0
|
1 /* The "lrecord" structure (header of a compound lisp object).
|
|
2 Copyright (C) 1993, 1994, 1995 Free Software Foundation, Inc.
|
|
3 Copyright (C) 1996 Ben Wing.
|
|
4
|
|
5 This file is part of XEmacs.
|
|
6
|
|
7 XEmacs is free software; you can redistribute it and/or modify it
|
|
8 under the terms of the GNU General Public License as published by the
|
|
9 Free Software Foundation; either version 2, or (at your option) any
|
|
10 later version.
|
|
11
|
|
12 XEmacs is distributed in the hope that it will be useful, but WITHOUT
|
|
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
15 for more details.
|
|
16
|
|
17 You should have received a copy of the GNU General Public License
|
|
18 along with XEmacs; see the file COPYING. If not, write to
|
|
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
20 Boston, MA 02111-1307, USA. */
|
|
21
|
|
22 /* Synched up with: Not in FSF. */
|
|
23
|
|
24 #ifndef _XEMACS_LRECORD_H_
|
|
25 #define _XEMACS_LRECORD_H_
|
|
26
|
|
27 /* The "lrecord" type of Lisp object is used for all object types
|
|
28 other than a few simple ones. This allows many types to be
|
|
29 implemented but only a few bits required in a Lisp object for
|
|
30 type information. (The tradeoff is that each object has its
|
|
31 type marked in it, thereby increasing its size.) The first
|
211
|
32 four bytes of all lrecords is either a pointer to a struct
|
|
33 lrecord_implementation, which contains methods describing how
|
|
34 to process this object, or an index into an array of pointers
|
|
35 to struct lrecord_implementations plus some other data bits.
|
0
|
36
|
272
|
37 Lrecords are of two types: straight lrecords, and lcrecords.
|
|
38 Straight lrecords are used for those types of objects that have
|
|
39 their own allocation routines (typically allocated out of 2K chunks
|
|
40 of memory called `frob blocks'). These objects have a `struct
|
|
41 lrecord_header' at the top, containing only the bits needed to find
|
|
42 the lrecord_implementation for the object. There are special
|
|
43 routines in alloc.c to deal with each such object type.
|
0
|
44
|
|
45 Lcrecords are used for less common sorts of objects that don't
|
|
46 do their own allocation. Each such object is malloc()ed
|
|
47 individually, and the objects are chained together through
|
|
48 a `next' pointer. Lcrecords have a `struct lcrecord_header'
|
211
|
49 at the top, which contains a `struct lrecord_header' and
|
0
|
50 a `next' pointer, and are allocated using alloc_lcrecord().
|
|
51
|
|
52 Creating a new lcrecord type is fairly easy; just follow the
|
380
|
53 lead of some existing type (e.g. hash tables). Note that you
|
0
|
54 do not need to supply all the methods (see below); reasonable
|
|
55 defaults are provided for many of them. Alternatively, if you're
|
|
56 just looking for a way of encapsulating data (which possibly
|
|
57 could contain Lisp_Objects in it), you may well be able to use
|
|
58 the opaque type. */
|
|
59
|
|
60 struct lrecord_header
|
2
|
61 {
|
|
62 /* It would be better to put the mark-bit together with the
|
|
63 following datatype identification field in an 8- or 16-bit
|
|
64 integer rather than playing funny games with changing
|
|
65 header->implementation and "wasting" 32 bits on the below
|
|
66 pointer. The type-id would then be a 7 or 15 bit index into a
|
|
67 table of lrecord-implementations rather than a direct pointer.
|
|
68 There would be 24 (or 16) bits left over for datatype-specific
|
|
69 per-instance flags.
|
185
|
70
|
2
|
71 The below is the simplest thing to do for the present,
|
|
72 and doesn't incur that much overhead as most Emacs records
|
|
73 are of such a size that the overhead isn't too bad.
|
|
74 (The marker datatype is the worst case.)
|
185
|
75
|
2
|
76 It also has the very very very slight advantage that type-checking
|
|
77 involves one memory read (of the "implementation" slot) and a
|
|
78 comparison against a link-time constant address rather than a
|
|
79 read and a comparison against a variable value. (Variable since
|
|
80 it is a very good idea to assign the indices into the hypothetical
|
|
81 type-code table dynamically rather that pre-defining them.)
|
|
82 I think I remember that Elk Lisp does something like this.
|
|
83 Gee, I wonder if some cretin has patented it? */
|
211
|
84
|
|
85 /*
|
|
86 * If USE_INDEXED_LRECORD_IMPLEMENTATION is defined, we are
|
|
87 * implementing the scheme described in the 'It would be better
|
|
88 * ...' paragraph above.
|
|
89 */
|
|
90 #ifdef USE_INDEXED_LRECORD_IMPLEMENTATION
|
|
91 /* index into lrecord_implementations_table[] */
|
380
|
92 unsigned char type;
|
211
|
93 /* 1 if the object is marked during GC, 0 otherwise. */
|
380
|
94 char mark;
|
272
|
95 /* 1 if the object resides in pure (read-only) space */
|
380
|
96 char pure;
|
211
|
97 #else
|
2
|
98 CONST struct lrecord_implementation *implementation;
|
211
|
99 #endif
|
2
|
100 };
|
211
|
101
|
243
|
102 struct lrecord_implementation;
|
|
103 int lrecord_type_index (CONST struct lrecord_implementation *implementation);
|
272
|
104
|
|
105 #ifdef USE_INDEXED_LRECORD_IMPLEMENTATION
|
380
|
106 # define set_lheader_implementation(header,imp) do { \
|
|
107 struct lrecord_header* SLI_header = (header); \
|
|
108 (SLI_header)->type = lrecord_type_index (imp); \
|
|
109 (SLI_header)->mark = 0; \
|
|
110 (SLI_header)->pure = 0; \
|
272
|
111 } while (0)
|
|
112 #else
|
211
|
113 # define set_lheader_implementation(header,imp) \
|
272
|
114 ((void) ((header)->implementation = (imp)))
|
211
|
115 #endif
|
0
|
116
|
|
117 struct lcrecord_header
|
2
|
118 {
|
|
119 struct lrecord_header lheader;
|
380
|
120
|
|
121 /* The `next' field is normally used to chain all lrecords together
|
2
|
122 so that the GC can find (and free) all of them.
|
380
|
123 `alloc_lcrecord' threads records together.
|
185
|
124
|
380
|
125 The `next' field may be used for other purposes as long as some
|
|
126 other mechanism is provided for letting the GC do its work.
|
|
127
|
|
128 For example, the event and marker object types allocate members
|
|
129 out of memory chunks, and are able to find all unmarked members
|
|
130 by sweeping through the elements of the list of chunks. */
|
2
|
131 struct lcrecord_header *next;
|
380
|
132
|
|
133 /* The `uid' field is just for debugging/printing convenience.
|
|
134 Having this slot doesn't hurt us much spacewise, since an
|
|
135 lcrecord already has the above slots plus malloc overhead. */
|
2
|
136 unsigned int uid :31;
|
380
|
137
|
|
138 /* The `free' field is a flag that indicates whether this lcrecord
|
|
139 is on a "free list". Free lists are used to minimize the number
|
|
140 of calls to malloc() when we're repeatedly allocating and freeing
|
|
141 a number of the same sort of lcrecord. Lcrecords on a free list
|
|
142 always get marked in a different fashion, so we can use this flag
|
|
143 as a sanity check to make sure that free lists only have freed
|
|
144 lcrecords and there are no freed lcrecords elsewhere. */
|
2
|
145 unsigned int free :1;
|
|
146 };
|
0
|
147
|
|
148 /* Used for lcrecords in an lcrecord-list. */
|
|
149 struct free_lcrecord_header
|
2
|
150 {
|
|
151 struct lcrecord_header lcheader;
|
|
152 Lisp_Object chain;
|
|
153 };
|
0
|
154
|
185
|
155 /* This as the value of lheader->implementation->finalizer
|
380
|
156 means that this record is already marked */
|
272
|
157 void this_marks_a_marked_record (void *, int);
|
0
|
158
|
|
159 /* see alloc.c for an explanation */
|
272
|
160 Lisp_Object this_one_is_unmarkable (Lisp_Object obj,
|
|
161 void (*markobj) (Lisp_Object));
|
0
|
162
|
|
163 struct lrecord_implementation
|
2
|
164 {
|
|
165 CONST char *name;
|
|
166 /* This function is called at GC time, to make sure that all Lisp_Objects
|
|
167 pointed to by this object get properly marked. It should call
|
|
168 the mark_object function on all Lisp_Objects in the object. If
|
|
169 the return value is non-nil, it should be a Lisp_Object to be
|
|
170 marked (don't call the mark_object function explicitly on it,
|
|
171 because the GC routines will do this). Doing it this way reduces
|
|
172 recursion, so the object returned should preferably be the one
|
|
173 with the deepest level of Lisp_Object pointers. This function
|
|
174 can be NULL, meaning no GC marking is necessary. */
|
|
175 Lisp_Object (*marker) (Lisp_Object, void (*mark_object) (Lisp_Object));
|
|
176 /* This can be NULL if the object is an lcrecord; the
|
|
177 default_object_printer() in print.c will be used. */
|
|
178 void (*printer) (Lisp_Object, Lisp_Object printcharfun, int escapeflag);
|
|
179 /* This function is called at GC time when the object is about to
|
|
180 be freed, and at dump time (FOR_DISKSAVE will be non-zero in this
|
|
181 case). It should perform any necessary cleanup (e.g. freeing
|
|
182 malloc()ed memory. This can be NULL, meaning no special
|
|
183 finalization is necessary.
|
185
|
184
|
2
|
185 WARNING: remember that the finalizer is called at dump time even
|
|
186 though the object is not being freed. */
|
|
187 void (*finalizer) (void *header, int for_disksave);
|
|
188 /* This can be NULL, meaning compare objects with EQ(). */
|
|
189 int (*equal) (Lisp_Object obj1, Lisp_Object obj2, int depth);
|
|
190 /* This can be NULL, meaning use the Lisp_Object itself as the hash;
|
|
191 but *only* if the `equal' function is EQ (if two objects are
|
|
192 `equal', they *must* hash to the same value or the hashing won't
|
|
193 work). */
|
|
194 unsigned long (*hash) (Lisp_Object, int);
|
|
195 Lisp_Object (*getprop) (Lisp_Object obj, Lisp_Object prop);
|
|
196 int (*putprop) (Lisp_Object obj, Lisp_Object prop, Lisp_Object val);
|
|
197 int (*remprop) (Lisp_Object obj, Lisp_Object prop);
|
|
198 Lisp_Object (*plist) (Lisp_Object obj);
|
0
|
199
|
2
|
200 /* Only one of these is non-0. If both are 0, it means that this type
|
|
201 is not instantiable by alloc_lcrecord(). */
|
272
|
202 size_t static_size;
|
|
203 size_t (*size_in_bytes_method) (CONST void *header);
|
2
|
204 /* A unique subtag-code (dynamically) assigned to this datatype. */
|
|
205 /* (This is a pointer so the rest of this structure can be read-only.) */
|
|
206 int *lrecord_type_index;
|
|
207 /* A "basic" lrecord is any lrecord that's not an lcrecord, i.e.
|
|
208 one that does not have an lcrecord_header at the front and which
|
|
209 is (usually) allocated in frob blocks. We only use this flag for
|
|
210 some consistency checking, and that only when error-checking is
|
|
211 enabled. */
|
|
212 int basic_p;
|
|
213 };
|
0
|
214
|
272
|
215 #ifdef USE_INDEXED_LRECORD_IMPLEMENTATION
|
211
|
216 extern CONST struct lrecord_implementation *lrecord_implementations_table[];
|
|
217
|
|
218 # define XRECORD_LHEADER_IMPLEMENTATION(obj) \
|
|
219 (lrecord_implementations_table[XRECORD_LHEADER (obj)->type])
|
|
220 # define LHEADER_IMPLEMENTATION(lh) (lrecord_implementations_table[(lh)->type])
|
|
221 #else
|
|
222 # define XRECORD_LHEADER_IMPLEMENTATION(obj) \
|
|
223 (XRECORD_LHEADER (obj)->implementation)
|
|
224 # define LHEADER_IMPLEMENTATION(lh) ((lh)->implementation)
|
|
225 #endif
|
|
226
|
0
|
227 extern int gc_in_progress;
|
|
228
|
211
|
229 #ifdef USE_INDEXED_LRECORD_IMPLEMENTATION
|
|
230 # define MARKED_RECORD_P(obj) (gc_in_progress && XRECORD_LHEADER (obj)->mark)
|
|
231 #else
|
272
|
232 # define MARKED_RECORD_P(obj) (gc_in_progress && \
|
|
233 XRECORD_LHEADER (obj)->implementation->finalizer == \
|
0
|
234 this_marks_a_marked_record)
|
211
|
235 #endif
|
0
|
236
|
211
|
237 #ifdef USE_INDEXED_LRECORD_IMPLEMENTATION
|
207
|
238
|
380
|
239 # define MARKED_RECORD_HEADER_P(lheader) ((lheader)->mark)
|
|
240 # define MARK_RECORD_HEADER(lheader) ((void) ((lheader)->mark = 1))
|
|
241 # define UNMARK_RECORD_HEADER(lheader) ((void) ((lheader)->mark = 0))
|
211
|
242
|
|
243 #else /* ! USE_INDEXED_LRECORD_IMPLEMENTATION */
|
|
244
|
|
245 # define MARKED_RECORD_HEADER_P(lheader) \
|
380
|
246 ((lheader)->implementation->finalizer == this_marks_a_marked_record)
|
|
247 # define MARK_RECORD_HEADER(lheader) ((void) (((lheader)->implementation)++))
|
|
248 # define UNMARK_RECORD_HEADER(lheader) ((void) (((lheader)->implementation)--))
|
207
|
249
|
211
|
250 #endif /* ! USE_INDEXED_LRECORD_IMPLEMENTATION */
|
|
251
|
|
252 #define UNMARKABLE_RECORD_HEADER_P(lheader) \
|
380
|
253 (LHEADER_IMPLEMENTATION (lheader)->marker == this_one_is_unmarkable)
|
207
|
254
|
0
|
255 /* Declaring the following structures as const puts them in the
|
|
256 text (read-only) segment, which makes debugging inconvenient
|
|
257 because this segment is not mapped when processing a core-
|
|
258 dump file */
|
|
259
|
|
260 #ifdef DEBUG_XEMACS
|
|
261 #define CONST_IF_NOT_DEBUG
|
|
262 #else
|
|
263 #define CONST_IF_NOT_DEBUG CONST
|
|
264 #endif
|
|
265
|
|
266 /* DEFINE_LRECORD_IMPLEMENTATION is for objects with constant size.
|
|
267 DEFINE_LRECORD_SEQUENCE_IMPLEMENTATION is for objects whose size varies.
|
|
268 */
|
|
269
|
|
270 #if defined (ERROR_CHECK_TYPECHECK)
|
|
271 # define DECLARE_ERROR_CHECK_TYPECHECK(c_name, structtype)
|
|
272 #else
|
|
273 # define DECLARE_ERROR_CHECK_TYPECHECK(c_name, structtype)
|
|
274 #endif
|
|
275
|
|
276 #define DEFINE_BASIC_LRECORD_IMPLEMENTATION(name,c_name,marker,printer,nuker,equal,hash,structtype) \
|
272
|
277 DEFINE_BASIC_LRECORD_IMPLEMENTATION_WITH_PROPS(name,c_name,marker,printer,nuker,equal,hash,0,0,0,0,structtype)
|
0
|
278
|
|
279 #define DEFINE_BASIC_LRECORD_IMPLEMENTATION_WITH_PROPS(name,c_name,marker,printer,nuker,equal,hash,getprop,putprop,remprop,props,structtype) \
|
272
|
280 MAKE_LRECORD_IMPLEMENTATION(name,c_name,marker,printer,nuker,equal,hash,getprop,putprop,remprop,props,sizeof(structtype),0,1,structtype)
|
0
|
281
|
|
282 #define DEFINE_LRECORD_IMPLEMENTATION(name,c_name,marker,printer,nuker,equal,hash,structtype) \
|
272
|
283 DEFINE_LRECORD_IMPLEMENTATION_WITH_PROPS(name,c_name,marker,printer,nuker,equal,hash,0,0,0,0,structtype)
|
0
|
284
|
|
285 #define DEFINE_LRECORD_IMPLEMENTATION_WITH_PROPS(name,c_name,marker,printer,nuker,equal,hash,getprop,putprop,remprop,props,structtype) \
|
272
|
286 MAKE_LRECORD_IMPLEMENTATION(name,c_name,marker,printer,nuker,equal,hash,getprop,putprop,remprop,props,sizeof (structtype),0,0,structtype)
|
0
|
287
|
|
288 #define DEFINE_LRECORD_SEQUENCE_IMPLEMENTATION(name,c_name,marker,printer,nuker,equal,hash,sizer,structtype) \
|
272
|
289 DEFINE_LRECORD_SEQUENCE_IMPLEMENTATION_WITH_PROPS(name,c_name,marker,printer,nuker,equal,hash,0,0,0,0,sizer,structtype)
|
|
290
|
|
291 #define DEFINE_LRECORD_SEQUENCE_IMPLEMENTATION_WITH_PROPS(name,c_name,marker,printer,nuker,equal,hash,getprop,putprop,remprop,props,sizer,structtype) \
|
|
292 MAKE_LRECORD_IMPLEMENTATION(name,c_name,marker,printer,nuker,equal,hash,getprop,putprop,remprop,props,0,sizer,0,structtype) \
|
|
293
|
|
294 #define MAKE_LRECORD_IMPLEMENTATION(name,c_name,marker,printer,nuker,equal,hash,getprop,putprop,remprop,props,size,sizer,basic_p,structtype) \
|
0
|
295 DECLARE_ERROR_CHECK_TYPECHECK(c_name, structtype) \
|
|
296 static int lrecord_##c_name##_lrecord_type_index; \
|
|
297 CONST_IF_NOT_DEBUG struct lrecord_implementation lrecord_##c_name[2] = \
|
|
298 { { name, marker, printer, nuker, equal, hash, \
|
272
|
299 getprop, putprop, remprop, props, size, sizer, \
|
|
300 &(lrecord_##c_name##_lrecord_type_index), basic_p }, \
|
|
301 { 0, 0, 0, this_marks_a_marked_record, 0, 0, 0, 0, 0, 0, 0, 0, 0, basic_p } }
|
0
|
302
|
185
|
303 #define LRECORDP(a) (XTYPE ((a)) == Lisp_Type_Record)
|
0
|
304 #define XRECORD_LHEADER(a) ((struct lrecord_header *) XPNTR (a))
|
211
|
305
|
|
306 #ifdef USE_INDEXED_LRECORD_IMPLEMENTATION
|
|
307 # define RECORD_TYPEP(x, ty) \
|
|
308 (LRECORDP (x) && \
|
|
309 lrecord_implementations_table[XRECORD_LHEADER (x)->type] == (ty))
|
|
310 #else
|
|
311 # define RECORD_TYPEP(x, ty) \
|
0
|
312 (LRECORDP (x) && XRECORD_LHEADER (x)->implementation == (ty))
|
211
|
313 #endif
|
0
|
314
|
|
315 /* NOTE: the DECLARE_LRECORD() must come before the associated
|
|
316 DEFINE_LRECORD_*() or you will get compile errors.
|
|
317
|
|
318 Furthermore, you always need to put the DECLARE_LRECORD() in a header
|
|
319 file, and make sure the header file is included in inline.c, even
|
|
320 if the type is private to a particular file. Otherwise, you will
|
|
321 get undefined references for the error_check_foo() inline function
|
|
322 under GCC. */
|
|
323
|
|
324 #ifdef ERROR_CHECK_TYPECHECK
|
|
325
|
2
|
326 # define DECLARE_LRECORD(c_name, structtype) \
|
|
327 extern CONST_IF_NOT_DEBUG struct lrecord_implementation \
|
|
328 lrecord_##c_name[]; \
|
380
|
329 INLINE structtype *error_check_##c_name (Lisp_Object obj); \
|
2
|
330 INLINE structtype * \
|
380
|
331 error_check_##c_name (Lisp_Object obj) \
|
2
|
332 { \
|
380
|
333 XUNMARK (obj); \
|
|
334 assert (RECORD_TYPEP (obj, lrecord_##c_name) || \
|
|
335 MARKED_RECORD_P (obj)); \
|
|
336 return (structtype *) XPNTR (obj); \
|
2
|
337 } \
|
0
|
338 extern Lisp_Object Q##c_name##p
|
|
339
|
2
|
340 # define DECLARE_NONRECORD(c_name, type_enum, structtype) \
|
380
|
341 INLINE structtype *error_check_##c_name (Lisp_Object obj); \
|
2
|
342 INLINE structtype * \
|
380
|
343 error_check_##c_name (Lisp_Object obj) \
|
2
|
344 { \
|
380
|
345 XUNMARK (obj); \
|
|
346 assert (XGCTYPE (obj) == type_enum); \
|
|
347 return (structtype *) XPNTR (obj); \
|
2
|
348 } \
|
0
|
349 extern Lisp_Object Q##c_name##p
|
|
350
|
|
351 # define XRECORD(x, c_name, structtype) error_check_##c_name (x)
|
|
352 # define XNONRECORD(x, c_name, type_enum, structtype) error_check_##c_name (x)
|
|
353
|
2
|
354 # define XSETRECORD(var, p, c_name) do \
|
|
355 { \
|
185
|
356 XSETOBJ (var, Lisp_Type_Record, p); \
|
2
|
357 assert (RECORD_TYPEP (var, lrecord_##c_name) || \
|
|
358 MARKED_RECORD_P (var)); \
|
0
|
359 } while (0)
|
|
360
|
|
361 #else /* not ERROR_CHECK_TYPECHECK */
|
|
362
|
2
|
363 # define DECLARE_LRECORD(c_name, structtype) \
|
|
364 extern Lisp_Object Q##c_name##p; \
|
|
365 extern CONST_IF_NOT_DEBUG struct lrecord_implementation \
|
0
|
366 lrecord_##c_name[]
|
2
|
367 # define DECLARE_NONRECORD(c_name, type_enum, structtype) \
|
0
|
368 extern Lisp_Object Q##c_name##p
|
|
369 # define XRECORD(x, c_name, structtype) ((structtype *) XPNTR (x))
|
2
|
370 # define XNONRECORD(x, c_name, type_enum, structtype) \
|
0
|
371 ((structtype *) XPNTR (x))
|
185
|
372 # define XSETRECORD(var, p, c_name) XSETOBJ (var, Lisp_Type_Record, p)
|
0
|
373
|
|
374 #endif /* not ERROR_CHECK_TYPECHECK */
|
|
375
|
|
376 #define RECORDP(x, c_name) RECORD_TYPEP (x, lrecord_##c_name)
|
|
377 #define GC_RECORDP(x, c_name) gc_record_type_p (x, lrecord_##c_name)
|
|
378
|
|
379 /* Note: we now have two different kinds of type-checking macros.
|
|
380 The "old" kind has now been renamed CONCHECK_foo. The reason for
|
|
381 this is that the CONCHECK_foo macros signal a continuable error,
|
185
|
382 allowing the user (through debug-on-error) to substitute a different
|
0
|
383 value and return from the signal, which causes the lvalue argument
|
|
384 to get changed. Quite a lot of code would crash if that happened,
|
|
385 because it did things like
|
|
386
|
|
387 foo = XCAR (list);
|
|
388 CHECK_STRING (foo);
|
|
389
|
|
390 and later on did XSTRING (XCAR (list)), assuming that the type
|
|
391 is correct (when it might be wrong, if the user substituted a
|
|
392 correct value in the debugger).
|
|
393
|
|
394 To get around this, I made all the CHECK_foo macros signal a
|
|
395 non-continuable error. Places where a continuable error is OK
|
|
396 (generally only when called directly on the argument of a Lisp
|
|
397 primitive) should be changed to use CONCHECK().
|
|
398
|
|
399 FSF Emacs does not have this problem because RMS took the cheesy
|
|
400 way out and disabled returning from a signal entirely. */
|
|
401
|
185
|
402 #define CONCHECK_RECORD(x, c_name) do { \
|
|
403 if (!RECORD_TYPEP (x, lrecord_##c_name)) \
|
|
404 x = wrong_type_argument (Q##c_name##p, x); \
|
|
405 } while (0)
|
|
406 #define CONCHECK_NONRECORD(x, lisp_enum, predicate) do {\
|
|
407 if (XTYPE (x) != lisp_enum) \
|
|
408 x = wrong_type_argument (predicate, x); \
|
|
409 } while (0)
|
|
410 #define CHECK_RECORD(x, c_name) do { \
|
|
411 if (!RECORD_TYPEP (x, lrecord_##c_name)) \
|
|
412 dead_wrong_type_argument (Q##c_name##p, x); \
|
|
413 } while (0)
|
|
414 #define CHECK_NONRECORD(x, lisp_enum, predicate) do { \
|
|
415 if (XTYPE (x) != lisp_enum) \
|
|
416 dead_wrong_type_argument (predicate, x); \
|
|
417 } while (0)
|
0
|
418
|
272
|
419 void *alloc_lcrecord (size_t size, CONST struct lrecord_implementation *);
|
0
|
420
|
185
|
421 #define alloc_lcrecord_type(type, lrecord_implementation) \
|
|
422 ((type *) alloc_lcrecord (sizeof (type), lrecord_implementation))
|
|
423
|
0
|
424 int gc_record_type_p (Lisp_Object frob,
|
|
425 CONST struct lrecord_implementation *type);
|
|
426
|
|
427 /* Copy the data from one lcrecord structure into another, but don't
|
|
428 overwrite the header information. */
|
|
429
|
2
|
430 #define copy_lcrecord(dst, src) \
|
|
431 memcpy ((char *) dst + sizeof (struct lcrecord_header), \
|
|
432 (char *) src + sizeof (struct lcrecord_header), \
|
0
|
433 sizeof (*dst) - sizeof (struct lcrecord_header))
|
|
434
|
2
|
435 #define zero_lcrecord(lcr) \
|
|
436 memset ((char *) lcr + sizeof (struct lcrecord_header), 0, \
|
0
|
437 sizeof (*lcr) - sizeof (struct lcrecord_header))
|
|
438
|
|
439 #endif /* _XEMACS_LRECORD_H_ */
|