428
|
1 /* Extended regular expression matching and search library,
|
|
2 version 0.12, extended for XEmacs.
|
|
3 (Implements POSIX draft P10003.2/D11.2, except for
|
|
4 internationalization features.)
|
|
5
|
|
6 Copyright (C) 1993, 1994, 1995 Free Software Foundation, Inc.
|
|
7 Copyright (C) 1995 Sun Microsystems, Inc.
|
1333
|
8 Copyright (C) 1995, 2001, 2002, 2003 Ben Wing.
|
428
|
9
|
|
10 This program is free software; you can redistribute it and/or modify
|
|
11 it under the terms of the GNU General Public License as published by
|
|
12 the Free Software Foundation; either version 2, or (at your option)
|
|
13 any later version.
|
|
14
|
|
15 This program is distributed in the hope that it will be useful,
|
|
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
18 GNU General Public License for more details.
|
|
19
|
|
20 You should have received a copy of the GNU General Public License
|
|
21 along with this program; see the file COPYING. If not, write to
|
|
22 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
23 Boston, MA 02111-1307, USA. */
|
|
24
|
|
25 /* Synched up with: FSF 19.29. */
|
|
26
|
|
27 #ifdef HAVE_CONFIG_H
|
|
28 #include <config.h>
|
|
29 #endif
|
|
30
|
|
31 #ifndef REGISTER /* Rigidly enforced as of 20.3 */
|
|
32 #define REGISTER
|
|
33 #endif
|
|
34
|
|
35 #ifndef _GNU_SOURCE
|
|
36 #define _GNU_SOURCE 1
|
|
37 #endif
|
|
38
|
|
39 /* We assume non-Mule if emacs isn't defined. */
|
|
40 #ifndef emacs
|
|
41 #undef MULE
|
|
42 #endif
|
|
43
|
|
44 /* We need this for `regex.h', and perhaps for the Emacs include files. */
|
|
45 #include <sys/types.h>
|
648
|
46 #include <stddef.h> /* needed for ptrdiff_t under Solaris */
|
428
|
47
|
|
48 /* This is for other GNU distributions with internationalized messages. */
|
|
49 #if defined (I18N3) && (defined (HAVE_LIBINTL_H) || defined (_LIBC))
|
|
50 # include <libintl.h>
|
|
51 #else
|
|
52 # define gettext(msgid) (msgid)
|
|
53 #endif
|
|
54
|
771
|
55 /* XEmacs addition */
|
|
56 #ifdef REL_ALLOC
|
|
57 #define REGEX_REL_ALLOC /* may be undefined below */
|
|
58 #endif
|
|
59
|
428
|
60 /* XEmacs: define this to add in a speedup for patterns anchored at
|
|
61 the beginning of a line. Keep the ifdefs so that it's easier to
|
|
62 tell where/why this code has diverged from v19. */
|
|
63 #define REGEX_BEGLINE_CHECK
|
|
64
|
|
65 /* XEmacs: the current mmap-based ralloc handles small blocks very
|
|
66 poorly, so we disable it here. */
|
|
67
|
771
|
68 #if defined (HAVE_MMAP) || defined (DOUG_LEA_MALLOC)
|
|
69 # undef REGEX_REL_ALLOC
|
428
|
70 #endif
|
|
71
|
|
72 /* The `emacs' switch turns on certain matching commands
|
|
73 that make sense only in Emacs. */
|
|
74 #ifdef emacs
|
|
75
|
|
76 #include "lisp.h"
|
|
77 #include "buffer.h"
|
|
78 #include "syntax.h"
|
|
79
|
|
80 #if (defined (DEBUG_XEMACS) && !defined (DEBUG))
|
|
81 #define DEBUG
|
|
82 #endif
|
|
83
|
867
|
84 #define RE_TRANSLATE_1(ch) TRT_TABLE_OF (translate, (Ichar) ch)
|
446
|
85 #define TRANSLATE_P(tr) (!NILP (tr))
|
428
|
86
|
826
|
87 /* Converts the pointer to the char to BEG-based offset from the start. */
|
|
88 #define PTR_TO_OFFSET(d) (MATCHING_IN_FIRST_STRING \
|
|
89 ? (d) - string1 : (d) - (string2 - size1))
|
|
90
|
428
|
91 #else /* not emacs */
|
|
92
|
|
93 /* If we are not linking with Emacs proper,
|
|
94 we can't use the relocating allocator
|
|
95 even if config.h says that we can. */
|
771
|
96 #undef REGEX_REL_ALLOC
|
428
|
97
|
544
|
98 /* defined in lisp.h */
|
|
99 #ifdef REGEX_MALLOC
|
|
100 #ifndef DECLARE_NOTHING
|
|
101 #define DECLARE_NOTHING struct nosuchstruct
|
|
102 #endif
|
|
103 #endif
|
|
104
|
428
|
105 #include <stdlib.h>
|
|
106
|
867
|
107 #define itext_ichar(str) ((Ichar) (str)[0])
|
|
108 #define itext_ichar_fmt(str, fmt, object) ((Ichar) (str)[0])
|
|
109 #define itext_ichar_ascii_fmt(str, fmt, object) ((Ichar) (str)[0])
|
428
|
110
|
|
111 #if (LONGBITS > INTBITS)
|
|
112 # define EMACS_INT long
|
|
113 #else
|
|
114 # define EMACS_INT int
|
|
115 #endif
|
|
116
|
867
|
117 typedef int Ichar;
|
|
118
|
|
119 #define INC_IBYTEPTR(p) ((p)++)
|
|
120 #define INC_IBYTEPTR_FMT(p, fmt) ((p)++)
|
|
121 #define DEC_IBYTEPTR(p) ((p)--)
|
|
122 #define DEC_IBYTEPTR_FMT(p, fmt) ((p)--)
|
|
123 #define itext_ichar_len(ptr) 1
|
|
124 #define itext_ichar_len_fmt(ptr, fmt) 1
|
428
|
125
|
|
126 #include <string.h>
|
|
127
|
|
128 /* Define the syntax stuff for \<, \>, etc. */
|
|
129
|
|
130 /* This must be nonzero for the wordchar and notwordchar pattern
|
|
131 commands in re_match_2. */
|
|
132 #ifndef Sword
|
|
133 #define Sword 1
|
|
134 #endif
|
|
135
|
|
136 #ifdef SYNTAX_TABLE
|
|
137
|
|
138 extern char *re_syntax_table;
|
|
139
|
|
140 #else /* not SYNTAX_TABLE */
|
|
141
|
|
142 /* How many characters in the character set. */
|
|
143 #define CHAR_SET_SIZE 256
|
|
144
|
|
145 static char re_syntax_table[CHAR_SET_SIZE];
|
|
146
|
|
147 static void
|
|
148 init_syntax_once (void)
|
|
149 {
|
|
150 static int done = 0;
|
|
151
|
|
152 if (!done)
|
|
153 {
|
442
|
154 const char *word_syntax_chars =
|
428
|
155 "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789_";
|
|
156
|
|
157 memset (re_syntax_table, 0, sizeof (re_syntax_table));
|
|
158
|
|
159 while (*word_syntax_chars)
|
647
|
160 re_syntax_table[(unsigned int) (*word_syntax_chars++)] = Sword;
|
428
|
161
|
|
162 done = 1;
|
|
163 }
|
|
164 }
|
|
165
|
446
|
166 #endif /* SYNTAX_TABLE */
|
428
|
167
|
826
|
168 #define SYNTAX(ignored, c) re_syntax_table[c]
|
460
|
169 #undef SYNTAX_FROM_CACHE
|
826
|
170 #define SYNTAX_FROM_CACHE SYNTAX
|
|
171
|
|
172 #define RE_TRANSLATE_1(c) translate[(unsigned char) (c)]
|
446
|
173 #define TRANSLATE_P(tr) tr
|
|
174
|
|
175 #endif /* emacs */
|
428
|
176
|
|
177 /* Under XEmacs, this is needed because we don't define it elsewhere. */
|
|
178 #ifdef SWITCH_ENUM_BUG
|
|
179 #define SWITCH_ENUM_CAST(x) ((int)(x))
|
|
180 #else
|
|
181 #define SWITCH_ENUM_CAST(x) (x)
|
|
182 #endif
|
|
183
|
|
184
|
|
185 /* Get the interface, including the syntax bits. */
|
|
186 #include "regex.h"
|
|
187
|
|
188 /* isalpha etc. are used for the character classes. */
|
|
189 #include <ctype.h>
|
|
190
|
|
191 /* Jim Meyering writes:
|
|
192
|
|
193 "... Some ctype macros are valid only for character codes that
|
|
194 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
|
|
195 using /bin/cc or gcc but without giving an ansi option). So, all
|
|
196 ctype uses should be through macros like ISPRINT... If
|
|
197 STDC_HEADERS is defined, then autoconf has verified that the ctype
|
|
198 macros don't need to be guarded with references to isascii. ...
|
|
199 Defining isascii to 1 should let any compiler worth its salt
|
|
200 eliminate the && through constant folding." */
|
|
201
|
|
202 #if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII))
|
|
203 #define ISASCII_1(c) 1
|
|
204 #else
|
|
205 #define ISASCII_1(c) isascii(c)
|
|
206 #endif
|
|
207
|
|
208 #ifdef MULE
|
|
209 /* The IS*() macros can be passed any character, including an extended
|
|
210 one. We need to make sure there are no crashes, which would occur
|
|
211 otherwise due to out-of-bounds array references. */
|
|
212 #define ISASCII(c) (((EMACS_UINT) (c)) < 0x100 && ISASCII_1 (c))
|
|
213 #else
|
|
214 #define ISASCII(c) ISASCII_1 (c)
|
|
215 #endif /* MULE */
|
|
216
|
|
217 #ifdef isblank
|
|
218 #define ISBLANK(c) (ISASCII (c) && isblank (c))
|
|
219 #else
|
|
220 #define ISBLANK(c) ((c) == ' ' || (c) == '\t')
|
|
221 #endif
|
|
222 #ifdef isgraph
|
|
223 #define ISGRAPH(c) (ISASCII (c) && isgraph (c))
|
|
224 #else
|
|
225 #define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
|
|
226 #endif
|
|
227
|
|
228 #define ISPRINT(c) (ISASCII (c) && isprint (c))
|
|
229 #define ISDIGIT(c) (ISASCII (c) && isdigit (c))
|
|
230 #define ISALNUM(c) (ISASCII (c) && isalnum (c))
|
|
231 #define ISALPHA(c) (ISASCII (c) && isalpha (c))
|
|
232 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
|
|
233 #define ISLOWER(c) (ISASCII (c) && islower (c))
|
|
234 #define ISPUNCT(c) (ISASCII (c) && ispunct (c))
|
|
235 #define ISSPACE(c) (ISASCII (c) && isspace (c))
|
|
236 #define ISUPPER(c) (ISASCII (c) && isupper (c))
|
|
237 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
|
|
238
|
|
239 #ifndef NULL
|
|
240 #define NULL (void *)0
|
|
241 #endif
|
|
242
|
|
243 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
|
|
244 since ours (we hope) works properly with all combinations of
|
|
245 machines, compilers, `char' and `unsigned char' argument types.
|
|
246 (Per Bothner suggested the basic approach.) */
|
|
247 #undef SIGN_EXTEND_CHAR
|
|
248 #if __STDC__
|
|
249 #define SIGN_EXTEND_CHAR(c) ((signed char) (c))
|
|
250 #else /* not __STDC__ */
|
|
251 /* As in Harbison and Steele. */
|
|
252 #define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
|
|
253 #endif
|
|
254
|
|
255 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
|
|
256 use `alloca' instead of `malloc'. This is because using malloc in
|
|
257 re_search* or re_match* could cause memory leaks when C-g is used in
|
|
258 Emacs; also, malloc is slower and causes storage fragmentation. On
|
|
259 the other hand, malloc is more portable, and easier to debug.
|
|
260
|
|
261 Because we sometimes use alloca, some routines have to be macros,
|
|
262 not functions -- `alloca'-allocated space disappears at the end of the
|
|
263 function it is called in. */
|
|
264
|
1333
|
265 #ifndef emacs
|
|
266 #define ALLOCA alloca
|
|
267 #define xmalloc malloc
|
|
268 #define xrealloc realloc
|
|
269 #define xfree free
|
|
270 #endif
|
|
271
|
|
272 #ifdef emacs
|
|
273 #define ALLOCA_GARBAGE_COLLECT() \
|
|
274 do \
|
|
275 { \
|
|
276 if (need_to_check_c_alloca) \
|
|
277 xemacs_c_alloca (0); \
|
|
278 } while (0)
|
|
279 #elif defined (C_ALLOCA)
|
|
280 #define ALLOCA_GARBAGE_COLLECT() alloca (0)
|
|
281 #else
|
|
282 #define ALLOCA_GARBAGE_COLLECT()
|
|
283 #endif
|
|
284
|
|
285 #ifndef emacs
|
|
286 /* So we can use just it to conditionalize on */
|
|
287 #undef ERROR_CHECK_MALLOC
|
|
288 #endif
|
|
289
|
|
290 #ifdef ERROR_CHECK_MALLOC
|
|
291 /* When REL_ALLOC, malloc() is problematic because it could potentially
|
|
292 cause all rel-alloc()ed data -- including buffer text -- to be relocated.
|
|
293 We deal with this by checking for such relocation whenever we have
|
|
294 executed a statement that may call malloc() -- or alloca(), which may
|
|
295 end up calling malloc() in some circumstances -- and recomputing all
|
|
296 of our string pointers in re_match_2_internal() and re_search_2().
|
|
297 However, if malloc() or alloca() happens and we don't know about it,
|
|
298 we could still be screwed. So we set up a system where we indicate all
|
|
299 places where we are prepared for malloc() or alloca(), and in any
|
|
300 other circumstances, calls to those functions (from anywhere inside of
|
|
301 XEmacs!) will abort(). We do this even when REL_ALLOC is not defined
|
|
302 so that we catch these problems sooner, since many developers and beta
|
|
303 testers will not be running with REL_ALLOC. */
|
|
304 int regex_malloc_disallowed;
|
|
305 #define BEGIN_REGEX_MALLOC_OK() regex_malloc_disallowed = 0
|
|
306 #define END_REGEX_MALLOC_OK() regex_malloc_disallowed = 1
|
|
307 #define UNBIND_REGEX_MALLOC_CHECK() unbind_to (depth)
|
|
308 #else
|
|
309 #define BEGIN_REGEX_MALLOC_OK()
|
|
310 #define END_REGEX_MALLOC_OK()
|
|
311 #define UNBIND_REGEX_MALLOC_CHECK()
|
|
312 #endif
|
|
313
|
|
314
|
428
|
315 #ifdef REGEX_MALLOC
|
|
316
|
1333
|
317 #define REGEX_ALLOCATE xmalloc
|
|
318 #define REGEX_REALLOCATE(source, osize, nsize) xrealloc (source, nsize)
|
|
319 #define REGEX_FREE xfree
|
428
|
320
|
|
321 #else /* not REGEX_MALLOC */
|
|
322
|
|
323 /* Emacs already defines alloca, sometimes. */
|
|
324 #ifndef alloca
|
|
325
|
|
326 /* Make alloca work the best possible way. */
|
|
327 #ifdef __GNUC__
|
|
328 #define alloca __builtin_alloca
|
771
|
329 #elif defined (__DECC) /* XEmacs: added next 3 lines, similar to config.h.in */
|
|
330 #include <alloca.h>
|
|
331 #pragma intrinsic(alloca)
|
428
|
332 #else /* not __GNUC__ */
|
|
333 #if HAVE_ALLOCA_H
|
|
334 #include <alloca.h>
|
|
335 #else /* not __GNUC__ or HAVE_ALLOCA_H */
|
|
336 #ifndef _AIX /* Already did AIX, up at the top. */
|
444
|
337 void *alloca ();
|
428
|
338 #endif /* not _AIX */
|
446
|
339 #endif /* HAVE_ALLOCA_H */
|
|
340 #endif /* __GNUC__ */
|
428
|
341
|
|
342 #endif /* not alloca */
|
|
343
|
1333
|
344 #define REGEX_ALLOCATE ALLOCA
|
428
|
345
|
|
346 /* Assumes a `char *destination' variable. */
|
|
347 #define REGEX_REALLOCATE(source, osize, nsize) \
|
1333
|
348 (destination = (char *) ALLOCA (nsize), \
|
428
|
349 memmove (destination, source, osize), \
|
|
350 destination)
|
|
351
|
|
352 /* No need to do anything to free, after alloca. */
|
|
353 #define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
|
|
354
|
446
|
355 #endif /* REGEX_MALLOC */
|
428
|
356
|
|
357 /* Define how to allocate the failure stack. */
|
|
358
|
771
|
359 #ifdef REGEX_REL_ALLOC
|
428
|
360 #define REGEX_ALLOCATE_STACK(size) \
|
1346
|
361 r_alloc ((unsigned char **) &failure_stack_ptr, (size))
|
428
|
362 #define REGEX_REALLOCATE_STACK(source, osize, nsize) \
|
1346
|
363 r_re_alloc ((unsigned char **) &failure_stack_ptr, (nsize))
|
428
|
364 #define REGEX_FREE_STACK(ptr) \
|
1346
|
365 r_alloc_free ((unsigned char **) &failure_stack_ptr)
|
428
|
366
|
771
|
367 #else /* not REGEX_REL_ALLOC */
|
428
|
368
|
|
369 #ifdef REGEX_MALLOC
|
|
370
|
1333
|
371 #define REGEX_ALLOCATE_STACK xmalloc
|
|
372 #define REGEX_REALLOCATE_STACK(source, osize, nsize) xrealloc (source, nsize)
|
|
373 #define REGEX_FREE_STACK xfree
|
428
|
374
|
|
375 #else /* not REGEX_MALLOC */
|
|
376
|
1333
|
377 #define REGEX_ALLOCATE_STACK ALLOCA
|
428
|
378
|
|
379 #define REGEX_REALLOCATE_STACK(source, osize, nsize) \
|
|
380 REGEX_REALLOCATE (source, osize, nsize)
|
|
381 /* No need to explicitly free anything. */
|
|
382 #define REGEX_FREE_STACK(arg)
|
|
383
|
446
|
384 #endif /* REGEX_MALLOC */
|
771
|
385 #endif /* REGEX_REL_ALLOC */
|
428
|
386
|
|
387
|
|
388 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
|
|
389 `string1' or just past its end. This works if PTR is NULL, which is
|
|
390 a good thing. */
|
|
391 #define FIRST_STRING_P(ptr) \
|
|
392 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
|
|
393
|
|
394 /* (Re)Allocate N items of type T using malloc, or fail. */
|
1333
|
395 #define TALLOC(n, t) ((t *) xmalloc ((n) * sizeof (t)))
|
|
396 #define RETALLOC(addr, n, t) ((addr) = (t *) xrealloc (addr, (n) * sizeof (t)))
|
428
|
397 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
|
|
398
|
|
399 #define BYTEWIDTH 8 /* In bits. */
|
|
400
|
434
|
401 #define STREQ(s1, s2) (strcmp (s1, s2) == 0)
|
428
|
402
|
|
403 #undef MAX
|
|
404 #undef MIN
|
|
405 #define MAX(a, b) ((a) > (b) ? (a) : (b))
|
|
406 #define MIN(a, b) ((a) < (b) ? (a) : (b))
|
|
407
|
446
|
408 /* Type of source-pattern and string chars. */
|
|
409 typedef const unsigned char re_char;
|
|
410
|
460
|
411 typedef char re_bool;
|
428
|
412 #define false 0
|
|
413 #define true 1
|
|
414
|
|
415
|
1346
|
416 #ifdef emacs
|
|
417
|
|
418 #ifdef MULE
|
|
419
|
|
420 Lisp_Object Vthe_lisp_rangetab;
|
|
421
|
|
422 void
|
|
423 vars_of_regex (void)
|
|
424 {
|
|
425 Vthe_lisp_rangetab = Fmake_range_table ();
|
|
426 staticpro (&Vthe_lisp_rangetab);
|
|
427 }
|
|
428
|
|
429 #else /* not MULE */
|
|
430
|
|
431 void
|
|
432 vars_of_regex (void)
|
|
433 {
|
|
434 }
|
|
435
|
|
436 #endif /* MULE */
|
|
437
|
|
438 /* Convert an offset from the start of the logical text string formed by
|
|
439 concatenating the two strings together into a character position in the
|
|
440 Lisp buffer or string that the text represents. Knows that
|
|
441 when handling buffer text, the "string" we're passed in is always
|
|
442 BEGV - ZV. */
|
|
443
|
|
444 static Charxpos
|
|
445 offset_to_charxpos (Lisp_Object lispobj, int off)
|
|
446 {
|
|
447 if (STRINGP (lispobj))
|
|
448 return string_index_byte_to_char (lispobj, off);
|
|
449 else if (BUFFERP (lispobj))
|
|
450 return bytebpos_to_charbpos (XBUFFER (lispobj),
|
|
451 off + BYTE_BUF_BEGV (XBUFFER (lispobj)));
|
|
452 else
|
|
453 return 0;
|
|
454 }
|
|
455
|
|
456 #ifdef REL_ALLOC
|
|
457
|
|
458 /* STRING1 is the value of STRING1 given to re_match_2(). LISPOBJ is
|
|
459 the Lisp object (if any) from which the string is taken. If LISPOBJ
|
|
460 is a buffer, return a relocation offset to be added to all pointers to
|
|
461 string data so that they will be accurate again, after an allocation or
|
|
462 reallocation that potentially relocated the buffer data.
|
|
463 */
|
|
464 static Bytecount
|
|
465 offset_post_relocation (Lisp_Object lispobj, Ibyte *orig_buftext)
|
|
466 {
|
|
467 if (!BUFFERP (lispobj))
|
|
468 return 0;
|
|
469 return (BYTE_BUF_BYTE_ADDRESS (XBUFFER (lispobj),
|
|
470 BYTE_BUF_BEGV (XBUFFER (lispobj))) -
|
|
471 orig_buftext);
|
|
472 }
|
|
473
|
|
474 #endif /* REL_ALLOC */
|
|
475
|
|
476 #ifdef ERROR_CHECK_MALLOC
|
|
477
|
|
478 /* NOTE that this can run malloc() so you need to adjust afterwards. */
|
|
479
|
|
480 static int
|
|
481 bind_regex_malloc_disallowed (int value)
|
|
482 {
|
|
483 /* Tricky, because the act of binding can run malloc(). */
|
|
484 int old_regex_malloc_disallowed = regex_malloc_disallowed;
|
|
485 int depth;
|
|
486 regex_malloc_disallowed = 0;
|
|
487 depth = record_unwind_protect_restoring_int (®ex_malloc_disallowed,
|
|
488 old_regex_malloc_disallowed);
|
|
489 regex_malloc_disallowed = value;
|
|
490 return depth;
|
|
491 }
|
|
492
|
|
493 #endif /* ERROR_CHECK_MALLOC */
|
|
494
|
|
495 #endif /* emacs */
|
|
496
|
|
497
|
428
|
498 /* These are the command codes that appear in compiled regular
|
|
499 expressions. Some opcodes are followed by argument bytes. A
|
|
500 command code can specify any interpretation whatsoever for its
|
|
501 arguments. Zero bytes may appear in the compiled regular expression. */
|
|
502
|
|
503 typedef enum
|
|
504 {
|
|
505 no_op = 0,
|
|
506
|
|
507 /* Succeed right away--no more backtracking. */
|
|
508 succeed,
|
|
509
|
|
510 /* Followed by one byte giving n, then by n literal bytes. */
|
|
511 exactn,
|
|
512
|
|
513 /* Matches any (more or less) character. */
|
|
514 anychar,
|
|
515
|
|
516 /* Matches any one char belonging to specified set. First
|
|
517 following byte is number of bitmap bytes. Then come bytes
|
|
518 for a bitmap saying which chars are in. Bits in each byte
|
|
519 are ordered low-bit-first. A character is in the set if its
|
|
520 bit is 1. A character too large to have a bit in the map is
|
|
521 automatically not in the set. */
|
|
522 charset,
|
|
523
|
|
524 /* Same parameters as charset, but match any character that is
|
|
525 not one of those specified. */
|
|
526 charset_not,
|
|
527
|
|
528 /* Start remembering the text that is matched, for storing in a
|
|
529 register. Followed by one byte with the register number, in
|
502
|
530 the range 1 to the pattern buffer's re_ngroups
|
428
|
531 field. Then followed by one byte with the number of groups
|
|
532 inner to this one. (This last has to be part of the
|
|
533 start_memory only because we need it in the on_failure_jump
|
|
534 of re_match_2.) */
|
|
535 start_memory,
|
|
536
|
|
537 /* Stop remembering the text that is matched and store it in a
|
|
538 memory register. Followed by one byte with the register
|
502
|
539 number, in the range 1 to `re_ngroups' in the
|
428
|
540 pattern buffer, and one byte with the number of inner groups,
|
|
541 just like `start_memory'. (We need the number of inner
|
|
542 groups here because we don't have any easy way of finding the
|
|
543 corresponding start_memory when we're at a stop_memory.) */
|
|
544 stop_memory,
|
|
545
|
|
546 /* Match a duplicate of something remembered. Followed by one
|
|
547 byte containing the register number. */
|
|
548 duplicate,
|
|
549
|
|
550 /* Fail unless at beginning of line. */
|
|
551 begline,
|
|
552
|
|
553 /* Fail unless at end of line. */
|
|
554 endline,
|
|
555
|
|
556 /* Succeeds if at beginning of buffer (if emacs) or at beginning
|
|
557 of string to be matched (if not). */
|
|
558 begbuf,
|
|
559
|
|
560 /* Analogously, for end of buffer/string. */
|
|
561 endbuf,
|
|
562
|
|
563 /* Followed by two byte relative address to which to jump. */
|
|
564 jump,
|
|
565
|
|
566 /* Same as jump, but marks the end of an alternative. */
|
|
567 jump_past_alt,
|
|
568
|
|
569 /* Followed by two-byte relative address of place to resume at
|
|
570 in case of failure. */
|
|
571 on_failure_jump,
|
|
572
|
|
573 /* Like on_failure_jump, but pushes a placeholder instead of the
|
|
574 current string position when executed. */
|
|
575 on_failure_keep_string_jump,
|
|
576
|
|
577 /* Throw away latest failure point and then jump to following
|
|
578 two-byte relative address. */
|
|
579 pop_failure_jump,
|
|
580
|
|
581 /* Change to pop_failure_jump if know won't have to backtrack to
|
|
582 match; otherwise change to jump. This is used to jump
|
|
583 back to the beginning of a repeat. If what follows this jump
|
|
584 clearly won't match what the repeat does, such that we can be
|
|
585 sure that there is no use backtracking out of repetitions
|
|
586 already matched, then we change it to a pop_failure_jump.
|
|
587 Followed by two-byte address. */
|
|
588 maybe_pop_jump,
|
|
589
|
|
590 /* Jump to following two-byte address, and push a dummy failure
|
|
591 point. This failure point will be thrown away if an attempt
|
|
592 is made to use it for a failure. A `+' construct makes this
|
|
593 before the first repeat. Also used as an intermediary kind
|
|
594 of jump when compiling an alternative. */
|
|
595 dummy_failure_jump,
|
|
596
|
|
597 /* Push a dummy failure point and continue. Used at the end of
|
|
598 alternatives. */
|
|
599 push_dummy_failure,
|
|
600
|
|
601 /* Followed by two-byte relative address and two-byte number n.
|
|
602 After matching N times, jump to the address upon failure. */
|
|
603 succeed_n,
|
|
604
|
|
605 /* Followed by two-byte relative address, and two-byte number n.
|
|
606 Jump to the address N times, then fail. */
|
|
607 jump_n,
|
|
608
|
|
609 /* Set the following two-byte relative address to the
|
|
610 subsequent two-byte number. The address *includes* the two
|
|
611 bytes of number. */
|
|
612 set_number_at,
|
|
613
|
|
614 wordchar, /* Matches any word-constituent character. */
|
|
615 notwordchar, /* Matches any char that is not a word-constituent. */
|
|
616
|
|
617 wordbeg, /* Succeeds if at word beginning. */
|
|
618 wordend, /* Succeeds if at word end. */
|
|
619
|
|
620 wordbound, /* Succeeds if at a word boundary. */
|
|
621 notwordbound /* Succeeds if not at a word boundary. */
|
|
622
|
|
623 #ifdef emacs
|
|
624 ,before_dot, /* Succeeds if before point. */
|
|
625 at_dot, /* Succeeds if at point. */
|
|
626 after_dot, /* Succeeds if after point. */
|
|
627
|
|
628 /* Matches any character whose syntax is specified. Followed by
|
|
629 a byte which contains a syntax code, e.g., Sword. */
|
|
630 syntaxspec,
|
|
631
|
|
632 /* Matches any character whose syntax is not that specified. */
|
|
633 notsyntaxspec
|
|
634
|
|
635 #endif /* emacs */
|
|
636
|
|
637 #ifdef MULE
|
|
638 /* need extra stuff to be able to properly work with XEmacs/Mule
|
|
639 characters (which may take up more than one byte) */
|
|
640
|
|
641 ,charset_mule, /* Matches any character belonging to specified set.
|
|
642 The set is stored in "unified range-table
|
|
643 format"; see rangetab.c. Unlike the `charset'
|
|
644 opcode, this can handle arbitrary characters. */
|
|
645
|
|
646 charset_mule_not /* Same parameters as charset_mule, but match any
|
|
647 character that is not one of those specified. */
|
|
648
|
|
649 /* 97/2/17 jhod: The following two were merged back in from the Mule
|
|
650 2.3 code to enable some language specific processing */
|
|
651 ,categoryspec, /* Matches entries in the character category tables */
|
|
652 notcategoryspec /* The opposite of the above */
|
|
653 #endif /* MULE */
|
|
654
|
|
655 } re_opcode_t;
|
|
656
|
|
657 /* Common operations on the compiled pattern. */
|
|
658
|
|
659 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
|
|
660
|
|
661 #define STORE_NUMBER(destination, number) \
|
|
662 do { \
|
|
663 (destination)[0] = (number) & 0377; \
|
|
664 (destination)[1] = (number) >> 8; \
|
|
665 } while (0)
|
|
666
|
|
667 /* Same as STORE_NUMBER, except increment DESTINATION to
|
|
668 the byte after where the number is stored. Therefore, DESTINATION
|
|
669 must be an lvalue. */
|
|
670
|
|
671 #define STORE_NUMBER_AND_INCR(destination, number) \
|
|
672 do { \
|
|
673 STORE_NUMBER (destination, number); \
|
|
674 (destination) += 2; \
|
|
675 } while (0)
|
|
676
|
|
677 /* Put into DESTINATION a number stored in two contiguous bytes starting
|
|
678 at SOURCE. */
|
|
679
|
|
680 #define EXTRACT_NUMBER(destination, source) \
|
|
681 do { \
|
|
682 (destination) = *(source) & 0377; \
|
|
683 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
|
|
684 } while (0)
|
|
685
|
|
686 #ifdef DEBUG
|
|
687 static void
|
446
|
688 extract_number (int *dest, re_char *source)
|
428
|
689 {
|
|
690 int temp = SIGN_EXTEND_CHAR (*(source + 1));
|
|
691 *dest = *source & 0377;
|
|
692 *dest += temp << 8;
|
|
693 }
|
|
694
|
|
695 #ifndef EXTRACT_MACROS /* To debug the macros. */
|
|
696 #undef EXTRACT_NUMBER
|
|
697 #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
|
|
698 #endif /* not EXTRACT_MACROS */
|
|
699
|
|
700 #endif /* DEBUG */
|
|
701
|
|
702 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
|
|
703 SOURCE must be an lvalue. */
|
|
704
|
|
705 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
|
|
706 do { \
|
|
707 EXTRACT_NUMBER (destination, source); \
|
|
708 (source) += 2; \
|
|
709 } while (0)
|
|
710
|
|
711 #ifdef DEBUG
|
|
712 static void
|
|
713 extract_number_and_incr (int *destination, unsigned char **source)
|
|
714 {
|
|
715 extract_number (destination, *source);
|
|
716 *source += 2;
|
|
717 }
|
|
718
|
|
719 #ifndef EXTRACT_MACROS
|
|
720 #undef EXTRACT_NUMBER_AND_INCR
|
|
721 #define EXTRACT_NUMBER_AND_INCR(dest, src) \
|
|
722 extract_number_and_incr (&dest, &src)
|
|
723 #endif /* not EXTRACT_MACROS */
|
|
724
|
|
725 #endif /* DEBUG */
|
|
726
|
|
727 /* If DEBUG is defined, Regex prints many voluminous messages about what
|
|
728 it is doing (if the variable `debug' is nonzero). If linked with the
|
|
729 main program in `iregex.c', you can enter patterns and strings
|
|
730 interactively. And if linked with the main program in `main.c' and
|
|
731 the other test files, you can run the already-written tests. */
|
|
732
|
|
733 #if defined (DEBUG)
|
|
734
|
|
735 /* We use standard I/O for debugging. */
|
|
736 #include <stdio.h>
|
|
737
|
|
738 #ifndef emacs
|
|
739 /* XEmacs provides its own version of assert() */
|
|
740 /* It is useful to test things that ``must'' be true when debugging. */
|
|
741 #include <assert.h>
|
|
742 #endif
|
|
743
|
|
744 static int debug = 0;
|
|
745
|
|
746 #define DEBUG_STATEMENT(e) e
|
|
747 #define DEBUG_PRINT1(x) if (debug) printf (x)
|
|
748 #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
|
|
749 #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
|
|
750 #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
|
|
751 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
|
|
752 if (debug) print_partial_compiled_pattern (s, e)
|
|
753 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
|
|
754 if (debug) print_double_string (w, s1, sz1, s2, sz2)
|
|
755
|
|
756
|
|
757 /* Print the fastmap in human-readable form. */
|
|
758
|
|
759 static void
|
|
760 print_fastmap (char *fastmap)
|
|
761 {
|
647
|
762 int was_a_range = 0;
|
|
763 int i = 0;
|
428
|
764
|
|
765 while (i < (1 << BYTEWIDTH))
|
|
766 {
|
|
767 if (fastmap[i++])
|
|
768 {
|
|
769 was_a_range = 0;
|
|
770 putchar (i - 1);
|
|
771 while (i < (1 << BYTEWIDTH) && fastmap[i])
|
|
772 {
|
|
773 was_a_range = 1;
|
|
774 i++;
|
|
775 }
|
|
776 if (was_a_range)
|
|
777 {
|
|
778 putchar ('-');
|
|
779 putchar (i - 1);
|
|
780 }
|
|
781 }
|
|
782 }
|
|
783 putchar ('\n');
|
|
784 }
|
|
785
|
|
786
|
|
787 /* Print a compiled pattern string in human-readable form, starting at
|
|
788 the START pointer into it and ending just before the pointer END. */
|
|
789
|
|
790 static void
|
446
|
791 print_partial_compiled_pattern (re_char *start, re_char *end)
|
428
|
792 {
|
|
793 int mcnt, mcnt2;
|
446
|
794 unsigned char *p = (unsigned char *) start;
|
|
795 re_char *pend = end;
|
428
|
796
|
|
797 if (start == NULL)
|
|
798 {
|
|
799 puts ("(null)");
|
|
800 return;
|
|
801 }
|
|
802
|
|
803 /* Loop over pattern commands. */
|
|
804 while (p < pend)
|
|
805 {
|
|
806 printf ("%ld:\t", (long)(p - start));
|
|
807
|
|
808 switch ((re_opcode_t) *p++)
|
|
809 {
|
|
810 case no_op:
|
|
811 printf ("/no_op");
|
|
812 break;
|
|
813
|
|
814 case exactn:
|
|
815 mcnt = *p++;
|
|
816 printf ("/exactn/%d", mcnt);
|
|
817 do
|
|
818 {
|
|
819 putchar ('/');
|
|
820 putchar (*p++);
|
|
821 }
|
|
822 while (--mcnt);
|
|
823 break;
|
|
824
|
|
825 case start_memory:
|
|
826 mcnt = *p++;
|
|
827 printf ("/start_memory/%d/%d", mcnt, *p++);
|
|
828 break;
|
|
829
|
|
830 case stop_memory:
|
|
831 mcnt = *p++;
|
|
832 printf ("/stop_memory/%d/%d", mcnt, *p++);
|
|
833 break;
|
|
834
|
|
835 case duplicate:
|
|
836 printf ("/duplicate/%d", *p++);
|
|
837 break;
|
|
838
|
|
839 case anychar:
|
|
840 printf ("/anychar");
|
|
841 break;
|
|
842
|
|
843 case charset:
|
|
844 case charset_not:
|
|
845 {
|
|
846 REGISTER int c, last = -100;
|
|
847 REGISTER int in_range = 0;
|
|
848
|
|
849 printf ("/charset [%s",
|
|
850 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
|
|
851
|
|
852 assert (p + *p < pend);
|
|
853
|
|
854 for (c = 0; c < 256; c++)
|
|
855 if (((unsigned char) (c / 8) < *p)
|
|
856 && (p[1 + (c/8)] & (1 << (c % 8))))
|
|
857 {
|
|
858 /* Are we starting a range? */
|
|
859 if (last + 1 == c && ! in_range)
|
|
860 {
|
|
861 putchar ('-');
|
|
862 in_range = 1;
|
|
863 }
|
|
864 /* Have we broken a range? */
|
|
865 else if (last + 1 != c && in_range)
|
|
866 {
|
|
867 putchar (last);
|
|
868 in_range = 0;
|
|
869 }
|
|
870
|
|
871 if (! in_range)
|
|
872 putchar (c);
|
|
873
|
|
874 last = c;
|
|
875 }
|
|
876
|
|
877 if (in_range)
|
|
878 putchar (last);
|
|
879
|
|
880 putchar (']');
|
|
881
|
|
882 p += 1 + *p;
|
|
883 }
|
|
884 break;
|
|
885
|
|
886 #ifdef MULE
|
|
887 case charset_mule:
|
|
888 case charset_mule_not:
|
|
889 {
|
|
890 int nentries, i;
|
|
891
|
|
892 printf ("/charset_mule [%s",
|
|
893 (re_opcode_t) *(p - 1) == charset_mule_not ? "^" : "");
|
|
894 nentries = unified_range_table_nentries (p);
|
|
895 for (i = 0; i < nentries; i++)
|
|
896 {
|
|
897 EMACS_INT first, last;
|
|
898 Lisp_Object dummy_val;
|
|
899
|
|
900 unified_range_table_get_range (p, i, &first, &last,
|
|
901 &dummy_val);
|
|
902 if (first < 0x100)
|
|
903 putchar (first);
|
|
904 else
|
|
905 printf ("(0x%lx)", (long)first);
|
|
906 if (first != last)
|
|
907 {
|
|
908 putchar ('-');
|
|
909 if (last < 0x100)
|
|
910 putchar (last);
|
|
911 else
|
|
912 printf ("(0x%lx)", (long)last);
|
|
913 }
|
|
914 }
|
|
915 putchar (']');
|
|
916 p += unified_range_table_bytes_used (p);
|
|
917 }
|
|
918 break;
|
|
919 #endif
|
|
920
|
|
921 case begline:
|
|
922 printf ("/begline");
|
|
923 break;
|
|
924
|
|
925 case endline:
|
|
926 printf ("/endline");
|
|
927 break;
|
|
928
|
|
929 case on_failure_jump:
|
|
930 extract_number_and_incr (&mcnt, &p);
|
|
931 printf ("/on_failure_jump to %ld", (long)(p + mcnt - start));
|
|
932 break;
|
|
933
|
|
934 case on_failure_keep_string_jump:
|
|
935 extract_number_and_incr (&mcnt, &p);
|
|
936 printf ("/on_failure_keep_string_jump to %ld", (long)(p + mcnt - start));
|
|
937 break;
|
|
938
|
|
939 case dummy_failure_jump:
|
|
940 extract_number_and_incr (&mcnt, &p);
|
|
941 printf ("/dummy_failure_jump to %ld", (long)(p + mcnt - start));
|
|
942 break;
|
|
943
|
|
944 case push_dummy_failure:
|
|
945 printf ("/push_dummy_failure");
|
|
946 break;
|
|
947
|
|
948 case maybe_pop_jump:
|
|
949 extract_number_and_incr (&mcnt, &p);
|
|
950 printf ("/maybe_pop_jump to %ld", (long)(p + mcnt - start));
|
|
951 break;
|
|
952
|
|
953 case pop_failure_jump:
|
|
954 extract_number_and_incr (&mcnt, &p);
|
|
955 printf ("/pop_failure_jump to %ld", (long)(p + mcnt - start));
|
|
956 break;
|
|
957
|
|
958 case jump_past_alt:
|
|
959 extract_number_and_incr (&mcnt, &p);
|
|
960 printf ("/jump_past_alt to %ld", (long)(p + mcnt - start));
|
|
961 break;
|
|
962
|
|
963 case jump:
|
|
964 extract_number_and_incr (&mcnt, &p);
|
|
965 printf ("/jump to %ld", (long)(p + mcnt - start));
|
|
966 break;
|
|
967
|
|
968 case succeed_n:
|
|
969 extract_number_and_incr (&mcnt, &p);
|
|
970 extract_number_and_incr (&mcnt2, &p);
|
|
971 printf ("/succeed_n to %ld, %d times", (long)(p + mcnt - start), mcnt2);
|
|
972 break;
|
|
973
|
|
974 case jump_n:
|
|
975 extract_number_and_incr (&mcnt, &p);
|
|
976 extract_number_and_incr (&mcnt2, &p);
|
|
977 printf ("/jump_n to %ld, %d times", (long)(p + mcnt - start), mcnt2);
|
|
978 break;
|
|
979
|
|
980 case set_number_at:
|
|
981 extract_number_and_incr (&mcnt, &p);
|
|
982 extract_number_and_incr (&mcnt2, &p);
|
|
983 printf ("/set_number_at location %ld to %d", (long)(p + mcnt - start), mcnt2);
|
|
984 break;
|
|
985
|
|
986 case wordbound:
|
|
987 printf ("/wordbound");
|
|
988 break;
|
|
989
|
|
990 case notwordbound:
|
|
991 printf ("/notwordbound");
|
|
992 break;
|
|
993
|
|
994 case wordbeg:
|
|
995 printf ("/wordbeg");
|
|
996 break;
|
|
997
|
|
998 case wordend:
|
|
999 printf ("/wordend");
|
|
1000
|
|
1001 #ifdef emacs
|
|
1002 case before_dot:
|
|
1003 printf ("/before_dot");
|
|
1004 break;
|
|
1005
|
|
1006 case at_dot:
|
|
1007 printf ("/at_dot");
|
|
1008 break;
|
|
1009
|
|
1010 case after_dot:
|
|
1011 printf ("/after_dot");
|
|
1012 break;
|
|
1013
|
|
1014 case syntaxspec:
|
|
1015 printf ("/syntaxspec");
|
|
1016 mcnt = *p++;
|
|
1017 printf ("/%d", mcnt);
|
|
1018 break;
|
|
1019
|
|
1020 case notsyntaxspec:
|
|
1021 printf ("/notsyntaxspec");
|
|
1022 mcnt = *p++;
|
|
1023 printf ("/%d", mcnt);
|
|
1024 break;
|
|
1025
|
|
1026 #ifdef MULE
|
|
1027 /* 97/2/17 jhod Mule category patch */
|
|
1028 case categoryspec:
|
|
1029 printf ("/categoryspec");
|
|
1030 mcnt = *p++;
|
|
1031 printf ("/%d", mcnt);
|
|
1032 break;
|
|
1033
|
|
1034 case notcategoryspec:
|
|
1035 printf ("/notcategoryspec");
|
|
1036 mcnt = *p++;
|
|
1037 printf ("/%d", mcnt);
|
|
1038 break;
|
|
1039 /* end of category patch */
|
|
1040 #endif /* MULE */
|
|
1041 #endif /* emacs */
|
|
1042
|
|
1043 case wordchar:
|
|
1044 printf ("/wordchar");
|
|
1045 break;
|
|
1046
|
|
1047 case notwordchar:
|
|
1048 printf ("/notwordchar");
|
|
1049 break;
|
|
1050
|
|
1051 case begbuf:
|
|
1052 printf ("/begbuf");
|
|
1053 break;
|
|
1054
|
|
1055 case endbuf:
|
|
1056 printf ("/endbuf");
|
|
1057 break;
|
|
1058
|
|
1059 default:
|
|
1060 printf ("?%d", *(p-1));
|
|
1061 }
|
|
1062
|
|
1063 putchar ('\n');
|
|
1064 }
|
|
1065
|
|
1066 printf ("%ld:\tend of pattern.\n", (long)(p - start));
|
|
1067 }
|
|
1068
|
|
1069
|
|
1070 static void
|
|
1071 print_compiled_pattern (struct re_pattern_buffer *bufp)
|
|
1072 {
|
446
|
1073 re_char *buffer = bufp->buffer;
|
428
|
1074
|
|
1075 print_partial_compiled_pattern (buffer, buffer + bufp->used);
|
|
1076 printf ("%ld bytes used/%ld bytes allocated.\n", bufp->used,
|
|
1077 bufp->allocated);
|
|
1078
|
|
1079 if (bufp->fastmap_accurate && bufp->fastmap)
|
|
1080 {
|
|
1081 printf ("fastmap: ");
|
|
1082 print_fastmap (bufp->fastmap);
|
|
1083 }
|
|
1084
|
|
1085 printf ("re_nsub: %ld\t", (long)bufp->re_nsub);
|
502
|
1086 printf ("re_ngroups: %ld\t", (long)bufp->re_ngroups);
|
428
|
1087 printf ("regs_alloc: %d\t", bufp->regs_allocated);
|
|
1088 printf ("can_be_null: %d\t", bufp->can_be_null);
|
|
1089 printf ("newline_anchor: %d\n", bufp->newline_anchor);
|
|
1090 printf ("no_sub: %d\t", bufp->no_sub);
|
|
1091 printf ("not_bol: %d\t", bufp->not_bol);
|
|
1092 printf ("not_eol: %d\t", bufp->not_eol);
|
|
1093 printf ("syntax: %d\n", bufp->syntax);
|
|
1094 /* Perhaps we should print the translate table? */
|
|
1095 /* and maybe the category table? */
|
502
|
1096
|
|
1097 if (bufp->external_to_internal_register)
|
|
1098 {
|
|
1099 int i;
|
|
1100
|
|
1101 printf ("external_to_internal_register:\n");
|
|
1102 for (i = 0; i <= bufp->re_nsub; i++)
|
|
1103 {
|
|
1104 if (i > 0)
|
|
1105 printf (", ");
|
|
1106 printf ("%d -> %d", i, bufp->external_to_internal_register[i]);
|
|
1107 }
|
|
1108 printf ("\n");
|
|
1109 }
|
428
|
1110 }
|
|
1111
|
|
1112
|
|
1113 static void
|
446
|
1114 print_double_string (re_char *where, re_char *string1, int size1,
|
|
1115 re_char *string2, int size2)
|
428
|
1116 {
|
|
1117 if (where == NULL)
|
|
1118 printf ("(null)");
|
|
1119 else
|
|
1120 {
|
647
|
1121 int this_char;
|
428
|
1122
|
|
1123 if (FIRST_STRING_P (where))
|
|
1124 {
|
|
1125 for (this_char = where - string1; this_char < size1; this_char++)
|
|
1126 putchar (string1[this_char]);
|
|
1127
|
|
1128 where = string2;
|
|
1129 }
|
|
1130
|
|
1131 for (this_char = where - string2; this_char < size2; this_char++)
|
|
1132 putchar (string2[this_char]);
|
|
1133 }
|
|
1134 }
|
|
1135
|
|
1136 #else /* not DEBUG */
|
|
1137
|
771
|
1138 #ifndef emacs
|
428
|
1139 #undef assert
|
771
|
1140 #define assert(e) ((void) (1))
|
|
1141 #endif
|
428
|
1142
|
|
1143 #define DEBUG_STATEMENT(e)
|
|
1144 #define DEBUG_PRINT1(x)
|
|
1145 #define DEBUG_PRINT2(x1, x2)
|
|
1146 #define DEBUG_PRINT3(x1, x2, x3)
|
|
1147 #define DEBUG_PRINT4(x1, x2, x3, x4)
|
|
1148 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
|
|
1149 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
|
|
1150
|
446
|
1151 #endif /* DEBUG */
|
428
|
1152
|
|
1153 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
|
|
1154 also be assigned to arbitrarily: each pattern buffer stores its own
|
|
1155 syntax, so it can be changed between regex compilations. */
|
|
1156 /* This has no initializer because initialized variables in Emacs
|
|
1157 become read-only after dumping. */
|
|
1158 reg_syntax_t re_syntax_options;
|
|
1159
|
|
1160
|
|
1161 /* Specify the precise syntax of regexps for compilation. This provides
|
|
1162 for compatibility for various utilities which historically have
|
|
1163 different, incompatible syntaxes.
|
|
1164
|
|
1165 The argument SYNTAX is a bit mask comprised of the various bits
|
|
1166 defined in regex.h. We return the old syntax. */
|
|
1167
|
|
1168 reg_syntax_t
|
|
1169 re_set_syntax (reg_syntax_t syntax)
|
|
1170 {
|
|
1171 reg_syntax_t ret = re_syntax_options;
|
|
1172
|
|
1173 re_syntax_options = syntax;
|
|
1174 return ret;
|
|
1175 }
|
|
1176
|
|
1177 /* This table gives an error message for each of the error codes listed
|
|
1178 in regex.h. Obviously the order here has to be same as there.
|
|
1179 POSIX doesn't require that we do anything for REG_NOERROR,
|
|
1180 but why not be nice? */
|
|
1181
|
442
|
1182 static const char *re_error_msgid[] =
|
428
|
1183 {
|
|
1184 "Success", /* REG_NOERROR */
|
|
1185 "No match", /* REG_NOMATCH */
|
|
1186 "Invalid regular expression", /* REG_BADPAT */
|
|
1187 "Invalid collation character", /* REG_ECOLLATE */
|
|
1188 "Invalid character class name", /* REG_ECTYPE */
|
|
1189 "Trailing backslash", /* REG_EESCAPE */
|
|
1190 "Invalid back reference", /* REG_ESUBREG */
|
|
1191 "Unmatched [ or [^", /* REG_EBRACK */
|
|
1192 "Unmatched ( or \\(", /* REG_EPAREN */
|
|
1193 "Unmatched \\{", /* REG_EBRACE */
|
|
1194 "Invalid content of \\{\\}", /* REG_BADBR */
|
|
1195 "Invalid range end", /* REG_ERANGE */
|
|
1196 "Memory exhausted", /* REG_ESPACE */
|
|
1197 "Invalid preceding regular expression", /* REG_BADRPT */
|
|
1198 "Premature end of regular expression", /* REG_EEND */
|
|
1199 "Regular expression too big", /* REG_ESIZE */
|
|
1200 "Unmatched ) or \\)", /* REG_ERPAREN */
|
|
1201 #ifdef emacs
|
|
1202 "Invalid syntax designator", /* REG_ESYNTAX */
|
|
1203 #endif
|
|
1204 #ifdef MULE
|
|
1205 "Ranges may not span charsets", /* REG_ERANGESPAN */
|
|
1206 "Invalid category designator", /* REG_ECATEGORY */
|
|
1207 #endif
|
|
1208 };
|
|
1209
|
|
1210 /* Avoiding alloca during matching, to placate r_alloc. */
|
|
1211
|
1333
|
1212 /* About these various flags:
|
|
1213
|
|
1214 MATCH_MAY_ALLOCATE indicates that it's OK to do allocation in the
|
|
1215 searching and matching functions. In this case, we use local variables
|
|
1216 to hold the values allocated. If not, we use *global* variables, which
|
|
1217 are pre-allocated. NOTE: XEmacs ***MUST*** run with MATCH_MAY_ALLOCATE,
|
|
1218 because the regexp routines may get called reentrantly as a result of
|
|
1219 QUIT processing (e.g. under Windows: re_match -> QUIT -> quit_p -> drain
|
|
1220 events -> process WM_INITMENU -> call filter -> re_match; see stack
|
|
1221 trace in signal.c), so we cannot have any global variables (unless we do
|
|
1222 lots of trickiness including some unwind-protects, which isn't worth it
|
|
1223 at this point).
|
|
1224
|
|
1225 REL_ALLOC means that the relocating allocator is in use, for buffers
|
|
1226 and such. REGEX_REL_ALLOC means that we use rel-alloc to manage the
|
|
1227 fail stack, which may grow quite large. REGEX_MALLOC means we use
|
|
1228 malloc() in place of alloca() to allocate the fail stack -- only
|
|
1229 applicable if REGEX_REL_ALLOC is not defined.
|
|
1230 */
|
|
1231
|
428
|
1232 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
|
|
1233 searching and matching functions should not call alloca. On some
|
|
1234 systems, alloca is implemented in terms of malloc, and if we're
|
|
1235 using the relocating allocator routines, then malloc could cause a
|
|
1236 relocation, which might (if the strings being searched are in the
|
|
1237 ralloc heap) shift the data out from underneath the regexp
|
771
|
1238 routines. [To clarify: The purpose of rel-alloc is to allow data to
|
|
1239 be moved in memory from one place to another so that all data
|
|
1240 blocks can be consolidated together and excess memory released back
|
|
1241 to the operating system. This requires that all the blocks that
|
|
1242 are managed by rel-alloc go at the very end of the program's heap,
|
|
1243 after all regularly malloc()ed data. malloc(), however, is used to
|
|
1244 owning the end of the heap, so that when more memory is needed, it
|
|
1245 just expands the heap using sbrk(). This is reconciled by using a
|
|
1246 malloc() (such as malloc.c, gmalloc.c, or recent versions of
|
|
1247 malloc() in libc) where the sbrk() call can be replaced with a
|
|
1248 user-specified call -- in this case, to rel-alloc's r_alloc_sbrk()
|
|
1249 routine. This routine calls the real sbrk(), but then shifts all
|
|
1250 the rel-alloc-managed blocks forward to the end of the heap again,
|
|
1251 so that malloc() gets the memory it needs in the location it needs
|
|
1252 it at. The regex routines may well have pointers to buffer data as
|
|
1253 their arguments, and buffers are managed by rel-alloc if rel-alloc
|
|
1254 has been enabled, so calling malloc() may potentially screw things
|
|
1255 up badly if it runs out of space and asks for more from the OS.]
|
|
1256
|
|
1257 [[Here's another reason to avoid allocation: Emacs processes input
|
|
1258 from X in a signal handler; processing X input may call malloc; if
|
|
1259 input arrives while a matching routine is calling malloc, then
|
|
1260 we're scrod. But Emacs can't just block input while calling
|
|
1261 matching routines; then we don't notice interrupts when they come
|
|
1262 in. So, Emacs blocks input around all regexp calls except the
|
|
1263 matching calls, which it leaves unprotected, in the faith that they
|
1333
|
1264 will not malloc.]] This previous paragraph is irrelevant under XEmacs,
|
|
1265 as we *do not* do anything so stupid as process input from within a
|
|
1266 signal handler.
|
|
1267
|
|
1268 However, the regexp routines may get called reentrantly as a result of
|
|
1269 QUIT processing (e.g. under Windows: re_match -> QUIT -> quit_p -> drain
|
|
1270 events -> process WM_INITMENU -> call filter -> re_match; see stack
|
|
1271 trace in signal.c), so we cannot have any global variables (unless we do
|
|
1272 lots of trickiness including some unwind-protects, which isn't worth it
|
|
1273 at this point). Hence we MUST have MATCH_MAY_ALLOCATE defined.
|
|
1274
|
|
1275 Also, the first paragraph does not make complete sense to me -- what
|
|
1276 about the use of rel-alloc to handle the fail stacks? Shouldn't these
|
|
1277 reallocations potentially cause buffer data to be relocated as well? I
|
826
|
1278 must be missing something, though -- perhaps the writer above is
|
|
1279 assuming that the failure stack(s) will always be allocated after the
|
|
1280 buffer data, and thus reallocating them with rel-alloc won't move buffer
|
1333
|
1281 data. (In fact, a cursory glance at the code in ralloc.c seems to
|
|
1282 confirm this.) --ben */
|
428
|
1283
|
|
1284 /* Normally, this is fine. */
|
|
1285 #define MATCH_MAY_ALLOCATE
|
|
1286
|
|
1287 /* When using GNU C, we are not REALLY using the C alloca, no matter
|
|
1288 what config.h may say. So don't take precautions for it. */
|
|
1289 #ifdef __GNUC__
|
|
1290 #undef C_ALLOCA
|
|
1291 #endif
|
|
1292
|
|
1293 /* The match routines may not allocate if (1) they would do it with malloc
|
|
1294 and (2) it's not safe for them to use malloc.
|
|
1295 Note that if REL_ALLOC is defined, matching would not use malloc for the
|
|
1296 failure stack, but we would still use it for the register vectors;
|
|
1297 so REL_ALLOC should not affect this. */
|
771
|
1298
|
1333
|
1299 /* XEmacs can handle REL_ALLOC and malloc() OK */
|
|
1300 #if !defined (emacs) && (defined (C_ALLOCA) || defined (REGEX_MALLOC)) && defined (REL_ALLOC)
|
428
|
1301 #undef MATCH_MAY_ALLOCATE
|
|
1302 #endif
|
|
1303
|
1333
|
1304 #if !defined (MATCH_MAY_ALLOCATE) && defined (emacs)
|
771
|
1305 #error regex must be handle reentrancy; MATCH_MAY_ALLOCATE must be defined
|
|
1306 #endif
|
|
1307
|
428
|
1308
|
|
1309 /* Failure stack declarations and macros; both re_compile_fastmap and
|
|
1310 re_match_2 use a failure stack. These have to be macros because of
|
|
1311 REGEX_ALLOCATE_STACK. */
|
|
1312
|
|
1313
|
|
1314 /* Number of failure points for which to initially allocate space
|
|
1315 when matching. If this number is exceeded, we allocate more
|
|
1316 space, so it is not a hard limit. */
|
|
1317 #ifndef INIT_FAILURE_ALLOC
|
|
1318 #define INIT_FAILURE_ALLOC 5
|
|
1319 #endif
|
|
1320
|
|
1321 /* Roughly the maximum number of failure points on the stack. Would be
|
|
1322 exactly that if always used MAX_FAILURE_SPACE each time we failed.
|
|
1323 This is a variable only so users of regex can assign to it; we never
|
|
1324 change it ourselves. */
|
|
1325 #if defined (MATCH_MAY_ALLOCATE)
|
|
1326 /* 4400 was enough to cause a crash on Alpha OSF/1,
|
|
1327 whose default stack limit is 2mb. */
|
|
1328 int re_max_failures = 20000;
|
|
1329 #else
|
|
1330 int re_max_failures = 2000;
|
|
1331 #endif
|
|
1332
|
|
1333 union fail_stack_elt
|
|
1334 {
|
446
|
1335 re_char *pointer;
|
428
|
1336 int integer;
|
|
1337 };
|
|
1338
|
|
1339 typedef union fail_stack_elt fail_stack_elt_t;
|
|
1340
|
|
1341 typedef struct
|
|
1342 {
|
|
1343 fail_stack_elt_t *stack;
|
665
|
1344 Elemcount size;
|
|
1345 Elemcount avail; /* Offset of next open position. */
|
428
|
1346 } fail_stack_type;
|
|
1347
|
|
1348 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
|
|
1349 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
|
|
1350 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
|
|
1351
|
|
1352
|
|
1353 /* Define macros to initialize and free the failure stack.
|
|
1354 Do `return -2' if the alloc fails. */
|
|
1355
|
|
1356 #ifdef MATCH_MAY_ALLOCATE
|
1333
|
1357 #define INIT_FAIL_STACK() \
|
|
1358 do { \
|
|
1359 fail_stack.stack = (fail_stack_elt_t *) \
|
|
1360 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * \
|
|
1361 sizeof (fail_stack_elt_t)); \
|
|
1362 \
|
|
1363 if (fail_stack.stack == NULL) \
|
|
1364 { \
|
|
1365 UNBIND_REGEX_MALLOC_CHECK (); \
|
|
1366 return -2; \
|
|
1367 } \
|
|
1368 \
|
|
1369 fail_stack.size = INIT_FAILURE_ALLOC; \
|
|
1370 fail_stack.avail = 0; \
|
428
|
1371 } while (0)
|
|
1372
|
|
1373 #define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
|
|
1374 #else
|
|
1375 #define INIT_FAIL_STACK() \
|
|
1376 do { \
|
|
1377 fail_stack.avail = 0; \
|
|
1378 } while (0)
|
|
1379
|
|
1380 #define RESET_FAIL_STACK()
|
|
1381 #endif
|
|
1382
|
|
1383
|
|
1384 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
|
|
1385
|
|
1386 Return 1 if succeeds, and 0 if either ran out of memory
|
|
1387 allocating space for it or it was already too large.
|
|
1388
|
|
1389 REGEX_REALLOCATE_STACK requires `destination' be declared. */
|
|
1390
|
|
1391 #define DOUBLE_FAIL_STACK(fail_stack) \
|
|
1392 ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \
|
|
1393 ? 0 \
|
|
1394 : ((fail_stack).stack = (fail_stack_elt_t *) \
|
|
1395 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
|
|
1396 (fail_stack).size * sizeof (fail_stack_elt_t), \
|
|
1397 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
|
|
1398 \
|
|
1399 (fail_stack).stack == NULL \
|
|
1400 ? 0 \
|
|
1401 : ((fail_stack).size <<= 1, \
|
|
1402 1)))
|
|
1403
|
1333
|
1404 #if !defined (emacs) || !defined (REL_ALLOC)
|
|
1405 #define RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS()
|
|
1406 #else
|
|
1407 /* Don't change NULL pointers */
|
|
1408 #define ADD_IF_NZ(val) if (val) val += rmdp_offset
|
1346
|
1409 #define RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS() \
|
|
1410 do \
|
|
1411 { \
|
|
1412 Bytecount rmdp_offset = offset_post_relocation (lispobj, orig_buftext); \
|
|
1413 \
|
|
1414 if (rmdp_offset) \
|
|
1415 { \
|
|
1416 int i; \
|
|
1417 \
|
|
1418 ADD_IF_NZ (string1); \
|
|
1419 ADD_IF_NZ (string2); \
|
|
1420 ADD_IF_NZ (d); \
|
|
1421 ADD_IF_NZ (dend); \
|
|
1422 ADD_IF_NZ (end1); \
|
|
1423 ADD_IF_NZ (end2); \
|
|
1424 ADD_IF_NZ (end_match_1); \
|
|
1425 ADD_IF_NZ (end_match_2); \
|
|
1426 \
|
|
1427 if (bufp->re_ngroups) \
|
|
1428 { \
|
|
1429 for (i = 0; i < num_regs; i++) \
|
|
1430 { \
|
|
1431 ADD_IF_NZ (regstart[i]); \
|
|
1432 ADD_IF_NZ (regend[i]); \
|
|
1433 ADD_IF_NZ (old_regstart[i]); \
|
|
1434 ADD_IF_NZ (old_regend[i]); \
|
|
1435 ADD_IF_NZ (best_regstart[i]); \
|
|
1436 ADD_IF_NZ (best_regend[i]); \
|
|
1437 ADD_IF_NZ (reg_dummy[i]); \
|
|
1438 } \
|
|
1439 } \
|
|
1440 \
|
|
1441 ADD_IF_NZ (match_end); \
|
|
1442 } \
|
1333
|
1443 } while (0)
|
|
1444 #endif /* !defined (emacs) || !defined (REL_ALLOC) */
|
|
1445
|
|
1446 #if !defined (emacs) || !defined (REL_ALLOC)
|
|
1447 #define RE_SEARCH_RELOCATE_MOVEABLE_DATA_POINTERS()
|
|
1448 #else
|
1346
|
1449 #define RE_SEARCH_RELOCATE_MOVEABLE_DATA_POINTERS() \
|
|
1450 do \
|
|
1451 { \
|
|
1452 Bytecount rmdp_offset = offset_post_relocation (lispobj, orig_buftext); \
|
|
1453 \
|
|
1454 if (rmdp_offset) \
|
|
1455 { \
|
|
1456 ADD_IF_NZ (str1); \
|
|
1457 ADD_IF_NZ (str2); \
|
|
1458 ADD_IF_NZ (string1); \
|
|
1459 ADD_IF_NZ (string2); \
|
|
1460 ADD_IF_NZ (d); \
|
|
1461 } \
|
1333
|
1462 } while (0)
|
|
1463
|
|
1464 #endif /* emacs */
|
428
|
1465
|
|
1466 /* Push pointer POINTER on FAIL_STACK.
|
|
1467 Return 1 if was able to do so and 0 if ran out of memory allocating
|
|
1468 space to do so. */
|
|
1469 #define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
|
|
1470 ((FAIL_STACK_FULL () \
|
|
1471 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
|
|
1472 ? 0 \
|
|
1473 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
|
|
1474 1))
|
|
1475
|
|
1476 /* Push a pointer value onto the failure stack.
|
|
1477 Assumes the variable `fail_stack'. Probably should only
|
|
1478 be called from within `PUSH_FAILURE_POINT'. */
|
|
1479 #define PUSH_FAILURE_POINTER(item) \
|
|
1480 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
|
|
1481
|
|
1482 /* This pushes an integer-valued item onto the failure stack.
|
|
1483 Assumes the variable `fail_stack'. Probably should only
|
|
1484 be called from within `PUSH_FAILURE_POINT'. */
|
|
1485 #define PUSH_FAILURE_INT(item) \
|
|
1486 fail_stack.stack[fail_stack.avail++].integer = (item)
|
|
1487
|
|
1488 /* Push a fail_stack_elt_t value onto the failure stack.
|
|
1489 Assumes the variable `fail_stack'. Probably should only
|
|
1490 be called from within `PUSH_FAILURE_POINT'. */
|
|
1491 #define PUSH_FAILURE_ELT(item) \
|
|
1492 fail_stack.stack[fail_stack.avail++] = (item)
|
|
1493
|
|
1494 /* These three POP... operations complement the three PUSH... operations.
|
|
1495 All assume that `fail_stack' is nonempty. */
|
|
1496 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
|
|
1497 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
|
|
1498 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
|
|
1499
|
|
1500 /* Used to omit pushing failure point id's when we're not debugging. */
|
|
1501 #ifdef DEBUG
|
|
1502 #define DEBUG_PUSH PUSH_FAILURE_INT
|
|
1503 #define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
|
|
1504 #else
|
|
1505 #define DEBUG_PUSH(item)
|
|
1506 #define DEBUG_POP(item_addr)
|
|
1507 #endif
|
|
1508
|
|
1509
|
|
1510 /* Push the information about the state we will need
|
|
1511 if we ever fail back to it.
|
|
1512
|
|
1513 Requires variables fail_stack, regstart, regend, reg_info, and
|
|
1514 num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be
|
|
1515 declared.
|
|
1516
|
|
1517 Does `return FAILURE_CODE' if runs out of memory. */
|
|
1518
|
771
|
1519 #if !defined (REGEX_MALLOC) && !defined (REGEX_REL_ALLOC)
|
456
|
1520 #define DECLARE_DESTINATION char *destination
|
428
|
1521 #else
|
456
|
1522 #define DECLARE_DESTINATION DECLARE_NOTHING
|
428
|
1523 #endif
|
|
1524
|
|
1525 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
|
456
|
1526 do { \
|
|
1527 DECLARE_DESTINATION; \
|
|
1528 /* Must be int, so when we don't save any registers, the arithmetic \
|
|
1529 of 0 + -1 isn't done as unsigned. */ \
|
|
1530 int this_reg; \
|
428
|
1531 \
|
456
|
1532 DEBUG_STATEMENT (failure_id++); \
|
|
1533 DEBUG_STATEMENT (nfailure_points_pushed++); \
|
647
|
1534 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%d:\n", failure_id); \
|
|
1535 DEBUG_PRINT2 (" Before push, next avail: %ld\n", \
|
|
1536 (long) (fail_stack).avail); \
|
|
1537 DEBUG_PRINT2 (" size: %ld\n", \
|
|
1538 (long) (fail_stack).size); \
|
456
|
1539 \
|
|
1540 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
|
|
1541 DEBUG_PRINT2 (" available: %ld\n", \
|
|
1542 (long) REMAINING_AVAIL_SLOTS); \
|
428
|
1543 \
|
456
|
1544 /* Ensure we have enough space allocated for what we will push. */ \
|
|
1545 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
|
|
1546 { \
|
1333
|
1547 BEGIN_REGEX_MALLOC_OK (); \
|
456
|
1548 if (!DOUBLE_FAIL_STACK (fail_stack)) \
|
1333
|
1549 { \
|
|
1550 END_REGEX_MALLOC_OK (); \
|
|
1551 UNBIND_REGEX_MALLOC_CHECK (); \
|
|
1552 return failure_code; \
|
|
1553 } \
|
|
1554 END_REGEX_MALLOC_OK (); \
|
647
|
1555 DEBUG_PRINT2 ("\n Doubled stack; size now: %ld\n", \
|
|
1556 (long) (fail_stack).size); \
|
456
|
1557 DEBUG_PRINT2 (" slots available: %ld\n", \
|
|
1558 (long) REMAINING_AVAIL_SLOTS); \
|
1333
|
1559 \
|
|
1560 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS (); \
|
456
|
1561 } \
|
428
|
1562 \
|
456
|
1563 /* Push the info, starting with the registers. */ \
|
|
1564 DEBUG_PRINT1 ("\n"); \
|
428
|
1565 \
|
456
|
1566 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
|
|
1567 this_reg++) \
|
|
1568 { \
|
|
1569 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
|
|
1570 DEBUG_STATEMENT (num_regs_pushed++); \
|
428
|
1571 \
|
456
|
1572 DEBUG_PRINT2 (" start: 0x%lx\n", (long) regstart[this_reg]); \
|
|
1573 PUSH_FAILURE_POINTER (regstart[this_reg]); \
|
|
1574 \
|
|
1575 DEBUG_PRINT2 (" end: 0x%lx\n", (long) regend[this_reg]); \
|
|
1576 PUSH_FAILURE_POINTER (regend[this_reg]); \
|
428
|
1577 \
|
456
|
1578 DEBUG_PRINT2 (" info: 0x%lx\n ", \
|
|
1579 * (long *) (®_info[this_reg])); \
|
|
1580 DEBUG_PRINT2 (" match_null=%d", \
|
|
1581 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
|
|
1582 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
|
|
1583 DEBUG_PRINT2 (" matched_something=%d", \
|
|
1584 MATCHED_SOMETHING (reg_info[this_reg])); \
|
|
1585 DEBUG_PRINT2 (" ever_matched_something=%d", \
|
|
1586 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
|
|
1587 DEBUG_PRINT1 ("\n"); \
|
|
1588 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
|
|
1589 } \
|
428
|
1590 \
|
456
|
1591 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg); \
|
|
1592 PUSH_FAILURE_INT (lowest_active_reg); \
|
428
|
1593 \
|
456
|
1594 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg); \
|
|
1595 PUSH_FAILURE_INT (highest_active_reg); \
|
428
|
1596 \
|
456
|
1597 DEBUG_PRINT2 (" Pushing pattern 0x%lx: \n", (long) pattern_place); \
|
|
1598 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
|
|
1599 PUSH_FAILURE_POINTER (pattern_place); \
|
428
|
1600 \
|
456
|
1601 DEBUG_PRINT2 (" Pushing string 0x%lx: `", (long) string_place); \
|
|
1602 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
|
|
1603 size2); \
|
|
1604 DEBUG_PRINT1 ("'\n"); \
|
|
1605 PUSH_FAILURE_POINTER (string_place); \
|
428
|
1606 \
|
456
|
1607 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
|
|
1608 DEBUG_PUSH (failure_id); \
|
|
1609 } while (0)
|
428
|
1610
|
|
1611 /* This is the number of items that are pushed and popped on the stack
|
|
1612 for each register. */
|
|
1613 #define NUM_REG_ITEMS 3
|
|
1614
|
|
1615 /* Individual items aside from the registers. */
|
|
1616 #ifdef DEBUG
|
|
1617 #define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
|
|
1618 #else
|
|
1619 #define NUM_NONREG_ITEMS 4
|
|
1620 #endif
|
|
1621
|
|
1622 /* We push at most this many items on the stack. */
|
|
1623 /* We used to use (num_regs - 1), which is the number of registers
|
|
1624 this regexp will save; but that was changed to 5
|
|
1625 to avoid stack overflow for a regexp with lots of parens. */
|
|
1626 #define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
|
|
1627
|
|
1628 /* We actually push this many items. */
|
|
1629 #define NUM_FAILURE_ITEMS \
|
|
1630 ((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS \
|
|
1631 + NUM_NONREG_ITEMS)
|
|
1632
|
|
1633 /* How many items can still be added to the stack without overflowing it. */
|
|
1634 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
|
|
1635
|
|
1636
|
|
1637 /* Pops what PUSH_FAIL_STACK pushes.
|
|
1638
|
|
1639 We restore into the parameters, all of which should be lvalues:
|
|
1640 STR -- the saved data position.
|
|
1641 PAT -- the saved pattern position.
|
|
1642 LOW_REG, HIGH_REG -- the highest and lowest active registers.
|
|
1643 REGSTART, REGEND -- arrays of string positions.
|
|
1644 REG_INFO -- array of information about each subexpression.
|
|
1645
|
|
1646 Also assumes the variables `fail_stack' and (if debugging), `bufp',
|
|
1647 `pend', `string1', `size1', `string2', and `size2'. */
|
|
1648
|
456
|
1649 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, \
|
|
1650 regstart, regend, reg_info) \
|
|
1651 do { \
|
428
|
1652 DEBUG_STATEMENT (fail_stack_elt_t ffailure_id;) \
|
|
1653 int this_reg; \
|
442
|
1654 const unsigned char *string_temp; \
|
428
|
1655 \
|
|
1656 assert (!FAIL_STACK_EMPTY ()); \
|
|
1657 \
|
|
1658 /* Remove failure points and point to how many regs pushed. */ \
|
|
1659 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
|
647
|
1660 DEBUG_PRINT2 (" Before pop, next avail: %ld\n", \
|
|
1661 (long) fail_stack.avail); \
|
|
1662 DEBUG_PRINT2 (" size: %ld\n", \
|
|
1663 (long) fail_stack.size); \
|
428
|
1664 \
|
|
1665 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
|
|
1666 \
|
|
1667 DEBUG_POP (&ffailure_id.integer); \
|
647
|
1668 DEBUG_PRINT2 (" Popping failure id: %d\n", \
|
|
1669 * (int *) &ffailure_id); \
|
428
|
1670 \
|
|
1671 /* If the saved string location is NULL, it came from an \
|
|
1672 on_failure_keep_string_jump opcode, and we want to throw away the \
|
|
1673 saved NULL, thus retaining our current position in the string. */ \
|
|
1674 string_temp = POP_FAILURE_POINTER (); \
|
|
1675 if (string_temp != NULL) \
|
446
|
1676 str = string_temp; \
|
428
|
1677 \
|
|
1678 DEBUG_PRINT2 (" Popping string 0x%lx: `", (long) str); \
|
|
1679 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
|
|
1680 DEBUG_PRINT1 ("'\n"); \
|
|
1681 \
|
|
1682 pat = (unsigned char *) POP_FAILURE_POINTER (); \
|
|
1683 DEBUG_PRINT2 (" Popping pattern 0x%lx: ", (long) pat); \
|
|
1684 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
|
|
1685 \
|
|
1686 /* Restore register info. */ \
|
647
|
1687 high_reg = POP_FAILURE_INT (); \
|
428
|
1688 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
|
|
1689 \
|
647
|
1690 low_reg = POP_FAILURE_INT (); \
|
428
|
1691 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
|
|
1692 \
|
|
1693 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
|
|
1694 { \
|
|
1695 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
|
|
1696 \
|
|
1697 reg_info[this_reg].word = POP_FAILURE_ELT (); \
|
|
1698 DEBUG_PRINT2 (" info: 0x%lx\n", \
|
|
1699 * (long *) ®_info[this_reg]); \
|
|
1700 \
|
446
|
1701 regend[this_reg] = POP_FAILURE_POINTER (); \
|
428
|
1702 DEBUG_PRINT2 (" end: 0x%lx\n", (long) regend[this_reg]); \
|
|
1703 \
|
446
|
1704 regstart[this_reg] = POP_FAILURE_POINTER (); \
|
428
|
1705 DEBUG_PRINT2 (" start: 0x%lx\n", (long) regstart[this_reg]); \
|
|
1706 } \
|
|
1707 \
|
|
1708 set_regs_matched_done = 0; \
|
|
1709 DEBUG_STATEMENT (nfailure_points_popped++); \
|
456
|
1710 } while (0) /* POP_FAILURE_POINT */
|
428
|
1711
|
|
1712
|
|
1713
|
|
1714 /* Structure for per-register (a.k.a. per-group) information.
|
|
1715 Other register information, such as the
|
|
1716 starting and ending positions (which are addresses), and the list of
|
|
1717 inner groups (which is a bits list) are maintained in separate
|
|
1718 variables.
|
|
1719
|
|
1720 We are making a (strictly speaking) nonportable assumption here: that
|
|
1721 the compiler will pack our bit fields into something that fits into
|
|
1722 the type of `word', i.e., is something that fits into one item on the
|
|
1723 failure stack. */
|
|
1724
|
|
1725 typedef union
|
|
1726 {
|
|
1727 fail_stack_elt_t word;
|
|
1728 struct
|
|
1729 {
|
|
1730 /* This field is one if this group can match the empty string,
|
|
1731 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
|
|
1732 #define MATCH_NULL_UNSET_VALUE 3
|
647
|
1733 unsigned int match_null_string_p : 2;
|
|
1734 unsigned int is_active : 1;
|
|
1735 unsigned int matched_something : 1;
|
|
1736 unsigned int ever_matched_something : 1;
|
428
|
1737 } bits;
|
|
1738 } register_info_type;
|
|
1739
|
|
1740 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
|
|
1741 #define IS_ACTIVE(R) ((R).bits.is_active)
|
|
1742 #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
|
|
1743 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
|
|
1744
|
|
1745
|
|
1746 /* Call this when have matched a real character; it sets `matched' flags
|
|
1747 for the subexpressions which we are currently inside. Also records
|
|
1748 that those subexprs have matched. */
|
|
1749 #define SET_REGS_MATCHED() \
|
|
1750 do \
|
|
1751 { \
|
|
1752 if (!set_regs_matched_done) \
|
|
1753 { \
|
647
|
1754 int r; \
|
428
|
1755 set_regs_matched_done = 1; \
|
|
1756 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
|
|
1757 { \
|
|
1758 MATCHED_SOMETHING (reg_info[r]) \
|
|
1759 = EVER_MATCHED_SOMETHING (reg_info[r]) \
|
|
1760 = 1; \
|
|
1761 } \
|
|
1762 } \
|
|
1763 } \
|
|
1764 while (0)
|
|
1765
|
|
1766 /* Registers are set to a sentinel when they haven't yet matched. */
|
446
|
1767 static unsigned char reg_unset_dummy;
|
428
|
1768 #define REG_UNSET_VALUE (®_unset_dummy)
|
|
1769 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
|
|
1770
|
|
1771 /* Subroutine declarations and macros for regex_compile. */
|
|
1772
|
|
1773 /* Fetch the next character in the uncompiled pattern---translating it
|
826
|
1774 if necessary. */
|
428
|
1775 #define PATFETCH(c) \
|
446
|
1776 do { \
|
|
1777 PATFETCH_RAW (c); \
|
826
|
1778 c = RE_TRANSLATE (c); \
|
428
|
1779 } while (0)
|
|
1780
|
|
1781 /* Fetch the next character in the uncompiled pattern, with no
|
|
1782 translation. */
|
|
1783 #define PATFETCH_RAW(c) \
|
|
1784 do {if (p == pend) return REG_EEND; \
|
|
1785 assert (p < pend); \
|
867
|
1786 c = itext_ichar (p); \
|
|
1787 INC_IBYTEPTR (p); \
|
428
|
1788 } while (0)
|
|
1789
|
|
1790 /* Go backwards one character in the pattern. */
|
867
|
1791 #define PATUNFETCH DEC_IBYTEPTR (p)
|
428
|
1792
|
|
1793 /* If `translate' is non-null, return translate[D], else just D. We
|
|
1794 cast the subscript to translate because some data is declared as
|
|
1795 `char *', to avoid warnings when a string constant is passed. But
|
|
1796 when we use a character as a subscript we must make it unsigned. */
|
826
|
1797 #define RE_TRANSLATE(d) \
|
|
1798 (TRANSLATE_P (translate) ? RE_TRANSLATE_1 (d) : (d))
|
428
|
1799
|
|
1800 /* Macros for outputting the compiled pattern into `buffer'. */
|
|
1801
|
|
1802 /* If the buffer isn't allocated when it comes in, use this. */
|
|
1803 #define INIT_BUF_SIZE 32
|
|
1804
|
|
1805 /* Make sure we have at least N more bytes of space in buffer. */
|
|
1806 #define GET_BUFFER_SPACE(n) \
|
647
|
1807 while (buf_end - bufp->buffer + (n) > (ptrdiff_t) bufp->allocated) \
|
428
|
1808 EXTEND_BUFFER ()
|
|
1809
|
|
1810 /* Make sure we have one more byte of buffer space and then add C to it. */
|
|
1811 #define BUF_PUSH(c) \
|
|
1812 do { \
|
|
1813 GET_BUFFER_SPACE (1); \
|
446
|
1814 *buf_end++ = (unsigned char) (c); \
|
428
|
1815 } while (0)
|
|
1816
|
|
1817
|
|
1818 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
|
|
1819 #define BUF_PUSH_2(c1, c2) \
|
|
1820 do { \
|
|
1821 GET_BUFFER_SPACE (2); \
|
446
|
1822 *buf_end++ = (unsigned char) (c1); \
|
|
1823 *buf_end++ = (unsigned char) (c2); \
|
428
|
1824 } while (0)
|
|
1825
|
|
1826
|
|
1827 /* As with BUF_PUSH_2, except for three bytes. */
|
|
1828 #define BUF_PUSH_3(c1, c2, c3) \
|
|
1829 do { \
|
|
1830 GET_BUFFER_SPACE (3); \
|
446
|
1831 *buf_end++ = (unsigned char) (c1); \
|
|
1832 *buf_end++ = (unsigned char) (c2); \
|
|
1833 *buf_end++ = (unsigned char) (c3); \
|
428
|
1834 } while (0)
|
|
1835
|
|
1836
|
|
1837 /* Store a jump with opcode OP at LOC to location TO. We store a
|
|
1838 relative address offset by the three bytes the jump itself occupies. */
|
|
1839 #define STORE_JUMP(op, loc, to) \
|
|
1840 store_op1 (op, loc, (to) - (loc) - 3)
|
|
1841
|
|
1842 /* Likewise, for a two-argument jump. */
|
|
1843 #define STORE_JUMP2(op, loc, to, arg) \
|
|
1844 store_op2 (op, loc, (to) - (loc) - 3, arg)
|
|
1845
|
446
|
1846 /* Like `STORE_JUMP', but for inserting. Assume `buf_end' is the
|
|
1847 buffer end. */
|
428
|
1848 #define INSERT_JUMP(op, loc, to) \
|
446
|
1849 insert_op1 (op, loc, (to) - (loc) - 3, buf_end)
|
|
1850
|
|
1851 /* Like `STORE_JUMP2', but for inserting. Assume `buf_end' is the
|
|
1852 buffer end. */
|
428
|
1853 #define INSERT_JUMP2(op, loc, to, arg) \
|
446
|
1854 insert_op2 (op, loc, (to) - (loc) - 3, arg, buf_end)
|
428
|
1855
|
|
1856
|
|
1857 /* This is not an arbitrary limit: the arguments which represent offsets
|
|
1858 into the pattern are two bytes long. So if 2^16 bytes turns out to
|
|
1859 be too small, many things would have to change. */
|
|
1860 #define MAX_BUF_SIZE (1L << 16)
|
|
1861
|
|
1862
|
|
1863 /* Extend the buffer by twice its current size via realloc and
|
|
1864 reset the pointers that pointed into the old block to point to the
|
|
1865 correct places in the new one. If extending the buffer results in it
|
|
1866 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
|
1333
|
1867 #define EXTEND_BUFFER() \
|
|
1868 do { \
|
|
1869 re_char *old_buffer = bufp->buffer; \
|
|
1870 if (bufp->allocated == MAX_BUF_SIZE) \
|
|
1871 return REG_ESIZE; \
|
|
1872 bufp->allocated <<= 1; \
|
|
1873 if (bufp->allocated > MAX_BUF_SIZE) \
|
|
1874 bufp->allocated = MAX_BUF_SIZE; \
|
|
1875 bufp->buffer = \
|
|
1876 (unsigned char *) xrealloc (bufp->buffer, bufp->allocated); \
|
|
1877 if (bufp->buffer == NULL) \
|
|
1878 return REG_ESPACE; \
|
|
1879 /* If the buffer moved, move all the pointers into it. */ \
|
|
1880 if (old_buffer != bufp->buffer) \
|
|
1881 { \
|
|
1882 buf_end = (buf_end - old_buffer) + bufp->buffer; \
|
|
1883 begalt = (begalt - old_buffer) + bufp->buffer; \
|
|
1884 if (fixup_alt_jump) \
|
|
1885 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer; \
|
|
1886 if (laststart) \
|
|
1887 laststart = (laststart - old_buffer) + bufp->buffer; \
|
|
1888 if (pending_exact) \
|
|
1889 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
|
|
1890 } \
|
428
|
1891 } while (0)
|
|
1892
|
|
1893
|
|
1894 /* Since we have one byte reserved for the register number argument to
|
|
1895 {start,stop}_memory, the maximum number of groups we can report
|
|
1896 things about is what fits in that byte. */
|
|
1897 #define MAX_REGNUM 255
|
|
1898
|
|
1899 /* But patterns can have more than `MAX_REGNUM' registers. We just
|
502
|
1900 ignore the excess.
|
|
1901 #### not true! groups past this will fail in lots of ways, if we
|
|
1902 ever have to backtrack.
|
|
1903 */
|
647
|
1904 typedef int regnum_t;
|
428
|
1905
|
502
|
1906 #define INIT_REG_TRANSLATE_SIZE 5
|
428
|
1907
|
|
1908 /* Macros for the compile stack. */
|
|
1909
|
|
1910 /* Since offsets can go either forwards or backwards, this type needs to
|
|
1911 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
|
|
1912 typedef int pattern_offset_t;
|
|
1913
|
|
1914 typedef struct
|
|
1915 {
|
|
1916 pattern_offset_t begalt_offset;
|
|
1917 pattern_offset_t fixup_alt_jump;
|
|
1918 pattern_offset_t inner_group_offset;
|
|
1919 pattern_offset_t laststart_offset;
|
|
1920 regnum_t regnum;
|
|
1921 } compile_stack_elt_t;
|
|
1922
|
|
1923
|
|
1924 typedef struct
|
|
1925 {
|
|
1926 compile_stack_elt_t *stack;
|
647
|
1927 int size;
|
|
1928 int avail; /* Offset of next open position. */
|
428
|
1929 } compile_stack_type;
|
|
1930
|
|
1931
|
|
1932 #define INIT_COMPILE_STACK_SIZE 32
|
|
1933
|
|
1934 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
|
|
1935 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
|
|
1936
|
|
1937 /* The next available element. */
|
|
1938 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
|
|
1939
|
|
1940
|
|
1941 /* Set the bit for character C in a bit vector. */
|
|
1942 #define SET_LIST_BIT(c) \
|
446
|
1943 (buf_end[((unsigned char) (c)) / BYTEWIDTH] \
|
428
|
1944 |= 1 << (((unsigned char) c) % BYTEWIDTH))
|
|
1945
|
|
1946 #ifdef MULE
|
|
1947
|
|
1948 /* Set the "bit" for character C in a range table. */
|
|
1949 #define SET_RANGETAB_BIT(c) put_range_table (rtab, c, c, Qt)
|
|
1950
|
|
1951 /* Set the "bit" for character c in the appropriate table. */
|
|
1952 #define SET_EITHER_BIT(c) \
|
|
1953 do { \
|
|
1954 if (has_extended_chars) \
|
|
1955 SET_RANGETAB_BIT (c); \
|
|
1956 else \
|
|
1957 SET_LIST_BIT (c); \
|
|
1958 } while (0)
|
|
1959
|
|
1960 #else /* not MULE */
|
|
1961
|
|
1962 #define SET_EITHER_BIT(c) SET_LIST_BIT (c)
|
|
1963
|
|
1964 #endif
|
|
1965
|
|
1966
|
|
1967 /* Get the next unsigned number in the uncompiled pattern. */
|
|
1968 #define GET_UNSIGNED_NUMBER(num) \
|
|
1969 { if (p != pend) \
|
|
1970 { \
|
|
1971 PATFETCH (c); \
|
|
1972 while (ISDIGIT (c)) \
|
|
1973 { \
|
|
1974 if (num < 0) \
|
|
1975 num = 0; \
|
|
1976 num = num * 10 + c - '0'; \
|
|
1977 if (p == pend) \
|
|
1978 break; \
|
|
1979 PATFETCH (c); \
|
|
1980 } \
|
|
1981 } \
|
|
1982 }
|
|
1983
|
|
1984 #define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
|
|
1985
|
|
1986 #define IS_CHAR_CLASS(string) \
|
|
1987 (STREQ (string, "alpha") || STREQ (string, "upper") \
|
|
1988 || STREQ (string, "lower") || STREQ (string, "digit") \
|
|
1989 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
|
|
1990 || STREQ (string, "space") || STREQ (string, "print") \
|
|
1991 || STREQ (string, "punct") || STREQ (string, "graph") \
|
|
1992 || STREQ (string, "cntrl") || STREQ (string, "blank"))
|
|
1993
|
|
1994 static void store_op1 (re_opcode_t op, unsigned char *loc, int arg);
|
|
1995 static void store_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2);
|
|
1996 static void insert_op1 (re_opcode_t op, unsigned char *loc, int arg,
|
|
1997 unsigned char *end);
|
|
1998 static void insert_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2,
|
|
1999 unsigned char *end);
|
460
|
2000 static re_bool at_begline_loc_p (re_char *pattern, re_char *p,
|
428
|
2001 reg_syntax_t syntax);
|
460
|
2002 static re_bool at_endline_loc_p (re_char *p, re_char *pend, int syntax);
|
|
2003 static re_bool group_in_compile_stack (compile_stack_type compile_stack,
|
428
|
2004 regnum_t regnum);
|
446
|
2005 static reg_errcode_t compile_range (re_char **p_ptr, re_char *pend,
|
|
2006 RE_TRANSLATE_TYPE translate,
|
|
2007 reg_syntax_t syntax,
|
428
|
2008 unsigned char *b);
|
|
2009 #ifdef MULE
|
446
|
2010 static reg_errcode_t compile_extended_range (re_char **p_ptr,
|
|
2011 re_char *pend,
|
|
2012 RE_TRANSLATE_TYPE translate,
|
428
|
2013 reg_syntax_t syntax,
|
|
2014 Lisp_Object rtab);
|
|
2015 #endif /* MULE */
|
460
|
2016 static re_bool group_match_null_string_p (unsigned char **p,
|
428
|
2017 unsigned char *end,
|
|
2018 register_info_type *reg_info);
|
460
|
2019 static re_bool alt_match_null_string_p (unsigned char *p, unsigned char *end,
|
428
|
2020 register_info_type *reg_info);
|
460
|
2021 static re_bool common_op_match_null_string_p (unsigned char **p,
|
428
|
2022 unsigned char *end,
|
|
2023 register_info_type *reg_info);
|
826
|
2024 static int bcmp_translate (re_char *s1, re_char *s2,
|
|
2025 REGISTER int len, RE_TRANSLATE_TYPE translate
|
|
2026 #ifdef emacs
|
|
2027 , Internal_Format fmt, Lisp_Object lispobj
|
|
2028 #endif
|
|
2029 );
|
428
|
2030 static int re_match_2_internal (struct re_pattern_buffer *bufp,
|
446
|
2031 re_char *string1, int size1,
|
|
2032 re_char *string2, int size2, int pos,
|
826
|
2033 struct re_registers *regs, int stop
|
|
2034 RE_LISP_CONTEXT_ARGS_DECL);
|
428
|
2035
|
|
2036 #ifndef MATCH_MAY_ALLOCATE
|
|
2037
|
|
2038 /* If we cannot allocate large objects within re_match_2_internal,
|
|
2039 we make the fail stack and register vectors global.
|
|
2040 The fail stack, we grow to the maximum size when a regexp
|
|
2041 is compiled.
|
|
2042 The register vectors, we adjust in size each time we
|
|
2043 compile a regexp, according to the number of registers it needs. */
|
|
2044
|
|
2045 static fail_stack_type fail_stack;
|
|
2046
|
|
2047 /* Size with which the following vectors are currently allocated.
|
|
2048 That is so we can make them bigger as needed,
|
|
2049 but never make them smaller. */
|
|
2050 static int regs_allocated_size;
|
|
2051
|
446
|
2052 static re_char ** regstart, ** regend;
|
|
2053 static re_char ** old_regstart, ** old_regend;
|
|
2054 static re_char **best_regstart, **best_regend;
|
428
|
2055 static register_info_type *reg_info;
|
446
|
2056 static re_char **reg_dummy;
|
428
|
2057 static register_info_type *reg_info_dummy;
|
|
2058
|
|
2059 /* Make the register vectors big enough for NUM_REGS registers,
|
|
2060 but don't make them smaller. */
|
|
2061
|
|
2062 static
|
|
2063 regex_grow_registers (int num_regs)
|
|
2064 {
|
|
2065 if (num_regs > regs_allocated_size)
|
|
2066 {
|
551
|
2067 RETALLOC (regstart, num_regs, re_char *);
|
|
2068 RETALLOC (regend, num_regs, re_char *);
|
|
2069 RETALLOC (old_regstart, num_regs, re_char *);
|
|
2070 RETALLOC (old_regend, num_regs, re_char *);
|
|
2071 RETALLOC (best_regstart, num_regs, re_char *);
|
|
2072 RETALLOC (best_regend, num_regs, re_char *);
|
|
2073 RETALLOC (reg_info, num_regs, register_info_type);
|
|
2074 RETALLOC (reg_dummy, num_regs, re_char *);
|
|
2075 RETALLOC (reg_info_dummy, num_regs, register_info_type);
|
428
|
2076
|
|
2077 regs_allocated_size = num_regs;
|
|
2078 }
|
|
2079 }
|
|
2080
|
|
2081 #endif /* not MATCH_MAY_ALLOCATE */
|
|
2082
|
|
2083 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
|
|
2084 Returns one of error codes defined in `regex.h', or zero for success.
|
|
2085
|
|
2086 Assumes the `allocated' (and perhaps `buffer') and `translate'
|
|
2087 fields are set in BUFP on entry.
|
|
2088
|
|
2089 If it succeeds, results are put in BUFP (if it returns an error, the
|
|
2090 contents of BUFP are undefined):
|
|
2091 `buffer' is the compiled pattern;
|
|
2092 `syntax' is set to SYNTAX;
|
|
2093 `used' is set to the length of the compiled pattern;
|
|
2094 `fastmap_accurate' is zero;
|
502
|
2095 `re_ngroups' is the number of groups/subexpressions (including shy
|
|
2096 groups) in PATTERN;
|
|
2097 `re_nsub' is the number of non-shy groups in PATTERN;
|
428
|
2098 `not_bol' and `not_eol' are zero;
|
|
2099
|
|
2100 The `fastmap' and `newline_anchor' fields are neither
|
|
2101 examined nor set. */
|
|
2102
|
|
2103 /* Return, freeing storage we allocated. */
|
|
2104 #define FREE_STACK_RETURN(value) \
|
1333
|
2105 do \
|
|
2106 { \
|
|
2107 xfree (compile_stack.stack); \
|
|
2108 return value; \
|
|
2109 } while (0)
|
428
|
2110
|
|
2111 static reg_errcode_t
|
446
|
2112 regex_compile (re_char *pattern, int size, reg_syntax_t syntax,
|
428
|
2113 struct re_pattern_buffer *bufp)
|
|
2114 {
|
|
2115 /* We fetch characters from PATTERN here. We declare these as int
|
|
2116 (or possibly long) so that chars above 127 can be used as
|
|
2117 array indices. The macros that fetch a character from the pattern
|
|
2118 make sure to coerce to unsigned char before assigning, so we won't
|
|
2119 get bitten by negative numbers here. */
|
|
2120 /* XEmacs change: used to be unsigned char. */
|
|
2121 REGISTER EMACS_INT c, c1;
|
|
2122
|
|
2123 /* A random temporary spot in PATTERN. */
|
446
|
2124 re_char *p1;
|
428
|
2125
|
|
2126 /* Points to the end of the buffer, where we should append. */
|
446
|
2127 REGISTER unsigned char *buf_end;
|
428
|
2128
|
|
2129 /* Keeps track of unclosed groups. */
|
|
2130 compile_stack_type compile_stack;
|
|
2131
|
|
2132 /* Points to the current (ending) position in the pattern. */
|
446
|
2133 re_char *p = pattern;
|
|
2134 re_char *pend = pattern + size;
|
428
|
2135
|
|
2136 /* How to translate the characters in the pattern. */
|
446
|
2137 RE_TRANSLATE_TYPE translate = bufp->translate;
|
428
|
2138
|
|
2139 /* Address of the count-byte of the most recently inserted `exactn'
|
|
2140 command. This makes it possible to tell if a new exact-match
|
|
2141 character can be added to that command or if the character requires
|
|
2142 a new `exactn' command. */
|
|
2143 unsigned char *pending_exact = 0;
|
|
2144
|
|
2145 /* Address of start of the most recently finished expression.
|
|
2146 This tells, e.g., postfix * where to find the start of its
|
|
2147 operand. Reset at the beginning of groups and alternatives. */
|
|
2148 unsigned char *laststart = 0;
|
|
2149
|
|
2150 /* Address of beginning of regexp, or inside of last group. */
|
|
2151 unsigned char *begalt;
|
|
2152
|
|
2153 /* Place in the uncompiled pattern (i.e., the {) to
|
|
2154 which to go back if the interval is invalid. */
|
446
|
2155 re_char *beg_interval;
|
428
|
2156
|
|
2157 /* Address of the place where a forward jump should go to the end of
|
|
2158 the containing expression. Each alternative of an `or' -- except the
|
|
2159 last -- ends with a forward jump of this sort. */
|
|
2160 unsigned char *fixup_alt_jump = 0;
|
|
2161
|
|
2162 /* Counts open-groups as they are encountered. Remembered for the
|
|
2163 matching close-group on the compile stack, so the same register
|
|
2164 number is put in the stop_memory as the start_memory. */
|
|
2165 regnum_t regnum = 0;
|
|
2166
|
|
2167 #ifdef DEBUG
|
|
2168 DEBUG_PRINT1 ("\nCompiling pattern: ");
|
|
2169 if (debug)
|
|
2170 {
|
647
|
2171 int debug_count;
|
428
|
2172
|
|
2173 for (debug_count = 0; debug_count < size; debug_count++)
|
|
2174 putchar (pattern[debug_count]);
|
|
2175 putchar ('\n');
|
|
2176 }
|
|
2177 #endif /* DEBUG */
|
|
2178
|
|
2179 /* Initialize the compile stack. */
|
|
2180 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
|
|
2181 if (compile_stack.stack == NULL)
|
|
2182 return REG_ESPACE;
|
|
2183
|
|
2184 compile_stack.size = INIT_COMPILE_STACK_SIZE;
|
|
2185 compile_stack.avail = 0;
|
|
2186
|
|
2187 /* Initialize the pattern buffer. */
|
|
2188 bufp->syntax = syntax;
|
|
2189 bufp->fastmap_accurate = 0;
|
|
2190 bufp->not_bol = bufp->not_eol = 0;
|
|
2191
|
|
2192 /* Set `used' to zero, so that if we return an error, the pattern
|
|
2193 printer (for debugging) will think there's no pattern. We reset it
|
|
2194 at the end. */
|
|
2195 bufp->used = 0;
|
|
2196
|
|
2197 /* Always count groups, whether or not bufp->no_sub is set. */
|
|
2198 bufp->re_nsub = 0;
|
502
|
2199 bufp->re_ngroups = 0;
|
|
2200
|
|
2201 bufp->warned_about_incompatible_back_references = 0;
|
|
2202
|
|
2203 if (bufp->external_to_internal_register == 0)
|
|
2204 {
|
|
2205 bufp->external_to_internal_register_size = INIT_REG_TRANSLATE_SIZE;
|
|
2206 RETALLOC (bufp->external_to_internal_register,
|
|
2207 bufp->external_to_internal_register_size,
|
|
2208 int);
|
|
2209 }
|
|
2210
|
|
2211 {
|
|
2212 int i;
|
|
2213
|
|
2214 bufp->external_to_internal_register[0] = 0;
|
|
2215 for (i = 1; i < bufp->external_to_internal_register_size; i++)
|
|
2216 bufp->external_to_internal_register[i] = (int) 0xDEADBEEF;
|
|
2217 }
|
428
|
2218
|
|
2219 #if !defined (emacs) && !defined (SYNTAX_TABLE)
|
|
2220 /* Initialize the syntax table. */
|
|
2221 init_syntax_once ();
|
|
2222 #endif
|
|
2223
|
|
2224 if (bufp->allocated == 0)
|
|
2225 {
|
|
2226 if (bufp->buffer)
|
|
2227 { /* If zero allocated, but buffer is non-null, try to realloc
|
|
2228 enough space. This loses if buffer's address is bogus, but
|
|
2229 that is the user's responsibility. */
|
|
2230 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
|
|
2231 }
|
|
2232 else
|
|
2233 { /* Caller did not allocate a buffer. Do it for them. */
|
|
2234 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
|
|
2235 }
|
|
2236 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
|
|
2237
|
|
2238 bufp->allocated = INIT_BUF_SIZE;
|
|
2239 }
|
|
2240
|
446
|
2241 begalt = buf_end = bufp->buffer;
|
428
|
2242
|
|
2243 /* Loop through the uncompiled pattern until we're at the end. */
|
|
2244 while (p != pend)
|
|
2245 {
|
|
2246 PATFETCH (c);
|
|
2247
|
|
2248 switch (c)
|
|
2249 {
|
|
2250 case '^':
|
|
2251 {
|
|
2252 if ( /* If at start of pattern, it's an operator. */
|
|
2253 p == pattern + 1
|
|
2254 /* If context independent, it's an operator. */
|
|
2255 || syntax & RE_CONTEXT_INDEP_ANCHORS
|
|
2256 /* Otherwise, depends on what's come before. */
|
|
2257 || at_begline_loc_p (pattern, p, syntax))
|
|
2258 BUF_PUSH (begline);
|
|
2259 else
|
|
2260 goto normal_char;
|
|
2261 }
|
|
2262 break;
|
|
2263
|
|
2264
|
|
2265 case '$':
|
|
2266 {
|
|
2267 if ( /* If at end of pattern, it's an operator. */
|
|
2268 p == pend
|
|
2269 /* If context independent, it's an operator. */
|
|
2270 || syntax & RE_CONTEXT_INDEP_ANCHORS
|
|
2271 /* Otherwise, depends on what's next. */
|
|
2272 || at_endline_loc_p (p, pend, syntax))
|
|
2273 BUF_PUSH (endline);
|
|
2274 else
|
|
2275 goto normal_char;
|
|
2276 }
|
|
2277 break;
|
|
2278
|
|
2279
|
|
2280 case '+':
|
|
2281 case '?':
|
|
2282 if ((syntax & RE_BK_PLUS_QM)
|
|
2283 || (syntax & RE_LIMITED_OPS))
|
|
2284 goto normal_char;
|
|
2285 handle_plus:
|
|
2286 case '*':
|
|
2287 /* If there is no previous pattern... */
|
|
2288 if (!laststart)
|
|
2289 {
|
|
2290 if (syntax & RE_CONTEXT_INVALID_OPS)
|
|
2291 FREE_STACK_RETURN (REG_BADRPT);
|
|
2292 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
|
|
2293 goto normal_char;
|
|
2294 }
|
|
2295
|
|
2296 {
|
|
2297 /* true means zero/many matches are allowed. */
|
460
|
2298 re_bool zero_times_ok = c != '+';
|
|
2299 re_bool many_times_ok = c != '?';
|
428
|
2300
|
|
2301 /* true means match shortest string possible. */
|
460
|
2302 re_bool minimal = false;
|
428
|
2303
|
|
2304 /* If there is a sequence of repetition chars, collapse it
|
|
2305 down to just one (the right one). We can't combine
|
|
2306 interval operators with these because of, e.g., `a{2}*',
|
|
2307 which should only match an even number of `a's. */
|
|
2308 while (p != pend)
|
|
2309 {
|
|
2310 PATFETCH (c);
|
|
2311
|
|
2312 if (c == '*' || (!(syntax & RE_BK_PLUS_QM)
|
|
2313 && (c == '+' || c == '?')))
|
|
2314 ;
|
|
2315
|
|
2316 else if (syntax & RE_BK_PLUS_QM && c == '\\')
|
|
2317 {
|
|
2318 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
|
|
2319
|
|
2320 PATFETCH (c1);
|
|
2321 if (!(c1 == '+' || c1 == '?'))
|
|
2322 {
|
|
2323 PATUNFETCH;
|
|
2324 PATUNFETCH;
|
|
2325 break;
|
|
2326 }
|
|
2327
|
|
2328 c = c1;
|
|
2329 }
|
|
2330 else
|
|
2331 {
|
|
2332 PATUNFETCH;
|
|
2333 break;
|
|
2334 }
|
|
2335
|
|
2336 /* If we get here, we found another repeat character. */
|
|
2337 if (!(syntax & RE_NO_MINIMAL_MATCHING))
|
|
2338 {
|
440
|
2339 /* "*?" and "+?" and "??" are okay (and mean match
|
|
2340 minimally), but other sequences (such as "*??" and
|
|
2341 "+++") are rejected (reserved for future use). */
|
428
|
2342 if (minimal || c != '?')
|
|
2343 FREE_STACK_RETURN (REG_BADRPT);
|
|
2344 minimal = true;
|
|
2345 }
|
|
2346 else
|
|
2347 {
|
|
2348 zero_times_ok |= c != '+';
|
|
2349 many_times_ok |= c != '?';
|
|
2350 }
|
|
2351 }
|
|
2352
|
|
2353 /* Star, etc. applied to an empty pattern is equivalent
|
|
2354 to an empty pattern. */
|
|
2355 if (!laststart)
|
|
2356 break;
|
|
2357
|
|
2358 /* Now we know whether zero matches is allowed
|
|
2359 and whether two or more matches is allowed
|
|
2360 and whether we want minimal or maximal matching. */
|
|
2361 if (minimal)
|
|
2362 {
|
|
2363 if (!many_times_ok)
|
|
2364 {
|
|
2365 /* "a??" becomes:
|
|
2366 0: /on_failure_jump to 6
|
|
2367 3: /jump to 9
|
|
2368 6: /exactn/1/A
|
|
2369 9: end of pattern.
|
|
2370 */
|
|
2371 GET_BUFFER_SPACE (6);
|
446
|
2372 INSERT_JUMP (jump, laststart, buf_end + 3);
|
|
2373 buf_end += 3;
|
428
|
2374 INSERT_JUMP (on_failure_jump, laststart, laststart + 6);
|
446
|
2375 buf_end += 3;
|
428
|
2376 }
|
|
2377 else if (zero_times_ok)
|
|
2378 {
|
|
2379 /* "a*?" becomes:
|
|
2380 0: /jump to 6
|
|
2381 3: /exactn/1/A
|
|
2382 6: /on_failure_jump to 3
|
|
2383 9: end of pattern.
|
|
2384 */
|
|
2385 GET_BUFFER_SPACE (6);
|
446
|
2386 INSERT_JUMP (jump, laststart, buf_end + 3);
|
|
2387 buf_end += 3;
|
|
2388 STORE_JUMP (on_failure_jump, buf_end, laststart + 3);
|
|
2389 buf_end += 3;
|
428
|
2390 }
|
|
2391 else
|
|
2392 {
|
|
2393 /* "a+?" becomes:
|
|
2394 0: /exactn/1/A
|
|
2395 3: /on_failure_jump to 0
|
|
2396 6: end of pattern.
|
|
2397 */
|
|
2398 GET_BUFFER_SPACE (3);
|
446
|
2399 STORE_JUMP (on_failure_jump, buf_end, laststart);
|
|
2400 buf_end += 3;
|
428
|
2401 }
|
|
2402 }
|
|
2403 else
|
|
2404 {
|
|
2405 /* Are we optimizing this jump? */
|
460
|
2406 re_bool keep_string_p = false;
|
428
|
2407
|
|
2408 if (many_times_ok)
|
446
|
2409 { /* More than one repetition is allowed, so put in
|
|
2410 at the end a backward relative jump from
|
|
2411 `buf_end' to before the next jump we're going
|
|
2412 to put in below (which jumps from laststart to
|
|
2413 after this jump).
|
428
|
2414
|
|
2415 But if we are at the `*' in the exact sequence `.*\n',
|
|
2416 insert an unconditional jump backwards to the .,
|
|
2417 instead of the beginning of the loop. This way we only
|
|
2418 push a failure point once, instead of every time
|
|
2419 through the loop. */
|
|
2420 assert (p - 1 > pattern);
|
|
2421
|
|
2422 /* Allocate the space for the jump. */
|
|
2423 GET_BUFFER_SPACE (3);
|
|
2424
|
|
2425 /* We know we are not at the first character of the
|
|
2426 pattern, because laststart was nonzero. And we've
|
|
2427 already incremented `p', by the way, to be the
|
|
2428 character after the `*'. Do we have to do something
|
|
2429 analogous here for null bytes, because of
|
|
2430 RE_DOT_NOT_NULL? */
|
446
|
2431 if (*(p - 2) == '.'
|
428
|
2432 && zero_times_ok
|
446
|
2433 && p < pend && *p == '\n'
|
428
|
2434 && !(syntax & RE_DOT_NEWLINE))
|
|
2435 { /* We have .*\n. */
|
446
|
2436 STORE_JUMP (jump, buf_end, laststart);
|
428
|
2437 keep_string_p = true;
|
|
2438 }
|
|
2439 else
|
|
2440 /* Anything else. */
|
446
|
2441 STORE_JUMP (maybe_pop_jump, buf_end, laststart - 3);
|
428
|
2442
|
|
2443 /* We've added more stuff to the buffer. */
|
446
|
2444 buf_end += 3;
|
428
|
2445 }
|
|
2446
|
446
|
2447 /* On failure, jump from laststart to buf_end + 3,
|
|
2448 which will be the end of the buffer after this jump
|
|
2449 is inserted. */
|
428
|
2450 GET_BUFFER_SPACE (3);
|
|
2451 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
|
|
2452 : on_failure_jump,
|
446
|
2453 laststart, buf_end + 3);
|
|
2454 buf_end += 3;
|
428
|
2455
|
|
2456 if (!zero_times_ok)
|
|
2457 {
|
|
2458 /* At least one repetition is required, so insert a
|
|
2459 `dummy_failure_jump' before the initial
|
|
2460 `on_failure_jump' instruction of the loop. This
|
|
2461 effects a skip over that instruction the first time
|
|
2462 we hit that loop. */
|
|
2463 GET_BUFFER_SPACE (3);
|
|
2464 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
|
446
|
2465 buf_end += 3;
|
428
|
2466 }
|
|
2467 }
|
|
2468 pending_exact = 0;
|
|
2469 }
|
|
2470 break;
|
|
2471
|
|
2472
|
|
2473 case '.':
|
446
|
2474 laststart = buf_end;
|
428
|
2475 BUF_PUSH (anychar);
|
|
2476 break;
|
|
2477
|
|
2478
|
|
2479 case '[':
|
|
2480 {
|
|
2481 /* XEmacs change: this whole section */
|
460
|
2482 re_bool had_char_class = false;
|
428
|
2483 #ifdef MULE
|
460
|
2484 re_bool has_extended_chars = false;
|
428
|
2485 REGISTER Lisp_Object rtab = Qnil;
|
|
2486 #endif
|
|
2487
|
|
2488 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
|
|
2489
|
|
2490 /* Ensure that we have enough space to push a charset: the
|
|
2491 opcode, the length count, and the bitset; 34 bytes in all. */
|
|
2492 GET_BUFFER_SPACE (34);
|
|
2493
|
446
|
2494 laststart = buf_end;
|
428
|
2495
|
|
2496 /* We test `*p == '^' twice, instead of using an if
|
|
2497 statement, so we only need one BUF_PUSH. */
|
|
2498 BUF_PUSH (*p == '^' ? charset_not : charset);
|
|
2499 if (*p == '^')
|
|
2500 p++;
|
|
2501
|
|
2502 /* Remember the first position in the bracket expression. */
|
|
2503 p1 = p;
|
|
2504
|
|
2505 /* Push the number of bytes in the bitmap. */
|
|
2506 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
|
|
2507
|
|
2508 /* Clear the whole map. */
|
446
|
2509 memset (buf_end, 0, (1 << BYTEWIDTH) / BYTEWIDTH);
|
428
|
2510
|
|
2511 /* charset_not matches newline according to a syntax bit. */
|
446
|
2512 if ((re_opcode_t) buf_end[-2] == charset_not
|
428
|
2513 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
|
|
2514 SET_LIST_BIT ('\n');
|
|
2515
|
|
2516 #ifdef MULE
|
|
2517 start_over_with_extended:
|
|
2518 if (has_extended_chars)
|
|
2519 {
|
|
2520 /* There are extended chars here, which means we need to start
|
|
2521 over and shift to unified range-table format. */
|
446
|
2522 if (buf_end[-2] == charset)
|
|
2523 buf_end[-2] = charset_mule;
|
428
|
2524 else
|
446
|
2525 buf_end[-2] = charset_mule_not;
|
|
2526 buf_end--;
|
428
|
2527 p = p1; /* go back to the beginning of the charset, after
|
|
2528 a possible ^. */
|
|
2529 rtab = Vthe_lisp_rangetab;
|
|
2530 Fclear_range_table (rtab);
|
|
2531
|
|
2532 /* charset_not matches newline according to a syntax bit. */
|
446
|
2533 if ((re_opcode_t) buf_end[-1] == charset_mule_not
|
428
|
2534 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
|
|
2535 SET_EITHER_BIT ('\n');
|
|
2536 }
|
|
2537 #endif /* MULE */
|
|
2538
|
|
2539 /* Read in characters and ranges, setting map bits. */
|
|
2540 for (;;)
|
|
2541 {
|
|
2542 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
|
|
2543
|
446
|
2544 PATFETCH (c);
|
428
|
2545
|
|
2546 #ifdef MULE
|
|
2547 if (c >= 0x80 && !has_extended_chars)
|
|
2548 {
|
|
2549 has_extended_chars = 1;
|
|
2550 /* Frumble-bumble, we've found some extended chars.
|
|
2551 Need to start over, process everything using
|
|
2552 the general extended-char mechanism, and need
|
|
2553 to use charset_mule and charset_mule_not instead
|
|
2554 of charset and charset_not. */
|
|
2555 goto start_over_with_extended;
|
|
2556 }
|
|
2557 #endif /* MULE */
|
|
2558 /* \ might escape characters inside [...] and [^...]. */
|
|
2559 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
|
|
2560 {
|
|
2561 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
|
|
2562
|
446
|
2563 PATFETCH (c1);
|
428
|
2564 #ifdef MULE
|
|
2565 if (c1 >= 0x80 && !has_extended_chars)
|
|
2566 {
|
|
2567 has_extended_chars = 1;
|
|
2568 goto start_over_with_extended;
|
|
2569 }
|
|
2570 #endif /* MULE */
|
|
2571 SET_EITHER_BIT (c1);
|
|
2572 continue;
|
|
2573 }
|
|
2574
|
|
2575 /* Could be the end of the bracket expression. If it's
|
|
2576 not (i.e., when the bracket expression is `[]' so
|
|
2577 far), the ']' character bit gets set way below. */
|
|
2578 if (c == ']' && p != p1 + 1)
|
|
2579 break;
|
|
2580
|
|
2581 /* Look ahead to see if it's a range when the last thing
|
|
2582 was a character class. */
|
|
2583 if (had_char_class && c == '-' && *p != ']')
|
|
2584 FREE_STACK_RETURN (REG_ERANGE);
|
|
2585
|
|
2586 /* Look ahead to see if it's a range when the last thing
|
|
2587 was a character: if this is a hyphen not at the
|
|
2588 beginning or the end of a list, then it's the range
|
|
2589 operator. */
|
|
2590 if (c == '-'
|
|
2591 && !(p - 2 >= pattern && p[-2] == '[')
|
446
|
2592 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
|
428
|
2593 && *p != ']')
|
|
2594 {
|
|
2595 reg_errcode_t ret;
|
|
2596
|
|
2597 #ifdef MULE
|
|
2598 if (* (unsigned char *) p >= 0x80 && !has_extended_chars)
|
|
2599 {
|
|
2600 has_extended_chars = 1;
|
|
2601 goto start_over_with_extended;
|
|
2602 }
|
|
2603 if (has_extended_chars)
|
|
2604 ret = compile_extended_range (&p, pend, translate,
|
|
2605 syntax, rtab);
|
|
2606 else
|
|
2607 #endif /* MULE */
|
446
|
2608 ret = compile_range (&p, pend, translate, syntax, buf_end);
|
428
|
2609 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
|
|
2610 }
|
|
2611
|
|
2612 else if (p[0] == '-' && p[1] != ']')
|
|
2613 { /* This handles ranges made up of characters only. */
|
|
2614 reg_errcode_t ret;
|
|
2615
|
|
2616 /* Move past the `-'. */
|
|
2617 PATFETCH (c1);
|
|
2618
|
|
2619 #ifdef MULE
|
|
2620 if (* (unsigned char *) p >= 0x80 && !has_extended_chars)
|
|
2621 {
|
|
2622 has_extended_chars = 1;
|
|
2623 goto start_over_with_extended;
|
|
2624 }
|
|
2625 if (has_extended_chars)
|
|
2626 ret = compile_extended_range (&p, pend, translate,
|
|
2627 syntax, rtab);
|
|
2628 else
|
|
2629 #endif /* MULE */
|
446
|
2630 ret = compile_range (&p, pend, translate, syntax, buf_end);
|
428
|
2631 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
|
|
2632 }
|
|
2633
|
|
2634 /* See if we're at the beginning of a possible character
|
|
2635 class. */
|
|
2636
|
|
2637 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
|
|
2638 { /* Leave room for the null. */
|
|
2639 char str[CHAR_CLASS_MAX_LENGTH + 1];
|
|
2640
|
|
2641 PATFETCH (c);
|
|
2642 c1 = 0;
|
|
2643
|
|
2644 /* If pattern is `[[:'. */
|
|
2645 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
|
|
2646
|
|
2647 for (;;)
|
|
2648 {
|
446
|
2649 /* #### This code is unused.
|
|
2650 Correctness is not checked after TRT
|
|
2651 table change. */
|
428
|
2652 PATFETCH (c);
|
|
2653 if (c == ':' || c == ']' || p == pend
|
|
2654 || c1 == CHAR_CLASS_MAX_LENGTH)
|
|
2655 break;
|
442
|
2656 str[c1++] = (char) c;
|
428
|
2657 }
|
|
2658 str[c1] = '\0';
|
|
2659
|
446
|
2660 /* If isn't a word bracketed by `[:' and `:]':
|
428
|
2661 undo the ending character, the letters, and leave
|
|
2662 the leading `:' and `[' (but set bits for them). */
|
|
2663 if (c == ':' && *p == ']')
|
|
2664 {
|
|
2665 int ch;
|
460
|
2666 re_bool is_alnum = STREQ (str, "alnum");
|
|
2667 re_bool is_alpha = STREQ (str, "alpha");
|
|
2668 re_bool is_blank = STREQ (str, "blank");
|
|
2669 re_bool is_cntrl = STREQ (str, "cntrl");
|
|
2670 re_bool is_digit = STREQ (str, "digit");
|
|
2671 re_bool is_graph = STREQ (str, "graph");
|
|
2672 re_bool is_lower = STREQ (str, "lower");
|
|
2673 re_bool is_print = STREQ (str, "print");
|
|
2674 re_bool is_punct = STREQ (str, "punct");
|
|
2675 re_bool is_space = STREQ (str, "space");
|
|
2676 re_bool is_upper = STREQ (str, "upper");
|
|
2677 re_bool is_xdigit = STREQ (str, "xdigit");
|
428
|
2678
|
|
2679 if (!IS_CHAR_CLASS (str))
|
|
2680 FREE_STACK_RETURN (REG_ECTYPE);
|
|
2681
|
|
2682 /* Throw away the ] at the end of the character
|
|
2683 class. */
|
|
2684 PATFETCH (c);
|
|
2685
|
|
2686 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
|
|
2687
|
|
2688 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
|
|
2689 {
|
|
2690 /* This was split into 3 if's to
|
|
2691 avoid an arbitrary limit in some compiler. */
|
|
2692 if ( (is_alnum && ISALNUM (ch))
|
|
2693 || (is_alpha && ISALPHA (ch))
|
|
2694 || (is_blank && ISBLANK (ch))
|
|
2695 || (is_cntrl && ISCNTRL (ch)))
|
|
2696 SET_EITHER_BIT (ch);
|
|
2697 if ( (is_digit && ISDIGIT (ch))
|
|
2698 || (is_graph && ISGRAPH (ch))
|
|
2699 || (is_lower && ISLOWER (ch))
|
|
2700 || (is_print && ISPRINT (ch)))
|
|
2701 SET_EITHER_BIT (ch);
|
|
2702 if ( (is_punct && ISPUNCT (ch))
|
|
2703 || (is_space && ISSPACE (ch))
|
|
2704 || (is_upper && ISUPPER (ch))
|
|
2705 || (is_xdigit && ISXDIGIT (ch)))
|
|
2706 SET_EITHER_BIT (ch);
|
|
2707 }
|
|
2708 had_char_class = true;
|
|
2709 }
|
|
2710 else
|
|
2711 {
|
|
2712 c1++;
|
|
2713 while (c1--)
|
|
2714 PATUNFETCH;
|
|
2715 SET_EITHER_BIT ('[');
|
|
2716 SET_EITHER_BIT (':');
|
|
2717 had_char_class = false;
|
|
2718 }
|
|
2719 }
|
|
2720 else
|
|
2721 {
|
|
2722 had_char_class = false;
|
|
2723 SET_EITHER_BIT (c);
|
|
2724 }
|
|
2725 }
|
|
2726
|
|
2727 #ifdef MULE
|
|
2728 if (has_extended_chars)
|
|
2729 {
|
|
2730 /* We have a range table, not a bit vector. */
|
|
2731 int bytes_needed =
|
|
2732 unified_range_table_bytes_needed (rtab);
|
|
2733 GET_BUFFER_SPACE (bytes_needed);
|
446
|
2734 unified_range_table_copy_data (rtab, buf_end);
|
|
2735 buf_end += unified_range_table_bytes_used (buf_end);
|
428
|
2736 break;
|
|
2737 }
|
|
2738 #endif /* MULE */
|
|
2739 /* Discard any (non)matching list bytes that are all 0 at the
|
|
2740 end of the map. Decrease the map-length byte too. */
|
446
|
2741 while ((int) buf_end[-1] > 0 && buf_end[buf_end[-1] - 1] == 0)
|
|
2742 buf_end[-1]--;
|
|
2743 buf_end += buf_end[-1];
|
428
|
2744 }
|
|
2745 break;
|
|
2746
|
|
2747
|
|
2748 case '(':
|
|
2749 if (syntax & RE_NO_BK_PARENS)
|
|
2750 goto handle_open;
|
|
2751 else
|
|
2752 goto normal_char;
|
|
2753
|
|
2754
|
|
2755 case ')':
|
|
2756 if (syntax & RE_NO_BK_PARENS)
|
|
2757 goto handle_close;
|
|
2758 else
|
|
2759 goto normal_char;
|
|
2760
|
|
2761
|
|
2762 case '\n':
|
|
2763 if (syntax & RE_NEWLINE_ALT)
|
|
2764 goto handle_alt;
|
|
2765 else
|
|
2766 goto normal_char;
|
|
2767
|
|
2768
|
|
2769 case '|':
|
|
2770 if (syntax & RE_NO_BK_VBAR)
|
|
2771 goto handle_alt;
|
|
2772 else
|
|
2773 goto normal_char;
|
|
2774
|
|
2775
|
|
2776 case '{':
|
|
2777 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
|
|
2778 goto handle_interval;
|
|
2779 else
|
|
2780 goto normal_char;
|
|
2781
|
|
2782
|
|
2783 case '\\':
|
|
2784 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
|
|
2785
|
|
2786 /* Do not translate the character after the \, so that we can
|
|
2787 distinguish, e.g., \B from \b, even if we normally would
|
|
2788 translate, e.g., B to b. */
|
|
2789 PATFETCH_RAW (c);
|
|
2790
|
|
2791 switch (c)
|
|
2792 {
|
|
2793 case '(':
|
|
2794 if (syntax & RE_NO_BK_PARENS)
|
|
2795 goto normal_backslash;
|
|
2796
|
|
2797 handle_open:
|
|
2798 {
|
|
2799 regnum_t r;
|
502
|
2800 int shy = 0;
|
428
|
2801
|
|
2802 if (!(syntax & RE_NO_SHY_GROUPS)
|
|
2803 && p != pend
|
446
|
2804 && *p == '?')
|
428
|
2805 {
|
|
2806 p++;
|
446
|
2807 PATFETCH (c);
|
428
|
2808 switch (c)
|
|
2809 {
|
|
2810 case ':': /* shy groups */
|
502
|
2811 shy = 1;
|
428
|
2812 break;
|
|
2813
|
|
2814 /* All others are reserved for future constructs. */
|
|
2815 default:
|
|
2816 FREE_STACK_RETURN (REG_BADPAT);
|
|
2817 }
|
|
2818 }
|
502
|
2819
|
|
2820 r = ++regnum;
|
|
2821 bufp->re_ngroups++;
|
|
2822 if (!shy)
|
|
2823 {
|
|
2824 bufp->re_nsub++;
|
|
2825 while (bufp->external_to_internal_register_size <=
|
|
2826 bufp->re_nsub)
|
|
2827 {
|
|
2828 int i;
|
|
2829 int old_size =
|
|
2830 bufp->external_to_internal_register_size;
|
|
2831 bufp->external_to_internal_register_size += 5;
|
|
2832 RETALLOC (bufp->external_to_internal_register,
|
|
2833 bufp->external_to_internal_register_size,
|
|
2834 int);
|
|
2835 /* debugging */
|
|
2836 for (i = old_size;
|
|
2837 i < bufp->external_to_internal_register_size; i++)
|
|
2838 bufp->external_to_internal_register[i] =
|
|
2839 (int) 0xDEADBEEF;
|
|
2840 }
|
|
2841
|
|
2842 bufp->external_to_internal_register[bufp->re_nsub] =
|
|
2843 bufp->re_ngroups;
|
|
2844 }
|
428
|
2845
|
|
2846 if (COMPILE_STACK_FULL)
|
|
2847 {
|
|
2848 RETALLOC (compile_stack.stack, compile_stack.size << 1,
|
|
2849 compile_stack_elt_t);
|
|
2850 if (compile_stack.stack == NULL) return REG_ESPACE;
|
|
2851
|
|
2852 compile_stack.size <<= 1;
|
|
2853 }
|
|
2854
|
|
2855 /* These are the values to restore when we hit end of this
|
|
2856 group. They are all relative offsets, so that if the
|
|
2857 whole pattern moves because of realloc, they will still
|
|
2858 be valid. */
|
|
2859 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
|
|
2860 COMPILE_STACK_TOP.fixup_alt_jump
|
|
2861 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
|
446
|
2862 COMPILE_STACK_TOP.laststart_offset = buf_end - bufp->buffer;
|
428
|
2863 COMPILE_STACK_TOP.regnum = r;
|
|
2864
|
|
2865 /* We will eventually replace the 0 with the number of
|
|
2866 groups inner to this one. But do not push a
|
|
2867 start_memory for groups beyond the last one we can
|
502
|
2868 represent in the compiled pattern.
|
|
2869 #### bad bad bad. this will fail in lots of ways, if we
|
|
2870 ever have to backtrack for these groups.
|
|
2871 */
|
428
|
2872 if (r <= MAX_REGNUM)
|
|
2873 {
|
|
2874 COMPILE_STACK_TOP.inner_group_offset
|
446
|
2875 = buf_end - bufp->buffer + 2;
|
428
|
2876 BUF_PUSH_3 (start_memory, r, 0);
|
|
2877 }
|
|
2878
|
|
2879 compile_stack.avail++;
|
|
2880
|
|
2881 fixup_alt_jump = 0;
|
|
2882 laststart = 0;
|
446
|
2883 begalt = buf_end;
|
428
|
2884 /* If we've reached MAX_REGNUM groups, then this open
|
|
2885 won't actually generate any code, so we'll have to
|
|
2886 clear pending_exact explicitly. */
|
|
2887 pending_exact = 0;
|
|
2888 }
|
|
2889 break;
|
|
2890
|
|
2891
|
|
2892 case ')':
|
|
2893 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
|
|
2894
|
|
2895 if (COMPILE_STACK_EMPTY) {
|
|
2896 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
|
|
2897 goto normal_backslash;
|
|
2898 else
|
|
2899 FREE_STACK_RETURN (REG_ERPAREN);
|
|
2900 }
|
|
2901
|
|
2902 handle_close:
|
|
2903 if (fixup_alt_jump)
|
|
2904 { /* Push a dummy failure point at the end of the
|
|
2905 alternative for a possible future
|
|
2906 `pop_failure_jump' to pop. See comments at
|
|
2907 `push_dummy_failure' in `re_match_2'. */
|
|
2908 BUF_PUSH (push_dummy_failure);
|
|
2909
|
|
2910 /* We allocated space for this jump when we assigned
|
|
2911 to `fixup_alt_jump', in the `handle_alt' case below. */
|
446
|
2912 STORE_JUMP (jump_past_alt, fixup_alt_jump, buf_end - 1);
|
428
|
2913 }
|
|
2914
|
|
2915 /* See similar code for backslashed left paren above. */
|
|
2916 if (COMPILE_STACK_EMPTY) {
|
|
2917 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
|
|
2918 goto normal_char;
|
|
2919 else
|
|
2920 FREE_STACK_RETURN (REG_ERPAREN);
|
|
2921 }
|
|
2922
|
|
2923 /* Since we just checked for an empty stack above, this
|
|
2924 ``can't happen''. */
|
|
2925 assert (compile_stack.avail != 0);
|
|
2926 {
|
|
2927 /* We don't just want to restore into `regnum', because
|
|
2928 later groups should continue to be numbered higher,
|
|
2929 as in `(ab)c(de)' -- the second group is #2. */
|
|
2930 regnum_t this_group_regnum;
|
|
2931
|
|
2932 compile_stack.avail--;
|
|
2933 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
|
|
2934 fixup_alt_jump
|
|
2935 = COMPILE_STACK_TOP.fixup_alt_jump
|
|
2936 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
|
|
2937 : 0;
|
|
2938 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
|
|
2939 this_group_regnum = COMPILE_STACK_TOP.regnum;
|
|
2940 /* If we've reached MAX_REGNUM groups, then this open
|
|
2941 won't actually generate any code, so we'll have to
|
|
2942 clear pending_exact explicitly. */
|
|
2943 pending_exact = 0;
|
|
2944
|
|
2945 /* We're at the end of the group, so now we know how many
|
|
2946 groups were inside this one. */
|
|
2947 if (this_group_regnum <= MAX_REGNUM)
|
|
2948 {
|
|
2949 unsigned char *inner_group_loc
|
|
2950 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
|
|
2951
|
|
2952 *inner_group_loc = regnum - this_group_regnum;
|
|
2953 BUF_PUSH_3 (stop_memory, this_group_regnum,
|
|
2954 regnum - this_group_regnum);
|
|
2955 }
|
|
2956 }
|
|
2957 break;
|
|
2958
|
|
2959
|
|
2960 case '|': /* `\|'. */
|
|
2961 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
|
|
2962 goto normal_backslash;
|
|
2963 handle_alt:
|
|
2964 if (syntax & RE_LIMITED_OPS)
|
|
2965 goto normal_char;
|
|
2966
|
|
2967 /* Insert before the previous alternative a jump which
|
|
2968 jumps to this alternative if the former fails. */
|
|
2969 GET_BUFFER_SPACE (3);
|
446
|
2970 INSERT_JUMP (on_failure_jump, begalt, buf_end + 6);
|
428
|
2971 pending_exact = 0;
|
446
|
2972 buf_end += 3;
|
428
|
2973
|
|
2974 /* The alternative before this one has a jump after it
|
|
2975 which gets executed if it gets matched. Adjust that
|
|
2976 jump so it will jump to this alternative's analogous
|
|
2977 jump (put in below, which in turn will jump to the next
|
|
2978 (if any) alternative's such jump, etc.). The last such
|
|
2979 jump jumps to the correct final destination. A picture:
|
|
2980 _____ _____
|
|
2981 | | | |
|
|
2982 | v | v
|
|
2983 a | b | c
|
|
2984
|
|
2985 If we are at `b', then fixup_alt_jump right now points to a
|
|
2986 three-byte space after `a'. We'll put in the jump, set
|
|
2987 fixup_alt_jump to right after `b', and leave behind three
|
|
2988 bytes which we'll fill in when we get to after `c'. */
|
|
2989
|
|
2990 if (fixup_alt_jump)
|
446
|
2991 STORE_JUMP (jump_past_alt, fixup_alt_jump, buf_end);
|
428
|
2992
|
|
2993 /* Mark and leave space for a jump after this alternative,
|
|
2994 to be filled in later either by next alternative or
|
|
2995 when know we're at the end of a series of alternatives. */
|
446
|
2996 fixup_alt_jump = buf_end;
|
428
|
2997 GET_BUFFER_SPACE (3);
|
446
|
2998 buf_end += 3;
|
428
|
2999
|
|
3000 laststart = 0;
|
446
|
3001 begalt = buf_end;
|
428
|
3002 break;
|
|
3003
|
|
3004
|
|
3005 case '{':
|
|
3006 /* If \{ is a literal. */
|
|
3007 if (!(syntax & RE_INTERVALS)
|
|
3008 /* If we're at `\{' and it's not the open-interval
|
|
3009 operator. */
|
|
3010 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
|
|
3011 || (p - 2 == pattern && p == pend))
|
|
3012 goto normal_backslash;
|
|
3013
|
|
3014 handle_interval:
|
|
3015 {
|
|
3016 /* If got here, then the syntax allows intervals. */
|
|
3017
|
|
3018 /* At least (most) this many matches must be made. */
|
|
3019 int lower_bound = -1, upper_bound = -1;
|
|
3020
|
|
3021 beg_interval = p - 1;
|
|
3022
|
|
3023 if (p == pend)
|
|
3024 {
|
|
3025 if (syntax & RE_NO_BK_BRACES)
|
|
3026 goto unfetch_interval;
|
|
3027 else
|
|
3028 FREE_STACK_RETURN (REG_EBRACE);
|
|
3029 }
|
|
3030
|
|
3031 GET_UNSIGNED_NUMBER (lower_bound);
|
|
3032
|
|
3033 if (c == ',')
|
|
3034 {
|
|
3035 GET_UNSIGNED_NUMBER (upper_bound);
|
|
3036 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
|
|
3037 }
|
|
3038 else
|
|
3039 /* Interval such as `{1}' => match exactly once. */
|
|
3040 upper_bound = lower_bound;
|
|
3041
|
|
3042 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
|
|
3043 || lower_bound > upper_bound)
|
|
3044 {
|
|
3045 if (syntax & RE_NO_BK_BRACES)
|
|
3046 goto unfetch_interval;
|
|
3047 else
|
|
3048 FREE_STACK_RETURN (REG_BADBR);
|
|
3049 }
|
|
3050
|
|
3051 if (!(syntax & RE_NO_BK_BRACES))
|
|
3052 {
|
|
3053 if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
|
|
3054
|
|
3055 PATFETCH (c);
|
|
3056 }
|
|
3057
|
|
3058 if (c != '}')
|
|
3059 {
|
|
3060 if (syntax & RE_NO_BK_BRACES)
|
|
3061 goto unfetch_interval;
|
|
3062 else
|
|
3063 FREE_STACK_RETURN (REG_BADBR);
|
|
3064 }
|
|
3065
|
|
3066 /* We just parsed a valid interval. */
|
|
3067
|
|
3068 /* If it's invalid to have no preceding re. */
|
|
3069 if (!laststart)
|
|
3070 {
|
|
3071 if (syntax & RE_CONTEXT_INVALID_OPS)
|
|
3072 FREE_STACK_RETURN (REG_BADRPT);
|
|
3073 else if (syntax & RE_CONTEXT_INDEP_OPS)
|
446
|
3074 laststart = buf_end;
|
428
|
3075 else
|
|
3076 goto unfetch_interval;
|
|
3077 }
|
|
3078
|
|
3079 /* If the upper bound is zero, don't want to succeed at
|
|
3080 all; jump from `laststart' to `b + 3', which will be
|
|
3081 the end of the buffer after we insert the jump. */
|
|
3082 if (upper_bound == 0)
|
|
3083 {
|
|
3084 GET_BUFFER_SPACE (3);
|
446
|
3085 INSERT_JUMP (jump, laststart, buf_end + 3);
|
|
3086 buf_end += 3;
|
428
|
3087 }
|
|
3088
|
|
3089 /* Otherwise, we have a nontrivial interval. When
|
|
3090 we're all done, the pattern will look like:
|
|
3091 set_number_at <jump count> <upper bound>
|
|
3092 set_number_at <succeed_n count> <lower bound>
|
|
3093 succeed_n <after jump addr> <succeed_n count>
|
|
3094 <body of loop>
|
|
3095 jump_n <succeed_n addr> <jump count>
|
|
3096 (The upper bound and `jump_n' are omitted if
|
|
3097 `upper_bound' is 1, though.) */
|
|
3098 else
|
|
3099 { /* If the upper bound is > 1, we need to insert
|
|
3100 more at the end of the loop. */
|
647
|
3101 int nbytes = 10 + (upper_bound > 1) * 10;
|
428
|
3102
|
|
3103 GET_BUFFER_SPACE (nbytes);
|
|
3104
|
|
3105 /* Initialize lower bound of the `succeed_n', even
|
|
3106 though it will be set during matching by its
|
|
3107 attendant `set_number_at' (inserted next),
|
|
3108 because `re_compile_fastmap' needs to know.
|
|
3109 Jump to the `jump_n' we might insert below. */
|
|
3110 INSERT_JUMP2 (succeed_n, laststart,
|
446
|
3111 buf_end + 5 + (upper_bound > 1) * 5,
|
428
|
3112 lower_bound);
|
446
|
3113 buf_end += 5;
|
428
|
3114
|
|
3115 /* Code to initialize the lower bound. Insert
|
|
3116 before the `succeed_n'. The `5' is the last two
|
|
3117 bytes of this `set_number_at', plus 3 bytes of
|
|
3118 the following `succeed_n'. */
|
446
|
3119 insert_op2 (set_number_at, laststart, 5, lower_bound, buf_end);
|
|
3120 buf_end += 5;
|
428
|
3121
|
|
3122 if (upper_bound > 1)
|
|
3123 { /* More than one repetition is allowed, so
|
|
3124 append a backward jump to the `succeed_n'
|
|
3125 that starts this interval.
|
|
3126
|
|
3127 When we've reached this during matching,
|
|
3128 we'll have matched the interval once, so
|
|
3129 jump back only `upper_bound - 1' times. */
|
446
|
3130 STORE_JUMP2 (jump_n, buf_end, laststart + 5,
|
428
|
3131 upper_bound - 1);
|
446
|
3132 buf_end += 5;
|
428
|
3133
|
|
3134 /* The location we want to set is the second
|
|
3135 parameter of the `jump_n'; that is `b-2' as
|
|
3136 an absolute address. `laststart' will be
|
|
3137 the `set_number_at' we're about to insert;
|
|
3138 `laststart+3' the number to set, the source
|
|
3139 for the relative address. But we are
|
|
3140 inserting into the middle of the pattern --
|
|
3141 so everything is getting moved up by 5.
|
|
3142 Conclusion: (b - 2) - (laststart + 3) + 5,
|
|
3143 i.e., b - laststart.
|
|
3144
|
|
3145 We insert this at the beginning of the loop
|
|
3146 so that if we fail during matching, we'll
|
|
3147 reinitialize the bounds. */
|
446
|
3148 insert_op2 (set_number_at, laststart,
|
|
3149 buf_end - laststart,
|
|
3150 upper_bound - 1, buf_end);
|
|
3151 buf_end += 5;
|
428
|
3152 }
|
|
3153 }
|
|
3154 pending_exact = 0;
|
|
3155 beg_interval = NULL;
|
|
3156 }
|
|
3157 break;
|
|
3158
|
|
3159 unfetch_interval:
|
|
3160 /* If an invalid interval, match the characters as literals. */
|
|
3161 assert (beg_interval);
|
|
3162 p = beg_interval;
|
|
3163 beg_interval = NULL;
|
|
3164
|
|
3165 /* normal_char and normal_backslash need `c'. */
|
|
3166 PATFETCH (c);
|
|
3167
|
|
3168 if (!(syntax & RE_NO_BK_BRACES))
|
|
3169 {
|
|
3170 if (p > pattern && p[-1] == '\\')
|
|
3171 goto normal_backslash;
|
|
3172 }
|
|
3173 goto normal_char;
|
|
3174
|
|
3175 #ifdef emacs
|
|
3176 /* There is no way to specify the before_dot and after_dot
|
|
3177 operators. rms says this is ok. --karl */
|
|
3178 case '=':
|
|
3179 BUF_PUSH (at_dot);
|
|
3180 break;
|
|
3181
|
|
3182 case 's':
|
446
|
3183 laststart = buf_end;
|
428
|
3184 PATFETCH (c);
|
|
3185 /* XEmacs addition */
|
|
3186 if (c >= 0x80 || syntax_spec_code[c] == 0377)
|
|
3187 FREE_STACK_RETURN (REG_ESYNTAX);
|
|
3188 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
|
|
3189 break;
|
|
3190
|
|
3191 case 'S':
|
446
|
3192 laststart = buf_end;
|
428
|
3193 PATFETCH (c);
|
|
3194 /* XEmacs addition */
|
|
3195 if (c >= 0x80 || syntax_spec_code[c] == 0377)
|
|
3196 FREE_STACK_RETURN (REG_ESYNTAX);
|
|
3197 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
|
|
3198 break;
|
|
3199
|
|
3200 #ifdef MULE
|
|
3201 /* 97.2.17 jhod merged in to XEmacs from mule-2.3 */
|
|
3202 case 'c':
|
446
|
3203 laststart = buf_end;
|
428
|
3204 PATFETCH_RAW (c);
|
|
3205 if (c < 32 || c > 127)
|
|
3206 FREE_STACK_RETURN (REG_ECATEGORY);
|
|
3207 BUF_PUSH_2 (categoryspec, c);
|
|
3208 break;
|
|
3209
|
|
3210 case 'C':
|
446
|
3211 laststart = buf_end;
|
428
|
3212 PATFETCH_RAW (c);
|
|
3213 if (c < 32 || c > 127)
|
|
3214 FREE_STACK_RETURN (REG_ECATEGORY);
|
|
3215 BUF_PUSH_2 (notcategoryspec, c);
|
|
3216 break;
|
|
3217 /* end of category patch */
|
|
3218 #endif /* MULE */
|
|
3219 #endif /* emacs */
|
|
3220
|
|
3221
|
|
3222 case 'w':
|
446
|
3223 laststart = buf_end;
|
428
|
3224 BUF_PUSH (wordchar);
|
|
3225 break;
|
|
3226
|
|
3227
|
|
3228 case 'W':
|
446
|
3229 laststart = buf_end;
|
428
|
3230 BUF_PUSH (notwordchar);
|
|
3231 break;
|
|
3232
|
|
3233
|
|
3234 case '<':
|
|
3235 BUF_PUSH (wordbeg);
|
|
3236 break;
|
|
3237
|
|
3238 case '>':
|
|
3239 BUF_PUSH (wordend);
|
|
3240 break;
|
|
3241
|
|
3242 case 'b':
|
|
3243 BUF_PUSH (wordbound);
|
|
3244 break;
|
|
3245
|
|
3246 case 'B':
|
|
3247 BUF_PUSH (notwordbound);
|
|
3248 break;
|
|
3249
|
|
3250 case '`':
|
|
3251 BUF_PUSH (begbuf);
|
|
3252 break;
|
|
3253
|
|
3254 case '\'':
|
|
3255 BUF_PUSH (endbuf);
|
|
3256 break;
|
|
3257
|
|
3258 case '1': case '2': case '3': case '4': case '5':
|
|
3259 case '6': case '7': case '8': case '9':
|
446
|
3260 {
|
502
|
3261 regnum_t reg, regint;
|
|
3262 int may_need_to_unfetch = 0;
|
446
|
3263 if (syntax & RE_NO_BK_REFS)
|
|
3264 goto normal_char;
|
|
3265
|
502
|
3266 /* This only goes up to 99. It could be extended to work
|
|
3267 up to 255 (the maximum number of registers that can be
|
|
3268 handled by the current regexp engine, because it stores
|
|
3269 its register numbers in the compiled pattern as one byte,
|
|
3270 ugh). Doing that's a bit trickier, because you might
|
|
3271 have the case where \25 a back-ref but \255 is not, ... */
|
446
|
3272 reg = c - '0';
|
502
|
3273 if (p < pend)
|
|
3274 {
|
|
3275 PATFETCH (c);
|
|
3276 if (c >= '0' && c <= '9')
|
|
3277 {
|
|
3278 regnum_t new_reg = reg * 10 + c - '0';
|
|
3279 if (new_reg <= bufp->re_nsub)
|
|
3280 {
|
|
3281 reg = new_reg;
|
|
3282 may_need_to_unfetch = 1;
|
|
3283 }
|
|
3284 else
|
|
3285 PATUNFETCH;
|
|
3286 }
|
523
|
3287 else
|
|
3288 PATUNFETCH;
|
502
|
3289 }
|
|
3290
|
|
3291 if (reg > bufp->re_nsub)
|
446
|
3292 FREE_STACK_RETURN (REG_ESUBREG);
|
|
3293
|
502
|
3294 regint = bufp->external_to_internal_register[reg];
|
446
|
3295 /* Can't back reference to a subexpression if inside of it. */
|
502
|
3296 if (group_in_compile_stack (compile_stack, regint))
|
|
3297 {
|
|
3298 if (may_need_to_unfetch)
|
|
3299 PATUNFETCH;
|
|
3300 goto normal_char;
|
|
3301 }
|
|
3302
|
|
3303 #ifdef emacs
|
|
3304 if (reg > 9 &&
|
|
3305 bufp->warned_about_incompatible_back_references == 0)
|
|
3306 {
|
|
3307 bufp->warned_about_incompatible_back_references = 1;
|
|
3308 warn_when_safe (intern ("regex"), Qinfo,
|
|
3309 "Back reference \\%d now has new "
|
|
3310 "semantics in %s", reg, pattern);
|
|
3311 }
|
|
3312 #endif
|
446
|
3313
|
|
3314 laststart = buf_end;
|
502
|
3315 BUF_PUSH_2 (duplicate, regint);
|
446
|
3316 }
|
428
|
3317 break;
|
|
3318
|
|
3319
|
|
3320 case '+':
|
|
3321 case '?':
|
|
3322 if (syntax & RE_BK_PLUS_QM)
|
|
3323 goto handle_plus;
|
|
3324 else
|
|
3325 goto normal_backslash;
|
|
3326
|
|
3327 default:
|
|
3328 normal_backslash:
|
|
3329 /* You might think it would be useful for \ to mean
|
|
3330 not to translate; but if we don't translate it,
|
|
3331 it will never match anything. */
|
826
|
3332 c = RE_TRANSLATE (c);
|
428
|
3333 goto normal_char;
|
|
3334 }
|
|
3335 break;
|
|
3336
|
|
3337
|
|
3338 default:
|
|
3339 /* Expects the character in `c'. */
|
|
3340 /* `p' points to the location after where `c' came from. */
|
|
3341 normal_char:
|
|
3342 {
|
|
3343 /* XEmacs: modifications here for Mule. */
|
|
3344 /* `q' points to the beginning of the next char. */
|
446
|
3345 re_char *q = p;
|
428
|
3346
|
|
3347 /* If no exactn currently being built. */
|
|
3348 if (!pending_exact
|
|
3349
|
|
3350 /* If last exactn not at current position. */
|
446
|
3351 || pending_exact + *pending_exact + 1 != buf_end
|
428
|
3352
|
|
3353 /* We have only one byte following the exactn for the count. */
|
|
3354 || ((unsigned int) (*pending_exact + (q - p)) >=
|
|
3355 ((unsigned int) (1 << BYTEWIDTH) - 1))
|
|
3356
|
|
3357 /* If followed by a repetition operator. */
|
|
3358 || *q == '*' || *q == '^'
|
|
3359 || ((syntax & RE_BK_PLUS_QM)
|
|
3360 ? *q == '\\' && (q[1] == '+' || q[1] == '?')
|
|
3361 : (*q == '+' || *q == '?'))
|
|
3362 || ((syntax & RE_INTERVALS)
|
|
3363 && ((syntax & RE_NO_BK_BRACES)
|
|
3364 ? *q == '{'
|
|
3365 : (q[0] == '\\' && q[1] == '{'))))
|
|
3366 {
|
|
3367 /* Start building a new exactn. */
|
|
3368
|
446
|
3369 laststart = buf_end;
|
428
|
3370
|
|
3371 BUF_PUSH_2 (exactn, 0);
|
446
|
3372 pending_exact = buf_end - 1;
|
428
|
3373 }
|
|
3374
|
446
|
3375 #ifndef MULE
|
428
|
3376 BUF_PUSH (c);
|
|
3377 (*pending_exact)++;
|
446
|
3378 #else
|
|
3379 {
|
|
3380 Bytecount bt_count;
|
867
|
3381 Ibyte tmp_buf[MAX_ICHAR_LEN];
|
446
|
3382 int i;
|
|
3383
|
867
|
3384 bt_count = set_itext_ichar (tmp_buf, c);
|
446
|
3385
|
|
3386 for (i = 0; i < bt_count; i++)
|
|
3387 {
|
|
3388 BUF_PUSH (tmp_buf[i]);
|
|
3389 (*pending_exact)++;
|
|
3390 }
|
|
3391 }
|
|
3392 #endif
|
428
|
3393 break;
|
|
3394 }
|
|
3395 } /* switch (c) */
|
|
3396 } /* while p != pend */
|
|
3397
|
|
3398
|
|
3399 /* Through the pattern now. */
|
|
3400
|
|
3401 if (fixup_alt_jump)
|
446
|
3402 STORE_JUMP (jump_past_alt, fixup_alt_jump, buf_end);
|
428
|
3403
|
|
3404 if (!COMPILE_STACK_EMPTY)
|
|
3405 FREE_STACK_RETURN (REG_EPAREN);
|
|
3406
|
|
3407 /* If we don't want backtracking, force success
|
|
3408 the first time we reach the end of the compiled pattern. */
|
|
3409 if (syntax & RE_NO_POSIX_BACKTRACKING)
|
|
3410 BUF_PUSH (succeed);
|
|
3411
|
1333
|
3412 xfree (compile_stack.stack);
|
428
|
3413
|
|
3414 /* We have succeeded; set the length of the buffer. */
|
446
|
3415 bufp->used = buf_end - bufp->buffer;
|
428
|
3416
|
|
3417 #ifdef DEBUG
|
|
3418 if (debug)
|
|
3419 {
|
|
3420 DEBUG_PRINT1 ("\nCompiled pattern: \n");
|
|
3421 print_compiled_pattern (bufp);
|
|
3422 }
|
|
3423 #endif /* DEBUG */
|
|
3424
|
|
3425 #ifndef MATCH_MAY_ALLOCATE
|
|
3426 /* Initialize the failure stack to the largest possible stack. This
|
|
3427 isn't necessary unless we're trying to avoid calling alloca in
|
|
3428 the search and match routines. */
|
|
3429 {
|
502
|
3430 int num_regs = bufp->re_ngroups + 1;
|
428
|
3431
|
|
3432 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
|
|
3433 is strictly greater than re_max_failures, the largest possible stack
|
|
3434 is 2 * re_max_failures failure points. */
|
|
3435 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
|
|
3436 {
|
|
3437 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
|
|
3438
|
|
3439 if (! fail_stack.stack)
|
|
3440 fail_stack.stack
|
|
3441 = (fail_stack_elt_t *) xmalloc (fail_stack.size
|
|
3442 * sizeof (fail_stack_elt_t));
|
|
3443 else
|
|
3444 fail_stack.stack
|
|
3445 = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
|
|
3446 (fail_stack.size
|
|
3447 * sizeof (fail_stack_elt_t)));
|
|
3448 }
|
|
3449
|
|
3450 regex_grow_registers (num_regs);
|
|
3451 }
|
|
3452 #endif /* not MATCH_MAY_ALLOCATE */
|
|
3453
|
|
3454 return REG_NOERROR;
|
|
3455 } /* regex_compile */
|
|
3456
|
|
3457 /* Subroutines for `regex_compile'. */
|
|
3458
|
|
3459 /* Store OP at LOC followed by two-byte integer parameter ARG. */
|
|
3460
|
|
3461 static void
|
|
3462 store_op1 (re_opcode_t op, unsigned char *loc, int arg)
|
|
3463 {
|
|
3464 *loc = (unsigned char) op;
|
|
3465 STORE_NUMBER (loc + 1, arg);
|
|
3466 }
|
|
3467
|
|
3468
|
|
3469 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
|
|
3470
|
|
3471 static void
|
|
3472 store_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2)
|
|
3473 {
|
|
3474 *loc = (unsigned char) op;
|
|
3475 STORE_NUMBER (loc + 1, arg1);
|
|
3476 STORE_NUMBER (loc + 3, arg2);
|
|
3477 }
|
|
3478
|
|
3479
|
|
3480 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
|
|
3481 for OP followed by two-byte integer parameter ARG. */
|
|
3482
|
|
3483 static void
|
|
3484 insert_op1 (re_opcode_t op, unsigned char *loc, int arg, unsigned char *end)
|
|
3485 {
|
|
3486 REGISTER unsigned char *pfrom = end;
|
|
3487 REGISTER unsigned char *pto = end + 3;
|
|
3488
|
|
3489 while (pfrom != loc)
|
|
3490 *--pto = *--pfrom;
|
|
3491
|
|
3492 store_op1 (op, loc, arg);
|
|
3493 }
|
|
3494
|
|
3495
|
|
3496 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
|
|
3497
|
|
3498 static void
|
|
3499 insert_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2,
|
|
3500 unsigned char *end)
|
|
3501 {
|
|
3502 REGISTER unsigned char *pfrom = end;
|
|
3503 REGISTER unsigned char *pto = end + 5;
|
|
3504
|
|
3505 while (pfrom != loc)
|
|
3506 *--pto = *--pfrom;
|
|
3507
|
|
3508 store_op2 (op, loc, arg1, arg2);
|
|
3509 }
|
|
3510
|
|
3511
|
|
3512 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
|
|
3513 after an alternative or a begin-subexpression. We assume there is at
|
|
3514 least one character before the ^. */
|
|
3515
|
460
|
3516 static re_bool
|
446
|
3517 at_begline_loc_p (re_char *pattern, re_char *p, reg_syntax_t syntax)
|
428
|
3518 {
|
446
|
3519 re_char *prev = p - 2;
|
460
|
3520 re_bool prev_prev_backslash = prev > pattern && prev[-1] == '\\';
|
428
|
3521
|
|
3522 return
|
|
3523 /* After a subexpression? */
|
|
3524 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
|
|
3525 /* After an alternative? */
|
|
3526 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
|
|
3527 }
|
|
3528
|
|
3529
|
|
3530 /* The dual of at_begline_loc_p. This one is for $. We assume there is
|
|
3531 at least one character after the $, i.e., `P < PEND'. */
|
|
3532
|
460
|
3533 static re_bool
|
446
|
3534 at_endline_loc_p (re_char *p, re_char *pend, int syntax)
|
428
|
3535 {
|
446
|
3536 re_char *next = p;
|
460
|
3537 re_bool next_backslash = *next == '\\';
|
446
|
3538 re_char *next_next = p + 1 < pend ? p + 1 : 0;
|
428
|
3539
|
|
3540 return
|
|
3541 /* Before a subexpression? */
|
|
3542 (syntax & RE_NO_BK_PARENS ? *next == ')'
|
|
3543 : next_backslash && next_next && *next_next == ')')
|
|
3544 /* Before an alternative? */
|
|
3545 || (syntax & RE_NO_BK_VBAR ? *next == '|'
|
|
3546 : next_backslash && next_next && *next_next == '|');
|
|
3547 }
|
|
3548
|
|
3549
|
|
3550 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
|
|
3551 false if it's not. */
|
|
3552
|
460
|
3553 static re_bool
|
428
|
3554 group_in_compile_stack (compile_stack_type compile_stack, regnum_t regnum)
|
|
3555 {
|
|
3556 int this_element;
|
|
3557
|
|
3558 for (this_element = compile_stack.avail - 1;
|
|
3559 this_element >= 0;
|
|
3560 this_element--)
|
|
3561 if (compile_stack.stack[this_element].regnum == regnum)
|
|
3562 return true;
|
|
3563
|
|
3564 return false;
|
|
3565 }
|
|
3566
|
|
3567
|
|
3568 /* Read the ending character of a range (in a bracket expression) from the
|
|
3569 uncompiled pattern *P_PTR (which ends at PEND). We assume the
|
|
3570 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
|
|
3571 Then we set the translation of all bits between the starting and
|
|
3572 ending characters (inclusive) in the compiled pattern B.
|
|
3573
|
|
3574 Return an error code.
|
|
3575
|
|
3576 We use these short variable names so we can use the same macros as
|
826
|
3577 `regex_compile' itself.
|
|
3578
|
|
3579 Under Mule, this is only called when both chars of the range are
|
|
3580 ASCII. */
|
428
|
3581
|
|
3582 static reg_errcode_t
|
446
|
3583 compile_range (re_char **p_ptr, re_char *pend, RE_TRANSLATE_TYPE translate,
|
|
3584 reg_syntax_t syntax, unsigned char *buf_end)
|
428
|
3585 {
|
867
|
3586 Ichar this_char;
|
428
|
3587
|
446
|
3588 re_char *p = *p_ptr;
|
428
|
3589 int range_start, range_end;
|
|
3590
|
|
3591 if (p == pend)
|
|
3592 return REG_ERANGE;
|
|
3593
|
|
3594 /* Even though the pattern is a signed `char *', we need to fetch
|
|
3595 with unsigned char *'s; if the high bit of the pattern character
|
|
3596 is set, the range endpoints will be negative if we fetch using a
|
|
3597 signed char *.
|
|
3598
|
|
3599 We also want to fetch the endpoints without translating them; the
|
|
3600 appropriate translation is done in the bit-setting loop below. */
|
442
|
3601 /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *. */
|
|
3602 range_start = ((const unsigned char *) p)[-2];
|
|
3603 range_end = ((const unsigned char *) p)[0];
|
428
|
3604
|
|
3605 /* Have to increment the pointer into the pattern string, so the
|
|
3606 caller isn't still at the ending character. */
|
|
3607 (*p_ptr)++;
|
|
3608
|
|
3609 /* If the start is after the end, the range is empty. */
|
|
3610 if (range_start > range_end)
|
|
3611 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
|
|
3612
|
|
3613 /* Here we see why `this_char' has to be larger than an `unsigned
|
|
3614 char' -- the range is inclusive, so if `range_end' == 0xff
|
|
3615 (assuming 8-bit characters), we would otherwise go into an infinite
|
|
3616 loop, since all characters <= 0xff. */
|
|
3617 for (this_char = range_start; this_char <= range_end; this_char++)
|
|
3618 {
|
826
|
3619 SET_LIST_BIT (RE_TRANSLATE (this_char));
|
428
|
3620 }
|
|
3621
|
|
3622 return REG_NOERROR;
|
|
3623 }
|
|
3624
|
|
3625 #ifdef MULE
|
|
3626
|
|
3627 static reg_errcode_t
|
446
|
3628 compile_extended_range (re_char **p_ptr, re_char *pend,
|
|
3629 RE_TRANSLATE_TYPE translate,
|
428
|
3630 reg_syntax_t syntax, Lisp_Object rtab)
|
|
3631 {
|
867
|
3632 Ichar this_char, range_start, range_end;
|
|
3633 const Ibyte *p;
|
428
|
3634
|
|
3635 if (*p_ptr == pend)
|
|
3636 return REG_ERANGE;
|
|
3637
|
867
|
3638 p = (const Ibyte *) *p_ptr;
|
|
3639 range_end = itext_ichar (p);
|
428
|
3640 p--; /* back to '-' */
|
867
|
3641 DEC_IBYTEPTR (p); /* back to start of range */
|
428
|
3642 /* We also want to fetch the endpoints without translating them; the
|
|
3643 appropriate translation is done in the bit-setting loop below. */
|
867
|
3644 range_start = itext_ichar (p);
|
|
3645 INC_IBYTEPTR (*p_ptr);
|
428
|
3646
|
|
3647 /* If the start is after the end, the range is empty. */
|
|
3648 if (range_start > range_end)
|
|
3649 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
|
|
3650
|
|
3651 /* Can't have ranges spanning different charsets, except maybe for
|
|
3652 ranges entirely within the first 256 chars. */
|
|
3653
|
|
3654 if ((range_start >= 0x100 || range_end >= 0x100)
|
867
|
3655 && ichar_leading_byte (range_start) !=
|
|
3656 ichar_leading_byte (range_end))
|
428
|
3657 return REG_ERANGESPAN;
|
|
3658
|
826
|
3659 /* #### This might be way inefficient if the range encompasses 10,000
|
|
3660 chars or something. To be efficient, you'd have to do something like
|
|
3661 this:
|
428
|
3662
|
|
3663 range_table a;
|
|
3664 range_table b;
|
|
3665 map over translation table in [range_start, range_end] of
|
|
3666 (put the mapped range in a;
|
|
3667 put the translation in b)
|
|
3668 invert the range in a and truncate to [range_start, range_end]
|
|
3669 compute the union of a, b
|
|
3670 union the result into rtab
|
|
3671 */
|
826
|
3672 for (this_char = range_start; this_char <= range_end; this_char++)
|
428
|
3673 {
|
826
|
3674 SET_RANGETAB_BIT (RE_TRANSLATE (this_char));
|
428
|
3675 }
|
|
3676
|
|
3677 if (this_char <= range_end)
|
|
3678 put_range_table (rtab, this_char, range_end, Qt);
|
|
3679
|
|
3680 return REG_NOERROR;
|
|
3681 }
|
|
3682
|
|
3683 #endif /* MULE */
|
|
3684
|
|
3685 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
|
|
3686 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
|
|
3687 characters can start a string that matches the pattern. This fastmap
|
|
3688 is used by re_search to skip quickly over impossible starting points.
|
|
3689
|
|
3690 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
|
|
3691 area as BUFP->fastmap.
|
|
3692
|
|
3693 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
|
|
3694 the pattern buffer.
|
|
3695
|
|
3696 Returns 0 if we succeed, -2 if an internal error. */
|
|
3697
|
|
3698 int
|
826
|
3699 re_compile_fastmap (struct re_pattern_buffer *bufp
|
|
3700 RE_LISP_SHORT_CONTEXT_ARGS_DECL)
|
428
|
3701 {
|
|
3702 int j, k;
|
|
3703 #ifdef MATCH_MAY_ALLOCATE
|
|
3704 fail_stack_type fail_stack;
|
|
3705 #endif
|
456
|
3706 DECLARE_DESTINATION;
|
428
|
3707 /* We don't push any register information onto the failure stack. */
|
|
3708
|
826
|
3709 /* &&#### this should be changed for 8-bit-fixed, for efficiency. see
|
|
3710 comment marked with &&#### in re_search_2. */
|
|
3711
|
428
|
3712 REGISTER char *fastmap = bufp->fastmap;
|
|
3713 unsigned char *pattern = bufp->buffer;
|
647
|
3714 long size = bufp->used;
|
428
|
3715 unsigned char *p = pattern;
|
|
3716 REGISTER unsigned char *pend = pattern + size;
|
|
3717
|
771
|
3718 #ifdef REGEX_REL_ALLOC
|
428
|
3719 /* This holds the pointer to the failure stack, when
|
|
3720 it is allocated relocatably. */
|
|
3721 fail_stack_elt_t *failure_stack_ptr;
|
|
3722 #endif
|
|
3723
|
|
3724 /* Assume that each path through the pattern can be null until
|
|
3725 proven otherwise. We set this false at the bottom of switch
|
|
3726 statement, to which we get only if a particular path doesn't
|
|
3727 match the empty string. */
|
460
|
3728 re_bool path_can_be_null = true;
|
428
|
3729
|
|
3730 /* We aren't doing a `succeed_n' to begin with. */
|
460
|
3731 re_bool succeed_n_p = false;
|
428
|
3732
|
1333
|
3733 #ifdef ERROR_CHECK_MALLOC
|
|
3734 /* The pattern comes from string data, not buffer data. We don't access
|
|
3735 any buffer data, so we don't have to worry about malloc() (but the
|
|
3736 disallowed flag may have been set by a caller). */
|
|
3737 int depth = bind_regex_malloc_disallowed (0);
|
|
3738 #endif
|
|
3739
|
428
|
3740 assert (fastmap != NULL && p != NULL);
|
|
3741
|
|
3742 INIT_FAIL_STACK ();
|
|
3743 memset (fastmap, 0, 1 << BYTEWIDTH); /* Assume nothing's valid. */
|
|
3744 bufp->fastmap_accurate = 1; /* It will be when we're done. */
|
|
3745 bufp->can_be_null = 0;
|
|
3746
|
|
3747 while (1)
|
|
3748 {
|
|
3749 if (p == pend || *p == succeed)
|
|
3750 {
|
|
3751 /* We have reached the (effective) end of pattern. */
|
|
3752 if (!FAIL_STACK_EMPTY ())
|
|
3753 {
|
|
3754 bufp->can_be_null |= path_can_be_null;
|
|
3755
|
|
3756 /* Reset for next path. */
|
|
3757 path_can_be_null = true;
|
|
3758
|
446
|
3759 p = (unsigned char *) fail_stack.stack[--fail_stack.avail].pointer;
|
428
|
3760
|
|
3761 continue;
|
|
3762 }
|
|
3763 else
|
|
3764 break;
|
|
3765 }
|
|
3766
|
|
3767 /* We should never be about to go beyond the end of the pattern. */
|
|
3768 assert (p < pend);
|
|
3769
|
|
3770 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
|
|
3771 {
|
|
3772
|
|
3773 /* I guess the idea here is to simply not bother with a fastmap
|
|
3774 if a backreference is used, since it's too hard to figure out
|
|
3775 the fastmap for the corresponding group. Setting
|
|
3776 `can_be_null' stops `re_search_2' from using the fastmap, so
|
|
3777 that is all we do. */
|
|
3778 case duplicate:
|
|
3779 bufp->can_be_null = 1;
|
|
3780 goto done;
|
|
3781
|
|
3782
|
|
3783 /* Following are the cases which match a character. These end
|
|
3784 with `break'. */
|
|
3785
|
|
3786 case exactn:
|
|
3787 fastmap[p[1]] = 1;
|
|
3788 break;
|
|
3789
|
|
3790
|
|
3791 case charset:
|
|
3792 /* XEmacs: Under Mule, these bit vectors will
|
|
3793 only contain values for characters below 0x80. */
|
|
3794 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
|
|
3795 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
|
|
3796 fastmap[j] = 1;
|
|
3797 break;
|
|
3798
|
|
3799
|
|
3800 case charset_not:
|
|
3801 /* Chars beyond end of map must be allowed. */
|
|
3802 #ifdef MULE
|
|
3803 for (j = *p * BYTEWIDTH; j < 0x80; j++)
|
|
3804 fastmap[j] = 1;
|
|
3805 /* And all extended characters must be allowed, too. */
|
|
3806 for (j = 0x80; j < 0xA0; j++)
|
|
3807 fastmap[j] = 1;
|
446
|
3808 #else /* not MULE */
|
428
|
3809 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
|
|
3810 fastmap[j] = 1;
|
446
|
3811 #endif /* MULE */
|
428
|
3812
|
|
3813 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
|
|
3814 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
|
|
3815 fastmap[j] = 1;
|
|
3816 break;
|
|
3817
|
|
3818 #ifdef MULE
|
|
3819 case charset_mule:
|
|
3820 {
|
|
3821 int nentries;
|
|
3822 int i;
|
|
3823
|
|
3824 nentries = unified_range_table_nentries (p);
|
|
3825 for (i = 0; i < nentries; i++)
|
|
3826 {
|
|
3827 EMACS_INT first, last;
|
|
3828 Lisp_Object dummy_val;
|
|
3829 int jj;
|
867
|
3830 Ibyte strr[MAX_ICHAR_LEN];
|
428
|
3831
|
|
3832 unified_range_table_get_range (p, i, &first, &last,
|
|
3833 &dummy_val);
|
|
3834 for (jj = first; jj <= last && jj < 0x80; jj++)
|
|
3835 fastmap[jj] = 1;
|
|
3836 /* Ranges below 0x100 can span charsets, but there
|
|
3837 are only two (Control-1 and Latin-1), and
|
|
3838 either first or last has to be in them. */
|
867
|
3839 set_itext_ichar (strr, first);
|
428
|
3840 fastmap[*strr] = 1;
|
|
3841 if (last < 0x100)
|
|
3842 {
|
867
|
3843 set_itext_ichar (strr, last);
|
428
|
3844 fastmap[*strr] = 1;
|
|
3845 }
|
|
3846 }
|
|
3847 }
|
|
3848 break;
|
|
3849
|
|
3850 case charset_mule_not:
|
|
3851 {
|
|
3852 int nentries;
|
|
3853 int i;
|
|
3854
|
|
3855 nentries = unified_range_table_nentries (p);
|
|
3856 for (i = 0; i < nentries; i++)
|
|
3857 {
|
|
3858 EMACS_INT first, last;
|
|
3859 Lisp_Object dummy_val;
|
|
3860 int jj;
|
|
3861 int smallest_prev = 0;
|
|
3862
|
|
3863 unified_range_table_get_range (p, i, &first, &last,
|
|
3864 &dummy_val);
|
|
3865 for (jj = smallest_prev; jj < first && jj < 0x80; jj++)
|
|
3866 fastmap[jj] = 1;
|
|
3867 smallest_prev = last + 1;
|
|
3868 if (smallest_prev >= 0x80)
|
|
3869 break;
|
|
3870 }
|
|
3871 /* Calculating which leading bytes are actually allowed
|
|
3872 here is rather difficult, so we just punt and allow
|
|
3873 all of them. */
|
|
3874 for (i = 0x80; i < 0xA0; i++)
|
|
3875 fastmap[i] = 1;
|
|
3876 }
|
|
3877 break;
|
|
3878 #endif /* MULE */
|
|
3879
|
|
3880
|
|
3881 case anychar:
|
|
3882 {
|
|
3883 int fastmap_newline = fastmap['\n'];
|
|
3884
|
|
3885 /* `.' matches anything ... */
|
|
3886 #ifdef MULE
|
|
3887 /* "anything" only includes bytes that can be the
|
|
3888 first byte of a character. */
|
|
3889 for (j = 0; j < 0xA0; j++)
|
|
3890 fastmap[j] = 1;
|
|
3891 #else
|
|
3892 for (j = 0; j < (1 << BYTEWIDTH); j++)
|
|
3893 fastmap[j] = 1;
|
|
3894 #endif
|
|
3895
|
|
3896 /* ... except perhaps newline. */
|
|
3897 if (!(bufp->syntax & RE_DOT_NEWLINE))
|
|
3898 fastmap['\n'] = fastmap_newline;
|
|
3899
|
|
3900 /* Return if we have already set `can_be_null'; if we have,
|
|
3901 then the fastmap is irrelevant. Something's wrong here. */
|
|
3902 else if (bufp->can_be_null)
|
|
3903 goto done;
|
|
3904
|
|
3905 /* Otherwise, have to check alternative paths. */
|
|
3906 break;
|
|
3907 }
|
|
3908
|
826
|
3909 #ifndef emacs
|
|
3910 case wordchar:
|
|
3911 for (j = 0; j < (1 << BYTEWIDTH); j++)
|
|
3912 if (SYNTAX (ignored, j) == Sword)
|
|
3913 fastmap[j] = 1;
|
|
3914 break;
|
|
3915
|
|
3916 case notwordchar:
|
|
3917 for (j = 0; j < (1 << BYTEWIDTH); j++)
|
|
3918 if (SYNTAX (ignored, j) != Sword)
|
|
3919 fastmap[j] = 1;
|
|
3920 break;
|
|
3921 #else /* emacs */
|
|
3922 case wordchar:
|
|
3923 case notwordchar:
|
460
|
3924 case wordbound:
|
|
3925 case notwordbound:
|
|
3926 case wordbeg:
|
|
3927 case wordend:
|
|
3928 case notsyntaxspec:
|
|
3929 case syntaxspec:
|
|
3930 /* This match depends on text properties. These end with
|
|
3931 aborting optimizations. */
|
|
3932 bufp->can_be_null = 1;
|
|
3933 goto done;
|
826
|
3934 #if 0 /* all of the following code is unused now that the `syntax-table'
|
|
3935 property exists -- it's trickier to do this than just look in
|
|
3936 the buffer. &&#### but we could just use the syntax-cache stuff
|
|
3937 instead; why don't we? --ben */
|
|
3938 case wordchar:
|
|
3939 k = (int) Sword;
|
|
3940 goto matchsyntax;
|
|
3941
|
|
3942 case notwordchar:
|
|
3943 k = (int) Sword;
|
|
3944 goto matchnotsyntax;
|
|
3945
|
428
|
3946 case syntaxspec:
|
|
3947 k = *p++;
|
826
|
3948 matchsyntax:
|
428
|
3949 #ifdef MULE
|
|
3950 for (j = 0; j < 0x80; j++)
|
826
|
3951 if (SYNTAX
|
|
3952 (XCHAR_TABLE (BUFFER_MIRROR_SYNTAX_TABLE (lispbuf)), j) ==
|
428
|
3953 (enum syntaxcode) k)
|
|
3954 fastmap[j] = 1;
|
|
3955 for (j = 0x80; j < 0xA0; j++)
|
|
3956 {
|
826
|
3957 if (leading_byte_prefix_p ((unsigned char) j))
|
428
|
3958 /* too complicated to calculate this right */
|
|
3959 fastmap[j] = 1;
|
|
3960 else
|
|
3961 {
|
|
3962 int multi_p;
|
|
3963 Lisp_Object cset;
|
|
3964
|
826
|
3965 cset = charset_by_leading_byte (j);
|
428
|
3966 if (CHARSETP (cset))
|
|
3967 {
|
826
|
3968 if (charset_syntax (lispbuf, cset, &multi_p)
|
428
|
3969 == Sword || multi_p)
|
|
3970 fastmap[j] = 1;
|
|
3971 }
|
|
3972 }
|
|
3973 }
|
446
|
3974 #else /* not MULE */
|
428
|
3975 for (j = 0; j < (1 << BYTEWIDTH); j++)
|
826
|
3976 if (SYNTAX
|
|
3977 (XCHAR_TABLE (BUFFER_MIRROR_SYNTAX_TABLE (lispbuf)), j) ==
|
428
|
3978 (enum syntaxcode) k)
|
|
3979 fastmap[j] = 1;
|
446
|
3980 #endif /* MULE */
|
428
|
3981 break;
|
|
3982
|
|
3983
|
|
3984 case notsyntaxspec:
|
|
3985 k = *p++;
|
826
|
3986 matchnotsyntax:
|
428
|
3987 #ifdef MULE
|
|
3988 for (j = 0; j < 0x80; j++)
|
826
|
3989 if (SYNTAX
|
428
|
3990 (XCHAR_TABLE
|
826
|
3991 (BUFFER_MIRROR_SYNTAX_TABLE (lispbuf)), j) !=
|
428
|
3992 (enum syntaxcode) k)
|
|
3993 fastmap[j] = 1;
|
|
3994 for (j = 0x80; j < 0xA0; j++)
|
|
3995 {
|
826
|
3996 if (leading_byte_prefix_p ((unsigned char) j))
|
428
|
3997 /* too complicated to calculate this right */
|
|
3998 fastmap[j] = 1;
|
|
3999 else
|
|
4000 {
|
|
4001 int multi_p;
|
|
4002 Lisp_Object cset;
|
|
4003
|
826
|
4004 cset = charset_by_leading_byte (j);
|
428
|
4005 if (CHARSETP (cset))
|
|
4006 {
|
826
|
4007 if (charset_syntax (lispbuf, cset, &multi_p)
|
428
|
4008 != Sword || multi_p)
|
|
4009 fastmap[j] = 1;
|
|
4010 }
|
|
4011 }
|
|
4012 }
|
446
|
4013 #else /* not MULE */
|
428
|
4014 for (j = 0; j < (1 << BYTEWIDTH); j++)
|
826
|
4015 if (SYNTAX
|
428
|
4016 (XCHAR_TABLE
|
826
|
4017 (BUFFER_MIRROR_SYNTAX_TABLE (lispbuf)), j) !=
|
428
|
4018 (enum syntaxcode) k)
|
|
4019 fastmap[j] = 1;
|
446
|
4020 #endif /* MULE */
|
428
|
4021 break;
|
826
|
4022 #endif /* 0 */
|
428
|
4023
|
|
4024 #ifdef MULE
|
|
4025 /* 97/2/17 jhod category patch */
|
|
4026 case categoryspec:
|
|
4027 case notcategoryspec:
|
|
4028 bufp->can_be_null = 1;
|
1333
|
4029 UNBIND_REGEX_MALLOC_CHECK ();
|
428
|
4030 return 0;
|
|
4031 /* end if category patch */
|
|
4032 #endif /* MULE */
|
|
4033
|
|
4034 /* All cases after this match the empty string. These end with
|
|
4035 `continue'. */
|
|
4036 case before_dot:
|
|
4037 case at_dot:
|
|
4038 case after_dot:
|
|
4039 continue;
|
826
|
4040 #endif /* emacs */
|
428
|
4041
|
|
4042
|
|
4043 case no_op:
|
|
4044 case begline:
|
|
4045 case endline:
|
|
4046 case begbuf:
|
|
4047 case endbuf:
|
460
|
4048 #ifndef emacs
|
428
|
4049 case wordbound:
|
|
4050 case notwordbound:
|
|
4051 case wordbeg:
|
|
4052 case wordend:
|
460
|
4053 #endif
|
428
|
4054 case push_dummy_failure:
|
|
4055 continue;
|
|
4056
|
|
4057
|
|
4058 case jump_n:
|
|
4059 case pop_failure_jump:
|
|
4060 case maybe_pop_jump:
|
|
4061 case jump:
|
|
4062 case jump_past_alt:
|
|
4063 case dummy_failure_jump:
|
|
4064 EXTRACT_NUMBER_AND_INCR (j, p);
|
|
4065 p += j;
|
|
4066 if (j > 0)
|
|
4067 continue;
|
|
4068
|
|
4069 /* Jump backward implies we just went through the body of a
|
|
4070 loop and matched nothing. Opcode jumped to should be
|
|
4071 `on_failure_jump' or `succeed_n'. Just treat it like an
|
|
4072 ordinary jump. For a * loop, it has pushed its failure
|
|
4073 point already; if so, discard that as redundant. */
|
|
4074 if ((re_opcode_t) *p != on_failure_jump
|
|
4075 && (re_opcode_t) *p != succeed_n)
|
|
4076 continue;
|
|
4077
|
|
4078 p++;
|
|
4079 EXTRACT_NUMBER_AND_INCR (j, p);
|
|
4080 p += j;
|
|
4081
|
|
4082 /* If what's on the stack is where we are now, pop it. */
|
|
4083 if (!FAIL_STACK_EMPTY ()
|
|
4084 && fail_stack.stack[fail_stack.avail - 1].pointer == p)
|
|
4085 fail_stack.avail--;
|
|
4086
|
|
4087 continue;
|
|
4088
|
|
4089
|
|
4090 case on_failure_jump:
|
|
4091 case on_failure_keep_string_jump:
|
|
4092 handle_on_failure_jump:
|
|
4093 EXTRACT_NUMBER_AND_INCR (j, p);
|
|
4094
|
|
4095 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
|
|
4096 end of the pattern. We don't want to push such a point,
|
|
4097 since when we restore it above, entering the switch will
|
|
4098 increment `p' past the end of the pattern. We don't need
|
|
4099 to push such a point since we obviously won't find any more
|
|
4100 fastmap entries beyond `pend'. Such a pattern can match
|
|
4101 the null string, though. */
|
|
4102 if (p + j < pend)
|
|
4103 {
|
|
4104 if (!PUSH_PATTERN_OP (p + j, fail_stack))
|
|
4105 {
|
|
4106 RESET_FAIL_STACK ();
|
1333
|
4107 UNBIND_REGEX_MALLOC_CHECK ();
|
428
|
4108 return -2;
|
|
4109 }
|
|
4110 }
|
|
4111 else
|
|
4112 bufp->can_be_null = 1;
|
|
4113
|
|
4114 if (succeed_n_p)
|
|
4115 {
|
|
4116 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
|
|
4117 succeed_n_p = false;
|
|
4118 }
|
|
4119
|
|
4120 continue;
|
|
4121
|
|
4122
|
|
4123 case succeed_n:
|
|
4124 /* Get to the number of times to succeed. */
|
|
4125 p += 2;
|
|
4126
|
|
4127 /* Increment p past the n for when k != 0. */
|
|
4128 EXTRACT_NUMBER_AND_INCR (k, p);
|
|
4129 if (k == 0)
|
|
4130 {
|
|
4131 p -= 4;
|
|
4132 succeed_n_p = true; /* Spaghetti code alert. */
|
|
4133 goto handle_on_failure_jump;
|
|
4134 }
|
|
4135 continue;
|
|
4136
|
|
4137
|
|
4138 case set_number_at:
|
|
4139 p += 4;
|
|
4140 continue;
|
|
4141
|
|
4142
|
|
4143 case start_memory:
|
|
4144 case stop_memory:
|
|
4145 p += 2;
|
|
4146 continue;
|
|
4147
|
|
4148
|
|
4149 default:
|
|
4150 abort (); /* We have listed all the cases. */
|
|
4151 } /* switch *p++ */
|
|
4152
|
|
4153 /* Getting here means we have found the possible starting
|
|
4154 characters for one path of the pattern -- and that the empty
|
|
4155 string does not match. We need not follow this path further.
|
|
4156 Instead, look at the next alternative (remembered on the
|
|
4157 stack), or quit if no more. The test at the top of the loop
|
|
4158 does these things. */
|
|
4159 path_can_be_null = false;
|
|
4160 p = pend;
|
|
4161 } /* while p */
|
|
4162
|
|
4163 /* Set `can_be_null' for the last path (also the first path, if the
|
|
4164 pattern is empty). */
|
|
4165 bufp->can_be_null |= path_can_be_null;
|
|
4166
|
|
4167 done:
|
|
4168 RESET_FAIL_STACK ();
|
1333
|
4169 UNBIND_REGEX_MALLOC_CHECK ();
|
428
|
4170 return 0;
|
|
4171 } /* re_compile_fastmap */
|
|
4172
|
|
4173 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
|
|
4174 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
|
|
4175 this memory for recording register information. STARTS and ENDS
|
|
4176 must be allocated using the malloc library routine, and must each
|
|
4177 be at least NUM_REGS * sizeof (regoff_t) bytes long.
|
|
4178
|
|
4179 If NUM_REGS == 0, then subsequent matches should allocate their own
|
|
4180 register data.
|
|
4181
|
|
4182 Unless this function is called, the first search or match using
|
|
4183 PATTERN_BUFFER will allocate its own register data, without
|
|
4184 freeing the old data. */
|
|
4185
|
|
4186 void
|
|
4187 re_set_registers (struct re_pattern_buffer *bufp, struct re_registers *regs,
|
647
|
4188 int num_regs, regoff_t *starts, regoff_t *ends)
|
428
|
4189 {
|
|
4190 if (num_regs)
|
|
4191 {
|
|
4192 bufp->regs_allocated = REGS_REALLOCATE;
|
|
4193 regs->num_regs = num_regs;
|
|
4194 regs->start = starts;
|
|
4195 regs->end = ends;
|
|
4196 }
|
|
4197 else
|
|
4198 {
|
|
4199 bufp->regs_allocated = REGS_UNALLOCATED;
|
|
4200 regs->num_regs = 0;
|
|
4201 regs->start = regs->end = (regoff_t *) 0;
|
|
4202 }
|
|
4203 }
|
|
4204
|
|
4205 /* Searching routines. */
|
|
4206
|
|
4207 /* Like re_search_2, below, but only one string is specified, and
|
|
4208 doesn't let you say where to stop matching. */
|
|
4209
|
|
4210 int
|
442
|
4211 re_search (struct re_pattern_buffer *bufp, const char *string, int size,
|
826
|
4212 int startpos, int range, struct re_registers *regs
|
|
4213 RE_LISP_CONTEXT_ARGS_DECL)
|
428
|
4214 {
|
|
4215 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
|
826
|
4216 regs, size RE_LISP_CONTEXT_ARGS);
|
428
|
4217 }
|
|
4218
|
|
4219 /* Using the compiled pattern in BUFP->buffer, first tries to match the
|
|
4220 virtual concatenation of STRING1 and STRING2, starting first at index
|
|
4221 STARTPOS, then at STARTPOS + 1, and so on.
|
|
4222
|
|
4223 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
|
|
4224
|
|
4225 RANGE is how far to scan while trying to match. RANGE = 0 means try
|
|
4226 only at STARTPOS; in general, the last start tried is STARTPOS +
|
|
4227 RANGE.
|
|
4228
|
826
|
4229 All sizes and positions refer to bytes (not chars); under Mule, the code
|
|
4230 knows about the format of the text and will only check at positions
|
|
4231 where a character starts.
|
|
4232
|
428
|
4233 With MULE, RANGE is a byte position, not a char position. The last
|
|
4234 start tried is the character starting <= STARTPOS + RANGE.
|
|
4235
|
|
4236 In REGS, return the indices of the virtual concatenation of STRING1
|
|
4237 and STRING2 that matched the entire BUFP->buffer and its contained
|
|
4238 subexpressions.
|
|
4239
|
|
4240 Do not consider matching one past the index STOP in the virtual
|
|
4241 concatenation of STRING1 and STRING2.
|
|
4242
|
|
4243 We return either the position in the strings at which the match was
|
|
4244 found, -1 if no match, or -2 if error (such as failure
|
|
4245 stack overflow). */
|
|
4246
|
|
4247 int
|
446
|
4248 re_search_2 (struct re_pattern_buffer *bufp, const char *str1,
|
|
4249 int size1, const char *str2, int size2, int startpos,
|
826
|
4250 int range, struct re_registers *regs, int stop
|
|
4251 RE_LISP_CONTEXT_ARGS_DECL)
|
428
|
4252 {
|
|
4253 int val;
|
446
|
4254 re_char *string1 = (re_char *) str1;
|
|
4255 re_char *string2 = (re_char *) str2;
|
428
|
4256 REGISTER char *fastmap = bufp->fastmap;
|
446
|
4257 REGISTER RE_TRANSLATE_TYPE translate = bufp->translate;
|
428
|
4258 int total_size = size1 + size2;
|
|
4259 int endpos = startpos + range;
|
|
4260 #ifdef REGEX_BEGLINE_CHECK
|
|
4261 int anchored_at_begline = 0;
|
|
4262 #endif
|
446
|
4263 re_char *d;
|
826
|
4264 #ifdef emacs
|
|
4265 Internal_Format fmt = buffer_or_other_internal_format (lispobj);
|
1346
|
4266 #ifdef REL_ALLOC
|
|
4267 Ibyte *orig_buftext =
|
|
4268 BUFFERP (lispobj) ?
|
|
4269 BYTE_BUF_BYTE_ADDRESS (XBUFFER (lispobj),
|
|
4270 BYTE_BUF_BEGV (XBUFFER (lispobj))) :
|
|
4271 0;
|
|
4272 #endif
|
1333
|
4273 #ifdef ERROR_CHECK_MALLOC
|
|
4274 int depth;
|
|
4275 #endif
|
826
|
4276 #endif /* emacs */
|
|
4277 #if 1
|
|
4278 int forward_search_p;
|
|
4279 #endif
|
428
|
4280
|
|
4281 /* Check for out-of-range STARTPOS. */
|
|
4282 if (startpos < 0 || startpos > total_size)
|
|
4283 return -1;
|
|
4284
|
|
4285 /* Fix up RANGE if it might eventually take us outside
|
|
4286 the virtual concatenation of STRING1 and STRING2. */
|
|
4287 if (endpos < 0)
|
|
4288 range = 0 - startpos;
|
|
4289 else if (endpos > total_size)
|
|
4290 range = total_size - startpos;
|
|
4291
|
826
|
4292 #if 1
|
|
4293 forward_search_p = range > 0;
|
|
4294 #endif
|
|
4295
|
428
|
4296 /* If the search isn't to be a backwards one, don't waste time in a
|
|
4297 search for a pattern that must be anchored. */
|
|
4298 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
|
|
4299 {
|
|
4300 if (startpos > 0)
|
|
4301 return -1;
|
|
4302 else
|
|
4303 {
|
442
|
4304 d = ((const unsigned char *)
|
428
|
4305 (startpos >= size1 ? string2 - size1 : string1) + startpos);
|
867
|
4306 range = itext_ichar_len_fmt (d, fmt);
|
428
|
4307 }
|
|
4308 }
|
|
4309
|
460
|
4310 #ifdef emacs
|
|
4311 /* In a forward search for something that starts with \=.
|
|
4312 don't keep searching past point. */
|
|
4313 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
|
|
4314 {
|
826
|
4315 if (!BUFFERP (lispobj))
|
|
4316 return -1;
|
|
4317 range = (BUF_PT (XBUFFER (lispobj)) - BUF_BEGV (XBUFFER (lispobj))
|
|
4318 - startpos);
|
460
|
4319 if (range < 0)
|
|
4320 return -1;
|
|
4321 }
|
|
4322 #endif /* emacs */
|
|
4323
|
1333
|
4324 #ifdef ERROR_CHECK_MALLOC
|
|
4325 /* Do this after the above return()s. */
|
|
4326 depth = bind_regex_malloc_disallowed (1);
|
|
4327 #endif
|
|
4328
|
428
|
4329 /* Update the fastmap now if not correct already. */
|
1333
|
4330 BEGIN_REGEX_MALLOC_OK ();
|
428
|
4331 if (fastmap && !bufp->fastmap_accurate)
|
826
|
4332 if (re_compile_fastmap (bufp RE_LISP_SHORT_CONTEXT_ARGS) == -2)
|
1333
|
4333 {
|
|
4334 END_REGEX_MALLOC_OK ();
|
|
4335 UNBIND_REGEX_MALLOC_CHECK ();
|
|
4336 return -2;
|
|
4337 }
|
|
4338
|
|
4339 END_REGEX_MALLOC_OK ();
|
|
4340 RE_SEARCH_RELOCATE_MOVEABLE_DATA_POINTERS ();
|
428
|
4341
|
|
4342 #ifdef REGEX_BEGLINE_CHECK
|
|
4343 {
|
647
|
4344 long i = 0;
|
428
|
4345
|
|
4346 while (i < bufp->used)
|
|
4347 {
|
|
4348 if (bufp->buffer[i] == start_memory ||
|
|
4349 bufp->buffer[i] == stop_memory)
|
|
4350 i += 2;
|
|
4351 else
|
|
4352 break;
|
|
4353 }
|
|
4354 anchored_at_begline = i < bufp->used && bufp->buffer[i] == begline;
|
|
4355 }
|
|
4356 #endif
|
|
4357
|
460
|
4358 #ifdef emacs
|
1333
|
4359 BEGIN_REGEX_MALLOC_OK ();
|
826
|
4360 scache = setup_syntax_cache (scache, lispobj, lispbuf,
|
|
4361 offset_to_charxpos (lispobj, startpos),
|
|
4362 1);
|
1333
|
4363 END_REGEX_MALLOC_OK ();
|
|
4364 RE_SEARCH_RELOCATE_MOVEABLE_DATA_POINTERS ();
|
460
|
4365 #endif
|
|
4366
|
428
|
4367 /* Loop through the string, looking for a place to start matching. */
|
|
4368 for (;;)
|
|
4369 {
|
|
4370 #ifdef REGEX_BEGLINE_CHECK
|
826
|
4371 /* If the regex is anchored at the beginning of a line (i.e. with a
|
|
4372 ^), then we can speed things up by skipping to the next
|
|
4373 beginning-of-line. However, to determine "beginning of line" we
|
|
4374 need to look at the previous char, so can't do this check if at
|
|
4375 beginning of either string. (Well, we could if at the beginning of
|
|
4376 the second string, but it would require additional code, and this
|
|
4377 is just an optimization.) */
|
|
4378 if (anchored_at_begline && startpos > 0 && startpos != size1)
|
428
|
4379 {
|
826
|
4380 if (range > 0)
|
|
4381 {
|
|
4382 /* whose stupid idea was it anyway to make this
|
|
4383 function take two strings to match?? */
|
|
4384 int lim = 0;
|
|
4385 re_char *orig_d;
|
|
4386 re_char *stop_d;
|
|
4387
|
|
4388 /* Compute limit as below in fastmap code, so we are guaranteed
|
|
4389 to remain within a single string. */
|
|
4390 if (startpos < size1 && startpos + range >= size1)
|
|
4391 lim = range - (size1 - startpos);
|
|
4392
|
|
4393 d = ((const unsigned char *)
|
|
4394 (startpos >= size1 ? string2 - size1 : string1) + startpos);
|
|
4395 orig_d = d;
|
|
4396 stop_d = d + range - lim;
|
|
4397
|
|
4398 /* We want to find the next location (including the current
|
|
4399 one) where the previous char is a newline, so back up one
|
|
4400 and search forward for a newline. */
|
867
|
4401 DEC_IBYTEPTR_FMT (d, fmt); /* Ok, since startpos != size1. */
|
826
|
4402
|
|
4403 /* Written out as an if-else to avoid testing `translate'
|
|
4404 inside the loop. */
|
|
4405 if (TRANSLATE_P (translate))
|
|
4406 while (d < stop_d &&
|
867
|
4407 RE_TRANSLATE_1 (itext_ichar_fmt (d, fmt, lispobj))
|
826
|
4408 != '\n')
|
867
|
4409 INC_IBYTEPTR_FMT (d, fmt);
|
826
|
4410 else
|
|
4411 while (d < stop_d &&
|
867
|
4412 itext_ichar_ascii_fmt (d, fmt, lispobj) != '\n')
|
|
4413 INC_IBYTEPTR_FMT (d, fmt);
|
826
|
4414
|
|
4415 /* If we were stopped by a newline, skip forward over it.
|
|
4416 Otherwise we will get in an infloop when our start position
|
|
4417 was at begline. */
|
|
4418 if (d < stop_d)
|
867
|
4419 INC_IBYTEPTR_FMT (d, fmt);
|
826
|
4420 range -= d - orig_d;
|
|
4421 startpos += d - orig_d;
|
|
4422 #if 1
|
|
4423 assert (!forward_search_p || range >= 0);
|
|
4424 #endif
|
|
4425 }
|
|
4426 else if (range < 0)
|
|
4427 {
|
|
4428 /* We're lazy, like in the fastmap code below */
|
867
|
4429 Ichar c;
|
826
|
4430
|
|
4431 d = ((const unsigned char *)
|
|
4432 (startpos >= size1 ? string2 - size1 : string1) + startpos);
|
867
|
4433 DEC_IBYTEPTR_FMT (d, fmt);
|
|
4434 c = itext_ichar_fmt (d, fmt, lispobj);
|
826
|
4435 c = RE_TRANSLATE (c);
|
|
4436 if (c != '\n')
|
|
4437 goto advance;
|
|
4438 }
|
428
|
4439 }
|
|
4440 #endif /* REGEX_BEGLINE_CHECK */
|
|
4441
|
|
4442 /* If a fastmap is supplied, skip quickly over characters that
|
|
4443 cannot be the start of a match. If the pattern can match the
|
|
4444 null string, however, we don't need to skip characters; we want
|
|
4445 the first null string. */
|
|
4446 if (fastmap && startpos < total_size && !bufp->can_be_null)
|
|
4447 {
|
826
|
4448 /* For the moment, fastmap always works as if buffer
|
|
4449 is in default format, so convert chars in the search strings
|
|
4450 into default format as we go along, if necessary.
|
|
4451
|
|
4452 &&#### fastmap needs rethinking for 8-bit-fixed so
|
|
4453 it's faster. We need it to reflect the raw
|
|
4454 8-bit-fixed values. That isn't so hard if we assume
|
|
4455 that the top 96 bytes represent a single 1-byte
|
|
4456 charset. For 16-bit/32-bit stuff it's probably not
|
|
4457 worth it to make the fastmap represent the raw, due to
|
|
4458 its nature -- we'd have to use the LSB for the
|
|
4459 fastmap, and that causes lots of problems with Mule
|
|
4460 chars, where it essentially wipes out the usefulness
|
|
4461 of the fastmap entirely. */
|
428
|
4462 if (range > 0) /* Searching forwards. */
|
|
4463 {
|
|
4464 int lim = 0;
|
|
4465 int irange = range;
|
|
4466
|
|
4467 if (startpos < size1 && startpos + range >= size1)
|
|
4468 lim = range - (size1 - startpos);
|
|
4469
|
442
|
4470 d = ((const unsigned char *)
|
428
|
4471 (startpos >= size1 ? string2 - size1 : string1) + startpos);
|
|
4472
|
|
4473 /* Written out as an if-else to avoid testing `translate'
|
|
4474 inside the loop. */
|
446
|
4475 if (TRANSLATE_P (translate))
|
826
|
4476 {
|
|
4477 while (range > lim)
|
|
4478 {
|
|
4479 re_char *old_d = d;
|
428
|
4480 #ifdef MULE
|
867
|
4481 Ibyte tempch[MAX_ICHAR_LEN];
|
|
4482 Ichar buf_ch =
|
|
4483 RE_TRANSLATE_1 (itext_ichar_fmt (d, fmt, lispobj));
|
|
4484 set_itext_ichar (tempch, buf_ch);
|
826
|
4485 if (fastmap[*tempch])
|
|
4486 break;
|
446
|
4487 #else
|
826
|
4488 if (fastmap[(unsigned char) RE_TRANSLATE_1 (*d)])
|
|
4489 break;
|
446
|
4490 #endif /* MULE */
|
867
|
4491 INC_IBYTEPTR_FMT (d, fmt);
|
826
|
4492 range -= (d - old_d);
|
|
4493 #if 1
|
1333
|
4494 assert (!forward_search_p || range >= 0);
|
826
|
4495 #endif
|
|
4496 }
|
|
4497 }
|
|
4498 #ifdef MULE
|
|
4499 else if (fmt != FORMAT_DEFAULT)
|
|
4500 {
|
|
4501 while (range > lim)
|
|
4502 {
|
|
4503 re_char *old_d = d;
|
867
|
4504 Ibyte tempch[MAX_ICHAR_LEN];
|
|
4505 Ichar buf_ch = itext_ichar_fmt (d, fmt, lispobj);
|
|
4506 set_itext_ichar (tempch, buf_ch);
|
826
|
4507 if (fastmap[*tempch])
|
|
4508 break;
|
867
|
4509 INC_IBYTEPTR_FMT (d, fmt);
|
826
|
4510 range -= (d - old_d);
|
|
4511 #if 1
|
1333
|
4512 assert (!forward_search_p || range >= 0);
|
826
|
4513 #endif
|
|
4514 }
|
|
4515 }
|
|
4516 #endif /* MULE */
|
428
|
4517 else
|
826
|
4518 {
|
|
4519 while (range > lim && !fastmap[*d])
|
|
4520 {
|
|
4521 re_char *old_d = d;
|
867
|
4522 INC_IBYTEPTR (d);
|
826
|
4523 range -= (d - old_d);
|
|
4524 #if 1
|
|
4525 assert (!forward_search_p || range >= 0);
|
|
4526 #endif
|
|
4527 }
|
|
4528 }
|
428
|
4529
|
|
4530 startpos += irange - range;
|
|
4531 }
|
|
4532 else /* Searching backwards. */
|
|
4533 {
|
826
|
4534 /* #### It's not clear why we don't just write a loop, like
|
|
4535 for the moving-forward case. Perhaps the writer got lazy,
|
|
4536 since backward searches aren't so common. */
|
|
4537 d = ((const unsigned char *)
|
|
4538 (startpos >= size1 ? string2 - size1 : string1) + startpos);
|
428
|
4539 #ifdef MULE
|
826
|
4540 {
|
867
|
4541 Ibyte tempch[MAX_ICHAR_LEN];
|
|
4542 Ichar buf_ch =
|
|
4543 RE_TRANSLATE (itext_ichar_fmt (d, fmt, lispobj));
|
|
4544 set_itext_ichar (tempch, buf_ch);
|
826
|
4545 if (!fastmap[*tempch])
|
|
4546 goto advance;
|
|
4547 }
|
428
|
4548 #else
|
826
|
4549 if (!fastmap[(unsigned char) RE_TRANSLATE (*d)])
|
446
|
4550 goto advance;
|
826
|
4551 #endif /* MULE */
|
428
|
4552 }
|
|
4553 }
|
|
4554
|
|
4555 /* If can't match the null string, and that's all we have left, fail. */
|
|
4556 if (range >= 0 && startpos == total_size && fastmap
|
|
4557 && !bufp->can_be_null)
|
1333
|
4558 {
|
|
4559 UNBIND_REGEX_MALLOC_CHECK ();
|
|
4560 return -1;
|
|
4561 }
|
428
|
4562
|
|
4563 #ifdef emacs /* XEmacs added, w/removal of immediate_quit */
|
|
4564 if (!no_quit_in_re_search)
|
1333
|
4565 {
|
|
4566 BEGIN_REGEX_MALLOC_OK ();
|
|
4567 QUIT;
|
|
4568 END_REGEX_MALLOC_OK ();
|
|
4569 RE_SEARCH_RELOCATE_MOVEABLE_DATA_POINTERS ();
|
|
4570 }
|
|
4571
|
428
|
4572 #endif
|
1333
|
4573 BEGIN_REGEX_MALLOC_OK ();
|
428
|
4574 val = re_match_2_internal (bufp, string1, size1, string2, size2,
|
826
|
4575 startpos, regs, stop
|
|
4576 RE_LISP_CONTEXT_ARGS);
|
428
|
4577 #ifndef REGEX_MALLOC
|
1333
|
4578 ALLOCA_GARBAGE_COLLECT ();
|
428
|
4579 #endif
|
1333
|
4580 END_REGEX_MALLOC_OK ();
|
|
4581 RE_SEARCH_RELOCATE_MOVEABLE_DATA_POINTERS ();
|
428
|
4582
|
|
4583 if (val >= 0)
|
1333
|
4584 {
|
|
4585 UNBIND_REGEX_MALLOC_CHECK ();
|
|
4586 return startpos;
|
|
4587 }
|
428
|
4588
|
|
4589 if (val == -2)
|
1333
|
4590 {
|
|
4591 UNBIND_REGEX_MALLOC_CHECK ();
|
|
4592 return -2;
|
|
4593 }
|
|
4594
|
|
4595 RE_SEARCH_RELOCATE_MOVEABLE_DATA_POINTERS ();
|
428
|
4596 advance:
|
|
4597 if (!range)
|
|
4598 break;
|
|
4599 else if (range > 0)
|
|
4600 {
|
826
|
4601 Bytecount d_size;
|
442
|
4602 d = ((const unsigned char *)
|
428
|
4603 (startpos >= size1 ? string2 - size1 : string1) + startpos);
|
867
|
4604 d_size = itext_ichar_len_fmt (d, fmt);
|
428
|
4605 range -= d_size;
|
826
|
4606 #if 1
|
|
4607 assert (!forward_search_p || range >= 0);
|
|
4608 #endif
|
428
|
4609 startpos += d_size;
|
|
4610 }
|
|
4611 else
|
|
4612 {
|
826
|
4613 Bytecount d_size;
|
428
|
4614 /* Note startpos > size1 not >=. If we are on the
|
|
4615 string1/string2 boundary, we want to backup into string1. */
|
442
|
4616 d = ((const unsigned char *)
|
428
|
4617 (startpos > size1 ? string2 - size1 : string1) + startpos);
|
867
|
4618 DEC_IBYTEPTR_FMT (d, fmt);
|
|
4619 d_size = itext_ichar_len_fmt (d, fmt);
|
428
|
4620 range += d_size;
|
826
|
4621 #if 1
|
|
4622 assert (!forward_search_p || range >= 0);
|
|
4623 #endif
|
428
|
4624 startpos -= d_size;
|
|
4625 }
|
|
4626 }
|
1333
|
4627 UNBIND_REGEX_MALLOC_CHECK ();
|
428
|
4628 return -1;
|
|
4629 } /* re_search_2 */
|
826
|
4630
|
428
|
4631
|
|
4632 /* Declarations and macros for re_match_2. */
|
|
4633
|
|
4634 /* This converts PTR, a pointer into one of the search strings `string1'
|
|
4635 and `string2' into an offset from the beginning of that string. */
|
|
4636 #define POINTER_TO_OFFSET(ptr) \
|
|
4637 (FIRST_STRING_P (ptr) \
|
|
4638 ? ((regoff_t) ((ptr) - string1)) \
|
|
4639 : ((regoff_t) ((ptr) - string2 + size1)))
|
|
4640
|
|
4641 /* Macros for dealing with the split strings in re_match_2. */
|
|
4642
|
|
4643 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
|
|
4644
|
|
4645 /* Call before fetching a character with *d. This switches over to
|
|
4646 string2 if necessary. */
|
826
|
4647 #define REGEX_PREFETCH() \
|
428
|
4648 while (d == dend) \
|
|
4649 { \
|
|
4650 /* End of string2 => fail. */ \
|
|
4651 if (dend == end_match_2) \
|
|
4652 goto fail; \
|
|
4653 /* End of string1 => advance to string2. */ \
|
|
4654 d = string2; \
|
|
4655 dend = end_match_2; \
|
|
4656 }
|
|
4657
|
|
4658
|
|
4659 /* Test if at very beginning or at very end of the virtual concatenation
|
|
4660 of `string1' and `string2'. If only one string, it's `string2'. */
|
|
4661 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
|
|
4662 #define AT_STRINGS_END(d) ((d) == end2)
|
|
4663
|
|
4664 /* XEmacs change:
|
|
4665 If the given position straddles the string gap, return the equivalent
|
|
4666 position that is before or after the gap, respectively; otherwise,
|
|
4667 return the same position. */
|
|
4668 #define POS_BEFORE_GAP_UNSAFE(d) ((d) == string2 ? end1 : (d))
|
|
4669 #define POS_AFTER_GAP_UNSAFE(d) ((d) == end1 ? string2 : (d))
|
|
4670
|
|
4671 /* Test if CH is a word-constituent character. (XEmacs change) */
|
826
|
4672 #define WORDCHAR_P(ch) \
|
|
4673 (SYNTAX (BUFFER_MIRROR_SYNTAX_TABLE (lispbuf), ch) == Sword)
|
428
|
4674
|
|
4675 /* Free everything we malloc. */
|
|
4676 #ifdef MATCH_MAY_ALLOCATE
|
|
4677 #define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
|
|
4678 #define FREE_VARIABLES() \
|
|
4679 do { \
|
1333
|
4680 UNBIND_REGEX_MALLOC_CHECK (); \
|
428
|
4681 REGEX_FREE_STACK (fail_stack.stack); \
|
|
4682 FREE_VAR (regstart); \
|
|
4683 FREE_VAR (regend); \
|
|
4684 FREE_VAR (old_regstart); \
|
|
4685 FREE_VAR (old_regend); \
|
|
4686 FREE_VAR (best_regstart); \
|
|
4687 FREE_VAR (best_regend); \
|
|
4688 FREE_VAR (reg_info); \
|
|
4689 FREE_VAR (reg_dummy); \
|
|
4690 FREE_VAR (reg_info_dummy); \
|
|
4691 } while (0)
|
446
|
4692 #else /* not MATCH_MAY_ALLOCATE */
|
1333
|
4693 #define FREE_VARIABLES() \
|
|
4694 do { \
|
|
4695 UNBIND_REGEX_MALLOC_CHECK (); \
|
|
4696 } while (0)
|
446
|
4697 #endif /* MATCH_MAY_ALLOCATE */
|
428
|
4698
|
|
4699 /* These values must meet several constraints. They must not be valid
|
|
4700 register values; since we have a limit of 255 registers (because
|
|
4701 we use only one byte in the pattern for the register number), we can
|
|
4702 use numbers larger than 255. They must differ by 1, because of
|
|
4703 NUM_FAILURE_ITEMS above. And the value for the lowest register must
|
|
4704 be larger than the value for the highest register, so we do not try
|
|
4705 to actually save any registers when none are active. */
|
|
4706 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
|
|
4707 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
|
|
4708
|
|
4709 /* Matching routines. */
|
|
4710
|
826
|
4711 #ifndef emacs /* XEmacs never uses this. */
|
428
|
4712 /* re_match is like re_match_2 except it takes only a single string. */
|
|
4713
|
|
4714 int
|
442
|
4715 re_match (struct re_pattern_buffer *bufp, const char *string, int size,
|
826
|
4716 int pos, struct re_registers *regs
|
|
4717 RE_LISP_CONTEXT_ARGS_DECL)
|
428
|
4718 {
|
446
|
4719 int result = re_match_2_internal (bufp, NULL, 0, (re_char *) string, size,
|
826
|
4720 pos, regs, size
|
|
4721 RE_LISP_CONTEXT_ARGS);
|
1333
|
4722 ALLOCA_GARBAGE_COLLECT ();
|
428
|
4723 return result;
|
|
4724 }
|
|
4725 #endif /* not emacs */
|
|
4726
|
|
4727 /* re_match_2 matches the compiled pattern in BUFP against the
|
|
4728 (virtual) concatenation of STRING1 and STRING2 (of length SIZE1 and
|
|
4729 SIZE2, respectively). We start matching at POS, and stop matching
|
|
4730 at STOP.
|
|
4731
|
|
4732 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
|
|
4733 store offsets for the substring each group matched in REGS. See the
|
|
4734 documentation for exactly how many groups we fill.
|
|
4735
|
|
4736 We return -1 if no match, -2 if an internal error (such as the
|
|
4737 failure stack overflowing). Otherwise, we return the length of the
|
|
4738 matched substring. */
|
|
4739
|
|
4740 int
|
442
|
4741 re_match_2 (struct re_pattern_buffer *bufp, const char *string1,
|
|
4742 int size1, const char *string2, int size2, int pos,
|
826
|
4743 struct re_registers *regs, int stop
|
|
4744 RE_LISP_CONTEXT_ARGS_DECL)
|
428
|
4745 {
|
460
|
4746 int result;
|
|
4747
|
|
4748 #ifdef emacs
|
826
|
4749 scache = setup_syntax_cache (scache, lispobj, lispbuf,
|
|
4750 offset_to_charxpos (lispobj, pos),
|
|
4751 1);
|
460
|
4752 #endif
|
|
4753
|
|
4754 result = re_match_2_internal (bufp, (re_char *) string1, size1,
|
|
4755 (re_char *) string2, size2,
|
826
|
4756 pos, regs, stop
|
|
4757 RE_LISP_CONTEXT_ARGS);
|
460
|
4758
|
1333
|
4759 ALLOCA_GARBAGE_COLLECT ();
|
428
|
4760 return result;
|
|
4761 }
|
|
4762
|
|
4763 /* This is a separate function so that we can force an alloca cleanup
|
|
4764 afterwards. */
|
|
4765 static int
|
446
|
4766 re_match_2_internal (struct re_pattern_buffer *bufp, re_char *string1,
|
|
4767 int size1, re_char *string2, int size2, int pos,
|
826
|
4768 struct re_registers *regs, int stop
|
|
4769 RE_LISP_CONTEXT_ARGS_DECL)
|
428
|
4770 {
|
|
4771 /* General temporaries. */
|
|
4772 int mcnt;
|
|
4773 unsigned char *p1;
|
|
4774 int should_succeed; /* XEmacs change */
|
|
4775
|
|
4776 /* Just past the end of the corresponding string. */
|
446
|
4777 re_char *end1, *end2;
|
428
|
4778
|
|
4779 /* Pointers into string1 and string2, just past the last characters in
|
|
4780 each to consider matching. */
|
446
|
4781 re_char *end_match_1, *end_match_2;
|
428
|
4782
|
|
4783 /* Where we are in the data, and the end of the current string. */
|
446
|
4784 re_char *d, *dend;
|
428
|
4785
|
|
4786 /* Where we are in the pattern, and the end of the pattern. */
|
|
4787 unsigned char *p = bufp->buffer;
|
|
4788 REGISTER unsigned char *pend = p + bufp->used;
|
|
4789
|
|
4790 /* Mark the opcode just after a start_memory, so we can test for an
|
|
4791 empty subpattern when we get to the stop_memory. */
|
446
|
4792 re_char *just_past_start_mem = 0;
|
428
|
4793
|
|
4794 /* We use this to map every character in the string. */
|
446
|
4795 RE_TRANSLATE_TYPE translate = bufp->translate;
|
428
|
4796
|
|
4797 /* Failure point stack. Each place that can handle a failure further
|
|
4798 down the line pushes a failure point on this stack. It consists of
|
|
4799 restart, regend, and reg_info for all registers corresponding to
|
|
4800 the subexpressions we're currently inside, plus the number of such
|
|
4801 registers, and, finally, two char *'s. The first char * is where
|
|
4802 to resume scanning the pattern; the second one is where to resume
|
|
4803 scanning the strings. If the latter is zero, the failure point is
|
|
4804 a ``dummy''; if a failure happens and the failure point is a dummy,
|
|
4805 it gets discarded and the next one is tried. */
|
|
4806 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
|
|
4807 fail_stack_type fail_stack;
|
|
4808 #endif
|
|
4809 #ifdef DEBUG
|
647
|
4810 static int failure_id;
|
|
4811 int nfailure_points_pushed = 0, nfailure_points_popped = 0;
|
428
|
4812 #endif
|
|
4813
|
771
|
4814 #ifdef REGEX_REL_ALLOC
|
428
|
4815 /* This holds the pointer to the failure stack, when
|
|
4816 it is allocated relocatably. */
|
|
4817 fail_stack_elt_t *failure_stack_ptr;
|
|
4818 #endif
|
|
4819
|
|
4820 /* We fill all the registers internally, independent of what we
|
|
4821 return, for use in backreferences. The number here includes
|
|
4822 an element for register zero. */
|
647
|
4823 int num_regs = bufp->re_ngroups + 1;
|
428
|
4824
|
|
4825 /* The currently active registers. */
|
647
|
4826 int lowest_active_reg = NO_LOWEST_ACTIVE_REG;
|
|
4827 int highest_active_reg = NO_HIGHEST_ACTIVE_REG;
|
428
|
4828
|
|
4829 /* Information on the contents of registers. These are pointers into
|
|
4830 the input strings; they record just what was matched (on this
|
|
4831 attempt) by a subexpression part of the pattern, that is, the
|
|
4832 regnum-th regstart pointer points to where in the pattern we began
|
|
4833 matching and the regnum-th regend points to right after where we
|
|
4834 stopped matching the regnum-th subexpression. (The zeroth register
|
|
4835 keeps track of what the whole pattern matches.) */
|
|
4836 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
|
446
|
4837 re_char **regstart, **regend;
|
428
|
4838 #endif
|
|
4839
|
|
4840 /* If a group that's operated upon by a repetition operator fails to
|
|
4841 match anything, then the register for its start will need to be
|
|
4842 restored because it will have been set to wherever in the string we
|
|
4843 are when we last see its open-group operator. Similarly for a
|
|
4844 register's end. */
|
|
4845 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
|
446
|
4846 re_char **old_regstart, **old_regend;
|
428
|
4847 #endif
|
|
4848
|
|
4849 /* The is_active field of reg_info helps us keep track of which (possibly
|
|
4850 nested) subexpressions we are currently in. The matched_something
|
|
4851 field of reg_info[reg_num] helps us tell whether or not we have
|
|
4852 matched any of the pattern so far this time through the reg_num-th
|
|
4853 subexpression. These two fields get reset each time through any
|
|
4854 loop their register is in. */
|
|
4855 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
|
|
4856 register_info_type *reg_info;
|
|
4857 #endif
|
|
4858
|
|
4859 /* The following record the register info as found in the above
|
|
4860 variables when we find a match better than any we've seen before.
|
|
4861 This happens as we backtrack through the failure points, which in
|
|
4862 turn happens only if we have not yet matched the entire string. */
|
647
|
4863 int best_regs_set = false;
|
428
|
4864 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
|
446
|
4865 re_char **best_regstart, **best_regend;
|
428
|
4866 #endif
|
|
4867
|
|
4868 /* Logically, this is `best_regend[0]'. But we don't want to have to
|
|
4869 allocate space for that if we're not allocating space for anything
|
|
4870 else (see below). Also, we never need info about register 0 for
|
|
4871 any of the other register vectors, and it seems rather a kludge to
|
|
4872 treat `best_regend' differently than the rest. So we keep track of
|
|
4873 the end of the best match so far in a separate variable. We
|
|
4874 initialize this to NULL so that when we backtrack the first time
|
|
4875 and need to test it, it's not garbage. */
|
446
|
4876 re_char *match_end = NULL;
|
428
|
4877
|
|
4878 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
|
|
4879 int set_regs_matched_done = 0;
|
|
4880
|
|
4881 /* Used when we pop values we don't care about. */
|
|
4882 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
|
446
|
4883 re_char **reg_dummy;
|
428
|
4884 register_info_type *reg_info_dummy;
|
|
4885 #endif
|
|
4886
|
|
4887 #ifdef DEBUG
|
|
4888 /* Counts the total number of registers pushed. */
|
647
|
4889 int num_regs_pushed = 0;
|
428
|
4890 #endif
|
|
4891
|
|
4892 /* 1 if this match ends in the same string (string1 or string2)
|
|
4893 as the best previous match. */
|
460
|
4894 re_bool same_str_p;
|
428
|
4895
|
|
4896 /* 1 if this match is the best seen so far. */
|
460
|
4897 re_bool best_match_p;
|
428
|
4898
|
826
|
4899 #ifdef emacs
|
|
4900 Internal_Format fmt = buffer_or_other_internal_format (lispobj);
|
1346
|
4901 #ifdef REL_ALLOC
|
|
4902 Ibyte *orig_buftext =
|
|
4903 BUFFERP (lispobj) ?
|
|
4904 BYTE_BUF_BYTE_ADDRESS (XBUFFER (lispobj),
|
|
4905 BYTE_BUF_BEGV (XBUFFER (lispobj))) :
|
|
4906 0;
|
|
4907 #endif
|
|
4908
|
1333
|
4909 #ifdef ERROR_CHECK_MALLOC
|
|
4910 int depth = bind_regex_malloc_disallowed (1);
|
|
4911 #endif
|
826
|
4912 #endif /* emacs */
|
771
|
4913
|
428
|
4914 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
|
|
4915
|
1333
|
4916 BEGIN_REGEX_MALLOC_OK ();
|
428
|
4917 INIT_FAIL_STACK ();
|
1333
|
4918 END_REGEX_MALLOC_OK ();
|
428
|
4919
|
|
4920 #ifdef MATCH_MAY_ALLOCATE
|
|
4921 /* Do not bother to initialize all the register variables if there are
|
|
4922 no groups in the pattern, as it takes a fair amount of time. If
|
|
4923 there are groups, we include space for register 0 (the whole
|
|
4924 pattern), even though we never use it, since it simplifies the
|
|
4925 array indexing. We should fix this. */
|
502
|
4926 if (bufp->re_ngroups)
|
428
|
4927 {
|
1333
|
4928 BEGIN_REGEX_MALLOC_OK ();
|
446
|
4929 regstart = REGEX_TALLOC (num_regs, re_char *);
|
|
4930 regend = REGEX_TALLOC (num_regs, re_char *);
|
|
4931 old_regstart = REGEX_TALLOC (num_regs, re_char *);
|
|
4932 old_regend = REGEX_TALLOC (num_regs, re_char *);
|
|
4933 best_regstart = REGEX_TALLOC (num_regs, re_char *);
|
|
4934 best_regend = REGEX_TALLOC (num_regs, re_char *);
|
428
|
4935 reg_info = REGEX_TALLOC (num_regs, register_info_type);
|
446
|
4936 reg_dummy = REGEX_TALLOC (num_regs, re_char *);
|
428
|
4937 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
|
1333
|
4938 END_REGEX_MALLOC_OK ();
|
428
|
4939
|
|
4940 if (!(regstart && regend && old_regstart && old_regend && reg_info
|
|
4941 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
|
|
4942 {
|
|
4943 FREE_VARIABLES ();
|
|
4944 return -2;
|
|
4945 }
|
|
4946 }
|
|
4947 else
|
|
4948 {
|
|
4949 /* We must initialize all our variables to NULL, so that
|
|
4950 `FREE_VARIABLES' doesn't try to free them. */
|
|
4951 regstart = regend = old_regstart = old_regend = best_regstart
|
|
4952 = best_regend = reg_dummy = NULL;
|
|
4953 reg_info = reg_info_dummy = (register_info_type *) NULL;
|
|
4954 }
|
|
4955 #endif /* MATCH_MAY_ALLOCATE */
|
|
4956
|
1333
|
4957 #if defined (emacs) && defined (REL_ALLOC)
|
|
4958 {
|
|
4959 /* If the allocations above (or the call to setup_syntax_cache() in
|
|
4960 re_match_2) caused a rel-alloc relocation, then fix up the data
|
|
4961 pointers */
|
1346
|
4962 Bytecount offset = offset_post_relocation (lispobj, orig_buftext);
|
1333
|
4963 if (offset)
|
|
4964 {
|
|
4965 string1 += offset;
|
|
4966 string2 += offset;
|
|
4967 }
|
|
4968 }
|
|
4969 #endif /* defined (emacs) && defined (REL_ALLOC) */
|
|
4970
|
428
|
4971 /* The starting position is bogus. */
|
|
4972 if (pos < 0 || pos > size1 + size2)
|
|
4973 {
|
|
4974 FREE_VARIABLES ();
|
|
4975 return -1;
|
|
4976 }
|
|
4977
|
|
4978 /* Initialize subexpression text positions to -1 to mark ones that no
|
|
4979 start_memory/stop_memory has been seen for. Also initialize the
|
|
4980 register information struct. */
|
|
4981 for (mcnt = 1; mcnt < num_regs; mcnt++)
|
|
4982 {
|
|
4983 regstart[mcnt] = regend[mcnt]
|
|
4984 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
|
|
4985
|
|
4986 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
|
|
4987 IS_ACTIVE (reg_info[mcnt]) = 0;
|
|
4988 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
|
|
4989 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
|
|
4990 }
|
|
4991 /* We move `string1' into `string2' if the latter's empty -- but not if
|
|
4992 `string1' is null. */
|
|
4993 if (size2 == 0 && string1 != NULL)
|
|
4994 {
|
|
4995 string2 = string1;
|
|
4996 size2 = size1;
|
|
4997 string1 = 0;
|
|
4998 size1 = 0;
|
|
4999 }
|
|
5000 end1 = string1 + size1;
|
|
5001 end2 = string2 + size2;
|
|
5002
|
|
5003 /* Compute where to stop matching, within the two strings. */
|
|
5004 if (stop <= size1)
|
|
5005 {
|
|
5006 end_match_1 = string1 + stop;
|
|
5007 end_match_2 = string2;
|
|
5008 }
|
|
5009 else
|
|
5010 {
|
|
5011 end_match_1 = end1;
|
|
5012 end_match_2 = string2 + stop - size1;
|
|
5013 }
|
|
5014
|
|
5015 /* `p' scans through the pattern as `d' scans through the data.
|
|
5016 `dend' is the end of the input string that `d' points within. `d'
|
|
5017 is advanced into the following input string whenever necessary, but
|
|
5018 this happens before fetching; therefore, at the beginning of the
|
|
5019 loop, `d' can be pointing at the end of a string, but it cannot
|
|
5020 equal `string2'. */
|
|
5021 if (size1 > 0 && pos <= size1)
|
|
5022 {
|
|
5023 d = string1 + pos;
|
|
5024 dend = end_match_1;
|
|
5025 }
|
|
5026 else
|
|
5027 {
|
|
5028 d = string2 + pos - size1;
|
|
5029 dend = end_match_2;
|
|
5030 }
|
|
5031
|
446
|
5032 DEBUG_PRINT1 ("The compiled pattern is: \n");
|
428
|
5033 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
|
|
5034 DEBUG_PRINT1 ("The string to match is: `");
|
|
5035 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
|
|
5036 DEBUG_PRINT1 ("'\n");
|
|
5037
|
|
5038 /* This loops over pattern commands. It exits by returning from the
|
|
5039 function if the match is complete, or it drops through if the match
|
|
5040 fails at this starting point in the input data. */
|
|
5041 for (;;)
|
|
5042 {
|
|
5043 DEBUG_PRINT2 ("\n0x%lx: ", (long) p);
|
|
5044 #ifdef emacs /* XEmacs added, w/removal of immediate_quit */
|
|
5045 if (!no_quit_in_re_search)
|
1333
|
5046 {
|
|
5047 BEGIN_REGEX_MALLOC_OK ();
|
|
5048 QUIT;
|
|
5049 END_REGEX_MALLOC_OK ();
|
1346
|
5050 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS ();
|
1333
|
5051 }
|
428
|
5052 #endif
|
|
5053
|
|
5054 if (p == pend)
|
|
5055 { /* End of pattern means we might have succeeded. */
|
|
5056 DEBUG_PRINT1 ("end of pattern ... ");
|
|
5057
|
|
5058 /* If we haven't matched the entire string, and we want the
|
|
5059 longest match, try backtracking. */
|
|
5060 if (d != end_match_2)
|
|
5061 {
|
|
5062 same_str_p = (FIRST_STRING_P (match_end)
|
|
5063 == MATCHING_IN_FIRST_STRING);
|
|
5064
|
|
5065 /* AIX compiler got confused when this was combined
|
|
5066 with the previous declaration. */
|
|
5067 if (same_str_p)
|
|
5068 best_match_p = d > match_end;
|
|
5069 else
|
|
5070 best_match_p = !MATCHING_IN_FIRST_STRING;
|
|
5071
|
|
5072 DEBUG_PRINT1 ("backtracking.\n");
|
|
5073
|
|
5074 if (!FAIL_STACK_EMPTY ())
|
|
5075 { /* More failure points to try. */
|
|
5076
|
|
5077 /* If exceeds best match so far, save it. */
|
|
5078 if (!best_regs_set || best_match_p)
|
|
5079 {
|
|
5080 best_regs_set = true;
|
|
5081 match_end = d;
|
|
5082
|
|
5083 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
|
|
5084
|
|
5085 for (mcnt = 1; mcnt < num_regs; mcnt++)
|
|
5086 {
|
|
5087 best_regstart[mcnt] = regstart[mcnt];
|
|
5088 best_regend[mcnt] = regend[mcnt];
|
|
5089 }
|
|
5090 }
|
|
5091 goto fail;
|
|
5092 }
|
|
5093
|
|
5094 /* If no failure points, don't restore garbage. And if
|
|
5095 last match is real best match, don't restore second
|
|
5096 best one. */
|
|
5097 else if (best_regs_set && !best_match_p)
|
|
5098 {
|
|
5099 restore_best_regs:
|
|
5100 /* Restore best match. It may happen that `dend ==
|
|
5101 end_match_1' while the restored d is in string2.
|
|
5102 For example, the pattern `x.*y.*z' against the
|
|
5103 strings `x-' and `y-z-', if the two strings are
|
|
5104 not consecutive in memory. */
|
|
5105 DEBUG_PRINT1 ("Restoring best registers.\n");
|
|
5106
|
|
5107 d = match_end;
|
|
5108 dend = ((d >= string1 && d <= end1)
|
|
5109 ? end_match_1 : end_match_2);
|
|
5110
|
|
5111 for (mcnt = 1; mcnt < num_regs; mcnt++)
|
|
5112 {
|
|
5113 regstart[mcnt] = best_regstart[mcnt];
|
|
5114 regend[mcnt] = best_regend[mcnt];
|
|
5115 }
|
|
5116 }
|
|
5117 } /* d != end_match_2 */
|
|
5118
|
|
5119 succeed_label:
|
|
5120 DEBUG_PRINT1 ("Accepting match.\n");
|
|
5121
|
|
5122 /* If caller wants register contents data back, do it. */
|
1028
|
5123 {
|
|
5124 int num_nonshy_regs = bufp->re_nsub + 1;
|
|
5125 if (regs && !bufp->no_sub)
|
|
5126 {
|
|
5127 /* Have the register data arrays been allocated? */
|
|
5128 if (bufp->regs_allocated == REGS_UNALLOCATED)
|
|
5129 { /* No. So allocate them with malloc. We need one
|
|
5130 extra element beyond `num_regs' for the `-1' marker
|
|
5131 GNU code uses. */
|
|
5132 regs->num_regs = MAX (RE_NREGS, num_nonshy_regs + 1);
|
1333
|
5133 BEGIN_REGEX_MALLOC_OK ();
|
1028
|
5134 regs->start = TALLOC (regs->num_regs, regoff_t);
|
|
5135 regs->end = TALLOC (regs->num_regs, regoff_t);
|
1333
|
5136 END_REGEX_MALLOC_OK ();
|
|
5137 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS ();
|
1028
|
5138 if (regs->start == NULL || regs->end == NULL)
|
|
5139 {
|
|
5140 FREE_VARIABLES ();
|
|
5141 return -2;
|
|
5142 }
|
|
5143 bufp->regs_allocated = REGS_REALLOCATE;
|
|
5144 }
|
|
5145 else if (bufp->regs_allocated == REGS_REALLOCATE)
|
|
5146 { /* Yes. If we need more elements than were already
|
|
5147 allocated, reallocate them. If we need fewer, just
|
|
5148 leave it alone. */
|
|
5149 if (regs->num_regs < num_nonshy_regs + 1)
|
|
5150 {
|
|
5151 regs->num_regs = num_nonshy_regs + 1;
|
1333
|
5152 BEGIN_REGEX_MALLOC_OK ();
|
1028
|
5153 RETALLOC (regs->start, regs->num_regs, regoff_t);
|
|
5154 RETALLOC (regs->end, regs->num_regs, regoff_t);
|
1333
|
5155 END_REGEX_MALLOC_OK ();
|
|
5156 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS ();
|
1028
|
5157 if (regs->start == NULL || regs->end == NULL)
|
|
5158 {
|
|
5159 FREE_VARIABLES ();
|
|
5160 return -2;
|
|
5161 }
|
|
5162 }
|
|
5163 }
|
|
5164 else
|
|
5165 {
|
|
5166 /* The braces fend off a "empty body in an else-statement"
|
|
5167 warning under GCC when assert expands to nothing. */
|
|
5168 assert (bufp->regs_allocated == REGS_FIXED);
|
|
5169 }
|
|
5170
|
|
5171 /* Convert the pointer data in `regstart' and `regend' to
|
|
5172 indices. Register zero has to be set differently,
|
|
5173 since we haven't kept track of any info for it. */
|
|
5174 if (regs->num_regs > 0)
|
|
5175 {
|
|
5176 regs->start[0] = pos;
|
|
5177 regs->end[0] = (MATCHING_IN_FIRST_STRING
|
|
5178 ? ((regoff_t) (d - string1))
|
|
5179 : ((regoff_t) (d - string2 + size1)));
|
|
5180 }
|
|
5181
|
|
5182 /* Go through the first `min (num_regs, regs->num_regs)'
|
|
5183 registers, since that is all we initialized. */
|
|
5184 for (mcnt = 1; mcnt < MIN (num_nonshy_regs, regs->num_regs);
|
|
5185 mcnt++)
|
|
5186 {
|
|
5187 int internal_reg = bufp->external_to_internal_register[mcnt];
|
|
5188 if (REG_UNSET (regstart[internal_reg]) ||
|
|
5189 REG_UNSET (regend[internal_reg]))
|
|
5190 regs->start[mcnt] = regs->end[mcnt] = -1;
|
|
5191 else
|
|
5192 {
|
|
5193 regs->start[mcnt] =
|
|
5194 (regoff_t) POINTER_TO_OFFSET (regstart[internal_reg]);
|
|
5195 regs->end[mcnt] =
|
|
5196 (regoff_t) POINTER_TO_OFFSET (regend[internal_reg]);
|
|
5197 }
|
|
5198 }
|
|
5199 } /* regs && !bufp->no_sub */
|
|
5200
|
|
5201 /* If we have regs and the regs structure has more elements than
|
|
5202 were in the pattern, set the extra elements to -1. If we
|
|
5203 (re)allocated the registers, this is the case, because we
|
|
5204 always allocate enough to have at least one -1 at the end.
|
|
5205
|
|
5206 We do this even when no_sub is set because some applications
|
|
5207 (XEmacs) reuse register structures which may contain stale
|
|
5208 information, and permit attempts to access those registers.
|
|
5209
|
|
5210 It would be possible to require the caller to do this, but we'd
|
|
5211 have to change the API for this function to reflect that, and
|
1425
|
5212 audit all callers. Note: as of 2003-04-17 callers in XEmacs
|
|
5213 do clear the registers, but it's safer to leave this code in
|
|
5214 because of reallocation.
|
|
5215 */
|
1028
|
5216 if (regs && regs->num_regs > 0)
|
|
5217 for (mcnt = num_nonshy_regs; mcnt < regs->num_regs; mcnt++)
|
|
5218 regs->start[mcnt] = regs->end[mcnt] = -1;
|
|
5219 }
|
428
|
5220 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
|
|
5221 nfailure_points_pushed, nfailure_points_popped,
|
|
5222 nfailure_points_pushed - nfailure_points_popped);
|
|
5223 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
|
|
5224
|
|
5225 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
|
|
5226 ? string1
|
|
5227 : string2 - size1);
|
|
5228
|
|
5229 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
|
|
5230
|
|
5231 FREE_VARIABLES ();
|
|
5232 return mcnt;
|
|
5233 }
|
|
5234
|
|
5235 /* Otherwise match next pattern command. */
|
|
5236 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
|
|
5237 {
|
|
5238 /* Ignore these. Used to ignore the n of succeed_n's which
|
|
5239 currently have n == 0. */
|
|
5240 case no_op:
|
|
5241 DEBUG_PRINT1 ("EXECUTING no_op.\n");
|
|
5242 break;
|
|
5243
|
|
5244 case succeed:
|
|
5245 DEBUG_PRINT1 ("EXECUTING succeed.\n");
|
|
5246 goto succeed_label;
|
|
5247
|
826
|
5248 /* Match exactly a string of length n in the pattern. The
|
|
5249 following byte in the pattern defines n, and the n bytes after
|
|
5250 that make up the string to match. (Under Mule, this will be in
|
|
5251 the default internal format.) */
|
428
|
5252 case exactn:
|
|
5253 mcnt = *p++;
|
|
5254 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
|
|
5255
|
|
5256 /* This is written out as an if-else so we don't waste time
|
|
5257 testing `translate' inside the loop. */
|
446
|
5258 if (TRANSLATE_P (translate))
|
428
|
5259 {
|
|
5260 do
|
|
5261 {
|
446
|
5262 #ifdef MULE
|
|
5263 Bytecount pat_len;
|
|
5264
|
450
|
5265 REGEX_PREFETCH ();
|
867
|
5266 if (RE_TRANSLATE_1 (itext_ichar_fmt (d, fmt, lispobj))
|
|
5267 != itext_ichar (p))
|
428
|
5268 goto fail;
|
446
|
5269
|
867
|
5270 pat_len = itext_ichar_len (p);
|
446
|
5271 p += pat_len;
|
867
|
5272 INC_IBYTEPTR_FMT (d, fmt);
|
446
|
5273
|
|
5274 mcnt -= pat_len;
|
|
5275 #else /* not MULE */
|
450
|
5276 REGEX_PREFETCH ();
|
826
|
5277 if ((unsigned char) RE_TRANSLATE_1 (*d++) != *p++)
|
446
|
5278 goto fail;
|
|
5279 mcnt--;
|
|
5280 #endif
|
428
|
5281 }
|
446
|
5282 while (mcnt > 0);
|
428
|
5283 }
|
|
5284 else
|
|
5285 {
|
826
|
5286 #ifdef MULE
|
|
5287 /* If buffer format is default, then we can shortcut and just
|
|
5288 compare the text directly, byte by byte. Otherwise, we
|
|
5289 need to go character by character. */
|
|
5290 if (fmt != FORMAT_DEFAULT)
|
428
|
5291 {
|
826
|
5292 do
|
|
5293 {
|
|
5294 Bytecount pat_len;
|
|
5295
|
|
5296 REGEX_PREFETCH ();
|
867
|
5297 if (itext_ichar_fmt (d, fmt, lispobj) !=
|
|
5298 itext_ichar (p))
|
826
|
5299 goto fail;
|
|
5300
|
867
|
5301 pat_len = itext_ichar_len (p);
|
826
|
5302 p += pat_len;
|
867
|
5303 INC_IBYTEPTR_FMT (d, fmt);
|
826
|
5304
|
|
5305 mcnt -= pat_len;
|
|
5306 }
|
|
5307 while (mcnt > 0);
|
428
|
5308 }
|
826
|
5309 else
|
|
5310 #endif
|
|
5311 {
|
|
5312 do
|
|
5313 {
|
|
5314 REGEX_PREFETCH ();
|
|
5315 if (*d++ != *p++) goto fail;
|
|
5316 mcnt--;
|
|
5317 }
|
|
5318 while (mcnt > 0);
|
|
5319 }
|
428
|
5320 }
|
|
5321 SET_REGS_MATCHED ();
|
|
5322 break;
|
|
5323
|
|
5324
|
|
5325 /* Match any character except possibly a newline or a null. */
|
|
5326 case anychar:
|
|
5327 DEBUG_PRINT1 ("EXECUTING anychar.\n");
|
|
5328
|
450
|
5329 REGEX_PREFETCH ();
|
428
|
5330
|
826
|
5331 if ((!(bufp->syntax & RE_DOT_NEWLINE) &&
|
867
|
5332 RE_TRANSLATE (itext_ichar_fmt (d, fmt, lispobj)) == '\n')
|
826
|
5333 || (bufp->syntax & RE_DOT_NOT_NULL &&
|
867
|
5334 RE_TRANSLATE (itext_ichar_fmt (d, fmt, lispobj)) ==
|
826
|
5335 '\000'))
|
428
|
5336 goto fail;
|
|
5337
|
|
5338 SET_REGS_MATCHED ();
|
|
5339 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
|
867
|
5340 INC_IBYTEPTR_FMT (d, fmt); /* XEmacs change */
|
428
|
5341 break;
|
|
5342
|
|
5343
|
|
5344 case charset:
|
|
5345 case charset_not:
|
|
5346 {
|
1414
|
5347 REGISTER Ichar c;
|
460
|
5348 re_bool not_p = (re_opcode_t) *(p - 1) == charset_not;
|
458
|
5349
|
|
5350 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not_p ? "_not" : "");
|
428
|
5351
|
450
|
5352 REGEX_PREFETCH ();
|
867
|
5353 c = itext_ichar_fmt (d, fmt, lispobj);
|
826
|
5354 c = RE_TRANSLATE (c); /* The character to match. */
|
428
|
5355
|
647
|
5356 /* Cast to `unsigned int' instead of `unsigned char' in case the
|
428
|
5357 bit list is a full 32 bytes long. */
|
1414
|
5358 if ((unsigned int)c < (unsigned int) (*p * BYTEWIDTH)
|
428
|
5359 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
|
458
|
5360 not_p = !not_p;
|
428
|
5361
|
|
5362 p += 1 + *p;
|
|
5363
|
458
|
5364 if (!not_p) goto fail;
|
428
|
5365
|
|
5366 SET_REGS_MATCHED ();
|
867
|
5367 INC_IBYTEPTR_FMT (d, fmt); /* XEmacs change */
|
428
|
5368 break;
|
|
5369 }
|
|
5370
|
|
5371 #ifdef MULE
|
|
5372 case charset_mule:
|
|
5373 case charset_mule_not:
|
|
5374 {
|
867
|
5375 REGISTER Ichar c;
|
460
|
5376 re_bool not_p = (re_opcode_t) *(p - 1) == charset_mule_not;
|
458
|
5377
|
|
5378 DEBUG_PRINT2 ("EXECUTING charset_mule%s.\n", not_p ? "_not" : "");
|
428
|
5379
|
450
|
5380 REGEX_PREFETCH ();
|
867
|
5381 c = itext_ichar_fmt (d, fmt, lispobj);
|
826
|
5382 c = RE_TRANSLATE (c); /* The character to match. */
|
428
|
5383
|
|
5384 if (EQ (Qt, unified_range_table_lookup (p, c, Qnil)))
|
458
|
5385 not_p = !not_p;
|
428
|
5386
|
|
5387 p += unified_range_table_bytes_used (p);
|
|
5388
|
458
|
5389 if (!not_p) goto fail;
|
428
|
5390
|
|
5391 SET_REGS_MATCHED ();
|
867
|
5392 INC_IBYTEPTR_FMT (d, fmt);
|
428
|
5393 break;
|
|
5394 }
|
|
5395 #endif /* MULE */
|
|
5396
|
|
5397
|
|
5398 /* The beginning of a group is represented by start_memory.
|
|
5399 The arguments are the register number in the next byte, and the
|
|
5400 number of groups inner to this one in the next. The text
|
|
5401 matched within the group is recorded (in the internal
|
|
5402 registers data structure) under the register number. */
|
|
5403 case start_memory:
|
|
5404 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
|
|
5405
|
|
5406 /* Find out if this group can match the empty string. */
|
|
5407 p1 = p; /* To send to group_match_null_string_p. */
|
|
5408
|
|
5409 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
|
|
5410 REG_MATCH_NULL_STRING_P (reg_info[*p])
|
|
5411 = group_match_null_string_p (&p1, pend, reg_info);
|
|
5412
|
|
5413 /* Save the position in the string where we were the last time
|
|
5414 we were at this open-group operator in case the group is
|
|
5415 operated upon by a repetition operator, e.g., with `(a*)*b'
|
|
5416 against `ab'; then we want to ignore where we are now in
|
|
5417 the string in case this attempt to match fails. */
|
|
5418 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
|
|
5419 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
|
|
5420 : regstart[*p];
|
|
5421 DEBUG_PRINT2 (" old_regstart: %d\n",
|
|
5422 POINTER_TO_OFFSET (old_regstart[*p]));
|
|
5423
|
|
5424 regstart[*p] = d;
|
|
5425 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
|
|
5426
|
|
5427 IS_ACTIVE (reg_info[*p]) = 1;
|
|
5428 MATCHED_SOMETHING (reg_info[*p]) = 0;
|
|
5429
|
|
5430 /* Clear this whenever we change the register activity status. */
|
|
5431 set_regs_matched_done = 0;
|
|
5432
|
|
5433 /* This is the new highest active register. */
|
|
5434 highest_active_reg = *p;
|
|
5435
|
|
5436 /* If nothing was active before, this is the new lowest active
|
|
5437 register. */
|
|
5438 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
|
|
5439 lowest_active_reg = *p;
|
|
5440
|
|
5441 /* Move past the register number and inner group count. */
|
|
5442 p += 2;
|
|
5443 just_past_start_mem = p;
|
|
5444
|
|
5445 break;
|
|
5446
|
|
5447
|
|
5448 /* The stop_memory opcode represents the end of a group. Its
|
|
5449 arguments are the same as start_memory's: the register
|
|
5450 number, and the number of inner groups. */
|
|
5451 case stop_memory:
|
|
5452 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
|
|
5453
|
|
5454 /* We need to save the string position the last time we were at
|
|
5455 this close-group operator in case the group is operated
|
|
5456 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
|
|
5457 against `aba'; then we want to ignore where we are now in
|
|
5458 the string in case this attempt to match fails. */
|
|
5459 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
|
|
5460 ? REG_UNSET (regend[*p]) ? d : regend[*p]
|
|
5461 : regend[*p];
|
|
5462 DEBUG_PRINT2 (" old_regend: %d\n",
|
|
5463 POINTER_TO_OFFSET (old_regend[*p]));
|
|
5464
|
|
5465 regend[*p] = d;
|
|
5466 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
|
|
5467
|
|
5468 /* This register isn't active anymore. */
|
|
5469 IS_ACTIVE (reg_info[*p]) = 0;
|
|
5470
|
|
5471 /* Clear this whenever we change the register activity status. */
|
|
5472 set_regs_matched_done = 0;
|
|
5473
|
|
5474 /* If this was the only register active, nothing is active
|
|
5475 anymore. */
|
|
5476 if (lowest_active_reg == highest_active_reg)
|
|
5477 {
|
|
5478 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
|
|
5479 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
|
|
5480 }
|
|
5481 else
|
|
5482 { /* We must scan for the new highest active register, since
|
|
5483 it isn't necessarily one less than now: consider
|
|
5484 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
|
|
5485 new highest active register is 1. */
|
|
5486 unsigned char r = *p - 1;
|
|
5487 while (r > 0 && !IS_ACTIVE (reg_info[r]))
|
|
5488 r--;
|
|
5489
|
|
5490 /* If we end up at register zero, that means that we saved
|
|
5491 the registers as the result of an `on_failure_jump', not
|
|
5492 a `start_memory', and we jumped to past the innermost
|
|
5493 `stop_memory'. For example, in ((.)*) we save
|
|
5494 registers 1 and 2 as a result of the *, but when we pop
|
|
5495 back to the second ), we are at the stop_memory 1.
|
|
5496 Thus, nothing is active. */
|
|
5497 if (r == 0)
|
|
5498 {
|
|
5499 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
|
|
5500 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
|
|
5501 }
|
|
5502 else
|
|
5503 {
|
|
5504 highest_active_reg = r;
|
|
5505
|
|
5506 /* 98/9/21 jhod: We've also gotta set lowest_active_reg, don't we? */
|
|
5507 r = 1;
|
|
5508 while (r < highest_active_reg && !IS_ACTIVE(reg_info[r]))
|
|
5509 r++;
|
|
5510 lowest_active_reg = r;
|
|
5511 }
|
|
5512 }
|
|
5513
|
|
5514 /* If just failed to match something this time around with a
|
|
5515 group that's operated on by a repetition operator, try to
|
|
5516 force exit from the ``loop'', and restore the register
|
|
5517 information for this group that we had before trying this
|
|
5518 last match. */
|
|
5519 if ((!MATCHED_SOMETHING (reg_info[*p])
|
|
5520 || just_past_start_mem == p - 1)
|
|
5521 && (p + 2) < pend)
|
|
5522 {
|
460
|
5523 re_bool is_a_jump_n = false;
|
428
|
5524
|
|
5525 p1 = p + 2;
|
|
5526 mcnt = 0;
|
|
5527 switch ((re_opcode_t) *p1++)
|
|
5528 {
|
|
5529 case jump_n:
|
|
5530 is_a_jump_n = true;
|
|
5531 case pop_failure_jump:
|
|
5532 case maybe_pop_jump:
|
|
5533 case jump:
|
|
5534 case dummy_failure_jump:
|
|
5535 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
|
|
5536 if (is_a_jump_n)
|
|
5537 p1 += 2;
|
|
5538 break;
|
|
5539
|
|
5540 default:
|
|
5541 /* do nothing */ ;
|
|
5542 }
|
|
5543 p1 += mcnt;
|
|
5544
|
|
5545 /* If the next operation is a jump backwards in the pattern
|
|
5546 to an on_failure_jump right before the start_memory
|
|
5547 corresponding to this stop_memory, exit from the loop
|
|
5548 by forcing a failure after pushing on the stack the
|
|
5549 on_failure_jump's jump in the pattern, and d. */
|
|
5550 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
|
|
5551 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
|
|
5552 {
|
|
5553 /* If this group ever matched anything, then restore
|
|
5554 what its registers were before trying this last
|
|
5555 failed match, e.g., with `(a*)*b' against `ab' for
|
|
5556 regstart[1], and, e.g., with `((a*)*(b*)*)*'
|
|
5557 against `aba' for regend[3].
|
|
5558
|
|
5559 Also restore the registers for inner groups for,
|
|
5560 e.g., `((a*)(b*))*' against `aba' (register 3 would
|
|
5561 otherwise get trashed). */
|
|
5562
|
|
5563 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
|
|
5564 {
|
647
|
5565 int r;
|
428
|
5566
|
|
5567 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
|
|
5568
|
|
5569 /* Restore this and inner groups' (if any) registers. */
|
|
5570 for (r = *p; r < *p + *(p + 1); r++)
|
|
5571 {
|
|
5572 regstart[r] = old_regstart[r];
|
|
5573
|
|
5574 /* xx why this test? */
|
|
5575 if (old_regend[r] >= regstart[r])
|
|
5576 regend[r] = old_regend[r];
|
|
5577 }
|
|
5578 }
|
|
5579 p1++;
|
|
5580 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
|
|
5581 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
|
|
5582
|
|
5583 goto fail;
|
|
5584 }
|
|
5585 }
|
|
5586
|
|
5587 /* Move past the register number and the inner group count. */
|
|
5588 p += 2;
|
|
5589 break;
|
|
5590
|
|
5591
|
|
5592 /* \<digit> has been turned into a `duplicate' command which is
|
502
|
5593 followed by the numeric value of <digit> as the register number.
|
|
5594 (Already passed through external-to-internal-register mapping,
|
|
5595 so it refers to the actual group number, not the non-shy-only
|
|
5596 numbering used in the external world.) */
|
428
|
5597 case duplicate:
|
|
5598 {
|
446
|
5599 REGISTER re_char *d2, *dend2;
|
502
|
5600 /* Get which register to match against. */
|
|
5601 int regno = *p++;
|
428
|
5602 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
|
|
5603
|
|
5604 /* Can't back reference a group which we've never matched. */
|
|
5605 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
|
|
5606 goto fail;
|
|
5607
|
|
5608 /* Where in input to try to start matching. */
|
|
5609 d2 = regstart[regno];
|
|
5610
|
|
5611 /* Where to stop matching; if both the place to start and
|
|
5612 the place to stop matching are in the same string, then
|
|
5613 set to the place to stop, otherwise, for now have to use
|
|
5614 the end of the first string. */
|
|
5615
|
|
5616 dend2 = ((FIRST_STRING_P (regstart[regno])
|
|
5617 == FIRST_STRING_P (regend[regno]))
|
|
5618 ? regend[regno] : end_match_1);
|
|
5619 for (;;)
|
|
5620 {
|
|
5621 /* If necessary, advance to next segment in register
|
|
5622 contents. */
|
|
5623 while (d2 == dend2)
|
|
5624 {
|
|
5625 if (dend2 == end_match_2) break;
|
|
5626 if (dend2 == regend[regno]) break;
|
|
5627
|
|
5628 /* End of string1 => advance to string2. */
|
|
5629 d2 = string2;
|
|
5630 dend2 = regend[regno];
|
|
5631 }
|
|
5632 /* At end of register contents => success */
|
|
5633 if (d2 == dend2) break;
|
|
5634
|
|
5635 /* If necessary, advance to next segment in data. */
|
450
|
5636 REGEX_PREFETCH ();
|
428
|
5637
|
|
5638 /* How many characters left in this segment to match. */
|
|
5639 mcnt = dend - d;
|
|
5640
|
|
5641 /* Want how many consecutive characters we can match in
|
|
5642 one shot, so, if necessary, adjust the count. */
|
|
5643 if (mcnt > dend2 - d2)
|
|
5644 mcnt = dend2 - d2;
|
|
5645
|
|
5646 /* Compare that many; failure if mismatch, else move
|
|
5647 past them. */
|
446
|
5648 if (TRANSLATE_P (translate)
|
826
|
5649 ? bcmp_translate (d, d2, mcnt, translate
|
|
5650 #ifdef emacs
|
|
5651 , fmt, lispobj
|
|
5652 #endif
|
|
5653 )
|
428
|
5654 : memcmp (d, d2, mcnt))
|
|
5655 goto fail;
|
|
5656 d += mcnt, d2 += mcnt;
|
|
5657
|
|
5658 /* Do this because we've match some characters. */
|
|
5659 SET_REGS_MATCHED ();
|
|
5660 }
|
|
5661 }
|
|
5662 break;
|
|
5663
|
|
5664
|
|
5665 /* begline matches the empty string at the beginning of the string
|
|
5666 (unless `not_bol' is set in `bufp'), and, if
|
|
5667 `newline_anchor' is set, after newlines. */
|
|
5668 case begline:
|
|
5669 DEBUG_PRINT1 ("EXECUTING begline.\n");
|
|
5670
|
|
5671 if (AT_STRINGS_BEG (d))
|
|
5672 {
|
|
5673 if (!bufp->not_bol) break;
|
|
5674 }
|
826
|
5675 else
|
|
5676 {
|
|
5677 re_char *d2 = d;
|
867
|
5678 DEC_IBYTEPTR (d2);
|
|
5679 if (itext_ichar_ascii_fmt (d2, fmt, lispobj) == '\n' &&
|
826
|
5680 bufp->newline_anchor)
|
|
5681 break;
|
|
5682 }
|
428
|
5683 /* In all other cases, we fail. */
|
|
5684 goto fail;
|
|
5685
|
|
5686
|
|
5687 /* endline is the dual of begline. */
|
|
5688 case endline:
|
|
5689 DEBUG_PRINT1 ("EXECUTING endline.\n");
|
|
5690
|
|
5691 if (AT_STRINGS_END (d))
|
|
5692 {
|
|
5693 if (!bufp->not_eol) break;
|
|
5694 }
|
|
5695
|
|
5696 /* We have to ``prefetch'' the next character. */
|
826
|
5697 else if ((d == end1 ?
|
867
|
5698 itext_ichar_ascii_fmt (string2, fmt, lispobj) :
|
|
5699 itext_ichar_ascii_fmt (d, fmt, lispobj)) == '\n'
|
428
|
5700 && bufp->newline_anchor)
|
|
5701 {
|
|
5702 break;
|
|
5703 }
|
|
5704 goto fail;
|
|
5705
|
|
5706
|
|
5707 /* Match at the very beginning of the data. */
|
|
5708 case begbuf:
|
|
5709 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
|
|
5710 if (AT_STRINGS_BEG (d))
|
|
5711 break;
|
|
5712 goto fail;
|
|
5713
|
|
5714
|
|
5715 /* Match at the very end of the data. */
|
|
5716 case endbuf:
|
|
5717 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
|
|
5718 if (AT_STRINGS_END (d))
|
|
5719 break;
|
|
5720 goto fail;
|
|
5721
|
|
5722
|
|
5723 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
|
|
5724 pushes NULL as the value for the string on the stack. Then
|
|
5725 `pop_failure_point' will keep the current value for the
|
|
5726 string, instead of restoring it. To see why, consider
|
|
5727 matching `foo\nbar' against `.*\n'. The .* matches the foo;
|
|
5728 then the . fails against the \n. But the next thing we want
|
|
5729 to do is match the \n against the \n; if we restored the
|
|
5730 string value, we would be back at the foo.
|
|
5731
|
|
5732 Because this is used only in specific cases, we don't need to
|
|
5733 check all the things that `on_failure_jump' does, to make
|
|
5734 sure the right things get saved on the stack. Hence we don't
|
|
5735 share its code. The only reason to push anything on the
|
|
5736 stack at all is that otherwise we would have to change
|
|
5737 `anychar's code to do something besides goto fail in this
|
|
5738 case; that seems worse than this. */
|
|
5739 case on_failure_keep_string_jump:
|
|
5740 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
|
|
5741
|
|
5742 EXTRACT_NUMBER_AND_INCR (mcnt, p);
|
|
5743 DEBUG_PRINT3 (" %d (to 0x%lx):\n", mcnt, (long) (p + mcnt));
|
|
5744
|
446
|
5745 PUSH_FAILURE_POINT (p + mcnt, (unsigned char *) 0, -2);
|
428
|
5746 break;
|
|
5747
|
|
5748
|
|
5749 /* Uses of on_failure_jump:
|
|
5750
|
|
5751 Each alternative starts with an on_failure_jump that points
|
|
5752 to the beginning of the next alternative. Each alternative
|
|
5753 except the last ends with a jump that in effect jumps past
|
|
5754 the rest of the alternatives. (They really jump to the
|
|
5755 ending jump of the following alternative, because tensioning
|
|
5756 these jumps is a hassle.)
|
|
5757
|
|
5758 Repeats start with an on_failure_jump that points past both
|
|
5759 the repetition text and either the following jump or
|
|
5760 pop_failure_jump back to this on_failure_jump. */
|
|
5761 case on_failure_jump:
|
|
5762 on_failure:
|
|
5763 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
|
|
5764
|
|
5765 EXTRACT_NUMBER_AND_INCR (mcnt, p);
|
|
5766 DEBUG_PRINT3 (" %d (to 0x%lx)", mcnt, (long) (p + mcnt));
|
|
5767
|
|
5768 /* If this on_failure_jump comes right before a group (i.e.,
|
|
5769 the original * applied to a group), save the information
|
|
5770 for that group and all inner ones, so that if we fail back
|
|
5771 to this point, the group's information will be correct.
|
|
5772 For example, in \(a*\)*\1, we need the preceding group,
|
|
5773 and in \(\(a*\)b*\)\2, we need the inner group. */
|
|
5774
|
|
5775 /* We can't use `p' to check ahead because we push
|
|
5776 a failure point to `p + mcnt' after we do this. */
|
|
5777 p1 = p;
|
|
5778
|
|
5779 /* We need to skip no_op's before we look for the
|
|
5780 start_memory in case this on_failure_jump is happening as
|
|
5781 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
|
|
5782 against aba. */
|
|
5783 while (p1 < pend && (re_opcode_t) *p1 == no_op)
|
|
5784 p1++;
|
|
5785
|
|
5786 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
|
|
5787 {
|
|
5788 /* We have a new highest active register now. This will
|
|
5789 get reset at the start_memory we are about to get to,
|
|
5790 but we will have saved all the registers relevant to
|
|
5791 this repetition op, as described above. */
|
|
5792 highest_active_reg = *(p1 + 1) + *(p1 + 2);
|
|
5793 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
|
|
5794 lowest_active_reg = *(p1 + 1);
|
|
5795 }
|
|
5796
|
|
5797 DEBUG_PRINT1 (":\n");
|
|
5798 PUSH_FAILURE_POINT (p + mcnt, d, -2);
|
|
5799 break;
|
|
5800
|
|
5801
|
|
5802 /* A smart repeat ends with `maybe_pop_jump'.
|
|
5803 We change it to either `pop_failure_jump' or `jump'. */
|
|
5804 case maybe_pop_jump:
|
|
5805 EXTRACT_NUMBER_AND_INCR (mcnt, p);
|
|
5806 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
|
|
5807 {
|
|
5808 REGISTER unsigned char *p2 = p;
|
|
5809
|
|
5810 /* Compare the beginning of the repeat with what in the
|
|
5811 pattern follows its end. If we can establish that there
|
|
5812 is nothing that they would both match, i.e., that we
|
|
5813 would have to backtrack because of (as in, e.g., `a*a')
|
|
5814 then we can change to pop_failure_jump, because we'll
|
|
5815 never have to backtrack.
|
|
5816
|
|
5817 This is not true in the case of alternatives: in
|
|
5818 `(a|ab)*' we do need to backtrack to the `ab' alternative
|
|
5819 (e.g., if the string was `ab'). But instead of trying to
|
|
5820 detect that here, the alternative has put on a dummy
|
|
5821 failure point which is what we will end up popping. */
|
|
5822
|
|
5823 /* Skip over open/close-group commands.
|
|
5824 If what follows this loop is a ...+ construct,
|
|
5825 look at what begins its body, since we will have to
|
|
5826 match at least one of that. */
|
|
5827 while (1)
|
|
5828 {
|
|
5829 if (p2 + 2 < pend
|
|
5830 && ((re_opcode_t) *p2 == stop_memory
|
|
5831 || (re_opcode_t) *p2 == start_memory))
|
|
5832 p2 += 3;
|
|
5833 else if (p2 + 6 < pend
|
|
5834 && (re_opcode_t) *p2 == dummy_failure_jump)
|
|
5835 p2 += 6;
|
|
5836 else
|
|
5837 break;
|
|
5838 }
|
|
5839
|
|
5840 p1 = p + mcnt;
|
|
5841 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
|
|
5842 to the `maybe_finalize_jump' of this case. Examine what
|
|
5843 follows. */
|
|
5844
|
|
5845 /* If we're at the end of the pattern, we can change. */
|
|
5846 if (p2 == pend)
|
|
5847 {
|
|
5848 /* Consider what happens when matching ":\(.*\)"
|
|
5849 against ":/". I don't really understand this code
|
|
5850 yet. */
|
|
5851 p[-3] = (unsigned char) pop_failure_jump;
|
|
5852 DEBUG_PRINT1
|
|
5853 (" End of pattern: change to `pop_failure_jump'.\n");
|
|
5854 }
|
|
5855
|
|
5856 else if ((re_opcode_t) *p2 == exactn
|
|
5857 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
|
|
5858 {
|
|
5859 REGISTER unsigned char c
|
|
5860 = *p2 == (unsigned char) endline ? '\n' : p2[2];
|
|
5861
|
|
5862 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
|
|
5863 {
|
|
5864 p[-3] = (unsigned char) pop_failure_jump;
|
|
5865 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
|
|
5866 c, p1[5]);
|
|
5867 }
|
|
5868
|
|
5869 else if ((re_opcode_t) p1[3] == charset
|
|
5870 || (re_opcode_t) p1[3] == charset_not)
|
|
5871 {
|
458
|
5872 int not_p = (re_opcode_t) p1[3] == charset_not;
|
428
|
5873
|
|
5874 if (c < (unsigned char) (p1[4] * BYTEWIDTH)
|
|
5875 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
|
458
|
5876 not_p = !not_p;
|
|
5877
|
|
5878 /* `not_p' is equal to 1 if c would match, which means
|
428
|
5879 that we can't change to pop_failure_jump. */
|
458
|
5880 if (!not_p)
|
428
|
5881 {
|
|
5882 p[-3] = (unsigned char) pop_failure_jump;
|
|
5883 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
|
|
5884 }
|
|
5885 }
|
|
5886 }
|
|
5887 else if ((re_opcode_t) *p2 == charset)
|
|
5888 {
|
|
5889 #ifdef DEBUG
|
|
5890 REGISTER unsigned char c
|
|
5891 = *p2 == (unsigned char) endline ? '\n' : p2[2];
|
|
5892 #endif
|
|
5893
|
|
5894 if ((re_opcode_t) p1[3] == exactn
|
|
5895 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
|
|
5896 && (p2[2 + p1[5] / BYTEWIDTH]
|
|
5897 & (1 << (p1[5] % BYTEWIDTH)))))
|
|
5898 {
|
|
5899 p[-3] = (unsigned char) pop_failure_jump;
|
|
5900 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
|
|
5901 c, p1[5]);
|
|
5902 }
|
|
5903
|
|
5904 else if ((re_opcode_t) p1[3] == charset_not)
|
|
5905 {
|
|
5906 int idx;
|
|
5907 /* We win if the charset_not inside the loop
|
|
5908 lists every character listed in the charset after. */
|
|
5909 for (idx = 0; idx < (int) p2[1]; idx++)
|
|
5910 if (! (p2[2 + idx] == 0
|
|
5911 || (idx < (int) p1[4]
|
|
5912 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
|
|
5913 break;
|
|
5914
|
|
5915 if (idx == p2[1])
|
|
5916 {
|
|
5917 p[-3] = (unsigned char) pop_failure_jump;
|
|
5918 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
|
|
5919 }
|
|
5920 }
|
|
5921 else if ((re_opcode_t) p1[3] == charset)
|
|
5922 {
|
|
5923 int idx;
|
|
5924 /* We win if the charset inside the loop
|
|
5925 has no overlap with the one after the loop. */
|
|
5926 for (idx = 0;
|
|
5927 idx < (int) p2[1] && idx < (int) p1[4];
|
|
5928 idx++)
|
|
5929 if ((p2[2 + idx] & p1[5 + idx]) != 0)
|
|
5930 break;
|
|
5931
|
|
5932 if (idx == p2[1] || idx == p1[4])
|
|
5933 {
|
|
5934 p[-3] = (unsigned char) pop_failure_jump;
|
|
5935 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
|
|
5936 }
|
|
5937 }
|
|
5938 }
|
|
5939 }
|
|
5940 p -= 2; /* Point at relative address again. */
|
|
5941 if ((re_opcode_t) p[-1] != pop_failure_jump)
|
|
5942 {
|
|
5943 p[-1] = (unsigned char) jump;
|
|
5944 DEBUG_PRINT1 (" Match => jump.\n");
|
|
5945 goto unconditional_jump;
|
|
5946 }
|
|
5947 /* Note fall through. */
|
|
5948
|
|
5949
|
|
5950 /* The end of a simple repeat has a pop_failure_jump back to
|
|
5951 its matching on_failure_jump, where the latter will push a
|
|
5952 failure point. The pop_failure_jump takes off failure
|
|
5953 points put on by this pop_failure_jump's matching
|
|
5954 on_failure_jump; we got through the pattern to here from the
|
|
5955 matching on_failure_jump, so didn't fail. */
|
|
5956 case pop_failure_jump:
|
|
5957 {
|
|
5958 /* We need to pass separate storage for the lowest and
|
|
5959 highest registers, even though we don't care about the
|
|
5960 actual values. Otherwise, we will restore only one
|
|
5961 register from the stack, since lowest will == highest in
|
|
5962 `pop_failure_point'. */
|
647
|
5963 int dummy_low_reg, dummy_high_reg;
|
428
|
5964 unsigned char *pdummy;
|
446
|
5965 re_char *sdummy = NULL;
|
428
|
5966
|
|
5967 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
|
|
5968 POP_FAILURE_POINT (sdummy, pdummy,
|
|
5969 dummy_low_reg, dummy_high_reg,
|
|
5970 reg_dummy, reg_dummy, reg_info_dummy);
|
|
5971 }
|
|
5972 /* Note fall through. */
|
|
5973
|
|
5974
|
|
5975 /* Unconditionally jump (without popping any failure points). */
|
|
5976 case jump:
|
|
5977 unconditional_jump:
|
|
5978 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
|
|
5979 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
|
|
5980 p += mcnt; /* Do the jump. */
|
|
5981 DEBUG_PRINT2 ("(to 0x%lx).\n", (long) p);
|
|
5982 break;
|
|
5983
|
|
5984
|
|
5985 /* We need this opcode so we can detect where alternatives end
|
|
5986 in `group_match_null_string_p' et al. */
|
|
5987 case jump_past_alt:
|
|
5988 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
|
|
5989 goto unconditional_jump;
|
|
5990
|
|
5991
|
|
5992 /* Normally, the on_failure_jump pushes a failure point, which
|
|
5993 then gets popped at pop_failure_jump. We will end up at
|
|
5994 pop_failure_jump, also, and with a pattern of, say, `a+', we
|
|
5995 are skipping over the on_failure_jump, so we have to push
|
|
5996 something meaningless for pop_failure_jump to pop. */
|
|
5997 case dummy_failure_jump:
|
|
5998 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
|
|
5999 /* It doesn't matter what we push for the string here. What
|
|
6000 the code at `fail' tests is the value for the pattern. */
|
446
|
6001 PUSH_FAILURE_POINT ((unsigned char *) 0, (unsigned char *) 0, -2);
|
428
|
6002 goto unconditional_jump;
|
|
6003
|
|
6004
|
|
6005 /* At the end of an alternative, we need to push a dummy failure
|
|
6006 point in case we are followed by a `pop_failure_jump', because
|
|
6007 we don't want the failure point for the alternative to be
|
|
6008 popped. For example, matching `(a|ab)*' against `aab'
|
|
6009 requires that we match the `ab' alternative. */
|
|
6010 case push_dummy_failure:
|
|
6011 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
|
|
6012 /* See comments just above at `dummy_failure_jump' about the
|
|
6013 two zeroes. */
|
446
|
6014 PUSH_FAILURE_POINT ((unsigned char *) 0, (unsigned char *) 0, -2);
|
428
|
6015 break;
|
|
6016
|
|
6017 /* Have to succeed matching what follows at least n times.
|
|
6018 After that, handle like `on_failure_jump'. */
|
|
6019 case succeed_n:
|
|
6020 EXTRACT_NUMBER (mcnt, p + 2);
|
|
6021 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
|
|
6022
|
|
6023 assert (mcnt >= 0);
|
|
6024 /* Originally, this is how many times we HAVE to succeed. */
|
|
6025 if (mcnt > 0)
|
|
6026 {
|
|
6027 mcnt--;
|
|
6028 p += 2;
|
|
6029 STORE_NUMBER_AND_INCR (p, mcnt);
|
|
6030 DEBUG_PRINT3 (" Setting 0x%lx to %d.\n", (long) p, mcnt);
|
|
6031 }
|
|
6032 else if (mcnt == 0)
|
|
6033 {
|
|
6034 DEBUG_PRINT2 (" Setting two bytes from 0x%lx to no_op.\n",
|
|
6035 (long) (p+2));
|
|
6036 p[2] = (unsigned char) no_op;
|
|
6037 p[3] = (unsigned char) no_op;
|
|
6038 goto on_failure;
|
|
6039 }
|
|
6040 break;
|
|
6041
|
|
6042 case jump_n:
|
|
6043 EXTRACT_NUMBER (mcnt, p + 2);
|
|
6044 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
|
|
6045
|
|
6046 /* Originally, this is how many times we CAN jump. */
|
|
6047 if (mcnt)
|
|
6048 {
|
|
6049 mcnt--;
|
|
6050 STORE_NUMBER (p + 2, mcnt);
|
|
6051 goto unconditional_jump;
|
|
6052 }
|
|
6053 /* If don't have to jump any more, skip over the rest of command. */
|
|
6054 else
|
|
6055 p += 4;
|
|
6056 break;
|
|
6057
|
|
6058 case set_number_at:
|
|
6059 {
|
|
6060 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
|
|
6061
|
|
6062 EXTRACT_NUMBER_AND_INCR (mcnt, p);
|
|
6063 p1 = p + mcnt;
|
|
6064 EXTRACT_NUMBER_AND_INCR (mcnt, p);
|
|
6065 DEBUG_PRINT3 (" Setting 0x%lx to %d.\n", (long) p1, mcnt);
|
|
6066 STORE_NUMBER (p1, mcnt);
|
|
6067 break;
|
|
6068 }
|
|
6069
|
|
6070 case wordbound:
|
|
6071 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
|
|
6072 should_succeed = 1;
|
|
6073 matchwordbound:
|
|
6074 {
|
|
6075 /* XEmacs change */
|
1377
|
6076 /* Straightforward and (I hope) correct implementation.
|
|
6077 Probably should be optimized by arranging to compute
|
|
6078 pos only once. */
|
|
6079 /* emch1 is the character before d, syn1 is the syntax of
|
|
6080 emch1, emch2 is the character at d, and syn2 is the
|
|
6081 syntax of emch2. */
|
|
6082 Ichar emch1, emch2;
|
|
6083 int syn1, syn2;
|
|
6084 re_char *d_before, *d_after;
|
|
6085 int result,
|
|
6086 at_beg = AT_STRINGS_BEG (d),
|
|
6087 at_end = AT_STRINGS_END (d);
|
|
6088 #ifdef emacs
|
|
6089 Charxpos pos;
|
|
6090 #endif
|
|
6091
|
|
6092 if (at_beg && at_end)
|
|
6093 {
|
|
6094 result = 0;
|
|
6095 }
|
428
|
6096 else
|
|
6097 {
|
1377
|
6098 if (!at_beg)
|
|
6099 {
|
|
6100 d_before = POS_BEFORE_GAP_UNSAFE (d);
|
|
6101 DEC_IBYTEPTR_FMT (d_before, fmt);
|
|
6102 emch1 = itext_ichar_fmt (d_before, fmt, lispobj);
|
460
|
6103 #ifdef emacs
|
1377
|
6104 pos = offset_to_charxpos (lispobj, PTR_TO_OFFSET (d)) - 1;
|
|
6105 BEGIN_REGEX_MALLOC_OK ();
|
|
6106 UPDATE_SYNTAX_CACHE (scache, pos);
|
460
|
6107 #endif
|
1377
|
6108 syn1 = SYNTAX_FROM_CACHE (scache, emch1);
|
|
6109 END_REGEX_MALLOC_OK ();
|
|
6110 }
|
|
6111 if (!at_end)
|
|
6112 {
|
|
6113 d_after = POS_AFTER_GAP_UNSAFE (d);
|
|
6114 emch2 = itext_ichar_fmt (d_after, fmt, lispobj);
|
460
|
6115 #ifdef emacs
|
1377
|
6116 pos = offset_to_charxpos (lispobj, PTR_TO_OFFSET (d));
|
|
6117 BEGIN_REGEX_MALLOC_OK ();
|
|
6118 UPDATE_SYNTAX_CACHE_FORWARD (scache, pos);
|
460
|
6119 #endif
|
1377
|
6120 syn2 = SYNTAX_FROM_CACHE (scache, emch2);
|
|
6121 END_REGEX_MALLOC_OK ();
|
|
6122 }
|
1333
|
6123 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS ();
|
1377
|
6124
|
|
6125 if (at_beg)
|
|
6126 result = (syn2 == Sword);
|
|
6127 else if (at_end)
|
|
6128 result = (syn1 == Sword);
|
|
6129 else
|
|
6130 result = ((syn1 == Sword) != (syn2 == Sword));
|
428
|
6131 }
|
1377
|
6132
|
428
|
6133 if (result == should_succeed)
|
|
6134 break;
|
|
6135 goto fail;
|
|
6136 }
|
|
6137
|
|
6138 case notwordbound:
|
|
6139 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
|
|
6140 should_succeed = 0;
|
|
6141 goto matchwordbound;
|
|
6142
|
|
6143 case wordbeg:
|
|
6144 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
|
460
|
6145 if (AT_STRINGS_END (d))
|
|
6146 goto fail;
|
428
|
6147 {
|
|
6148 /* XEmacs: this originally read:
|
|
6149
|
|
6150 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
|
|
6151 break;
|
|
6152
|
|
6153 */
|
460
|
6154 re_char *dtmp = POS_AFTER_GAP_UNSAFE (d);
|
867
|
6155 Ichar emch = itext_ichar_fmt (dtmp, fmt, lispobj);
|
1333
|
6156 int tempres;
|
1347
|
6157 #ifdef emacs
|
|
6158 Charxpos charpos = offset_to_charxpos (lispobj, PTR_TO_OFFSET (d));
|
|
6159 #endif
|
1333
|
6160 BEGIN_REGEX_MALLOC_OK ();
|
460
|
6161 #ifdef emacs
|
826
|
6162 UPDATE_SYNTAX_CACHE (scache, charpos);
|
460
|
6163 #endif
|
1333
|
6164 tempres = (SYNTAX_FROM_CACHE (scache, emch) != Sword);
|
|
6165 END_REGEX_MALLOC_OK ();
|
|
6166 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS ();
|
|
6167 if (tempres)
|
428
|
6168 goto fail;
|
|
6169 if (AT_STRINGS_BEG (d))
|
|
6170 break;
|
460
|
6171 dtmp = POS_BEFORE_GAP_UNSAFE (d);
|
867
|
6172 DEC_IBYTEPTR_FMT (dtmp, fmt);
|
|
6173 emch = itext_ichar_fmt (dtmp, fmt, lispobj);
|
1333
|
6174 BEGIN_REGEX_MALLOC_OK ();
|
460
|
6175 #ifdef emacs
|
826
|
6176 UPDATE_SYNTAX_CACHE_BACKWARD (scache, charpos - 1);
|
460
|
6177 #endif
|
1333
|
6178 tempres = (SYNTAX_FROM_CACHE (scache, emch) != Sword);
|
|
6179 END_REGEX_MALLOC_OK ();
|
|
6180 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS ();
|
|
6181 if (tempres)
|
428
|
6182 break;
|
|
6183 goto fail;
|
|
6184 }
|
|
6185
|
|
6186 case wordend:
|
|
6187 DEBUG_PRINT1 ("EXECUTING wordend.\n");
|
460
|
6188 if (AT_STRINGS_BEG (d))
|
|
6189 goto fail;
|
428
|
6190 {
|
|
6191 /* XEmacs: this originally read:
|
|
6192
|
|
6193 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
|
|
6194 && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
|
|
6195 break;
|
|
6196
|
|
6197 The or condition is incorrect (reversed).
|
|
6198 */
|
460
|
6199 re_char *dtmp;
|
867
|
6200 Ichar emch;
|
1333
|
6201 int tempres;
|
460
|
6202 #ifdef emacs
|
826
|
6203 Charxpos charpos = offset_to_charxpos (lispobj, PTR_TO_OFFSET (d));
|
1347
|
6204 BEGIN_REGEX_MALLOC_OK ();
|
826
|
6205 UPDATE_SYNTAX_CACHE (scache, charpos);
|
1333
|
6206 END_REGEX_MALLOC_OK ();
|
|
6207 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS ();
|
1347
|
6208 #endif
|
460
|
6209 dtmp = POS_BEFORE_GAP_UNSAFE (d);
|
867
|
6210 DEC_IBYTEPTR_FMT (dtmp, fmt);
|
|
6211 emch = itext_ichar_fmt (dtmp, fmt, lispobj);
|
1333
|
6212 BEGIN_REGEX_MALLOC_OK ();
|
|
6213 tempres = (SYNTAX_FROM_CACHE (scache, emch) != Sword);
|
|
6214 END_REGEX_MALLOC_OK ();
|
|
6215 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS ();
|
|
6216 if (tempres)
|
428
|
6217 goto fail;
|
|
6218 if (AT_STRINGS_END (d))
|
|
6219 break;
|
460
|
6220 dtmp = POS_AFTER_GAP_UNSAFE (d);
|
867
|
6221 emch = itext_ichar_fmt (dtmp, fmt, lispobj);
|
1333
|
6222 BEGIN_REGEX_MALLOC_OK ();
|
460
|
6223 #ifdef emacs
|
826
|
6224 UPDATE_SYNTAX_CACHE_FORWARD (scache, charpos + 1);
|
460
|
6225 #endif
|
1333
|
6226 tempres = (SYNTAX_FROM_CACHE (scache, emch) != Sword);
|
|
6227 END_REGEX_MALLOC_OK ();
|
|
6228 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS ();
|
|
6229 if (tempres)
|
428
|
6230 break;
|
|
6231 goto fail;
|
|
6232 }
|
|
6233
|
|
6234 #ifdef emacs
|
|
6235 case before_dot:
|
|
6236 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
|
826
|
6237 if (!BUFFERP (lispobj)
|
|
6238 || (BUF_PTR_BYTE_POS (XBUFFER (lispobj), (unsigned char *) d)
|
|
6239 >= BUF_PT (XBUFFER (lispobj))))
|
428
|
6240 goto fail;
|
|
6241 break;
|
|
6242
|
|
6243 case at_dot:
|
|
6244 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
|
826
|
6245 if (!BUFFERP (lispobj)
|
|
6246 || (BUF_PTR_BYTE_POS (XBUFFER (lispobj), (unsigned char *) d)
|
|
6247 != BUF_PT (XBUFFER (lispobj))))
|
428
|
6248 goto fail;
|
|
6249 break;
|
|
6250
|
|
6251 case after_dot:
|
|
6252 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
|
826
|
6253 if (!BUFFERP (lispobj)
|
|
6254 || (BUF_PTR_BYTE_POS (XBUFFER (lispobj), (unsigned char *) d)
|
|
6255 <= BUF_PT (XBUFFER (lispobj))))
|
428
|
6256 goto fail;
|
|
6257 break;
|
|
6258
|
|
6259 case syntaxspec:
|
|
6260 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
|
|
6261 mcnt = *p++;
|
|
6262 goto matchsyntax;
|
|
6263
|
|
6264 case wordchar:
|
|
6265 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
|
|
6266 mcnt = (int) Sword;
|
|
6267 matchsyntax:
|
|
6268 should_succeed = 1;
|
|
6269 matchornotsyntax:
|
|
6270 {
|
|
6271 int matches;
|
867
|
6272 Ichar emch;
|
428
|
6273
|
450
|
6274 REGEX_PREFETCH ();
|
1333
|
6275 BEGIN_REGEX_MALLOC_OK ();
|
826
|
6276 UPDATE_SYNTAX_CACHE
|
|
6277 (scache, offset_to_charxpos (lispobj, PTR_TO_OFFSET (d)));
|
1333
|
6278 END_REGEX_MALLOC_OK ();
|
|
6279 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS ();
|
826
|
6280
|
867
|
6281 emch = itext_ichar_fmt (d, fmt, lispobj);
|
1333
|
6282 BEGIN_REGEX_MALLOC_OK ();
|
826
|
6283 matches = (SYNTAX_FROM_CACHE (scache, emch) ==
|
|
6284 (enum syntaxcode) mcnt);
|
1333
|
6285 END_REGEX_MALLOC_OK ();
|
|
6286 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS ();
|
867
|
6287 INC_IBYTEPTR_FMT (d, fmt);
|
428
|
6288 if (matches != should_succeed)
|
|
6289 goto fail;
|
|
6290 SET_REGS_MATCHED ();
|
|
6291 }
|
|
6292 break;
|
|
6293
|
|
6294 case notsyntaxspec:
|
|
6295 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
|
|
6296 mcnt = *p++;
|
|
6297 goto matchnotsyntax;
|
|
6298
|
|
6299 case notwordchar:
|
|
6300 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
|
|
6301 mcnt = (int) Sword;
|
|
6302 matchnotsyntax:
|
|
6303 should_succeed = 0;
|
|
6304 goto matchornotsyntax;
|
|
6305
|
|
6306 #ifdef MULE
|
|
6307 /* 97/2/17 jhod Mule category code patch */
|
|
6308 case categoryspec:
|
|
6309 should_succeed = 1;
|
|
6310 matchornotcategory:
|
|
6311 {
|
867
|
6312 Ichar emch;
|
428
|
6313
|
|
6314 mcnt = *p++;
|
450
|
6315 REGEX_PREFETCH ();
|
867
|
6316 emch = itext_ichar_fmt (d, fmt, lispobj);
|
|
6317 INC_IBYTEPTR_FMT (d, fmt);
|
826
|
6318 if (check_category_char (emch, BUFFER_CATEGORY_TABLE (lispbuf),
|
|
6319 mcnt, should_succeed))
|
428
|
6320 goto fail;
|
|
6321 SET_REGS_MATCHED ();
|
|
6322 }
|
|
6323 break;
|
|
6324
|
|
6325 case notcategoryspec:
|
|
6326 should_succeed = 0;
|
|
6327 goto matchornotcategory;
|
|
6328 /* end of category patch */
|
|
6329 #endif /* MULE */
|
|
6330 #else /* not emacs */
|
|
6331 case wordchar:
|
|
6332 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
|
450
|
6333 REGEX_PREFETCH ();
|
826
|
6334 if (!WORDCHAR_P ((int) (*d)))
|
428
|
6335 goto fail;
|
|
6336 SET_REGS_MATCHED ();
|
|
6337 d++;
|
|
6338 break;
|
|
6339
|
|
6340 case notwordchar:
|
|
6341 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
|
450
|
6342 REGEX_PREFETCH ();
|
826
|
6343 if (!WORDCHAR_P ((int) (*d)))
|
428
|
6344 goto fail;
|
|
6345 SET_REGS_MATCHED ();
|
|
6346 d++;
|
|
6347 break;
|
446
|
6348 #endif /* emacs */
|
428
|
6349
|
|
6350 default:
|
|
6351 abort ();
|
|
6352 }
|
|
6353 continue; /* Successfully executed one pattern command; keep going. */
|
|
6354
|
|
6355
|
|
6356 /* We goto here if a matching operation fails. */
|
|
6357 fail:
|
|
6358 if (!FAIL_STACK_EMPTY ())
|
|
6359 { /* A restart point is known. Restore to that state. */
|
|
6360 DEBUG_PRINT1 ("\nFAIL:\n");
|
|
6361 POP_FAILURE_POINT (d, p,
|
|
6362 lowest_active_reg, highest_active_reg,
|
|
6363 regstart, regend, reg_info);
|
|
6364
|
|
6365 /* If this failure point is a dummy, try the next one. */
|
|
6366 if (!p)
|
|
6367 goto fail;
|
|
6368
|
|
6369 /* If we failed to the end of the pattern, don't examine *p. */
|
|
6370 assert (p <= pend);
|
|
6371 if (p < pend)
|
|
6372 {
|
460
|
6373 re_bool is_a_jump_n = false;
|
428
|
6374
|
|
6375 /* If failed to a backwards jump that's part of a repetition
|
|
6376 loop, need to pop this failure point and use the next one. */
|
|
6377 switch ((re_opcode_t) *p)
|
|
6378 {
|
|
6379 case jump_n:
|
|
6380 is_a_jump_n = true;
|
|
6381 case maybe_pop_jump:
|
|
6382 case pop_failure_jump:
|
|
6383 case jump:
|
|
6384 p1 = p + 1;
|
|
6385 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
|
|
6386 p1 += mcnt;
|
|
6387
|
|
6388 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
|
|
6389 || (!is_a_jump_n
|
|
6390 && (re_opcode_t) *p1 == on_failure_jump))
|
|
6391 goto fail;
|
|
6392 break;
|
|
6393 default:
|
|
6394 /* do nothing */ ;
|
|
6395 }
|
|
6396 }
|
|
6397
|
|
6398 if (d >= string1 && d <= end1)
|
|
6399 dend = end_match_1;
|
|
6400 }
|
|
6401 else
|
|
6402 break; /* Matching at this starting point really fails. */
|
|
6403 } /* for (;;) */
|
|
6404
|
|
6405 if (best_regs_set)
|
|
6406 goto restore_best_regs;
|
|
6407
|
|
6408 FREE_VARIABLES ();
|
|
6409
|
|
6410 return -1; /* Failure to match. */
|
1333
|
6411 } /* re_match_2_internal */
|
428
|
6412
|
|
6413 /* Subroutine definitions for re_match_2. */
|
|
6414
|
|
6415
|
|
6416 /* We are passed P pointing to a register number after a start_memory.
|
|
6417
|
|
6418 Return true if the pattern up to the corresponding stop_memory can
|
|
6419 match the empty string, and false otherwise.
|
|
6420
|
|
6421 If we find the matching stop_memory, sets P to point to one past its number.
|
|
6422 Otherwise, sets P to an undefined byte less than or equal to END.
|
|
6423
|
|
6424 We don't handle duplicates properly (yet). */
|
|
6425
|
460
|
6426 static re_bool
|
428
|
6427 group_match_null_string_p (unsigned char **p, unsigned char *end,
|
|
6428 register_info_type *reg_info)
|
|
6429 {
|
|
6430 int mcnt;
|
|
6431 /* Point to after the args to the start_memory. */
|
|
6432 unsigned char *p1 = *p + 2;
|
|
6433
|
|
6434 while (p1 < end)
|
|
6435 {
|
|
6436 /* Skip over opcodes that can match nothing, and return true or
|
|
6437 false, as appropriate, when we get to one that can't, or to the
|
|
6438 matching stop_memory. */
|
|
6439
|
|
6440 switch ((re_opcode_t) *p1)
|
|
6441 {
|
|
6442 /* Could be either a loop or a series of alternatives. */
|
|
6443 case on_failure_jump:
|
|
6444 p1++;
|
|
6445 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
|
|
6446
|
|
6447 /* If the next operation is not a jump backwards in the
|
|
6448 pattern. */
|
|
6449
|
|
6450 if (mcnt >= 0)
|
|
6451 {
|
|
6452 /* Go through the on_failure_jumps of the alternatives,
|
|
6453 seeing if any of the alternatives cannot match nothing.
|
|
6454 The last alternative starts with only a jump,
|
|
6455 whereas the rest start with on_failure_jump and end
|
|
6456 with a jump, e.g., here is the pattern for `a|b|c':
|
|
6457
|
|
6458 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
|
|
6459 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
|
|
6460 /exactn/1/c
|
|
6461
|
|
6462 So, we have to first go through the first (n-1)
|
|
6463 alternatives and then deal with the last one separately. */
|
|
6464
|
|
6465
|
|
6466 /* Deal with the first (n-1) alternatives, which start
|
|
6467 with an on_failure_jump (see above) that jumps to right
|
|
6468 past a jump_past_alt. */
|
|
6469
|
|
6470 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
|
|
6471 {
|
|
6472 /* `mcnt' holds how many bytes long the alternative
|
|
6473 is, including the ending `jump_past_alt' and
|
|
6474 its number. */
|
|
6475
|
|
6476 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
|
|
6477 reg_info))
|
|
6478 return false;
|
|
6479
|
|
6480 /* Move to right after this alternative, including the
|
|
6481 jump_past_alt. */
|
|
6482 p1 += mcnt;
|
|
6483
|
|
6484 /* Break if it's the beginning of an n-th alternative
|
|
6485 that doesn't begin with an on_failure_jump. */
|
|
6486 if ((re_opcode_t) *p1 != on_failure_jump)
|
|
6487 break;
|
|
6488
|
|
6489 /* Still have to check that it's not an n-th
|
|
6490 alternative that starts with an on_failure_jump. */
|
|
6491 p1++;
|
|
6492 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
|
|
6493 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
|
|
6494 {
|
|
6495 /* Get to the beginning of the n-th alternative. */
|
|
6496 p1 -= 3;
|
|
6497 break;
|
|
6498 }
|
|
6499 }
|
|
6500
|
|
6501 /* Deal with the last alternative: go back and get number
|
|
6502 of the `jump_past_alt' just before it. `mcnt' contains
|
|
6503 the length of the alternative. */
|
|
6504 EXTRACT_NUMBER (mcnt, p1 - 2);
|
|
6505
|
|
6506 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
|
|
6507 return false;
|
|
6508
|
|
6509 p1 += mcnt; /* Get past the n-th alternative. */
|
|
6510 } /* if mcnt > 0 */
|
|
6511 break;
|
|
6512
|
|
6513
|
|
6514 case stop_memory:
|
|
6515 assert (p1[1] == **p);
|
|
6516 *p = p1 + 2;
|
|
6517 return true;
|
|
6518
|
|
6519
|
|
6520 default:
|
|
6521 if (!common_op_match_null_string_p (&p1, end, reg_info))
|
|
6522 return false;
|
|
6523 }
|
|
6524 } /* while p1 < end */
|
|
6525
|
|
6526 return false;
|
|
6527 } /* group_match_null_string_p */
|
|
6528
|
|
6529
|
|
6530 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
|
|
6531 It expects P to be the first byte of a single alternative and END one
|
|
6532 byte past the last. The alternative can contain groups. */
|
|
6533
|
460
|
6534 static re_bool
|
428
|
6535 alt_match_null_string_p (unsigned char *p, unsigned char *end,
|
|
6536 register_info_type *reg_info)
|
|
6537 {
|
|
6538 int mcnt;
|
|
6539 unsigned char *p1 = p;
|
|
6540
|
|
6541 while (p1 < end)
|
|
6542 {
|
|
6543 /* Skip over opcodes that can match nothing, and break when we get
|
|
6544 to one that can't. */
|
|
6545
|
|
6546 switch ((re_opcode_t) *p1)
|
|
6547 {
|
|
6548 /* It's a loop. */
|
|
6549 case on_failure_jump:
|
|
6550 p1++;
|
|
6551 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
|
|
6552 p1 += mcnt;
|
|
6553 break;
|
|
6554
|
|
6555 default:
|
|
6556 if (!common_op_match_null_string_p (&p1, end, reg_info))
|
|
6557 return false;
|
|
6558 }
|
|
6559 } /* while p1 < end */
|
|
6560
|
|
6561 return true;
|
|
6562 } /* alt_match_null_string_p */
|
|
6563
|
|
6564
|
|
6565 /* Deals with the ops common to group_match_null_string_p and
|
|
6566 alt_match_null_string_p.
|
|
6567
|
|
6568 Sets P to one after the op and its arguments, if any. */
|
|
6569
|
460
|
6570 static re_bool
|
428
|
6571 common_op_match_null_string_p (unsigned char **p, unsigned char *end,
|
|
6572 register_info_type *reg_info)
|
|
6573 {
|
|
6574 int mcnt;
|
460
|
6575 re_bool ret;
|
428
|
6576 int reg_no;
|
|
6577 unsigned char *p1 = *p;
|
|
6578
|
|
6579 switch ((re_opcode_t) *p1++)
|
|
6580 {
|
|
6581 case no_op:
|
|
6582 case begline:
|
|
6583 case endline:
|
|
6584 case begbuf:
|
|
6585 case endbuf:
|
|
6586 case wordbeg:
|
|
6587 case wordend:
|
|
6588 case wordbound:
|
|
6589 case notwordbound:
|
|
6590 #ifdef emacs
|
|
6591 case before_dot:
|
|
6592 case at_dot:
|
|
6593 case after_dot:
|
|
6594 #endif
|
|
6595 break;
|
|
6596
|
|
6597 case start_memory:
|
|
6598 reg_no = *p1;
|
|
6599 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
|
|
6600 ret = group_match_null_string_p (&p1, end, reg_info);
|
|
6601
|
|
6602 /* Have to set this here in case we're checking a group which
|
|
6603 contains a group and a back reference to it. */
|
|
6604
|
|
6605 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
|
|
6606 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
|
|
6607
|
|
6608 if (!ret)
|
|
6609 return false;
|
|
6610 break;
|
|
6611
|
|
6612 /* If this is an optimized succeed_n for zero times, make the jump. */
|
|
6613 case jump:
|
|
6614 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
|
|
6615 if (mcnt >= 0)
|
|
6616 p1 += mcnt;
|
|
6617 else
|
|
6618 return false;
|
|
6619 break;
|
|
6620
|
|
6621 case succeed_n:
|
|
6622 /* Get to the number of times to succeed. */
|
|
6623 p1 += 2;
|
|
6624 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
|
|
6625
|
|
6626 if (mcnt == 0)
|
|
6627 {
|
|
6628 p1 -= 4;
|
|
6629 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
|
|
6630 p1 += mcnt;
|
|
6631 }
|
|
6632 else
|
|
6633 return false;
|
|
6634 break;
|
|
6635
|
|
6636 case duplicate:
|
|
6637 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
|
|
6638 return false;
|
|
6639 break;
|
|
6640
|
|
6641 case set_number_at:
|
|
6642 p1 += 4;
|
|
6643
|
|
6644 default:
|
|
6645 /* All other opcodes mean we cannot match the empty string. */
|
|
6646 return false;
|
|
6647 }
|
|
6648
|
|
6649 *p = p1;
|
|
6650 return true;
|
|
6651 } /* common_op_match_null_string_p */
|
|
6652
|
|
6653
|
|
6654 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
|
|
6655 bytes; nonzero otherwise. */
|
|
6656
|
|
6657 static int
|
446
|
6658 bcmp_translate (re_char *s1, re_char *s2,
|
826
|
6659 REGISTER int len, RE_TRANSLATE_TYPE translate
|
|
6660 #ifdef emacs
|
|
6661 , Internal_Format fmt, Lisp_Object lispobj
|
|
6662 #endif
|
|
6663 )
|
428
|
6664 {
|
826
|
6665 REGISTER re_char *p1 = s1, *p2 = s2;
|
446
|
6666 #ifdef MULE
|
826
|
6667 re_char *p1_end = s1 + len;
|
|
6668 re_char *p2_end = s2 + len;
|
446
|
6669
|
|
6670 while (p1 != p1_end && p2 != p2_end)
|
|
6671 {
|
867
|
6672 Ichar p1_ch, p2_ch;
|
|
6673
|
|
6674 p1_ch = itext_ichar_fmt (p1, fmt, lispobj);
|
|
6675 p2_ch = itext_ichar_fmt (p2, fmt, lispobj);
|
826
|
6676
|
|
6677 if (RE_TRANSLATE_1 (p1_ch)
|
|
6678 != RE_TRANSLATE_1 (p2_ch))
|
446
|
6679 return 1;
|
867
|
6680 INC_IBYTEPTR_FMT (p1, fmt);
|
|
6681 INC_IBYTEPTR_FMT (p2, fmt);
|
446
|
6682 }
|
|
6683 #else /* not MULE */
|
428
|
6684 while (len)
|
|
6685 {
|
826
|
6686 if (RE_TRANSLATE_1 (*p1++) != RE_TRANSLATE_1 (*p2++)) return 1;
|
428
|
6687 len--;
|
|
6688 }
|
446
|
6689 #endif /* MULE */
|
428
|
6690 return 0;
|
|
6691 }
|
|
6692
|
|
6693 /* Entry points for GNU code. */
|
|
6694
|
|
6695 /* re_compile_pattern is the GNU regular expression compiler: it
|
|
6696 compiles PATTERN (of length SIZE) and puts the result in BUFP.
|
|
6697 Returns 0 if the pattern was valid, otherwise an error string.
|
|
6698
|
|
6699 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
|
|
6700 are set in BUFP on entry.
|
|
6701
|
|
6702 We call regex_compile to do the actual compilation. */
|
|
6703
|
442
|
6704 const char *
|
|
6705 re_compile_pattern (const char *pattern, int length,
|
428
|
6706 struct re_pattern_buffer *bufp)
|
|
6707 {
|
|
6708 reg_errcode_t ret;
|
|
6709
|
|
6710 /* GNU code is written to assume at least RE_NREGS registers will be set
|
|
6711 (and at least one extra will be -1). */
|
|
6712 bufp->regs_allocated = REGS_UNALLOCATED;
|
|
6713
|
|
6714 /* And GNU code determines whether or not to get register information
|
|
6715 by passing null for the REGS argument to re_match, etc., not by
|
|
6716 setting no_sub. */
|
|
6717 bufp->no_sub = 0;
|
|
6718
|
|
6719 /* Match anchors at newline. */
|
|
6720 bufp->newline_anchor = 1;
|
|
6721
|
826
|
6722 ret = regex_compile ((unsigned char *) pattern, length, re_syntax_options,
|
|
6723 bufp);
|
428
|
6724
|
|
6725 if (!ret)
|
|
6726 return NULL;
|
|
6727 return gettext (re_error_msgid[(int) ret]);
|
|
6728 }
|
|
6729
|
|
6730 /* Entry points compatible with 4.2 BSD regex library. We don't define
|
|
6731 them unless specifically requested. */
|
|
6732
|
|
6733 #ifdef _REGEX_RE_COMP
|
|
6734
|
|
6735 /* BSD has one and only one pattern buffer. */
|
|
6736 static struct re_pattern_buffer re_comp_buf;
|
|
6737
|
|
6738 char *
|
442
|
6739 re_comp (const char *s)
|
428
|
6740 {
|
|
6741 reg_errcode_t ret;
|
|
6742
|
|
6743 if (!s)
|
|
6744 {
|
|
6745 if (!re_comp_buf.buffer)
|
|
6746 return gettext ("No previous regular expression");
|
|
6747 return 0;
|
|
6748 }
|
|
6749
|
|
6750 if (!re_comp_buf.buffer)
|
|
6751 {
|
1333
|
6752 re_comp_buf.buffer = (unsigned char *) xmalloc (200);
|
428
|
6753 if (re_comp_buf.buffer == NULL)
|
|
6754 return gettext (re_error_msgid[(int) REG_ESPACE]);
|
|
6755 re_comp_buf.allocated = 200;
|
|
6756
|
1333
|
6757 re_comp_buf.fastmap = (char *) xmalloc (1 << BYTEWIDTH);
|
428
|
6758 if (re_comp_buf.fastmap == NULL)
|
|
6759 return gettext (re_error_msgid[(int) REG_ESPACE]);
|
|
6760 }
|
|
6761
|
|
6762 /* Since `re_exec' always passes NULL for the `regs' argument, we
|
|
6763 don't need to initialize the pattern buffer fields which affect it. */
|
|
6764
|
|
6765 /* Match anchors at newlines. */
|
|
6766 re_comp_buf.newline_anchor = 1;
|
|
6767
|
826
|
6768 ret = regex_compile ((unsigned char *)s, strlen (s), re_syntax_options,
|
|
6769 &re_comp_buf);
|
428
|
6770
|
|
6771 if (!ret)
|
|
6772 return NULL;
|
|
6773
|
442
|
6774 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
|
428
|
6775 return (char *) gettext (re_error_msgid[(int) ret]);
|
|
6776 }
|
|
6777
|
|
6778
|
|
6779 int
|
442
|
6780 re_exec (const char *s)
|
428
|
6781 {
|
442
|
6782 const int len = strlen (s);
|
428
|
6783 return
|
|
6784 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
|
|
6785 }
|
|
6786 #endif /* _REGEX_RE_COMP */
|
|
6787
|
|
6788 /* POSIX.2 functions. Don't define these for Emacs. */
|
|
6789
|
|
6790 #ifndef emacs
|
|
6791
|
|
6792 /* regcomp takes a regular expression as a string and compiles it.
|
|
6793
|
|
6794 PREG is a regex_t *. We do not expect any fields to be initialized,
|
|
6795 since POSIX says we shouldn't. Thus, we set
|
|
6796
|
|
6797 `buffer' to the compiled pattern;
|
|
6798 `used' to the length of the compiled pattern;
|
|
6799 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
|
|
6800 REG_EXTENDED bit in CFLAGS is set; otherwise, to
|
|
6801 RE_SYNTAX_POSIX_BASIC;
|
|
6802 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
|
|
6803 `fastmap' and `fastmap_accurate' to zero;
|
|
6804 `re_nsub' to the number of subexpressions in PATTERN.
|
502
|
6805 (non-shy of course. POSIX probably doesn't know about
|
|
6806 shy ones, and in any case they should be invisible.)
|
428
|
6807
|
|
6808 PATTERN is the address of the pattern string.
|
|
6809
|
|
6810 CFLAGS is a series of bits which affect compilation.
|
|
6811
|
|
6812 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
|
|
6813 use POSIX basic syntax.
|
|
6814
|
|
6815 If REG_NEWLINE is set, then . and [^...] don't match newline.
|
|
6816 Also, regexec will try a match beginning after every newline.
|
|
6817
|
|
6818 If REG_ICASE is set, then we considers upper- and lowercase
|
|
6819 versions of letters to be equivalent when matching.
|
|
6820
|
|
6821 If REG_NOSUB is set, then when PREG is passed to regexec, that
|
|
6822 routine will report only success or failure, and nothing about the
|
|
6823 registers.
|
|
6824
|
|
6825 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
|
|
6826 the return codes and their meanings.) */
|
|
6827
|
|
6828 int
|
442
|
6829 regcomp (regex_t *preg, const char *pattern, int cflags)
|
428
|
6830 {
|
|
6831 reg_errcode_t ret;
|
647
|
6832 unsigned int syntax
|
428
|
6833 = (cflags & REG_EXTENDED) ?
|
|
6834 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
|
|
6835
|
|
6836 /* regex_compile will allocate the space for the compiled pattern. */
|
|
6837 preg->buffer = 0;
|
|
6838 preg->allocated = 0;
|
|
6839 preg->used = 0;
|
|
6840
|
|
6841 /* Don't bother to use a fastmap when searching. This simplifies the
|
|
6842 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
|
|
6843 characters after newlines into the fastmap. This way, we just try
|
|
6844 every character. */
|
|
6845 preg->fastmap = 0;
|
|
6846
|
|
6847 if (cflags & REG_ICASE)
|
|
6848 {
|
647
|
6849 int i;
|
428
|
6850
|
1333
|
6851 preg->translate = (char *) xmalloc (CHAR_SET_SIZE);
|
428
|
6852 if (preg->translate == NULL)
|
|
6853 return (int) REG_ESPACE;
|
|
6854
|
|
6855 /* Map uppercase characters to corresponding lowercase ones. */
|
|
6856 for (i = 0; i < CHAR_SET_SIZE; i++)
|
|
6857 preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
|
|
6858 }
|
|
6859 else
|
|
6860 preg->translate = NULL;
|
|
6861
|
|
6862 /* If REG_NEWLINE is set, newlines are treated differently. */
|
|
6863 if (cflags & REG_NEWLINE)
|
|
6864 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
|
|
6865 syntax &= ~RE_DOT_NEWLINE;
|
|
6866 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
|
|
6867 /* It also changes the matching behavior. */
|
|
6868 preg->newline_anchor = 1;
|
|
6869 }
|
|
6870 else
|
|
6871 preg->newline_anchor = 0;
|
|
6872
|
|
6873 preg->no_sub = !!(cflags & REG_NOSUB);
|
|
6874
|
|
6875 /* POSIX says a null character in the pattern terminates it, so we
|
|
6876 can use strlen here in compiling the pattern. */
|
446
|
6877 ret = regex_compile ((unsigned char *) pattern, strlen (pattern), syntax, preg);
|
428
|
6878
|
|
6879 /* POSIX doesn't distinguish between an unmatched open-group and an
|
|
6880 unmatched close-group: both are REG_EPAREN. */
|
|
6881 if (ret == REG_ERPAREN) ret = REG_EPAREN;
|
|
6882
|
|
6883 return (int) ret;
|
|
6884 }
|
|
6885
|
|
6886
|
|
6887 /* regexec searches for a given pattern, specified by PREG, in the
|
|
6888 string STRING.
|
|
6889
|
|
6890 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
|
|
6891 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
|
|
6892 least NMATCH elements, and we set them to the offsets of the
|
|
6893 corresponding matched substrings.
|
|
6894
|
|
6895 EFLAGS specifies `execution flags' which affect matching: if
|
|
6896 REG_NOTBOL is set, then ^ does not match at the beginning of the
|
|
6897 string; if REG_NOTEOL is set, then $ does not match at the end.
|
|
6898
|
|
6899 We return 0 if we find a match and REG_NOMATCH if not. */
|
|
6900
|
|
6901 int
|
442
|
6902 regexec (const regex_t *preg, const char *string, size_t nmatch,
|
428
|
6903 regmatch_t pmatch[], int eflags)
|
|
6904 {
|
|
6905 int ret;
|
|
6906 struct re_registers regs;
|
|
6907 regex_t private_preg;
|
|
6908 int len = strlen (string);
|
460
|
6909 re_bool want_reg_info = !preg->no_sub && nmatch > 0;
|
428
|
6910
|
|
6911 private_preg = *preg;
|
|
6912
|
|
6913 private_preg.not_bol = !!(eflags & REG_NOTBOL);
|
|
6914 private_preg.not_eol = !!(eflags & REG_NOTEOL);
|
|
6915
|
|
6916 /* The user has told us exactly how many registers to return
|
|
6917 information about, via `nmatch'. We have to pass that on to the
|
|
6918 matching routines. */
|
|
6919 private_preg.regs_allocated = REGS_FIXED;
|
|
6920
|
|
6921 if (want_reg_info)
|
|
6922 {
|
647
|
6923 regs.num_regs = (int) nmatch;
|
|
6924 regs.start = TALLOC ((int) nmatch, regoff_t);
|
|
6925 regs.end = TALLOC ((int) nmatch, regoff_t);
|
428
|
6926 if (regs.start == NULL || regs.end == NULL)
|
|
6927 return (int) REG_NOMATCH;
|
|
6928 }
|
|
6929
|
|
6930 /* Perform the searching operation. */
|
|
6931 ret = re_search (&private_preg, string, len,
|
|
6932 /* start: */ 0, /* range: */ len,
|
|
6933 want_reg_info ? ®s : (struct re_registers *) 0);
|
|
6934
|
|
6935 /* Copy the register information to the POSIX structure. */
|
|
6936 if (want_reg_info)
|
|
6937 {
|
|
6938 if (ret >= 0)
|
|
6939 {
|
647
|
6940 int r;
|
|
6941
|
|
6942 for (r = 0; r < (int) nmatch; r++)
|
428
|
6943 {
|
|
6944 pmatch[r].rm_so = regs.start[r];
|
|
6945 pmatch[r].rm_eo = regs.end[r];
|
|
6946 }
|
|
6947 }
|
|
6948
|
|
6949 /* If we needed the temporary register info, free the space now. */
|
1333
|
6950 xfree (regs.start);
|
|
6951 xfree (regs.end);
|
428
|
6952 }
|
|
6953
|
|
6954 /* We want zero return to mean success, unlike `re_search'. */
|
|
6955 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
|
|
6956 }
|
|
6957
|
|
6958
|
|
6959 /* Returns a message corresponding to an error code, ERRCODE, returned
|
|
6960 from either regcomp or regexec. We don't use PREG here. */
|
|
6961
|
|
6962 size_t
|
647
|
6963 regerror (int errcode, const regex_t *preg, char *errbuf,
|
|
6964 size_t errbuf_size)
|
428
|
6965 {
|
442
|
6966 const char *msg;
|
665
|
6967 Bytecount msg_size;
|
428
|
6968
|
|
6969 if (errcode < 0
|
647
|
6970 || errcode >= (int) (sizeof (re_error_msgid) /
|
|
6971 sizeof (re_error_msgid[0])))
|
428
|
6972 /* Only error codes returned by the rest of the code should be passed
|
|
6973 to this routine. If we are given anything else, or if other regex
|
|
6974 code generates an invalid error code, then the program has a bug.
|
|
6975 Dump core so we can fix it. */
|
|
6976 abort ();
|
|
6977
|
|
6978 msg = gettext (re_error_msgid[errcode]);
|
|
6979
|
|
6980 msg_size = strlen (msg) + 1; /* Includes the null. */
|
|
6981
|
|
6982 if (errbuf_size != 0)
|
|
6983 {
|
665
|
6984 if (msg_size > (Bytecount) errbuf_size)
|
428
|
6985 {
|
|
6986 strncpy (errbuf, msg, errbuf_size - 1);
|
|
6987 errbuf[errbuf_size - 1] = 0;
|
|
6988 }
|
|
6989 else
|
|
6990 strcpy (errbuf, msg);
|
|
6991 }
|
|
6992
|
647
|
6993 return (size_t) msg_size;
|
428
|
6994 }
|
|
6995
|
|
6996
|
|
6997 /* Free dynamically allocated space used by PREG. */
|
|
6998
|
|
6999 void
|
|
7000 regfree (regex_t *preg)
|
|
7001 {
|
|
7002 if (preg->buffer != NULL)
|
1333
|
7003 xfree (preg->buffer);
|
428
|
7004 preg->buffer = NULL;
|
|
7005
|
|
7006 preg->allocated = 0;
|
|
7007 preg->used = 0;
|
|
7008
|
|
7009 if (preg->fastmap != NULL)
|
1333
|
7010 xfree (preg->fastmap);
|
428
|
7011 preg->fastmap = NULL;
|
|
7012 preg->fastmap_accurate = 0;
|
|
7013
|
|
7014 if (preg->translate != NULL)
|
1333
|
7015 xfree (preg->translate);
|
428
|
7016 preg->translate = NULL;
|
|
7017 }
|
|
7018
|
|
7019 #endif /* not emacs */
|
|
7020
|