187
|
1 ;;; mule-util.el --- Utility functions for multilingual environment (mule)
|
165
|
2
|
|
3 ;; Copyright (C) 1995 Free Software Foundation, Inc.
|
|
4 ;; Copyright (C) 1995 Electrotechnical Laboratory, JAPAN.
|
|
5 ;; Copyright (C) 1997 MORIOKA Tomohiko
|
|
6
|
|
7 ;; Keywords: mule, multilingual
|
|
8
|
|
9 ;; This file is part of XEmacs.
|
|
10
|
|
11 ;; XEmacs is free software; you can redistribute it and/or modify it
|
|
12 ;; under the terms of the GNU General Public License as published by
|
|
13 ;; the Free Software Foundation; either version 2, or (at your option)
|
|
14 ;; any later version.
|
|
15
|
|
16 ;; XEmacs is distributed in the hope that it will be useful, but
|
|
17 ;; WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
18 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
19 ;; General Public License for more details.
|
|
20
|
|
21 ;; You should have received a copy of the GNU General Public License
|
|
22 ;; along with XEmacs; see the file COPYING. If not, write to the Free
|
|
23 ;; Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
|
|
24 ;; 02111-1307, USA.
|
|
25
|
|
26 ;;; Code:
|
|
27
|
|
28 ;;; String manipulations while paying attention to multibyte
|
|
29 ;;; characters.
|
|
30
|
187
|
31 ;; That code is pointless in XEmacs/Mule, since our multibyte
|
|
32 ;; representation doesn't leak to Lisp.
|
165
|
33
|
187
|
34 ;; string-to-sequence, string-to-list, string-to-vector, store-substring,
|
|
35 ;; truncate-string-to-width
|
165
|
36
|
|
37
|
|
38 ;;; Nested alist handler. Nested alist is alist whose elements are
|
|
39 ;;; also nested alist.
|
|
40
|
167
|
41 ;; [Was defsubst]
|
165
|
42 ;;;###autoload
|
167
|
43 (defun nested-alist-p (obj)
|
165
|
44 "Return t if OBJ is a nesetd alist.
|
|
45
|
|
46 Nested alist is a list of the form (ENTRY . BRANCHES), where ENTRY is
|
|
47 any Lisp object, and BRANCHES is a list of cons cells of the form
|
|
48 (KEY-ELEMENT . NESTED-ALIST).
|
|
49
|
|
50 You can use a nested alist to store any Lisp object (ENTRY) for a key
|
|
51 sequence KEYSEQ, where KEYSEQ is a sequence of KEY-ELEMENT. KEYSEQ
|
|
52 can be a string, a vector, or a list."
|
|
53 (and obj (listp obj) (listp (cdr obj))))
|
|
54
|
|
55 ;;;###autoload
|
|
56 (defun set-nested-alist (keyseq entry alist &optional len branches)
|
|
57 "Set ENTRY for KEYSEQ in a nested alist ALIST.
|
|
58 Optional 4th arg LEN non-nil means the firlst LEN elements in KEYSEQ
|
|
59 is considered.
|
|
60 Optional argument BRANCHES if non-nil is branches for a keyseq
|
|
61 longer than KEYSEQ.
|
|
62 See the documentation of `nested-alist-p' for more detail."
|
|
63 (or (nested-alist-p alist)
|
|
64 (error "Invalid arguement %s" alist))
|
|
65 (let ((islist (listp keyseq))
|
|
66 (len (or len (length keyseq)))
|
|
67 (i 0)
|
|
68 key-elt slot)
|
|
69 (while (< i len)
|
|
70 (if (null (nested-alist-p alist))
|
|
71 (error "Keyseq %s is too long for this nested alist" keyseq))
|
|
72 (setq key-elt (if islist (nth i keyseq) (aref keyseq i)))
|
|
73 (setq slot (assoc key-elt (cdr alist)))
|
|
74 (if (null slot)
|
|
75 (progn
|
|
76 (setq slot (cons key-elt (list t)))
|
|
77 (setcdr alist (cons slot (cdr alist)))))
|
|
78 (setq alist (cdr slot))
|
|
79 (setq i (1+ i)))
|
|
80 (setcar alist entry)
|
|
81 (if branches
|
|
82 (if (cdr alist)
|
|
83 (error "Can't set branches for keyseq %s" keyseq)
|
|
84 (setcdr alist branches)))))
|
|
85
|
|
86 ;;;###autoload
|
|
87 (defun lookup-nested-alist (keyseq alist &optional len start nil-for-too-long)
|
|
88 "Look up key sequence KEYSEQ in nested alist ALIST. Return the definition.
|
|
89 Optional 1st argument LEN specifies the length of KEYSEQ.
|
|
90 Optional 2nd argument START specifies index of the starting key.
|
|
91 The returned value is normally a nested alist of which
|
|
92 car part is the entry for KEYSEQ.
|
|
93 If ALIST is not deep enough for KEYSEQ, return number which is
|
|
94 how many key elements at the front of KEYSEQ it takes
|
|
95 to reach a leaf in ALIST.
|
|
96 Optional 3rd argument NIL-FOR-TOO-LONG non-nil means return nil
|
|
97 even if ALIST is not deep enough."
|
|
98 (or (nested-alist-p alist)
|
|
99 (error "invalid arguement %s" alist))
|
|
100 (or len
|
|
101 (setq len (length keyseq)))
|
|
102 (let ((i (or start 0)))
|
|
103 (if (catch 'lookup-nested-alist-tag
|
|
104 (if (listp keyseq)
|
|
105 (while (< i len)
|
|
106 (if (setq alist (cdr (assoc (nth i keyseq) (cdr alist))))
|
|
107 (setq i (1+ i))
|
|
108 (throw 'lookup-nested-alist-tag t))))
|
|
109 (while (< i len)
|
|
110 (if (setq alist (cdr (assoc (aref keyseq i) (cdr alist))))
|
|
111 (setq i (1+ i))
|
|
112 (throw 'lookup-nested-alist-tag t))))
|
|
113 ;; KEYSEQ is too long.
|
|
114 (if nil-for-too-long nil i)
|
|
115 alist)))
|
|
116
|
|
117 ;; Coding system related functions.
|
|
118
|
|
119 ;;;###autoload
|
|
120 (defun set-coding-system-alist (target-type regexp coding-system
|
|
121 &optional operation)
|
|
122 "Update `coding-system-alist' according to the arguments.
|
|
123 TARGET-TYPE specifies a type of the target: `file', `process', or `network'.
|
|
124 TARGET-TYPE tells which slots of coding-system-alist should be affected.
|
|
125 If `file', it affects slots for insert-file-contents and write-region.
|
|
126 If `process', it affects slots for call-process, call-process-region, and
|
|
127 start-process.
|
|
128 If `network', it affects a slot for open-network-process.
|
|
129 REGEXP is a regular expression matching a target of I/O operation.
|
|
130 CODING-SYSTEM is a coding system to perform code conversion
|
|
131 on the I/O operation, or a cons of coding systems for decoding and
|
|
132 encoding respectively, or a function symbol which returns the cons.
|
|
133 Optional arg OPERATION if non-nil specifies directly one of slots above.
|
|
134 The valid value is: insert-file-contents, write-region,
|
|
135 call-process, call-process-region, start-process, or open-network-stream.
|
|
136 If OPERATION is specified, TARGET-TYPE is ignored.
|
|
137 See the documentation of `coding-system-alist' for more detail."
|
|
138 (or (stringp regexp)
|
|
139 (error "Invalid regular expression: %s" regexp))
|
|
140 (or (memq target-type '(file process network))
|
|
141 (error "Invalid target type: %s" target-type))
|
|
142 (if (symbolp coding-system)
|
|
143 (if (not (fboundp coding-system))
|
|
144 (progn
|
|
145 (check-coding-system coding-system)
|
|
146 (setq coding-system (cons coding-system coding-system))))
|
|
147 (check-coding-system (car coding-system))
|
|
148 (check-coding-system (cdr coding-system)))
|
|
149 (let ((op-list (if operation (list operation)
|
|
150 (cond ((eq target-type 'file)
|
|
151 '(insert-file-contents write-region))
|
|
152 ((eq target-type 'process)
|
|
153 '(call-process call-process-region start-process))
|
|
154 (t ; i.e. (eq target-type network)
|
|
155 '(open-network-stream)))))
|
|
156 slot)
|
|
157 (while op-list
|
|
158 (setq slot (assq (car op-list) coding-system-alist))
|
|
159 (if slot
|
|
160 (let ((chain (cdr slot)))
|
|
161 (if (catch 'tag
|
|
162 (while chain
|
|
163 (if (string= regexp (car (car chain)))
|
|
164 (progn
|
|
165 (setcdr (car chain) coding-system)
|
|
166 (throw 'tag nil)))
|
|
167 (setq chain (cdr chain)))
|
|
168 t)
|
|
169 (setcdr slot (cons (cons regexp coding-system) (cdr slot)))))
|
|
170 (setq coding-system-alist
|
|
171 (cons (cons (car op-list) (list (cons regexp coding-system)))
|
|
172 coding-system-alist)))
|
|
173 (setq op-list (cdr op-list)))))
|
|
174
|
|
175
|
|
176 ;;; Composite charcater manipulations.
|
|
177
|
|
178 ;;;###autoload
|
|
179 (defun compose-region (start end &optional buffer)
|
|
180 "Compose characters in the current region into one composite character.
|
|
181 From a Lisp program, pass two arguments, START to END.
|
|
182 The composite character replaces the composed characters.
|
|
183 BUFFER defaults to the current buffer if omitted."
|
|
184 (interactive "r")
|
|
185 (let ((ch (make-composite-char (buffer-substring start end buffer))))
|
|
186 (delete-region start end buffer)
|
|
187 (insert-char ch nil nil buffer)))
|
|
188
|
|
189 ;;;###autoload
|
|
190 (defun decompose-region (start end &optional buffer)
|
|
191 "Decompose any composite characters in the current region.
|
|
192 From a Lisp program, pass two arguments, START to END.
|
|
193 This converts each composite character into one or more characters,
|
|
194 the individual characters out of which the composite character was formed.
|
|
195 Non-composite characters are left as-is. BUFFER defaults to the current
|
|
196 buffer if omitted."
|
|
197 (interactive "r")
|
|
198 (save-excursion
|
|
199 (set-buffer buffer)
|
|
200 (save-restriction
|
|
201 (narrow-to-region start end)
|
|
202 (goto-char (point-min))
|
|
203 (let ((compcharset (get-charset 'composite)))
|
|
204 (while (< (point) (point-max))
|
|
205 (let ((ch (char-after (point))))
|
|
206 (if (eq compcharset (char-charset ch))
|
|
207 (progn
|
|
208 (delete-char 1)
|
|
209 (insert (composite-char-string ch))))))))))
|
|
210
|
|
211 ;;;###autoload
|
|
212 (defconst reference-point-alist
|
|
213 '((tl . 0) (tc . 1) (tr . 2)
|
|
214 (ml . 3) (mc . 4) (mr . 5)
|
|
215 (bl . 6) (bc . 7) (br . 8)
|
|
216 (top-left . 0) (top-center . 1) (top-right . 2)
|
|
217 (mid-left . 3) (mid-center . 4) (mid-right . 5)
|
|
218 (bottom-left . 6) (bottom-center . 7) (bottom-right . 8)
|
|
219 (0 . 0) (1 . 1) (2 . 2)
|
|
220 (3 . 3) (4 . 4) (5 . 5)
|
|
221 (6 . 6) (7 . 7) (8 . 8))
|
|
222 "Alist of reference point symbols vs reference point codes.
|
|
223 Meanings of reference point codes are as follows:
|
|
224
|
|
225 0----1----2 <-- ascent 0:tl or top-left
|
|
226 | | 1:tc or top-center
|
|
227 | | 2:tr or top-right
|
|
228 | | 3:ml or mid-left
|
|
229 | 4 <--+---- center 4:mc or mid-center
|
|
230 | | 5:mr or mid-right
|
|
231 --- 3 5 <-- baseline 6:bl or bottom-left
|
|
232 | | 7:bc or bottom-center
|
|
233 6----7----8 <-- descent 8:br or bottom-right
|
|
234
|
|
235 Reference point symbols are to be used to specify composition rule of
|
|
236 the form \(GLOBAL-REF-POINT . NEW-REF-POINT), where GLOBAL-REF-POINT
|
|
237 is a reference point in the overall glyphs already composed, and
|
|
238 NEW-REF-POINT is a reference point in the new glyph to be added.
|
|
239
|
|
240 For instance, if GLOBAL-REF-POINT is 8 and NEW-REF-POINT is 1, the
|
|
241 overall glyph is updated as follows:
|
|
242
|
|
243 +-------+--+ <--- new ascent
|
|
244 | | |
|
|
245 | global| |
|
|
246 | glyph | |
|
|
247 --- | | | <--- baseline (doesn't change)
|
|
248 +----+--+--+
|
|
249 | | new |
|
|
250 | |glyph|
|
|
251 +----+-----+ <--- new descent
|
|
252 ")
|
|
253
|
|
254 ;; Return a string for char CH to be embedded in multibyte form of
|
|
255 ;; composite character.
|
|
256 (defun compose-chars-component (ch)
|
|
257 (if (< ch 128)
|
|
258 (format "\240%c" (+ ch 128))
|
|
259 (let ((str (char-to-string ch)))
|
|
260 (if (cmpcharp ch)
|
|
261 (if (/= (aref str 1) ?\xFF)
|
|
262 (error "Char %c can't be composed" ch)
|
|
263 (substring str 2))
|
|
264 (aset str 0 (+ (aref str 0) ?\x20))
|
|
265 str))))
|
|
266
|
|
267 ;; Return a string for composition rule RULE to be embedded in
|
|
268 ;; multibyte form of composite character.
|
|
269 (defsubst compose-chars-rule (rule)
|
|
270 (char-to-string (+ ?\xA0
|
|
271 (* (cdr (assq (car rule) reference-point-alist)) 9)
|
|
272 (cdr (assq (cdr rule) reference-point-alist)))))
|
|
273
|
|
274 ;;;###autoload
|
|
275 (defun compose-chars (first-component &rest args)
|
|
276 "Return one char string composed from the arguments.
|
|
277 Each argument is a character (including a composite chararacter)
|
|
278 or a composition rule.
|
|
279 A composition rule has the form \(GLOBAL-REF-POINT . NEW-REF-POINT).
|
|
280 See the documentation of `reference-point-alist' for more detail."
|
|
281 (if (= (length args) 0)
|
|
282 (char-to-string first-component)
|
|
283 (let* ((with-rule (consp (car args)))
|
|
284 (str (if with-rule (concat (vector leading-code-composition ?\xFF))
|
|
285 (char-to-string leading-code-composition))))
|
|
286 (setq str (concat str (compose-chars-component first-component)))
|
|
287 (while args
|
|
288 (if with-rule
|
|
289 (progn
|
|
290 (if (not (consp (car args)))
|
|
291 (error "Invalid composition rule: %s" (car args)))
|
|
292 (setq str (concat str (compose-chars-rule (car args))
|
|
293 (compose-chars-component (car (cdr args))))
|
|
294 args (cdr (cdr args))))
|
|
295 (setq str (concat str (compose-chars-component (car args)))
|
|
296 args (cdr args))))
|
|
297 str)))
|
|
298
|
|
299 ;;;###autoload
|
|
300 (defun decompose-composite-char (char &optional type with-composition-rule)
|
|
301 "Convert composite character CHAR to a string containing components of CHAR.
|
|
302 Optional 1st arg TYPE specifies the type of sequence returned.
|
|
303 It should be `string' (default), `list', or `vector'.
|
|
304 Optional 2nd arg WITH-COMPOSITION-RULE non-nil means the returned
|
|
305 sequence contains embedded composition rules if any. In this case, the
|
|
306 order of elements in the sequence is the same as arguments for
|
|
307 `compose-chars' to create CHAR.
|
|
308 If TYPE is omitted or is `string', composition rules are omitted
|
|
309 even if WITH-COMPOSITION-RULE is t."
|
|
310 (or type
|
|
311 (setq type 'string))
|
|
312 (let* ((len (composite-char-component-count char))
|
|
313 (i (1- len))
|
|
314 l)
|
|
315 (setq with-composition-rule (and with-composition-rule
|
|
316 (not (eq type 'string))
|
|
317 (composite-char-composition-rule-p char)))
|
|
318 (while (> i 0)
|
|
319 (setq l (cons (composite-char-component char i) l))
|
|
320 (if with-composition-rule
|
|
321 (let ((rule (- (composite-char-composition-rule char i) ?\xA0)))
|
|
322 (setq l (cons (cons (/ rule 9) (% rule 9)) l))))
|
|
323 (setq i (1- i)))
|
|
324 (setq l (cons (composite-char-component char 0) l))
|
|
325 (cond ((eq type 'string)
|
|
326 (apply 'concat-chars l))
|
|
327 ((eq type 'list)
|
|
328 l)
|
|
329 (t ; i.e. TYPE is vector
|
|
330 (vconcat l)))))
|
|
331
|
|
332 ;;; mule-util.el ends here
|