442
|
1 /* Portable data dumper for XEmacs.
|
2551
|
2 Copyright (C) 1999-2000,2004 Olivier Galibert
|
458
|
3 Copyright (C) 2001 Martin Buchholz
|
2563
|
4 Copyright (C) 2001, 2002, 2003, 2004, 2005 Ben Wing.
|
442
|
5
|
|
6 This file is part of XEmacs.
|
|
7
|
|
8 XEmacs is free software; you can redistribute it and/or modify it
|
|
9 under the terms of the GNU General Public License as published by the
|
|
10 Free Software Foundation; either version 2, or (at your option) any
|
|
11 later version.
|
|
12
|
|
13 XEmacs is distributed in the hope that it will be useful, but WITHOUT
|
|
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
16 for more details.
|
|
17
|
|
18 You should have received a copy of the GNU General Public License
|
|
19 along with XEmacs; see the file COPYING. If not, write to
|
|
20 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
21 Boston, MA 02111-1307, USA. */
|
|
22
|
|
23 /* Synched up with: Not in FSF. */
|
|
24
|
2367
|
25 /* This file has been Mule-ized, Ben Wing, 10-10-04. */
|
|
26
|
|
27 /* #### Put in much more assertions. Whenever we store fixups in the
|
|
28 process or writing out data, make sure the fixups (offsets) point to the
|
|
29 beginning of an object, i.e. are registered. Same whenever we read in
|
|
30 -- verify offsets as registered, and when compute a fixup, verify the
|
|
31 pointer is pointing within the pdump area. registered and check within
|
|
32 pdump area. For specific types of pointers (e.g. to Lisp_Objects),
|
|
33 check if they're pointing to the right kinds of types. It should be
|
|
34 possible to check that a putative Lisp_Object is really a Lisp_Object
|
|
35 since it will follow a strict format in its header. */
|
800
|
36
|
442
|
37 #include <config.h>
|
|
38 #include "lisp.h"
|
|
39
|
|
40 #include "specifier.h"
|
771
|
41 #include "file-coding.h"
|
442
|
42 #include "elhash.h"
|
1204
|
43 #include "lstream.h"
|
442
|
44 #include "sysfile.h"
|
|
45 #include "console-stream.h"
|
|
46
|
|
47 #ifdef WIN32_NATIVE
|
771
|
48 #include "syswindows.h"
|
442
|
49 #else
|
|
50 #ifdef HAVE_MMAP
|
|
51 #include <sys/mman.h>
|
|
52 #endif
|
2720
|
53 #ifdef DUMP_IN_EXEC
|
2015
|
54 #include "dump-data.h"
|
442
|
55 #endif
|
2720
|
56 #endif
|
442
|
57
|
|
58 typedef struct
|
|
59 {
|
2367
|
60 const void *blockaddr;
|
665
|
61 Bytecount size;
|
1204
|
62 const struct memory_description *desc;
|
|
63 } pdump_root_block;
|
452
|
64
|
|
65 typedef struct
|
|
66 {
|
1204
|
67 Dynarr_declare (pdump_root_block);
|
|
68 } pdump_root_block_dynarr;
|
452
|
69
|
|
70 typedef struct
|
|
71 {
|
|
72 void **ptraddress;
|
1204
|
73 const struct sized_memory_description *desc;
|
2367
|
74 } pdump_root_block_ptr;
|
452
|
75
|
|
76 typedef struct
|
|
77 {
|
2367
|
78 Dynarr_declare (pdump_root_block_ptr);
|
|
79 } pdump_root_block_ptr_dynarr;
|
452
|
80
|
458
|
81 typedef struct
|
|
82 {
|
2551
|
83 const void *object;
|
|
84 void *data;
|
|
85 Bytecount size;
|
|
86 EMACS_INT offset;
|
|
87 EMACS_INT dest_offset;
|
|
88 EMACS_INT save_offset;
|
|
89 const struct opaque_convert_functions *fcts;
|
|
90 } pdump_cv_data_info;
|
|
91
|
|
92 typedef struct
|
|
93 {
|
|
94 Dynarr_declare (pdump_cv_data_info);
|
|
95 } pdump_cv_data_info_dynarr;
|
|
96
|
|
97 typedef struct
|
|
98 {
|
|
99 EMACS_INT dest_offset;
|
|
100 EMACS_INT save_offset;
|
|
101 Bytecount size;
|
|
102 } pdump_cv_data_dump_info;
|
|
103
|
|
104 typedef struct
|
|
105 {
|
|
106 const void *object;
|
|
107 void *data;
|
|
108 Bytecount size;
|
|
109 EMACS_INT index;
|
|
110 EMACS_INT save_offset;
|
|
111 const struct opaque_convert_functions *fcts;
|
|
112 } pdump_cv_ptr_info;
|
|
113
|
|
114 typedef struct
|
|
115 {
|
|
116 Dynarr_declare (pdump_cv_ptr_info);
|
|
117 } pdump_cv_ptr_info_dynarr;
|
|
118
|
|
119 typedef struct
|
|
120 {
|
|
121 EMACS_INT save_offset;
|
|
122 Bytecount size;
|
|
123 } pdump_cv_ptr_dump_info;
|
|
124
|
|
125 typedef struct
|
|
126 {
|
|
127 EMACS_INT save_offset;
|
|
128 Bytecount size;
|
|
129 void *adr;
|
|
130 } pdump_cv_ptr_load_info;
|
|
131
|
|
132 typedef struct
|
|
133 {
|
458
|
134 Lisp_Object *address;
|
|
135 Lisp_Object value;
|
|
136 } pdump_static_Lisp_Object;
|
|
137
|
|
138 typedef struct
|
|
139 {
|
2367
|
140 Rawbyte **address; /* Rawbyte * for ease of doing relocation */
|
|
141 Rawbyte * value;
|
458
|
142 } pdump_static_pointer;
|
|
143
|
1204
|
144 static pdump_root_block_dynarr *pdump_root_blocks;
|
2367
|
145 static pdump_root_block_ptr_dynarr *pdump_root_block_ptrs;
|
1204
|
146 static Lisp_Object_ptr_dynarr *pdump_root_lisp_objects;
|
452
|
147 static Lisp_Object_ptr_dynarr *pdump_weak_object_chains;
|
2551
|
148 static pdump_cv_data_info_dynarr *pdump_cv_data;
|
|
149 static pdump_cv_ptr_info_dynarr *pdump_cv_ptr;
|
452
|
150
|
2367
|
151 /* Mark SIZE bytes at non-heap address BLOCKADDR for dumping, described
|
|
152 by DESC. Called by outside callers during XEmacs initialization. */
|
|
153
|
452
|
154 void
|
2367
|
155 dump_add_root_block (const void *blockaddr, Bytecount size,
|
1204
|
156 const struct memory_description *desc)
|
452
|
157 {
|
1204
|
158 pdump_root_block info;
|
2367
|
159 info.blockaddr = blockaddr;
|
452
|
160 info.size = size;
|
1204
|
161 info.desc = desc;
|
|
162 if (pdump_root_blocks == NULL)
|
|
163 pdump_root_blocks = Dynarr_new (pdump_root_block);
|
|
164 Dynarr_add (pdump_root_blocks, info);
|
452
|
165 }
|
|
166
|
2367
|
167 /* Mark the block described by DESC and pointed to by the pointer at
|
|
168 non-heap address PTRADDRESS for dumping.
|
|
169 All the objects reachable from this pointer will also be dumped.
|
|
170 Called by outside callers during XEmacs initialization. */
|
452
|
171 void
|
2367
|
172 dump_add_root_block_ptr (void *ptraddress,
|
|
173 const struct sized_memory_description *desc)
|
452
|
174 {
|
2367
|
175 pdump_root_block_ptr info;
|
452
|
176 info.ptraddress = (void **) ptraddress;
|
|
177 info.desc = desc;
|
2367
|
178 if (pdump_root_block_ptrs == NULL)
|
|
179 pdump_root_block_ptrs = Dynarr_new (pdump_root_block_ptr);
|
|
180 Dynarr_add (pdump_root_block_ptrs, info);
|
452
|
181 }
|
|
182
|
|
183 /* Mark the Lisp_Object at non-heap address VARADDRESS for dumping.
|
2367
|
184 All the objects reachable from this var will also be dumped.
|
|
185 Called by outside callers during XEmacs initialization. */
|
452
|
186 void
|
1204
|
187 dump_add_root_lisp_object (Lisp_Object *varaddress)
|
452
|
188 {
|
1204
|
189 if (pdump_root_lisp_objects == NULL)
|
|
190 pdump_root_lisp_objects = Dynarr_new2 (Lisp_Object_ptr_dynarr, Lisp_Object *);
|
|
191 Dynarr_add (pdump_root_lisp_objects, varaddress);
|
452
|
192 }
|
|
193
|
2367
|
194 /* Mark the list pointed to by the Lisp_Object at VARADDRESS for dumping.
|
|
195 Called by outside callers during XEmacs initialization. */
|
452
|
196 void
|
|
197 dump_add_weak_object_chain (Lisp_Object *varaddress)
|
|
198 {
|
|
199 if (pdump_weak_object_chains == NULL)
|
|
200 pdump_weak_object_chains = Dynarr_new2 (Lisp_Object_ptr_dynarr, Lisp_Object *);
|
|
201 Dynarr_add (pdump_weak_object_chains, varaddress);
|
|
202 }
|
|
203
|
|
204
|
458
|
205 inline static void
|
665
|
206 pdump_align_stream (FILE *stream, Bytecount alignment)
|
458
|
207 {
|
|
208 long offset = ftell (stream);
|
|
209 long adjustment = ALIGN_SIZE (offset, alignment) - offset;
|
|
210 if (adjustment)
|
|
211 fseek (stream, adjustment, SEEK_CUR);
|
|
212 }
|
|
213
|
|
214 #define PDUMP_ALIGN_OUTPUT(type) pdump_align_stream (pdump_out, ALIGNOF (type))
|
|
215
|
|
216 #define PDUMP_WRITE(type, object) \
|
771
|
217 retry_fwrite (&object, sizeof (object), 1, pdump_out);
|
458
|
218
|
|
219 #define PDUMP_WRITE_ALIGNED(type, object) do { \
|
|
220 PDUMP_ALIGN_OUTPUT (type); \
|
|
221 PDUMP_WRITE (type, object); \
|
|
222 } while (0)
|
|
223
|
|
224 #define PDUMP_READ(ptr, type) \
|
2367
|
225 (((type *) (ptr = (Rawbyte *) (((type *) ptr) + 1)))[-1])
|
458
|
226
|
|
227 #define PDUMP_READ_ALIGNED(ptr, type) \
|
2367
|
228 ((ptr = (Rawbyte *) ALIGN_PTR (ptr, type)), PDUMP_READ (ptr, type))
|
458
|
229
|
|
230
|
|
231
|
452
|
232 typedef struct
|
|
233 {
|
1204
|
234 const struct memory_description *desc;
|
442
|
235 int count;
|
|
236 } pdump_reloc_table;
|
|
237
|
2367
|
238 static Rawbyte *pdump_rt_list = 0;
|
442
|
239
|
3263
|
240 #ifndef NEW_GC
|
442
|
241 void
|
|
242 pdump_objects_unmark (void)
|
|
243 {
|
|
244 int i;
|
2367
|
245 Rawbyte *p = pdump_rt_list;
|
442
|
246 if (p)
|
|
247 for (;;)
|
|
248 {
|
|
249 pdump_reloc_table *rt = (pdump_reloc_table *)p;
|
|
250 p += sizeof (pdump_reloc_table);
|
|
251 if (rt->desc)
|
|
252 {
|
|
253 for (i=0; i<rt->count; i++)
|
|
254 {
|
|
255 struct lrecord_header *lh = * (struct lrecord_header **) p;
|
|
256 if (! C_READONLY_RECORD_HEADER_P (lh))
|
|
257 UNMARK_RECORD_HEADER (lh);
|
|
258 p += sizeof (EMACS_INT);
|
|
259 }
|
|
260 } else
|
|
261 break;
|
|
262 }
|
|
263 }
|
3263
|
264 #endif /* not NEW_GC */
|
|
265
|
|
266
|
|
267 #ifdef NEW_GC
|
2720
|
268 /* The structure of the dump file looks like this:
|
|
269 0 - header
|
|
270 - dumped objects
|
|
271 stab_offset - mc allocation table (count, size, address) for individual
|
|
272 allocation and relocation at load time.
|
|
273 - nb_cv_data*struct(dest, adr) for in-object externally
|
|
274 represented data
|
|
275 - nb_cv_ptr*(adr) for pointed-to externally represented data
|
|
276 - relocation table
|
|
277 - nb_root_struct_ptrs*struct(void *, adr)
|
|
278 for global pointers to structures
|
|
279 - nb_root_blocks*struct(void *, size, info) for global
|
|
280 objects to restore
|
|
281 - root lisp object address/value couples with the count
|
|
282 preceding the list
|
|
283 */
|
3263
|
284 #else /* not NEW_GC */
|
1204
|
285 /* The structure of the dump file looks like this:
|
458
|
286 0 - header
|
|
287 - dumped objects
|
2551
|
288 stab_offset - nb_cv_data*struct(dest, adr) for in-object externally
|
|
289 represented data
|
|
290 - nb_cv_ptr*(adr) for pointed-to externally represented data
|
|
291 - nb_root_block_ptrs*struct(void *, adr)
|
2367
|
292 for global pointers to heap blocks
|
1204
|
293 - nb_root_blocks*struct(void *, size, info) for global
|
2367
|
294 data-segment blocks to restore
|
458
|
295 - relocation table
|
|
296 - root lisp object address/value couples with the count
|
|
297 preceding the list
|
442
|
298 */
|
3263
|
299 #endif /* not NEW_GC */
|
442
|
300
|
|
301
|
452
|
302 #define PDUMP_SIGNATURE "XEmacsDP"
|
|
303 #define PDUMP_SIGNATURE_LEN (sizeof (PDUMP_SIGNATURE) - 1)
|
442
|
304
|
|
305 typedef struct
|
|
306 {
|
452
|
307 char signature[PDUMP_SIGNATURE_LEN];
|
442
|
308 unsigned int id;
|
|
309 EMACS_UINT stab_offset;
|
|
310 EMACS_UINT reloc_address;
|
2367
|
311 int nb_root_block_ptrs;
|
1204
|
312 int nb_root_blocks;
|
2551
|
313 int nb_cv_data;
|
|
314 int nb_cv_ptr;
|
452
|
315 } pdump_header;
|
442
|
316
|
2367
|
317 Rawbyte *pdump_start;
|
|
318 Rawbyte *pdump_end;
|
665
|
319 static Bytecount pdump_length;
|
442
|
320
|
2551
|
321 static pdump_cv_data_dump_info *pdump_loaded_cv_data;
|
|
322 static pdump_cv_ptr_load_info *pdump_loaded_cv_ptr;
|
|
323
|
442
|
324 #ifdef WIN32_NATIVE
|
452
|
325 /* Handle for the dump file */
|
458
|
326 static HANDLE pdump_hFile = INVALID_HANDLE_VALUE;
|
452
|
327 /* Handle for the file mapping object for the dump file */
|
458
|
328 static HANDLE pdump_hMap = INVALID_HANDLE_VALUE;
|
442
|
329 #endif
|
|
330
|
458
|
331 static void (*pdump_free) (void);
|
442
|
332
|
460
|
333 static unsigned char pdump_align_table[] =
|
442
|
334 {
|
460
|
335 64, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1,
|
|
336 16, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1,
|
|
337 32, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1,
|
|
338 16, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1
|
442
|
339 };
|
|
340
|
647
|
341 static inline int
|
665
|
342 pdump_size_to_align (Bytecount size)
|
442
|
343 {
|
460
|
344 return pdump_align_table[size % countof (pdump_align_table)];
|
|
345 }
|
|
346
|
2367
|
347 /************************************************************************/
|
|
348 /* Registering memory blocks */
|
|
349 /************************************************************************/
|
|
350
|
|
351 /* "Registering" or recording a heap memory block (which will need to be
|
|
352 written out, reloaded and relocated, and to which there may be pointers
|
|
353 from other heap blocks or from the data segment) happens both in a list
|
|
354 and in a hash table. There is a single hash table covering all
|
|
355 registered blocks, but different lists for different kinds of blocks.
|
|
356 There is one list for "opaque data" (stuff identified as
|
|
357 XD_OPAQUE_DATA_PTR, XD_ASCII_STRING, XD_DOC_STRING), one list for each
|
|
358 type of Lisp object, and one list for each different memory descriptor.
|
|
359 This lets similar-sized and aligned objects be grouped together when
|
|
360 they are written out, to save space.
|
|
361
|
|
362 pdump_block_list is a list keeping track of registered memory blocks.
|
|
363 pdump_block_list_elt is a single entry through the list, and the list is
|
|
364 threaded through the NEXT pointer. The information in this list
|
|
365 associated with a particular block of memory is
|
|
366
|
|
367 -- address of the beginning
|
|
368 -- number of elements at that address
|
|
369 -- size of each element
|
|
370 -- offset to this block in the dumped data
|
|
371
|
|
372 pdump_desc_list is a list keeping track of the various descriptions
|
|
373 that we've seen. The primary purpose of this is so that memory blocks
|
|
374 can be grouped depending on the particular memory description
|
|
375 appropriate for them. The format of the list is different from
|
|
376 pdump_block_list -- a single array is used. (#### Dynarr should have
|
|
377 been used!!!). The information in this list associated with a
|
|
378 description is
|
|
379
|
|
380 -- pointer to the description
|
|
381 -- a pdump_block_list of blocks using that description
|
|
382
|
|
383 Functions for working with lists of memory blocks:
|
|
384
|
|
385 -- Add a memory block to a list using pdump_add_block()
|
|
386
|
|
387 -- Get a memory block from a pointer to its beginning using
|
|
388 pdump_get_block(). This uses the hash table, which lists everything.
|
|
389
|
|
390 -- Return the memory-block list (pdump_block_list) associated with a
|
|
391 descriptor, using pdump_get_block_list(). If no entry found in the
|
|
392 pdump_desc_list, add a new one.
|
|
393
|
|
394 */
|
|
395
|
|
396 typedef struct pdump_block_list_elt
|
460
|
397 {
|
2367
|
398 struct pdump_block_list_elt *next;
|
442
|
399 const void *obj;
|
665
|
400 Bytecount size;
|
442
|
401 int count;
|
|
402 EMACS_INT save_offset;
|
2367
|
403 } pdump_block_list_elt;
|
442
|
404
|
|
405 typedef struct
|
|
406 {
|
2367
|
407 pdump_block_list_elt *first;
|
442
|
408 int align;
|
|
409 int count;
|
2367
|
410 } pdump_block_list;
|
442
|
411
|
2367
|
412 typedef struct pdump_desc_list_elt
|
442
|
413 {
|
2367
|
414 pdump_block_list list;
|
1204
|
415 const struct memory_description *desc;
|
2367
|
416 } pdump_desc_list_elt;
|
442
|
417
|
|
418 typedef struct
|
|
419 {
|
2367
|
420 pdump_desc_list_elt *list;
|
442
|
421 int count;
|
|
422 int size;
|
2367
|
423 } pdump_desc_list;
|
442
|
424
|
2367
|
425 static pdump_block_list *pdump_object_table;
|
|
426 static pdump_block_list pdump_opaque_data_list;
|
|
427 static pdump_desc_list pdump_desc_table;
|
442
|
428
|
460
|
429 static int *pdump_alert_undump_object;
|
442
|
430
|
|
431 static unsigned long cur_offset;
|
665
|
432 static Bytecount max_size;
|
442
|
433 static int pdump_fd;
|
|
434 static void *pdump_buf;
|
458
|
435 static FILE *pdump_out;
|
442
|
436
|
3263
|
437 #ifdef NEW_GC
|
2775
|
438 /* PDUMP_HASHSIZE is a large prime. */
|
|
439 #define PDUMP_HASHSIZE 1000003
|
|
440 /* Nothing special about PDUMP_HASH_MULTIPLIER: arbitrary odd integer
|
|
441 smaller than PDUMP_HASHSIZE. */
|
|
442 #define PDUMP_HASH_MULTIPLIER 12347
|
|
443 /* Nothing special about PDUMP_HASH_STEP: arbitrary integer for linear
|
|
444 probing. */
|
|
445 #define PDUMP_HASH_STEP 574853
|
3263
|
446 #else /* not NEW_GC */
|
442
|
447 #define PDUMP_HASHSIZE 200001
|
3263
|
448 #endif /* not NEW_GC */
|
442
|
449
|
2367
|
450 static pdump_block_list_elt **pdump_hash;
|
442
|
451
|
3263
|
452 #ifndef NEW_GC
|
442
|
453 /* Since most pointers are eight bytes aligned, the >>3 allows for a better hash */
|
3263
|
454 #endif /* not NEW_GC */
|
442
|
455 static int
|
|
456 pdump_make_hash (const void *obj)
|
|
457 {
|
3263
|
458 #ifdef NEW_GC
|
2775
|
459 return ((unsigned long)(obj) * PDUMP_HASH_MULTIPLIER) % PDUMP_HASHSIZE;
|
3263
|
460 #else /* not NEW_GC */
|
442
|
461 return ((unsigned long)(obj)>>3) % PDUMP_HASHSIZE;
|
3263
|
462 #endif /* not NEW_GC */
|
442
|
463 }
|
|
464
|
2367
|
465 /* Return the entry for an already-registered memory block at OBJ,
|
|
466 or NULL if none. */
|
|
467
|
|
468 static pdump_block_list_elt *
|
|
469 pdump_get_block (const void *obj)
|
442
|
470 {
|
|
471 int pos = pdump_make_hash (obj);
|
2367
|
472 pdump_block_list_elt *e;
|
442
|
473
|
|
474 assert (obj != 0);
|
|
475
|
|
476 while ((e = pdump_hash[pos]) != 0)
|
|
477 {
|
|
478 if (e->obj == obj)
|
|
479 return e;
|
|
480
|
|
481 pos++;
|
|
482 if (pos == PDUMP_HASHSIZE)
|
|
483 pos = 0;
|
|
484 }
|
|
485 return 0;
|
|
486 }
|
|
487
|
2367
|
488 /* Register a new memory block on Return the entry for an already-registered heap (?) memory block at OBJ,
|
|
489 or NULL if none. */
|
|
490
|
442
|
491 static void
|
2367
|
492 pdump_add_block (pdump_block_list *list, const void *obj, Bytecount size,
|
458
|
493 int count)
|
442
|
494 {
|
2367
|
495 pdump_block_list_elt *e;
|
442
|
496 int pos = pdump_make_hash (obj);
|
|
497
|
|
498 while ((e = pdump_hash[pos]) != 0)
|
|
499 {
|
|
500 if (e->obj == obj)
|
|
501 return;
|
|
502
|
|
503 pos++;
|
|
504 if (pos == PDUMP_HASHSIZE)
|
|
505 pos = 0;
|
|
506 }
|
|
507
|
2367
|
508 e = xnew (pdump_block_list_elt);
|
442
|
509
|
|
510 e->next = list->first;
|
|
511 e->obj = obj;
|
|
512 e->size = size;
|
|
513 e->count = count;
|
|
514 list->first = e;
|
|
515
|
|
516 list->count += count;
|
|
517 pdump_hash[pos] = e;
|
|
518
|
460
|
519 {
|
|
520 int align = pdump_size_to_align (size);
|
442
|
521
|
460
|
522 if (align < list->align)
|
|
523 list->align = align;
|
|
524 }
|
442
|
525 }
|
|
526
|
3263
|
527 #ifdef NEW_GC
|
2720
|
528 typedef struct mc_addr_elt
|
|
529 {
|
|
530 const void *obj;
|
|
531 EMACS_INT addr;
|
|
532 } mc_addr_elt;
|
|
533
|
|
534 static mc_addr_elt *pdump_mc_hash;
|
|
535
|
|
536 /* Return the entry for an already-registered memory block at OBJ,
|
|
537 or NULL if none. */
|
|
538 static EMACS_INT
|
|
539 pdump_get_mc_addr (const void *obj)
|
|
540 {
|
|
541 int pos = pdump_make_hash (obj);
|
|
542 mc_addr_elt *mc_addr;
|
|
543
|
|
544 assert (obj != 0);
|
|
545
|
2723
|
546 while (((mc_addr = &pdump_mc_hash[pos]) != 0) && (mc_addr->obj != 0))
|
2720
|
547 {
|
|
548 if (mc_addr->obj == obj)
|
|
549 return mc_addr->addr;
|
|
550
|
2775
|
551 pos += PDUMP_HASH_STEP;
|
|
552 if (pos >= PDUMP_HASHSIZE)
|
|
553 pos -= PDUMP_HASHSIZE;
|
2720
|
554 }
|
|
555
|
|
556 /* If this code is reached, an heap address occurred which has not
|
|
557 been written to the lookup table before.
|
|
558 This is a bug! */
|
|
559 ABORT();
|
|
560 return 0;
|
|
561 }
|
|
562
|
|
563 /* For indirect address lookups, needed for convertibles: Ptr points
|
|
564 to an address within an object. Indirect gives the offset by how
|
|
565 many bytes the address of the object has to be adjusted to do a
|
|
566 lookup in the mc_addr translation table and get the new location of
|
|
567 the data. */
|
|
568 #define pdump_get_indirect_mc_addr(ptr, indirect) \
|
|
569 pdump_get_mc_addr ((void *)((ptr) - indirect)) + indirect
|
|
570
|
|
571 static void
|
|
572 pdump_put_mc_addr (const void *obj, EMACS_INT addr)
|
|
573 {
|
|
574 mc_addr_elt *mc_addr;
|
|
575 int pos = pdump_make_hash (obj);
|
|
576
|
2723
|
577 while (((mc_addr = &pdump_mc_hash[pos]) != 0) && (mc_addr->obj != 0))
|
2720
|
578 {
|
|
579 if (mc_addr->obj == obj)
|
|
580 return;
|
|
581
|
2775
|
582 pos += PDUMP_HASH_STEP;
|
|
583 if (pos >= PDUMP_HASHSIZE)
|
|
584 pos -= PDUMP_HASHSIZE;
|
2720
|
585 }
|
|
586
|
|
587 pdump_mc_hash[pos].obj = obj;
|
|
588 pdump_mc_hash[pos].addr = addr;
|
|
589 }
|
3263
|
590 #endif /* NEW_GC */
|
2720
|
591
|
2367
|
592 static pdump_block_list *
|
|
593 pdump_get_block_list (const struct memory_description *desc)
|
442
|
594 {
|
|
595 int i;
|
2367
|
596 for (i=0; i<pdump_desc_table.count; i++)
|
|
597 if (pdump_desc_table.list[i].desc == desc)
|
|
598 return &pdump_desc_table.list[i].list;
|
442
|
599
|
2367
|
600 if (pdump_desc_table.size <= pdump_desc_table.count)
|
442
|
601 {
|
2367
|
602 if (pdump_desc_table.size == -1)
|
|
603 pdump_desc_table.size = 10;
|
442
|
604 else
|
2367
|
605 pdump_desc_table.size = pdump_desc_table.size * 2;
|
|
606 pdump_desc_table.list = (pdump_desc_list_elt *)
|
|
607 xrealloc (pdump_desc_table.list,
|
|
608 pdump_desc_table.size * sizeof (pdump_desc_list_elt));
|
442
|
609 }
|
2367
|
610 pdump_desc_table.list[pdump_desc_table.count].list.first = 0;
|
|
611 pdump_desc_table.list[pdump_desc_table.count].list.align = ALIGNOF (max_align_t);
|
|
612 pdump_desc_table.list[pdump_desc_table.count].list.count = 0;
|
|
613 pdump_desc_table.list[pdump_desc_table.count].desc = desc;
|
442
|
614
|
2367
|
615 return &pdump_desc_table.list[pdump_desc_table.count++].list;
|
442
|
616 }
|
|
617
|
2551
|
618 static pdump_cv_ptr_info *
|
|
619 pdump_find_in_cv_ptr_dynarr(const void *object)
|
|
620 {
|
|
621 int i;
|
|
622 for (i = 0; i < Dynarr_length (pdump_cv_ptr); i++)
|
|
623 if (Dynarr_at (pdump_cv_ptr, i).object == object)
|
|
624 return Dynarr_atp (pdump_cv_ptr, i);
|
|
625 return 0;
|
|
626 }
|
|
627
|
2698
|
628 #define BACKTRACE_MAX 65536
|
|
629
|
442
|
630 static struct
|
|
631 {
|
|
632 struct lrecord_header *obj;
|
|
633 int position;
|
|
634 int offset;
|
2698
|
635 } backtrace[BACKTRACE_MAX];
|
442
|
636
|
1204
|
637 static int pdump_depth;
|
442
|
638
|
1204
|
639 void
|
452
|
640 pdump_backtrace (void)
|
442
|
641 {
|
|
642 int i;
|
|
643 stderr_out ("pdump backtrace :\n");
|
1204
|
644 for (i = 0; i < pdump_depth; i++)
|
442
|
645 {
|
|
646 if (!backtrace[i].obj)
|
458
|
647 stderr_out (" - ind. (%d, %d)\n",
|
|
648 backtrace[i].position,
|
|
649 backtrace[i].offset);
|
442
|
650 else
|
|
651 {
|
|
652 stderr_out (" - %s (%d, %d)\n",
|
1204
|
653 LHEADER_IMPLEMENTATION (backtrace[i].obj)->name,
|
|
654 backtrace[i].position,
|
|
655 backtrace[i].offset);
|
442
|
656 }
|
|
657 }
|
|
658 }
|
|
659
|
1204
|
660 static void
|
1333
|
661 pdump_unsupported_dump_type (enum memory_description_type type,
|
|
662 int do_backtrace)
|
|
663 {
|
|
664 stderr_out ("Unsupported dump type : %d\n", type);
|
|
665 #ifdef WIN32_NATIVE
|
|
666 stderr_out ("Are you compiling with SUPPORT_EDIT_AND_CONTINUE?\n");
|
|
667 stderr_out ("See the PROBLEMS file.\n");
|
|
668 #endif
|
|
669 if (do_backtrace)
|
|
670 pdump_backtrace ();
|
2500
|
671 ABORT ();
|
1333
|
672 }
|
|
673
|
|
674 static void
|
1204
|
675 pdump_bump_depth (void)
|
|
676 {
|
|
677 int me = pdump_depth++;
|
2698
|
678 if (me >= BACKTRACE_MAX)
|
1204
|
679 {
|
|
680 stderr_out ("Backtrace overflow, loop ?\n");
|
2500
|
681 ABORT ();
|
1204
|
682 }
|
|
683 backtrace[me].obj = 0;
|
|
684 backtrace[me].position = 0;
|
|
685 backtrace[me].offset = 0;
|
|
686 }
|
|
687
|
442
|
688 static void pdump_register_object (Lisp_Object obj);
|
3092
|
689 #ifdef NEW_GC
|
|
690 static void pdump_register_object_array (Lisp_Object data,
|
|
691 Bytecount size,
|
|
692 const struct memory_description *desc,
|
|
693 int count);
|
|
694 #endif /* NEW_GC */
|
2367
|
695 static void pdump_register_block_contents (const void *data,
|
|
696 Bytecount size,
|
|
697 const struct memory_description *
|
|
698 desc,
|
|
699 int count);
|
|
700 static void pdump_register_block (const void *data,
|
|
701 Bytecount size,
|
|
702 const struct memory_description *desc,
|
|
703 int count);
|
442
|
704
|
|
705 static void
|
1204
|
706 pdump_register_sub (const void *data, const struct memory_description *desc)
|
442
|
707 {
|
|
708 int pos;
|
1204
|
709 int me = pdump_depth - 1;
|
442
|
710
|
|
711 for (pos = 0; desc[pos].type != XD_END; pos++)
|
|
712 {
|
1204
|
713 const struct memory_description *desc1 = &desc[pos];
|
|
714 EMACS_INT offset = lispdesc_indirect_count (desc1->offset, desc,
|
|
715 data);
|
2367
|
716 const void *rdata = (const Rawbyte *) data + offset;
|
442
|
717
|
|
718 backtrace[me].position = pos;
|
1204
|
719 backtrace[me].offset = offset;
|
|
720
|
|
721 union_switcheroo:
|
442
|
722
|
1204
|
723 /* If the flag says don't dump, then don't dump. */
|
|
724 if ((desc1->flags) & XD_FLAG_NO_PDUMP)
|
|
725 continue;
|
|
726
|
|
727 switch (desc1->type)
|
442
|
728 {
|
665
|
729 case XD_BYTECOUNT:
|
|
730 case XD_ELEMCOUNT:
|
|
731 case XD_HASHCODE:
|
442
|
732 case XD_INT:
|
|
733 case XD_LONG:
|
|
734 case XD_INT_RESET:
|
|
735 case XD_LO_LINK:
|
|
736 break;
|
|
737 case XD_OPAQUE_DATA_PTR:
|
|
738 {
|
1204
|
739 EMACS_INT count = lispdesc_indirect_count (desc1->data1, desc,
|
|
740 data);
|
442
|
741
|
2367
|
742 pdump_add_block (&pdump_opaque_data_list,
|
458
|
743 *(void **)rdata, count, 1);
|
442
|
744 break;
|
|
745 }
|
2367
|
746 case XD_ASCII_STRING:
|
442
|
747 {
|
2367
|
748 const Ascbyte *str = * (const Ascbyte **) rdata;
|
442
|
749 if (str)
|
2367
|
750 pdump_add_block (&pdump_opaque_data_list, str, strlen (str) + 1,
|
1204
|
751 1);
|
442
|
752 break;
|
|
753 }
|
|
754 case XD_DOC_STRING:
|
|
755 {
|
2367
|
756 const Ascbyte *str = * (const Ascbyte **) rdata;
|
1204
|
757 if ((EMACS_INT) str > 0)
|
2367
|
758 pdump_add_block (&pdump_opaque_data_list, str, strlen (str) + 1,
|
1204
|
759 1);
|
442
|
760 break;
|
|
761 }
|
|
762 case XD_LISP_OBJECT:
|
|
763 {
|
1204
|
764 const Lisp_Object *pobj = (const Lisp_Object *) rdata;
|
442
|
765
|
1204
|
766 assert (desc1->data1 == 0);
|
442
|
767
|
2367
|
768 backtrace[me].offset =
|
|
769 (const Rawbyte *) pobj - (const Rawbyte *) data;
|
442
|
770 pdump_register_object (*pobj);
|
|
771 break;
|
|
772 }
|
|
773 case XD_LISP_OBJECT_ARRAY:
|
|
774 {
|
|
775 int i;
|
1204
|
776 EMACS_INT count = lispdesc_indirect_count (desc1->data1, desc,
|
|
777 data);
|
442
|
778
|
|
779 for (i = 0; i < count; i++)
|
|
780 {
|
1204
|
781 const Lisp_Object *pobj = ((const Lisp_Object *) rdata) + i;
|
442
|
782 Lisp_Object dobj = *pobj;
|
|
783
|
1204
|
784 backtrace[me].offset =
|
2367
|
785 (const Rawbyte *) pobj - (const Rawbyte *) data;
|
442
|
786 pdump_register_object (dobj);
|
|
787 }
|
|
788 break;
|
|
789 }
|
3092
|
790 #ifdef NEW_GC
|
|
791 case XD_LISP_OBJECT_BLOCK_PTR:
|
|
792 {
|
|
793 EMACS_INT count = lispdesc_indirect_count (desc1->data1, desc,
|
|
794 data);
|
|
795 const struct sized_memory_description *sdesc =
|
|
796 lispdesc_indirect_description (data, desc1->data2.descr);
|
|
797 const Lisp_Object *pobj = (const Lisp_Object *) rdata;
|
|
798 if (pobj)
|
|
799 pdump_register_object_array
|
|
800 (*pobj, sdesc->size, sdesc->description, count);
|
|
801 break;
|
|
802 }
|
|
803 #endif /* NEW_GC */
|
2367
|
804 case XD_BLOCK_PTR:
|
442
|
805 {
|
1204
|
806 EMACS_INT count = lispdesc_indirect_count (desc1->data1, desc,
|
|
807 data);
|
|
808 const struct sized_memory_description *sdesc =
|
2551
|
809 lispdesc_indirect_description (data, desc1->data2.descr);
|
2367
|
810 const Rawbyte *dobj = *(const Rawbyte **)rdata;
|
442
|
811 if (dobj)
|
2367
|
812 pdump_register_block (dobj, sdesc->size, sdesc->description,
|
|
813 count);
|
442
|
814 break;
|
|
815 }
|
2367
|
816 case XD_BLOCK_ARRAY:
|
771
|
817 {
|
1204
|
818 EMACS_INT count = lispdesc_indirect_count (desc1->data1, desc,
|
|
819 data);
|
|
820 const struct sized_memory_description *sdesc =
|
2551
|
821 lispdesc_indirect_description (data, desc1->data2.descr);
|
771
|
822
|
2367
|
823 pdump_register_block_contents (rdata, sdesc->size,
|
|
824 sdesc->description, count);
|
771
|
825 break;
|
|
826 }
|
|
827 case XD_UNION:
|
1204
|
828 case XD_UNION_DYNAMIC_SIZE:
|
|
829 desc1 = lispdesc_process_xd_union (desc1, desc, data);
|
|
830 if (desc1)
|
|
831 goto union_switcheroo;
|
|
832 break;
|
2551
|
833 case XD_OPAQUE_PTR_CONVERTIBLE:
|
|
834 {
|
|
835 pdump_cv_ptr_info info;
|
|
836 info.object = *(void **)rdata;
|
|
837 info.fcts = desc1->data2.funcs;
|
|
838 if (!pdump_find_in_cv_ptr_dynarr (info.object))
|
|
839 {
|
|
840 info.fcts->convert(info.object, &info.data, &info.size);
|
|
841 Dynarr_add (pdump_cv_ptr, info);
|
|
842 }
|
|
843 break;
|
|
844 }
|
|
845 case XD_OPAQUE_DATA_CONVERTIBLE:
|
|
846 {
|
|
847 pdump_cv_data_info info;
|
|
848 info.object = data;
|
|
849 info.offset = offset;
|
|
850 info.fcts = desc1->data2.funcs;
|
|
851
|
|
852 info.fcts->convert(rdata, &info.data, &info.size);
|
|
853 Dynarr_add (pdump_cv_data, info);
|
|
854 break;
|
|
855 }
|
771
|
856
|
442
|
857 default:
|
1333
|
858 pdump_unsupported_dump_type (desc1->type, 1);
|
1204
|
859 }
|
442
|
860 }
|
|
861 }
|
|
862
|
|
863 static void
|
|
864 pdump_register_object (Lisp_Object obj)
|
|
865 {
|
|
866 struct lrecord_header *objh;
|
458
|
867 const struct lrecord_implementation *imp;
|
442
|
868
|
|
869 if (!POINTER_TYPE_P (XTYPE (obj)))
|
|
870 return;
|
|
871
|
|
872 objh = XRECORD_LHEADER (obj);
|
|
873 if (!objh)
|
|
874 return;
|
|
875
|
2367
|
876 if (pdump_get_block (objh))
|
442
|
877 return;
|
|
878
|
458
|
879 imp = LHEADER_IMPLEMENTATION (objh);
|
|
880
|
934
|
881 if (imp->description
|
3263
|
882 #ifdef NEW_GC
|
|
883 /* Objects with finalizers cannot be dumped with the new
|
|
884 allocator's asynchronous finalization strategy. */
|
|
885 && !imp->finalizer
|
|
886 #endif /* not NEW_GC */
|
1204
|
887 && RECORD_DUMPABLE (objh))
|
442
|
888 {
|
1204
|
889 pdump_bump_depth ();
|
|
890 backtrace[pdump_depth - 1].obj = objh;
|
2367
|
891 pdump_add_block (pdump_object_table + objh->type,
|
1204
|
892 objh, detagged_lisp_object_size (objh), 1);
|
|
893 pdump_register_sub (objh, imp->description);
|
|
894 --pdump_depth;
|
442
|
895 }
|
|
896 else
|
|
897 {
|
|
898 pdump_alert_undump_object[objh->type]++;
|
458
|
899 stderr_out ("Undumpable object type : %s\n", imp->name);
|
442
|
900 pdump_backtrace ();
|
|
901 }
|
|
902 }
|
|
903
|
3092
|
904 #ifdef NEW_GC
|
|
905 static void
|
|
906 pdump_register_object_array (Lisp_Object obj,
|
|
907 Bytecount size,
|
|
908 const struct memory_description *desc,
|
|
909 int count)
|
|
910 {
|
|
911 struct lrecord_header *objh;
|
|
912 const struct lrecord_implementation *imp;
|
|
913
|
|
914 if (!POINTER_TYPE_P (XTYPE (obj)))
|
|
915 return;
|
|
916
|
|
917 objh = XRECORD_LHEADER (obj);
|
|
918 if (!objh)
|
|
919 return;
|
|
920
|
|
921 if (pdump_get_block (objh))
|
|
922 return;
|
|
923
|
|
924 imp = LHEADER_IMPLEMENTATION (objh);
|
|
925
|
|
926 if (imp->description
|
|
927 && RECORD_DUMPABLE (objh))
|
|
928 {
|
|
929 pdump_bump_depth ();
|
|
930 backtrace[pdump_depth - 1].obj = objh;
|
|
931 pdump_add_block (pdump_object_table + objh->type,
|
|
932 objh, lispdesc_block_size_1 (objh, size, desc), count);
|
|
933 pdump_register_block_contents (objh, size, desc, count);
|
|
934 --pdump_depth;
|
|
935 }
|
|
936 else
|
|
937 {
|
|
938 pdump_alert_undump_object[objh->type]++;
|
|
939 stderr_out ("Undumpable object type : %s\n", imp->name);
|
|
940 pdump_backtrace ();
|
|
941 }
|
|
942 }
|
|
943 #endif /* NEW_GC */
|
|
944
|
2367
|
945 /* Register the referenced objects in the array of COUNT blocks located at
|
|
946 DATA; each block is described by SIZE and DESC. "Block" here simply
|
|
947 means any block of memory.
|
771
|
948
|
|
949 This does not register the block of memory itself; it may, for
|
|
950 example, be an array of structures inlined in another memory block
|
2367
|
951 and thus should not be registered. See pdump_register_block(),
|
771
|
952 which does register the memory block. */
|
|
953
|
|
954 static void
|
2367
|
955 pdump_register_block_contents (const void *data,
|
|
956 Bytecount size,
|
|
957 const struct memory_description *desc,
|
|
958 int count)
|
771
|
959 {
|
|
960 int i;
|
|
961 Bytecount elsize;
|
|
962
|
1204
|
963 pdump_bump_depth ();
|
2367
|
964 elsize = lispdesc_block_size_1 (data, size, desc);
|
771
|
965 for (i = 0; i < count; i++)
|
|
966 {
|
2367
|
967 pdump_register_sub (((Rawbyte *) data) + elsize * i, desc);
|
771
|
968 }
|
1204
|
969 --pdump_depth;
|
771
|
970 }
|
|
971
|
2367
|
972 /* Register the array of COUNT blocks located at DATA; each block is
|
|
973 described by SDESC. "Block" here simply means any block of memory,
|
|
974 which is more accurate and less confusing than terms like `struct' and
|
|
975 `object'. A `block' need not actually be a C "struct". It could be a
|
|
976 single integer or Lisp_Object, for example, as long as the description
|
|
977 is accurate.
|
771
|
978
|
2367
|
979 This is like pdump_register_block_contents() but also registers
|
771
|
980 the memory block itself. */
|
|
981
|
442
|
982 static void
|
2367
|
983 pdump_register_block (const void *data,
|
|
984 Bytecount size,
|
|
985 const struct memory_description *desc,
|
|
986 int count)
|
442
|
987 {
|
2367
|
988 if (data && !pdump_get_block (data))
|
442
|
989 {
|
2367
|
990 pdump_add_block (pdump_get_block_list (desc), data,
|
|
991 lispdesc_block_size_1 (data, size, desc), count);
|
|
992 pdump_register_block_contents (data, size, desc, count);
|
442
|
993 }
|
|
994 }
|
|
995
|
2551
|
996
|
1204
|
997 /* Store the already-calculated new pointer offsets for all pointers in the
|
|
998 COUNT contiguous blocks of memory, each described by DESC and of size
|
|
999 SIZE, whose original is located at ORIG_DATA and the modifiable copy at
|
|
1000 DATA. We examine the description to figure out where the pointers are,
|
2367
|
1001 and then look up the replacement values using pdump_get_block().
|
771
|
1002
|
1204
|
1003 This is done just before writing the modified block of memory to the
|
|
1004 dump file. The new pointer offsets have been carefully calculated so
|
|
1005 that the data being pointed gets written at that offset in the dump
|
|
1006 file. That way, the dump file is a correct memory image except perhaps
|
|
1007 for a constant that needs to be added to all pointers. (#### In fact, we
|
|
1008 SHOULD be starting up a dumped XEmacs, seeing where the dumped file gets
|
|
1009 loaded into memory, and then rewriting the dumped file after relocating
|
|
1010 all the pointers relative to this memory location. That way, if the
|
|
1011 file gets loaded again at the same location, which will be common, we
|
|
1012 don't have to do any relocating, which is both faster at startup and
|
771
|
1013 allows the read-only part of the dumped data to be shared read-only
|
|
1014 between different invocations of XEmacs.)
|
|
1015
|
|
1016 #### Do we distinguish between read-only and writable dumped data?
|
|
1017 Should we? It's tricky because the dumped data, once loaded again,
|
1204
|
1018 cannot really be free()d or garbage collected since it's all stored in
|
|
1019 one contiguous block of data with no malloc() headers, and we don't keep
|
|
1020 track of the pointers used internally in malloc() and the Lisp allocator
|
|
1021 to track allocated blocks of memory. */
|
771
|
1022
|
|
1023 static void
|
|
1024 pdump_store_new_pointer_offsets (int count, void *data, const void *orig_data,
|
1204
|
1025 const struct memory_description *desc,
|
771
|
1026 int size)
|
|
1027 {
|
|
1028 int pos, i;
|
|
1029 /* Process each block one by one */
|
|
1030 for (i = 0; i < count; i++)
|
|
1031 {
|
|
1032 /* CUR points to the beginning of each block in the new data. */
|
2367
|
1033 Rawbyte *cur = ((Rawbyte *)data) + i * size;
|
771
|
1034 /* Scan each line of the description for relocatable pointers */
|
|
1035 for (pos = 0; desc[pos].type != XD_END; pos++)
|
|
1036 {
|
|
1037 /* RDATA points to the beginning of each element in the new data. */
|
1204
|
1038 const struct memory_description *desc1 = &desc[pos];
|
|
1039 /* #### Change ORIG_DATA to DATA. See below. */
|
|
1040 void *rdata = cur + lispdesc_indirect_count (desc1->offset, desc,
|
|
1041 orig_data);
|
|
1042 union_switcheroo:
|
|
1043
|
|
1044 /* If the flag says don't dump, then don't dump. */
|
|
1045 if ((desc1->flags) & XD_FLAG_NO_PDUMP)
|
|
1046 continue;
|
|
1047
|
|
1048 switch (desc1->type)
|
771
|
1049 {
|
|
1050 case XD_BYTECOUNT:
|
|
1051 case XD_ELEMCOUNT:
|
|
1052 case XD_HASHCODE:
|
|
1053 case XD_INT:
|
|
1054 case XD_LONG:
|
|
1055 break;
|
|
1056 case XD_INT_RESET:
|
|
1057 {
|
1204
|
1058 EMACS_INT val = lispdesc_indirect_count (desc1->data1, desc,
|
|
1059 orig_data);
|
771
|
1060 * (int *) rdata = val;
|
|
1061 break;
|
|
1062 }
|
3092
|
1063 #ifdef NEW_GC
|
|
1064 case XD_LISP_OBJECT_BLOCK_PTR:
|
|
1065 #endif /* NEW_GC */
|
771
|
1066 case XD_OPAQUE_DATA_PTR:
|
2367
|
1067 case XD_ASCII_STRING:
|
|
1068 case XD_BLOCK_PTR:
|
771
|
1069 {
|
|
1070 void *ptr = * (void **) rdata;
|
|
1071 if (ptr)
|
2367
|
1072 * (EMACS_INT *) rdata = pdump_get_block (ptr)->save_offset;
|
771
|
1073 break;
|
|
1074 }
|
|
1075 case XD_LO_LINK:
|
|
1076 {
|
|
1077 /* As described in lrecord.h, this is a weak link.
|
|
1078 Thus, we need to link this object not (necessarily)
|
|
1079 to the object directly pointed to, but to the next
|
|
1080 referenced object in the chain. None of the
|
|
1081 intermediate objects will be written out, so we
|
|
1082 traverse down the chain of objects until we find a
|
|
1083 referenced one. (The Qnil or Qunbound that ends the
|
|
1084 chain will always be a referenced object.) */
|
|
1085 Lisp_Object obj = * (Lisp_Object *) rdata;
|
2367
|
1086 pdump_block_list_elt *elt1;
|
1204
|
1087 /* #### Figure out how to handle indirect offsets here.
|
|
1088 #### In general, when computing indirect counts, do we
|
|
1089 really need to use the orig_data pointer? Why not just
|
|
1090 use the new stuff?
|
|
1091
|
|
1092 No, we don't usually need orig_data. We only need it
|
|
1093 when fetching pointers out of the data, not integers.
|
|
1094 This currently occurs only with description maps. We
|
|
1095 should change the other places to DATA to emphasize
|
|
1096 this. */
|
|
1097 assert (!XD_IS_INDIRECT (desc1->offset));
|
771
|
1098 for (;;)
|
|
1099 {
|
2367
|
1100 elt1 = pdump_get_block (XRECORD_LHEADER (obj));
|
771
|
1101 if (elt1)
|
|
1102 break;
|
1204
|
1103 obj = * (Lisp_Object *) (desc1->offset +
|
2367
|
1104 (Rawbyte *)
|
|
1105 (XRECORD_LHEADER (obj)));
|
771
|
1106 }
|
|
1107 * (EMACS_INT *) rdata = elt1->save_offset;
|
|
1108 break;
|
|
1109 }
|
|
1110 case XD_LISP_OBJECT:
|
|
1111 {
|
|
1112 Lisp_Object *pobj = (Lisp_Object *) rdata;
|
|
1113
|
1204
|
1114 assert (desc1->data1 == 0);
|
771
|
1115
|
|
1116 if (POINTER_TYPE_P (XTYPE (*pobj)) && XRECORD_LHEADER (*pobj))
|
|
1117 * (EMACS_INT *) pobj =
|
2367
|
1118 pdump_get_block (XRECORD_LHEADER (*pobj))->save_offset;
|
771
|
1119 break;
|
|
1120 }
|
|
1121 case XD_LISP_OBJECT_ARRAY:
|
|
1122 {
|
1204
|
1123 EMACS_INT num = lispdesc_indirect_count (desc1->data1, desc,
|
|
1124 orig_data);
|
771
|
1125 int j;
|
|
1126
|
|
1127 for (j = 0; j < num; j++)
|
|
1128 {
|
|
1129 Lisp_Object *pobj = ((Lisp_Object *) rdata) + j;
|
|
1130 if (POINTER_TYPE_P (XTYPE (*pobj)) &&
|
|
1131 XRECORD_LHEADER (*pobj))
|
|
1132 * (EMACS_INT *) pobj =
|
2367
|
1133 pdump_get_block (XRECORD_LHEADER (*pobj))->save_offset;
|
771
|
1134 }
|
|
1135 break;
|
|
1136 }
|
|
1137 case XD_DOC_STRING:
|
|
1138 {
|
|
1139 EMACS_INT str = *(EMACS_INT *)rdata;
|
|
1140 if (str > 0)
|
|
1141 * (EMACS_INT *) rdata =
|
2367
|
1142 pdump_get_block ((void *)str)->save_offset;
|
771
|
1143 break;
|
|
1144 }
|
2367
|
1145 case XD_BLOCK_ARRAY:
|
771
|
1146 {
|
1204
|
1147 EMACS_INT num = lispdesc_indirect_count (desc1->data1, desc,
|
|
1148 orig_data);
|
|
1149 const struct sized_memory_description *sdesc =
|
2551
|
1150 lispdesc_indirect_description (orig_data, desc1->data2.descr);
|
771
|
1151
|
|
1152 pdump_store_new_pointer_offsets
|
|
1153 (num, rdata,
|
2367
|
1154 ((Rawbyte *) rdata - (Rawbyte *) data) +
|
|
1155 (Rawbyte *) orig_data,
|
1204
|
1156 sdesc->description,
|
2367
|
1157 lispdesc_block_size
|
|
1158 (((Rawbyte *) rdata - (Rawbyte *) data) +
|
|
1159 (Rawbyte *) orig_data, sdesc));
|
771
|
1160 break;
|
|
1161 }
|
|
1162 case XD_UNION:
|
1204
|
1163 case XD_UNION_DYNAMIC_SIZE:
|
|
1164 desc1 = lispdesc_process_xd_union (desc1, desc, orig_data);
|
|
1165 if (desc1)
|
|
1166 goto union_switcheroo;
|
|
1167 break;
|
771
|
1168
|
2551
|
1169 case XD_OPAQUE_PTR_CONVERTIBLE:
|
|
1170 *(EMACS_INT *)rdata = pdump_find_in_cv_ptr_dynarr (*(void **)rdata)->index;
|
|
1171 break;
|
|
1172
|
|
1173 case XD_OPAQUE_DATA_CONVERTIBLE:
|
|
1174 /* in-object, nothing to do */
|
|
1175 break;
|
|
1176
|
771
|
1177 default:
|
1333
|
1178 pdump_unsupported_dump_type (desc1->type, 0);
|
771
|
1179 }
|
|
1180 }
|
|
1181 }
|
|
1182 }
|
|
1183
|
|
1184 /* Write out to global file descriptor PDUMP_OUT the element (one or
|
|
1185 more contiguous blocks of identical size/description) recorded in
|
|
1186 ELT and described by DESC. The element is first copied to a buffer
|
|
1187 and then all pointers (this includes Lisp_Objects other than
|
|
1188 integer/character) are relocated to the (pre-computed) offset in
|
|
1189 the dump file. */
|
|
1190
|
442
|
1191 static void
|
2367
|
1192 pdump_dump_data (pdump_block_list_elt *elt,
|
1204
|
1193 const struct memory_description *desc)
|
442
|
1194 {
|
665
|
1195 Bytecount size = elt->size;
|
460
|
1196 int count = elt->count;
|
442
|
1197 if (desc)
|
|
1198 {
|
771
|
1199 /* Copy to temporary buffer */
|
460
|
1200 memcpy (pdump_buf, elt->obj, size*count);
|
442
|
1201
|
771
|
1202 /* Store new offsets into all pointers in block */
|
|
1203 pdump_store_new_pointer_offsets (count, pdump_buf, elt->obj, desc, size);
|
|
1204 }
|
|
1205 retry_fwrite (desc ? pdump_buf : elt->obj, size, count, pdump_out);
|
|
1206 }
|
442
|
1207
|
3263
|
1208 #ifdef NEW_GC
|
2720
|
1209 /* To be able to relocate during load time, more information about the
|
|
1210 dumped objects are needed: The count (for array-like data
|
|
1211 structures), the size of the object, and the location in the dumped
|
|
1212 data.
|
|
1213 */
|
|
1214 static void
|
|
1215 pdump_dump_mc_data (pdump_block_list_elt *elt,
|
|
1216 const struct memory_description *UNUSED(desc))
|
|
1217 {
|
|
1218 EMACS_INT rdata = pdump_get_block (elt->obj)->save_offset;
|
|
1219 int j;
|
|
1220 PDUMP_WRITE_ALIGNED (int, elt->count);
|
|
1221 PDUMP_WRITE_ALIGNED (Bytecount, elt->size);
|
|
1222 for (j = 0; j < elt->count; j++)
|
|
1223 {
|
|
1224 PDUMP_WRITE_ALIGNED (EMACS_INT, rdata);
|
|
1225 rdata += elt->size;
|
|
1226 }
|
|
1227 }
|
|
1228
|
|
1229 static void
|
|
1230 pdump_scan_lisp_objects_by_alignment (void (*f)
|
|
1231 (pdump_block_list_elt *,
|
|
1232 const struct memory_description *))
|
|
1233 {
|
|
1234 int align;
|
|
1235
|
|
1236 for (align = ALIGNOF (max_align_t); align; align>>=1)
|
|
1237 {
|
|
1238 int i;
|
|
1239 pdump_block_list_elt *elt;
|
|
1240
|
|
1241 for (i=0; i<lrecord_type_count; i++)
|
|
1242 if (pdump_object_table[i].align == align)
|
|
1243 for (elt = pdump_object_table[i].first; elt; elt = elt->next)
|
|
1244 {
|
|
1245 f (elt, lrecord_implementations_table[i]->description);
|
|
1246 }
|
|
1247 }
|
|
1248 }
|
|
1249
|
|
1250 static void
|
|
1251 pdump_scan_non_lisp_objects_by_alignment (void (*f)
|
|
1252 (pdump_block_list_elt *,
|
|
1253 const struct memory_description *))
|
|
1254 {
|
|
1255 int align;
|
|
1256
|
|
1257 for (align = ALIGNOF (max_align_t); align; align>>=1)
|
|
1258 {
|
|
1259 int i;
|
|
1260 pdump_block_list_elt *elt;
|
|
1261
|
|
1262 for (i=0; i<pdump_desc_table.count; i++)
|
|
1263 {
|
|
1264 pdump_desc_list_elt list = pdump_desc_table.list[i];
|
|
1265 if (list.list.align == align)
|
|
1266 for (elt = list.list.first; elt; elt = elt->next)
|
|
1267 f (elt, list.desc);
|
|
1268 }
|
|
1269
|
|
1270 for (elt = pdump_opaque_data_list.first; elt; elt = elt->next)
|
|
1271 if (pdump_size_to_align (elt->size) == align)
|
|
1272 f (elt, 0);
|
|
1273 }
|
|
1274 }
|
|
1275
|
|
1276
|
|
1277
|
|
1278 static void
|
|
1279 pdump_reloc_one_mc (void *data, const struct memory_description *desc)
|
|
1280 {
|
|
1281 int pos;
|
|
1282
|
|
1283 for (pos = 0; desc[pos].type != XD_END; pos++)
|
|
1284 {
|
|
1285 const struct memory_description *desc1 = &desc[pos];
|
|
1286 void *rdata =
|
|
1287 (Rawbyte *) data + lispdesc_indirect_count (desc1->offset,
|
|
1288 desc, data);
|
|
1289
|
|
1290 union_switcheroo:
|
|
1291
|
|
1292 /* If the flag says don't dump, then don't dump. */
|
|
1293 if ((desc1->flags) & XD_FLAG_NO_PDUMP)
|
|
1294 continue;
|
|
1295
|
|
1296 switch (desc1->type)
|
|
1297 {
|
|
1298 case XD_BYTECOUNT:
|
|
1299 case XD_ELEMCOUNT:
|
|
1300 case XD_HASHCODE:
|
|
1301 case XD_INT:
|
|
1302 case XD_LONG:
|
|
1303 case XD_INT_RESET:
|
|
1304 break;
|
3092
|
1305 case XD_LISP_OBJECT_BLOCK_PTR:
|
2720
|
1306 case XD_OPAQUE_DATA_PTR:
|
|
1307 case XD_ASCII_STRING:
|
|
1308 case XD_BLOCK_PTR:
|
|
1309 case XD_LO_LINK:
|
|
1310 {
|
|
1311 EMACS_INT ptr = *(EMACS_INT *) rdata;
|
|
1312 if (ptr)
|
|
1313 *(EMACS_INT *) rdata = pdump_get_mc_addr ((void *) ptr);
|
|
1314 break;
|
|
1315 }
|
|
1316 case XD_LISP_OBJECT:
|
|
1317 {
|
|
1318 Lisp_Object *pobj = (Lisp_Object *) rdata;
|
|
1319
|
|
1320 assert (desc1->data1 == 0);
|
|
1321
|
|
1322 if (POINTER_TYPE_P (XTYPE (*pobj))
|
|
1323 && ! EQ (*pobj, Qnull_pointer))
|
3092
|
1324 *pobj = wrap_pointer_1 ((Rawbyte *) pdump_get_mc_addr
|
2720
|
1325 (XPNTR (*pobj)));
|
|
1326 break;
|
|
1327 }
|
|
1328 case XD_LISP_OBJECT_ARRAY:
|
|
1329 {
|
|
1330 EMACS_INT num = lispdesc_indirect_count (desc1->data1, desc,
|
|
1331 data);
|
|
1332 int j;
|
|
1333
|
|
1334 for (j=0; j<num; j++)
|
|
1335 {
|
|
1336 Lisp_Object *pobj = (Lisp_Object *) rdata + j;
|
|
1337
|
|
1338 if (POINTER_TYPE_P (XTYPE (*pobj))
|
|
1339 && ! EQ (*pobj, Qnull_pointer))
|
3092
|
1340 *pobj = wrap_pointer_1 ((Rawbyte *) pdump_get_mc_addr
|
2775
|
1341 (XPNTR (*pobj)));
|
2720
|
1342 }
|
|
1343 break;
|
|
1344 }
|
|
1345 case XD_DOC_STRING:
|
|
1346 {
|
|
1347 EMACS_INT str = *(EMACS_INT *) rdata;
|
|
1348 if (str > 0)
|
|
1349 *(EMACS_INT *) rdata = pdump_get_mc_addr ((void *) str);
|
|
1350 break;
|
|
1351 }
|
|
1352 case XD_BLOCK_ARRAY:
|
|
1353 {
|
|
1354 EMACS_INT num = lispdesc_indirect_count (desc1->data1, desc,
|
|
1355 data);
|
|
1356 int j;
|
|
1357 const struct sized_memory_description *sdesc =
|
|
1358 lispdesc_indirect_description (data, desc1->data2.descr);
|
|
1359 Bytecount size = lispdesc_block_size (rdata, sdesc);
|
|
1360
|
|
1361 /* Note: We are recursing over data in the block itself */
|
|
1362 for (j = 0; j < num; j++)
|
|
1363 pdump_reloc_one_mc ((Rawbyte *) rdata + j * size,
|
|
1364 sdesc->description);
|
|
1365
|
|
1366 break;
|
|
1367 }
|
|
1368 case XD_UNION:
|
|
1369 case XD_UNION_DYNAMIC_SIZE:
|
|
1370 desc1 = lispdesc_process_xd_union (desc1, desc, data);
|
|
1371 if (desc1)
|
|
1372 goto union_switcheroo;
|
|
1373 break;
|
|
1374
|
|
1375 case XD_OPAQUE_PTR_CONVERTIBLE:
|
|
1376 {
|
|
1377 pdump_cv_ptr_load_info *p = pdump_loaded_cv_ptr + *(EMACS_INT *)rdata;
|
|
1378 if (!p->adr)
|
|
1379 p->adr = desc1->data2.funcs->deconvert(0,
|
|
1380 pdump_start + p->save_offset,
|
|
1381 p->size);
|
|
1382 *(void **)rdata = p->adr;
|
|
1383 break;
|
|
1384 }
|
|
1385
|
|
1386 case XD_OPAQUE_DATA_CONVERTIBLE:
|
|
1387 {
|
|
1388 EMACS_INT dest_offset = (EMACS_INT) rdata;
|
|
1389 EMACS_INT indirect =
|
|
1390 lispdesc_indirect_count (desc1->offset, desc, data);
|
|
1391 pdump_cv_data_dump_info *p;
|
|
1392
|
|
1393 for(p = pdump_loaded_cv_data;
|
|
1394 pdump_get_indirect_mc_addr (p->dest_offset, indirect)
|
|
1395 != dest_offset;
|
|
1396 p++);
|
|
1397
|
|
1398 desc1->data2.funcs->deconvert(rdata, pdump_start + p->save_offset,
|
|
1399 p->size);
|
|
1400 break;
|
|
1401 }
|
|
1402
|
|
1403 default:
|
|
1404 pdump_unsupported_dump_type (desc1->type, 0);
|
|
1405 }
|
|
1406 }
|
|
1407 }
|
3263
|
1408 #else /* not NEW_GC */
|
771
|
1409 /* Relocate a single memory block at DATA, described by DESC, from its
|
1204
|
1410 assumed load location to its actual one by adding DELTA to all pointers
|
|
1411 in the block. Does not recursively relocate any other memory blocks
|
|
1412 pointed to. (We already have a list of all memory blocks in the dump
|
|
1413 file.) This is used once the dump data has been loaded back in, both
|
2367
|
1414 for blocks sitting in the dumped data (former heap blocks) and in global
|
|
1415 data-sgment blocks whose contents have been restored from the dumped
|
|
1416 data. */
|
442
|
1417
|
|
1418 static void
|
458
|
1419 pdump_reloc_one (void *data, EMACS_INT delta,
|
1204
|
1420 const struct memory_description *desc)
|
442
|
1421 {
|
|
1422 int pos;
|
|
1423
|
|
1424 for (pos = 0; desc[pos].type != XD_END; pos++)
|
|
1425 {
|
1204
|
1426 const struct memory_description *desc1 = &desc[pos];
|
2367
|
1427 void *rdata =
|
|
1428 (Rawbyte *) data + lispdesc_indirect_count (desc1->offset,
|
|
1429 desc, data);
|
1204
|
1430
|
|
1431 union_switcheroo:
|
|
1432
|
|
1433 /* If the flag says don't dump, then don't dump. */
|
|
1434 if ((desc1->flags) & XD_FLAG_NO_PDUMP)
|
|
1435 continue;
|
|
1436
|
|
1437 switch (desc1->type)
|
442
|
1438 {
|
665
|
1439 case XD_BYTECOUNT:
|
|
1440 case XD_ELEMCOUNT:
|
|
1441 case XD_HASHCODE:
|
442
|
1442 case XD_INT:
|
|
1443 case XD_LONG:
|
|
1444 case XD_INT_RESET:
|
|
1445 break;
|
|
1446 case XD_OPAQUE_DATA_PTR:
|
2367
|
1447 case XD_ASCII_STRING:
|
|
1448 case XD_BLOCK_PTR:
|
442
|
1449 case XD_LO_LINK:
|
|
1450 {
|
|
1451 EMACS_INT ptr = *(EMACS_INT *)rdata;
|
|
1452 if (ptr)
|
|
1453 *(EMACS_INT *)rdata = ptr+delta;
|
|
1454 break;
|
|
1455 }
|
|
1456 case XD_LISP_OBJECT:
|
|
1457 {
|
|
1458 Lisp_Object *pobj = (Lisp_Object *) rdata;
|
|
1459
|
1204
|
1460 assert (desc1->data1 == 0);
|
442
|
1461
|
|
1462 if (POINTER_TYPE_P (XTYPE (*pobj))
|
|
1463 && ! EQ (*pobj, Qnull_pointer))
|
2367
|
1464 *pobj = wrap_pointer_1 ((Rawbyte *) XPNTR (*pobj) + delta);
|
442
|
1465
|
|
1466 break;
|
|
1467 }
|
|
1468 case XD_LISP_OBJECT_ARRAY:
|
|
1469 {
|
1204
|
1470 EMACS_INT num = lispdesc_indirect_count (desc1->data1, desc,
|
|
1471 data);
|
442
|
1472 int j;
|
|
1473
|
|
1474 for (j=0; j<num; j++)
|
|
1475 {
|
|
1476 Lisp_Object *pobj = (Lisp_Object *) rdata + j;
|
|
1477
|
|
1478 if (POINTER_TYPE_P (XTYPE (*pobj))
|
|
1479 && ! EQ (*pobj, Qnull_pointer))
|
2367
|
1480 *pobj = wrap_pointer_1 ((Rawbyte *) XPNTR (*pobj) +
|
|
1481 delta);
|
442
|
1482 }
|
|
1483 break;
|
|
1484 }
|
|
1485 case XD_DOC_STRING:
|
|
1486 {
|
|
1487 EMACS_INT str = *(EMACS_INT *)rdata;
|
|
1488 if (str > 0)
|
|
1489 *(EMACS_INT *)rdata = str + delta;
|
|
1490 break;
|
|
1491 }
|
2367
|
1492 case XD_BLOCK_ARRAY:
|
771
|
1493 {
|
1204
|
1494 EMACS_INT num = lispdesc_indirect_count (desc1->data1, desc,
|
|
1495 data);
|
771
|
1496 int j;
|
1204
|
1497 const struct sized_memory_description *sdesc =
|
2551
|
1498 lispdesc_indirect_description (data, desc1->data2.descr);
|
2367
|
1499 Bytecount size = lispdesc_block_size (rdata, sdesc);
|
771
|
1500
|
|
1501 /* Note: We are recursing over data in the block itself */
|
|
1502 for (j = 0; j < num; j++)
|
2367
|
1503 pdump_reloc_one ((Rawbyte *) rdata + j * size, delta,
|
771
|
1504 sdesc->description);
|
|
1505
|
|
1506 break;
|
|
1507 }
|
1204
|
1508 case XD_UNION:
|
|
1509 case XD_UNION_DYNAMIC_SIZE:
|
|
1510 desc1 = lispdesc_process_xd_union (desc1, desc, data);
|
|
1511 if (desc1)
|
|
1512 goto union_switcheroo;
|
|
1513 break;
|
771
|
1514
|
2551
|
1515 case XD_OPAQUE_PTR_CONVERTIBLE:
|
|
1516 {
|
|
1517 pdump_cv_ptr_load_info *p = pdump_loaded_cv_ptr + *(EMACS_INT *)rdata;
|
|
1518 if (!p->adr)
|
|
1519 p->adr = desc1->data2.funcs->deconvert(0, pdump_start +
|
|
1520 p->save_offset, p->size);
|
|
1521 *(void **)rdata = p->adr;
|
|
1522 break;
|
|
1523 }
|
|
1524
|
|
1525 case XD_OPAQUE_DATA_CONVERTIBLE:
|
|
1526 {
|
|
1527 EMACS_INT dest_offset = (Rawbyte *)rdata - pdump_start;
|
|
1528 pdump_cv_data_dump_info *p;
|
|
1529
|
|
1530 for(p = pdump_loaded_cv_data; p->dest_offset != dest_offset; p++);
|
|
1531
|
|
1532 desc1->data2.funcs->deconvert(rdata, pdump_start + p->save_offset,
|
|
1533 p->size);
|
|
1534 break;
|
|
1535 }
|
|
1536
|
442
|
1537 default:
|
1333
|
1538 pdump_unsupported_dump_type (desc1->type, 0);
|
1204
|
1539 }
|
442
|
1540 }
|
|
1541 }
|
3263
|
1542 #endif /* not NEW_GC */
|
442
|
1543
|
|
1544 static void
|
2367
|
1545 pdump_allocate_offset (pdump_block_list_elt *elt,
|
2286
|
1546 const struct memory_description *UNUSED (desc))
|
442
|
1547 {
|
665
|
1548 Bytecount size = elt->count * elt->size;
|
460
|
1549 elt->save_offset = cur_offset;
|
2367
|
1550 if (size > max_size)
|
442
|
1551 max_size = size;
|
|
1552 cur_offset += size;
|
|
1553 }
|
|
1554
|
2551
|
1555 /* Write out to global file descriptor PDUMP_OUT the result of an
|
|
1556 external element. It's just opaque data. */
|
|
1557
|
|
1558 static void
|
|
1559 pdump_dump_cv_data (pdump_cv_data_info *elt)
|
|
1560 {
|
|
1561 retry_fwrite (elt->data, elt->size, 1, pdump_out);
|
|
1562 }
|
|
1563
|
|
1564 static void
|
|
1565 pdump_dump_cv_ptr (pdump_cv_ptr_info *elt)
|
|
1566 {
|
|
1567 retry_fwrite (elt->data, elt->size, 1, pdump_out);
|
|
1568 }
|
|
1569
|
|
1570 static void
|
|
1571 pdump_allocate_offset_cv_data (pdump_cv_data_info *elt)
|
|
1572 {
|
|
1573 elt->save_offset = cur_offset;
|
|
1574 if (elt->size>max_size)
|
|
1575 max_size = elt->size;
|
|
1576 cur_offset += elt->size;
|
|
1577 }
|
|
1578
|
|
1579 static void
|
|
1580 pdump_allocate_offset_cv_ptr (pdump_cv_ptr_info *elt)
|
|
1581 {
|
|
1582 elt->save_offset = cur_offset;
|
|
1583 if (elt->size>max_size)
|
|
1584 max_size = elt->size;
|
|
1585 cur_offset += elt->size;
|
|
1586 }
|
|
1587
|
2367
|
1588 /* Traverse through all the heap blocks, once the "register" stage of
|
|
1589 dumping has finished. To compress space as much as possible, we
|
|
1590 logically sort all blocks by alignment, hitting all blocks with
|
|
1591 alignment == the maximum (which may be 8 bytes, for doubles), then
|
|
1592 all blocks with the next lower alignment (4 bytes), etc.
|
|
1593
|
|
1594 Within each alignment we hit
|
|
1595
|
|
1596 -- first the Lisp objects, type-by-type
|
|
1597
|
|
1598 -- then the heap memory blocks that are not Lisp objects, description-by-
|
|
1599 description -- i.e. all blocks with the same description will be
|
|
1600 placed together
|
|
1601
|
|
1602 -- then the "opaque" data objects declared as XD_OPAQUE_DATA_PTR,
|
|
1603 XD_ASCII_STRING and XD_DOC_STRING.
|
|
1604
|
|
1605 The idea is to have as little blank space as possible in the laid-out
|
|
1606 data.
|
|
1607
|
|
1608 For each item that we have hit, we process it by calling F, the function
|
|
1609 passed it. In dumper.c, pdump_scan_by_alignment() is called twice with
|
|
1610 two different functions -- pdump_allocate_offset() in stage 2 to compute
|
|
1611 the offset to each block, and pdump_dump_data() in stage 3 to
|
|
1612 successively write each block to disk.
|
|
1613
|
|
1614 It's extremely important that the SAME traversal order gets invoked
|
|
1615 in both stage 2 and 3.
|
|
1616 */
|
|
1617
|
442
|
1618 static void
|
2367
|
1619 pdump_scan_by_alignment (void (*f)(pdump_block_list_elt *,
|
2551
|
1620 const struct memory_description *),
|
|
1621 void (*g)(pdump_cv_data_info *),
|
|
1622 void (*h)(pdump_cv_ptr_info *))
|
442
|
1623 {
|
460
|
1624 int align;
|
|
1625
|
|
1626 for (align = ALIGNOF (max_align_t); align; align>>=1)
|
442
|
1627 {
|
460
|
1628 int i;
|
2367
|
1629 pdump_block_list_elt *elt;
|
460
|
1630
|
442
|
1631 for (i=0; i<lrecord_type_count; i++)
|
|
1632 if (pdump_object_table[i].align == align)
|
460
|
1633 for (elt = pdump_object_table[i].first; elt; elt = elt->next)
|
|
1634 f (elt, lrecord_implementations_table[i]->description);
|
442
|
1635
|
2367
|
1636 for (i=0; i<pdump_desc_table.count; i++)
|
460
|
1637 {
|
2367
|
1638 pdump_desc_list_elt list = pdump_desc_table.list[i];
|
460
|
1639 if (list.list.align == align)
|
|
1640 for (elt = list.list.first; elt; elt = elt->next)
|
1204
|
1641 f (elt, list.desc);
|
460
|
1642 }
|
442
|
1643
|
460
|
1644 for (elt = pdump_opaque_data_list.first; elt; elt = elt->next)
|
|
1645 if (pdump_size_to_align (elt->size) == align)
|
|
1646 f (elt, 0);
|
2551
|
1647
|
|
1648 for (i=0; i < Dynarr_length (pdump_cv_data); i++)
|
|
1649 if (pdump_size_to_align (Dynarr_atp (pdump_cv_data, i)->size) == align)
|
|
1650 g (Dynarr_atp (pdump_cv_data, i));
|
|
1651
|
|
1652 for (i=0; i < Dynarr_length (pdump_cv_ptr); i++)
|
|
1653 if (pdump_size_to_align (Dynarr_atp (pdump_cv_ptr, i)->size) == align)
|
|
1654 h (Dynarr_atp (pdump_cv_ptr, i));
|
442
|
1655 }
|
|
1656 }
|
|
1657
|
2551
|
1658 static void
|
|
1659 pdump_dump_cv_data_info (void)
|
|
1660 {
|
|
1661 int i;
|
|
1662 Elemcount count = Dynarr_length (pdump_cv_data);
|
|
1663 pdump_cv_data_dump_info *data = alloca_array (pdump_cv_data_dump_info, count);
|
|
1664 for (i = 0; i < count; i++)
|
|
1665 {
|
|
1666 data[i].dest_offset = Dynarr_at (pdump_cv_data, i).dest_offset;
|
|
1667 data[i].save_offset = Dynarr_at (pdump_cv_data, i).save_offset;
|
|
1668 data[i].size = Dynarr_at (pdump_cv_data, i).size;
|
|
1669 }
|
|
1670
|
|
1671 PDUMP_ALIGN_OUTPUT (pdump_cv_data_dump_info);
|
|
1672 retry_fwrite (data, sizeof (pdump_cv_data_dump_info), count, pdump_out);
|
|
1673 }
|
|
1674
|
442
|
1675 static void
|
2551
|
1676 pdump_dump_cv_ptr_info (void)
|
|
1677 {
|
|
1678 int i;
|
|
1679 Elemcount count = Dynarr_length (pdump_cv_ptr);
|
|
1680 pdump_cv_ptr_dump_info *data = alloca_array (pdump_cv_ptr_dump_info, count);
|
|
1681 for (i = 0; i < count; i++)
|
|
1682 {
|
|
1683 data[i].save_offset = Dynarr_at (pdump_cv_ptr, i).save_offset;
|
|
1684 data[i].size = Dynarr_at (pdump_cv_ptr, i).size;
|
|
1685 }
|
|
1686
|
|
1687 PDUMP_ALIGN_OUTPUT (pdump_cv_ptr_dump_info);
|
|
1688 retry_fwrite (data, sizeof (pdump_cv_ptr_dump_info), count, pdump_out);
|
|
1689 }
|
|
1690
|
3103
|
1691 /* Dump out the root block pointers, part of stage 3 (the "WRITE" stage) of
|
|
1692 dumping. For each pointer we dump out a structure containing the
|
|
1693 location of the pointer and its value, replaced by the appropriate
|
|
1694 offset into the dumped data. */
|
|
1695
|
2551
|
1696 static void
|
2367
|
1697 pdump_dump_root_block_ptrs (void)
|
442
|
1698 {
|
|
1699 int i;
|
2367
|
1700 Elemcount count = Dynarr_length (pdump_root_block_ptrs);
|
458
|
1701 pdump_static_pointer *data = alloca_array (pdump_static_pointer, count);
|
|
1702 for (i = 0; i < count; i++)
|
442
|
1703 {
|
1333
|
1704 data[i].address =
|
2367
|
1705 (Rawbyte **) Dynarr_atp (pdump_root_block_ptrs, i)->ptraddress;
|
1333
|
1706 data[i].value =
|
2367
|
1707 (Rawbyte *) pdump_get_block (* data[i].address)->save_offset;
|
442
|
1708 }
|
458
|
1709 PDUMP_ALIGN_OUTPUT (pdump_static_pointer);
|
771
|
1710 retry_fwrite (data, sizeof (pdump_static_pointer), count, pdump_out);
|
442
|
1711 }
|
|
1712
|
2367
|
1713 /* Dump out the root blocks, part of stage 3 (the "WRITE" stage) of
|
|
1714 dumping. For each block we dump a structure containing info about the
|
|
1715 block (its location, size and description) and then the block itself,
|
|
1716 with its pointers replaced with offsets into the dump data. */
|
|
1717
|
442
|
1718 static void
|
1204
|
1719 pdump_dump_root_blocks (void)
|
442
|
1720 {
|
|
1721 int i;
|
1204
|
1722 for (i = 0; i < Dynarr_length (pdump_root_blocks); i++)
|
442
|
1723 {
|
2367
|
1724 pdump_root_block info = Dynarr_at (pdump_root_blocks, i);
|
|
1725 PDUMP_WRITE_ALIGNED (pdump_root_block, info);
|
|
1726
|
|
1727 if (info.desc)
|
|
1728 {
|
|
1729 /* Copy to temporary buffer */
|
|
1730 memcpy (pdump_buf, info.blockaddr, info.size);
|
|
1731
|
|
1732 /* Store new offsets into all pointers in block */
|
|
1733 pdump_store_new_pointer_offsets (1, pdump_buf, info.blockaddr,
|
|
1734 info.desc, info.size);
|
|
1735 }
|
|
1736 retry_fwrite (info.desc ? pdump_buf : info.blockaddr,
|
|
1737 info.size, 1, pdump_out);
|
442
|
1738 }
|
|
1739 }
|
|
1740
|
|
1741 static void
|
|
1742 pdump_dump_rtables (void)
|
|
1743 {
|
452
|
1744 int i;
|
2367
|
1745 pdump_block_list_elt *elt;
|
442
|
1746 pdump_reloc_table rt;
|
|
1747
|
|
1748 for (i=0; i<lrecord_type_count; i++)
|
|
1749 {
|
460
|
1750 elt = pdump_object_table[i].first;
|
|
1751 if (!elt)
|
442
|
1752 continue;
|
|
1753 rt.desc = lrecord_implementations_table[i]->description;
|
|
1754 rt.count = pdump_object_table[i].count;
|
458
|
1755 PDUMP_WRITE_ALIGNED (pdump_reloc_table, rt);
|
460
|
1756 while (elt)
|
442
|
1757 {
|
2367
|
1758 EMACS_INT rdata = pdump_get_block (elt->obj)->save_offset;
|
3092
|
1759 #ifdef NEW_GC
|
|
1760 int j;
|
|
1761 for (j=0; j<elt->count; j++)
|
|
1762 {
|
|
1763 PDUMP_WRITE_ALIGNED (EMACS_INT, rdata);
|
|
1764 rdata += elt->size;
|
|
1765 }
|
|
1766 #else /* not NEW_GC */
|
458
|
1767 PDUMP_WRITE_ALIGNED (EMACS_INT, rdata);
|
3092
|
1768 #endif /* not NEW_GC */
|
460
|
1769 elt = elt->next;
|
442
|
1770 }
|
|
1771 }
|
|
1772
|
|
1773 rt.desc = 0;
|
|
1774 rt.count = 0;
|
458
|
1775 PDUMP_WRITE_ALIGNED (pdump_reloc_table, rt);
|
442
|
1776
|
2367
|
1777 for (i=0; i<pdump_desc_table.count; i++)
|
442
|
1778 {
|
2367
|
1779 elt = pdump_desc_table.list[i].list.first;
|
|
1780 rt.desc = pdump_desc_table.list[i].desc;
|
|
1781 rt.count = pdump_desc_table.list[i].list.count;
|
458
|
1782 PDUMP_WRITE_ALIGNED (pdump_reloc_table, rt);
|
460
|
1783 while (elt)
|
442
|
1784 {
|
2367
|
1785 EMACS_INT rdata = pdump_get_block (elt->obj)->save_offset;
|
452
|
1786 int j;
|
460
|
1787 for (j=0; j<elt->count; j++)
|
442
|
1788 {
|
458
|
1789 PDUMP_WRITE_ALIGNED (EMACS_INT, rdata);
|
460
|
1790 rdata += elt->size;
|
442
|
1791 }
|
460
|
1792 elt = elt->next;
|
442
|
1793 }
|
|
1794 }
|
|
1795 rt.desc = 0;
|
|
1796 rt.count = 0;
|
458
|
1797 PDUMP_WRITE_ALIGNED (pdump_reloc_table, rt);
|
442
|
1798 }
|
|
1799
|
|
1800 static void
|
1204
|
1801 pdump_dump_root_lisp_objects (void)
|
442
|
1802 {
|
1204
|
1803 Elemcount count = (Dynarr_length (pdump_root_lisp_objects) +
|
647
|
1804 Dynarr_length (pdump_weak_object_chains));
|
665
|
1805 Elemcount i;
|
442
|
1806
|
665
|
1807 PDUMP_WRITE_ALIGNED (Elemcount, count);
|
458
|
1808 PDUMP_ALIGN_OUTPUT (pdump_static_Lisp_Object);
|
442
|
1809
|
1204
|
1810 for (i = 0; i < Dynarr_length (pdump_root_lisp_objects); i++)
|
442
|
1811 {
|
458
|
1812 pdump_static_Lisp_Object obj;
|
1204
|
1813 obj.address = Dynarr_at (pdump_root_lisp_objects, i);
|
458
|
1814 obj.value = * obj.address;
|
460
|
1815
|
458
|
1816 if (POINTER_TYPE_P (XTYPE (obj.value)))
|
619
|
1817 obj.value =
|
2367
|
1818 wrap_pointer_1 ((void *) pdump_get_block (XRECORD_LHEADER
|
617
|
1819 (obj.value))->save_offset);
|
460
|
1820
|
458
|
1821 PDUMP_WRITE (pdump_static_Lisp_Object, obj);
|
442
|
1822 }
|
|
1823
|
2367
|
1824 for (i = 0; i < Dynarr_length (pdump_weak_object_chains); i++)
|
442
|
1825 {
|
2367
|
1826 pdump_block_list_elt *elt;
|
458
|
1827 pdump_static_Lisp_Object obj;
|
442
|
1828
|
458
|
1829 obj.address = Dynarr_at (pdump_weak_object_chains, i);
|
|
1830 obj.value = * obj.address;
|
460
|
1831
|
442
|
1832 for (;;)
|
|
1833 {
|
1204
|
1834 const struct memory_description *desc;
|
442
|
1835 int pos;
|
2367
|
1836 elt = pdump_get_block (XRECORD_LHEADER (obj.value));
|
460
|
1837 if (elt)
|
442
|
1838 break;
|
458
|
1839 desc = XRECORD_LHEADER_IMPLEMENTATION (obj.value)->description;
|
442
|
1840 for (pos = 0; desc[pos].type != XD_LO_LINK; pos++)
|
|
1841 assert (desc[pos].type != XD_END);
|
|
1842
|
1204
|
1843 /* #### Figure out how to handle indirect offsets here. */
|
|
1844 assert (!XD_IS_INDIRECT (desc[pos].offset));
|
|
1845 obj.value =
|
|
1846 * (Lisp_Object *) (desc[pos].offset +
|
2367
|
1847 (Rawbyte *) (XRECORD_LHEADER (obj.value)));
|
442
|
1848 }
|
619
|
1849 obj.value = wrap_pointer_1 ((void *) elt->save_offset);
|
442
|
1850
|
458
|
1851 PDUMP_WRITE (pdump_static_Lisp_Object, obj);
|
442
|
1852 }
|
|
1853 }
|
|
1854
|
2367
|
1855
|
|
1856 /*########################################################################
|
|
1857 # Pdump #
|
|
1858 ########################################################################
|
|
1859
|
|
1860 [ben]
|
|
1861
|
|
1862 DISCUSSION OF DUMPING:
|
|
1863
|
|
1864 The idea of dumping is to record the state of XEmacs in a file, so that
|
|
1865 it can be reloaded later. This avoids having to reload all of the basic
|
|
1866 Lisp code each time XEmacs is run, which is a rather time-consuming
|
|
1867 process. (Less so on new machines, but still noticeable. As an example
|
|
1868 of a program with similar issues but which does not have a dumping
|
|
1869 process and as a result has a slow startup time, consider Adobe Photoshop
|
|
1870 5.0 or Adobe Photoshop Elements 2.0.)
|
|
1871
|
|
1872 We don't actually record ALL the state of XEmacs (some of it, for example,
|
|
1873 is dependent on the run-time environment and needs to be initialized
|
|
1874 whenever XEmacs is run), but whatever state we don't record needs to be
|
|
1875 reinitialized every time XEmacs is run.
|
|
1876
|
|
1877 The old way of dumping was to make a new executable file with the data
|
|
1878 segment expanded to contain the heap and written out from memory. This
|
|
1879 is what the unex* files do. Unfortunately this process is extremely
|
|
1880 system-specific and breaks easily with OS changes.
|
|
1881
|
|
1882 Another simple, more portable trick, the "static heap" method, involves
|
|
1883 replacing the allocator with our own allocator which allocates all space
|
|
1884 out of a very large array declared in our data segment until we run out,
|
|
1885 then uses the underlying malloc() to start allocating on the heap. If we
|
|
1886 ensure that the large array is big enough to hold all data allocated
|
|
1887 during the dump stage, then all of the data we need to save is in the
|
|
1888 data segment, and it's easy to calculate the location and size of the
|
|
1889 data segment we want to save (we don't want to record and reinitialize
|
|
1890 the data segment of library functions) by using appropriately declared
|
|
1891 variables in the first and last file linked. This method is known as the
|
|
1892 "static heap" method, and is used by the non-pdump version of the dumper
|
|
1893 under Cygwin, and was also used under VMS and in Win-Emacs.
|
|
1894
|
|
1895 The "static heap" method works well in practice. Nonetheless, a more
|
|
1896 complex method of dumping was written by Olivier Galibert, which requires
|
|
1897 that structural descriptions of all data allocated in the heap be provided
|
|
1898 and the roots of all pointers into the heap be noted through function calls
|
|
1899 to the pdump API. This way, all the heap data can be traversed and written
|
|
1900 out to a file, and then reloaded at run-time and the pointers relocated to
|
|
1901 point at the new location of the loaded data. This is the "pdump" method
|
|
1902 used in this file.
|
|
1903
|
|
1904 There are two potential advantages of "pdump" over the "static heap":
|
|
1905
|
|
1906 (1) It doesn't require any tricks to calculate the beginning and end of
|
|
1907 the data segment, or even that the XEmacs section of the data segment
|
|
1908 be contiguous. (It's not clear whether this is an issue in practice.)
|
|
1909 (2) Potentially, it could handle an OS that does not always load the
|
|
1910 static data segment at a predictable location. The "static heap"
|
|
1911 method by its nature needs the data segment to stay in the same place
|
|
1912 from invocation to invocation, since it simply dumps out memory and
|
|
1913 reloads it, without any pointer relocation. I say "potentially"
|
|
1914 because as it is currently written pdump does assume that the data
|
|
1915 segment is never relocated. However, changing pdump to remove this
|
|
1916 assumption is probably not difficult, as all the mechanism to handle
|
|
1917 pointer relocation is already present.
|
|
1918
|
|
1919
|
|
1920 DISCUSSION OF PDUMP WORKINGS:
|
|
1921
|
|
1922 See man/internals/internals.texi for more information.
|
|
1923
|
|
1924 NOTE that we have two kinds of memory to handle: memory on the heap
|
|
1925 (i.e. allocated through malloc()) or the like, and static memory in the
|
|
1926 data segment of the program, i.e. stuff declared as global or static.
|
|
1927 All heap memory needs to be written out to the dump file and reproduced
|
|
1928 (i.e. reloaded and any necessary relocations performed). Data-segment
|
|
1929 memory that is not statically initialized (i.e. through declarations in
|
|
1930 the C code) needs either to be written out and reloaded, or
|
|
1931 reinitialized. In addition, any pointers in data-segment memory to heap
|
|
1932 memory must be written out, reloaded and relocated.
|
|
1933
|
|
1934 NOTE that we currently don't handle relocation of pointers into data-
|
|
1935 segment memory. (See overview discussion above.) These are treated in
|
|
1936 the descriptions as opaque data not needing relocation. If this becomes a
|
|
1937 problem, it can be fixed through new kinds of types in
|
|
1938 enum memory_description_type.
|
|
1939
|
|
1940 Three basic steps to dumping out:
|
|
1941
|
|
1942 (1) "REGISTER":
|
|
1943 Starting with all sources of relocatable memory (currently this means
|
|
1944 all data-segment pointers to heap memory -- see above about pointers
|
|
1945 to data-segment memory), recursively traverse the tree of pointers
|
|
1946 and "register" (make a note of) every memory block seen.
|
|
1947
|
|
1948 (2) "LAYOUT":
|
|
1949 Go through all of the registered blocks and compute the location of
|
|
1950 each one in the dump data (i.e. the "offset" that will be added to
|
|
1951 the address corresponding to start of the loaded-in data to get the
|
|
1952 new pointer referring to this block). The blocks will be laid out
|
|
1953 sequentially according to the order we traverse them. Also note the
|
|
1954 maximum-sized block for use in step 3.
|
|
1955
|
|
1956 (3) "WRITE":
|
|
1957 After writing some header stuff, go through all of the registered
|
|
1958 blocks and write out each one to the dump file. Note that we are
|
|
1959 simply writing out the blocks sequentially as we see them, and our
|
|
1960 traversal path is identical to that in step 2, so blocks will end up
|
|
1961 at the locations computed for them. In order to write out a block,
|
|
1962 first copy it to a temporary location (hence the maximum-block-size
|
|
1963 computation in the previous step), then for each relocatable pointer
|
|
1964 in the block, write in its place the offset to the heap block in the
|
|
1965 dump data. When the dump data is loaded, the address of the
|
|
1966 beginning of the dump data will be added to the offset in each
|
|
1967 pointer, and thence become accurate.
|
|
1968
|
|
1969 --ben
|
|
1970 */
|
|
1971
|
442
|
1972 void
|
|
1973 pdump (void)
|
|
1974 {
|
|
1975 int i;
|
|
1976 Lisp_Object t_console, t_device, t_frame;
|
|
1977 int none;
|
458
|
1978 pdump_header header;
|
442
|
1979
|
1204
|
1980 in_pdump = 1;
|
|
1981
|
2367
|
1982 pdump_object_table = xnew_array (pdump_block_list, lrecord_type_count);
|
460
|
1983 pdump_alert_undump_object = xnew_array (int, lrecord_type_count);
|
|
1984
|
|
1985 assert (ALIGNOF (max_align_t) <= pdump_align_table[0]);
|
|
1986
|
|
1987 for (i = 0; i < countof (pdump_align_table); i++)
|
|
1988 if (pdump_align_table[i] > ALIGNOF (max_align_t))
|
|
1989 pdump_align_table[i] = ALIGNOF (max_align_t);
|
|
1990
|
446
|
1991 flush_all_buffer_local_cache ();
|
|
1992
|
442
|
1993 /* These appear in a DEFVAR_LISP, which does a staticpro() */
|
452
|
1994 t_console = Vterminal_console; Vterminal_console = Qnil;
|
|
1995 t_frame = Vterminal_frame; Vterminal_frame = Qnil;
|
|
1996 t_device = Vterminal_device; Vterminal_device = Qnil;
|
442
|
1997
|
452
|
1998 dump_add_opaque (&lrecord_implementations_table,
|
1204
|
1999 lrecord_type_count *
|
|
2000 sizeof (lrecord_implementations_table[0]));
|
1676
|
2001 #ifdef USE_KKCC
|
|
2002 dump_add_opaque (&lrecord_memory_descriptions,
|
|
2003 lrecord_type_count
|
|
2004 * sizeof (lrecord_memory_descriptions[0]));
|
|
2005 #else /* not USE_KKCC */
|
452
|
2006 dump_add_opaque (&lrecord_markers,
|
|
2007 lrecord_type_count * sizeof (lrecord_markers[0]));
|
1676
|
2008 #endif /* not USE_KKCC */
|
442
|
2009
|
2367
|
2010 pdump_hash = xnew_array_and_zero (pdump_block_list_elt *, PDUMP_HASHSIZE);
|
442
|
2011
|
2367
|
2012 for (i = 0; i<lrecord_type_count; i++)
|
442
|
2013 {
|
|
2014 pdump_object_table[i].first = 0;
|
460
|
2015 pdump_object_table[i].align = ALIGNOF (max_align_t);
|
442
|
2016 pdump_object_table[i].count = 0;
|
|
2017 pdump_alert_undump_object[i] = 0;
|
|
2018 }
|
2367
|
2019 pdump_desc_table.count = 0;
|
|
2020 pdump_desc_table.size = -1;
|
442
|
2021
|
|
2022 pdump_opaque_data_list.first = 0;
|
460
|
2023 pdump_opaque_data_list.align = ALIGNOF (max_align_t);
|
442
|
2024 pdump_opaque_data_list.count = 0;
|
1204
|
2025 pdump_depth = 0;
|
442
|
2026
|
2551
|
2027 pdump_cv_data = Dynarr_new2 (pdump_cv_data_info_dynarr, pdump_cv_data_info);
|
|
2028 pdump_cv_ptr = Dynarr_new2 (pdump_cv_ptr_info_dynarr, pdump_cv_ptr_info);
|
|
2029
|
2367
|
2030 /* (I) The "register" stage: Note all heap memory blocks to be relocated
|
|
2031 */
|
|
2032
|
|
2033 /* Try various roots of accessibility: */
|
|
2034
|
|
2035 /* (1) Lisp objects, both those declared using DEFVAR_LISP*() and those
|
|
2036 staticpro()d. */
|
1204
|
2037 for (i = 0; i < Dynarr_length (pdump_root_lisp_objects); i++)
|
|
2038 pdump_register_object (* Dynarr_at (pdump_root_lisp_objects, i));
|
442
|
2039
|
|
2040 none = 1;
|
2367
|
2041 for (i = 0; i < lrecord_type_count; i++)
|
442
|
2042 if (pdump_alert_undump_object[i])
|
|
2043 {
|
|
2044 if (none)
|
2367
|
2045 stderr_out ("Undumpable types list :\n");
|
442
|
2046 none = 0;
|
2367
|
2047 stderr_out (" - %s (%d)\n", lrecord_implementations_table[i]->name,
|
|
2048 pdump_alert_undump_object[i]);
|
442
|
2049 }
|
|
2050 if (!none)
|
1204
|
2051 {
|
|
2052 in_pdump = 0;
|
|
2053 return;
|
|
2054 }
|
442
|
2055
|
2367
|
2056 /* (2) Register out the data-segment pointer variables to heap blocks */
|
|
2057 for (i = 0; i < Dynarr_length (pdump_root_block_ptrs); i++)
|
452
|
2058 {
|
2367
|
2059 pdump_root_block_ptr info = Dynarr_at (pdump_root_block_ptrs, i);
|
|
2060 pdump_register_block (*(info.ptraddress), info.desc->size,
|
|
2061 info.desc->description, 1);
|
452
|
2062 }
|
442
|
2063
|
2367
|
2064 /* (3) Register out the data-segment blocks, maybe with pointers to heap
|
|
2065 blocks */
|
|
2066 for (i = 0; i < Dynarr_length (pdump_root_blocks); i++)
|
|
2067 {
|
|
2068 pdump_root_block *info = Dynarr_atp (pdump_root_blocks, i);
|
|
2069 if (info->desc)
|
|
2070 {
|
|
2071 /* Size may have been given as 0 meaning "compute later".
|
|
2072 Compute now and update. If no DESC, size must always be
|
|
2073 correct as there is no other way of computing it. */
|
|
2074 info->size = lispdesc_block_size_1 (info->blockaddr, info->size,
|
|
2075 info->desc);
|
|
2076 pdump_register_block_contents (info->blockaddr, info->size,
|
|
2077 info->desc, 1);
|
|
2078 }
|
|
2079 }
|
|
2080
|
|
2081 /* (II) The "layout" stage: Compute the offsets and max-size */
|
|
2082
|
|
2083 /* (1) Determine header size */
|
458
|
2084 memcpy (header.signature, PDUMP_SIGNATURE, PDUMP_SIGNATURE_LEN);
|
|
2085 header.id = dump_id;
|
|
2086 header.reloc_address = 0;
|
2367
|
2087 header.nb_root_block_ptrs = Dynarr_length (pdump_root_block_ptrs);
|
1204
|
2088 header.nb_root_blocks = Dynarr_length (pdump_root_blocks);
|
2551
|
2089 header.nb_cv_data = Dynarr_length (pdump_cv_data);
|
|
2090 header.nb_cv_ptr = Dynarr_length (pdump_cv_ptr);
|
442
|
2091
|
826
|
2092 cur_offset = MAX_ALIGN_SIZE (sizeof (header));
|
442
|
2093 max_size = 0;
|
|
2094
|
2367
|
2095 /* (2) Traverse all heap blocks and compute their offsets; keep track
|
|
2096 of maximum block size seen */
|
2551
|
2097 pdump_scan_by_alignment (pdump_allocate_offset,
|
|
2098 pdump_allocate_offset_cv_data,
|
|
2099 pdump_allocate_offset_cv_ptr);
|
826
|
2100 cur_offset = MAX_ALIGN_SIZE (cur_offset);
|
458
|
2101 header.stab_offset = cur_offset;
|
442
|
2102
|
2367
|
2103 /* (3) Update maximum size based on root (data-segment) blocks */
|
|
2104 for (i = 0; i < Dynarr_length (pdump_root_blocks); i++)
|
|
2105 {
|
|
2106 pdump_root_block info = Dynarr_at (pdump_root_blocks, i);
|
|
2107
|
|
2108 /* If no DESC, no relocation needed and we copy directly instead of
|
|
2109 into a temp buffer. */
|
|
2110 if (info.desc)
|
|
2111 {
|
|
2112 if (info.size > max_size)
|
|
2113 max_size = info.size;
|
|
2114 }
|
|
2115 }
|
|
2116
|
|
2117 /* (III) The "write "stage: Dump out the data, storing the offsets in
|
|
2118 place of pointers whenever we write out memory blocks */
|
|
2119
|
442
|
2120 pdump_buf = xmalloc (max_size);
|
2367
|
2121 /* EMACS_PROGNAME is entirely ASCII so this should be Mule-safe */
|
442
|
2122 pdump_fd = open (EMACS_PROGNAME ".dmp",
|
|
2123 O_WRONLY | O_CREAT | O_TRUNC | OPEN_BINARY, 0666);
|
771
|
2124 if (pdump_fd < 0)
|
|
2125 report_file_error ("Unable to open dump file",
|
|
2126 build_string (EMACS_PROGNAME ".dmp"));
|
458
|
2127 pdump_out = fdopen (pdump_fd, "w");
|
771
|
2128 if (pdump_out < 0)
|
|
2129 report_file_error ("Unable to open dump file for writing",
|
|
2130 build_string (EMACS_PROGNAME ".dmp"));
|
442
|
2131
|
771
|
2132 retry_fwrite (&header, sizeof (header), 1, pdump_out);
|
458
|
2133 PDUMP_ALIGN_OUTPUT (max_align_t);
|
442
|
2134
|
2551
|
2135 for (i = 0; i < Dynarr_length (pdump_cv_data); i++)
|
|
2136 {
|
|
2137 pdump_cv_data_info *elt = Dynarr_atp (pdump_cv_data, i);
|
|
2138 elt->dest_offset =
|
|
2139 pdump_get_block (elt->object)->save_offset + elt->offset;
|
|
2140 }
|
|
2141
|
|
2142 for (i = 0; i < Dynarr_length (pdump_cv_ptr); i++)
|
|
2143 Dynarr_at (pdump_cv_ptr, i).index = i;
|
|
2144
|
|
2145 pdump_scan_by_alignment (pdump_dump_data, pdump_dump_cv_data, pdump_dump_cv_ptr);
|
|
2146
|
|
2147 for (i = 0; i < Dynarr_length (pdump_cv_data); i++)
|
|
2148 {
|
|
2149 pdump_cv_data_info *elt = Dynarr_atp (pdump_cv_data, i);
|
|
2150 if(elt->fcts->convert_free)
|
|
2151 elt->fcts->convert_free(elt->object, elt->data, elt->size);
|
|
2152 }
|
|
2153
|
|
2154 for (i = 0; i < Dynarr_length (pdump_cv_ptr); i++)
|
|
2155 {
|
|
2156 pdump_cv_ptr_info *elt = Dynarr_atp (pdump_cv_ptr, i);
|
|
2157 if(elt->fcts->convert_free)
|
|
2158 elt->fcts->convert_free(elt->object, elt->data, elt->size);
|
|
2159 }
|
442
|
2160
|
458
|
2161 fseek (pdump_out, header.stab_offset, SEEK_SET);
|
442
|
2162
|
3263
|
2163 #ifdef NEW_GC
|
2720
|
2164 {
|
|
2165 EMACS_INT zero = 0;
|
|
2166 pdump_scan_lisp_objects_by_alignment (pdump_dump_mc_data);
|
|
2167 PDUMP_WRITE_ALIGNED (EMACS_INT, zero);
|
|
2168 pdump_scan_non_lisp_objects_by_alignment (pdump_dump_mc_data);
|
|
2169 PDUMP_WRITE_ALIGNED (EMACS_INT, zero);
|
|
2170 }
|
3263
|
2171 #endif /* NEW_GC */
|
2551
|
2172 pdump_dump_cv_data_info ();
|
|
2173 pdump_dump_cv_ptr_info ();
|
3263
|
2174 #ifdef NEW_GC
|
2720
|
2175 pdump_dump_rtables ();
|
3263
|
2176 #endif /* NEW_GC */
|
2367
|
2177 pdump_dump_root_block_ptrs ();
|
1204
|
2178 pdump_dump_root_blocks ();
|
3263
|
2179 #ifndef NEW_GC
|
442
|
2180 pdump_dump_rtables ();
|
3263
|
2181 #endif /* not NEW_GC */
|
1204
|
2182 pdump_dump_root_lisp_objects ();
|
442
|
2183
|
771
|
2184 retry_fclose (pdump_out);
|
3964
|
2185 /* pdump_fd is already closed by the preceding call to fclose.
|
|
2186 retry_close (pdump_fd); */
|
458
|
2187
|
442
|
2188 free (pdump_buf);
|
|
2189
|
|
2190 free (pdump_hash);
|
|
2191
|
|
2192 Vterminal_console = t_console;
|
|
2193 Vterminal_frame = t_frame;
|
|
2194 Vterminal_device = t_device;
|
1204
|
2195 in_pdump = 0;
|
442
|
2196 }
|
|
2197
|
452
|
2198 static int
|
|
2199 pdump_load_check (void)
|
442
|
2200 {
|
2367
|
2201 return (!memcmp (((pdump_header *) pdump_start)->signature,
|
452
|
2202 PDUMP_SIGNATURE, PDUMP_SIGNATURE_LEN)
|
|
2203 && ((pdump_header *)pdump_start)->id == dump_id);
|
442
|
2204 }
|
|
2205
|
458
|
2206 /*----------------------------------------------------------------------*/
|
|
2207 /* Reading the dump file */
|
|
2208 /*----------------------------------------------------------------------*/
|
452
|
2209 static int
|
|
2210 pdump_load_finish (void)
|
442
|
2211 {
|
|
2212 int i;
|
2367
|
2213 Rawbyte *p;
|
442
|
2214 EMACS_INT delta;
|
|
2215 EMACS_INT count;
|
1204
|
2216 pdump_header *header = (pdump_header *) pdump_start;
|
442
|
2217
|
3092
|
2218 #ifdef NEW_GC
|
|
2219 /* This is a DEFVAR_BOOL and gets dumped, but the actual value was
|
|
2220 already determined by vdb_install_signal_handler () in
|
|
2221 vdb-mprotect.c, which could be different from the value in the
|
|
2222 dump file. So store it here and restore it after loading the dump
|
|
2223 file. */
|
|
2224 int allow_inc_gc = allow_incremental_gc;
|
|
2225 #endif /* NEW_GC */
|
442
|
2226 pdump_end = pdump_start + pdump_length;
|
|
2227
|
1204
|
2228 delta = ((EMACS_INT) pdump_start) - header->reloc_address;
|
458
|
2229 p = pdump_start + header->stab_offset;
|
442
|
2230
|
3263
|
2231 #ifdef NEW_GC
|
2720
|
2232 pdump_mc_hash = xnew_array_and_zero (mc_addr_elt, PDUMP_HASHSIZE);
|
|
2233
|
|
2234 /* Allocate space for each object individually. First the
|
|
2235 Lisp_Objects, then the blocks. */
|
|
2236 count = 2;
|
|
2237 for (;;)
|
|
2238 {
|
2824
|
2239 EMACS_INT elt_count = PDUMP_READ_ALIGNED (p, EMACS_INT);
|
2720
|
2240 if (elt_count)
|
|
2241 {
|
|
2242 Rawbyte *mc_addr = 0;
|
|
2243 Bytecount size = PDUMP_READ_ALIGNED (p, Bytecount);
|
|
2244 for (i = 0; i < elt_count; i++)
|
|
2245 {
|
|
2246 EMACS_INT rdata = PDUMP_READ_ALIGNED (p, EMACS_INT);
|
|
2247
|
|
2248 if (i == 0)
|
|
2249 {
|
|
2250 Bytecount real_size = size * elt_count;
|
|
2251 if (count == 2)
|
2775
|
2252 {
|
3092
|
2253 if (elt_count <= 1)
|
|
2254 mc_addr = (Rawbyte *) mc_alloc (real_size);
|
|
2255 else
|
|
2256 mc_addr = (Rawbyte *) mc_alloc_array (size, elt_count);
|
2994
|
2257 #ifdef ALLOC_TYPE_STATS
|
2775
|
2258 inc_lrecord_stats (real_size,
|
|
2259 (const struct lrecord_header *)
|
3092
|
2260 ((Rawbyte *) rdata + delta));
|
2994
|
2261 #endif /* ALLOC_TYPE_STATS */
|
2775
|
2262 }
|
2720
|
2263 else
|
|
2264 mc_addr = (Rawbyte *) xmalloc_and_zero (real_size);
|
|
2265 }
|
|
2266 else
|
|
2267 mc_addr += size;
|
|
2268
|
|
2269 pdump_put_mc_addr ((void *) rdata, (EMACS_INT) mc_addr);
|
3092
|
2270 memcpy (mc_addr, (Rawbyte *) rdata + delta, size);
|
2720
|
2271 }
|
|
2272 }
|
|
2273 else if (!(--count))
|
|
2274 break;
|
|
2275 }
|
3263
|
2276 #endif /* NEW_GC */
|
2720
|
2277
|
2551
|
2278 /* Get the cv_data array */
|
2553
|
2279 p = (Rawbyte *) ALIGN_PTR (p, pdump_cv_data_dump_info);
|
2551
|
2280 pdump_loaded_cv_data = (pdump_cv_data_dump_info *)p;
|
|
2281 p += header->nb_cv_data*sizeof(pdump_cv_data_dump_info);
|
|
2282
|
|
2283 /* Build the cv_ptr array */
|
2553
|
2284 p = (Rawbyte *) ALIGN_PTR (p, pdump_cv_ptr_dump_info);
|
2551
|
2285 pdump_loaded_cv_ptr =
|
|
2286 alloca_array (pdump_cv_ptr_load_info, header->nb_cv_ptr);
|
|
2287 for (i = 0; i < header->nb_cv_ptr; i++)
|
|
2288 {
|
|
2289 pdump_cv_ptr_dump_info info = PDUMP_READ (p, pdump_cv_ptr_dump_info);
|
|
2290 pdump_loaded_cv_ptr[i].save_offset = info.save_offset;
|
|
2291 pdump_loaded_cv_ptr[i].size = info.size;
|
|
2292 pdump_loaded_cv_ptr[i].adr = 0;
|
|
2293 }
|
|
2294
|
3263
|
2295 #ifdef NEW_GC
|
2720
|
2296 /* Relocate the heap objects */
|
|
2297 pdump_rt_list = p;
|
|
2298 count = 2;
|
|
2299 for (;;)
|
|
2300 {
|
|
2301 pdump_reloc_table rt = PDUMP_READ_ALIGNED (p, pdump_reloc_table);
|
|
2302 p = (Rawbyte *) ALIGN_PTR (p, Rawbyte *);
|
|
2303 if (rt.desc)
|
|
2304 {
|
3092
|
2305 Rawbyte **reloc = (Rawbyte **) p;
|
2720
|
2306 for (i = 0; i < rt.count; i++)
|
|
2307 {
|
3092
|
2308 reloc[i] = (Rawbyte *) pdump_get_mc_addr (reloc[i]);
|
2720
|
2309 pdump_reloc_one_mc (reloc[i], rt.desc);
|
|
2310 }
|
3092
|
2311 p += rt.count * sizeof (Rawbyte *);
|
2720
|
2312 }
|
|
2313 else if (!(--count))
|
|
2314 break;
|
|
2315 }
|
3263
|
2316 #endif /* NEW_GC */
|
2720
|
2317
|
2367
|
2318 /* Put back the pdump_root_block_ptrs */
|
|
2319 p = (Rawbyte *) ALIGN_PTR (p, pdump_static_pointer);
|
|
2320 for (i = 0; i < header->nb_root_block_ptrs; i++)
|
442
|
2321 {
|
458
|
2322 pdump_static_pointer ptr = PDUMP_READ (p, pdump_static_pointer);
|
3263
|
2323 #ifdef NEW_GC
|
2720
|
2324 (* ptr.address) = (Rawbyte *) pdump_get_mc_addr (ptr.value);
|
3263
|
2325 #else /* not NEW_GC */
|
458
|
2326 (* ptr.address) = ptr.value + delta;
|
3263
|
2327 #endif /* not NEW_GC */
|
442
|
2328 }
|
|
2329
|
1204
|
2330 /* Put back the pdump_root_blocks and relocate */
|
|
2331 for (i = 0; i < header->nb_root_blocks; i++)
|
442
|
2332 {
|
1204
|
2333 pdump_root_block info = PDUMP_READ_ALIGNED (p, pdump_root_block);
|
2367
|
2334 memcpy ((void *) info.blockaddr, p, info.size);
|
1204
|
2335 if (info.desc)
|
3263
|
2336 #ifdef NEW_GC
|
2720
|
2337 pdump_reloc_one_mc ((void *) info.blockaddr, info.desc);
|
3263
|
2338 #else /* not NEW_GC */
|
2367
|
2339 pdump_reloc_one ((void *) info.blockaddr, delta, info.desc);
|
3263
|
2340 #endif /* not NEW_GC */
|
452
|
2341 p += info.size;
|
442
|
2342 }
|
|
2343
|
3263
|
2344 #ifndef NEW_GC
|
1204
|
2345 /* Relocate the heap objects */
|
442
|
2346 pdump_rt_list = p;
|
|
2347 count = 2;
|
|
2348 for (;;)
|
|
2349 {
|
458
|
2350 pdump_reloc_table rt = PDUMP_READ_ALIGNED (p, pdump_reloc_table);
|
2367
|
2351 p = (Rawbyte *) ALIGN_PTR (p, Rawbyte *);
|
442
|
2352 if (rt.desc)
|
|
2353 {
|
2367
|
2354 Rawbyte **reloc = (Rawbyte **) p;
|
1204
|
2355 for (i = 0; i < rt.count; i++)
|
442
|
2356 {
|
458
|
2357 reloc[i] += delta;
|
|
2358 pdump_reloc_one (reloc[i], delta, rt.desc);
|
442
|
2359 }
|
2367
|
2360 p += rt.count * sizeof (Rawbyte *);
|
1204
|
2361 }
|
|
2362 else if (!(--count))
|
|
2363 break;
|
442
|
2364 }
|
3263
|
2365 #endif /* not NEW_GC */
|
442
|
2366
|
1204
|
2367 /* Put the pdump_root_lisp_objects variables in place */
|
665
|
2368 i = PDUMP_READ_ALIGNED (p, Elemcount);
|
2367
|
2369 p = (Rawbyte *) ALIGN_PTR (p, pdump_static_Lisp_Object);
|
458
|
2370 while (i--)
|
442
|
2371 {
|
458
|
2372 pdump_static_Lisp_Object obj = PDUMP_READ (p, pdump_static_Lisp_Object);
|
442
|
2373
|
458
|
2374 if (POINTER_TYPE_P (XTYPE (obj.value)))
|
3263
|
2375 #ifdef NEW_GC
|
2720
|
2376 obj.value = wrap_pointer_1 ((Rawbyte *) pdump_get_mc_addr
|
|
2377 (XPNTR (obj.value)));
|
3263
|
2378 #else /* not NEW_GC */
|
2720
|
2379 obj.value = wrap_pointer_1 ((Rawbyte *) XPNTR (obj.value) + delta);
|
3263
|
2380 #endif /* not NEW_GC */
|
442
|
2381
|
458
|
2382 (* obj.address) = obj.value;
|
442
|
2383 }
|
|
2384
|
|
2385 /* Final cleanups */
|
|
2386 /* reorganize hash tables */
|
|
2387 p = pdump_rt_list;
|
|
2388 for (;;)
|
|
2389 {
|
458
|
2390 pdump_reloc_table rt = PDUMP_READ_ALIGNED (p, pdump_reloc_table);
|
2367
|
2391 p = (Rawbyte *) ALIGN_PTR (p, Lisp_Object);
|
442
|
2392 if (!rt.desc)
|
|
2393 break;
|
|
2394 if (rt.desc == hash_table_description)
|
|
2395 {
|
1204
|
2396 for (i = 0; i < rt.count; i++)
|
442
|
2397 pdump_reorganize_hash_table (PDUMP_READ (p, Lisp_Object));
|
|
2398 break;
|
1204
|
2399 }
|
|
2400 else
|
|
2401 p += sizeof (Lisp_Object) * rt.count;
|
442
|
2402 }
|
|
2403
|
3263
|
2404 #ifdef NEW_GC
|
2720
|
2405 xfree (pdump_mc_hash, mc_addr_elt *);
|
3263
|
2406 #endif /* NEW_GC */
|
2720
|
2407
|
3092
|
2408 #ifdef NEW_GC
|
|
2409 allow_incremental_gc = allow_inc_gc;
|
|
2410 #endif /* NEW_GC */
|
|
2411
|
442
|
2412 return 1;
|
|
2413 }
|
|
2414
|
|
2415 #ifdef WIN32_NATIVE
|
|
2416 /* Free the mapped file if we decide we don't want it after all */
|
452
|
2417 static void
|
|
2418 pdump_file_unmap (void)
|
442
|
2419 {
|
|
2420 UnmapViewOfFile (pdump_start);
|
|
2421 CloseHandle (pdump_hFile);
|
|
2422 CloseHandle (pdump_hMap);
|
|
2423 }
|
|
2424
|
452
|
2425 static int
|
2367
|
2426 pdump_file_get (const Wexttext *wpath)
|
442
|
2427 {
|
2367
|
2428 Extbyte *path;
|
|
2429 if (XEUNICODE_P)
|
|
2430 path = (Extbyte *) wpath;
|
|
2431 else
|
|
2432 path = WEXTTEXT_TO_MULTIBYTE (wpath);
|
442
|
2433
|
2367
|
2434 pdump_hFile =
|
|
2435 qxeCreateFile (path,
|
|
2436 GENERIC_READ + GENERIC_WRITE, /* Required for copy on
|
|
2437 write */
|
|
2438 0, /* Not shared */
|
|
2439 NULL, /* Not inheritable */
|
|
2440 OPEN_EXISTING,
|
|
2441 FILE_ATTRIBUTE_NORMAL,
|
|
2442 NULL); /* No template file */
|
442
|
2443 if (pdump_hFile == INVALID_HANDLE_VALUE)
|
|
2444 return 0;
|
|
2445
|
|
2446 pdump_length = GetFileSize (pdump_hFile, NULL);
|
2367
|
2447 pdump_hMap =
|
|
2448 qxeCreateFileMapping (pdump_hFile,
|
|
2449 NULL, /* No security attributes */
|
|
2450 PAGE_WRITECOPY, /* Copy on write */
|
|
2451 0, /* Max size, high half */
|
|
2452 0, /* Max size, low half */
|
|
2453 NULL); /* Unnamed */
|
442
|
2454 if (pdump_hMap == INVALID_HANDLE_VALUE)
|
|
2455 return 0;
|
|
2456
|
2367
|
2457 pdump_start =
|
|
2458 (Rawbyte *) MapViewOfFile (pdump_hMap,
|
|
2459 FILE_MAP_COPY, /* Copy on write */
|
|
2460 0, /* Start at zero */
|
|
2461 0,
|
|
2462 0); /* Map all of it */
|
442
|
2463 pdump_free = pdump_file_unmap;
|
|
2464 return 1;
|
|
2465 }
|
|
2466
|
|
2467 /* pdump_resource_free is called (via the pdump_free pointer) to release
|
|
2468 any resources allocated by pdump_resource_get. Since the Windows API
|
|
2469 specs specifically state that you don't need to (and shouldn't) free the
|
|
2470 resources allocated by FindResource, LoadResource, and LockResource this
|
|
2471 routine does nothing. */
|
452
|
2472 static void
|
|
2473 pdump_resource_free (void)
|
442
|
2474 {
|
|
2475 }
|
|
2476
|
452
|
2477 static int
|
|
2478 pdump_resource_get (void)
|
442
|
2479 {
|
452
|
2480 HRSRC hRes; /* Handle to dump resource */
|
|
2481 HRSRC hResLoad; /* Handle to loaded dump resource */
|
442
|
2482
|
|
2483 /* See Q126630 which describes how Windows NT and 95 trap writes to
|
|
2484 resource sections and duplicate the page to allow the write to proceed.
|
|
2485 It also describes how to make the resource section read/write (and hence
|
|
2486 private to each process). Doing this avoids the exceptions and related
|
|
2487 overhead, but causes the resource section to be private to each process
|
|
2488 that is running XEmacs. Since the resource section contains little
|
|
2489 other than the dumped data, which should be private to each process, we
|
|
2490 make the whole resource section read/write so we don't have to copy it. */
|
|
2491
|
800
|
2492 hRes = FindResourceA (NULL, MAKEINTRESOURCE (101), "DUMP");
|
442
|
2493 if (hRes == NULL)
|
|
2494 return 0;
|
|
2495
|
|
2496 /* Found it, use the data in the resource */
|
1204
|
2497 hResLoad = (HRSRC) LoadResource (NULL, hRes);
|
442
|
2498 if (hResLoad == NULL)
|
|
2499 return 0;
|
|
2500
|
2367
|
2501 pdump_start = (Rawbyte *) LockResource (hResLoad);
|
442
|
2502 if (pdump_start == NULL)
|
|
2503 return 0;
|
|
2504
|
|
2505 pdump_free = pdump_resource_free;
|
|
2506 pdump_length = SizeofResource (NULL, hRes);
|
665
|
2507 if (pdump_length <= (Bytecount) sizeof (pdump_header))
|
442
|
2508 {
|
|
2509 pdump_start = 0;
|
|
2510 return 0;
|
|
2511 }
|
|
2512
|
|
2513 return 1;
|
|
2514 }
|
|
2515
|
|
2516 #else /* !WIN32_NATIVE */
|
|
2517
|
452
|
2518 static void
|
|
2519 pdump_file_free (void)
|
442
|
2520 {
|
2367
|
2521 xfree (pdump_start, Rawbyte *);
|
442
|
2522 }
|
|
2523
|
|
2524 #ifdef HAVE_MMAP
|
452
|
2525 static void
|
|
2526 pdump_file_unmap (void)
|
442
|
2527 {
|
|
2528 munmap (pdump_start, pdump_length);
|
|
2529 }
|
|
2530 #endif
|
|
2531
|
452
|
2532 static int
|
2367
|
2533 pdump_file_get (const Wexttext *path)
|
442
|
2534 {
|
2367
|
2535 int fd = wext_retry_open (path, O_RDONLY | OPEN_BINARY);
|
|
2536 if (fd < 0)
|
442
|
2537 return 0;
|
|
2538
|
|
2539 pdump_length = lseek (fd, 0, SEEK_END);
|
665
|
2540 if (pdump_length < (Bytecount) sizeof (pdump_header))
|
442
|
2541 {
|
771
|
2542 retry_close (fd);
|
442
|
2543 return 0;
|
|
2544 }
|
|
2545
|
|
2546 lseek (fd, 0, SEEK_SET);
|
|
2547
|
|
2548 #ifdef HAVE_MMAP
|
456
|
2549 /* Unix 98 requires that sys/mman.h define MAP_FAILED,
|
|
2550 but many earlier implementations don't. */
|
|
2551 # ifndef MAP_FAILED
|
|
2552 # define MAP_FAILED ((void *) -1L)
|
|
2553 # endif
|
2367
|
2554 pdump_start =
|
|
2555 (Rawbyte *) mmap (0, pdump_length, PROT_READ|PROT_WRITE, MAP_PRIVATE,
|
|
2556 fd, 0);
|
|
2557 if (pdump_start != (Rawbyte *) MAP_FAILED)
|
442
|
2558 {
|
|
2559 pdump_free = pdump_file_unmap;
|
771
|
2560 retry_close (fd);
|
442
|
2561 return 1;
|
|
2562 }
|
456
|
2563 #endif /* HAVE_MMAP */
|
442
|
2564
|
2367
|
2565 pdump_start = xnew_array (Rawbyte, pdump_length);
|
442
|
2566 pdump_free = pdump_file_free;
|
771
|
2567 retry_read (fd, pdump_start, pdump_length);
|
442
|
2568
|
771
|
2569 retry_close (fd);
|
442
|
2570 return 1;
|
|
2571 }
|
2015
|
2572
|
2720
|
2573 #ifdef DUMP_IN_EXEC
|
2015
|
2574 static int
|
|
2575 pdump_ram_try (void)
|
|
2576 {
|
2367
|
2577 pdump_start = dumped_data_get ();
|
|
2578 pdump_length = dumped_data_size ();
|
2015
|
2579
|
2367
|
2580 return pdump_load_check ();
|
2015
|
2581 }
|
2720
|
2582 #endif
|
2015
|
2583
|
442
|
2584 #endif /* !WIN32_NATIVE */
|
|
2585
|
|
2586
|
452
|
2587 static int
|
2367
|
2588 pdump_file_try (Wexttext *exe_path)
|
442
|
2589 {
|
2367
|
2590 Wexttext *w = exe_path + wext_strlen (exe_path);
|
442
|
2591
|
2563
|
2592 /* We look for various names, including those with the version and dump ID,
|
|
2593 those with just the dump ID, and those without either. We first try
|
|
2594 adding directly to the executable name, then lopping off any extension
|
|
2595 (e.g. .exe) or version name in the executable (xemacs-21.5.18). */
|
442
|
2596 do
|
|
2597 {
|
2367
|
2598 wext_sprintf (w, WEXTSTRING ("-%s-%08x.dmp"), WEXTSTRING (EMACS_VERSION),
|
|
2599 dump_id);
|
442
|
2600 if (pdump_file_get (exe_path))
|
|
2601 {
|
|
2602 if (pdump_load_check ())
|
|
2603 return 1;
|
452
|
2604 pdump_free ();
|
442
|
2605 }
|
|
2606
|
2367
|
2607 wext_sprintf (w, WEXTSTRING ("-%08x.dmp"), dump_id);
|
442
|
2608 if (pdump_file_get (exe_path))
|
|
2609 {
|
|
2610 if (pdump_load_check ())
|
|
2611 return 1;
|
452
|
2612 pdump_free ();
|
442
|
2613 }
|
|
2614
|
2367
|
2615 wext_sprintf (w, WEXTSTRING (".dmp"));
|
442
|
2616 if (pdump_file_get (exe_path))
|
|
2617 {
|
|
2618 if (pdump_load_check ())
|
|
2619 return 1;
|
452
|
2620 pdump_free ();
|
442
|
2621 }
|
|
2622
|
|
2623 do
|
|
2624 w--;
|
2367
|
2625 /* !!#### See comment below about how this is unsafe. */
|
|
2626 while (w > exe_path && !IS_DIRECTORY_SEP (*w) && (*w != '-') &&
|
|
2627 (*w != '.'));
|
442
|
2628 }
|
2367
|
2629 while (w > exe_path && !IS_DIRECTORY_SEP (*w));
|
442
|
2630 return 0;
|
|
2631 }
|
|
2632
|
452
|
2633 int
|
2367
|
2634 pdump_load (const Wexttext *argv0)
|
442
|
2635 {
|
|
2636 #ifdef WIN32_NATIVE
|
2421
|
2637 Wexttext *exe_path = NULL;
|
|
2638 int bufsize = 4096;
|
|
2639 int cchpathsize;
|
2563
|
2640 #define DUMP_SLACK 100 /* Enough to include dump ID, version name, .DMP */
|
2421
|
2641
|
|
2642 /* Copied from mswindows_get_module_file_name (). Not clear if it's
|
|
2643 kosher to malloc() yet. */
|
|
2644 while (1)
|
|
2645 {
|
|
2646 exe_path = alloca_array (Wexttext, bufsize);
|
|
2647 cchpathsize = qxeGetModuleFileName (NULL, (Extbyte *) exe_path,
|
|
2648 bufsize);
|
|
2649 if (!cchpathsize)
|
|
2650 goto fail;
|
2563
|
2651 if (cchpathsize + DUMP_SLACK <= bufsize)
|
2421
|
2652 break;
|
|
2653 bufsize *= 2;
|
|
2654 }
|
|
2655
|
2367
|
2656 if (!XEUNICODE_P)
|
|
2657 {
|
|
2658 Wexttext *wexe = MULTIBYTE_TO_WEXTTEXT ((Extbyte *) exe_path);
|
|
2659 wext_strcpy (exe_path, wexe);
|
|
2660 }
|
442
|
2661 #else /* !WIN32_NATIVE */
|
2421
|
2662 Wexttext *exe_path;
|
2367
|
2663 Wexttext *w;
|
|
2664 const Wexttext *dir, *p;
|
442
|
2665
|
2720
|
2666 #ifdef DUMP_IN_EXEC
|
2367
|
2667 if (pdump_ram_try ())
|
|
2668 {
|
|
2669 pdump_load_finish ();
|
|
2670 in_pdump = 0;
|
|
2671 return 1;
|
|
2672 }
|
2720
|
2673 #endif
|
2015
|
2674
|
1204
|
2675 in_pdump = 1;
|
442
|
2676 dir = argv0;
|
|
2677 if (dir[0] == '-')
|
|
2678 {
|
|
2679 /* XEmacs as a login shell, oh goody! */
|
2367
|
2680 dir = wext_getenv ("SHELL"); /* not egetenv -- not yet initialized and we
|
|
2681 want external-format data */
|
442
|
2682 }
|
|
2683
|
2367
|
2684 p = dir + wext_strlen (dir);
|
|
2685 /* !!#### This is bad as it may fail with certain non-ASCII-compatible
|
|
2686 external formats such as JIS. Maybe we should be using the mb*()
|
|
2687 routines in libc? But can we reliably trust them on all Unix
|
|
2688 platforms? (We can't convert to internal since those conversion
|
|
2689 routines aren't yet initialized) */
|
|
2690 while (p != dir && !IS_ANY_SEP (p[-1]))
|
|
2691 p--;
|
442
|
2692
|
|
2693 if (p != dir)
|
|
2694 {
|
|
2695 /* invocation-name includes a directory component -- presumably it
|
|
2696 is relative to cwd, not $PATH */
|
2421
|
2697 exe_path = alloca_array (Wexttext, 1 + wext_strlen (dir));
|
2367
|
2698 wext_strcpy (exe_path, dir);
|
442
|
2699 }
|
|
2700 else
|
|
2701 {
|
2367
|
2702 const Wexttext *path = wext_getenv ("PATH"); /* not egetenv --
|
|
2703 not yet init. */
|
|
2704 const Wexttext *name = p;
|
2421
|
2705 exe_path = alloca_array (Wexttext,
|
|
2706 10 + max (wext_strlen (name),
|
|
2707 wext_strlen (path)));
|
442
|
2708 for (;;)
|
|
2709 {
|
|
2710 p = path;
|
|
2711 while (*p && *p != SEPCHAR)
|
|
2712 p++;
|
|
2713 if (p == path)
|
|
2714 {
|
|
2715 exe_path[0] = '.';
|
|
2716 w = exe_path + 1;
|
|
2717 }
|
|
2718 else
|
|
2719 {
|
2367
|
2720 memcpy (exe_path, path, (p - path) * sizeof (Wexttext));
|
442
|
2721 w = exe_path + (p - path);
|
|
2722 }
|
|
2723 if (!IS_DIRECTORY_SEP (w[-1]))
|
2367
|
2724 *w++ = '/';
|
|
2725 wext_strcpy (w, name);
|
1466
|
2726
|
|
2727 {
|
|
2728 struct stat statbuf;
|
2367
|
2729 if (wext_access (exe_path, X_OK) == 0
|
|
2730 && wext_stat (exe_path, &statbuf) == 0
|
1466
|
2731 && ! S_ISDIR (statbuf.st_mode))
|
|
2732 break;
|
|
2733 }
|
|
2734
|
442
|
2735 if (!*p)
|
|
2736 {
|
|
2737 /* Oh well, let's have some kind of default */
|
2367
|
2738 wext_sprintf (exe_path, "./%s", name);
|
442
|
2739 break;
|
|
2740 }
|
2421
|
2741 path = p + 1;
|
442
|
2742 }
|
|
2743 }
|
|
2744 #endif /* WIN32_NATIVE */
|
|
2745
|
|
2746 if (pdump_file_try (exe_path))
|
|
2747 {
|
|
2748 pdump_load_finish ();
|
1204
|
2749 in_pdump = 0;
|
3263
|
2750 #ifdef NEW_GC
|
2720
|
2751 pdump_free ();
|
3263
|
2752 #endif /* NEW_GC */
|
442
|
2753 return 1;
|
|
2754 }
|
|
2755
|
|
2756 #ifdef WIN32_NATIVE
|
|
2757 if (pdump_resource_get ())
|
|
2758 {
|
|
2759 if (pdump_load_check ())
|
|
2760 {
|
|
2761 pdump_load_finish ();
|
1204
|
2762 in_pdump = 0;
|
3263
|
2763 #ifdef NEW_GC
|
2720
|
2764 pdump_free ();
|
3263
|
2765 #endif /* NEW_GC */
|
442
|
2766 return 1;
|
|
2767 }
|
|
2768 pdump_free ();
|
|
2769 }
|
2421
|
2770
|
|
2771 fail:
|
442
|
2772 #endif
|
|
2773
|
1204
|
2774 in_pdump = 0;
|
442
|
2775 return 0;
|
|
2776 }
|