Mercurial > hg > xemacs-beta
annotate src/hash.c @ 5108:a50bd2ecce55
merge
author | Stephen J. Turnbull <stephen@xemacs.org> |
---|---|
date | Sun, 07 Mar 2010 00:40:34 +0900 |
parents | 16112448d484 |
children | 88bd4f3ef8e4 |
rev | line source |
---|---|
428 | 1 /* Hash tables. |
2 Copyright (C) 1992, 1993, 1994 Free Software Foundation, Inc. | |
2515 | 3 Copyright (C) 2003, 2004 Ben Wing. |
428 | 4 |
5 This file is part of XEmacs. | |
6 | |
7 XEmacs is free software; you can redistribute it and/or modify it | |
8 under the terms of the GNU General Public License as published by the | |
9 Free Software Foundation; either version 2, or (at your option) any | |
10 later version. | |
11 | |
12 XEmacs is distributed in the hope that it will be useful, but WITHOUT | |
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |
15 for more details. | |
16 | |
17 You should have received a copy of the GNU General Public License | |
18 along with XEmacs; see the file COPYING. If not, write to | |
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330, | |
20 Boston, MA 02111-1307, USA. */ | |
21 | |
22 /* Synched up with: Not in FSF. */ | |
23 | |
1292 | 24 /* Author: Lost in the mists of history. At least back to Lucid 19.3, |
25 circa Sep 1992. */ | |
26 | |
428 | 27 #include <config.h> |
28 #include "lisp.h" | |
29 #include "hash.h" | |
30 | |
1204 | 31 #define NULL_ENTRY ((void *) 0xdeadbeef) /* -559038737 base 10 */ |
428 | 32 |
33 #define COMFORTABLE_SIZE(size) (21 * (size) / 16) | |
34 | |
3025 | 35 #define KEYS_DIFFER_P(old, new_, testfun) \ |
36 (((old) != (new_)) && (!(testfun) || !(testfun) ((old),(new_)))) | |
428 | 37 |
665 | 38 static void rehash (hentry *harray, struct hash_table *ht, Elemcount size); |
428 | 39 |
665 | 40 Hashcode |
41 memory_hash (const void *xv, Bytecount size) | |
428 | 42 { |
665 | 43 Hashcode h = 0; |
442 | 44 unsigned const char *x = (unsigned const char *) xv; |
428 | 45 |
46 if (!x) return 0; | |
47 | |
48 while (size--) | |
49 { | |
665 | 50 Hashcode g; |
428 | 51 h = (h << 4) + *x++; |
52 if ((g = h & 0xf0000000) != 0) | |
53 h = (h ^ (g >> 24)) ^ g; | |
54 } | |
55 | |
56 return h; | |
57 } | |
58 | |
2515 | 59 static int |
60 string_equal (const void *st1, const void *st2) | |
61 { | |
62 if (!st1) | |
63 return st2 ? 0 : 1; | |
64 else if (!st2) | |
65 return 0; | |
66 else | |
67 return !strcmp ((const char *) st1, (const char *) st2); | |
68 } | |
69 | |
70 static Hashcode | |
71 string_hash (const void *xv) | |
442 | 72 { |
665 | 73 Hashcode h = 0; |
442 | 74 unsigned const char *x = (unsigned const char *) xv; |
75 | |
76 if (!x) return 0; | |
77 | |
78 while (*x) | |
79 { | |
665 | 80 Hashcode g; |
442 | 81 h = (h << 4) + *x++; |
82 if ((g = h & 0xf0000000) != 0) | |
83 h = (h ^ (g >> 24)) ^ g; | |
84 } | |
85 | |
86 return h; | |
87 } | |
88 | |
428 | 89 /* Return a suitable size for a hash table, with at least SIZE slots. */ |
665 | 90 static Elemcount |
91 hash_table_size (Elemcount requested_size) | |
428 | 92 { |
93 /* Return some prime near, but greater than or equal to, SIZE. | |
94 Decades from the time of writing, someone will have a system large | |
95 enough that the list below will be too short... */ | |
665 | 96 static const Elemcount primes [] = |
428 | 97 { |
98 19, 29, 41, 59, 79, 107, 149, 197, 263, 347, 457, 599, 787, 1031, | |
99 1361, 1777, 2333, 3037, 3967, 5167, 6719, 8737, 11369, 14783, | |
100 19219, 24989, 32491, 42257, 54941, 71429, 92861, 120721, 156941, | |
101 204047, 265271, 344857, 448321, 582821, 757693, 985003, 1280519, | |
102 1664681, 2164111, 2813353, 3657361, 4754591, 6180989, 8035301, | |
103 10445899, 13579681, 17653589, 22949669, 29834603, 38784989, | |
104 50420551, 65546729, 85210757, 110774011, 144006217, 187208107, | |
105 243370577, 316381771, 411296309, 534685237, 695090819, 903618083, | |
647 | 106 1174703521, 1527114613, 1985248999 /* , 2580823717UL, 3355070839UL */ |
428 | 107 }; |
108 /* We've heard of binary search. */ | |
109 int low, high; | |
110 for (low = 0, high = countof (primes) - 1; high - low > 1;) | |
111 { | |
112 /* Loop Invariant: size < primes [high] */ | |
113 int mid = (low + high) / 2; | |
114 if (primes [mid] < requested_size) | |
115 low = mid; | |
116 else | |
117 high = mid; | |
118 } | |
119 return primes [high]; | |
120 } | |
121 | |
442 | 122 const void * |
123 gethash (const void *key, struct hash_table *hash_table, const void **ret_value) | |
428 | 124 { |
125 if (!key) | |
126 { | |
127 *ret_value = hash_table->zero_entry; | |
128 return (void *) hash_table->zero_set; | |
129 } | |
130 else | |
131 { | |
132 hentry *harray = hash_table->harray; | |
133 hash_table_test_function test_function = hash_table->test_function; | |
665 | 134 Elemcount size = hash_table->size; |
135 Hashcode hcode_initial = | |
428 | 136 hash_table->hash_function ? |
137 hash_table->hash_function (key) : | |
665 | 138 (Hashcode) key; |
139 Elemcount hcode = (Elemcount) (hcode_initial % size); | |
428 | 140 hentry *e = &harray [hcode]; |
442 | 141 const void *e_key = e->key; |
428 | 142 |
143 if (e_key ? | |
144 KEYS_DIFFER_P (e_key, key, test_function) : | |
145 e->contents == NULL_ENTRY) | |
146 { | |
665 | 147 Elemcount h2 = size - 2; |
148 Elemcount incr = (Elemcount) (1 + (hcode_initial % h2)); | |
428 | 149 do |
150 { | |
151 hcode += incr; if (hcode >= size) hcode -= size; | |
152 e = &harray [hcode]; | |
153 e_key = e->key; | |
154 } | |
155 while (e_key ? | |
156 KEYS_DIFFER_P (e_key, key, test_function) : | |
157 e->contents == NULL_ENTRY); | |
158 } | |
159 | |
160 *ret_value = e->contents; | |
161 return e->key; | |
162 } | |
163 } | |
164 | |
165 void | |
166 clrhash (struct hash_table *hash_table) | |
167 { | |
168 memset (hash_table->harray, 0, sizeof (hentry) * hash_table->size); | |
169 hash_table->zero_entry = 0; | |
170 hash_table->zero_set = 0; | |
171 hash_table->fullness = 0; | |
172 } | |
173 | |
174 void | |
175 free_hash_table (struct hash_table *hash_table) | |
176 { | |
4976
16112448d484
Rename xfree(FOO, TYPE) -> xfree(FOO)
Ben Wing <ben@xemacs.org>
parents:
3025
diff
changeset
|
177 xfree (hash_table->harray); |
16112448d484
Rename xfree(FOO, TYPE) -> xfree(FOO)
Ben Wing <ben@xemacs.org>
parents:
3025
diff
changeset
|
178 xfree (hash_table); |
428 | 179 } |
180 | |
2515 | 181 struct hash_table * |
665 | 182 make_hash_table (Elemcount size) |
428 | 183 { |
184 struct hash_table *hash_table = xnew_and_zero (struct hash_table); | |
185 hash_table->size = hash_table_size (COMFORTABLE_SIZE (size)); | |
186 hash_table->harray = xnew_array (hentry, hash_table->size); | |
187 clrhash (hash_table); | |
188 return hash_table; | |
189 } | |
190 | |
191 struct hash_table * | |
2515 | 192 make_string_hash_table (Elemcount size) |
193 { | |
194 return make_general_hash_table (size, string_hash, string_equal); | |
195 } | |
196 | |
197 struct hash_table * | |
665 | 198 make_general_hash_table (Elemcount size, |
428 | 199 hash_table_hash_function hash_function, |
200 hash_table_test_function test_function) | |
201 { | |
202 struct hash_table* hash_table = make_hash_table (size); | |
203 hash_table->hash_function = hash_function; | |
204 hash_table->test_function = test_function; | |
205 return hash_table; | |
206 } | |
207 | |
208 static void | |
665 | 209 grow_hash_table (struct hash_table *hash_table, Elemcount new_size) |
428 | 210 { |
665 | 211 Elemcount old_size = hash_table->size; |
428 | 212 hentry *old_harray = hash_table->harray; |
213 | |
214 hash_table->size = hash_table_size (new_size); | |
215 hash_table->harray = xnew_array (hentry, hash_table->size); | |
216 | |
217 /* do the rehash on the "grown" table */ | |
218 { | |
219 long old_zero_set = hash_table->zero_set; | |
220 void *old_zero_entry = hash_table->zero_entry; | |
221 clrhash (hash_table); | |
222 hash_table->zero_set = old_zero_set; | |
223 hash_table->zero_entry = old_zero_entry; | |
224 rehash (old_harray, hash_table, old_size); | |
225 } | |
226 | |
4976
16112448d484
Rename xfree(FOO, TYPE) -> xfree(FOO)
Ben Wing <ben@xemacs.org>
parents:
3025
diff
changeset
|
227 xfree (old_harray); |
428 | 228 } |
229 | |
230 void | |
1292 | 231 pregrow_hash_table_if_necessary (struct hash_table *hash_table, |
232 Elemcount breathing_room) | |
233 { | |
234 Elemcount comfortable_size = COMFORTABLE_SIZE (hash_table->fullness); | |
235 if (hash_table->size < comfortable_size - breathing_room) | |
236 grow_hash_table (hash_table, comfortable_size + 1); | |
237 } | |
238 | |
239 void | |
442 | 240 puthash (const void *key, void *contents, struct hash_table *hash_table) |
428 | 241 { |
242 if (!key) | |
243 { | |
244 hash_table->zero_entry = contents; | |
245 hash_table->zero_set = 1; | |
246 } | |
247 else | |
248 { | |
249 hash_table_test_function test_function = hash_table->test_function; | |
665 | 250 Elemcount size = hash_table->size; |
428 | 251 hentry *harray = hash_table->harray; |
665 | 252 Hashcode hcode_initial = |
428 | 253 hash_table->hash_function ? |
254 hash_table->hash_function (key) : | |
665 | 255 (Hashcode) key; |
256 Elemcount hcode = (Elemcount) (hcode_initial % size); | |
257 Elemcount h2 = size - 2; | |
258 Elemcount incr = (Elemcount) (1 + (hcode_initial % h2)); | |
442 | 259 const void *e_key = harray [hcode].key; |
260 const void *oldcontents; | |
428 | 261 |
262 if (e_key && KEYS_DIFFER_P (e_key, key, test_function)) | |
263 { | |
264 do | |
265 { | |
266 hcode += incr; if (hcode >= size) hcode -= size; | |
267 e_key = harray [hcode].key; | |
268 } | |
269 while (e_key && KEYS_DIFFER_P (e_key, key, test_function)); | |
270 } | |
271 oldcontents = harray [hcode].contents; | |
272 harray [hcode].key = key; | |
273 harray [hcode].contents = contents; | |
274 /* If the entry that we used was a deleted entry, | |
275 check for a non deleted entry of the same key, | |
276 then delete it. */ | |
277 if (!e_key && oldcontents == NULL_ENTRY) | |
278 { | |
279 hentry *e; | |
280 | |
281 do | |
282 { | |
283 hcode += incr; if (hcode >= size) hcode -= size; | |
284 e = &harray [hcode]; | |
285 e_key = e->key; | |
286 } | |
287 while (e_key ? | |
288 KEYS_DIFFER_P (e_key, key, test_function): | |
289 e->contents == NULL_ENTRY); | |
290 | |
291 if (e_key) | |
292 { | |
293 e->key = 0; | |
294 e->contents = NULL_ENTRY; | |
295 } | |
296 } | |
297 | |
298 /* only increment the fullness when we used up a new hentry */ | |
299 if (!e_key || KEYS_DIFFER_P (e_key, key, test_function)) | |
300 { | |
665 | 301 Elemcount comfortable_size = COMFORTABLE_SIZE (++(hash_table->fullness)); |
428 | 302 if (hash_table->size < comfortable_size) |
303 grow_hash_table (hash_table, comfortable_size + 1); | |
304 } | |
305 } | |
306 } | |
307 | |
308 static void | |
665 | 309 rehash (hentry *harray, struct hash_table *hash_table, Elemcount size) |
428 | 310 { |
311 hentry *limit = harray + size; | |
312 hentry *e; | |
313 for (e = harray; e < limit; e++) | |
314 { | |
315 if (e->key) | |
316 puthash (e->key, e->contents, hash_table); | |
317 } | |
318 } | |
319 | |
320 void | |
442 | 321 remhash (const void *key, struct hash_table *hash_table) |
428 | 322 { |
323 if (!key) | |
324 { | |
325 hash_table->zero_entry = 0; | |
326 hash_table->zero_set = 0; | |
327 } | |
328 else | |
329 { | |
330 hentry *harray = hash_table->harray; | |
331 hash_table_test_function test_function = hash_table->test_function; | |
665 | 332 Elemcount size = hash_table->size; |
333 Hashcode hcode_initial = | |
428 | 334 (hash_table->hash_function) ? |
335 (hash_table->hash_function (key)) : | |
665 | 336 ((Hashcode) key); |
337 Elemcount hcode = (Elemcount) (hcode_initial % size); | |
428 | 338 hentry *e = &harray [hcode]; |
442 | 339 const void *e_key = e->key; |
428 | 340 |
341 if (e_key ? | |
342 KEYS_DIFFER_P (e_key, key, test_function) : | |
343 e->contents == NULL_ENTRY) | |
344 { | |
665 | 345 Elemcount h2 = size - 2; |
346 Elemcount incr = (Elemcount) (1 + (hcode_initial % h2)); | |
428 | 347 do |
348 { | |
349 hcode += incr; if (hcode >= size) hcode -= size; | |
350 e = &harray [hcode]; | |
351 e_key = e->key; | |
352 } | |
353 while (e_key? | |
354 KEYS_DIFFER_P (e_key, key, test_function): | |
355 e->contents == NULL_ENTRY); | |
356 } | |
357 if (e_key) | |
358 { | |
359 e->key = 0; | |
360 e->contents = NULL_ENTRY; | |
361 /* Note: you can't do fullness-- here, it breaks the world. */ | |
362 } | |
363 } | |
364 } | |
365 | |
366 void | |
367 maphash (maphash_function mf, struct hash_table *hash_table, void *arg) | |
368 { | |
369 hentry *e; | |
370 hentry *limit; | |
371 | |
372 if (hash_table->zero_set) | |
373 { | |
374 if (mf (0, hash_table->zero_entry, arg)) | |
375 return; | |
376 } | |
377 | |
378 for (e = hash_table->harray, limit = e + hash_table->size; e < limit; e++) | |
379 { | |
380 if (e->key && mf (e->key, e->contents, arg)) | |
381 return; | |
382 } | |
383 } | |
384 | |
385 void | |
386 map_remhash (remhash_predicate predicate, struct hash_table *hash_table, void *arg) | |
387 { | |
388 hentry *e; | |
389 hentry *limit; | |
390 | |
391 if (hash_table->zero_set && predicate (0, hash_table->zero_entry, arg)) | |
392 { | |
393 hash_table->zero_set = 0; | |
394 hash_table->zero_entry = 0; | |
395 } | |
396 | |
397 for (e = hash_table->harray, limit = e + hash_table->size; e < limit; e++) | |
398 if (predicate (e->key, e->contents, arg)) | |
399 { | |
400 e->key = 0; | |
401 e->contents = NULL_ENTRY; | |
402 } | |
403 } |