | |
2573 one while the other was accessing it. So I tried (c), which was | |
2574 problematic because that GCC extension has more bugs in it than a | |
2575 termite's nest. | |
2576 | |
2577 So reluctantly I converted to the current way. Now, that was awhile ago | |
2578 (c. 1994), and it appears that the bug involving alloca in function calls | |
2579 has long since been fixed. More recently, I defined the new-dfc routines | |
2580 down below, which DO allow exactly such convenience of returning your | |
2581 args rather than store them in temp variables, and I also wrote a | |
2582 configure check to see whether alloca() causes crashes inside of function | |
2583 calls, and if so use the portable alloca() implementation in alloca.c. | |
2584 If you define TEST_NEW_DFC, the old routines get written in terms of the | |
2585 new ones, and I've had a beta put out with this on and it appeared to | |
2586 this appears to cause no problems -- so we should consider | |
2587 switching, and feel no compunctions about writing further such function- | |
2588 like alloca() routines in lieu of statement-like ones. --ben */ | |
771 | 2589 |
2590 #define TO_EXTERNAL_FORMAT(source_type, source, sink_type, sink, codesys) \ | |
2591 do { \ | |
2592 dfc_conversion_type dfc_simplified_source_type; \ | |
2593 dfc_conversion_type dfc_simplified_sink_type; \ | |
2594 dfc_conversion_data dfc_source; \ | |
2595 dfc_conversion_data dfc_sink; \ | |
2596 Lisp_Object dfc_codesys = (codesys); \ | |
2597 \ | |
2598 type_checking_assert \ | |
2599 ((DFC_TYPE_##source_type == DFC_TYPE_DATA || \ | |
2600 DFC_TYPE_##source_type == DFC_TYPE_C_STRING || \ | |
2601 DFC_TYPE_##source_type == DFC_TYPE_LISP_STRING || \ | |
2602 DFC_TYPE_##source_type == DFC_TYPE_LISP_OPAQUE || \ | |
2603 DFC_TYPE_##source_type == DFC_TYPE_LISP_LSTREAM) \ | |
2604 && \ | |
2605 (DFC_TYPE_##sink_type == DFC_TYPE_ALLOCA || \ | |
2606 DFC_TYPE_##sink_type == DFC_TYPE_MALLOC || \ | |
2607 DFC_TYPE_##sink_type == DFC_TYPE_C_STRING_ALLOCA || \ | |
2608 DFC_TYPE_##sink_type == DFC_TYPE_C_STRING_MALLOC || \ | |
2609 DFC_TYPE_##sink_type == DFC_TYPE_LISP_LSTREAM || \ | |
2610 DFC_TYPE_##sink_type == DFC_TYPE_LISP_OPAQUE)); \ | |
2611 \ | |
2612 DFC_EXT_SOURCE_##source_type##_TO_ARGS (source, dfc_codesys); \ | |
2613 DFC_SINK_##sink_type##_TO_ARGS (sink); \ | |
2614 \ | |
2615 dfc_convert_to_external_format (dfc_simplified_source_type, &dfc_source, \ | |
2616 dfc_codesys, \ | |
2617 dfc_simplified_sink_type, &dfc_sink); \ | |
2618 \ | |
2619 DFC_##sink_type##_USE_CONVERTED_DATA (sink); \ | |
2620 } while (0) | |
2621 | |
2622 #define TO_INTERNAL_FORMAT(source_type, source, sink_type, sink, codesys) \ | |
2623 do { \ | |
2624 dfc_conversion_type dfc_simplified_source_type; \ | |
2625 dfc_conversion_type dfc_simplified_sink_type; \ | |
2626 dfc_conversion_data dfc_source; \ | |
2627 dfc_conversion_data dfc_sink; \ | |
2628 Lisp_Object dfc_codesys = (codesys); \ | |
2629 \ | |
2630 type_checking_assert \ | |
2631 ((DFC_TYPE_##source_type == DFC_TYPE_DATA || \ | |
2632 DFC_TYPE_##source_type == DFC_TYPE_C_STRING || \ | |
2633 DFC_TYPE_##source_type == DFC_TYPE_LISP_OPAQUE || \ | |
2634 DFC_TYPE_##source_type == DFC_TYPE_LISP_LSTREAM) \ | |
2635 && \ | |
2636 (DFC_TYPE_##sink_type == DFC_TYPE_ALLOCA || \ | |
2637 DFC_TYPE_##sink_type == DFC_TYPE_MALLOC || \ | |
2638 DFC_TYPE_##sink_type == DFC_TYPE_C_STRING_ALLOCA || \ | |
2639 DFC_TYPE_##sink_type == DFC_TYPE_C_STRING_MALLOC || \ | |
2640 DFC_TYPE_##sink_type == DFC_TYPE_LISP_STRING || \ | |
2641 DFC_TYPE_##sink_type == DFC_TYPE_LISP_LSTREAM || \ | |
2642 DFC_TYPE_##sink_type == DFC_TYPE_LISP_BUFFER)); \ | |
2643 \ | |
2644 DFC_INT_SOURCE_##source_type##_TO_ARGS (source, dfc_codesys); \ | |
2645 DFC_SINK_##sink_type##_TO_ARGS (sink); \ | |
2646 \ | |
2647 dfc_convert_to_internal_format (dfc_simplified_source_type, &dfc_source, \ | |
2648 dfc_codesys, \ | |
2649 dfc_simplified_sink_type, &dfc_sink); \ | |
2650 \ | |
2651 DFC_##sink_type##_USE_CONVERTED_DATA (sink); \ | |
2652 } while (0) | |
2653 | |
814 | 2654 #ifdef __cplusplus |
771 | 2655 |
814 | 2656 /* Error if you try to use a union here: "member `struct {anonymous |
2657 union}::{anonymous} {anonymous union}::data' with constructor not allowed | |
2658 in union" (Bytecount is a class) */ | |
2659 | |
2660 typedef struct | |
2661 #else | |
771 | 2662 typedef union |
814 | 2663 #endif |
771 | 2664 { |
2665 struct { const void *ptr; Bytecount len; } data; | |
2666 Lisp_Object lisp_object; | |
2667 } dfc_conversion_data; | |
2668 | |
2669 enum dfc_conversion_type | |
2670 { | |
2671 DFC_TYPE_DATA, | |
2672 DFC_TYPE_ALLOCA, | |
2673 DFC_TYPE_MALLOC, | |
2674 DFC_TYPE_C_STRING, | |
2675 DFC_TYPE_C_STRING_ALLOCA, | |
2676 DFC_TYPE_C_STRING_MALLOC, | |
2677 DFC_TYPE_LISP_STRING, | |
2678 DFC_TYPE_LISP_LSTREAM, | |
2679 DFC_TYPE_LISP_OPAQUE, | |
2680 DFC_TYPE_LISP_BUFFER | |
2681 }; | |
2682 typedef enum dfc_conversion_type dfc_conversion_type; | |
2683 | |
1743 | 2684 BEGIN_C_DECLS |
1650 | 2685 |
771 | 2686 /* WARNING: These use a static buffer. This can lead to disaster if |
2687 these functions are not used *very* carefully. Another reason to only use | |
2688 TO_EXTERNAL_FORMAT() and TO_INTERNAL_FORMAT(). */ | |
1632 | 2689 MODULE_API void |
771 | 2690 dfc_convert_to_external_format (dfc_conversion_type source_type, |
2691 dfc_conversion_data *source, | |
1318 | 2692 Lisp_Object codesys, |
771 | 2693 dfc_conversion_type sink_type, |
2694 dfc_conversion_data *sink); | |
1632 | 2695 MODULE_API void |
771 | 2696 dfc_convert_to_internal_format (dfc_conversion_type source_type, |
2697 dfc_conversion_data *source, | |
1318 | 2698 Lisp_Object codesys, |
771 | 2699 dfc_conversion_type sink_type, |
2700 dfc_conversion_data *sink); | |
2701 /* CPP Trickery */ | |
2702 #define DFC_CPP_CAR(x,y) (x) | |
2703 #define DFC_CPP_CDR(x,y) (y) | |
2704 | |
2705 /* Convert `source' to args for dfc_convert_to_external_format() */ | |
2706 #define DFC_EXT_SOURCE_DATA_TO_ARGS(val, codesys) do { \ | |
2707 dfc_source.data.ptr = DFC_CPP_CAR val; \ | |
2708 dfc_source.data.len = DFC_CPP_CDR val; \ | |
2709 dfc_simplified_source_type = DFC_TYPE_DATA; \ | |
2710 } while (0) | |
2711 #define DFC_EXT_SOURCE_C_STRING_TO_ARGS(val, codesys) do { \ | |
2712 dfc_source.data.len = \ | |
2713 strlen ((char *) (dfc_source.data.ptr = (val))); \ | |
2714 dfc_simplified_source_type = DFC_TYPE_DATA; \ | |
2715 } while (0) | |
2716 #define DFC_EXT_SOURCE_LISP_STRING_TO_ARGS(val, codesys) do { \ | |
2717 Lisp_Object dfc_slsta = (val); \ | |
2718 type_checking_assert (STRINGP (dfc_slsta)); \ | |
2719 dfc_source.lisp_object = dfc_slsta; \ | |
2720 dfc_simplified_source_type = DFC_TYPE_LISP_STRING; \ | |
2721 } while (0) | |
2722 #define DFC_EXT_SOURCE_LISP_LSTREAM_TO_ARGS(val, codesys) do { \ | |
2723 Lisp_Object dfc_sllta = (val); \ | |
2724 type_checking_assert (LSTREAMP (dfc_sllta)); \ | |
2725 dfc_source.lisp_object = dfc_sllta; \ | |
2726 dfc_simplified_source_type = DFC_TYPE_LISP_LSTREAM; \ | |
2727 } while (0) | |
2728 #define DFC_EXT_SOURCE_LISP_OPAQUE_TO_ARGS(val, codesys) do { \ | |
2729 Lisp_Opaque *dfc_slota = XOPAQUE (val); \ | |
2730 dfc_source.data.ptr = OPAQUE_DATA (dfc_slota); \ | |
2731 dfc_source.data.len = OPAQUE_SIZE (dfc_slota); \ | |
2732 dfc_simplified_source_type = DFC_TYPE_DATA; \ | |
2733 } while (0) | |
2734 | |
2735 /* Convert `source' to args for dfc_convert_to_internal_format() */ | |
2736 #define DFC_INT_SOURCE_DATA_TO_ARGS(val, codesys) \ | |
2737 DFC_EXT_SOURCE_DATA_TO_ARGS (val, codesys) | |
2738 #define DFC_INT_SOURCE_C_STRING_TO_ARGS(val, codesys) do { \ | |
2739 dfc_source.data.len = dfc_external_data_len (dfc_source.data.ptr = (val), \ | |
2740 codesys); \ | |
2741 dfc_simplified_source_type = DFC_TYPE_DATA; \ | |
2742 } while (0) | |
2743 #define DFC_INT_SOURCE_LISP_STRING_TO_ARGS(val, codesys) \ | |
2744 DFC_EXT_SOURCE_LISP_STRING_TO_ARGS (val, codesys) | |
2745 #define DFC_INT_SOURCE_LISP_LSTREAM_TO_ARGS(val, codesys) \ | |
2746 DFC_EXT_SOURCE_LISP_LSTREAM_TO_ARGS (val, codesys) | |
2747 #define DFC_INT_SOURCE_LISP_OPAQUE_TO_ARGS(val, codesys) \ | |
2748 DFC_EXT_SOURCE_LISP_OPAQUE_TO_ARGS (val, codesys) | |
2749 | |
2750 /* Convert `sink' to args for dfc_convert_to_*_format() */ | |
2751 #define DFC_SINK_ALLOCA_TO_ARGS(val) \ | |
2752 dfc_simplified_sink_type = DFC_TYPE_DATA | |
2753 #define DFC_SINK_C_STRING_ALLOCA_TO_ARGS(val) \ | |
2754 dfc_simplified_sink_type = DFC_TYPE_DATA | |
2755 #define DFC_SINK_MALLOC_TO_ARGS(val) \ | |
2756 dfc_simplified_sink_type = DFC_TYPE_DATA | |
2757 #define DFC_SINK_C_STRING_MALLOC_TO_ARGS(val) \ | |
2758 dfc_simplified_sink_type = DFC_TYPE_DATA | |
2759 #define DFC_SINK_LISP_STRING_TO_ARGS(val) \ | |
2760 dfc_simplified_sink_type = DFC_TYPE_DATA | |
2761 #define DFC_SINK_LISP_OPAQUE_TO_ARGS(val) \ | |
2762 dfc_simplified_sink_type = DFC_TYPE_DATA | |
2763 #define DFC_SINK_LISP_LSTREAM_TO_ARGS(val) do { \ | |
2764 Lisp_Object dfc_sllta = (val); \ | |
2765 type_checking_assert (LSTREAMP (dfc_sllta)); \ | |
2766 dfc_sink.lisp_object = dfc_sllta; \ | |
2767 dfc_simplified_sink_type = DFC_TYPE_LISP_LSTREAM; \ | |
2768 } while (0) | |
2769 #define DFC_SINK_LISP_BUFFER_TO_ARGS(val) do { \ | |
2770 struct buffer *dfc_slbta = XBUFFER (val); \ | |
2771 dfc_sink.lisp_object = \ | |
2772 make_lisp_buffer_output_stream \ | |
2773 (dfc_slbta, BUF_PT (dfc_slbta), 0); \ | |
2774 dfc_simplified_sink_type = DFC_TYPE_LISP_LSTREAM; \ | |
2775 } while (0) | |
2776 | |
2777 /* Assign to the `sink' lvalue(s) using the converted data. */ | |
2778 /* + 2 because we double zero-extended to account for Unicode conversion */ | |
2779 typedef union { char c; void *p; } *dfc_aliasing_voidpp; | |
2780 #define DFC_ALLOCA_USE_CONVERTED_DATA(sink) do { \ | |
851 | 2781 void * dfc_sink_ret = ALLOCA (dfc_sink.data.len + 2); \ |
771 | 2782 memcpy (dfc_sink_ret, dfc_sink.data.ptr, dfc_sink.data.len + 2); \ |
2367 | 2783 VOIDP_CAST (DFC_CPP_CAR sink) = dfc_sink_ret; \ |
771 | 2784 (DFC_CPP_CDR sink) = dfc_sink.data.len; \ |
2785 } while (0) | |
2786 #define DFC_MALLOC_USE_CONVERTED_DATA(sink) do { \ | |
2787 void * dfc_sink_ret = xmalloc (dfc_sink.data.len + 2); \ | |
2788 memcpy (dfc_sink_ret, dfc_sink.data.ptr, dfc_sink.data.len + 2); \ | |
2367 | 2789 VOIDP_CAST (DFC_CPP_CAR sink) = dfc_sink_ret; \ |
771 | 2790 (DFC_CPP_CDR sink) = dfc_sink.data.len; \ |
2791 } while (0) | |
2792 #define DFC_C_STRING_ALLOCA_USE_CONVERTED_DATA(sink) do { \ | |
851 | 2793 void * dfc_sink_ret = ALLOCA (dfc_sink.data.len + 2); \ |
771 | 2794 memcpy (dfc_sink_ret, dfc_sink.data.ptr, dfc_sink.data.len + 2); \ |
2367 | 2795 VOIDP_CAST (sink) = dfc_sink_ret; \ |
771 | 2796 } while (0) |
2797 #define DFC_C_STRING_MALLOC_USE_CONVERTED_DATA(sink) do { \ | |
2798 void * dfc_sink_ret = xmalloc (dfc_sink.data.len + 2); \ | |
2799 memcpy (dfc_sink_ret, dfc_sink.data.ptr, dfc_sink.data.len + 2); \ | |
2367 | 2800 VOIDP_CAST (sink) = dfc_sink_ret; \ |
771 | 2801 } while (0) |
2802 #define DFC_LISP_STRING_USE_CONVERTED_DATA(sink) \ | |
867 | 2803 sink = make_string ((Ibyte *) dfc_sink.data.ptr, dfc_sink.data.len) |
771 | 2804 #define DFC_LISP_OPAQUE_USE_CONVERTED_DATA(sink) \ |
2805 sink = make_opaque (dfc_sink.data.ptr, dfc_sink.data.len) | |
2806 #define DFC_LISP_LSTREAM_USE_CONVERTED_DATA(sink) /* data already used */ | |
2807 #define DFC_LISP_BUFFER_USE_CONVERTED_DATA(sink) \ | |
2808 Lstream_delete (XLSTREAM (dfc_sink.lisp_object)) | |
2809 | |
1318 | 2810 /* #define TEST_NEW_DFC */ |
2811 | |
771 | 2812 /* Convenience macros for extremely common invocations */ |
1318 | 2813 #ifdef TEST_NEW_DFC |
2814 #define C_STRING_TO_EXTERNAL(in, out, codesys) \ | |
2815 do { * (Extbyte **) &(out) = \ | |
2816 NEW_C_STRING_TO_EXTERNAL (in, codesys); } while (0) | |
2817 #define SIZED_C_STRING_TO_EXTERNAL(in, inlen, out, codesys) \ | |
2818 do { * (Extbyte **) &(out) = \ | |
2819 NEW_SIZED_C_STRING_TO_EXTERNAL (in, inlen, codesys); } while (0) | |
2820 #define EXTERNAL_TO_C_STRING(in, out, codesys) \ | |
2821 do { * (Ibyte **) &(out) = \ | |
2822 NEW_EXTERNAL_TO_C_STRING (in, codesys); } while (0) | |
2823 #define SIZED_EXTERNAL_TO_C_STRING(in, inlen, out, codesys) \ | |
2824 do { * (Ibyte **) &(out) = \ | |
2825 NEW_SIZED_EXTERNAL_TO_C_STRING (in, inlen, codesys); } while (0) | |
2826 #define LISP_STRING_TO_EXTERNAL(in, out, codesys) \ | |
2827 do { * (Extbyte **) &(out) = \ | |
2828 NEW_LISP_STRING_TO_EXTERNAL (in, codesys); } while (0) | |
2829 #else | |
2830 #define C_STRING_TO_EXTERNAL(in, out, codesys) \ | |
2831 TO_EXTERNAL_FORMAT (C_STRING, in, C_STRING_ALLOCA, out, codesys) | |
2832 #define SIZED_C_STRING_TO_EXTERNAL(in, inlen, out, codesys) \ | |
2833 TO_EXTERNAL_FORMAT (DATA, (in, inlen), C_STRING_ALLOCA, out, codesys) | |
2834 #define EXTERNAL_TO_C_STRING(in, out, codesys) \ | |
2835 TO_INTERNAL_FORMAT (C_STRING, in, C_STRING_ALLOCA, out, codesys) | |
2836 #define SIZED_EXTERNAL_TO_C_STRING(in, inlen, out, codesys) \ | |
2837 TO_INTERNAL_FORMAT (DATA, (in, inlen), C_STRING_ALLOCA, out, codesys) | |
2838 #define LISP_STRING_TO_EXTERNAL(in, out, codesys) \ | |
2839 TO_EXTERNAL_FORMAT (LISP_STRING, in, C_STRING_ALLOCA, out, codesys) | |
2840 #endif /* TEST_NEW_DFC */ | |
2841 | |
2842 #define C_STRING_TO_SIZED_EXTERNAL(in, out, outlen, codesys) \ | |
2843 TO_EXTERNAL_FORMAT (C_STRING, in, ALLOCA, (out, outlen), codesys) | |
2844 #define SIZED_C_STRING_TO_SIZED_EXTERNAL(in, inlen, out, outlen, codesys) \ | |
2845 TO_EXTERNAL_FORMAT (DATA, (in, inlen), ALLOCA, (out, outlen), codesys) | |
2846 #define EXTERNAL_TO_SIZED_C_STRING(in, out, outlen, codesys) \ | |
2847 TO_INTERNAL_FORMAT (C_STRING, in, ALLOCA, (out, outlen), codesys) | |
2848 #define SIZED_EXTERNAL_TO_SIZED_C_STRING(in, inlen, out, outlen, codesys) \ | |
2849 TO_INTERNAL_FORMAT (DATA, (in, inlen), ALLOCA, (out, outlen), codesys) | |
2850 #define LISP_STRING_TO_SIZED_EXTERNAL(in, out, outlen, codesys) \ | |
2851 TO_EXTERNAL_FORMAT (LISP_STRING, in, ALLOCA, (out, outlen), codesys) | |
2852 | |
2853 /* In place of EXTERNAL_TO_LISP_STRING(), use build_ext_string() and/or | |
2854 make_ext_string(). */ | |
2855 | |
2856 #ifdef TEST_NEW_DFC | |
2857 #define C_STRING_TO_EXTERNAL_MALLOC(in, out, codesys) \ | |
2858 do { * (Extbyte **) &(out) = \ | |
2859 NEW_C_STRING_TO_EXTERNAL_MALLOC (in, codesys); } while (0) | |
2367 | 2860 #define SIZED_C_STRING_TO_EXTERNAL_MALLOC(in, inlen, out, codesys) \ |
2861 do { * (Extbyte **) &(out) = \ | |
2862 NEW_SIZED_C_STRING_TO_EXTERNAL_MALLOC (in, inlen, codesys); } \ | |
2863 while (0) | |
1318 | 2864 #define EXTERNAL_TO_C_STRING_MALLOC(in, out, codesys) \ |
2865 do { * (Ibyte **) &(out) = \ | |
2866 NEW_EXTERNAL_TO_C_STRING_MALLOC (in, codesys); } while (0) | |
2367 | 2867 #define SIZED_EXTERNAL_TO_C_STRING_MALLOC(in, inlen, out, codesys) \ |
2868 do { * (Ibyte **) &(out) = \ | |
2869 NEW_SIZED_EXTERNAL_TO_C_STRING_MALLOC (in, inlen, codesys); } \ | |
2870 while (0) | |
1318 | 2871 #define LISP_STRING_TO_EXTERNAL_MALLOC(in, out, codesys) \ |
2872 do { * (Extbyte **) &(out) = \ | |
2873 NEW_LISP_STRING_TO_EXTERNAL_MALLOC (in, codesys); } while (0) | |
2874 #else | |
2875 #define C_STRING_TO_EXTERNAL_MALLOC(in, out, codesys) \ | |
2876 TO_EXTERNAL_FORMAT (C_STRING, in, C_STRING_MALLOC, out, codesys) | |
2367 | 2877 #define SIZED_C_STRING_TO_EXTERNAL_MALLOC(in, inlen, out, codesys) \ |
2878 TO_EXTERNAL_FORMAT (DATA, (in, inlen), C_STRING_MALLOC, out, codesys) | |
1318 | 2879 #define EXTERNAL_TO_C_STRING_MALLOC(in, out, codesys) \ |
2880 TO_INTERNAL_FORMAT (C_STRING, in, C_STRING_MALLOC, out, codesys) | |
2367 | 2881 #define SIZED_EXTERNAL_TO_C_STRING_MALLOC(in, inlen, out, codesys) \ |
2882 TO_INTERNAL_FORMAT (DATA, (in, inlen), C_STRING_MALLOC, out, codesys) | |
1318 | 2883 #define LISP_STRING_TO_EXTERNAL_MALLOC(in, out, codesys) \ |
2884 TO_EXTERNAL_FORMAT (LISP_STRING, in, C_STRING_MALLOC, out, codesys) | |
2885 #endif /* TEST_NEW_DFC */ | |
2886 | |
2367 | 2887 #define C_STRING_TO_SIZED_EXTERNAL_MALLOC(in, out, outlen, codesys) \ |
2888 TO_EXTERNAL_FORMAT (C_STRING, in, MALLOC, (out, outlen), codesys) | |
2889 #define SIZED_C_STRING_TO_SIZED_EXTERNAL_MALLOC(in, inlen, out, outlen, \ | |
2890 codesys) \ | |
2891 TO_EXTERNAL_FORMAT (DATA, (in, inlen), MALLOC, (out, outlen), codesys) | |
2892 #define EXTERNAL_TO_SIZED_C_STRING_MALLOC(in, out, outlen, codesys) \ | |
2893 TO_INTERNAL_FORMAT (C_STRING, in, MALLOC, (out, outlen), codesys) | |
2894 #define SIZED_EXTERNAL_TO_SIZED_C_STRING_MALLOC(in, inlen, out, outlen, \ | |
2895 codesys) \ | |
2896 TO_INTERNAL_FORMAT (DATA, (in, inlen), MALLOC, (out, outlen), codesys) | |
2897 #define LISP_STRING_TO_SIZED_EXTERNAL_MALLOC(in, out, outlen, codesys) \ | |
2898 TO_EXTERNAL_FORMAT (LISP_STRING, in, MALLOC, (out, outlen), codesys) | |
2899 | |
1318 | 2900 enum new_dfc_src_type |
2901 { | |
2902 DFC_EXTERNAL, | |
2903 DFC_SIZED_EXTERNAL, | |
2904 DFC_INTERNAL, | |
2905 DFC_SIZED_INTERNAL, | |
2906 DFC_LISP_STRING | |
2907 }; | |
2908 | |
1632 | 2909 MODULE_API void *new_dfc_convert_malloc (const void *src, Bytecount src_size, |
2910 enum new_dfc_src_type type, | |
2911 Lisp_Object codesys); | |
2367 | 2912 MODULE_API Bytecount new_dfc_convert_size (const char *srctext, |
2913 const void *src, | |
1632 | 2914 Bytecount src_size, |
2915 enum new_dfc_src_type type, | |
2916 Lisp_Object codesys); | |
2367 | 2917 MODULE_API void *new_dfc_convert_copy_data (const char *srctext, |
2918 void *alloca_data); | |
1318 | 2919 |
1743 | 2920 END_C_DECLS |
1650 | 2921 |
1318 | 2922 /* Version of EXTERNAL_TO_C_STRING that *RETURNS* the translated string, |
2923 still in alloca() space. Requires some trickiness to do this, but gets | |
2924 it done! */ | |
2925 | |
2926 /* NOTE: If you make two invocations of the dfc functions below in the same | |
2927 subexpression and use the exact same expression for the source in both | |
2928 cases, you will lose. In this unlikely case, you will get an abort, and | |
2929 need to rewrite the code. | |
2930 */ | |
2931 | |
2932 /* We need to use ALLOCA_FUNCALL_OK here. Some compilers have been known | |
2933 to choke when alloca() occurs as a funcall argument, and so we check | |
2934 this in configure. Rewriting the expressions below to use a temporary | |
2935 variable, so that the call to alloca() is outside of | |
2382 | 2936 new_dfc_convert_copy_data(), won't help because the entire NEW_DFC call |
1318 | 2937 could be inside of a function call. */ |
2938 | |
2939 #define NEW_DFC_CONVERT_1_ALLOCA(src, src_size, type, codesys) \ | |
2367 | 2940 new_dfc_convert_copy_data \ |
1318 | 2941 (#src, ALLOCA_FUNCALL_OK (new_dfc_convert_size (#src, src, src_size, \ |
2942 type, codesys))) | |
2943 | |
2944 #define NEW_EXTERNAL_TO_C_STRING(src, codesys) \ | |
2945 (Ibyte *) NEW_DFC_CONVERT_1_ALLOCA (src, -1, DFC_EXTERNAL, codesys) | |
2946 #define NEW_EXTERNAL_TO_C_STRING_MALLOC(src, codesys) \ | |
2947 (Ibyte *) new_dfc_convert_malloc (src, -1, DFC_EXTERNAL, codesys) | |
2948 #define NEW_SIZED_EXTERNAL_TO_C_STRING(src, len, codesys) \ | |
2949 (Ibyte *) NEW_DFC_CONVERT_1_ALLOCA (src, len, DFC_SIZED_EXTERNAL, codesys) | |
2950 #define NEW_SIZED_EXTERNAL_TO_C_STRING_MALLOC(src, len, codesys) \ | |
2951 (Ibyte *) new_dfc_convert_malloc (src, len, DFC_SIZED_EXTERNAL, codesys) | |
2952 #define NEW_C_STRING_TO_EXTERNAL(src, codesys) \ | |
2953 (Extbyte *) NEW_DFC_CONVERT_1_ALLOCA (src, -1, DFC_INTERNAL, codesys) | |
2954 #define NEW_C_STRING_TO_EXTERNAL_MALLOC(src, codesys) \ | |
2955 (Extbyte *) new_dfc_convert_malloc (src, -1, DFC_INTERNAL, codesys) | |
2956 #define NEW_SIZED_C_STRING_TO_EXTERNAL(src, len, codesys) \ | |
2957 (Extbyte *) NEW_DFC_CONVERT_1_ALLOCA (src, len, DFC_SIZED_INTERNAL, codesys) | |
2958 #define NEW_SIZED_C_STRING_TO_EXTERNAL_MALLOC(src, len, codesys) \ | |
2959 (Extbyte *) new_dfc_convert_malloc (src, len, DFC_SIZED_INTERNAL, codesys) | |
2960 #define NEW_LISP_STRING_TO_EXTERNAL(src, codesys) \ | |
2961 (Extbyte *) NEW_DFC_CONVERT_1_ALLOCA (LISP_TO_VOID (src), -1, \ | |
2962 DFC_LISP_STRING, codesys) | |
2963 #define NEW_LISP_STRING_TO_EXTERNAL_MALLOC(src, codesys) \ | |
2964 (Extbyte *) new_dfc_convert_malloc (LISP_TO_VOID (src), -1, \ | |
2965 DFC_LISP_STRING, codesys) | |
771 | 2966 |
2367 | 2967 /* Standins for various encodings. */ |
2968 #ifdef WEXTTEXT_IS_WIDE | |
2969 #define Qcommand_argument_encoding Qmswindows_unicode | |
2970 #define Qenvironment_variable_encoding Qmswindows_unicode | |
2971 #else | |
771 | 2972 #define Qcommand_argument_encoding Qnative |
2973 #define Qenvironment_variable_encoding Qnative | |
2367 | 2974 #endif |
771 | 2975 #define Qunix_host_name_encoding Qnative |
2976 #define Qunix_service_name_encoding Qnative | |
4834
b3ea9c582280
Use new cygwin_conv_path API with Cygwin 1.7 for converting names between Win32 and POSIX, UTF-8-aware, with attendant changes elsewhere
Ben Wing <ben@xemacs.org>
parents:
4790
diff
changeset
|
2977 #define Qtime_function_encoding Qnative |
b3ea9c582280
Use new cygwin_conv_path API with Cygwin 1.7 for converting names between Win32 and POSIX, UTF-8-aware, with attendant changes elsewhere
Ben Wing <ben@xemacs.org>
parents:
4790
diff
changeset
|
2978 #define Qtime_zone_encoding Qtime_function_encoding |
771 | 2979 #define Qmswindows_host_name_encoding Qmswindows_multibyte |
2980 #define Qmswindows_service_name_encoding Qmswindows_multibyte | |
4834
b3ea9c582280
Use new cygwin_conv_path API with Cygwin 1.7 for converting names between Win32 and POSIX, UTF-8-aware, with attendant changes elsewhere
Ben Wing <ben@xemacs.org>
parents:
4790
diff
changeset
|
2981 #define Quser_name_encoding Qnative |
b3ea9c582280
Use new cygwin_conv_path API with Cygwin 1.7 for converting names between Win32 and POSIX, UTF-8-aware, with attendant changes elsewhere
Ben Wing <ben@xemacs.org>
parents:
4790
diff
changeset
|
2982 #define Qerror_message_encoding Qnative |
b3ea9c582280
Use new cygwin_conv_path API with Cygwin 1.7 for converting names between Win32 and POSIX, UTF-8-aware, with attendant changes elsewhere
Ben Wing <ben@xemacs.org>
parents:
4790
diff
changeset
|
2983 #define Qjpeg_error_message_encoding Qerror_message_encoding |
b3ea9c582280
Use new cygwin_conv_path API with Cygwin 1.7 for converting names between Win32 and POSIX, UTF-8-aware, with attendant changes elsewhere
Ben Wing <ben@xemacs.org>
parents:
4790
diff
changeset
|
2984 #define Qtooltalk_encoding Qnative |
b3ea9c582280
Use new cygwin_conv_path API with Cygwin 1.7 for converting names between Win32 and POSIX, UTF-8-aware, with attendant changes elsewhere
Ben Wing <ben@xemacs.org>
parents:
4790
diff
changeset
|
2985 #define Qgtk_encoding Qnative |
771 | 2986 |
2367 | 2987 /* Wexttext functions. The type of Wexttext is selected at compile time |
2988 and will sometimes be wchar_t, sometimes char. */ | |
2989 | |
2990 int wcscmp_ascii (const wchar_t *s1, const Ascbyte *s2); | |
2991 int wcsncmp_ascii (const wchar_t *s1, const Ascbyte *s2, Charcount len); | |
2992 | |
2993 #ifdef WEXTTEXT_IS_WIDE /* defined under MS Windows i.e. WIN32_NATIVE */ | |
2994 #define WEXTTEXT_ZTERM_SIZE sizeof (wchar_t) | |
2995 /* Extra indirection needed in case of manifest constant as arg */ | |
2996 #define WEXTSTRING_1(arg) L##arg | |
2997 #define WEXTSTRING(arg) WEXTSTRING_1(arg) | |
2998 #define wext_strlen wcslen | |
2999 #define wext_strcmp wcscmp | |
3000 #define wext_strncmp wcsncmp | |
3001 #define wext_strcmp_ascii wcscmp_ascii | |
3002 #define wext_strncmp_ascii wcsncmp_ascii | |
3003 #define wext_strcpy wcscpy | |
3004 #define wext_strncpy wcsncpy | |
3005 #define wext_strchr wcschr | |
3006 #define wext_strrchr wcsrchr | |
3007 #define wext_strdup wcsdup | |
3008 #define wext_atol(str) wcstol (str, 0, 10) | |
3009 #define wext_sprintf wsprintfW /* Huh? both wsprintfA and wsprintfW? */ | |
3010 #define wext_getenv _wgetenv | |
3011 #define build_wext_string(str, cs) build_ext_string ((Extbyte *) str, cs) | |
3012 #define WEXTTEXT_TO_8_BIT(arg) WEXTTEXT_TO_MULTIBYTE(arg) | |
3013 #ifdef WIN32_NATIVE | |
3014 int XCDECL wext_retry_open (const Wexttext *path, int oflag, ...); | |
3015 #else | |
3016 #error Cannot handle Wexttext yet on this system | |
3017 #endif | |
3018 #define wext_access _waccess | |
3019 #define wext_stat _wstat | |
3020 #else | |
3021 #define WEXTTEXT_ZTERM_SIZE sizeof (char) | |
3022 #define WEXTSTRING(arg) arg | |
3023 #define wext_strlen strlen | |
3024 #define wext_strcmp strcmp | |
3025 #define wext_strncmp strncmp | |
3026 #define wext_strcmp_ascii strcmp | |
3027 #define wext_strncmp_ascii strncmp | |
3028 #define wext_strcpy strcpy | |
3029 #define wext_strncpy strncpy | |
3030 #define wext_strchr strchr | |
3031 #define wext_strrchr strrchr | |
3032 #define wext_strdup xstrdup | |
3033 #define wext_atol(str) atol (str) | |
3034 #define wext_sprintf sprintf | |
3035 #define wext_getenv getenv | |
3036 #define build_wext_string build_ext_string | |
3037 #define wext_retry_open retry_open | |
3038 #define wext_access access | |
3039 #define wext_stat stat | |
3040 #define WEXTTEXT_TO_8_BIT(arg) ((Extbyte *) arg) | |
3041 #endif | |
3042 | |
3043 /* Standins for various X encodings. | |
1318 | 3044 |
3045 About encodings in X: | |
3046 | |
3047 X works with 5 different encodings: | |
3048 | |
3049 -- "Host Portable Character Encoding" == printable ASCII + space, tab, | |
3050 newline | |
3051 | |
3052 -- STRING encoding == ASCII + Latin-1 + tab, newline | |
3053 | |
3054 -- Locale-specific encoding | |
3055 | |
3056 -- Compound text == STRING encoding + ISO-2022 escape sequences to | |
3057 switch between different locale-specific encodings. | |
3058 | |
3059 -- ANSI C wide-character encoding | |
3060 | |
3061 The Host Portable Character Encoding (HPCE) is used for atom names, font | |
3062 names, color names, keysyms, geometry strings, resource manager quarks, | |
3063 display names, locale names, and various other things. When describing | |
3064 such strings, the X manual typically says "If the ... is not in the Host | |
3065 Portable Character Encoding, the result is implementation dependent." | |
3066 | |
3067 The wide-character encoding is used only in the Xwc* functions, which | |
3068 are provided as equivalents to Xmb* functions. | |
3069 | |
3070 STRING and compound text are used in the value of string properties and | |
3071 selection data, both of which are values with an associated type atom, | |
3072 which can be STRING or COMPOUND_TEXT. It can also be a locale name, as | |
3073 specified in setlocale() (#### as usual, there is no normalization | |
3074 whatsoever of these names). | |
3075 | |
3076 X also defines a type called "TEXT", which is used only as a requested | |
3077 type, and produces data in a type "convenient to the owner". However, | |
3078 there is some indication that X expects this to be the locale-specific | |
3079 encoding. | |
3080 | |
3081 According to the glossary, the locale is used in | |
3082 | |
3083 -- Encoding and processing of input method text | |
3084 -- Encoding of resource files and values | |
3085 -- Encoding and imaging of text strings | |
3086 -- Encoding and decoding for inter-client text communication | |
3087 | |
3088 The functions XmbTextListToTextProperty and XmbTextPropertyToTextList | |
3089 (and Xwc* equivalents) can be used to convert between the | |
3090 locale-specific encoding (XTextStyle), STRING (XStringStyle), and | |
3091 compound text (XCompoundTextStyle), as well as XStdICCTextStyle, which | |
3092 converts to STRING if possible, and if not, COMPOUND_TEXT. This is | |
3093 used, for example, in XmbSetWMProperties, in the window_name and | |
3094 icon_name properties (WM_NAME and WM_ICON_NAME), which are in the | |
3095 locale-specific encoding on input, and are stored as STRING if possible, | |
3096 COMPOUND_TEXT otherwise. | |
3097 */ | |
771 | 3098 |
3099 /* !!#### Need to verify the encoding used in lwlib -- Qnative or Qctext? | |
3100 Almost certainly the former. Use a standin for now. */ | |
3101 #define Qlwlib_encoding Qnative | |
3102 | |
1318 | 3103 /* The Host Portable Character Encoding. */ |
3104 #define Qx_hpc_encoding Qnative | |
3105 | |
3106 #define Qx_atom_name_encoding Qx_hpc_encoding | |
3107 #define Qx_font_name_encoding Qx_hpc_encoding | |
3108 #define Qx_color_name_encoding Qx_hpc_encoding | |
3109 #define Qx_keysym_encoding Qx_hpc_encoding | |
3110 #define Qx_geometry_encoding Qx_hpc_encoding | |
3111 #define Qx_resource_name_encoding Qx_hpc_encoding | |
3112 #define Qx_application_class_encoding Qx_hpc_encoding | |
771 | 3113 /* the following probably must agree with Qcommand_argument_encoding and |
3114 Qenvironment_variable_encoding */ | |
1318 | 3115 #define Qx_display_name_encoding Qx_hpc_encoding |
3116 #define Qx_xpm_data_encoding Qx_hpc_encoding | |
4834
b3ea9c582280
Use new cygwin_conv_path API with Cygwin 1.7 for converting names between Win32 and POSIX, UTF-8-aware, with attendant changes elsewhere
Ben Wing <ben@xemacs.org>
parents:
4790
diff
changeset
|
3117 #define Qx_error_message_encoding Qx_hpc_encoding |
1318 | 3118 |
2367 | 3119 /* !!#### Verify these! */ |
3120 #define Qxt_widget_arg_encoding Qnative | |
3121 #define Qdt_dnd_encoding Qnative | |
3122 | |
1318 | 3123 /* RedHat 6.2 contains a locale called "Francais" with the C-cedilla |
3124 encoded in ISO2022! */ | |
3125 #define Qlocale_name_encoding Qctext | |
771 | 3126 |
3127 #define Qstrerror_encoding Qnative | |
3128 | |
1318 | 3129 /* !!#### This exists to remind us that our hexify routine is totally |
3130 un-Muleized. */ | |
3131 #define Qdnd_hexify_encoding Qascii | |
3132 | |
771 | 3133 #define GET_STRERROR(var, num) \ |
3134 do { \ | |
3135 int __gsnum__ = (num); \ | |
3136 Extbyte * __gserr__ = strerror (__gsnum__); \ | |
3137 \ | |
3138 if (!__gserr__) \ | |
3139 { \ | |
867 | 3140 var = alloca_ibytes (99); \ |
771 | 3141 qxesprintf (var, "Unknown error %d", __gsnum__); \ |
3142 } \ | |
3143 else \ | |
3144 EXTERNAL_TO_C_STRING (__gserr__, var, Qstrerror_encoding); \ | |
3145 } while (0) | |
3146 | |
3147 #endif /* INCLUDED_text_h_ */ |