0
|
1 /* Header file for the buffer manipulation primitives.
|
|
2 Copyright (C) 1985, 1986, 1992, 1993, 1994, 1995
|
|
3 Free Software Foundation, Inc.
|
|
4 Copyright (C) 1995 Sun Microsystems, Inc.
|
|
5
|
|
6 This file is part of XEmacs.
|
|
7
|
|
8 XEmacs is free software; you can redistribute it and/or modify it
|
|
9 under the terms of the GNU General Public License as published by the
|
|
10 Free Software Foundation; either version 2, or (at your option) any
|
|
11 later version.
|
|
12
|
|
13 XEmacs is distributed in the hope that it will be useful, but WITHOUT
|
|
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
16 for more details.
|
|
17
|
|
18 You should have received a copy of the GNU General Public License
|
|
19 along with XEmacs; see the file COPYING. If not, write to
|
|
20 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
21 Boston, MA 02111-1307, USA. */
|
|
22
|
|
23 /* Synched up with: FSF 19.30. */
|
|
24
|
|
25 /* Authorship:
|
|
26
|
|
27 FSF: long ago.
|
|
28 JWZ: separated out bufslots.h, early in Lemacs.
|
|
29 Ben Wing: almost completely rewritten for Mule, 19.12.
|
|
30 */
|
|
31
|
|
32 #ifndef _XEMACS_BUFFER_H_
|
|
33 #define _XEMACS_BUFFER_H_
|
|
34
|
70
|
35 #ifdef MULE
|
|
36 #include "mule-charset.h"
|
|
37 #endif
|
16
|
38
|
0
|
39 /************************************************************************/
|
|
40 /* */
|
|
41 /* definition of Lisp buffer object */
|
|
42 /* */
|
|
43 /************************************************************************/
|
|
44
|
|
45 /* Note: we keep both Bytind and Bufpos versions of some of the
|
|
46 important buffer positions because they are accessed so much.
|
|
47 If we didn't do this, we would constantly be invalidating the
|
|
48 bufpos<->bytind cache under Mule.
|
|
49
|
|
50 Note that under non-Mule, both versions will always be the
|
|
51 same so we don't really need to keep track of them. But it
|
|
52 simplifies the logic to go ahead and do so all the time and
|
|
53 the memory loss is insignificant. */
|
|
54
|
|
55 /* Formerly, it didn't much matter what went inside the struct buffer_text
|
|
56 and what went outside it. Now it does, with the advent of "indirect
|
|
57 buffers" that share text with another buffer. An indirect buffer
|
|
58 shares the same *text* as another buffer, but has its own buffer-local
|
|
59 variables, its own accessible region, and its own markers and extents.
|
|
60 (Due to the nature of markers, it doesn't actually matter much whether
|
|
61 we stick them inside or out of the struct buffer_text -- the user won't
|
|
62 notice any difference -- but we go ahead and put them outside for
|
|
63 consistency and overall saneness of algorithm.)
|
|
64
|
|
65 FSFmacs gets away with not maintaining any "children" pointers from
|
|
66 a buffer to the indirect buffers that refer to it by putting the
|
|
67 markers inside of the struct buffer_text, using markers to keep track
|
|
68 of BEGV and ZV in indirect buffers, and relying on the fact that
|
|
69 all intervals (text properties and overlays) use markers for their
|
|
70 start and end points. We don't do this for extents (markers are
|
|
71 inefficient anyway and take up space), so we have to maintain
|
|
72 children pointers. This is not terribly hard, though, and the
|
|
73 code to maintain this is just like the code already present in
|
|
74 extent-parent and extent-children.
|
|
75 */
|
|
76
|
|
77 struct buffer_text
|
|
78 {
|
|
79 Bufbyte *beg; /* Actual address of buffer contents. */
|
|
80 Bytind gpt; /* Index of gap in buffer. */
|
|
81 Bytind z; /* Index of end of buffer. */
|
|
82 Bufpos bufz; /* Equivalent as a Bufpos. */
|
|
83 int gap_size; /* Size of buffer's gap */
|
|
84 int modiff; /* This counts buffer-modification events
|
|
85 for this buffer. It is incremented for
|
|
86 each such event, and never otherwise
|
|
87 changed. */
|
|
88 int save_modiff; /* Previous value of modiff, as of last
|
|
89 time buffer visited or saved a file. */
|
|
90
|
70
|
91 #ifdef MULE
|
|
92 /* We keep track of a "known" region for very fast access.
|
|
93 This information is text-only so it goes here. */
|
|
94 Bufpos mule_bufmin, mule_bufmax;
|
|
95 Bytind mule_bytmin, mule_bytmax;
|
|
96 int mule_shifter, mule_three_p;
|
|
97
|
|
98 /* And we also cache 16 positions for fairly fast access near those
|
|
99 positions. */
|
|
100 Bufpos mule_bufpos_cache[16];
|
|
101 Bytind mule_bytind_cache[16];
|
|
102 #endif
|
0
|
103
|
|
104 /* Change data that goes with the text. */
|
|
105 struct buffer_text_change_data *changes;
|
|
106
|
|
107 };
|
|
108
|
|
109 struct buffer
|
|
110 {
|
|
111 struct lcrecord_header header;
|
|
112
|
|
113 /* This structure holds the coordinates of the buffer contents
|
|
114 in ordinary buffers. In indirect buffers, this is not used. */
|
|
115 struct buffer_text own_text;
|
|
116
|
14
|
117 /* This points to the `struct buffer_text' that is used for this buffer.
|
0
|
118 In an ordinary buffer, this is the own_text field above.
|
|
119 In an indirect buffer, this is the own_text field of another buffer. */
|
|
120 struct buffer_text *text;
|
|
121
|
|
122 Bytind pt; /* Position of point in buffer. */
|
|
123 Bufpos bufpt; /* Equivalent as a Bufpos. */
|
|
124 Bytind begv; /* Index of beginning of accessible range. */
|
|
125 Bufpos bufbegv; /* Equivalent as a Bufpos. */
|
|
126 Bytind zv; /* Index of end of accessible range. */
|
|
127 Bufpos bufzv; /* Equivalent as a Bufpos. */
|
|
128
|
|
129 int face_change; /* This is set when a change in how the text
|
|
130 should be displayed (e.g., font, color)
|
|
131 is made. */
|
|
132
|
|
133 /* change data indicating what portion of the text has changed
|
|
134 since the last time this was reset. Used by redisplay.
|
|
135 Logically we should keep this with the text structure, but
|
|
136 redisplay resets it for each buffer individually and we don't
|
|
137 want interference between an indirect buffer and its base
|
|
138 buffer. */
|
|
139 struct each_buffer_change_data *changes;
|
|
140
|
|
141 #ifdef REGION_CACHE_NEEDS_WORK
|
|
142 /* If the long line scan cache is enabled (i.e. the buffer-local
|
|
143 variable cache-long-line-scans is non-nil), newline_cache
|
|
144 points to the newline cache, and width_run_cache points to the
|
|
145 width run cache.
|
|
146
|
|
147 The newline cache records which stretches of the buffer are
|
|
148 known *not* to contain newlines, so that they can be skipped
|
|
149 quickly when we search for newlines.
|
|
150
|
|
151 The width run cache records which stretches of the buffer are
|
|
152 known to contain characters whose widths are all the same. If
|
|
153 the width run cache maps a character to a value > 0, that value is
|
|
154 the character's width; if it maps a character to zero, we don't
|
|
155 know what its width is. This allows compute_motion to process
|
|
156 such regions very quickly, using algebra instead of inspecting
|
|
157 each character. See also width_table, below. */
|
|
158 struct region_cache *newline_cache;
|
|
159 struct region_cache *width_run_cache;
|
|
160 #endif
|
|
161
|
|
162 /* The markers that refer to this buffer. This
|
|
163 is actually a single marker -- successive elements in its marker
|
|
164 `chain' are the other markers referring to this buffer */
|
|
165 struct Lisp_Marker *markers;
|
|
166
|
|
167 /* The buffer's extent info. This is its own type, an extent-info
|
|
168 object (done this way for ease in marking / finalizing). */
|
|
169 Lisp_Object extent_info;
|
|
170
|
|
171 /* ----------------------------------------------------------------- */
|
|
172 /* All the stuff above this line is the responsibility of insdel.c,
|
|
173 with some help from marker.c and extents.c.
|
|
174 All the stuff below this line is the responsibility of buffer.c. */
|
|
175
|
|
176 /* In an indirect buffer, this points to the base buffer.
|
|
177 In an ordinary buffer, it is 0.
|
|
178 We DO mark through this slot. */
|
|
179 struct buffer *base_buffer;
|
|
180
|
|
181 /* List of indirect buffers whose base is this buffer.
|
|
182 If we are an indirect buffer, this will be nil.
|
|
183 Do NOT mark through this. */
|
|
184 Lisp_Object indirect_children;
|
|
185
|
|
186 /* Flags saying which DEFVAR_PER_BUFFER variables
|
|
187 are local to this buffer. */
|
|
188 int local_var_flags;
|
|
189
|
|
190 /* Set to the modtime of the visited file when read or written.
|
|
191 -1 means visited file was nonexistent.
|
|
192 0 means visited file modtime unknown; in no case complain
|
|
193 about any mismatch on next save attempt. */
|
|
194 int modtime;
|
|
195
|
|
196 /* the value of text->modiff at the last auto-save. */
|
|
197 int auto_save_modified;
|
|
198
|
|
199 /* The time at which we detected a failure to auto-save,
|
|
200 Or -1 if we didn't have a failure. */
|
|
201 int auto_save_failure_time;
|
|
202
|
|
203 /* Position in buffer at which display started
|
|
204 the last time this buffer was displayed. */
|
|
205 int last_window_start;
|
|
206
|
|
207 /* Everything from here down must be a Lisp_Object */
|
|
208
|
|
209 #define MARKED_SLOT(x) Lisp_Object x
|
|
210 #include "bufslots.h"
|
|
211 #undef MARKED_SLOT
|
|
212 };
|
|
213
|
|
214 DECLARE_LRECORD (buffer, struct buffer);
|
|
215 #define XBUFFER(x) XRECORD (x, buffer, struct buffer)
|
|
216 #define XSETBUFFER(x, p) XSETRECORD (x, p, buffer)
|
|
217 #define BUFFERP(x) RECORDP (x, buffer)
|
|
218 #define GC_BUFFERP(x) GC_RECORDP (x, buffer)
|
|
219 #define CHECK_BUFFER(x) CHECK_RECORD (x, buffer)
|
|
220 #define CONCHECK_BUFFER(x) CONCHECK_RECORD (x, buffer)
|
|
221
|
|
222 #define BUFFER_LIVE_P(b) (!NILP ((b)->name))
|
|
223 extern Lisp_Object Qbuffer_live_p;
|
|
224 #define CHECK_LIVE_BUFFER(x) \
|
|
225 do { CHECK_BUFFER (x); \
|
|
226 if (!BUFFER_LIVE_P (XBUFFER (x))) \
|
|
227 dead_wrong_type_argument (Qbuffer_live_p, (x)); \
|
|
228 } while (0)
|
|
229 #define CONCHECK_LIVE_BUFFER(x) \
|
|
230 do { CONCHECK_BUFFER (x); \
|
|
231 if (!BUFFER_LIVE_P (XBUFFER (x))) \
|
|
232 x = wrong_type_argument (Qbuffer_live_p, (x)); \
|
|
233 } while (0)
|
|
234
|
|
235 #define BUFFER_OR_STRING_P(x) (BUFFERP (x) || STRINGP (x))
|
|
236
|
|
237 extern Lisp_Object Qbuffer_or_string_p;
|
|
238 #define CHECK_BUFFER_OR_STRING(x) \
|
|
239 do { if (!BUFFER_OR_STRING_P (x)) \
|
|
240 dead_wrong_type_argument (Qbuffer_or_string_p, (x)); \
|
|
241 } while (0)
|
|
242 #define CONCHECK_BUFFER_OR_STRING(x) \
|
|
243 do { if (!BUFFER_OR_STRING_P (x)) \
|
|
244 x = wrong_type_argument (Qbuffer_or_string_p, (x)); \
|
|
245 } while (0)
|
|
246
|
|
247 #define CHECK_LIVE_BUFFER_OR_STRING(x) \
|
|
248 do { CHECK_BUFFER_OR_STRING (x); \
|
|
249 if (BUFFERP (x)) \
|
|
250 CHECK_LIVE_BUFFER (x); \
|
|
251 } while (0)
|
|
252 #define CONCHECK_LIVE_BUFFER_OR_STRING(x) \
|
|
253 do { CONCHECK_BUFFER_OR_STRING (x); \
|
|
254 if (BUFFERP (x)) \
|
|
255 CONCHECK_LIVE_BUFFER (x); \
|
|
256 } while (0)
|
|
257
|
|
258
|
|
259
|
|
260 /* NOTE: In all the following macros, we follow these rules concerning
|
|
261 multiple evaluation of the arguments:
|
|
262
|
|
263 1) Anything that's an lvalue can be evaluated more than once.
|
|
264 2) Anything that's a Lisp Object can be evaluated more than once.
|
|
265 This should probably be changed, but this follows the way
|
|
266 that all the macros in lisp.h do things.
|
|
267 3) 'struct buffer *' arguments can be evaluated more than once.
|
|
268 4) Nothing else can be evaluated more than once. Use MTxx
|
|
269 variables to prevent multiple evaluation.
|
|
270 5) An exception to (4) is that there are some macros below that
|
|
271 may evaluate their arguments more than once. They are all
|
|
272 denoted with the word "unsafe" in their name and are generally
|
|
273 meant to be called only by other macros that have already
|
|
274 stored the calling values in temporary variables.
|
|
275
|
|
276 */
|
|
277
|
|
278 /************************************************************************/
|
|
279 /* */
|
|
280 /* working with raw internal-format data */
|
|
281 /* */
|
|
282 /************************************************************************/
|
|
283
|
|
284 /* Use these on contiguous strings of data. If the text you're
|
|
285 operating on is known to come from a buffer, use the buffer-level
|
|
286 functions below -- they know about the gap and may be more
|
|
287 efficient. */
|
|
288
|
|
289 /* Functions are as follows:
|
|
290
|
|
291
|
|
292 (A) For working with charptr's (pointers to internally-formatted text):
|
|
293 -----------------------------------------------------------------------
|
|
294
|
|
295 VALID_CHARPTR_P(ptr):
|
|
296 Given a charptr, does it point to the beginning of a character?
|
|
297
|
|
298 ASSERT_VALID_CHARPTR(ptr):
|
|
299 If error-checking is enabled, assert that the given charptr
|
|
300 points to the beginning of a character. Otherwise, do nothing.
|
|
301
|
|
302 INC_CHARPTR(ptr):
|
|
303 Given a charptr (assumed to point at the beginning of a character),
|
|
304 modify that pointer so it points to the beginning of the next
|
|
305 character.
|
|
306
|
|
307 DEC_CHARPTR(ptr):
|
|
308 Given a charptr (assumed to point at the beginning of a
|
|
309 character or at the very end of the text), modify that pointer
|
|
310 so it points to the beginning of the previous character.
|
|
311
|
|
312 VALIDATE_CHARPTR_BACKWARD(ptr):
|
|
313 Make sure that PTR is pointing to the beginning of a character.
|
|
314 If not, back up until this is the case. Note that there are not
|
|
315 too many places where it is legitimate to do this sort of thing.
|
|
316 It's an error if you're passed an "invalid" char * pointer.
|
|
317 NOTE: PTR *must* be pointing to a valid part of the string (i.e.
|
|
318 not the very end, unless the string is zero-terminated or
|
|
319 something) in order for this function to not cause crashes.
|
|
320
|
|
321 VALIDATE_CHARPTR_FORWARD(ptr):
|
|
322 Make sure that PTR is pointing to the beginning of a character.
|
|
323 If not, move forward until this is the case. Note that there
|
|
324 are not too many places where it is legitimate to do this sort
|
|
325 of thing. It's an error if you're passed an "invalid" char *
|
|
326 pointer.
|
|
327
|
|
328
|
|
329 (B) For working with the length (in bytes and characters) of a
|
|
330 section of internally-formatted text:
|
|
331 --------------------------------------------------------------
|
|
332
|
|
333 bytecount_to_charcount(ptr, nbi):
|
|
334 Given a pointer to a text string and a length in bytes,
|
|
335 return the equivalent length in characters.
|
|
336
|
|
337 charcount_to_bytecount(ptr, nch):
|
|
338 Given a pointer to a text string and a length in characters,
|
|
339 return the equivalent length in bytes.
|
|
340
|
|
341 charptr_n_addr(ptr, n):
|
|
342 Return a pointer to the beginning of the character offset N
|
|
343 (in characters) from PTR.
|
|
344
|
|
345 charptr_length(ptr):
|
|
346 Given a zero-terminated pointer to Emacs characters,
|
|
347 return the number of Emacs characters contained within.
|
|
348
|
|
349
|
|
350 (C) For retrieving or changing the character pointed to by a charptr:
|
|
351 ---------------------------------------------------------------------
|
|
352
|
|
353 charptr_emchar(ptr):
|
|
354 Retrieve the character pointed to by PTR as an Emchar.
|
|
355
|
|
356 charptr_emchar_n(ptr, n):
|
|
357 Retrieve the character at offset N (in characters) from PTR,
|
|
358 as an Emchar.
|
|
359
|
|
360 set_charptr_emchar(ptr, ch):
|
|
361 Store the character CH (an Emchar) as internally-formatted
|
|
362 text starting at PTR. Return the number of bytes stored.
|
|
363
|
|
364 charptr_copy_char(ptr, ptr2):
|
|
365 Retrieve the character pointed to by PTR and store it as
|
|
366 internally-formatted text in PTR2.
|
|
367
|
|
368
|
|
369 (D) For working with Emchars:
|
|
370 -----------------------------
|
|
371
|
70
|
372 [Note that there are other functions/macros for working with Emchars
|
|
373 in mule-charset.h, for retrieving the charset of an Emchar
|
|
374 and such. These are only valid when MULE is defined.]
|
|
375
|
0
|
376 valid_char_p(ch):
|
|
377 Return whether the given Emchar is valid.
|
|
378
|
|
379 CHARP(ch):
|
|
380 Return whether the given Lisp_Object is a valid character.
|
|
381 This is approximately the same as saying the Lisp_Object is
|
|
382 an int whose value is a valid Emchar. (But not exactly
|
|
383 because when MULE is not defined, we allow arbitrary values
|
|
384 in all but the lowest 8 bits and mask them off, for backward
|
|
385 compatibility.)
|
|
386
|
|
387 CHECK_CHAR_COERCE_INT(ch):
|
|
388 Signal an error if CH is not a valid character as per CHARP().
|
|
389 Also canonicalize the value into a valid Emchar, as necessary.
|
|
390 (This only means anything when MULE is not defined.)
|
|
391
|
|
392 COERCE_CHAR(ch):
|
|
393 Coerce an object that is known to satisfy CHARP() into a
|
|
394 valid Emchar.
|
|
395
|
|
396 MAX_EMCHAR_LEN:
|
|
397 Maximum number of buffer bytes per Emacs character.
|
|
398
|
|
399 */
|
|
400
|
|
401
|
|
402 /* ---------------------------------------------------------------------- */
|
|
403 /* (A) For working with charptr's (pointers to internally-formatted text) */
|
|
404 /* ---------------------------------------------------------------------- */
|
|
405
|
70
|
406 #ifdef MULE
|
|
407 # define VALID_CHARPTR_P(ptr) BUFBYTE_FIRST_BYTE_P (* (unsigned char *) ptr)
|
|
408 #else
|
16
|
409 # define VALID_CHARPTR_P(ptr) 1
|
70
|
410 #endif
|
0
|
411
|
|
412 #ifdef ERROR_CHECK_BUFPOS
|
|
413 # define ASSERT_VALID_CHARPTR(ptr) assert (VALID_CHARPTR_P (ptr))
|
|
414 #else
|
|
415 # define ASSERT_VALID_CHARPTR(ptr)
|
|
416 #endif
|
|
417
|
|
418 /* Note that INC_CHARPTR() and DEC_CHARPTR() have to be written in
|
|
419 completely separate ways. INC_CHARPTR() cannot use the DEC_CHARPTR()
|
|
420 trick of looking for a valid first byte because it might run off
|
|
421 the end of the string. DEC_CHARPTR() can't use the INC_CHARPTR()
|
|
422 method because it doesn't have easy access to the first byte of
|
|
423 the character it's moving over. */
|
|
424
|
|
425 #define real_inc_charptr_fun(ptr) \
|
|
426 ((ptr) += REP_BYTES_BY_FIRST_BYTE (* (unsigned char *) (ptr)))
|
|
427 #ifdef ERROR_CHECK_BUFPOS
|
|
428 #define inc_charptr_fun(ptr) (ASSERT_VALID_CHARPTR (ptr), \
|
|
429 real_inc_charptr_fun (ptr))
|
|
430 #else
|
|
431 #define inc_charptr_fun(ptr) real_inc_charptr_fun (ptr)
|
|
432 #endif
|
|
433
|
|
434 #define REAL_INC_CHARPTR(ptr) do \
|
|
435 { \
|
|
436 real_inc_charptr_fun (ptr); \
|
|
437 } while (0)
|
|
438
|
|
439 #define INC_CHARPTR(ptr) do \
|
|
440 { \
|
|
441 ASSERT_VALID_CHARPTR (ptr); \
|
|
442 REAL_INC_CHARPTR (ptr); \
|
|
443 } while (0)
|
|
444
|
|
445 #define REAL_DEC_CHARPTR(ptr) do \
|
|
446 { \
|
|
447 (ptr)--; \
|
|
448 } while (!VALID_CHARPTR_P (ptr))
|
|
449
|
|
450 #ifdef ERROR_CHECK_BUFPOS
|
|
451 #define DEC_CHARPTR(ptr) do \
|
|
452 { \
|
|
453 CONST Bufbyte *__dcptr__ = (ptr); \
|
|
454 CONST Bufbyte *__dcptr2__ = __dcptr__; \
|
|
455 REAL_DEC_CHARPTR (__dcptr2__); \
|
|
456 assert (__dcptr__ - __dcptr2__ == \
|
|
457 REP_BYTES_BY_FIRST_BYTE (*__dcptr2__)); \
|
|
458 (ptr) = __dcptr2__; \
|
|
459 } while (0)
|
|
460 #else
|
|
461 #define DEC_CHARPTR(ptr) REAL_DEC_CHARPTR (ptr)
|
|
462 #endif
|
|
463
|
70
|
464 #ifdef MULE
|
|
465
|
|
466 #define VALIDATE_CHARPTR_BACKWARD(ptr) do \
|
|
467 { \
|
|
468 while (!VALID_CHARPTR_P (ptr)) ptr--; \
|
|
469 } while (0)
|
|
470
|
|
471 /* This needs to be trickier to avoid the possibility of running off
|
|
472 the end of the string. */
|
|
473
|
|
474 #define VALIDATE_CHARPTR_FORWARD(ptr) do \
|
|
475 { \
|
|
476 Bufbyte *__vcfptr__ = (ptr); \
|
|
477 VALIDATE_CHARPTR_BACKWARD (__vcfptr__); \
|
|
478 if (__vcfptr__ != (ptr)) \
|
|
479 { \
|
|
480 (ptr) = __vcfptr__; \
|
|
481 INC_CHARPTR (ptr); \
|
|
482 } \
|
|
483 } while (0)
|
|
484
|
|
485 #else /* not MULE */
|
0
|
486 #define VALIDATE_CHARPTR_BACKWARD(ptr)
|
|
487 #define VALIDATE_CHARPTR_FORWARD(ptr)
|
70
|
488 #endif /* not MULE */
|
0
|
489
|
|
490 /* -------------------------------------------------------------- */
|
|
491 /* (B) For working with the length (in bytes and characters) of a */
|
|
492 /* section of internally-formatted text */
|
|
493 /* -------------------------------------------------------------- */
|
|
494
|
|
495 INLINE CONST Bufbyte *charptr_n_addr (CONST Bufbyte *ptr, Charcount offset);
|
|
496 INLINE CONST Bufbyte *
|
|
497 charptr_n_addr (CONST Bufbyte *ptr, Charcount offset)
|
|
498 {
|
|
499 return ptr + charcount_to_bytecount (ptr, offset);
|
|
500 }
|
|
501
|
|
502 INLINE Charcount charptr_length (CONST Bufbyte *ptr);
|
|
503 INLINE Charcount
|
|
504 charptr_length (CONST Bufbyte *ptr)
|
|
505 {
|
|
506 return bytecount_to_charcount (ptr, strlen ((CONST char *) ptr));
|
|
507 }
|
|
508
|
|
509
|
|
510 /* -------------------------------------------------------------------- */
|
|
511 /* (C) For retrieving or changing the character pointed to by a charptr */
|
|
512 /* -------------------------------------------------------------------- */
|
|
513
|
|
514 #define simple_charptr_emchar(ptr) ((Emchar) (ptr)[0])
|
|
515 #define simple_set_charptr_emchar(ptr, x) ((ptr)[0] = (Bufbyte) (x), 1)
|
|
516 #define simple_charptr_copy_char(ptr, ptr2) ((ptr2)[0] = *(ptr), 1)
|
|
517
|
70
|
518 #ifdef MULE
|
|
519
|
|
520 Emchar non_ascii_charptr_emchar (CONST Bufbyte *ptr);
|
|
521 Bytecount non_ascii_set_charptr_emchar (Bufbyte *ptr, Emchar c);
|
|
522 Bytecount non_ascii_charptr_copy_char (CONST Bufbyte *ptr,
|
|
523 Bufbyte *ptr2);
|
|
524
|
|
525 INLINE Emchar charptr_emchar (CONST Bufbyte *ptr);
|
|
526 INLINE Emchar
|
|
527 charptr_emchar (CONST Bufbyte *ptr)
|
|
528 {
|
|
529 if (BYTE_ASCII_P (*ptr))
|
|
530 return simple_charptr_emchar (ptr);
|
|
531 else
|
|
532 return non_ascii_charptr_emchar (ptr);
|
|
533 }
|
|
534
|
|
535 INLINE Bytecount set_charptr_emchar (Bufbyte *ptr, Emchar x);
|
|
536 INLINE Bytecount
|
|
537 set_charptr_emchar (Bufbyte *ptr, Emchar x)
|
|
538 {
|
|
539 if (!CHAR_MULTIBYTE_P (x))
|
|
540 return simple_set_charptr_emchar (ptr, x);
|
|
541 else
|
|
542 return non_ascii_set_charptr_emchar (ptr, x);
|
|
543 }
|
|
544
|
|
545 INLINE Bytecount charptr_copy_char (CONST Bufbyte *ptr, Bufbyte *ptr2);
|
|
546 INLINE Bytecount
|
|
547 charptr_copy_char (CONST Bufbyte *ptr, Bufbyte *ptr2)
|
|
548 {
|
|
549 if (BYTE_ASCII_P (*ptr))
|
|
550 return simple_charptr_copy_char (ptr, ptr2);
|
|
551 else
|
|
552 return non_ascii_charptr_copy_char (ptr, ptr2);
|
|
553 }
|
|
554
|
|
555 #else /* not MULE */
|
|
556
|
0
|
557 # define charptr_emchar(ptr) simple_charptr_emchar (ptr)
|
|
558 # define set_charptr_emchar(ptr, x) simple_set_charptr_emchar (ptr, x)
|
|
559 # define charptr_copy_char(ptr, ptr2) simple_charptr_copy_char (ptr, ptr2)
|
|
560
|
70
|
561 #endif /* not MULE */
|
|
562
|
0
|
563 #define charptr_emchar_n(ptr, offset) \
|
|
564 charptr_emchar (charptr_n_addr (ptr, offset))
|
|
565
|
|
566
|
|
567 /* ---------------------------- */
|
|
568 /* (D) For working with Emchars */
|
|
569 /* ---------------------------- */
|
|
570
|
70
|
571 #ifdef MULE
|
|
572
|
|
573 int non_ascii_valid_char_p (Emchar ch);
|
|
574
|
|
575 INLINE int valid_char_p (Emchar ch);
|
|
576 INLINE int
|
|
577 valid_char_p (Emchar ch)
|
|
578 {
|
|
579 if (ch >= 0 && ch < 0400)
|
|
580 return 1;
|
|
581 else
|
|
582 return non_ascii_valid_char_p (ch);
|
|
583 }
|
|
584
|
|
585 #else /* not MULE */
|
|
586
|
0
|
587 #define valid_char_p(ch) ((unsigned int) (ch) < 0400)
|
|
588
|
70
|
589 #endif /* not MULE */
|
|
590
|
0
|
591 #define CHAR_INTP(x) (INTP (x) && valid_char_p (XINT (x)))
|
|
592
|
|
593 #define CHAR_OR_CHAR_INTP(x) (CHARP (x) || CHAR_INTP (x))
|
|
594
|
|
595 #ifdef ERROR_CHECK_TYPECHECK
|
|
596
|
|
597 INLINE Emchar XCHAR_OR_CHAR_INT (Lisp_Object obj);
|
|
598 INLINE Emchar
|
|
599 XCHAR_OR_CHAR_INT (Lisp_Object obj)
|
|
600 {
|
|
601 assert (CHAR_OR_CHAR_INTP (obj));
|
|
602 return XREALINT (obj);
|
|
603 }
|
|
604
|
|
605 #else
|
|
606
|
|
607 #define XCHAR_OR_CHAR_INT(obj) XREALINT (obj)
|
|
608
|
|
609 #endif
|
|
610
|
|
611 #define CHECK_CHAR_COERCE_INT(x) \
|
|
612 do { if (CHARP (x)) \
|
|
613 ; \
|
|
614 else if (CHAR_INTP (x)) \
|
|
615 x = make_char (XINT (x)); \
|
|
616 else \
|
|
617 x = wrong_type_argument (Qcharacterp, x); } while (0)
|
|
618
|
70
|
619 #ifdef MULE
|
|
620 # define MAX_EMCHAR_LEN 4
|
|
621 #else
|
16
|
622 # define MAX_EMCHAR_LEN 1
|
70
|
623 #endif
|
0
|
624
|
|
625
|
|
626 /*----------------------------------------------------------------------*/
|
|
627 /* Accessor macros for important positions in a buffer */
|
|
628 /*----------------------------------------------------------------------*/
|
|
629
|
|
630 /* We put them here because some stuff below wants them before the
|
|
631 place where we would normally put them. */
|
|
632
|
|
633 /* None of these are lvalues. Use the settor macros below to change
|
|
634 the positions. */
|
|
635
|
|
636 /* Beginning of buffer. */
|
|
637 #define BI_BUF_BEG(buf) ((Bytind) 1)
|
|
638 #define BUF_BEG(buf) ((Bufpos) 1)
|
|
639
|
|
640 /* Beginning of accessible range of buffer. */
|
|
641 #define BI_BUF_BEGV(buf) ((buf)->begv + 0)
|
|
642 #define BUF_BEGV(buf) ((buf)->bufbegv + 0)
|
|
643
|
|
644 /* End of accessible range of buffer. */
|
|
645 #define BI_BUF_ZV(buf) ((buf)->zv + 0)
|
|
646 #define BUF_ZV(buf) ((buf)->bufzv + 0)
|
|
647
|
|
648 /* End of buffer. */
|
|
649 #define BI_BUF_Z(buf) ((buf)->text->z + 0)
|
|
650 #define BUF_Z(buf) ((buf)->text->bufz + 0)
|
|
651
|
|
652 /* Point. */
|
|
653 #define BI_BUF_PT(buf) ((buf)->pt + 0)
|
|
654 #define BUF_PT(buf) ((buf)->bufpt + 0)
|
|
655
|
|
656 /*----------------------------------------------------------------------*/
|
|
657 /* Converting between positions and addresses */
|
|
658 /*----------------------------------------------------------------------*/
|
|
659
|
|
660 /* Convert the address of a byte in the buffer into a position. */
|
|
661 INLINE Bytind BI_BUF_PTR_BYTE_POS (struct buffer *buf, Bufbyte *ptr);
|
|
662 INLINE Bytind
|
|
663 BI_BUF_PTR_BYTE_POS (struct buffer *buf, Bufbyte *ptr)
|
|
664 {
|
|
665 return ((ptr) - (buf)->text->beg + 1
|
|
666 - ((ptr - (buf)->text->beg + 1) > (buf)->text->gpt
|
|
667 ? (buf)->text->gap_size : 0));
|
|
668 }
|
|
669
|
|
670 #define BUF_PTR_BYTE_POS(buf, ptr) \
|
|
671 bytind_to_bufpos (buf, BI_BUF_PTR_BYTE_POS (buf, ptr))
|
|
672
|
|
673 /* Address of byte at position POS in buffer. */
|
|
674 INLINE Bufbyte * BI_BUF_BYTE_ADDRESS (struct buffer *buf, Bytind pos);
|
|
675 INLINE Bufbyte *
|
|
676 BI_BUF_BYTE_ADDRESS (struct buffer *buf, Bytind pos)
|
|
677 {
|
|
678 return ((buf)->text->beg +
|
|
679 ((pos >= (buf)->text->gpt ? (pos + (buf)->text->gap_size) : pos)
|
|
680 - 1));
|
|
681 }
|
|
682
|
|
683 #define BUF_BYTE_ADDRESS(buf, pos) \
|
|
684 BI_BUF_BYTE_ADDRESS (buf, bufpos_to_bytind (buf, pos))
|
|
685
|
|
686 /* Address of byte before position POS in buffer. */
|
|
687 INLINE Bufbyte * BI_BUF_BYTE_ADDRESS_BEFORE (struct buffer *buf, Bytind pos);
|
|
688 INLINE Bufbyte *
|
|
689 BI_BUF_BYTE_ADDRESS_BEFORE (struct buffer *buf, Bytind pos)
|
|
690 {
|
|
691 return ((buf)->text->beg +
|
|
692 ((pos > (buf)->text->gpt ? (pos + (buf)->text->gap_size) : pos)
|
|
693 - 2));
|
|
694 }
|
|
695
|
|
696 #define BUF_BYTE_ADDRESS_BEFORE(buf, pos) \
|
|
697 BI_BUF_BYTE_ADDRESS_BEFORE (buf, bufpos_to_bytind (buf, pos))
|
|
698
|
|
699 /*----------------------------------------------------------------------*/
|
|
700 /* Converting between byte indices and memory indices */
|
|
701 /*----------------------------------------------------------------------*/
|
|
702
|
|
703 INLINE int valid_memind_p (struct buffer *buf, Memind x);
|
|
704 INLINE int
|
|
705 valid_memind_p (struct buffer *buf, Memind x)
|
|
706 {
|
|
707 if (x >= 1 && x <= (Memind) (buf)->text->gpt)
|
|
708 return 1;
|
|
709 if (x > (Memind) ((buf)->text->gpt + (buf)->text->gap_size)
|
|
710 && x <= (Memind) ((buf)->text->z + (buf)->text->gap_size))
|
|
711 return 1;
|
|
712 return 0;
|
|
713 }
|
|
714
|
|
715 INLINE Memind bytind_to_memind (struct buffer *buf, Bytind x);
|
|
716 INLINE Memind
|
|
717 bytind_to_memind (struct buffer *buf, Bytind x)
|
|
718 {
|
|
719 if (x > (buf)->text->gpt)
|
|
720 return (Memind) (x + (buf)->text->gap_size);
|
|
721 else
|
|
722 return (Memind) (x);
|
|
723 }
|
|
724
|
|
725 #ifdef ERROR_CHECK_BUFPOS
|
|
726
|
|
727 INLINE Bytind memind_to_bytind (struct buffer *buf, Memind x);
|
|
728 INLINE Bytind
|
|
729 memind_to_bytind (struct buffer *buf, Memind x)
|
|
730 {
|
|
731 assert (valid_memind_p (buf, x));
|
|
732 if (x > (Memind) (buf)->text->gpt)
|
|
733 return (Bytind) (x - (buf)->text->gap_size);
|
|
734 else
|
|
735 return (Bytind) (x);
|
|
736 }
|
|
737
|
|
738 #else
|
|
739
|
|
740 INLINE Bytind memind_to_bytind (struct buffer *buf, Memind x);
|
|
741 INLINE Bytind
|
|
742 memind_to_bytind (struct buffer *buf, Memind x)
|
|
743 {
|
|
744 if (x > (Memind) (buf)->text->gpt)
|
|
745 return (Bytind) (x - (buf)->text->gap_size);
|
|
746 else
|
|
747 return (Bytind) (x);
|
|
748 }
|
|
749
|
|
750 #endif
|
|
751
|
|
752 #define memind_to_bufpos(buf, x) \
|
|
753 bytind_to_bufpos (buf, memind_to_bytind (buf, x))
|
|
754 #define bufpos_to_memind(buf, x) \
|
|
755 bytind_to_memind (buf, bufpos_to_bytind (buf, x))
|
|
756
|
|
757 /* These macros generalize many standard buffer-position functions to
|
|
758 either a buffer or a string. */
|
|
759
|
|
760 /* Converting between Meminds and Bytinds, for a buffer-or-string.
|
|
761 For strings, this is a no-op. For buffers, this resolves
|
|
762 to the standard memind<->bytind converters. */
|
|
763
|
|
764 #define buffer_or_string_bytind_to_memind(obj, ind) \
|
|
765 (BUFFERP (obj) ? bytind_to_memind (XBUFFER (obj), ind) : (Memind) ind)
|
|
766
|
|
767 #define buffer_or_string_memind_to_bytind(obj, ind) \
|
|
768 (BUFFERP (obj) ? memind_to_bytind (XBUFFER (obj), ind) : (Bytind) ind)
|
|
769
|
|
770 /* Converting between Bufpos's and Bytinds, for a buffer-or-string.
|
|
771 For strings, this maps to the bytecount<->charcount converters. */
|
|
772
|
|
773 #define buffer_or_string_bufpos_to_bytind(obj, pos) \
|
|
774 (BUFFERP (obj) ? bufpos_to_bytind (XBUFFER (obj), pos) : \
|
14
|
775 (Bytind) charcount_to_bytecount (XSTRING_DATA (obj), pos))
|
0
|
776
|
|
777 #define buffer_or_string_bytind_to_bufpos(obj, ind) \
|
|
778 (BUFFERP (obj) ? bytind_to_bufpos (XBUFFER (obj), ind) : \
|
14
|
779 (Bufpos) bytecount_to_charcount (XSTRING_DATA (obj), ind))
|
0
|
780
|
|
781 /* Similar for Bufpos's and Meminds. */
|
|
782
|
|
783 #define buffer_or_string_bufpos_to_memind(obj, pos) \
|
|
784 (BUFFERP (obj) ? bufpos_to_memind (XBUFFER (obj), pos) : \
|
14
|
785 (Memind) charcount_to_bytecount (XSTRING_DATA (obj), pos))
|
0
|
786
|
|
787 #define buffer_or_string_memind_to_bufpos(obj, ind) \
|
|
788 (BUFFERP (obj) ? memind_to_bufpos (XBUFFER (obj), ind) : \
|
14
|
789 (Bufpos) bytecount_to_charcount (XSTRING_DATA (obj), ind))
|
0
|
790
|
|
791 /************************************************************************/
|
|
792 /* */
|
|
793 /* working with buffer-level data */
|
|
794 /* */
|
|
795 /************************************************************************/
|
|
796
|
|
797 /*
|
|
798
|
|
799 (A) Working with byte indices:
|
|
800 ------------------------------
|
|
801
|
|
802 VALID_BYTIND_P(buf, bi):
|
|
803 Given a byte index, does it point to the beginning of a character?
|
|
804
|
|
805 ASSERT_VALID_BYTIND_UNSAFE(buf, bi):
|
|
806 If error-checking is enabled, assert that the given byte index
|
|
807 is within range and points to the beginning of a character
|
|
808 or to the end of the buffer. Otherwise, do nothing.
|
|
809
|
|
810 ASSERT_VALID_BYTIND_BACKWARD_UNSAFE(buf, bi):
|
|
811 If error-checking is enabled, assert that the given byte index
|
|
812 is within range and satisfies ASSERT_VALID_BYTIND() and also
|
|
813 does not refer to the beginning of the buffer. (i.e. movement
|
|
814 backwards is OK.) Otherwise, do nothing.
|
|
815
|
|
816 ASSERT_VALID_BYTIND_FORWARD_UNSAFE(buf, bi):
|
|
817 If error-checking is enabled, assert that the given byte index
|
|
818 is within range and satisfies ASSERT_VALID_BYTIND() and also
|
|
819 does not refer to the end of the buffer. (i.e. movement
|
|
820 forwards is OK.) Otherwise, do nothing.
|
|
821
|
|
822 VALIDATE_BYTIND_BACKWARD(buf, bi):
|
|
823 Make sure that the given byte index is pointing to the beginning
|
|
824 of a character. If not, back up until this is the case. Note
|
|
825 that there are not too many places where it is legitimate to do
|
|
826 this sort of thing. It's an error if you're passed an "invalid"
|
|
827 byte index.
|
|
828
|
|
829 VALIDATE_BYTIND_FORWARD(buf, bi):
|
|
830 Make sure that the given byte index is pointing to the beginning
|
|
831 of a character. If not, move forward until this is the case.
|
|
832 Note that there are not too many places where it is legitimate
|
|
833 to do this sort of thing. It's an error if you're passed an
|
|
834 "invalid" byte index.
|
|
835
|
|
836 INC_BYTIND(buf, bi):
|
|
837 Given a byte index (assumed to point at the beginning of a
|
|
838 character), modify that value so it points to the beginning
|
|
839 of the next character.
|
|
840
|
|
841 DEC_BYTIND(buf, bi):
|
|
842 Given a byte index (assumed to point at the beginning of a
|
|
843 character), modify that value so it points to the beginning
|
|
844 of the previous character. Unlike for DEC_CHARPTR(), we can
|
|
845 do all the assert()s because there are sentinels at the
|
|
846 beginning of the gap and the end of the buffer.
|
|
847
|
|
848 BYTIND_INVALID:
|
|
849 A constant representing an invalid Bytind. Valid Bytinds
|
|
850 can never have this value.
|
|
851
|
|
852
|
|
853 (B) Converting between Bufpos's and Bytinds:
|
|
854 --------------------------------------------
|
|
855
|
|
856 bufpos_to_bytind(buf, bu):
|
|
857 Given a Bufpos, return the equivalent Bytind.
|
|
858
|
|
859 bytind_to_bufpos(buf, bi):
|
|
860 Given a Bytind, return the equivalent Bufpos.
|
|
861
|
|
862 make_bufpos(buf, bi):
|
|
863 Given a Bytind, return the equivalent Bufpos as a Lisp Object.
|
|
864
|
|
865
|
|
866
|
|
867 */
|
|
868
|
|
869
|
|
870 /*----------------------------------------------------------------------*/
|
|
871 /* working with byte indices */
|
|
872 /*----------------------------------------------------------------------*/
|
|
873
|
70
|
874 #ifdef MULE
|
|
875 # define VALID_BYTIND_P(buf, x) \
|
|
876 BUFBYTE_FIRST_BYTE_P (*BI_BUF_BYTE_ADDRESS (buf, x))
|
|
877 #else
|
16
|
878 # define VALID_BYTIND_P(buf, x) 1
|
70
|
879 #endif
|
0
|
880
|
|
881 #ifdef ERROR_CHECK_BUFPOS
|
|
882
|
|
883 # define ASSERT_VALID_BYTIND_UNSAFE(buf, x) do \
|
|
884 { \
|
|
885 assert (BUFFER_LIVE_P (buf)); \
|
|
886 assert ((x) >= BI_BUF_BEG (buf) && x <= BI_BUF_Z (buf)); \
|
|
887 assert (VALID_BYTIND_P (buf, x)); \
|
|
888 } while (0)
|
|
889 # define ASSERT_VALID_BYTIND_BACKWARD_UNSAFE(buf, x) do \
|
|
890 { \
|
|
891 assert (BUFFER_LIVE_P (buf)); \
|
|
892 assert ((x) > BI_BUF_BEG (buf) && x <= BI_BUF_Z (buf)); \
|
|
893 assert (VALID_BYTIND_P (buf, x)); \
|
|
894 } while (0)
|
|
895 # define ASSERT_VALID_BYTIND_FORWARD_UNSAFE(buf, x) do \
|
|
896 { \
|
|
897 assert (BUFFER_LIVE_P (buf)); \
|
|
898 assert ((x) >= BI_BUF_BEG (buf) && x < BI_BUF_Z (buf)); \
|
|
899 assert (VALID_BYTIND_P (buf, x)); \
|
|
900 } while (0)
|
|
901
|
|
902 #else /* not ERROR_CHECK_BUFPOS */
|
|
903 # define ASSERT_VALID_BYTIND_UNSAFE(buf, x)
|
|
904 # define ASSERT_VALID_BYTIND_BACKWARD_UNSAFE(buf, x)
|
|
905 # define ASSERT_VALID_BYTIND_FORWARD_UNSAFE(buf, x)
|
|
906
|
|
907 #endif /* not ERROR_CHECK_BUFPOS */
|
|
908
|
70
|
909 /* Note that, although the Mule version will work fine for non-Mule
|
|
910 as well (it should reduce down to nothing), we provide a separate
|
|
911 version to avoid compilation warnings and possible non-optimal
|
|
912 results with stupid compilers. */
|
|
913
|
|
914 #ifdef MULE
|
|
915 # define VALIDATE_BYTIND_BACKWARD(buf, x) do \
|
|
916 { \
|
|
917 Bufbyte *__ibptr = BI_BUF_BYTE_ADDRESS (buf, x); \
|
|
918 while (!BUFBYTE_FIRST_BYTE_P (*__ibptr)) \
|
|
919 __ibptr--, (x)--; \
|
|
920 } while (0)
|
|
921 #else
|
16
|
922 # define VALIDATE_BYTIND_BACKWARD(buf, x)
|
70
|
923 #endif
|
0
|
924
|
70
|
925 /* Note that, although the Mule version will work fine for non-Mule
|
|
926 as well (it should reduce down to nothing), we provide a separate
|
|
927 version to avoid compilation warnings and possible non-optimal
|
|
928 results with stupid compilers. */
|
|
929
|
|
930 #ifdef MULE
|
|
931 # define VALIDATE_BYTIND_FORWARD(buf, x) do \
|
|
932 { \
|
|
933 Bufbyte *__ibptr = BI_BUF_BYTE_ADDRESS (buf, x); \
|
|
934 while (!BUFBYTE_FIRST_BYTE_P (*__ibptr)) \
|
|
935 __ibptr++, (x)++; \
|
|
936 } while (0)
|
|
937 #else
|
16
|
938 # define VALIDATE_BYTIND_FORWARD(buf, x)
|
70
|
939 #endif
|
0
|
940
|
|
941 /* Note that in the simplest case (no MULE, no ERROR_CHECK_BUFPOS),
|
|
942 this crap reduces down to simply (x)++. */
|
|
943
|
|
944 #define INC_BYTIND(buf, x) do \
|
|
945 { \
|
|
946 ASSERT_VALID_BYTIND_FORWARD_UNSAFE (buf, x); \
|
|
947 /* Note that we do the increment first to \
|
|
948 make sure that the pointer in \
|
|
949 VALIDATE_BYTIND_FORWARD() ends up on \
|
|
950 the correct side of the gap */ \
|
|
951 (x)++; \
|
|
952 VALIDATE_BYTIND_FORWARD (buf, x); \
|
|
953 } while (0)
|
|
954
|
|
955 /* Note that in the simplest case (no MULE, no ERROR_CHECK_BUFPOS),
|
|
956 this crap reduces down to simply (x)--. */
|
|
957
|
|
958 #define DEC_BYTIND(buf, x) do \
|
|
959 { \
|
|
960 ASSERT_VALID_BYTIND_BACKWARD_UNSAFE (buf, x); \
|
|
961 /* Note that we do the decrement first to \
|
|
962 make sure that the pointer in \
|
|
963 VALIDATE_BYTIND_BACKWARD() ends up on \
|
|
964 the correct side of the gap */ \
|
|
965 (x)--; \
|
|
966 VALIDATE_BYTIND_BACKWARD (buf, x); \
|
|
967 } while (0)
|
|
968
|
|
969 INLINE Bytind prev_bytind (struct buffer *buf, Bytind x);
|
|
970 INLINE Bytind
|
|
971 prev_bytind (struct buffer *buf, Bytind x)
|
|
972 {
|
|
973 DEC_BYTIND (buf, x);
|
|
974 return x;
|
|
975 }
|
|
976
|
|
977 INLINE Bytind next_bytind (struct buffer *buf, Bytind x);
|
|
978 INLINE Bytind
|
|
979 next_bytind (struct buffer *buf, Bytind x)
|
|
980 {
|
|
981 INC_BYTIND (buf, x);
|
|
982 return x;
|
|
983 }
|
|
984
|
|
985 #define BYTIND_INVALID ((Bytind) -1)
|
|
986
|
|
987 /*----------------------------------------------------------------------*/
|
|
988 /* Converting between buffer positions and byte indices */
|
|
989 /*----------------------------------------------------------------------*/
|
|
990
|
70
|
991 #ifdef MULE
|
|
992
|
|
993 Bytind bufpos_to_bytind_func (struct buffer *buf, Bufpos x);
|
|
994 Bufpos bytind_to_bufpos_func (struct buffer *buf, Bytind x);
|
|
995
|
|
996 /* The basic algorithm we use is to keep track of a known region of
|
|
997 characters in each buffer, all of which are of the same width. We
|
|
998 keep track of the boundaries of the region in both Bufpos and
|
|
999 Bytind coordinates and also keep track of the char width, which
|
|
1000 is 1 - 4 bytes. If the position we're translating is not in
|
|
1001 the known region, then we invoke a function to update the known
|
|
1002 region to surround the position in question. This assumes
|
|
1003 locality of reference, which is usually the case.
|
|
1004
|
|
1005 Note that the function to update the known region can be simple
|
|
1006 or complicated depending on how much information we cache.
|
|
1007 For the moment, we don't cache any information, and just move
|
|
1008 linearly forward or back from the known region, with a few
|
|
1009 shortcuts to catch all-ASCII buffers. (Note that this will
|
|
1010 thrash with bad locality of reference.) A smarter method would
|
|
1011 be to keep some sort of pseudo-extent layer over the buffer;
|
|
1012 maybe keep track of the bufpos/bytind correspondence at the
|
|
1013 beginning of each line, which would allow us to do a binary
|
|
1014 search over the pseudo-extents to narrow things down to the
|
|
1015 correct line, at which point you could use a linear movement
|
|
1016 method. This would also mesh well with efficiently
|
|
1017 implementing a line-numbering scheme.
|
|
1018
|
|
1019 Note also that we have to multiply or divide by the char width
|
|
1020 in order to convert the positions. We do some tricks to avoid
|
|
1021 ever actually having to do a multiply or divide, because that
|
|
1022 is typically an expensive operation (esp. divide). Multiplying
|
|
1023 or dividing by 1, 2, or 4 can be implemented simply as a
|
|
1024 shift left or shift right, and we keep track of a shifter value
|
|
1025 (0, 1, or 2) indicating how much to shift. Multiplying by 3
|
|
1026 can be implemented by doubling and then adding the original
|
|
1027 value. Dividing by 3, alas, cannot be implemented in any
|
|
1028 simple shift/subtract method, as far as I know; so we just
|
|
1029 do a table lookup. For simplicity, we use a table of size
|
|
1030 128K, which indexes the "divide-by-3" values for the first
|
|
1031 64K non-negative numbers. (Note that we can increase the
|
|
1032 size up to 384K, i.e. indexing the first 192K non-negative
|
|
1033 numbers, while still using shorts in the array.) This also
|
|
1034 means that the size of the known region can be at most
|
|
1035 64K for width-three characters.
|
|
1036 */
|
|
1037
|
|
1038 extern short three_to_one_table[];
|
|
1039
|
|
1040 INLINE int real_bufpos_to_bytind (struct buffer *buf, Bufpos x);
|
|
1041 INLINE int
|
|
1042 real_bufpos_to_bytind (struct buffer *buf, Bufpos x)
|
|
1043 {
|
|
1044 if (x >= buf->text->mule_bufmin && x <= buf->text->mule_bufmax)
|
|
1045 return (buf->text->mule_bytmin +
|
|
1046 ((x - buf->text->mule_bufmin) << buf->text->mule_shifter) +
|
|
1047 (buf->text->mule_three_p ? (x - buf->text->mule_bufmin) : 0));
|
|
1048 else
|
|
1049 return bufpos_to_bytind_func (buf, x);
|
|
1050 }
|
|
1051
|
|
1052 INLINE int real_bytind_to_bufpos (struct buffer *buf, Bytind x);
|
|
1053 INLINE int
|
|
1054 real_bytind_to_bufpos (struct buffer *buf, Bytind x)
|
|
1055 {
|
|
1056 if (x >= buf->text->mule_bytmin && x <= buf->text->mule_bytmax)
|
|
1057 return (buf->text->mule_bufmin +
|
|
1058 ((buf->text->mule_three_p
|
|
1059 ? three_to_one_table[x - buf->text->mule_bytmin]
|
|
1060 : (x - buf->text->mule_bytmin) >> buf->text->mule_shifter)));
|
|
1061 else
|
|
1062 return bytind_to_bufpos_func (buf, x);
|
|
1063 }
|
|
1064
|
|
1065 #else /* not MULE */
|
|
1066
|
16
|
1067 # define real_bufpos_to_bytind(buf, x) ((Bytind) x)
|
|
1068 # define real_bytind_to_bufpos(buf, x) ((Bufpos) x)
|
0
|
1069
|
70
|
1070 #endif /* not MULE */
|
|
1071
|
0
|
1072 #ifdef ERROR_CHECK_BUFPOS
|
|
1073
|
|
1074 Bytind bufpos_to_bytind (struct buffer *buf, Bufpos x);
|
|
1075 Bufpos bytind_to_bufpos (struct buffer *buf, Bytind x);
|
|
1076
|
|
1077 #else /* not ERROR_CHECK_BUFPOS */
|
|
1078
|
|
1079 #define bufpos_to_bytind real_bufpos_to_bytind
|
|
1080 #define bytind_to_bufpos real_bytind_to_bufpos
|
|
1081
|
|
1082 #endif /* not ERROR_CHECK_BUFPOS */
|
|
1083
|
|
1084 #define make_bufpos(buf, ind) make_int (bytind_to_bufpos (buf, ind))
|
|
1085
|
|
1086 /*----------------------------------------------------------------------*/
|
|
1087 /* Converting between buffer bytes and Emacs characters */
|
|
1088 /*----------------------------------------------------------------------*/
|
|
1089
|
|
1090 /* The character at position POS in buffer. */
|
|
1091 #define BI_BUF_FETCH_CHAR(buf, pos) \
|
|
1092 charptr_emchar (BI_BUF_BYTE_ADDRESS (buf, pos))
|
|
1093 #define BUF_FETCH_CHAR(buf, pos) \
|
|
1094 BI_BUF_FETCH_CHAR (buf, bufpos_to_bytind (buf, pos))
|
|
1095
|
|
1096 /* The character at position POS in buffer, as a string. This is
|
|
1097 equivalent to set_charptr_emchar (str, BUF_FETCH_CHAR (buf, pos))
|
|
1098 but is faster for Mule. */
|
|
1099
|
|
1100 # define BI_BUF_CHARPTR_COPY_CHAR(buf, pos, str) \
|
|
1101 charptr_copy_char (BI_BUF_BYTE_ADDRESS (buf, pos), str)
|
|
1102 #define BUF_CHARPTR_COPY_CHAR(buf, pos, str) \
|
|
1103 BI_BUF_CHARPTR_COPY_CHAR (buf, bufpos_to_bytind (buf, pos), str)
|
|
1104
|
|
1105
|
|
1106
|
|
1107
|
|
1108
|
|
1109
|
|
1110 /************************************************************************/
|
|
1111 /* */
|
|
1112 /* working with externally-formatted data */
|
|
1113 /* */
|
|
1114 /************************************************************************/
|
|
1115
|
|
1116 /* Sometimes strings need to be converted into one or another
|
|
1117 external format, for passing to a library function. (Note
|
|
1118 that we encapsulate and automatically convert the arguments
|
|
1119 of some functions, but not others.) At times this conversion
|
|
1120 also has to go the other way -- i.e. when we get external-
|
|
1121 format strings back from a library function.
|
|
1122 */
|
|
1123
|
70
|
1124 #ifdef MULE
|
|
1125
|
|
1126 /* WARNING: These use a static buffer. This can lead to disaster if
|
|
1127 these functions are not used *very* carefully. Under normal
|
|
1128 circumstances, do not call these functions; call the front ends
|
|
1129 below. */
|
|
1130
|
|
1131 CONST Extbyte *convert_to_external_format (CONST Bufbyte *ptr,
|
|
1132 Bytecount len,
|
|
1133 Extcount *len_out,
|
|
1134 enum external_data_format fmt);
|
|
1135 CONST Bufbyte *convert_from_external_format (CONST Extbyte *ptr,
|
|
1136 Extcount len,
|
|
1137 Bytecount *len_out,
|
|
1138 enum external_data_format fmt);
|
|
1139
|
|
1140 #else /* ! MULE */
|
|
1141
|
0
|
1142 #define convert_to_external_format(ptr, len, len_out, fmt) \
|
|
1143 (*(len_out) = (int) (len), (CONST Extbyte *) (ptr))
|
|
1144 #define convert_from_external_format(ptr, len, len_out, fmt) \
|
|
1145 (*(len_out) = (Bytecount) (len), (CONST Bufbyte *) (ptr))
|
|
1146
|
70
|
1147 #endif /* ! MULE */
|
0
|
1148
|
|
1149 /* In all of the following macros we use the following general principles:
|
|
1150
|
|
1151 -- Functions that work with charptr's accept two sorts of charptr's:
|
|
1152
|
|
1153 a) Pointers to memory with a length specified. The pointer will be
|
|
1154 fundamentally of type `unsigned char *' (although labelled
|
|
1155 as `Bufbyte *' for internal-format data and `Extbyte *' for
|
|
1156 external-format data) and the length will be fundamentally of
|
|
1157 type `int' (although labelled as `Bytecount' for internal-format
|
|
1158 data and `Extcount' for external-format data). The length is
|
|
1159 always a count in bytes.
|
|
1160 b) Zero-terminated pointers; no length specified. The pointer
|
|
1161 is of type `char *', whether the data pointed to is internal-format
|
|
1162 or external-format. These sorts of pointers are available for
|
|
1163 convenience in working with C library functions and literal
|
|
1164 strings. In general you should use these sorts of pointers only
|
|
1165 to interface to library routines and not for general manipulation,
|
|
1166 as you are liable to lose embedded nulls and such. This could
|
|
1167 be a big problem for routines that want Unicode-formatted data,
|
|
1168 which is likely to have lots of embedded nulls in it.
|
|
1169
|
|
1170 -- Functions that work with Lisp strings accept strings as Lisp Objects
|
|
1171 (as opposed to the `struct Lisp_String *' for some of the other
|
|
1172 string accessors). This is for convenience in working with the
|
|
1173 functions, as otherwise you will almost always have to call
|
|
1174 XSTRING() on the object.
|
|
1175
|
|
1176 -- Functions that work with charptr's are not guaranteed to copy
|
|
1177 their data into alloca()ed space. Functions that work with
|
|
1178 Lisp strings are, however. The reason is that Lisp strings can
|
|
1179 be relocated any time a GC happens, and it could happen at some
|
|
1180 rather unexpected times. The internal-external conversion is
|
|
1181 rarely done in time-critical functions, and so the slight
|
|
1182 extra time required for alloca() and copy is well-worth the
|
|
1183 safety of knowing your string data won't be relocated out from
|
|
1184 under you.
|
|
1185 */
|
|
1186
|
|
1187
|
|
1188 /* Maybe convert charptr's data into ext-format and store the result in
|
|
1189 alloca()'ed space.
|
|
1190
|
|
1191 You may wonder why this is written in this fashion and not as a
|
|
1192 function call. With a little trickery it could certainly be
|
|
1193 written this way, but it won't work because of those DAMN GCC WANKERS
|
|
1194 who couldn't be bothered to handle alloca() properly on the x86
|
|
1195 architecture. (If you put a call to alloca() in the argument to
|
|
1196 a function call, the stack space gets allocated right in the
|
|
1197 middle of the arguments to the function call and you are unbelievably
|
|
1198 hosed.) */
|
|
1199
|
70
|
1200 #ifdef MULE
|
|
1201
|
|
1202 #define GET_CHARPTR_EXT_DATA_ALLOCA(ptr, len, fmt, stick_value_here, stick_len_here) \
|
|
1203 do \
|
|
1204 { \
|
|
1205 Bytecount __gceda_len_in__ = (len); \
|
|
1206 Extcount __gceda_len_out__; \
|
|
1207 CONST Bufbyte *__gceda_ptr_in__ = (ptr); \
|
|
1208 CONST Extbyte *__gceda_ptr_out__; \
|
|
1209 \
|
|
1210 __gceda_ptr_out__ = \
|
|
1211 convert_to_external_format (__gceda_ptr_in__, __gceda_len_in__, \
|
|
1212 &__gceda_len_out__, fmt); \
|
|
1213 /* If the new string is identical to the old (will be the case most \
|
|
1214 of the time), just return the same string back. This saves \
|
|
1215 on alloca()ing, which can be useful on C alloca() machines and \
|
|
1216 on stack-space-challenged environments. */ \
|
|
1217 \
|
|
1218 if (__gceda_len_in__ == __gceda_len_out__ && \
|
|
1219 !memcmp (__gceda_ptr_in__, __gceda_ptr_out__, __gceda_len_out__)) \
|
|
1220 { \
|
|
1221 (stick_value_here) = (CONST Extbyte *) __gceda_ptr_in__; \
|
|
1222 (stick_len_here) = (Extcount) __gceda_len_in__; \
|
|
1223 } \
|
|
1224 else \
|
|
1225 { \
|
|
1226 (stick_value_here) = (CONST Extbyte *) alloca(1 + __gceda_len_out__);\
|
|
1227 memcpy ((Extbyte *) stick_value_here, __gceda_ptr_out__, \
|
|
1228 1 + __gceda_len_out__); \
|
|
1229 (stick_len_here) = (Extcount) __gceda_len_out__; \
|
|
1230 } \
|
|
1231 } while (0)
|
|
1232
|
|
1233 #else /* ! MULE */
|
|
1234
|
0
|
1235 #define GET_CHARPTR_EXT_DATA_ALLOCA(ptr, len, fmt, stick_value_here, stick_len_here)\
|
|
1236 do \
|
|
1237 { \
|
|
1238 (stick_value_here) = (CONST Extbyte *) (ptr); \
|
|
1239 (stick_len_here) = (Extcount) (len); \
|
|
1240 } while (0)
|
|
1241
|
70
|
1242 #endif /* ! MULE */
|
|
1243
|
0
|
1244 #define GET_C_CHARPTR_EXT_DATA_ALLOCA(ptr, fmt, stick_value_here) \
|
|
1245 do \
|
|
1246 { \
|
|
1247 Extcount __gcceda_ignored_len__; \
|
|
1248 CONST char *__gcceda_ptr_in__; \
|
|
1249 CONST Extbyte *__gcceda_ptr_out__; \
|
|
1250 \
|
|
1251 __gcceda_ptr_in__ = ptr; \
|
|
1252 GET_CHARPTR_EXT_DATA_ALLOCA ((CONST Extbyte *) __gcceda_ptr_in__, \
|
|
1253 strlen (__gcceda_ptr_in__), fmt, \
|
|
1254 __gcceda_ptr_out__, \
|
|
1255 __gcceda_ignored_len__); \
|
|
1256 (stick_value_here) = (CONST char *) __gcceda_ptr_out__; \
|
|
1257 } while (0)
|
|
1258
|
|
1259 #define GET_C_CHARPTR_EXT_BINARY_DATA_ALLOCA(ptr, stick_value_here) \
|
|
1260 GET_C_CHARPTR_EXT_DATA_ALLOCA (ptr, FORMAT_BINARY, stick_value_here)
|
|
1261 #define GET_CHARPTR_EXT_BINARY_DATA_ALLOCA(ptr, len, stick_value_here, stick_len_here) \
|
|
1262 GET_CHARPTR_EXT_DATA_ALLOCA (ptr, len, FORMAT_BINARY, stick_value_here, \
|
|
1263 stick_len_here)
|
|
1264
|
|
1265 #define GET_C_CHARPTR_EXT_FILENAME_DATA_ALLOCA(ptr, stick_value_here) \
|
|
1266 GET_C_CHARPTR_EXT_DATA_ALLOCA (ptr, FORMAT_FILENAME, stick_value_here)
|
|
1267 #define GET_CHARPTR_EXT_FILENAME_DATA_ALLOCA(ptr, len, stick_value_here, stick_len_here) \
|
|
1268 GET_CHARPTR_EXT_DATA_ALLOCA (ptr, len, FORMAT_FILENAME, stick_value_here, \
|
|
1269 stick_len_here)
|
|
1270
|
|
1271 #define GET_C_CHARPTR_EXT_CTEXT_DATA_ALLOCA(ptr, stick_value_here) \
|
|
1272 GET_C_CHARPTR_EXT_DATA_ALLOCA (ptr, FORMAT_CTEXT, stick_value_here)
|
|
1273 #define GET_CHARPTR_EXT_CTEXT_DATA_ALLOCA(ptr, len, stick_value_here, stick_len_here) \
|
|
1274 GET_CHARPTR_EXT_DATA_ALLOCA (ptr, len, FORMAT_CTEXT, stick_value_here, \
|
|
1275 stick_len_here)
|
|
1276
|
|
1277 /* Maybe convert external charptr's data into internal format and store
|
|
1278 the result in alloca()'ed space.
|
|
1279
|
|
1280 You may wonder why this is written in this fashion and not as a
|
|
1281 function call. With a little trickery it could certainly be
|
|
1282 written this way, but it won't work because of those DAMN GCC WANKERS
|
|
1283 who couldn't be bothered to handle alloca() properly on the x86
|
|
1284 architecture. (If you put a call to alloca() in the argument to
|
|
1285 a function call, the stack space gets allocated right in the
|
|
1286 middle of the arguments to the function call and you are unbelievably
|
|
1287 hosed.) */
|
|
1288
|
70
|
1289 #ifdef MULE
|
|
1290
|
0
|
1291 #define GET_CHARPTR_INT_DATA_ALLOCA(ptr, len, fmt, stick_value_here, stick_len_here)\
|
70
|
1292 do \
|
|
1293 { \
|
|
1294 Extcount __gcida_len_in__ = (len); \
|
|
1295 Bytecount __gcida_len_out__; \
|
|
1296 CONST Extbyte *__gcida_ptr_in__ = (ptr); \
|
|
1297 CONST Bufbyte *__gcida_ptr_out__; \
|
|
1298 \
|
|
1299 __gcida_ptr_out__ = \
|
|
1300 convert_from_external_format (__gcida_ptr_in__, __gcida_len_in__, \
|
|
1301 &__gcida_len_out__, fmt); \
|
|
1302 /* If the new string is identical to the old (will be the case most \
|
|
1303 of the time), just return the same string back. This saves \
|
|
1304 on alloca()ing, which can be useful on C alloca() machines and \
|
|
1305 on stack-space-challenged environments. */ \
|
|
1306 \
|
|
1307 if (__gcida_len_in__ == __gcida_len_out__ && \
|
|
1308 !memcmp (__gcida_ptr_in__, __gcida_ptr_out__, __gcida_len_out__)) \
|
|
1309 { \
|
|
1310 (stick_value_here) = (CONST Bufbyte *) __gcida_ptr_in__; \
|
|
1311 (stick_len_here) = (Bytecount) __gcida_len_in__; \
|
|
1312 } \
|
|
1313 else \
|
|
1314 { \
|
82
|
1315 (stick_value_here) = (CONST Extbyte *) alloca (1 + __gcida_len_out__); \
|
70
|
1316 memcpy ((Bufbyte *) stick_value_here, __gcida_ptr_out__, \
|
|
1317 1 + __gcida_len_out__); \
|
|
1318 (stick_len_here) = __gcida_len_out__; \
|
|
1319 } \
|
0
|
1320 } while (0)
|
|
1321
|
70
|
1322 #else /* ! MULE */
|
|
1323
|
|
1324 #define GET_CHARPTR_INT_DATA_ALLOCA(ptr, len, fmt, stick_value_here, stick_len_here)\
|
|
1325 do \
|
|
1326 { \
|
|
1327 (stick_value_here) = (CONST Bufbyte *) (ptr); \
|
|
1328 (stick_len_here) = (Bytecount) (len); \
|
|
1329 } while (0)
|
|
1330
|
|
1331 #endif /* ! MULE */
|
|
1332
|
0
|
1333 #define GET_C_CHARPTR_INT_DATA_ALLOCA(ptr, fmt, stick_value_here) \
|
|
1334 do \
|
|
1335 { \
|
|
1336 Bytecount __gccida_ignored_len__; \
|
|
1337 CONST char *__gccida_ptr_in__; \
|
|
1338 CONST Bufbyte *__gccida_ptr_out__; \
|
|
1339 \
|
|
1340 __gccida_ptr_in__ = ptr; \
|
|
1341 GET_CHARPTR_INT_DATA_ALLOCA ((CONST Extbyte *) __gccida_ptr_in__, \
|
|
1342 strlen (__gccida_ptr_in__), fmt, \
|
|
1343 __gccida_ptr_out__, \
|
|
1344 __gccida_ignored_len__); \
|
|
1345 (stick_value_here) = (CONST char *) __gccida_ptr_out__; \
|
|
1346 } while (0)
|
|
1347
|
|
1348 #define GET_C_CHARPTR_INT_BINARY_DATA_ALLOCA(ptr, stick_value_here) \
|
|
1349 GET_C_CHARPTR_INT_DATA_ALLOCA (ptr, FORMAT_BINARY, stick_value_here)
|
|
1350 #define GET_CHARPTR_INT_BINARY_DATA_ALLOCA(ptr, len, stick_value_here, stick_len_here) \
|
|
1351 GET_CHARPTR_INT_DATA_ALLOCA (ptr, len, FORMAT_BINARY, stick_value_here, \
|
|
1352 stick_len_here)
|
|
1353
|
|
1354 #define GET_C_CHARPTR_INT_FILENAME_DATA_ALLOCA(ptr, stick_value_here) \
|
|
1355 GET_C_CHARPTR_INT_DATA_ALLOCA (ptr, FORMAT_FILENAME, stick_value_here)
|
|
1356 #define GET_CHARPTR_INT_FILENAME_DATA_ALLOCA(ptr, len, stick_value_here, stick_len_here) \
|
|
1357 GET_CHARPTR_INT_DATA_ALLOCA (ptr, len, FORMAT_FILENAME, stick_value_here, \
|
|
1358 stick_len_here)
|
|
1359
|
|
1360 #define GET_C_CHARPTR_INT_CTEXT_DATA_ALLOCA(ptr, stick_value_here) \
|
|
1361 GET_C_CHARPTR_INT_DATA_ALLOCA (ptr, FORMAT_CTEXT, stick_value_here)
|
|
1362 #define GET_CHARPTR_INT_CTEXT_DATA_ALLOCA(ptr, len, stick_value_here, stick_len_here) \
|
|
1363 GET_CHARPTR_INT_DATA_ALLOCA (ptr, len, FORMAT_CTEXT, stick_value_here, \
|
|
1364 stick_len_here)
|
|
1365
|
|
1366
|
|
1367 /* Maybe convert Lisp string's data into ext-format and store the result in
|
|
1368 alloca()'ed space.
|
|
1369
|
|
1370 You may wonder why this is written in this fashion and not as a
|
|
1371 function call. With a little trickery it could certainly be
|
|
1372 written this way, but it won't work because of those DAMN GCC WANKERS
|
|
1373 who couldn't be bothered to handle alloca() properly on the x86
|
|
1374 architecture. (If you put a call to alloca() in the argument to
|
|
1375 a function call, the stack space gets allocated right in the
|
|
1376 middle of the arguments to the function call and you are unbelievably
|
|
1377 hosed.) */
|
|
1378
|
|
1379 #define GET_STRING_EXT_DATA_ALLOCA(s, fmt, stick_value_here, stick_len_here)\
|
|
1380 do \
|
|
1381 { \
|
|
1382 Extcount __gseda_len__; \
|
|
1383 CONST Extbyte *__gseda_ptr__; \
|
|
1384 struct Lisp_String *__gseda_s__ = XSTRING (s); \
|
|
1385 \
|
|
1386 __gseda_ptr__ = convert_to_external_format (string_data (__gseda_s__), \
|
|
1387 string_length (__gseda_s__), \
|
|
1388 &__gseda_len__, fmt); \
|
84
|
1389 (stick_value_here) = (CONST Extbyte *) alloca (1 + __gseda_len__); \
|
0
|
1390 memcpy ((Extbyte *) stick_value_here, __gseda_ptr__, 1 + __gseda_len__); \
|
|
1391 (stick_len_here) = __gseda_len__; \
|
|
1392 } while (0)
|
|
1393
|
|
1394
|
|
1395 #define GET_C_STRING_EXT_DATA_ALLOCA(s, fmt, stick_value_here) \
|
|
1396 do \
|
|
1397 { \
|
|
1398 Extcount __gcseda_ignored_len__; \
|
|
1399 CONST Extbyte *__gcseda_ptr__; \
|
|
1400 \
|
|
1401 GET_STRING_EXT_DATA_ALLOCA (s, fmt, __gcseda_ptr__, \
|
|
1402 __gcseda_ignored_len__); \
|
|
1403 (stick_value_here) = (CONST char *) __gcseda_ptr__; \
|
|
1404 } while (0)
|
|
1405
|
|
1406 #define GET_STRING_BINARY_DATA_ALLOCA(s, stick_value_here, stick_len_here) \
|
|
1407 GET_STRING_EXT_DATA_ALLOCA (s, FORMAT_BINARY, stick_value_here, \
|
|
1408 stick_len_here)
|
|
1409 #define GET_C_STRING_BINARY_DATA_ALLOCA(s, stick_value_here) \
|
|
1410 GET_C_STRING_EXT_DATA_ALLOCA (s, FORMAT_BINARY, stick_value_here)
|
|
1411
|
|
1412 #define GET_STRING_FILENAME_DATA_ALLOCA(s, stick_value_here, stick_len_here) \
|
|
1413 GET_STRING_EXT_DATA_ALLOCA (s, FORMAT_FILENAME, stick_value_here, \
|
|
1414 stick_len_here)
|
|
1415 #define GET_C_STRING_FILENAME_DATA_ALLOCA(s, stick_value_here) \
|
|
1416 GET_C_STRING_EXT_DATA_ALLOCA (s, FORMAT_FILENAME, stick_value_here)
|
|
1417
|
|
1418 #define GET_STRING_OS_DATA_ALLOCA(s, stick_value_here, stick_len_here) \
|
|
1419 GET_STRING_EXT_DATA_ALLOCA (s, FORMAT_OS, stick_value_here, \
|
|
1420 stick_len_here)
|
|
1421 #define GET_C_STRING_OS_DATA_ALLOCA(s, stick_value_here) \
|
|
1422 GET_C_STRING_EXT_DATA_ALLOCA (s, FORMAT_OS, stick_value_here)
|
|
1423
|
|
1424 #define GET_STRING_CTEXT_DATA_ALLOCA(s, stick_value_here, stick_len_here) \
|
|
1425 GET_STRING_EXT_DATA_ALLOCA (s, FORMAT_CTEXT, stick_value_here, \
|
|
1426 stick_len_here)
|
|
1427 #define GET_C_STRING_CTEXT_DATA_ALLOCA(s, stick_value_here) \
|
|
1428 GET_C_STRING_EXT_DATA_ALLOCA (s, FORMAT_CTEXT, stick_value_here)
|
|
1429
|
|
1430
|
|
1431
|
|
1432 /************************************************************************/
|
|
1433 /* */
|
|
1434 /* fake charset functions */
|
|
1435 /* */
|
|
1436 /************************************************************************/
|
|
1437
|
70
|
1438 /* used when MULE is not defined, so that Charset-type stuff can still
|
|
1439 be done */
|
|
1440
|
|
1441 #ifndef MULE
|
|
1442
|
0
|
1443 #define Vcharset_ascii Qnil
|
|
1444
|
|
1445 #define CHAR_CHARSET(ch) Vcharset_ascii
|
|
1446 #define CHAR_LEADING_BYTE(ch) LEADING_BYTE_ASCII
|
|
1447 #define LEADING_BYTE_ASCII 0x80
|
|
1448 #define NUM_LEADING_BYTES 1
|
|
1449 #define MIN_LEADING_BYTE 0x80
|
|
1450 #define CHARSETP(cs) 1
|
|
1451 #define CHARSET_BY_LEADING_BYTE(cs) Vcharset_ascii
|
|
1452 #define XCHARSET_LEADING_BYTE(cs) LEADING_BYTE_ASCII
|
|
1453 #define XCHARSET_GRAPHIC(cs) -1
|
|
1454 #define XCHARSET_COLUMNS(cs) 1
|
|
1455 #define XCHARSET_DIMENSION(cs) 1
|
|
1456 #define REP_BYTES_BY_FIRST_BYTE(fb) 1
|
|
1457 #define BREAKUP_CHAR(ch, charset, byte1, byte2)\
|
|
1458 do \
|
|
1459 { \
|
|
1460 (charset) = Vcharset_ascii; \
|
|
1461 (byte1) = (ch); \
|
|
1462 (byte2) = 0; \
|
|
1463 } while (0)
|
14
|
1464 #define BYTE_ASCII_P(byte) 1
|
0
|
1465
|
70
|
1466 #endif /* ! MULE */
|
0
|
1467
|
|
1468 /************************************************************************/
|
|
1469 /* */
|
|
1470 /* higher-level buffer-position functions */
|
|
1471 /* */
|
|
1472 /************************************************************************/
|
|
1473
|
|
1474 /*----------------------------------------------------------------------*/
|
|
1475 /* Settor macros for important positions in a buffer */
|
|
1476 /*----------------------------------------------------------------------*/
|
|
1477
|
|
1478 /* Set beginning of accessible range of buffer. */
|
|
1479 #define SET_BOTH_BUF_BEGV(buf, val, bival) \
|
|
1480 do \
|
|
1481 { \
|
|
1482 (buf)->begv = (bival); \
|
|
1483 (buf)->bufbegv = (val); \
|
|
1484 } while (0)
|
|
1485
|
|
1486 /* Set end of accessible range of buffer. */
|
|
1487 #define SET_BOTH_BUF_ZV(buf, val, bival) \
|
|
1488 do \
|
|
1489 { \
|
|
1490 (buf)->zv = (bival); \
|
|
1491 (buf)->bufzv = (val); \
|
|
1492 } while (0)
|
|
1493
|
|
1494 /* Set point. */
|
|
1495 /* Since BEGV and ZV are almost never set, it's reasonable to enforce
|
|
1496 the restriction that the Bufpos and Bytind values must both be
|
|
1497 specified. However, point is set in lots and lots of places. So
|
|
1498 we provide the ability to specify both (for efficiency) or just
|
|
1499 one. */
|
|
1500 #define BOTH_BUF_SET_PT(buf, val, bival) set_buffer_point (buf, val, bival)
|
|
1501 #define BI_BUF_SET_PT(buf, bival) \
|
|
1502 BOTH_BUF_SET_PT (buf, bytind_to_bufpos (buf, bival), bival)
|
|
1503 #define BUF_SET_PT(buf, value) \
|
|
1504 BOTH_BUF_SET_PT (buf, value, bufpos_to_bytind (buf, value))
|
|
1505
|
|
1506
|
|
1507 #if 0 /* FSFmacs */
|
|
1508 /* These macros exist in FSFmacs because SET_PT() in FSFmacs incorrectly
|
|
1509 does too much stuff, such as moving out of invisible extents. */
|
|
1510 #define TEMP_SET_PT(position) (temp_set_point ((position), current_buffer))
|
|
1511 #define SET_BUF_PT(buf, value) ((buf)->pt = (value))
|
|
1512 #endif
|
|
1513
|
|
1514 /*----------------------------------------------------------------------*/
|
|
1515 /* Miscellaneous buffer values */
|
|
1516 /*----------------------------------------------------------------------*/
|
|
1517
|
|
1518 /* Number of characters in buffer */
|
|
1519 #define BUF_SIZE(buf) (BUF_Z (buf) - BUF_BEG (buf))
|
|
1520
|
|
1521 /* Is this buffer narrowed? */
|
|
1522 #define BUF_NARROWED(buf) ((BI_BUF_BEGV (buf) != BI_BUF_BEG (buf)) \
|
|
1523 || (BI_BUF_ZV (buf) != BI_BUF_Z (buf)))
|
|
1524
|
|
1525 /* Modification count. */
|
|
1526 #define BUF_MODIFF(buf) ((buf)->text->modiff)
|
|
1527
|
|
1528 /* Saved modification count. */
|
|
1529 #define BUF_SAVE_MODIFF(buf) ((buf)->text->save_modiff)
|
|
1530
|
|
1531 /* Face changed. */
|
|
1532 #define BUF_FACECHANGE(buf) ((buf)->face_change)
|
|
1533
|
|
1534 #define POINT_MARKER_P(marker) \
|
|
1535 (XMARKER (marker)->buffer != 0 && \
|
|
1536 EQ ((marker), XMARKER (marker)->buffer->point_marker))
|
|
1537
|
|
1538 #define BUF_MARKERS(buf) ((buf)->markers)
|
|
1539
|
|
1540 /* WARNING:
|
|
1541
|
|
1542 The new definitions of CEILING_OF() and FLOOR_OF() differ semantically
|
|
1543 from the old ones (in FSF Emacs and XEmacs 19.11 and before).
|
|
1544 Conversion is as follows:
|
|
1545
|
|
1546 OLD_BI_CEILING_OF(n) = NEW_BI_CEILING_OF(n) - 1
|
|
1547 OLD_BI_FLOOR_OF(n) = NEW_BI_FLOOR_OF(n + 1)
|
|
1548
|
|
1549 The definitions were changed because the new definitions are more
|
|
1550 consistent with the way everything else works in Emacs.
|
|
1551 */
|
|
1552
|
|
1553 /* Properties of CEILING_OF and FLOOR_OF (also apply to BI_ variants):
|
|
1554
|
|
1555 1) FLOOR_OF (CEILING_OF (n)) = n
|
|
1556 CEILING_OF (FLOOR_OF (n)) = n
|
|
1557
|
|
1558 2) CEILING_OF (n) = n if and only if n = ZV
|
|
1559 FLOOR_OF (n) = n if and only if n = BEGV
|
|
1560
|
|
1561 3) CEILING_OF (CEILING_OF (n)) = ZV
|
|
1562 FLOOR_OF (FLOOR_OF (n)) = BEGV
|
|
1563
|
|
1564 4) The bytes in the regions
|
|
1565
|
|
1566 [BYTE_ADDRESS (n), BYTE_ADDRESS_BEFORE (CEILING_OF (n))]
|
|
1567
|
|
1568 and
|
|
1569
|
|
1570 [BYTE_ADDRESS (FLOOR_OF (n)), BYTE_ADDRESS_BEFORE (n)]
|
|
1571
|
|
1572 are contiguous.
|
|
1573 */
|
|
1574
|
|
1575
|
|
1576 /* Return the maximum index in the buffer it is safe to scan forwards
|
|
1577 past N to. This is used to prevent buffer scans from running into
|
|
1578 the gap (e.g. search.c). All characters between N and CEILING_OF(N)
|
|
1579 are located contiguous in memory. Note that the character *at*
|
|
1580 CEILING_OF(N) is not contiguous in memory. */
|
|
1581 #define BI_BUF_CEILING_OF(b, n) \
|
|
1582 ((n) < (b)->text->gpt && (b)->text->gpt < BI_BUF_ZV (b) ? \
|
|
1583 (b)->text->gpt : BI_BUF_ZV (b))
|
|
1584 #define BUF_CEILING_OF(b, n) \
|
|
1585 bytind_to_bufpos (b, BI_BUF_CEILING_OF (b, bufpos_to_bytind (b, n)))
|
|
1586
|
|
1587 /* Return the minimum index in the buffer it is safe to scan backwards
|
|
1588 past N to. All characters between FLOOR_OF(N) and N are located
|
|
1589 contiguous in memory. Note that the character *at* N may not be
|
|
1590 contiguous in memory. */
|
|
1591 #define BI_BUF_FLOOR_OF(b, n) \
|
|
1592 (BI_BUF_BEGV (b) < (b)->text->gpt && (b)->text->gpt < (n) ? \
|
|
1593 (b)->text->gpt : BI_BUF_BEGV (b))
|
|
1594 #define BUF_FLOOR_OF(b, n) \
|
|
1595 bytind_to_bufpos (b, BI_BUF_FLOOR_OF (b, bufpos_to_bytind (b, n)))
|
|
1596
|
|
1597 #define BI_BUF_CEILING_OF_IGNORE_ACCESSIBLE(b, n) \
|
|
1598 ((n) < (b)->text->gpt && (b)->text->gpt < BI_BUF_Z (b) ? \
|
|
1599 (b)->text->gpt : BI_BUF_Z (b))
|
|
1600 #define BUF_CEILING_OF_IGNORE_ACCESSIBLE(b, n) \
|
|
1601 bytind_to_bufpos \
|
|
1602 (b, BI_BUF_CEILING_OF_IGNORE_ACCESSIBLE (b, bufpos_to_bytind (b, n)))
|
|
1603
|
|
1604 #define BI_BUF_FLOOR_OF_IGNORE_ACCESSIBLE(b, n) \
|
|
1605 (BI_BUF_BEG (b) < (b)->text->gpt && (b)->text->gpt < (n) ? \
|
|
1606 (b)->text->gpt : BI_BUF_BEG (b))
|
|
1607 #define BUF_FLOOR_OF_IGNORE_ACCESSIBLE(b, n) \
|
|
1608 bytind_to_bufpos \
|
|
1609 (b, BI_BUF_FLOOR_OF_IGNORE_ACCESSIBLE (b, bufpos_to_bytind (b, n)))
|
|
1610
|
|
1611
|
|
1612
|
|
1613
|
|
1614 extern struct buffer *current_buffer;
|
|
1615
|
|
1616 /* This structure holds the default values of the buffer-local variables
|
|
1617 defined with DEFVAR_BUFFER_LOCAL, that have special slots in each buffer.
|
|
1618 The default value occupies the same slot in this structure
|
|
1619 as an individual buffer's value occupies in that buffer.
|
|
1620 Setting the default value also goes through the alist of buffers
|
|
1621 and stores into each buffer that does not say it has a local value. */
|
|
1622
|
|
1623 extern Lisp_Object Vbuffer_defaults;
|
|
1624
|
|
1625 /* This structure marks which slots in a buffer have corresponding
|
|
1626 default values in buffer_defaults.
|
|
1627 Each such slot has a nonzero value in this structure.
|
|
1628 The value has only one nonzero bit.
|
|
1629
|
|
1630 When a buffer has its own local value for a slot,
|
|
1631 the bit for that slot (found in the same slot in this structure)
|
|
1632 is turned on in the buffer's local_var_flags slot.
|
|
1633
|
|
1634 If a slot in this structure is zero, then even though there may
|
|
1635 be a DEFVAR_BUFFER_LOCAL for the slot, there is no default value for it;
|
|
1636 and the corresponding slot in buffer_defaults is not used. */
|
|
1637
|
|
1638 extern struct buffer buffer_local_flags;
|
|
1639
|
|
1640
|
|
1641 /* Allocation of buffer data. */
|
|
1642
|
|
1643 #ifdef REL_ALLOC
|
|
1644
|
|
1645 char *r_alloc (char **, unsigned long);
|
|
1646 char *r_re_alloc (char **, unsigned long);
|
|
1647 void r_alloc_free (void **);
|
|
1648
|
|
1649 #define BUFFER_ALLOC(data,size) \
|
|
1650 ((Bufbyte *) r_alloc ((char **) &data, (size) * sizeof(Bufbyte)))
|
|
1651 #define BUFFER_REALLOC(data,size) \
|
|
1652 ((Bufbyte *) r_re_alloc ((char **) &data, (size) * sizeof(Bufbyte)))
|
|
1653 #define BUFFER_FREE(data) r_alloc_free ((void **) &(data))
|
|
1654 #define R_ALLOC_DECLARE(var,data) r_alloc_declare (&(var), data)
|
|
1655
|
|
1656 #else /* !REL_ALLOC */
|
|
1657
|
|
1658 #define BUFFER_ALLOC(data,size)\
|
|
1659 (data = (Bufbyte *) xmalloc ((size) * sizeof(Bufbyte)))
|
|
1660 #define BUFFER_REALLOC(data,size)\
|
|
1661 ((Bufbyte *) xrealloc (data, (size) * sizeof(Bufbyte)))
|
|
1662 /* Avoid excess parentheses, or syntax errors may rear their heads. */
|
|
1663 #define BUFFER_FREE(data) xfree (data)
|
|
1664 #define R_ALLOC_DECLARE(var,data)
|
|
1665
|
|
1666 #endif /* !REL_ALLOC */
|
|
1667
|
|
1668 extern Lisp_Object Vbuffer_alist;
|
|
1669 void set_buffer_internal (struct buffer *b);
|
|
1670 struct buffer *decode_buffer (Lisp_Object buffer, int allow_string);
|
|
1671
|
|
1672 /* from editfns.c */
|
|
1673 void widen_buffer (struct buffer *b, int no_clip);
|
|
1674 int beginning_of_line_p (struct buffer *b, Bufpos pt);
|
|
1675
|
|
1676 /* from insdel.c */
|
|
1677 void set_buffer_point (struct buffer *buf, Bufpos pos, Bytind bipos);
|
|
1678 void find_charsets_in_bufbyte_string (unsigned char *charsets,
|
|
1679 CONST Bufbyte *str,
|
|
1680 Bytecount len);
|
|
1681 void find_charsets_in_emchar_string (unsigned char *charsets,
|
|
1682 CONST Emchar *str,
|
|
1683 Charcount len);
|
|
1684 int bufbyte_string_displayed_columns (CONST Bufbyte *str, Bytecount len);
|
|
1685 int emchar_string_displayed_columns (CONST Emchar *str, Charcount len);
|
|
1686 void convert_bufbyte_string_into_emchar_dynarr (CONST Bufbyte *str,
|
|
1687 Bytecount len,
|
|
1688 emchar_dynarr *dyn);
|
|
1689 int convert_bufbyte_string_into_emchar_string (CONST Bufbyte *str,
|
|
1690 Bytecount len,
|
|
1691 Emchar *arr);
|
|
1692 void convert_emchar_string_into_bufbyte_dynarr (Emchar *arr, int nels,
|
|
1693 bufbyte_dynarr *dyn);
|
|
1694 Bufbyte *convert_emchar_string_into_malloced_string (Emchar *arr, int nels,
|
|
1695 Bytecount *len_out);
|
|
1696
|
|
1697 /* flags for get_buffer_pos_char(), get_buffer_range_char(), etc. */
|
|
1698 /* At most one of GB_COERCE_RANGE and GB_NO_ERROR_IF_BAD should be
|
|
1699 specified. At most one of GB_NEGATIVE_FROM_END and GB_NO_ERROR_IF_BAD
|
|
1700 should be specified. */
|
|
1701
|
|
1702 #define GB_ALLOW_PAST_ACCESSIBLE (1 << 0)
|
|
1703 #define GB_ALLOW_NIL (1 << 1)
|
|
1704 #define GB_CHECK_ORDER (1 << 2)
|
|
1705 #define GB_COERCE_RANGE (1 << 3)
|
|
1706 #define GB_NO_ERROR_IF_BAD (1 << 4)
|
|
1707 #define GB_NEGATIVE_FROM_END (1 << 5)
|
|
1708 #define GB_HISTORICAL_STRING_BEHAVIOR (GB_NEGATIVE_FROM_END | GB_ALLOW_NIL)
|
|
1709
|
|
1710 Bufpos get_buffer_pos_char (struct buffer *b, Lisp_Object pos,
|
|
1711 unsigned int flags);
|
|
1712 Bytind get_buffer_pos_byte (struct buffer *b, Lisp_Object pos,
|
|
1713 unsigned int flags);
|
|
1714 void get_buffer_range_char (struct buffer *b, Lisp_Object from, Lisp_Object to,
|
|
1715 Bufpos *from_out, Bufpos *to_out,
|
|
1716 unsigned int flags);
|
|
1717 void get_buffer_range_byte (struct buffer *b, Lisp_Object from, Lisp_Object to,
|
|
1718 Bytind *from_out, Bytind *to_out,
|
|
1719 unsigned int flags);
|
|
1720 Charcount get_string_pos_char (Lisp_Object string, Lisp_Object pos,
|
|
1721 unsigned int flags);
|
|
1722 Bytecount get_string_pos_byte (Lisp_Object string, Lisp_Object pos,
|
|
1723 unsigned int flags);
|
|
1724 void get_string_range_char (Lisp_Object string, Lisp_Object from,
|
|
1725 Lisp_Object to, Charcount *from_out,
|
|
1726 Charcount *to_out, unsigned int flags);
|
|
1727 void get_string_range_byte (Lisp_Object string, Lisp_Object from,
|
|
1728 Lisp_Object to, Bytecount *from_out,
|
|
1729 Bytecount *to_out, unsigned int flags);
|
|
1730 Bufpos get_buffer_or_string_pos_char (Lisp_Object object, Lisp_Object pos,
|
|
1731 unsigned int flags);
|
|
1732 Bytind get_buffer_or_string_pos_byte (Lisp_Object object, Lisp_Object pos,
|
|
1733 unsigned int flags);
|
|
1734 void get_buffer_or_string_range_char (Lisp_Object object, Lisp_Object from,
|
|
1735 Lisp_Object to, Bufpos *from_out,
|
|
1736 Bufpos *to_out, unsigned int flags);
|
|
1737 void get_buffer_or_string_range_byte (Lisp_Object object, Lisp_Object from,
|
|
1738 Lisp_Object to, Bytind *from_out,
|
|
1739 Bytind *to_out, unsigned int flags);
|
|
1740 Bufpos buffer_or_string_accessible_begin_char (Lisp_Object object);
|
|
1741 Bufpos buffer_or_string_accessible_end_char (Lisp_Object object);
|
|
1742 Bytind buffer_or_string_accessible_begin_byte (Lisp_Object object);
|
|
1743 Bytind buffer_or_string_accessible_end_byte (Lisp_Object object);
|
|
1744 Bufpos buffer_or_string_absolute_begin_char (Lisp_Object object);
|
|
1745 Bufpos buffer_or_string_absolute_end_char (Lisp_Object object);
|
|
1746 Bytind buffer_or_string_absolute_begin_byte (Lisp_Object object);
|
|
1747 Bytind buffer_or_string_absolute_end_byte (Lisp_Object object);
|
|
1748 void record_buffer (Lisp_Object buf);
|
|
1749 Lisp_Object get_buffer (Lisp_Object name,
|
|
1750 int error_if_deleted_or_does_not_exist);
|
|
1751 int map_over_sharing_buffers (struct buffer *buf,
|
|
1752 int (*mapfun) (struct buffer *buf,
|
|
1753 void *closure),
|
|
1754 void *closure);
|
|
1755
|
|
1756
|
|
1757 /************************************************************************/
|
|
1758 /* Case conversion */
|
|
1759 /************************************************************************/
|
|
1760
|
|
1761 /* A "trt" table is a mapping from characters to other characters,
|
|
1762 typically used to convert between uppercase and lowercase. For
|
|
1763 compatibility reasons, trt tables are currently in the form of
|
|
1764 a Lisp string of 256 characters, specifying the conversion for each
|
|
1765 of the first 256 Emacs characters (i.e. the 256 extended-ASCII
|
|
1766 characters). This should be generalized at some point to support
|
|
1767 conversions for all of the allowable Mule characters.
|
|
1768 */
|
|
1769
|
|
1770 /* The _1 macros are named as such because they assume that you have
|
|
1771 already guaranteed that the character values are all in the range
|
|
1772 0 - 255. Bad lossage will happen otherwise. */
|
|
1773
|
|
1774 # define MAKE_TRT_TABLE() Fmake_string (make_int (256), make_char (0))
|
16
|
1775 # define TRT_TABLE_AS_STRING(table) XSTRING_DATA (table)
|
0
|
1776 # define TRT_TABLE_CHAR_1(table, ch) \
|
|
1777 string_char (XSTRING (table), (Charcount) ch)
|
|
1778 # define SET_TRT_TABLE_CHAR_1(table, ch1, ch2) \
|
|
1779 set_string_char (XSTRING (table), (Charcount) ch1, ch2)
|
|
1780
|
70
|
1781 #ifdef MULE
|
|
1782 # define MAKE_MIRROR_TRT_TABLE() make_opaque (256, 0)
|
|
1783 # define MIRROR_TRT_TABLE_AS_STRING(table) ((Bufbyte *) XOPAQUE_DATA (table))
|
|
1784 # define MIRROR_TRT_TABLE_CHAR_1(table, ch) \
|
|
1785 ((Emchar) (MIRROR_TRT_TABLE_AS_STRING (table)[ch]))
|
|
1786 # define SET_MIRROR_TRT_TABLE_CHAR_1(table, ch1, ch2) \
|
|
1787 (MIRROR_TRT_TABLE_AS_STRING (table)[ch1] = (Bufbyte) (ch2))
|
|
1788 #endif
|
|
1789
|
0
|
1790 # define IN_TRT_TABLE_DOMAIN(c) (((unsigned EMACS_INT) (c)) < 0400)
|
|
1791
|
70
|
1792 #ifdef MULE
|
|
1793 #define MIRROR_DOWNCASE_TABLE_AS_STRING(buf) \
|
|
1794 MIRROR_TRT_TABLE_AS_STRING (buf->mirror_downcase_table)
|
|
1795 #define MIRROR_UPCASE_TABLE_AS_STRING(buf) \
|
|
1796 MIRROR_TRT_TABLE_AS_STRING (buf->mirror_upcase_table)
|
|
1797 #define MIRROR_CANON_TABLE_AS_STRING(buf) \
|
|
1798 MIRROR_TRT_TABLE_AS_STRING (buf->mirror_case_canon_table)
|
|
1799 #define MIRROR_EQV_TABLE_AS_STRING(buf) \
|
|
1800 MIRROR_TRT_TABLE_AS_STRING (buf->mirror_case_eqv_table)
|
|
1801 #else
|
0
|
1802 #define MIRROR_DOWNCASE_TABLE_AS_STRING(buf) \
|
|
1803 TRT_TABLE_AS_STRING (buf->downcase_table)
|
|
1804 #define MIRROR_UPCASE_TABLE_AS_STRING(buf) \
|
|
1805 TRT_TABLE_AS_STRING (buf->upcase_table)
|
|
1806 #define MIRROR_CANON_TABLE_AS_STRING(buf) \
|
|
1807 TRT_TABLE_AS_STRING (buf->case_canon_table)
|
|
1808 #define MIRROR_EQV_TABLE_AS_STRING(buf) \
|
|
1809 TRT_TABLE_AS_STRING (buf->case_eqv_table)
|
70
|
1810 #endif
|
0
|
1811
|
|
1812 INLINE Emchar TRT_TABLE_OF (Lisp_Object trt, Emchar c);
|
|
1813 INLINE Emchar
|
|
1814 TRT_TABLE_OF (Lisp_Object trt, Emchar c)
|
|
1815 {
|
|
1816 if (IN_TRT_TABLE_DOMAIN (c))
|
|
1817 return TRT_TABLE_CHAR_1 (trt, c);
|
|
1818 else
|
|
1819 return c;
|
|
1820 }
|
|
1821
|
|
1822 /* Macros used below. */
|
|
1823 #define DOWNCASE_TABLE_OF(buf, c) TRT_TABLE_OF (buf->downcase_table, c)
|
|
1824 #define UPCASE_TABLE_OF(buf, c) TRT_TABLE_OF (buf->upcase_table, c)
|
|
1825
|
|
1826 /* 1 if CH is upper case. */
|
|
1827
|
|
1828 INLINE int UPPERCASEP (struct buffer *buf, Emchar ch);
|
|
1829 INLINE int
|
|
1830 UPPERCASEP (struct buffer *buf, Emchar ch)
|
|
1831 {
|
|
1832 return (DOWNCASE_TABLE_OF (buf, ch) != ch);
|
|
1833 }
|
|
1834
|
|
1835 /* 1 if CH is lower case. */
|
|
1836
|
|
1837 INLINE int LOWERCASEP (struct buffer *buf, Emchar ch);
|
|
1838 INLINE int
|
|
1839 LOWERCASEP (struct buffer *buf, Emchar ch)
|
|
1840 {
|
|
1841 return (UPCASE_TABLE_OF (buf, ch) != ch &&
|
|
1842 DOWNCASE_TABLE_OF (buf, ch) == ch);
|
|
1843 }
|
|
1844
|
|
1845 /* 1 if CH is neither upper nor lower case. */
|
|
1846
|
|
1847 INLINE int NOCASEP (struct buffer *buf, Emchar ch);
|
|
1848 INLINE int
|
|
1849 NOCASEP (struct buffer *buf, Emchar ch)
|
|
1850 {
|
|
1851 return (UPCASE_TABLE_OF (buf, ch) == ch);
|
|
1852 }
|
|
1853
|
|
1854 /* Upcase a character, or make no change if that cannot be done. */
|
|
1855
|
|
1856 INLINE Emchar UPCASE (struct buffer *buf, Emchar ch);
|
|
1857 INLINE Emchar
|
|
1858 UPCASE (struct buffer *buf, Emchar ch)
|
|
1859 {
|
|
1860 if (DOWNCASE_TABLE_OF (buf, ch) == ch)
|
|
1861 return UPCASE_TABLE_OF (buf, ch);
|
|
1862 else
|
|
1863 return ch;
|
|
1864 }
|
|
1865
|
|
1866 /* Upcase a character known to be not upper case. */
|
|
1867
|
|
1868 #define UPCASE1(buf, ch) UPCASE_TABLE_OF (buf, ch)
|
|
1869
|
|
1870 /* Downcase a character, or make no change if that cannot be done. */
|
|
1871
|
|
1872 #define DOWNCASE(buf, ch) DOWNCASE_TABLE_OF (buf, ch)
|
|
1873
|
|
1874
|
|
1875 /* put it here, somewhat arbitrarily ... its needs to be in *some*
|
|
1876 header file. */
|
|
1877 DECLARE_LRECORD (range_table, struct Lisp_Range_Table);
|
|
1878
|
|
1879 #endif /* _XEMACS_BUFFER_H_ */
|