0
|
1 /* Extended regular expression matching and search library,
|
|
2 version 0.12, extended for XEmacs.
|
|
3 (Implements POSIX draft P10003.2/D11.2, except for
|
|
4 internationalization features.)
|
|
5
|
|
6 Copyright (C) 1993, 1994, 1995 Free Software Foundation, Inc.
|
|
7 Copyright (C) 1995 Sun Microsystems, Inc.
|
|
8 Copyright (C) 1995 Ben Wing.
|
|
9
|
|
10 This program is free software; you can redistribute it and/or modify
|
|
11 it under the terms of the GNU General Public License as published by
|
|
12 the Free Software Foundation; either version 2, or (at your option)
|
|
13 any later version.
|
|
14
|
|
15 This program is distributed in the hope that it will be useful,
|
|
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
18 GNU General Public License for more details.
|
|
19
|
|
20 You should have received a copy of the GNU General Public License
|
|
21 along with this program; see the file COPYING. If not, write to
|
|
22 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
23 Boston, MA 02111-1307, USA. */
|
|
24
|
|
25 /* Synched up with: FSF 19.29. */
|
|
26
|
|
27 /* Changes made for XEmacs:
|
|
28
|
|
29 (1) the REGEX_BEGLINE_CHECK code from the XEmacs v18 regex routines
|
|
30 was added. This causes a huge speedup in font-locking.
|
|
31 (2) Rel-alloc is disabled when the MMAP version of rel-alloc is
|
|
32 being used, because it's too slow -- all those calls to mmap()
|
|
33 add humongous overhead.
|
70
|
34 (3) Lots and lots of changes for Mule. They are bracketed by
|
|
35 `#ifdef MULE' or with comments that have `XEmacs' in them.
|
0
|
36 */
|
|
37
|
|
38 #ifdef HAVE_CONFIG_H
|
|
39 #include <config.h>
|
|
40 #endif
|
|
41
|
203
|
42 #ifndef REGISTER /* Rigidly enforced as of 20.3 */
|
|
43 #define REGISTER
|
|
44 #endif
|
|
45
|
163
|
46 #ifndef _GNU_SOURCE
|
|
47 #define _GNU_SOURCE 1
|
|
48 #endif
|
|
49
|
70
|
50 /* We assume non-Mule if emacs isn't defined. */
|
|
51 #ifndef emacs
|
|
52 #undef MULE
|
|
53 #endif
|
|
54
|
0
|
55 /* We need this for `regex.h', and perhaps for the Emacs include files. */
|
|
56 #include <sys/types.h>
|
|
57
|
|
58 /* This is for other GNU distributions with internationalized messages. */
|
|
59 #if defined (I18N3) && (defined (HAVE_LIBINTL_H) || defined (_LIBC))
|
|
60 # include <libintl.h>
|
|
61 #else
|
|
62 # define gettext(msgid) (msgid)
|
|
63 #endif
|
|
64
|
|
65 /* XEmacs: define this to add in a speedup for patterns anchored at
|
|
66 the beginning of a line. Keep the ifdefs so that it's easier to
|
|
67 tell where/why this code has diverged from v19. */
|
|
68 #define REGEX_BEGLINE_CHECK
|
|
69
|
|
70 /* XEmacs: the current mmap-based ralloc handles small blocks very
|
|
71 poorly, so we disable it here. */
|
|
72
|
255
|
73 #if (defined (REL_ALLOC) && defined (HAVE_MMAP)) || defined(DOUG_LEA_MALLOC)
|
0
|
74 # undef REL_ALLOC
|
|
75 #endif
|
|
76
|
|
77 /* The `emacs' switch turns on certain matching commands
|
|
78 that make sense only in Emacs. */
|
|
79 #ifdef emacs
|
|
80
|
|
81 #include "lisp.h"
|
|
82 #include "buffer.h"
|
|
83 #include "syntax.h"
|
|
84
|
|
85 #if (defined (DEBUG_XEMACS) && !defined (DEBUG))
|
|
86 #define DEBUG
|
|
87 #endif
|
|
88
|
70
|
89 #ifdef MULE
|
|
90
|
|
91 Lisp_Object Vthe_lisp_rangetab;
|
|
92
|
|
93 void
|
|
94 complex_vars_of_regex (void)
|
|
95 {
|
|
96 Vthe_lisp_rangetab = Fmake_range_table ();
|
|
97 staticpro (&Vthe_lisp_rangetab);
|
|
98 }
|
|
99
|
|
100 #else /* not MULE */
|
|
101
|
0
|
102 void
|
|
103 complex_vars_of_regex (void)
|
|
104 {
|
|
105 }
|
|
106
|
70
|
107 #endif /* not MULE */
|
|
108
|
0
|
109 #else /* not emacs */
|
|
110
|
|
111 /* If we are not linking with Emacs proper,
|
|
112 we can't use the relocating allocator
|
|
113 even if config.h says that we can. */
|
|
114 #undef REL_ALLOC
|
|
115
|
|
116 #if defined (STDC_HEADERS) || defined (_LIBC)
|
|
117 #include <stdlib.h>
|
|
118 #else
|
|
119 char *malloc ();
|
|
120 char *realloc ();
|
|
121 #endif
|
|
122
|
|
123 #define charptr_emchar(str) ((Emchar) (str)[0])
|
|
124
|
|
125 #if (LONGBITS > INTBITS)
|
|
126 # define EMACS_INT long
|
|
127 #else
|
|
128 # define EMACS_INT int
|
|
129 #endif
|
|
130
|
|
131 typedef int Emchar;
|
|
132
|
|
133 #define INC_CHARPTR(p) ((p)++)
|
|
134 #define DEC_CHARPTR(p) ((p)--)
|
|
135
|
|
136 #include <string.h>
|
|
137
|
|
138 /* Define the syntax stuff for \<, \>, etc. */
|
|
139
|
|
140 /* This must be nonzero for the wordchar and notwordchar pattern
|
|
141 commands in re_match_2. */
|
183
|
142 #ifndef Sword
|
0
|
143 #define Sword 1
|
|
144 #endif
|
|
145
|
|
146 #ifdef SYNTAX_TABLE
|
|
147
|
|
148 extern char *re_syntax_table;
|
|
149
|
|
150 #else /* not SYNTAX_TABLE */
|
|
151
|
|
152 /* How many characters in the character set. */
|
|
153 #define CHAR_SET_SIZE 256
|
|
154
|
|
155 static char re_syntax_table[CHAR_SET_SIZE];
|
|
156
|
|
157 static void
|
|
158 init_syntax_once (void)
|
|
159 {
|
272
|
160 static int done = 0;
|
|
161
|
|
162 if (!done)
|
|
163 {
|
|
164 CONST char *word_syntax_chars =
|
|
165 "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789_";
|
|
166
|
|
167 memset (re_syntax_table, 0, sizeof (re_syntax_table));
|
|
168
|
|
169 while (*word_syntax_chars)
|
|
170 re_syntax_table[(unsigned int)(*word_syntax_chars++)] = Sword;
|
|
171
|
|
172 done = 1;
|
|
173 }
|
0
|
174 }
|
|
175
|
|
176 #endif /* not SYNTAX_TABLE */
|
|
177
|
|
178 #define SYNTAX_UNSAFE(ignored, c) re_syntax_table[c]
|
|
179
|
|
180 #endif /* not emacs */
|
|
181
|
|
182 /* Under XEmacs, this is needed because we don't define it elsewhere. */
|
|
183 #ifdef SWITCH_ENUM_BUG
|
|
184 #define SWITCH_ENUM_CAST(x) ((int)(x))
|
|
185 #else
|
|
186 #define SWITCH_ENUM_CAST(x) (x)
|
|
187 #endif
|
|
188
|
|
189
|
|
190 /* Get the interface, including the syntax bits. */
|
|
191 #include "regex.h"
|
|
192
|
|
193 /* isalpha etc. are used for the character classes. */
|
|
194 #include <ctype.h>
|
|
195
|
|
196 /* Jim Meyering writes:
|
|
197
|
|
198 "... Some ctype macros are valid only for character codes that
|
|
199 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
|
|
200 using /bin/cc or gcc but without giving an ansi option). So, all
|
|
201 ctype uses should be through macros like ISPRINT... If
|
|
202 STDC_HEADERS is defined, then autoconf has verified that the ctype
|
|
203 macros don't need to be guarded with references to isascii. ...
|
|
204 Defining isascii to 1 should let any compiler worth its salt
|
|
205 eliminate the && through constant folding." */
|
|
206
|
|
207 #if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII))
|
|
208 #define ISASCII_1(c) 1
|
|
209 #else
|
|
210 #define ISASCII_1(c) isascii(c)
|
|
211 #endif
|
|
212
|
70
|
213 #ifdef MULE
|
|
214 /* The IS*() macros can be passed any character, including an extended
|
|
215 one. We need to make sure there are no crashes, which would occur
|
|
216 otherwise due to out-of-bounds array references. */
|
272
|
217 #define ISASCII(c) (((EMACS_UINT) (c)) < 0x100 && ISASCII_1 (c))
|
70
|
218 #else
|
0
|
219 #define ISASCII(c) ISASCII_1 (c)
|
185
|
220 #endif /* MULE */
|
0
|
221
|
|
222 #ifdef isblank
|
|
223 #define ISBLANK(c) (ISASCII (c) && isblank (c))
|
|
224 #else
|
|
225 #define ISBLANK(c) ((c) == ' ' || (c) == '\t')
|
|
226 #endif
|
|
227 #ifdef isgraph
|
|
228 #define ISGRAPH(c) (ISASCII (c) && isgraph (c))
|
|
229 #else
|
|
230 #define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
|
|
231 #endif
|
|
232
|
|
233 #define ISPRINT(c) (ISASCII (c) && isprint (c))
|
|
234 #define ISDIGIT(c) (ISASCII (c) && isdigit (c))
|
|
235 #define ISALNUM(c) (ISASCII (c) && isalnum (c))
|
|
236 #define ISALPHA(c) (ISASCII (c) && isalpha (c))
|
|
237 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
|
|
238 #define ISLOWER(c) (ISASCII (c) && islower (c))
|
|
239 #define ISPUNCT(c) (ISASCII (c) && ispunct (c))
|
|
240 #define ISSPACE(c) (ISASCII (c) && isspace (c))
|
|
241 #define ISUPPER(c) (ISASCII (c) && isupper (c))
|
|
242 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
|
|
243
|
|
244 #ifndef NULL
|
|
245 #define NULL (void *)0
|
|
246 #endif
|
|
247
|
|
248 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
|
|
249 since ours (we hope) works properly with all combinations of
|
|
250 machines, compilers, `char' and `unsigned char' argument types.
|
|
251 (Per Bothner suggested the basic approach.) */
|
|
252 #undef SIGN_EXTEND_CHAR
|
|
253 #if __STDC__
|
|
254 #define SIGN_EXTEND_CHAR(c) ((signed char) (c))
|
|
255 #else /* not __STDC__ */
|
|
256 /* As in Harbison and Steele. */
|
|
257 #define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
|
|
258 #endif
|
|
259
|
|
260 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
|
|
261 use `alloca' instead of `malloc'. This is because using malloc in
|
|
262 re_search* or re_match* could cause memory leaks when C-g is used in
|
|
263 Emacs; also, malloc is slower and causes storage fragmentation. On
|
183
|
264 the other hand, malloc is more portable, and easier to debug.
|
|
265
|
0
|
266 Because we sometimes use alloca, some routines have to be macros,
|
|
267 not functions -- `alloca'-allocated space disappears at the end of the
|
|
268 function it is called in. */
|
|
269
|
|
270 #ifdef REGEX_MALLOC
|
|
271
|
|
272 #define REGEX_ALLOCATE malloc
|
|
273 #define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
|
|
274 #define REGEX_FREE free
|
|
275
|
|
276 #else /* not REGEX_MALLOC */
|
|
277
|
|
278 /* Emacs already defines alloca, sometimes. */
|
|
279 #ifndef alloca
|
|
280
|
|
281 /* Make alloca work the best possible way. */
|
|
282 #ifdef __GNUC__
|
|
283 #define alloca __builtin_alloca
|
|
284 #else /* not __GNUC__ */
|
|
285 #if HAVE_ALLOCA_H
|
|
286 #include <alloca.h>
|
|
287 #else /* not __GNUC__ or HAVE_ALLOCA_H */
|
|
288 #ifndef _AIX /* Already did AIX, up at the top. */
|
|
289 char *alloca ();
|
|
290 #endif /* not _AIX */
|
183
|
291 #endif /* not HAVE_ALLOCA_H */
|
0
|
292 #endif /* not __GNUC__ */
|
|
293
|
|
294 #endif /* not alloca */
|
|
295
|
|
296 #define REGEX_ALLOCATE alloca
|
|
297
|
|
298 /* Assumes a `char *destination' variable. */
|
|
299 #define REGEX_REALLOCATE(source, osize, nsize) \
|
|
300 (destination = (char *) alloca (nsize), \
|
|
301 memmove (destination, source, osize), \
|
|
302 destination)
|
|
303
|
|
304 /* No need to do anything to free, after alloca. */
|
|
305 #define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
|
|
306
|
|
307 #endif /* not REGEX_MALLOC */
|
|
308
|
|
309 /* Define how to allocate the failure stack. */
|
|
310
|
|
311 #ifdef REL_ALLOC
|
|
312 #define REGEX_ALLOCATE_STACK(size) \
|
|
313 r_alloc ((char **) &failure_stack_ptr, (size))
|
|
314 #define REGEX_REALLOCATE_STACK(source, osize, nsize) \
|
|
315 r_re_alloc ((char **) &failure_stack_ptr, (nsize))
|
|
316 #define REGEX_FREE_STACK(ptr) \
|
|
317 r_alloc_free ((void **) &failure_stack_ptr)
|
|
318
|
|
319 #else /* not REL_ALLOC */
|
|
320
|
|
321 #ifdef REGEX_MALLOC
|
|
322
|
|
323 #define REGEX_ALLOCATE_STACK malloc
|
|
324 #define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
|
|
325 #define REGEX_FREE_STACK free
|
|
326
|
|
327 #else /* not REGEX_MALLOC */
|
|
328
|
|
329 #define REGEX_ALLOCATE_STACK alloca
|
|
330
|
|
331 #define REGEX_REALLOCATE_STACK(source, osize, nsize) \
|
|
332 REGEX_REALLOCATE (source, osize, nsize)
|
|
333 /* No need to explicitly free anything. */
|
|
334 #define REGEX_FREE_STACK(arg)
|
|
335
|
|
336 #endif /* not REGEX_MALLOC */
|
|
337 #endif /* not REL_ALLOC */
|
|
338
|
|
339
|
|
340 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
|
|
341 `string1' or just past its end. This works if PTR is NULL, which is
|
|
342 a good thing. */
|
|
343 #define FIRST_STRING_P(ptr) \
|
|
344 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
|
|
345
|
|
346 /* (Re)Allocate N items of type T using malloc, or fail. */
|
|
347 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
|
|
348 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
|
|
349 #define RETALLOC_IF(addr, n, t) \
|
|
350 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
|
|
351 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
|
|
352
|
|
353 #define BYTEWIDTH 8 /* In bits. */
|
|
354
|
|
355 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
|
|
356
|
|
357 #undef MAX
|
|
358 #undef MIN
|
|
359 #define MAX(a, b) ((a) > (b) ? (a) : (b))
|
|
360 #define MIN(a, b) ((a) < (b) ? (a) : (b))
|
|
361
|
|
362 typedef char boolean;
|
|
363 #define false 0
|
|
364 #define true 1
|
|
365
|
|
366
|
|
367 /* These are the command codes that appear in compiled regular
|
|
368 expressions. Some opcodes are followed by argument bytes. A
|
|
369 command code can specify any interpretation whatsoever for its
|
|
370 arguments. Zero bytes may appear in the compiled regular expression. */
|
|
371
|
|
372 typedef enum
|
|
373 {
|
|
374 no_op = 0,
|
|
375
|
|
376 /* Succeed right away--no more backtracking. */
|
|
377 succeed,
|
|
378
|
|
379 /* Followed by one byte giving n, then by n literal bytes. */
|
|
380 exactn,
|
|
381
|
|
382 /* Matches any (more or less) character. */
|
|
383 anychar,
|
|
384
|
|
385 /* Matches any one char belonging to specified set. First
|
|
386 following byte is number of bitmap bytes. Then come bytes
|
|
387 for a bitmap saying which chars are in. Bits in each byte
|
|
388 are ordered low-bit-first. A character is in the set if its
|
|
389 bit is 1. A character too large to have a bit in the map is
|
|
390 automatically not in the set. */
|
|
391 charset,
|
|
392
|
|
393 /* Same parameters as charset, but match any character that is
|
|
394 not one of those specified. */
|
|
395 charset_not,
|
|
396
|
|
397 /* Start remembering the text that is matched, for storing in a
|
|
398 register. Followed by one byte with the register number, in
|
|
399 the range 0 to one less than the pattern buffer's re_nsub
|
|
400 field. Then followed by one byte with the number of groups
|
|
401 inner to this one. (This last has to be part of the
|
|
402 start_memory only because we need it in the on_failure_jump
|
|
403 of re_match_2.) */
|
|
404 start_memory,
|
|
405
|
|
406 /* Stop remembering the text that is matched and store it in a
|
|
407 memory register. Followed by one byte with the register
|
|
408 number, in the range 0 to one less than `re_nsub' in the
|
|
409 pattern buffer, and one byte with the number of inner groups,
|
|
410 just like `start_memory'. (We need the number of inner
|
|
411 groups here because we don't have any easy way of finding the
|
|
412 corresponding start_memory when we're at a stop_memory.) */
|
|
413 stop_memory,
|
|
414
|
|
415 /* Match a duplicate of something remembered. Followed by one
|
|
416 byte containing the register number. */
|
|
417 duplicate,
|
|
418
|
|
419 /* Fail unless at beginning of line. */
|
|
420 begline,
|
|
421
|
|
422 /* Fail unless at end of line. */
|
|
423 endline,
|
|
424
|
|
425 /* Succeeds if at beginning of buffer (if emacs) or at beginning
|
|
426 of string to be matched (if not). */
|
|
427 begbuf,
|
|
428
|
|
429 /* Analogously, for end of buffer/string. */
|
|
430 endbuf,
|
183
|
431
|
0
|
432 /* Followed by two byte relative address to which to jump. */
|
183
|
433 jump,
|
0
|
434
|
|
435 /* Same as jump, but marks the end of an alternative. */
|
|
436 jump_past_alt,
|
|
437
|
|
438 /* Followed by two-byte relative address of place to resume at
|
|
439 in case of failure. */
|
|
440 on_failure_jump,
|
183
|
441
|
0
|
442 /* Like on_failure_jump, but pushes a placeholder instead of the
|
|
443 current string position when executed. */
|
|
444 on_failure_keep_string_jump,
|
183
|
445
|
0
|
446 /* Throw away latest failure point and then jump to following
|
|
447 two-byte relative address. */
|
|
448 pop_failure_jump,
|
|
449
|
|
450 /* Change to pop_failure_jump if know won't have to backtrack to
|
|
451 match; otherwise change to jump. This is used to jump
|
|
452 back to the beginning of a repeat. If what follows this jump
|
|
453 clearly won't match what the repeat does, such that we can be
|
|
454 sure that there is no use backtracking out of repetitions
|
|
455 already matched, then we change it to a pop_failure_jump.
|
|
456 Followed by two-byte address. */
|
|
457 maybe_pop_jump,
|
|
458
|
|
459 /* Jump to following two-byte address, and push a dummy failure
|
|
460 point. This failure point will be thrown away if an attempt
|
|
461 is made to use it for a failure. A `+' construct makes this
|
|
462 before the first repeat. Also used as an intermediary kind
|
|
463 of jump when compiling an alternative. */
|
|
464 dummy_failure_jump,
|
|
465
|
|
466 /* Push a dummy failure point and continue. Used at the end of
|
|
467 alternatives. */
|
|
468 push_dummy_failure,
|
|
469
|
|
470 /* Followed by two-byte relative address and two-byte number n.
|
|
471 After matching N times, jump to the address upon failure. */
|
|
472 succeed_n,
|
|
473
|
|
474 /* Followed by two-byte relative address, and two-byte number n.
|
|
475 Jump to the address N times, then fail. */
|
|
476 jump_n,
|
|
477
|
|
478 /* Set the following two-byte relative address to the
|
|
479 subsequent two-byte number. The address *includes* the two
|
|
480 bytes of number. */
|
|
481 set_number_at,
|
|
482
|
|
483 wordchar, /* Matches any word-constituent character. */
|
|
484 notwordchar, /* Matches any char that is not a word-constituent. */
|
|
485
|
|
486 wordbeg, /* Succeeds if at word beginning. */
|
|
487 wordend, /* Succeeds if at word end. */
|
|
488
|
|
489 wordbound, /* Succeeds if at a word boundary. */
|
|
490 notwordbound /* Succeeds if not at a word boundary. */
|
|
491
|
|
492 #ifdef emacs
|
|
493 ,before_dot, /* Succeeds if before point. */
|
|
494 at_dot, /* Succeeds if at point. */
|
|
495 after_dot, /* Succeeds if after point. */
|
|
496
|
|
497 /* Matches any character whose syntax is specified. Followed by
|
|
498 a byte which contains a syntax code, e.g., Sword. */
|
|
499 syntaxspec,
|
|
500
|
|
501 /* Matches any character whose syntax is not that specified. */
|
|
502 notsyntaxspec
|
104
|
503
|
0
|
504 #endif /* emacs */
|
70
|
505
|
|
506 #ifdef MULE
|
|
507 /* need extra stuff to be able to properly work with XEmacs/Mule
|
|
508 characters (which may take up more than one byte) */
|
|
509
|
|
510 ,charset_mule, /* Matches any character belonging to specified set.
|
|
511 The set is stored in "unified range-table
|
|
512 format"; see rangetab.c. Unlike the `charset'
|
|
513 opcode, this can handle arbitrary characters. */
|
|
514
|
|
515 charset_mule_not /* Same parameters as charset_mule, but match any
|
|
516 character that is not one of those specified. */
|
104
|
517
|
|
518 /* 97/2/17 jhod: The following two were merged back in from the Mule
|
|
519 2.3 code to enable some language specific processing */
|
|
520 ,categoryspec, /* Matches entries in the character category tables */
|
|
521 notcategoryspec /* The opposite of the above */
|
185
|
522 #endif /* MULE */
|
183
|
523
|
0
|
524 } re_opcode_t;
|
|
525
|
|
526 /* Common operations on the compiled pattern. */
|
|
527
|
|
528 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
|
|
529
|
|
530 #define STORE_NUMBER(destination, number) \
|
|
531 do { \
|
|
532 (destination)[0] = (number) & 0377; \
|
|
533 (destination)[1] = (number) >> 8; \
|
|
534 } while (0)
|
|
535
|
|
536 /* Same as STORE_NUMBER, except increment DESTINATION to
|
|
537 the byte after where the number is stored. Therefore, DESTINATION
|
|
538 must be an lvalue. */
|
|
539
|
|
540 #define STORE_NUMBER_AND_INCR(destination, number) \
|
|
541 do { \
|
|
542 STORE_NUMBER (destination, number); \
|
|
543 (destination) += 2; \
|
|
544 } while (0)
|
|
545
|
|
546 /* Put into DESTINATION a number stored in two contiguous bytes starting
|
|
547 at SOURCE. */
|
|
548
|
|
549 #define EXTRACT_NUMBER(destination, source) \
|
|
550 do { \
|
|
551 (destination) = *(source) & 0377; \
|
|
552 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
|
|
553 } while (0)
|
|
554
|
|
555 #ifdef DEBUG
|
|
556 static void
|
|
557 extract_number (int *dest, unsigned char *source)
|
|
558 {
|
183
|
559 int temp = SIGN_EXTEND_CHAR (*(source + 1));
|
0
|
560 *dest = *source & 0377;
|
|
561 *dest += temp << 8;
|
|
562 }
|
|
563
|
|
564 #ifndef EXTRACT_MACROS /* To debug the macros. */
|
|
565 #undef EXTRACT_NUMBER
|
|
566 #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
|
|
567 #endif /* not EXTRACT_MACROS */
|
|
568
|
|
569 #endif /* DEBUG */
|
|
570
|
|
571 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
|
|
572 SOURCE must be an lvalue. */
|
|
573
|
|
574 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
|
|
575 do { \
|
|
576 EXTRACT_NUMBER (destination, source); \
|
|
577 (source) += 2; \
|
|
578 } while (0)
|
|
579
|
|
580 #ifdef DEBUG
|
|
581 static void
|
|
582 extract_number_and_incr (int *destination, unsigned char **source)
|
183
|
583 {
|
0
|
584 extract_number (destination, *source);
|
|
585 *source += 2;
|
|
586 }
|
|
587
|
|
588 #ifndef EXTRACT_MACROS
|
|
589 #undef EXTRACT_NUMBER_AND_INCR
|
|
590 #define EXTRACT_NUMBER_AND_INCR(dest, src) \
|
|
591 extract_number_and_incr (&dest, &src)
|
|
592 #endif /* not EXTRACT_MACROS */
|
|
593
|
|
594 #endif /* DEBUG */
|
|
595
|
|
596 /* If DEBUG is defined, Regex prints many voluminous messages about what
|
|
597 it is doing (if the variable `debug' is nonzero). If linked with the
|
|
598 main program in `iregex.c', you can enter patterns and strings
|
|
599 interactively. And if linked with the main program in `main.c' and
|
|
600 the other test files, you can run the already-written tests. */
|
|
601
|
|
602 #if defined (DEBUG)
|
|
603
|
|
604 /* We use standard I/O for debugging. */
|
|
605 #include <stdio.h>
|
|
606
|
|
607 #ifndef emacs
|
|
608 /* XEmacs provides its own version of assert() */
|
|
609 /* It is useful to test things that ``must'' be true when debugging. */
|
|
610 #include <assert.h>
|
|
611 #endif
|
|
612
|
|
613 static int debug = 0;
|
|
614
|
|
615 #define DEBUG_STATEMENT(e) e
|
|
616 #define DEBUG_PRINT1(x) if (debug) printf (x)
|
|
617 #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
|
|
618 #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
|
|
619 #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
|
|
620 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
|
|
621 if (debug) print_partial_compiled_pattern (s, e)
|
|
622 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
|
|
623 if (debug) print_double_string (w, s1, sz1, s2, sz2)
|
|
624
|
|
625
|
|
626 /* Print the fastmap in human-readable form. */
|
|
627
|
|
628 static void
|
|
629 print_fastmap (char *fastmap)
|
|
630 {
|
|
631 unsigned was_a_range = 0;
|
183
|
632 unsigned i = 0;
|
|
633
|
0
|
634 while (i < (1 << BYTEWIDTH))
|
|
635 {
|
|
636 if (fastmap[i++])
|
|
637 {
|
|
638 was_a_range = 0;
|
|
639 putchar (i - 1);
|
|
640 while (i < (1 << BYTEWIDTH) && fastmap[i])
|
|
641 {
|
|
642 was_a_range = 1;
|
|
643 i++;
|
|
644 }
|
|
645 if (was_a_range)
|
|
646 {
|
272
|
647 putchar ('-');
|
0
|
648 putchar (i - 1);
|
|
649 }
|
|
650 }
|
|
651 }
|
183
|
652 putchar ('\n');
|
0
|
653 }
|
|
654
|
|
655
|
|
656 /* Print a compiled pattern string in human-readable form, starting at
|
|
657 the START pointer into it and ending just before the pointer END. */
|
|
658
|
|
659 static void
|
|
660 print_partial_compiled_pattern (unsigned char *start, unsigned char *end)
|
|
661 {
|
|
662 int mcnt, mcnt2;
|
|
663 unsigned char *p = start;
|
|
664 unsigned char *pend = end;
|
|
665
|
|
666 if (start == NULL)
|
|
667 {
|
272
|
668 puts ("(null)");
|
0
|
669 return;
|
|
670 }
|
183
|
671
|
0
|
672 /* Loop over pattern commands. */
|
|
673 while (p < pend)
|
|
674 {
|
274
|
675 printf ("%ld:\t", (long)(p - start));
|
0
|
676
|
|
677 switch ((re_opcode_t) *p++)
|
|
678 {
|
|
679 case no_op:
|
|
680 printf ("/no_op");
|
|
681 break;
|
|
682
|
|
683 case exactn:
|
|
684 mcnt = *p++;
|
|
685 printf ("/exactn/%d", mcnt);
|
|
686 do
|
|
687 {
|
|
688 putchar ('/');
|
|
689 putchar (*p++);
|
|
690 }
|
|
691 while (--mcnt);
|
|
692 break;
|
|
693
|
|
694 case start_memory:
|
|
695 mcnt = *p++;
|
|
696 printf ("/start_memory/%d/%d", mcnt, *p++);
|
|
697 break;
|
|
698
|
|
699 case stop_memory:
|
|
700 mcnt = *p++;
|
|
701 printf ("/stop_memory/%d/%d", mcnt, *p++);
|
|
702 break;
|
|
703
|
|
704 case duplicate:
|
|
705 printf ("/duplicate/%d", *p++);
|
|
706 break;
|
|
707
|
|
708 case anychar:
|
|
709 printf ("/anychar");
|
|
710 break;
|
|
711
|
|
712 case charset:
|
|
713 case charset_not:
|
|
714 {
|
203
|
715 REGISTER int c, last = -100;
|
|
716 REGISTER int in_range = 0;
|
0
|
717
|
|
718 printf ("/charset [%s",
|
|
719 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
|
183
|
720
|
0
|
721 assert (p + *p < pend);
|
|
722
|
|
723 for (c = 0; c < 256; c++)
|
|
724 if (((unsigned char) (c / 8) < *p)
|
|
725 && (p[1 + (c/8)] & (1 << (c % 8))))
|
|
726 {
|
|
727 /* Are we starting a range? */
|
|
728 if (last + 1 == c && ! in_range)
|
|
729 {
|
|
730 putchar ('-');
|
|
731 in_range = 1;
|
|
732 }
|
|
733 /* Have we broken a range? */
|
|
734 else if (last + 1 != c && in_range)
|
|
735 {
|
|
736 putchar (last);
|
|
737 in_range = 0;
|
|
738 }
|
183
|
739
|
0
|
740 if (! in_range)
|
|
741 putchar (c);
|
|
742
|
|
743 last = c;
|
|
744 }
|
|
745
|
|
746 if (in_range)
|
|
747 putchar (last);
|
|
748
|
|
749 putchar (']');
|
|
750
|
|
751 p += 1 + *p;
|
|
752 }
|
|
753 break;
|
|
754
|
70
|
755 #ifdef MULE
|
|
756 case charset_mule:
|
|
757 case charset_mule_not:
|
|
758 {
|
|
759 int nentries, i;
|
|
760
|
|
761 printf ("/charset_mule [%s",
|
|
762 (re_opcode_t) *(p - 1) == charset_mule_not ? "^" : "");
|
|
763 nentries = unified_range_table_nentries (p);
|
|
764 for (i = 0; i < nentries; i++)
|
|
765 {
|
|
766 EMACS_INT first, last;
|
|
767 Lisp_Object dummy_val;
|
|
768
|
|
769 unified_range_table_get_range (p, i, &first, &last,
|
|
770 &dummy_val);
|
|
771 if (first < 0x100)
|
|
772 putchar (first);
|
|
773 else
|
274
|
774 printf ("(0x%lx)", (long)first);
|
70
|
775 if (first != last)
|
|
776 {
|
|
777 putchar ('-');
|
|
778 if (last < 0x100)
|
|
779 putchar (last);
|
|
780 else
|
274
|
781 printf ("(0x%lx)", (long)last);
|
70
|
782 }
|
|
783 }
|
|
784 putchar (']');
|
|
785 p += unified_range_table_bytes_used (p);
|
|
786 }
|
|
787 break;
|
|
788 #endif
|
|
789
|
0
|
790 case begline:
|
|
791 printf ("/begline");
|
|
792 break;
|
|
793
|
|
794 case endline:
|
|
795 printf ("/endline");
|
|
796 break;
|
|
797
|
|
798 case on_failure_jump:
|
|
799 extract_number_and_incr (&mcnt, &p);
|
274
|
800 printf ("/on_failure_jump to %ld", (long)(p + mcnt - start));
|
0
|
801 break;
|
|
802
|
|
803 case on_failure_keep_string_jump:
|
|
804 extract_number_and_incr (&mcnt, &p);
|
274
|
805 printf ("/on_failure_keep_string_jump to %ld", (long)(p + mcnt - start));
|
0
|
806 break;
|
|
807
|
|
808 case dummy_failure_jump:
|
|
809 extract_number_and_incr (&mcnt, &p);
|
274
|
810 printf ("/dummy_failure_jump to %ld", (long)(p + mcnt - start));
|
0
|
811 break;
|
|
812
|
|
813 case push_dummy_failure:
|
|
814 printf ("/push_dummy_failure");
|
|
815 break;
|
183
|
816
|
0
|
817 case maybe_pop_jump:
|
|
818 extract_number_and_incr (&mcnt, &p);
|
274
|
819 printf ("/maybe_pop_jump to %ld", (long)(p + mcnt - start));
|
0
|
820 break;
|
|
821
|
|
822 case pop_failure_jump:
|
|
823 extract_number_and_incr (&mcnt, &p);
|
274
|
824 printf ("/pop_failure_jump to %ld", (long)(p + mcnt - start));
|
183
|
825 break;
|
|
826
|
0
|
827 case jump_past_alt:
|
|
828 extract_number_and_incr (&mcnt, &p);
|
274
|
829 printf ("/jump_past_alt to %ld", (long)(p + mcnt - start));
|
183
|
830 break;
|
|
831
|
0
|
832 case jump:
|
|
833 extract_number_and_incr (&mcnt, &p);
|
274
|
834 printf ("/jump to %ld", (long)(p + mcnt - start));
|
0
|
835 break;
|
|
836
|
183
|
837 case succeed_n:
|
0
|
838 extract_number_and_incr (&mcnt, &p);
|
|
839 extract_number_and_incr (&mcnt2, &p);
|
274
|
840 printf ("/succeed_n to %ld, %d times", (long)(p + mcnt - start), mcnt2);
|
0
|
841 break;
|
183
|
842
|
|
843 case jump_n:
|
0
|
844 extract_number_and_incr (&mcnt, &p);
|
|
845 extract_number_and_incr (&mcnt2, &p);
|
274
|
846 printf ("/jump_n to %ld, %d times", (long)(p + mcnt - start), mcnt2);
|
0
|
847 break;
|
183
|
848
|
|
849 case set_number_at:
|
0
|
850 extract_number_and_incr (&mcnt, &p);
|
|
851 extract_number_and_incr (&mcnt2, &p);
|
274
|
852 printf ("/set_number_at location %ld to %d", (long)(p + mcnt - start), mcnt2);
|
0
|
853 break;
|
183
|
854
|
0
|
855 case wordbound:
|
|
856 printf ("/wordbound");
|
|
857 break;
|
|
858
|
|
859 case notwordbound:
|
|
860 printf ("/notwordbound");
|
|
861 break;
|
|
862
|
|
863 case wordbeg:
|
|
864 printf ("/wordbeg");
|
|
865 break;
|
183
|
866
|
0
|
867 case wordend:
|
|
868 printf ("/wordend");
|
183
|
869
|
0
|
870 #ifdef emacs
|
|
871 case before_dot:
|
|
872 printf ("/before_dot");
|
|
873 break;
|
|
874
|
|
875 case at_dot:
|
|
876 printf ("/at_dot");
|
|
877 break;
|
|
878
|
|
879 case after_dot:
|
|
880 printf ("/after_dot");
|
|
881 break;
|
|
882
|
|
883 case syntaxspec:
|
|
884 printf ("/syntaxspec");
|
|
885 mcnt = *p++;
|
|
886 printf ("/%d", mcnt);
|
|
887 break;
|
183
|
888
|
0
|
889 case notsyntaxspec:
|
|
890 printf ("/notsyntaxspec");
|
|
891 mcnt = *p++;
|
|
892 printf ("/%d", mcnt);
|
|
893 break;
|
183
|
894
|
104
|
895 #ifdef MULE
|
183
|
896 /* 97/2/17 jhod Mule category patch */
|
104
|
897 case categoryspec:
|
|
898 printf ("/categoryspec");
|
|
899 mcnt = *p++;
|
|
900 printf ("/%d", mcnt);
|
|
901 break;
|
|
902
|
|
903 case notcategoryspec:
|
|
904 printf ("/notcategoryspec");
|
|
905 mcnt = *p++;
|
|
906 printf ("/%d", mcnt);
|
|
907 break;
|
183
|
908 /* end of category patch */
|
104
|
909 #endif /* MULE */
|
0
|
910 #endif /* emacs */
|
|
911
|
|
912 case wordchar:
|
|
913 printf ("/wordchar");
|
|
914 break;
|
183
|
915
|
0
|
916 case notwordchar:
|
|
917 printf ("/notwordchar");
|
|
918 break;
|
|
919
|
|
920 case begbuf:
|
|
921 printf ("/begbuf");
|
|
922 break;
|
|
923
|
|
924 case endbuf:
|
|
925 printf ("/endbuf");
|
|
926 break;
|
|
927
|
|
928 default:
|
|
929 printf ("?%d", *(p-1));
|
|
930 }
|
|
931
|
|
932 putchar ('\n');
|
|
933 }
|
|
934
|
274
|
935 printf ("%ld:\tend of pattern.\n", (long)(p - start));
|
0
|
936 }
|
|
937
|
|
938
|
|
939 static void
|
|
940 print_compiled_pattern (struct re_pattern_buffer *bufp)
|
|
941 {
|
|
942 unsigned char *buffer = bufp->buffer;
|
|
943
|
|
944 print_partial_compiled_pattern (buffer, buffer + bufp->used);
|
|
945 printf ("%ld bytes used/%ld bytes allocated.\n", bufp->used,
|
|
946 bufp->allocated);
|
|
947
|
|
948 if (bufp->fastmap_accurate && bufp->fastmap)
|
|
949 {
|
|
950 printf ("fastmap: ");
|
|
951 print_fastmap (bufp->fastmap);
|
|
952 }
|
|
953
|
|
954 printf ("re_nsub: %ld\t", (long)bufp->re_nsub);
|
|
955 printf ("regs_alloc: %d\t", bufp->regs_allocated);
|
|
956 printf ("can_be_null: %d\t", bufp->can_be_null);
|
|
957 printf ("newline_anchor: %d\n", bufp->newline_anchor);
|
|
958 printf ("no_sub: %d\t", bufp->no_sub);
|
|
959 printf ("not_bol: %d\t", bufp->not_bol);
|
|
960 printf ("not_eol: %d\t", bufp->not_eol);
|
|
961 printf ("syntax: %d\n", bufp->syntax);
|
|
962 /* Perhaps we should print the translate table? */
|
104
|
963 /* and maybe the category table? */
|
0
|
964 }
|
|
965
|
|
966
|
|
967 static void
|
|
968 print_double_string (CONST char *where, CONST char *string1, int size1,
|
|
969 CONST char *string2, int size2)
|
|
970 {
|
|
971 if (where == NULL)
|
|
972 printf ("(null)");
|
|
973 else
|
|
974 {
|
272
|
975 unsigned int this_char;
|
|
976
|
0
|
977 if (FIRST_STRING_P (where))
|
|
978 {
|
|
979 for (this_char = where - string1; this_char < size1; this_char++)
|
|
980 putchar (string1[this_char]);
|
|
981
|
183
|
982 where = string2;
|
0
|
983 }
|
|
984
|
|
985 for (this_char = where - string2; this_char < size2; this_char++)
|
|
986 putchar (string2[this_char]);
|
|
987 }
|
|
988 }
|
|
989
|
|
990 #else /* not DEBUG */
|
|
991
|
|
992 #undef assert
|
|
993 #define assert(e)
|
|
994
|
|
995 #define DEBUG_STATEMENT(e)
|
|
996 #define DEBUG_PRINT1(x)
|
|
997 #define DEBUG_PRINT2(x1, x2)
|
|
998 #define DEBUG_PRINT3(x1, x2, x3)
|
|
999 #define DEBUG_PRINT4(x1, x2, x3, x4)
|
|
1000 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
|
|
1001 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
|
|
1002
|
|
1003 #endif /* not DEBUG */
|
|
1004
|
|
1005 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
|
|
1006 also be assigned to arbitrarily: each pattern buffer stores its own
|
|
1007 syntax, so it can be changed between regex compilations. */
|
|
1008 /* This has no initializer because initialized variables in Emacs
|
|
1009 become read-only after dumping. */
|
|
1010 reg_syntax_t re_syntax_options;
|
|
1011
|
|
1012
|
|
1013 /* Specify the precise syntax of regexps for compilation. This provides
|
|
1014 for compatibility for various utilities which historically have
|
|
1015 different, incompatible syntaxes.
|
|
1016
|
|
1017 The argument SYNTAX is a bit mask comprised of the various bits
|
|
1018 defined in regex.h. We return the old syntax. */
|
|
1019
|
|
1020 reg_syntax_t
|
|
1021 re_set_syntax (reg_syntax_t syntax)
|
|
1022 {
|
|
1023 reg_syntax_t ret = re_syntax_options;
|
183
|
1024
|
0
|
1025 re_syntax_options = syntax;
|
|
1026 return ret;
|
|
1027 }
|
|
1028
|
|
1029 /* This table gives an error message for each of the error codes listed
|
|
1030 in regex.h. Obviously the order here has to be same as there.
|
|
1031 POSIX doesn't require that we do anything for REG_NOERROR,
|
|
1032 but why not be nice? */
|
|
1033
|
|
1034 static CONST char *re_error_msgid[] =
|
272
|
1035 {
|
|
1036 "Success", /* REG_NOERROR */
|
|
1037 "No match", /* REG_NOMATCH */
|
|
1038 "Invalid regular expression", /* REG_BADPAT */
|
|
1039 "Invalid collation character", /* REG_ECOLLATE */
|
|
1040 "Invalid character class name", /* REG_ECTYPE */
|
|
1041 "Trailing backslash", /* REG_EESCAPE */
|
|
1042 "Invalid back reference", /* REG_ESUBREG */
|
|
1043 "Unmatched [ or [^", /* REG_EBRACK */
|
|
1044 "Unmatched ( or \\(", /* REG_EPAREN */
|
|
1045 "Unmatched \\{", /* REG_EBRACE */
|
|
1046 "Invalid content of \\{\\}", /* REG_BADBR */
|
|
1047 "Invalid range end", /* REG_ERANGE */
|
|
1048 "Memory exhausted", /* REG_ESPACE */
|
|
1049 "Invalid preceding regular expression", /* REG_BADRPT */
|
|
1050 "Premature end of regular expression", /* REG_EEND */
|
|
1051 "Regular expression too big", /* REG_ESIZE */
|
|
1052 "Unmatched ) or \\)", /* REG_ERPAREN */
|
0
|
1053 #ifdef emacs
|
272
|
1054 "Invalid syntax designator", /* REG_ESYNTAX */
|
0
|
1055 #endif
|
70
|
1056 #ifdef MULE
|
272
|
1057 "Ranges may not span charsets", /* REG_ERANGESPAN */
|
|
1058 "Invalid category designator", /* REG_ECATEGORY */
|
70
|
1059 #endif
|
272
|
1060 };
|
0
|
1061
|
|
1062 /* Avoiding alloca during matching, to placate r_alloc. */
|
|
1063
|
|
1064 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
|
|
1065 searching and matching functions should not call alloca. On some
|
|
1066 systems, alloca is implemented in terms of malloc, and if we're
|
|
1067 using the relocating allocator routines, then malloc could cause a
|
|
1068 relocation, which might (if the strings being searched are in the
|
|
1069 ralloc heap) shift the data out from underneath the regexp
|
|
1070 routines.
|
|
1071
|
183
|
1072 Here's another reason to avoid allocation: Emacs
|
0
|
1073 processes input from X in a signal handler; processing X input may
|
|
1074 call malloc; if input arrives while a matching routine is calling
|
|
1075 malloc, then we're scrod. But Emacs can't just block input while
|
|
1076 calling matching routines; then we don't notice interrupts when
|
|
1077 they come in. So, Emacs blocks input around all regexp calls
|
|
1078 except the matching calls, which it leaves unprotected, in the
|
|
1079 faith that they will not malloc. */
|
|
1080
|
|
1081 /* Normally, this is fine. */
|
|
1082 #define MATCH_MAY_ALLOCATE
|
|
1083
|
|
1084 /* When using GNU C, we are not REALLY using the C alloca, no matter
|
|
1085 what config.h may say. So don't take precautions for it. */
|
|
1086 #ifdef __GNUC__
|
|
1087 #undef C_ALLOCA
|
|
1088 #endif
|
|
1089
|
|
1090 /* The match routines may not allocate if (1) they would do it with malloc
|
|
1091 and (2) it's not safe for them to use malloc.
|
|
1092 Note that if REL_ALLOC is defined, matching would not use malloc for the
|
|
1093 failure stack, but we would still use it for the register vectors;
|
|
1094 so REL_ALLOC should not affect this. */
|
|
1095 #if (defined (C_ALLOCA) || defined (REGEX_MALLOC)) && defined (emacs)
|
|
1096 #undef MATCH_MAY_ALLOCATE
|
|
1097 #endif
|
|
1098
|
|
1099
|
|
1100 /* Failure stack declarations and macros; both re_compile_fastmap and
|
|
1101 re_match_2 use a failure stack. These have to be macros because of
|
|
1102 REGEX_ALLOCATE_STACK. */
|
183
|
1103
|
0
|
1104
|
|
1105 /* Number of failure points for which to initially allocate space
|
|
1106 when matching. If this number is exceeded, we allocate more
|
|
1107 space, so it is not a hard limit. */
|
|
1108 #ifndef INIT_FAILURE_ALLOC
|
|
1109 #define INIT_FAILURE_ALLOC 5
|
|
1110 #endif
|
|
1111
|
|
1112 /* Roughly the maximum number of failure points on the stack. Would be
|
|
1113 exactly that if always used MAX_FAILURE_SPACE each time we failed.
|
|
1114 This is a variable only so users of regex can assign to it; we never
|
|
1115 change it ourselves. */
|
|
1116 #if defined (MATCH_MAY_ALLOCATE)
|
2
|
1117 /* 4400 was enough to cause a crash on Alpha OSF/1,
|
|
1118 whose default stack limit is 2mb. */
|
82
|
1119 int re_max_failures = 20000;
|
0
|
1120 #else
|
|
1121 int re_max_failures = 2000;
|
|
1122 #endif
|
|
1123
|
|
1124 union fail_stack_elt
|
|
1125 {
|
|
1126 unsigned char *pointer;
|
|
1127 int integer;
|
|
1128 };
|
|
1129
|
|
1130 typedef union fail_stack_elt fail_stack_elt_t;
|
|
1131
|
|
1132 typedef struct
|
|
1133 {
|
|
1134 fail_stack_elt_t *stack;
|
|
1135 unsigned size;
|
|
1136 unsigned avail; /* Offset of next open position. */
|
|
1137 } fail_stack_type;
|
|
1138
|
|
1139 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
|
|
1140 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
|
|
1141 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
|
|
1142
|
|
1143
|
|
1144 /* Define macros to initialize and free the failure stack.
|
|
1145 Do `return -2' if the alloc fails. */
|
|
1146
|
|
1147 #ifdef MATCH_MAY_ALLOCATE
|
|
1148 #define INIT_FAIL_STACK() \
|
|
1149 do { \
|
|
1150 fail_stack.stack = (fail_stack_elt_t *) \
|
|
1151 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
|
|
1152 \
|
|
1153 if (fail_stack.stack == NULL) \
|
|
1154 return -2; \
|
|
1155 \
|
|
1156 fail_stack.size = INIT_FAILURE_ALLOC; \
|
|
1157 fail_stack.avail = 0; \
|
|
1158 } while (0)
|
|
1159
|
|
1160 #define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
|
|
1161 #else
|
|
1162 #define INIT_FAIL_STACK() \
|
|
1163 do { \
|
|
1164 fail_stack.avail = 0; \
|
|
1165 } while (0)
|
|
1166
|
|
1167 #define RESET_FAIL_STACK()
|
|
1168 #endif
|
|
1169
|
|
1170
|
|
1171 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
|
|
1172
|
|
1173 Return 1 if succeeds, and 0 if either ran out of memory
|
183
|
1174 allocating space for it or it was already too large.
|
|
1175
|
0
|
1176 REGEX_REALLOCATE_STACK requires `destination' be declared. */
|
|
1177
|
|
1178 #define DOUBLE_FAIL_STACK(fail_stack) \
|
|
1179 ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \
|
|
1180 ? 0 \
|
|
1181 : ((fail_stack).stack = (fail_stack_elt_t *) \
|
|
1182 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
|
|
1183 (fail_stack).size * sizeof (fail_stack_elt_t), \
|
|
1184 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
|
|
1185 \
|
|
1186 (fail_stack).stack == NULL \
|
|
1187 ? 0 \
|
|
1188 : ((fail_stack).size <<= 1, \
|
|
1189 1)))
|
|
1190
|
|
1191
|
183
|
1192 /* Push pointer POINTER on FAIL_STACK.
|
0
|
1193 Return 1 if was able to do so and 0 if ran out of memory allocating
|
|
1194 space to do so. */
|
|
1195 #define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
|
|
1196 ((FAIL_STACK_FULL () \
|
|
1197 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
|
|
1198 ? 0 \
|
|
1199 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
|
|
1200 1))
|
|
1201
|
|
1202 /* Push a pointer value onto the failure stack.
|
|
1203 Assumes the variable `fail_stack'. Probably should only
|
|
1204 be called from within `PUSH_FAILURE_POINT'. */
|
|
1205 #define PUSH_FAILURE_POINTER(item) \
|
|
1206 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
|
|
1207
|
|
1208 /* This pushes an integer-valued item onto the failure stack.
|
|
1209 Assumes the variable `fail_stack'. Probably should only
|
|
1210 be called from within `PUSH_FAILURE_POINT'. */
|
|
1211 #define PUSH_FAILURE_INT(item) \
|
|
1212 fail_stack.stack[fail_stack.avail++].integer = (item)
|
|
1213
|
|
1214 /* Push a fail_stack_elt_t value onto the failure stack.
|
|
1215 Assumes the variable `fail_stack'. Probably should only
|
|
1216 be called from within `PUSH_FAILURE_POINT'. */
|
|
1217 #define PUSH_FAILURE_ELT(item) \
|
|
1218 fail_stack.stack[fail_stack.avail++] = (item)
|
|
1219
|
|
1220 /* These three POP... operations complement the three PUSH... operations.
|
|
1221 All assume that `fail_stack' is nonempty. */
|
|
1222 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
|
|
1223 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
|
|
1224 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
|
|
1225
|
|
1226 /* Used to omit pushing failure point id's when we're not debugging. */
|
|
1227 #ifdef DEBUG
|
|
1228 #define DEBUG_PUSH PUSH_FAILURE_INT
|
|
1229 #define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
|
|
1230 #else
|
|
1231 #define DEBUG_PUSH(item)
|
|
1232 #define DEBUG_POP(item_addr)
|
|
1233 #endif
|
|
1234
|
|
1235
|
|
1236 /* Push the information about the state we will need
|
183
|
1237 if we ever fail back to it.
|
|
1238
|
0
|
1239 Requires variables fail_stack, regstart, regend, reg_info, and
|
|
1240 num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be
|
|
1241 declared.
|
183
|
1242
|
0
|
1243 Does `return FAILURE_CODE' if runs out of memory. */
|
|
1244
|
|
1245 #if !defined (REGEX_MALLOC) && !defined (REL_ALLOC)
|
|
1246 #define DECLARE_DESTINATION char *destination;
|
|
1247 #else
|
|
1248 #define DECLARE_DESTINATION
|
|
1249 #endif
|
|
1250
|
|
1251 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
|
|
1252 do { \
|
|
1253 DECLARE_DESTINATION \
|
|
1254 /* Must be int, so when we don't save any registers, the arithmetic \
|
|
1255 of 0 + -1 isn't done as unsigned. */ \
|
|
1256 int this_reg; \
|
|
1257 \
|
|
1258 DEBUG_STATEMENT (failure_id++); \
|
|
1259 DEBUG_STATEMENT (nfailure_points_pushed++); \
|
|
1260 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
|
|
1261 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
|
|
1262 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
|
|
1263 \
|
|
1264 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
|
|
1265 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
|
|
1266 \
|
|
1267 /* Ensure we have enough space allocated for what we will push. */ \
|
|
1268 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
|
|
1269 { \
|
|
1270 if (!DOUBLE_FAIL_STACK (fail_stack)) \
|
|
1271 return failure_code; \
|
|
1272 \
|
|
1273 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
|
|
1274 (fail_stack).size); \
|
|
1275 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
|
|
1276 } \
|
|
1277 \
|
|
1278 /* Push the info, starting with the registers. */ \
|
|
1279 DEBUG_PRINT1 ("\n"); \
|
|
1280 \
|
|
1281 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
|
|
1282 this_reg++) \
|
|
1283 { \
|
|
1284 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
|
|
1285 DEBUG_STATEMENT (num_regs_pushed++); \
|
|
1286 \
|
175
|
1287 DEBUG_PRINT2 (" start: 0x%p\n", regstart[this_reg]); \
|
0
|
1288 PUSH_FAILURE_POINTER (regstart[this_reg]); \
|
|
1289 \
|
175
|
1290 DEBUG_PRINT2 (" end: 0x%p\n", regend[this_reg]); \
|
0
|
1291 PUSH_FAILURE_POINTER (regend[this_reg]); \
|
|
1292 \
|
|
1293 DEBUG_PRINT2 (" info: 0x%lx\n ", \
|
|
1294 * (unsigned long *) (®_info[this_reg])); \
|
|
1295 DEBUG_PRINT2 (" match_null=%d", \
|
|
1296 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
|
|
1297 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
|
|
1298 DEBUG_PRINT2 (" matched_something=%d", \
|
|
1299 MATCHED_SOMETHING (reg_info[this_reg])); \
|
|
1300 DEBUG_PRINT2 (" ever_matched=%d", \
|
|
1301 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
|
|
1302 DEBUG_PRINT1 ("\n"); \
|
|
1303 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
|
|
1304 } \
|
|
1305 \
|
|
1306 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\
|
|
1307 PUSH_FAILURE_INT (lowest_active_reg); \
|
|
1308 \
|
|
1309 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\
|
|
1310 PUSH_FAILURE_INT (highest_active_reg); \
|
|
1311 \
|
175
|
1312 DEBUG_PRINT2 (" Pushing pattern 0x%p: ", pattern_place); \
|
0
|
1313 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
|
|
1314 PUSH_FAILURE_POINTER (pattern_place); \
|
|
1315 \
|
175
|
1316 DEBUG_PRINT2 (" Pushing string 0x%p: `", string_place); \
|
0
|
1317 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
|
|
1318 size2); \
|
|
1319 DEBUG_PRINT1 ("'\n"); \
|
|
1320 PUSH_FAILURE_POINTER (string_place); \
|
|
1321 \
|
|
1322 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
|
|
1323 DEBUG_PUSH (failure_id); \
|
|
1324 } while (0)
|
|
1325
|
|
1326 /* This is the number of items that are pushed and popped on the stack
|
|
1327 for each register. */
|
|
1328 #define NUM_REG_ITEMS 3
|
|
1329
|
|
1330 /* Individual items aside from the registers. */
|
|
1331 #ifdef DEBUG
|
|
1332 #define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
|
|
1333 #else
|
|
1334 #define NUM_NONREG_ITEMS 4
|
|
1335 #endif
|
|
1336
|
|
1337 /* We push at most this many items on the stack. */
|
82
|
1338 /* We used to use (num_regs - 1), which is the number of registers
|
|
1339 this regexp will save; but that was changed to 5
|
|
1340 to avoid stack overflow for a regexp with lots of parens. */
|
|
1341 #define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
|
0
|
1342
|
|
1343 /* We actually push this many items. */
|
|
1344 #define NUM_FAILURE_ITEMS \
|
|
1345 ((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS \
|
|
1346 + NUM_NONREG_ITEMS)
|
|
1347
|
|
1348 /* How many items can still be added to the stack without overflowing it. */
|
|
1349 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
|
|
1350
|
|
1351
|
|
1352 /* Pops what PUSH_FAIL_STACK pushes.
|
|
1353
|
|
1354 We restore into the parameters, all of which should be lvalues:
|
|
1355 STR -- the saved data position.
|
|
1356 PAT -- the saved pattern position.
|
|
1357 LOW_REG, HIGH_REG -- the highest and lowest active registers.
|
|
1358 REGSTART, REGEND -- arrays of string positions.
|
|
1359 REG_INFO -- array of information about each subexpression.
|
183
|
1360
|
0
|
1361 Also assumes the variables `fail_stack' and (if debugging), `bufp',
|
|
1362 `pend', `string1', `size1', `string2', and `size2'. */
|
|
1363
|
|
1364 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
|
|
1365 { \
|
|
1366 DEBUG_STATEMENT (fail_stack_elt_t ffailure_id;) \
|
|
1367 int this_reg; \
|
|
1368 CONST unsigned char *string_temp; \
|
|
1369 \
|
|
1370 assert (!FAIL_STACK_EMPTY ()); \
|
|
1371 \
|
|
1372 /* Remove failure points and point to how many regs pushed. */ \
|
|
1373 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
|
|
1374 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
|
|
1375 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
|
|
1376 \
|
|
1377 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
|
|
1378 \
|
|
1379 DEBUG_POP (&ffailure_id.integer); \
|
|
1380 DEBUG_PRINT2 (" Popping failure id: %u\n", \
|
|
1381 * (unsigned int *) &ffailure_id); \
|
|
1382 \
|
|
1383 /* If the saved string location is NULL, it came from an \
|
|
1384 on_failure_keep_string_jump opcode, and we want to throw away the \
|
|
1385 saved NULL, thus retaining our current position in the string. */ \
|
|
1386 string_temp = POP_FAILURE_POINTER (); \
|
|
1387 if (string_temp != NULL) \
|
|
1388 str = (CONST char *) string_temp; \
|
|
1389 \
|
175
|
1390 DEBUG_PRINT2 (" Popping string 0x%p: `", str); \
|
0
|
1391 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
|
|
1392 DEBUG_PRINT1 ("'\n"); \
|
|
1393 \
|
|
1394 pat = (unsigned char *) POP_FAILURE_POINTER (); \
|
175
|
1395 DEBUG_PRINT2 (" Popping pattern 0x%p: ", pat); \
|
0
|
1396 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
|
|
1397 \
|
|
1398 /* Restore register info. */ \
|
|
1399 high_reg = (unsigned) POP_FAILURE_INT (); \
|
|
1400 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
|
|
1401 \
|
|
1402 low_reg = (unsigned) POP_FAILURE_INT (); \
|
|
1403 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
|
|
1404 \
|
|
1405 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
|
|
1406 { \
|
|
1407 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
|
|
1408 \
|
|
1409 reg_info[this_reg].word = POP_FAILURE_ELT (); \
|
|
1410 DEBUG_PRINT2 (" info: 0x%lx\n", \
|
|
1411 * (unsigned long *) ®_info[this_reg]); \
|
|
1412 \
|
|
1413 regend[this_reg] = (CONST char *) POP_FAILURE_POINTER (); \
|
175
|
1414 DEBUG_PRINT2 (" end: 0x%p\n", regend[this_reg]); \
|
0
|
1415 \
|
|
1416 regstart[this_reg] = (CONST char *) POP_FAILURE_POINTER (); \
|
175
|
1417 DEBUG_PRINT2 (" start: 0x%p\n", regstart[this_reg]); \
|
0
|
1418 } \
|
|
1419 \
|
|
1420 set_regs_matched_done = 0; \
|
|
1421 DEBUG_STATEMENT (nfailure_points_popped++); \
|
|
1422 } /* POP_FAILURE_POINT */
|
|
1423
|
|
1424
|
|
1425
|
|
1426 /* Structure for per-register (a.k.a. per-group) information.
|
|
1427 Other register information, such as the
|
|
1428 starting and ending positions (which are addresses), and the list of
|
|
1429 inner groups (which is a bits list) are maintained in separate
|
183
|
1430 variables.
|
|
1431
|
0
|
1432 We are making a (strictly speaking) nonportable assumption here: that
|
|
1433 the compiler will pack our bit fields into something that fits into
|
|
1434 the type of `word', i.e., is something that fits into one item on the
|
|
1435 failure stack. */
|
|
1436
|
|
1437 typedef union
|
|
1438 {
|
|
1439 fail_stack_elt_t word;
|
|
1440 struct
|
|
1441 {
|
|
1442 /* This field is one if this group can match the empty string,
|
|
1443 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
|
|
1444 #define MATCH_NULL_UNSET_VALUE 3
|
|
1445 unsigned match_null_string_p : 2;
|
|
1446 unsigned is_active : 1;
|
|
1447 unsigned matched_something : 1;
|
|
1448 unsigned ever_matched_something : 1;
|
|
1449 } bits;
|
|
1450 } register_info_type;
|
|
1451
|
|
1452 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
|
|
1453 #define IS_ACTIVE(R) ((R).bits.is_active)
|
|
1454 #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
|
|
1455 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
|
|
1456
|
|
1457
|
|
1458 /* Call this when have matched a real character; it sets `matched' flags
|
|
1459 for the subexpressions which we are currently inside. Also records
|
|
1460 that those subexprs have matched. */
|
|
1461 #define SET_REGS_MATCHED() \
|
|
1462 do \
|
|
1463 { \
|
|
1464 if (!set_regs_matched_done) \
|
|
1465 { \
|
|
1466 unsigned r; \
|
|
1467 set_regs_matched_done = 1; \
|
|
1468 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
|
|
1469 { \
|
|
1470 MATCHED_SOMETHING (reg_info[r]) \
|
|
1471 = EVER_MATCHED_SOMETHING (reg_info[r]) \
|
|
1472 = 1; \
|
|
1473 } \
|
|
1474 } \
|
|
1475 } \
|
|
1476 while (0)
|
|
1477
|
|
1478 /* Registers are set to a sentinel when they haven't yet matched. */
|
|
1479 static char reg_unset_dummy;
|
|
1480 #define REG_UNSET_VALUE (®_unset_dummy)
|
|
1481 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
|
|
1482
|
|
1483 /* Subroutine declarations and macros for regex_compile. */
|
|
1484
|
183
|
1485 /* Fetch the next character in the uncompiled pattern---translating it
|
0
|
1486 if necessary. Also cast from a signed character in the constant
|
|
1487 string passed to us by the user to an unsigned char that we can use
|
|
1488 as an array index (in, e.g., `translate'). */
|
|
1489 #define PATFETCH(c) \
|
|
1490 do {if (p == pend) return REG_EEND; \
|
|
1491 assert (p < pend); \
|
|
1492 c = (unsigned char) *p++; \
|
|
1493 if (translate) c = (unsigned char) translate[c]; \
|
|
1494 } while (0)
|
|
1495
|
|
1496 /* Fetch the next character in the uncompiled pattern, with no
|
|
1497 translation. */
|
|
1498 #define PATFETCH_RAW(c) \
|
|
1499 do {if (p == pend) return REG_EEND; \
|
|
1500 assert (p < pend); \
|
|
1501 c = (unsigned char) *p++; \
|
|
1502 } while (0)
|
|
1503
|
|
1504 /* Go backwards one character in the pattern. */
|
|
1505 #define PATUNFETCH p--
|
|
1506
|
70
|
1507 #ifdef MULE
|
|
1508
|
|
1509 #define PATFETCH_EXTENDED(emch) \
|
|
1510 do {if (p == pend) return REG_EEND; \
|
|
1511 assert (p < pend); \
|
|
1512 emch = charptr_emchar ((CONST Bufbyte *) p); \
|
|
1513 INC_CHARPTR (p); \
|
|
1514 if (translate && emch < 0x80) \
|
|
1515 emch = (Emchar) (unsigned char) translate[emch]; \
|
|
1516 } while (0)
|
|
1517
|
|
1518 #define PATFETCH_RAW_EXTENDED(emch) \
|
|
1519 do {if (p == pend) return REG_EEND; \
|
|
1520 assert (p < pend); \
|
|
1521 emch = charptr_emchar ((CONST Bufbyte *) p); \
|
|
1522 INC_CHARPTR (p); \
|
|
1523 } while (0)
|
|
1524
|
|
1525 #define PATUNFETCH_EXTENDED DEC_CHARPTR (p)
|
|
1526
|
|
1527 #define PATFETCH_EITHER(emch) \
|
|
1528 do { \
|
|
1529 if (has_extended_chars) \
|
|
1530 PATFETCH_EXTENDED (emch); \
|
|
1531 else \
|
|
1532 PATFETCH (emch); \
|
|
1533 } while (0)
|
|
1534
|
|
1535 #define PATFETCH_RAW_EITHER(emch) \
|
|
1536 do { \
|
|
1537 if (has_extended_chars) \
|
|
1538 PATFETCH_RAW_EXTENDED (emch); \
|
|
1539 else \
|
|
1540 PATFETCH_RAW (emch); \
|
|
1541 } while (0)
|
|
1542
|
|
1543 #define PATUNFETCH_EITHER \
|
|
1544 do { \
|
|
1545 if (has_extended_chars) \
|
|
1546 PATUNFETCH_EXTENDED (emch); \
|
|
1547 else \
|
|
1548 PATUNFETCH (emch); \
|
|
1549 } while (0)
|
|
1550
|
|
1551 #else /* not MULE */
|
|
1552
|
0
|
1553 #define PATFETCH_EITHER(emch) PATFETCH (emch)
|
|
1554 #define PATFETCH_RAW_EITHER(emch) PATFETCH_RAW (emch)
|
|
1555 #define PATUNFETCH_EITHER PATUNFETCH
|
|
1556
|
70
|
1557 #endif /* not MULE */
|
0
|
1558
|
|
1559 /* If `translate' is non-null, return translate[D], else just D. We
|
|
1560 cast the subscript to translate because some data is declared as
|
|
1561 `char *', to avoid warnings when a string constant is passed. But
|
|
1562 when we use a character as a subscript we must make it unsigned. */
|
|
1563 #define TRANSLATE(d) (translate ? translate[(unsigned char) (d)] : (d))
|
|
1564
|
70
|
1565 #ifdef MULE
|
|
1566
|
|
1567 #define TRANSLATE_EXTENDED_UNSAFE(emch) \
|
|
1568 (translate && emch < 0x80 ? translate[emch] : (emch))
|
|
1569
|
|
1570 #endif
|
0
|
1571
|
|
1572 /* Macros for outputting the compiled pattern into `buffer'. */
|
|
1573
|
|
1574 /* If the buffer isn't allocated when it comes in, use this. */
|
|
1575 #define INIT_BUF_SIZE 32
|
|
1576
|
|
1577 /* Make sure we have at least N more bytes of space in buffer. */
|
|
1578 #define GET_BUFFER_SPACE(n) \
|
|
1579 while (b - bufp->buffer + (n) > bufp->allocated) \
|
|
1580 EXTEND_BUFFER ()
|
|
1581
|
|
1582 /* Make sure we have one more byte of buffer space and then add C to it. */
|
|
1583 #define BUF_PUSH(c) \
|
|
1584 do { \
|
|
1585 GET_BUFFER_SPACE (1); \
|
|
1586 *b++ = (unsigned char) (c); \
|
|
1587 } while (0)
|
|
1588
|
|
1589
|
|
1590 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
|
|
1591 #define BUF_PUSH_2(c1, c2) \
|
|
1592 do { \
|
|
1593 GET_BUFFER_SPACE (2); \
|
|
1594 *b++ = (unsigned char) (c1); \
|
|
1595 *b++ = (unsigned char) (c2); \
|
|
1596 } while (0)
|
|
1597
|
|
1598
|
|
1599 /* As with BUF_PUSH_2, except for three bytes. */
|
|
1600 #define BUF_PUSH_3(c1, c2, c3) \
|
|
1601 do { \
|
|
1602 GET_BUFFER_SPACE (3); \
|
|
1603 *b++ = (unsigned char) (c1); \
|
|
1604 *b++ = (unsigned char) (c2); \
|
|
1605 *b++ = (unsigned char) (c3); \
|
|
1606 } while (0)
|
|
1607
|
|
1608
|
|
1609 /* Store a jump with opcode OP at LOC to location TO. We store a
|
|
1610 relative address offset by the three bytes the jump itself occupies. */
|
|
1611 #define STORE_JUMP(op, loc, to) \
|
|
1612 store_op1 (op, loc, (to) - (loc) - 3)
|
|
1613
|
|
1614 /* Likewise, for a two-argument jump. */
|
|
1615 #define STORE_JUMP2(op, loc, to, arg) \
|
|
1616 store_op2 (op, loc, (to) - (loc) - 3, arg)
|
|
1617
|
|
1618 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
|
|
1619 #define INSERT_JUMP(op, loc, to) \
|
|
1620 insert_op1 (op, loc, (to) - (loc) - 3, b)
|
|
1621
|
|
1622 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
|
|
1623 #define INSERT_JUMP2(op, loc, to, arg) \
|
|
1624 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
|
|
1625
|
|
1626
|
|
1627 /* This is not an arbitrary limit: the arguments which represent offsets
|
|
1628 into the pattern are two bytes long. So if 2^16 bytes turns out to
|
|
1629 be too small, many things would have to change. */
|
|
1630 #define MAX_BUF_SIZE (1L << 16)
|
|
1631
|
|
1632
|
|
1633 /* Extend the buffer by twice its current size via realloc and
|
|
1634 reset the pointers that pointed into the old block to point to the
|
|
1635 correct places in the new one. If extending the buffer results in it
|
|
1636 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
|
|
1637 #define EXTEND_BUFFER() \
|
|
1638 do { \
|
|
1639 unsigned char *old_buffer = bufp->buffer; \
|
|
1640 if (bufp->allocated == MAX_BUF_SIZE) \
|
|
1641 return REG_ESIZE; \
|
|
1642 bufp->allocated <<= 1; \
|
|
1643 if (bufp->allocated > MAX_BUF_SIZE) \
|
|
1644 bufp->allocated = MAX_BUF_SIZE; \
|
|
1645 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
|
|
1646 if (bufp->buffer == NULL) \
|
|
1647 return REG_ESPACE; \
|
|
1648 /* If the buffer moved, move all the pointers into it. */ \
|
|
1649 if (old_buffer != bufp->buffer) \
|
|
1650 { \
|
|
1651 b = (b - old_buffer) + bufp->buffer; \
|
|
1652 begalt = (begalt - old_buffer) + bufp->buffer; \
|
|
1653 if (fixup_alt_jump) \
|
|
1654 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
|
|
1655 if (laststart) \
|
|
1656 laststart = (laststart - old_buffer) + bufp->buffer; \
|
|
1657 if (pending_exact) \
|
|
1658 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
|
|
1659 } \
|
|
1660 } while (0)
|
|
1661
|
|
1662
|
|
1663 /* Since we have one byte reserved for the register number argument to
|
|
1664 {start,stop}_memory, the maximum number of groups we can report
|
|
1665 things about is what fits in that byte. */
|
|
1666 #define MAX_REGNUM 255
|
|
1667
|
|
1668 /* But patterns can have more than `MAX_REGNUM' registers. We just
|
|
1669 ignore the excess. */
|
|
1670 typedef unsigned regnum_t;
|
|
1671
|
|
1672
|
|
1673 /* Macros for the compile stack. */
|
|
1674
|
|
1675 /* Since offsets can go either forwards or backwards, this type needs to
|
|
1676 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
|
|
1677 typedef int pattern_offset_t;
|
|
1678
|
|
1679 typedef struct
|
|
1680 {
|
|
1681 pattern_offset_t begalt_offset;
|
|
1682 pattern_offset_t fixup_alt_jump;
|
|
1683 pattern_offset_t inner_group_offset;
|
183
|
1684 pattern_offset_t laststart_offset;
|
0
|
1685 regnum_t regnum;
|
|
1686 } compile_stack_elt_t;
|
|
1687
|
|
1688
|
|
1689 typedef struct
|
|
1690 {
|
|
1691 compile_stack_elt_t *stack;
|
|
1692 unsigned size;
|
|
1693 unsigned avail; /* Offset of next open position. */
|
|
1694 } compile_stack_type;
|
|
1695
|
|
1696
|
|
1697 #define INIT_COMPILE_STACK_SIZE 32
|
|
1698
|
|
1699 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
|
|
1700 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
|
|
1701
|
|
1702 /* The next available element. */
|
|
1703 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
|
|
1704
|
|
1705
|
|
1706 /* Set the bit for character C in a bit vector. */
|
|
1707 #define SET_LIST_BIT(c) \
|
|
1708 (b[((unsigned char) (c)) / BYTEWIDTH] \
|
|
1709 |= 1 << (((unsigned char) c) % BYTEWIDTH))
|
|
1710
|
70
|
1711 #ifdef MULE
|
|
1712
|
|
1713 /* Set the "bit" for character C in a range table. */
|
|
1714 #define SET_RANGETAB_BIT(c) put_range_table (rtab, c, c, Qt)
|
|
1715
|
|
1716 /* Set the "bit" for character c in the appropriate table. */
|
|
1717 #define SET_EITHER_BIT(c) \
|
|
1718 do { \
|
|
1719 if (has_extended_chars) \
|
|
1720 SET_RANGETAB_BIT (c); \
|
|
1721 else \
|
|
1722 SET_LIST_BIT (c); \
|
|
1723 } while (0)
|
|
1724
|
|
1725 #else /* not MULE */
|
|
1726
|
0
|
1727 #define SET_EITHER_BIT(c) SET_LIST_BIT (c)
|
|
1728
|
70
|
1729 #endif
|
0
|
1730
|
|
1731
|
|
1732 /* Get the next unsigned number in the uncompiled pattern. */
|
|
1733 #define GET_UNSIGNED_NUMBER(num) \
|
|
1734 { if (p != pend) \
|
|
1735 { \
|
|
1736 PATFETCH (c); \
|
|
1737 while (ISDIGIT (c)) \
|
|
1738 { \
|
|
1739 if (num < 0) \
|
|
1740 num = 0; \
|
|
1741 num = num * 10 + c - '0'; \
|
|
1742 if (p == pend) \
|
|
1743 break; \
|
|
1744 PATFETCH (c); \
|
|
1745 } \
|
|
1746 } \
|
183
|
1747 }
|
0
|
1748
|
|
1749 #define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
|
|
1750
|
|
1751 #define IS_CHAR_CLASS(string) \
|
|
1752 (STREQ (string, "alpha") || STREQ (string, "upper") \
|
|
1753 || STREQ (string, "lower") || STREQ (string, "digit") \
|
|
1754 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
|
|
1755 || STREQ (string, "space") || STREQ (string, "print") \
|
|
1756 || STREQ (string, "punct") || STREQ (string, "graph") \
|
|
1757 || STREQ (string, "cntrl") || STREQ (string, "blank"))
|
|
1758
|
|
1759 static void store_op1 (re_opcode_t op, unsigned char *loc, int arg);
|
|
1760 static void store_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2);
|
|
1761 static void insert_op1 (re_opcode_t op, unsigned char *loc, int arg,
|
|
1762 unsigned char *end);
|
|
1763 static void insert_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2,
|
|
1764 unsigned char *end);
|
|
1765 static boolean at_begline_loc_p (CONST char *pattern, CONST char *p,
|
|
1766 reg_syntax_t syntax);
|
|
1767 static boolean at_endline_loc_p (CONST char *p, CONST char *pend, int syntax);
|
|
1768 static boolean group_in_compile_stack (compile_stack_type compile_stack,
|
|
1769 regnum_t regnum);
|
|
1770 static reg_errcode_t compile_range (CONST char **p_ptr, CONST char *pend,
|
|
1771 char *translate, reg_syntax_t syntax,
|
|
1772 unsigned char *b);
|
70
|
1773 #ifdef MULE
|
|
1774 static reg_errcode_t compile_extended_range (CONST char **p_ptr,
|
|
1775 CONST char *pend,
|
|
1776 char *translate,
|
|
1777 reg_syntax_t syntax,
|
|
1778 Lisp_Object rtab);
|
185
|
1779 #endif /* MULE */
|
0
|
1780 static boolean group_match_null_string_p (unsigned char **p,
|
|
1781 unsigned char *end,
|
|
1782 register_info_type *reg_info);
|
|
1783 static boolean alt_match_null_string_p (unsigned char *p, unsigned char *end,
|
|
1784 register_info_type *reg_info);
|
|
1785 static boolean common_op_match_null_string_p (unsigned char **p,
|
|
1786 unsigned char *end,
|
|
1787 register_info_type *reg_info);
|
|
1788 static int bcmp_translate (CONST unsigned char *s1, CONST unsigned char *s2,
|
203
|
1789 REGISTER int len, char *translate);
|
0
|
1790 static int re_match_2_internal (struct re_pattern_buffer *bufp,
|
|
1791 CONST char *string1, int size1,
|
|
1792 CONST char *string2, int size2, int pos,
|
|
1793 struct re_registers *regs, int stop);
|
|
1794
|
|
1795 #ifndef MATCH_MAY_ALLOCATE
|
|
1796
|
|
1797 /* If we cannot allocate large objects within re_match_2_internal,
|
|
1798 we make the fail stack and register vectors global.
|
|
1799 The fail stack, we grow to the maximum size when a regexp
|
|
1800 is compiled.
|
|
1801 The register vectors, we adjust in size each time we
|
|
1802 compile a regexp, according to the number of registers it needs. */
|
|
1803
|
|
1804 static fail_stack_type fail_stack;
|
|
1805
|
|
1806 /* Size with which the following vectors are currently allocated.
|
|
1807 That is so we can make them bigger as needed,
|
|
1808 but never make them smaller. */
|
|
1809 static int regs_allocated_size;
|
|
1810
|
|
1811 static CONST char ** regstart, ** regend;
|
|
1812 static CONST char ** old_regstart, ** old_regend;
|
|
1813 static CONST char **best_regstart, **best_regend;
|
183
|
1814 static register_info_type *reg_info;
|
0
|
1815 static CONST char **reg_dummy;
|
|
1816 static register_info_type *reg_info_dummy;
|
|
1817
|
|
1818 /* Make the register vectors big enough for NUM_REGS registers,
|
|
1819 but don't make them smaller. */
|
|
1820
|
|
1821 static
|
|
1822 regex_grow_registers (int num_regs)
|
|
1823 {
|
|
1824 if (num_regs > regs_allocated_size)
|
|
1825 {
|
169
|
1826 RETALLOC_IF (regstart, num_regs, CONST char *);
|
|
1827 RETALLOC_IF (regend, num_regs, CONST char *);
|
|
1828 RETALLOC_IF (old_regstart, num_regs, CONST char *);
|
|
1829 RETALLOC_IF (old_regend, num_regs, CONST char *);
|
|
1830 RETALLOC_IF (best_regstart, num_regs, CONST char *);
|
|
1831 RETALLOC_IF (best_regend, num_regs, CONST char *);
|
|
1832 RETALLOC_IF (reg_info, num_regs, register_info_type);
|
|
1833 RETALLOC_IF (reg_dummy, num_regs, CONST char *);
|
0
|
1834 RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
|
|
1835
|
|
1836 regs_allocated_size = num_regs;
|
|
1837 }
|
|
1838 }
|
|
1839
|
|
1840 #endif /* not MATCH_MAY_ALLOCATE */
|
|
1841
|
|
1842 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
|
|
1843 Returns one of error codes defined in `regex.h', or zero for success.
|
|
1844
|
|
1845 Assumes the `allocated' (and perhaps `buffer') and `translate'
|
|
1846 fields are set in BUFP on entry.
|
|
1847
|
|
1848 If it succeeds, results are put in BUFP (if it returns an error, the
|
|
1849 contents of BUFP are undefined):
|
|
1850 `buffer' is the compiled pattern;
|
|
1851 `syntax' is set to SYNTAX;
|
|
1852 `used' is set to the length of the compiled pattern;
|
|
1853 `fastmap_accurate' is zero;
|
|
1854 `re_nsub' is the number of subexpressions in PATTERN;
|
|
1855 `not_bol' and `not_eol' are zero;
|
183
|
1856
|
0
|
1857 The `fastmap' and `newline_anchor' fields are neither
|
|
1858 examined nor set. */
|
|
1859
|
|
1860 /* Return, freeing storage we allocated. */
|
|
1861 #define FREE_STACK_RETURN(value) \
|
|
1862 return (free (compile_stack.stack), value)
|
|
1863
|
|
1864 static reg_errcode_t
|
|
1865 regex_compile (CONST char *pattern, int size, reg_syntax_t syntax,
|
|
1866 struct re_pattern_buffer *bufp)
|
|
1867 {
|
|
1868 /* We fetch characters from PATTERN here. We declare these as int
|
|
1869 (or possibly long) so that chars above 127 can be used as
|
|
1870 array indices. The macros that fetch a character from the pattern
|
|
1871 make sure to coerce to unsigned char before assigning, so we won't
|
|
1872 get bitten by negative numbers here. */
|
|
1873 /* XEmacs change: used to be unsigned char. */
|
203
|
1874 REGISTER EMACS_INT c, c1;
|
183
|
1875
|
0
|
1876 /* A random temporary spot in PATTERN. */
|
|
1877 CONST char *p1;
|
|
1878
|
|
1879 /* Points to the end of the buffer, where we should append. */
|
203
|
1880 REGISTER unsigned char *b;
|
183
|
1881
|
0
|
1882 /* Keeps track of unclosed groups. */
|
|
1883 compile_stack_type compile_stack;
|
|
1884
|
|
1885 /* Points to the current (ending) position in the pattern. */
|
|
1886 CONST char *p = pattern;
|
|
1887 CONST char *pend = pattern + size;
|
183
|
1888
|
0
|
1889 /* How to translate the characters in the pattern. */
|
|
1890 char *translate = bufp->translate;
|
|
1891
|
|
1892 /* Address of the count-byte of the most recently inserted `exactn'
|
|
1893 command. This makes it possible to tell if a new exact-match
|
|
1894 character can be added to that command or if the character requires
|
|
1895 a new `exactn' command. */
|
|
1896 unsigned char *pending_exact = 0;
|
|
1897
|
|
1898 /* Address of start of the most recently finished expression.
|
|
1899 This tells, e.g., postfix * where to find the start of its
|
|
1900 operand. Reset at the beginning of groups and alternatives. */
|
|
1901 unsigned char *laststart = 0;
|
|
1902
|
|
1903 /* Address of beginning of regexp, or inside of last group. */
|
|
1904 unsigned char *begalt;
|
|
1905
|
|
1906 /* Place in the uncompiled pattern (i.e., the {) to
|
|
1907 which to go back if the interval is invalid. */
|
|
1908 CONST char *beg_interval;
|
183
|
1909
|
0
|
1910 /* Address of the place where a forward jump should go to the end of
|
|
1911 the containing expression. Each alternative of an `or' -- except the
|
|
1912 last -- ends with a forward jump of this sort. */
|
|
1913 unsigned char *fixup_alt_jump = 0;
|
|
1914
|
|
1915 /* Counts open-groups as they are encountered. Remembered for the
|
|
1916 matching close-group on the compile stack, so the same register
|
|
1917 number is put in the stop_memory as the start_memory. */
|
|
1918 regnum_t regnum = 0;
|
|
1919
|
|
1920 #ifdef DEBUG
|
|
1921 DEBUG_PRINT1 ("\nCompiling pattern: ");
|
|
1922 if (debug)
|
|
1923 {
|
|
1924 unsigned debug_count;
|
183
|
1925
|
0
|
1926 for (debug_count = 0; debug_count < size; debug_count++)
|
|
1927 putchar (pattern[debug_count]);
|
|
1928 putchar ('\n');
|
|
1929 }
|
|
1930 #endif /* DEBUG */
|
|
1931
|
|
1932 /* Initialize the compile stack. */
|
|
1933 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
|
|
1934 if (compile_stack.stack == NULL)
|
|
1935 return REG_ESPACE;
|
|
1936
|
|
1937 compile_stack.size = INIT_COMPILE_STACK_SIZE;
|
|
1938 compile_stack.avail = 0;
|
|
1939
|
|
1940 /* Initialize the pattern buffer. */
|
|
1941 bufp->syntax = syntax;
|
|
1942 bufp->fastmap_accurate = 0;
|
|
1943 bufp->not_bol = bufp->not_eol = 0;
|
|
1944
|
|
1945 /* Set `used' to zero, so that if we return an error, the pattern
|
|
1946 printer (for debugging) will think there's no pattern. We reset it
|
|
1947 at the end. */
|
|
1948 bufp->used = 0;
|
183
|
1949
|
0
|
1950 /* Always count groups, whether or not bufp->no_sub is set. */
|
183
|
1951 bufp->re_nsub = 0;
|
0
|
1952
|
|
1953 #if !defined (emacs) && !defined (SYNTAX_TABLE)
|
|
1954 /* Initialize the syntax table. */
|
|
1955 init_syntax_once ();
|
|
1956 #endif
|
|
1957
|
|
1958 if (bufp->allocated == 0)
|
|
1959 {
|
|
1960 if (bufp->buffer)
|
|
1961 { /* If zero allocated, but buffer is non-null, try to realloc
|
|
1962 enough space. This loses if buffer's address is bogus, but
|
|
1963 that is the user's responsibility. */
|
|
1964 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
|
|
1965 }
|
|
1966 else
|
|
1967 { /* Caller did not allocate a buffer. Do it for them. */
|
|
1968 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
|
|
1969 }
|
|
1970 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
|
|
1971
|
|
1972 bufp->allocated = INIT_BUF_SIZE;
|
|
1973 }
|
|
1974
|
|
1975 begalt = b = bufp->buffer;
|
|
1976
|
|
1977 /* Loop through the uncompiled pattern until we're at the end. */
|
|
1978 while (p != pend)
|
|
1979 {
|
|
1980 PATFETCH (c);
|
|
1981
|
|
1982 switch (c)
|
|
1983 {
|
|
1984 case '^':
|
|
1985 {
|
|
1986 if ( /* If at start of pattern, it's an operator. */
|
|
1987 p == pattern + 1
|
|
1988 /* If context independent, it's an operator. */
|
|
1989 || syntax & RE_CONTEXT_INDEP_ANCHORS
|
|
1990 /* Otherwise, depends on what's come before. */
|
|
1991 || at_begline_loc_p (pattern, p, syntax))
|
|
1992 BUF_PUSH (begline);
|
|
1993 else
|
|
1994 goto normal_char;
|
|
1995 }
|
|
1996 break;
|
|
1997
|
|
1998
|
|
1999 case '$':
|
|
2000 {
|
|
2001 if ( /* If at end of pattern, it's an operator. */
|
183
|
2002 p == pend
|
0
|
2003 /* If context independent, it's an operator. */
|
|
2004 || syntax & RE_CONTEXT_INDEP_ANCHORS
|
|
2005 /* Otherwise, depends on what's next. */
|
|
2006 || at_endline_loc_p (p, pend, syntax))
|
|
2007 BUF_PUSH (endline);
|
|
2008 else
|
|
2009 goto normal_char;
|
|
2010 }
|
|
2011 break;
|
|
2012
|
|
2013
|
|
2014 case '+':
|
|
2015 case '?':
|
|
2016 if ((syntax & RE_BK_PLUS_QM)
|
|
2017 || (syntax & RE_LIMITED_OPS))
|
|
2018 goto normal_char;
|
|
2019 handle_plus:
|
|
2020 case '*':
|
|
2021 /* If there is no previous pattern... */
|
|
2022 if (!laststart)
|
|
2023 {
|
|
2024 if (syntax & RE_CONTEXT_INVALID_OPS)
|
|
2025 FREE_STACK_RETURN (REG_BADRPT);
|
|
2026 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
|
|
2027 goto normal_char;
|
|
2028 }
|
|
2029
|
|
2030 {
|
185
|
2031 /* true means zero/many matches are allowed. */
|
|
2032 boolean zero_times_ok = c != '+';
|
|
2033 boolean many_times_ok = c != '?';
|
|
2034
|
|
2035 /* true means match shortest string possible. */
|
|
2036 boolean minimal = false;
|
0
|
2037
|
|
2038 /* If there is a sequence of repetition chars, collapse it
|
|
2039 down to just one (the right one). We can't combine
|
|
2040 interval operators with these because of, e.g., `a{2}*',
|
185
|
2041 which should only match an even number of `a's. */
|
|
2042 while (p != pend)
|
0
|
2043 {
|
|
2044 PATFETCH (c);
|
|
2045
|
185
|
2046 if (c == '*' || (!(syntax & RE_BK_PLUS_QM)
|
|
2047 && (c == '+' || c == '?')))
|
0
|
2048 ;
|
|
2049
|
185
|
2050 else if (syntax & RE_BK_PLUS_QM && c == '\\')
|
0
|
2051 {
|
|
2052 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
|
|
2053
|
|
2054 PATFETCH (c1);
|
|
2055 if (!(c1 == '+' || c1 == '?'))
|
|
2056 {
|
|
2057 PATUNFETCH;
|
|
2058 PATUNFETCH;
|
|
2059 break;
|
|
2060 }
|
|
2061
|
|
2062 c = c1;
|
|
2063 }
|
|
2064 else
|
|
2065 {
|
|
2066 PATUNFETCH;
|
|
2067 break;
|
|
2068 }
|
|
2069
|
|
2070 /* If we get here, we found another repeat character. */
|
185
|
2071 if (!(syntax & RE_NO_MINIMAL_MATCHING))
|
|
2072 {
|
|
2073 /* `*?' and `+?' and `??' are okay (and mean match
|
|
2074 minimally), but other sequences (such as `*??' and
|
|
2075 `+++') are rejected (reserved for future use). */
|
|
2076 if (minimal || c != '?')
|
|
2077 FREE_STACK_RETURN (REG_BADRPT);
|
|
2078 minimal = true;
|
|
2079 }
|
|
2080 else
|
|
2081 {
|
|
2082 zero_times_ok |= c != '+';
|
|
2083 many_times_ok |= c != '?';
|
|
2084 }
|
|
2085 }
|
0
|
2086
|
|
2087 /* Star, etc. applied to an empty pattern is equivalent
|
|
2088 to an empty pattern. */
|
183
|
2089 if (!laststart)
|
0
|
2090 break;
|
|
2091
|
185
|
2092 /* Now we know whether zero matches is allowed
|
|
2093 and whether two or more matches is allowed
|
|
2094 and whether we want minimal or maximal matching. */
|
|
2095 if (minimal)
|
|
2096 {
|
|
2097 if (!many_times_ok)
|
|
2098 {
|
|
2099 /* "a??" becomes:
|
|
2100 0: /on_failure_jump to 6
|
|
2101 3: /jump to 9
|
|
2102 6: /exactn/1/A
|
|
2103 9: end of pattern.
|
|
2104 */
|
|
2105 GET_BUFFER_SPACE (6);
|
|
2106 INSERT_JUMP (jump, laststart, b + 3);
|
|
2107 b += 3;
|
|
2108 INSERT_JUMP (on_failure_jump, laststart, laststart + 6);
|
|
2109 b += 3;
|
|
2110 }
|
|
2111 else if (zero_times_ok)
|
|
2112 {
|
|
2113 /* "a*?" becomes:
|
|
2114 0: /jump to 6
|
|
2115 3: /exactn/1/A
|
|
2116 6: /on_failure_jump to 3
|
|
2117 9: end of pattern.
|
|
2118 */
|
|
2119 GET_BUFFER_SPACE (6);
|
|
2120 INSERT_JUMP (jump, laststart, b + 3);
|
|
2121 b += 3;
|
|
2122 STORE_JUMP (on_failure_jump, b, laststart + 3);
|
|
2123 b += 3;
|
0
|
2124 }
|
|
2125 else
|
185
|
2126 {
|
|
2127 /* "a+?" becomes:
|
|
2128 0: /exactn/1/A
|
|
2129 3: /on_failure_jump to 0
|
|
2130 6: end of pattern.
|
|
2131 */
|
|
2132 GET_BUFFER_SPACE (3);
|
|
2133 STORE_JUMP (on_failure_jump, b, laststart);
|
|
2134 b += 3;
|
|
2135 }
|
0
|
2136 }
|
185
|
2137 else
|
|
2138 {
|
|
2139 /* Are we optimizing this jump? */
|
|
2140 boolean keep_string_p = false;
|
|
2141
|
|
2142 if (many_times_ok)
|
|
2143 { /* More than one repetition is allowed, so put in at the
|
|
2144 end a backward relative jump from `b' to before the next
|
|
2145 jump we're going to put in below (which jumps from
|
|
2146 laststart to after this jump).
|
|
2147
|
|
2148 But if we are at the `*' in the exact sequence `.*\n',
|
|
2149 insert an unconditional jump backwards to the .,
|
|
2150 instead of the beginning of the loop. This way we only
|
|
2151 push a failure point once, instead of every time
|
|
2152 through the loop. */
|
|
2153 assert (p - 1 > pattern);
|
|
2154
|
|
2155 /* Allocate the space for the jump. */
|
|
2156 GET_BUFFER_SPACE (3);
|
|
2157
|
|
2158 /* We know we are not at the first character of the
|
|
2159 pattern, because laststart was nonzero. And we've
|
|
2160 already incremented `p', by the way, to be the
|
|
2161 character after the `*'. Do we have to do something
|
|
2162 analogous here for null bytes, because of
|
|
2163 RE_DOT_NOT_NULL? */
|
|
2164 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
|
|
2165 && zero_times_ok
|
|
2166 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
|
|
2167 && !(syntax & RE_DOT_NEWLINE))
|
|
2168 { /* We have .*\n. */
|
|
2169 STORE_JUMP (jump, b, laststart);
|
|
2170 keep_string_p = true;
|
|
2171 }
|
|
2172 else
|
|
2173 /* Anything else. */
|
|
2174 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
|
|
2175
|
|
2176 /* We've added more stuff to the buffer. */
|
|
2177 b += 3;
|
|
2178 }
|
|
2179
|
|
2180 /* On failure, jump from laststart to b + 3, which will be the
|
|
2181 end of the buffer after this jump is inserted. */
|
|
2182 GET_BUFFER_SPACE (3);
|
|
2183 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
|
|
2184 : on_failure_jump,
|
|
2185 laststart, b + 3);
|
|
2186 b += 3;
|
|
2187
|
|
2188 if (!zero_times_ok)
|
|
2189 {
|
|
2190 /* At least one repetition is required, so insert a
|
|
2191 `dummy_failure_jump' before the initial
|
|
2192 `on_failure_jump' instruction of the loop. This
|
|
2193 effects a skip over that instruction the first time
|
|
2194 we hit that loop. */
|
|
2195 GET_BUFFER_SPACE (3);
|
|
2196 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
|
|
2197 b += 3;
|
|
2198 }
|
|
2199 }
|
0
|
2200 pending_exact = 0;
|
185
|
2201 }
|
0
|
2202 break;
|
|
2203
|
|
2204
|
|
2205 case '.':
|
|
2206 laststart = b;
|
|
2207 BUF_PUSH (anychar);
|
|
2208 break;
|
|
2209
|
|
2210
|
|
2211 case '[':
|
|
2212 {
|
|
2213 /* XEmacs change: this whole section */
|
|
2214 boolean had_char_class = false;
|
70
|
2215 #ifdef MULE
|
|
2216 boolean has_extended_chars = false;
|
|
2217 REGISTER Lisp_Object rtab = Qnil;
|
|
2218 #endif
|
0
|
2219
|
|
2220 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
|
|
2221
|
|
2222 /* Ensure that we have enough space to push a charset: the
|
|
2223 opcode, the length count, and the bitset; 34 bytes in all. */
|
|
2224 GET_BUFFER_SPACE (34);
|
|
2225
|
|
2226 laststart = b;
|
|
2227
|
|
2228 /* We test `*p == '^' twice, instead of using an if
|
|
2229 statement, so we only need one BUF_PUSH. */
|
183
|
2230 BUF_PUSH (*p == '^' ? charset_not : charset);
|
0
|
2231 if (*p == '^')
|
|
2232 p++;
|
|
2233
|
|
2234 /* Remember the first position in the bracket expression. */
|
|
2235 p1 = p;
|
|
2236
|
|
2237 /* Push the number of bytes in the bitmap. */
|
|
2238 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
|
|
2239
|
|
2240 /* Clear the whole map. */
|
282
|
2241 memset (b, 0, (1 << BYTEWIDTH) / BYTEWIDTH);
|
0
|
2242
|
|
2243 /* charset_not matches newline according to a syntax bit. */
|
|
2244 if ((re_opcode_t) b[-2] == charset_not
|
|
2245 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
|
|
2246 SET_LIST_BIT ('\n');
|
|
2247
|
70
|
2248 #ifdef MULE
|
|
2249 start_over_with_extended:
|
|
2250 if (has_extended_chars)
|
|
2251 {
|
|
2252 /* There are extended chars here, which means we need to start
|
|
2253 over and shift to unified range-table format. */
|
|
2254 if (b[-2] == charset)
|
|
2255 b[-2] = charset_mule;
|
|
2256 else
|
|
2257 b[-2] = charset_mule_not;
|
|
2258 b--;
|
|
2259 p = p1; /* go back to the beginning of the charset, after
|
|
2260 a possible ^. */
|
|
2261 rtab = Vthe_lisp_rangetab;
|
|
2262 Fclear_range_table (rtab);
|
|
2263
|
|
2264 /* charset_not matches newline according to a syntax bit. */
|
|
2265 if ((re_opcode_t) b[-1] == charset_mule_not
|
|
2266 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
|
|
2267 SET_EITHER_BIT ('\n');
|
|
2268 }
|
|
2269 #endif /* MULE */
|
|
2270
|
0
|
2271 /* Read in characters and ranges, setting map bits. */
|
|
2272 for (;;)
|
|
2273 {
|
|
2274 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
|
|
2275
|
|
2276 PATFETCH_EITHER (c);
|
|
2277
|
70
|
2278 #ifdef MULE
|
|
2279 if (c >= 0x80 && !has_extended_chars)
|
|
2280 {
|
|
2281 has_extended_chars = 1;
|
|
2282 /* Frumble-bumble, we've found some extended chars.
|
|
2283 Need to start over, process everything using
|
|
2284 the general extended-char mechanism, and need
|
|
2285 to use charset_mule and charset_mule_not instead
|
|
2286 of charset and charset_not. */
|
|
2287 goto start_over_with_extended;
|
|
2288 }
|
|
2289 #endif /* MULE */
|
0
|
2290 /* \ might escape characters inside [...] and [^...]. */
|
|
2291 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
|
|
2292 {
|
|
2293 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
|
|
2294
|
|
2295 PATFETCH_EITHER (c1);
|
70
|
2296 #ifdef MULE
|
|
2297 if (c1 >= 0x80 && !has_extended_chars)
|
|
2298 {
|
|
2299 has_extended_chars = 1;
|
|
2300 goto start_over_with_extended;
|
|
2301 }
|
|
2302 #endif /* MULE */
|
0
|
2303 SET_EITHER_BIT (c1);
|
|
2304 continue;
|
|
2305 }
|
|
2306
|
|
2307 /* Could be the end of the bracket expression. If it's
|
|
2308 not (i.e., when the bracket expression is `[]' so
|
|
2309 far), the ']' character bit gets set way below. */
|
|
2310 if (c == ']' && p != p1 + 1)
|
|
2311 break;
|
|
2312
|
|
2313 /* Look ahead to see if it's a range when the last thing
|
|
2314 was a character class. */
|
|
2315 if (had_char_class && c == '-' && *p != ']')
|
|
2316 FREE_STACK_RETURN (REG_ERANGE);
|
|
2317
|
|
2318 /* Look ahead to see if it's a range when the last thing
|
|
2319 was a character: if this is a hyphen not at the
|
|
2320 beginning or the end of a list, then it's the range
|
|
2321 operator. */
|
183
|
2322 if (c == '-'
|
|
2323 && !(p - 2 >= pattern && p[-2] == '[')
|
0
|
2324 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
|
|
2325 && *p != ']')
|
|
2326 {
|
|
2327 reg_errcode_t ret;
|
|
2328
|
70
|
2329 #ifdef MULE
|
|
2330 if (* (unsigned char *) p >= 0x80 && !has_extended_chars)
|
|
2331 {
|
|
2332 has_extended_chars = 1;
|
|
2333 goto start_over_with_extended;
|
|
2334 }
|
|
2335 if (has_extended_chars)
|
|
2336 ret = compile_extended_range (&p, pend, translate,
|
|
2337 syntax, rtab);
|
|
2338 else
|
|
2339 #endif /* MULE */
|
|
2340 ret = compile_range (&p, pend, translate, syntax, b);
|
0
|
2341 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
|
|
2342 }
|
|
2343
|
|
2344 else if (p[0] == '-' && p[1] != ']')
|
|
2345 { /* This handles ranges made up of characters only. */
|
|
2346 reg_errcode_t ret;
|
|
2347
|
|
2348 /* Move past the `-'. */
|
|
2349 PATFETCH (c1);
|
|
2350
|
70
|
2351 #ifdef MULE
|
|
2352 if (* (unsigned char *) p >= 0x80 && !has_extended_chars)
|
|
2353 {
|
|
2354 has_extended_chars = 1;
|
|
2355 goto start_over_with_extended;
|
|
2356 }
|
|
2357 if (has_extended_chars)
|
|
2358 ret = compile_extended_range (&p, pend, translate,
|
|
2359 syntax, rtab);
|
|
2360 else
|
|
2361 #endif /* MULE */
|
|
2362 ret = compile_range (&p, pend, translate, syntax, b);
|
0
|
2363 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
|
|
2364 }
|
|
2365
|
|
2366 /* See if we're at the beginning of a possible character
|
|
2367 class. */
|
|
2368
|
|
2369 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
|
|
2370 { /* Leave room for the null. */
|
|
2371 char str[CHAR_CLASS_MAX_LENGTH + 1];
|
|
2372
|
|
2373 PATFETCH (c);
|
|
2374 c1 = 0;
|
|
2375
|
|
2376 /* If pattern is `[[:'. */
|
|
2377 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
|
|
2378
|
|
2379 for (;;)
|
|
2380 {
|
|
2381 /* Do not do PATFETCH_EITHER() here. We want
|
|
2382 to just see if the bytes match particular
|
|
2383 strings, and we put them all back if not.
|
|
2384
|
|
2385 #### May need to be changed once trt tables
|
|
2386 are working. */
|
|
2387 PATFETCH (c);
|
|
2388 if (c == ':' || c == ']' || p == pend
|
|
2389 || c1 == CHAR_CLASS_MAX_LENGTH)
|
|
2390 break;
|
|
2391 str[c1++] = c;
|
|
2392 }
|
|
2393 str[c1] = '\0';
|
|
2394
|
|
2395 /* If isn't a word bracketed by `[:' and:`]':
|
183
|
2396 undo the ending character, the letters, and leave
|
0
|
2397 the leading `:' and `[' (but set bits for them). */
|
|
2398 if (c == ':' && *p == ']')
|
|
2399 {
|
|
2400 int ch;
|
|
2401 boolean is_alnum = STREQ (str, "alnum");
|
|
2402 boolean is_alpha = STREQ (str, "alpha");
|
|
2403 boolean is_blank = STREQ (str, "blank");
|
|
2404 boolean is_cntrl = STREQ (str, "cntrl");
|
|
2405 boolean is_digit = STREQ (str, "digit");
|
|
2406 boolean is_graph = STREQ (str, "graph");
|
|
2407 boolean is_lower = STREQ (str, "lower");
|
|
2408 boolean is_print = STREQ (str, "print");
|
|
2409 boolean is_punct = STREQ (str, "punct");
|
|
2410 boolean is_space = STREQ (str, "space");
|
|
2411 boolean is_upper = STREQ (str, "upper");
|
|
2412 boolean is_xdigit = STREQ (str, "xdigit");
|
183
|
2413
|
0
|
2414 if (!IS_CHAR_CLASS (str))
|
|
2415 FREE_STACK_RETURN (REG_ECTYPE);
|
|
2416
|
|
2417 /* Throw away the ] at the end of the character
|
|
2418 class. */
|
183
|
2419 PATFETCH (c);
|
0
|
2420
|
|
2421 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
|
|
2422
|
|
2423 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
|
|
2424 {
|
|
2425 /* This was split into 3 if's to
|
|
2426 avoid an arbitrary limit in some compiler. */
|
|
2427 if ( (is_alnum && ISALNUM (ch))
|
|
2428 || (is_alpha && ISALPHA (ch))
|
|
2429 || (is_blank && ISBLANK (ch))
|
|
2430 || (is_cntrl && ISCNTRL (ch)))
|
|
2431 SET_EITHER_BIT (ch);
|
|
2432 if ( (is_digit && ISDIGIT (ch))
|
|
2433 || (is_graph && ISGRAPH (ch))
|
|
2434 || (is_lower && ISLOWER (ch))
|
|
2435 || (is_print && ISPRINT (ch)))
|
|
2436 SET_EITHER_BIT (ch);
|
|
2437 if ( (is_punct && ISPUNCT (ch))
|
|
2438 || (is_space && ISSPACE (ch))
|
|
2439 || (is_upper && ISUPPER (ch))
|
|
2440 || (is_xdigit && ISXDIGIT (ch)))
|
|
2441 SET_EITHER_BIT (ch);
|
|
2442 }
|
|
2443 had_char_class = true;
|
|
2444 }
|
|
2445 else
|
|
2446 {
|
|
2447 c1++;
|
183
|
2448 while (c1--)
|
0
|
2449 PATUNFETCH;
|
|
2450 SET_EITHER_BIT ('[');
|
|
2451 SET_EITHER_BIT (':');
|
|
2452 had_char_class = false;
|
|
2453 }
|
|
2454 }
|
|
2455 else
|
|
2456 {
|
|
2457 had_char_class = false;
|
|
2458 SET_EITHER_BIT (c);
|
|
2459 }
|
|
2460 }
|
|
2461
|
70
|
2462 #ifdef MULE
|
|
2463 if (has_extended_chars)
|
|
2464 {
|
|
2465 /* We have a range table, not a bit vector. */
|
|
2466 int bytes_needed =
|
|
2467 unified_range_table_bytes_needed (rtab);
|
|
2468 GET_BUFFER_SPACE (bytes_needed);
|
|
2469 unified_range_table_copy_data (rtab, b);
|
|
2470 b += unified_range_table_bytes_used (b);
|
|
2471 break;
|
|
2472 }
|
|
2473 #endif /* MULE */
|
0
|
2474 /* Discard any (non)matching list bytes that are all 0 at the
|
|
2475 end of the map. Decrease the map-length byte too. */
|
183
|
2476 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
|
|
2477 b[-1]--;
|
0
|
2478 b += b[-1];
|
|
2479 }
|
|
2480 break;
|
|
2481
|
|
2482
|
|
2483 case '(':
|
|
2484 if (syntax & RE_NO_BK_PARENS)
|
|
2485 goto handle_open;
|
|
2486 else
|
|
2487 goto normal_char;
|
|
2488
|
|
2489
|
|
2490 case ')':
|
|
2491 if (syntax & RE_NO_BK_PARENS)
|
|
2492 goto handle_close;
|
|
2493 else
|
|
2494 goto normal_char;
|
|
2495
|
|
2496
|
|
2497 case '\n':
|
|
2498 if (syntax & RE_NEWLINE_ALT)
|
|
2499 goto handle_alt;
|
|
2500 else
|
|
2501 goto normal_char;
|
|
2502
|
|
2503
|
|
2504 case '|':
|
|
2505 if (syntax & RE_NO_BK_VBAR)
|
|
2506 goto handle_alt;
|
|
2507 else
|
|
2508 goto normal_char;
|
|
2509
|
|
2510
|
|
2511 case '{':
|
|
2512 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
|
|
2513 goto handle_interval;
|
|
2514 else
|
|
2515 goto normal_char;
|
|
2516
|
|
2517
|
|
2518 case '\\':
|
|
2519 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
|
|
2520
|
|
2521 /* Do not translate the character after the \, so that we can
|
|
2522 distinguish, e.g., \B from \b, even if we normally would
|
|
2523 translate, e.g., B to b. */
|
|
2524 PATFETCH_RAW (c);
|
|
2525
|
|
2526 switch (c)
|
|
2527 {
|
|
2528 case '(':
|
|
2529 if (syntax & RE_NO_BK_PARENS)
|
|
2530 goto normal_backslash;
|
|
2531
|
|
2532 handle_open:
|
185
|
2533 {
|
|
2534 regnum_t r;
|
|
2535
|
|
2536 if (!(syntax & RE_NO_SHY_GROUPS)
|
|
2537 && p != pend
|
|
2538 && TRANSLATE(*p) == TRANSLATE('?'))
|
|
2539 {
|
|
2540 p++;
|
|
2541 PATFETCH(c);
|
|
2542 switch (c)
|
|
2543 {
|
|
2544 case ':': /* shy groups */
|
|
2545 r = MAX_REGNUM + 1;
|
|
2546 break;
|
|
2547
|
|
2548 /* All others are reserved for future constructs. */
|
|
2549 default:
|
|
2550 FREE_STACK_RETURN (REG_BADPAT);
|
|
2551 }
|
|
2552 }
|
|
2553 else
|
|
2554 {
|
|
2555 bufp->re_nsub++;
|
|
2556 r = ++regnum;
|
|
2557 }
|
|
2558
|
|
2559 if (COMPILE_STACK_FULL)
|
|
2560 {
|
|
2561 RETALLOC (compile_stack.stack, compile_stack.size << 1,
|
|
2562 compile_stack_elt_t);
|
|
2563 if (compile_stack.stack == NULL) return REG_ESPACE;
|
|
2564
|
|
2565 compile_stack.size <<= 1;
|
|
2566 }
|
|
2567
|
|
2568 /* These are the values to restore when we hit end of this
|
|
2569 group. They are all relative offsets, so that if the
|
|
2570 whole pattern moves because of realloc, they will still
|
|
2571 be valid. */
|
|
2572 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
|
|
2573 COMPILE_STACK_TOP.fixup_alt_jump
|
|
2574 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
|
|
2575 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
|
|
2576 COMPILE_STACK_TOP.regnum = r;
|
|
2577
|
|
2578 /* We will eventually replace the 0 with the number of
|
|
2579 groups inner to this one. But do not push a
|
|
2580 start_memory for groups beyond the last one we can
|
|
2581 represent in the compiled pattern. */
|
|
2582 if (r <= MAX_REGNUM)
|
|
2583 {
|
|
2584 COMPILE_STACK_TOP.inner_group_offset
|
|
2585 = b - bufp->buffer + 2;
|
|
2586 BUF_PUSH_3 (start_memory, r, 0);
|
|
2587 }
|
|
2588
|
|
2589 compile_stack.avail++;
|
|
2590
|
|
2591 fixup_alt_jump = 0;
|
|
2592 laststart = 0;
|
|
2593 begalt = b;
|
|
2594 /* If we've reached MAX_REGNUM groups, then this open
|
|
2595 won't actually generate any code, so we'll have to
|
|
2596 clear pending_exact explicitly. */
|
|
2597 pending_exact = 0;
|
|
2598 }
|
0
|
2599 break;
|
|
2600
|
|
2601
|
|
2602 case ')':
|
|
2603 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
|
|
2604
|
233
|
2605 if (COMPILE_STACK_EMPTY) {
|
0
|
2606 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
|
|
2607 goto normal_backslash;
|
|
2608 else
|
|
2609 FREE_STACK_RETURN (REG_ERPAREN);
|
233
|
2610 }
|
0
|
2611
|
|
2612 handle_close:
|
|
2613 if (fixup_alt_jump)
|
|
2614 { /* Push a dummy failure point at the end of the
|
|
2615 alternative for a possible future
|
|
2616 `pop_failure_jump' to pop. See comments at
|
|
2617 `push_dummy_failure' in `re_match_2'. */
|
|
2618 BUF_PUSH (push_dummy_failure);
|
183
|
2619
|
0
|
2620 /* We allocated space for this jump when we assigned
|
|
2621 to `fixup_alt_jump', in the `handle_alt' case below. */
|
|
2622 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
|
|
2623 }
|
|
2624
|
|
2625 /* See similar code for backslashed left paren above. */
|
233
|
2626 if (COMPILE_STACK_EMPTY) {
|
0
|
2627 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
|
|
2628 goto normal_char;
|
|
2629 else
|
|
2630 FREE_STACK_RETURN (REG_ERPAREN);
|
233
|
2631 }
|
0
|
2632
|
|
2633 /* Since we just checked for an empty stack above, this
|
|
2634 ``can't happen''. */
|
|
2635 assert (compile_stack.avail != 0);
|
|
2636 {
|
|
2637 /* We don't just want to restore into `regnum', because
|
|
2638 later groups should continue to be numbered higher,
|
|
2639 as in `(ab)c(de)' -- the second group is #2. */
|
|
2640 regnum_t this_group_regnum;
|
|
2641
|
183
|
2642 compile_stack.avail--;
|
0
|
2643 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
|
|
2644 fixup_alt_jump
|
|
2645 = COMPILE_STACK_TOP.fixup_alt_jump
|
183
|
2646 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
|
0
|
2647 : 0;
|
|
2648 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
|
|
2649 this_group_regnum = COMPILE_STACK_TOP.regnum;
|
|
2650 /* If we've reached MAX_REGNUM groups, then this open
|
|
2651 won't actually generate any code, so we'll have to
|
|
2652 clear pending_exact explicitly. */
|
|
2653 pending_exact = 0;
|
|
2654
|
|
2655 /* We're at the end of the group, so now we know how many
|
|
2656 groups were inside this one. */
|
|
2657 if (this_group_regnum <= MAX_REGNUM)
|
|
2658 {
|
|
2659 unsigned char *inner_group_loc
|
|
2660 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
|
183
|
2661
|
0
|
2662 *inner_group_loc = regnum - this_group_regnum;
|
|
2663 BUF_PUSH_3 (stop_memory, this_group_regnum,
|
|
2664 regnum - this_group_regnum);
|
|
2665 }
|
|
2666 }
|
|
2667 break;
|
|
2668
|
|
2669
|
|
2670 case '|': /* `\|'. */
|
|
2671 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
|
|
2672 goto normal_backslash;
|
|
2673 handle_alt:
|
|
2674 if (syntax & RE_LIMITED_OPS)
|
|
2675 goto normal_char;
|
|
2676
|
|
2677 /* Insert before the previous alternative a jump which
|
|
2678 jumps to this alternative if the former fails. */
|
|
2679 GET_BUFFER_SPACE (3);
|
|
2680 INSERT_JUMP (on_failure_jump, begalt, b + 6);
|
|
2681 pending_exact = 0;
|
|
2682 b += 3;
|
|
2683
|
|
2684 /* The alternative before this one has a jump after it
|
|
2685 which gets executed if it gets matched. Adjust that
|
|
2686 jump so it will jump to this alternative's analogous
|
|
2687 jump (put in below, which in turn will jump to the next
|
|
2688 (if any) alternative's such jump, etc.). The last such
|
|
2689 jump jumps to the correct final destination. A picture:
|
183
|
2690 _____ _____
|
|
2691 | | | |
|
|
2692 | v | v
|
|
2693 a | b | c
|
0
|
2694
|
|
2695 If we are at `b', then fixup_alt_jump right now points to a
|
|
2696 three-byte space after `a'. We'll put in the jump, set
|
|
2697 fixup_alt_jump to right after `b', and leave behind three
|
|
2698 bytes which we'll fill in when we get to after `c'. */
|
|
2699
|
|
2700 if (fixup_alt_jump)
|
|
2701 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
|
|
2702
|
|
2703 /* Mark and leave space for a jump after this alternative,
|
|
2704 to be filled in later either by next alternative or
|
|
2705 when know we're at the end of a series of alternatives. */
|
|
2706 fixup_alt_jump = b;
|
|
2707 GET_BUFFER_SPACE (3);
|
|
2708 b += 3;
|
|
2709
|
|
2710 laststart = 0;
|
|
2711 begalt = b;
|
|
2712 break;
|
|
2713
|
|
2714
|
183
|
2715 case '{':
|
0
|
2716 /* If \{ is a literal. */
|
|
2717 if (!(syntax & RE_INTERVALS)
|
183
|
2718 /* If we're at `\{' and it's not the open-interval
|
0
|
2719 operator. */
|
|
2720 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
|
|
2721 || (p - 2 == pattern && p == pend))
|
|
2722 goto normal_backslash;
|
|
2723
|
|
2724 handle_interval:
|
|
2725 {
|
|
2726 /* If got here, then the syntax allows intervals. */
|
|
2727
|
|
2728 /* At least (most) this many matches must be made. */
|
|
2729 int lower_bound = -1, upper_bound = -1;
|
|
2730
|
|
2731 beg_interval = p - 1;
|
|
2732
|
|
2733 if (p == pend)
|
|
2734 {
|
|
2735 if (syntax & RE_NO_BK_BRACES)
|
|
2736 goto unfetch_interval;
|
|
2737 else
|
|
2738 FREE_STACK_RETURN (REG_EBRACE);
|
|
2739 }
|
|
2740
|
|
2741 GET_UNSIGNED_NUMBER (lower_bound);
|
|
2742
|
|
2743 if (c == ',')
|
|
2744 {
|
|
2745 GET_UNSIGNED_NUMBER (upper_bound);
|
|
2746 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
|
|
2747 }
|
|
2748 else
|
|
2749 /* Interval such as `{1}' => match exactly once. */
|
|
2750 upper_bound = lower_bound;
|
|
2751
|
|
2752 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
|
|
2753 || lower_bound > upper_bound)
|
|
2754 {
|
|
2755 if (syntax & RE_NO_BK_BRACES)
|
|
2756 goto unfetch_interval;
|
183
|
2757 else
|
0
|
2758 FREE_STACK_RETURN (REG_BADBR);
|
|
2759 }
|
|
2760
|
183
|
2761 if (!(syntax & RE_NO_BK_BRACES))
|
0
|
2762 {
|
|
2763 if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
|
|
2764
|
|
2765 PATFETCH (c);
|
|
2766 }
|
|
2767
|
|
2768 if (c != '}')
|
|
2769 {
|
|
2770 if (syntax & RE_NO_BK_BRACES)
|
|
2771 goto unfetch_interval;
|
183
|
2772 else
|
0
|
2773 FREE_STACK_RETURN (REG_BADBR);
|
|
2774 }
|
|
2775
|
|
2776 /* We just parsed a valid interval. */
|
|
2777
|
|
2778 /* If it's invalid to have no preceding re. */
|
|
2779 if (!laststart)
|
|
2780 {
|
|
2781 if (syntax & RE_CONTEXT_INVALID_OPS)
|
|
2782 FREE_STACK_RETURN (REG_BADRPT);
|
|
2783 else if (syntax & RE_CONTEXT_INDEP_OPS)
|
|
2784 laststart = b;
|
|
2785 else
|
|
2786 goto unfetch_interval;
|
|
2787 }
|
|
2788
|
|
2789 /* If the upper bound is zero, don't want to succeed at
|
|
2790 all; jump from `laststart' to `b + 3', which will be
|
|
2791 the end of the buffer after we insert the jump. */
|
|
2792 if (upper_bound == 0)
|
|
2793 {
|
|
2794 GET_BUFFER_SPACE (3);
|
|
2795 INSERT_JUMP (jump, laststart, b + 3);
|
|
2796 b += 3;
|
|
2797 }
|
|
2798
|
|
2799 /* Otherwise, we have a nontrivial interval. When
|
|
2800 we're all done, the pattern will look like:
|
|
2801 set_number_at <jump count> <upper bound>
|
|
2802 set_number_at <succeed_n count> <lower bound>
|
|
2803 succeed_n <after jump addr> <succeed_n count>
|
|
2804 <body of loop>
|
|
2805 jump_n <succeed_n addr> <jump count>
|
|
2806 (The upper bound and `jump_n' are omitted if
|
|
2807 `upper_bound' is 1, though.) */
|
183
|
2808 else
|
0
|
2809 { /* If the upper bound is > 1, we need to insert
|
|
2810 more at the end of the loop. */
|
|
2811 unsigned nbytes = 10 + (upper_bound > 1) * 10;
|
|
2812
|
|
2813 GET_BUFFER_SPACE (nbytes);
|
|
2814
|
|
2815 /* Initialize lower bound of the `succeed_n', even
|
|
2816 though it will be set during matching by its
|
|
2817 attendant `set_number_at' (inserted next),
|
|
2818 because `re_compile_fastmap' needs to know.
|
|
2819 Jump to the `jump_n' we might insert below. */
|
|
2820 INSERT_JUMP2 (succeed_n, laststart,
|
|
2821 b + 5 + (upper_bound > 1) * 5,
|
|
2822 lower_bound);
|
|
2823 b += 5;
|
|
2824
|
183
|
2825 /* Code to initialize the lower bound. Insert
|
0
|
2826 before the `succeed_n'. The `5' is the last two
|
|
2827 bytes of this `set_number_at', plus 3 bytes of
|
|
2828 the following `succeed_n'. */
|
|
2829 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
|
|
2830 b += 5;
|
|
2831
|
|
2832 if (upper_bound > 1)
|
|
2833 { /* More than one repetition is allowed, so
|
|
2834 append a backward jump to the `succeed_n'
|
|
2835 that starts this interval.
|
183
|
2836
|
0
|
2837 When we've reached this during matching,
|
|
2838 we'll have matched the interval once, so
|
|
2839 jump back only `upper_bound - 1' times. */
|
|
2840 STORE_JUMP2 (jump_n, b, laststart + 5,
|
|
2841 upper_bound - 1);
|
|
2842 b += 5;
|
|
2843
|
|
2844 /* The location we want to set is the second
|
|
2845 parameter of the `jump_n'; that is `b-2' as
|
|
2846 an absolute address. `laststart' will be
|
|
2847 the `set_number_at' we're about to insert;
|
|
2848 `laststart+3' the number to set, the source
|
|
2849 for the relative address. But we are
|
|
2850 inserting into the middle of the pattern --
|
|
2851 so everything is getting moved up by 5.
|
|
2852 Conclusion: (b - 2) - (laststart + 3) + 5,
|
|
2853 i.e., b - laststart.
|
183
|
2854
|
0
|
2855 We insert this at the beginning of the loop
|
|
2856 so that if we fail during matching, we'll
|
|
2857 reinitialize the bounds. */
|
|
2858 insert_op2 (set_number_at, laststart, b - laststart,
|
|
2859 upper_bound - 1, b);
|
|
2860 b += 5;
|
|
2861 }
|
|
2862 }
|
|
2863 pending_exact = 0;
|
|
2864 beg_interval = NULL;
|
|
2865 }
|
|
2866 break;
|
|
2867
|
|
2868 unfetch_interval:
|
|
2869 /* If an invalid interval, match the characters as literals. */
|
|
2870 assert (beg_interval);
|
|
2871 p = beg_interval;
|
|
2872 beg_interval = NULL;
|
|
2873
|
|
2874 /* normal_char and normal_backslash need `c'. */
|
183
|
2875 PATFETCH (c);
|
0
|
2876
|
|
2877 if (!(syntax & RE_NO_BK_BRACES))
|
|
2878 {
|
|
2879 if (p > pattern && p[-1] == '\\')
|
|
2880 goto normal_backslash;
|
|
2881 }
|
|
2882 goto normal_char;
|
|
2883
|
|
2884 #ifdef emacs
|
|
2885 /* There is no way to specify the before_dot and after_dot
|
|
2886 operators. rms says this is ok. --karl */
|
|
2887 case '=':
|
|
2888 BUF_PUSH (at_dot);
|
|
2889 break;
|
|
2890
|
183
|
2891 case 's':
|
0
|
2892 laststart = b;
|
|
2893 PATFETCH (c);
|
|
2894 /* XEmacs addition */
|
|
2895 if (c >= 0x80 || syntax_spec_code[c] == 0377)
|
|
2896 FREE_STACK_RETURN (REG_ESYNTAX);
|
|
2897 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
|
|
2898 break;
|
|
2899
|
|
2900 case 'S':
|
|
2901 laststart = b;
|
|
2902 PATFETCH (c);
|
|
2903 /* XEmacs addition */
|
|
2904 if (c >= 0x80 || syntax_spec_code[c] == 0377)
|
|
2905 FREE_STACK_RETURN (REG_ESYNTAX);
|
|
2906 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
|
|
2907 break;
|
104
|
2908
|
|
2909 #ifdef MULE
|
|
2910 /* 97.2.17 jhod merged in to XEmacs from mule-2.3 */
|
183
|
2911 case 'c':
|
104
|
2912 laststart = b;
|
|
2913 PATFETCH_RAW (c);
|
|
2914 if (c < 32 || c > 127)
|
|
2915 FREE_STACK_RETURN (REG_ECATEGORY);
|
|
2916 BUF_PUSH_2 (categoryspec, c);
|
|
2917 break;
|
|
2918
|
|
2919 case 'C':
|
|
2920 laststart = b;
|
|
2921 PATFETCH_RAW (c);
|
|
2922 if (c < 32 || c > 127)
|
|
2923 FREE_STACK_RETURN (REG_ECATEGORY);
|
|
2924 BUF_PUSH_2 (notcategoryspec, c);
|
|
2925 break;
|
|
2926 /* end of category patch */
|
|
2927 #endif /* MULE */
|
0
|
2928 #endif /* emacs */
|
|
2929
|
|
2930
|
|
2931 case 'w':
|
|
2932 laststart = b;
|
|
2933 BUF_PUSH (wordchar);
|
|
2934 break;
|
|
2935
|
|
2936
|
|
2937 case 'W':
|
|
2938 laststart = b;
|
|
2939 BUF_PUSH (notwordchar);
|
|
2940 break;
|
|
2941
|
|
2942
|
|
2943 case '<':
|
|
2944 BUF_PUSH (wordbeg);
|
|
2945 break;
|
|
2946
|
|
2947 case '>':
|
|
2948 BUF_PUSH (wordend);
|
|
2949 break;
|
|
2950
|
|
2951 case 'b':
|
|
2952 BUF_PUSH (wordbound);
|
|
2953 break;
|
|
2954
|
|
2955 case 'B':
|
|
2956 BUF_PUSH (notwordbound);
|
|
2957 break;
|
|
2958
|
|
2959 case '`':
|
|
2960 BUF_PUSH (begbuf);
|
|
2961 break;
|
|
2962
|
|
2963 case '\'':
|
|
2964 BUF_PUSH (endbuf);
|
|
2965 break;
|
|
2966
|
|
2967 case '1': case '2': case '3': case '4': case '5':
|
|
2968 case '6': case '7': case '8': case '9':
|
|
2969 if (syntax & RE_NO_BK_REFS)
|
|
2970 goto normal_char;
|
|
2971
|
|
2972 c1 = c - '0';
|
|
2973
|
|
2974 if (c1 > regnum)
|
|
2975 FREE_STACK_RETURN (REG_ESUBREG);
|
|
2976
|
|
2977 /* Can't back reference to a subexpression if inside of it. */
|
|
2978 if (group_in_compile_stack (compile_stack, c1))
|
|
2979 goto normal_char;
|
|
2980
|
|
2981 laststart = b;
|
|
2982 BUF_PUSH_2 (duplicate, c1);
|
|
2983 break;
|
|
2984
|
|
2985
|
|
2986 case '+':
|
|
2987 case '?':
|
|
2988 if (syntax & RE_BK_PLUS_QM)
|
|
2989 goto handle_plus;
|
|
2990 else
|
|
2991 goto normal_backslash;
|
|
2992
|
|
2993 default:
|
|
2994 normal_backslash:
|
|
2995 /* You might think it would be useful for \ to mean
|
2
|
2996 not to translate; but if we don't translate it,
|
0
|
2997 it will never match anything. */
|
|
2998 c = TRANSLATE (c);
|
|
2999 goto normal_char;
|
|
3000 }
|
|
3001 break;
|
|
3002
|
|
3003
|
|
3004 default:
|
|
3005 /* Expects the character in `c'. */
|
|
3006 /* `p' points to the location after where `c' came from. */
|
|
3007 normal_char:
|
|
3008 {
|
|
3009 /* XEmacs: modifications here for Mule. */
|
|
3010 /* `q' points to the beginning of the next char. */
|
|
3011 CONST char *q = p - 1;
|
|
3012 INC_CHARPTR (q);
|
|
3013
|
|
3014 /* If no exactn currently being built. */
|
183
|
3015 if (!pending_exact
|
0
|
3016
|
|
3017 /* If last exactn not at current position. */
|
|
3018 || pending_exact + *pending_exact + 1 != b
|
183
|
3019
|
0
|
3020 /* We have only one byte following the exactn for the count. */
|
|
3021 || ((unsigned int) (*pending_exact + (q - p)) >=
|
|
3022 ((unsigned int) (1 << BYTEWIDTH) - 1))
|
|
3023
|
|
3024 /* If followed by a repetition operator. */
|
|
3025 || *q == '*' || *q == '^'
|
|
3026 || ((syntax & RE_BK_PLUS_QM)
|
|
3027 ? *q == '\\' && (q[1] == '+' || q[1] == '?')
|
|
3028 : (*q == '+' || *q == '?'))
|
|
3029 || ((syntax & RE_INTERVALS)
|
|
3030 && ((syntax & RE_NO_BK_BRACES)
|
|
3031 ? *q == '{'
|
|
3032 : (q[0] == '\\' && q[1] == '{'))))
|
|
3033 {
|
|
3034 /* Start building a new exactn. */
|
183
|
3035
|
0
|
3036 laststart = b;
|
|
3037
|
|
3038 BUF_PUSH_2 (exactn, 0);
|
|
3039 pending_exact = b - 1;
|
|
3040 }
|
183
|
3041
|
0
|
3042 BUF_PUSH (c);
|
|
3043 (*pending_exact)++;
|
|
3044
|
|
3045 while (p < q)
|
|
3046 {
|
|
3047 PATFETCH (c);
|
|
3048 BUF_PUSH (c);
|
|
3049 (*pending_exact)++;
|
|
3050 }
|
|
3051 break;
|
|
3052 }
|
|
3053 } /* switch (c) */
|
|
3054 } /* while p != pend */
|
|
3055
|
183
|
3056
|
0
|
3057 /* Through the pattern now. */
|
183
|
3058
|
0
|
3059 if (fixup_alt_jump)
|
|
3060 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
|
|
3061
|
183
|
3062 if (!COMPILE_STACK_EMPTY)
|
0
|
3063 FREE_STACK_RETURN (REG_EPAREN);
|
|
3064
|
|
3065 /* If we don't want backtracking, force success
|
|
3066 the first time we reach the end of the compiled pattern. */
|
|
3067 if (syntax & RE_NO_POSIX_BACKTRACKING)
|
|
3068 BUF_PUSH (succeed);
|
|
3069
|
|
3070 free (compile_stack.stack);
|
|
3071
|
|
3072 /* We have succeeded; set the length of the buffer. */
|
|
3073 bufp->used = b - bufp->buffer;
|
|
3074
|
|
3075 #ifdef DEBUG
|
|
3076 if (debug)
|
|
3077 {
|
|
3078 DEBUG_PRINT1 ("\nCompiled pattern: \n");
|
|
3079 print_compiled_pattern (bufp);
|
|
3080 }
|
|
3081 #endif /* DEBUG */
|
|
3082
|
|
3083 #ifndef MATCH_MAY_ALLOCATE
|
|
3084 /* Initialize the failure stack to the largest possible stack. This
|
|
3085 isn't necessary unless we're trying to avoid calling alloca in
|
|
3086 the search and match routines. */
|
|
3087 {
|
|
3088 int num_regs = bufp->re_nsub + 1;
|
|
3089
|
|
3090 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
|
|
3091 is strictly greater than re_max_failures, the largest possible stack
|
|
3092 is 2 * re_max_failures failure points. */
|
|
3093 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
|
|
3094 {
|
|
3095 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
|
|
3096
|
|
3097 #ifdef emacs
|
|
3098 if (! fail_stack.stack)
|
|
3099 fail_stack.stack
|
183
|
3100 = (fail_stack_elt_t *) xmalloc (fail_stack.size
|
0
|
3101 * sizeof (fail_stack_elt_t));
|
|
3102 else
|
|
3103 fail_stack.stack
|
|
3104 = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
|
|
3105 (fail_stack.size
|
|
3106 * sizeof (fail_stack_elt_t)));
|
|
3107 #else /* not emacs */
|
|
3108 if (! fail_stack.stack)
|
|
3109 fail_stack.stack
|
183
|
3110 = (fail_stack_elt_t *) malloc (fail_stack.size
|
0
|
3111 * sizeof (fail_stack_elt_t));
|
|
3112 else
|
|
3113 fail_stack.stack
|
|
3114 = (fail_stack_elt_t *) realloc (fail_stack.stack,
|
|
3115 (fail_stack.size
|
|
3116 * sizeof (fail_stack_elt_t)));
|
|
3117 #endif /* not emacs */
|
|
3118 }
|
|
3119
|
|
3120 regex_grow_registers (num_regs);
|
|
3121 }
|
|
3122 #endif /* not MATCH_MAY_ALLOCATE */
|
|
3123
|
|
3124 return REG_NOERROR;
|
|
3125 } /* regex_compile */
|
|
3126
|
|
3127 /* Subroutines for `regex_compile'. */
|
|
3128
|
|
3129 /* Store OP at LOC followed by two-byte integer parameter ARG. */
|
|
3130
|
|
3131 static void
|
|
3132 store_op1 (re_opcode_t op, unsigned char *loc, int arg)
|
|
3133 {
|
|
3134 *loc = (unsigned char) op;
|
|
3135 STORE_NUMBER (loc + 1, arg);
|
|
3136 }
|
|
3137
|
|
3138
|
|
3139 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
|
|
3140
|
|
3141 static void
|
|
3142 store_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2)
|
|
3143 {
|
|
3144 *loc = (unsigned char) op;
|
|
3145 STORE_NUMBER (loc + 1, arg1);
|
|
3146 STORE_NUMBER (loc + 3, arg2);
|
|
3147 }
|
|
3148
|
|
3149
|
|
3150 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
|
|
3151 for OP followed by two-byte integer parameter ARG. */
|
|
3152
|
|
3153 static void
|
|
3154 insert_op1 (re_opcode_t op, unsigned char *loc, int arg, unsigned char *end)
|
|
3155 {
|
203
|
3156 REGISTER unsigned char *pfrom = end;
|
|
3157 REGISTER unsigned char *pto = end + 3;
|
0
|
3158
|
|
3159 while (pfrom != loc)
|
|
3160 *--pto = *--pfrom;
|
183
|
3161
|
0
|
3162 store_op1 (op, loc, arg);
|
|
3163 }
|
|
3164
|
|
3165
|
|
3166 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
|
|
3167
|
|
3168 static void
|
|
3169 insert_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2,
|
183
|
3170 unsigned char *end)
|
0
|
3171 {
|
203
|
3172 REGISTER unsigned char *pfrom = end;
|
|
3173 REGISTER unsigned char *pto = end + 5;
|
0
|
3174
|
|
3175 while (pfrom != loc)
|
|
3176 *--pto = *--pfrom;
|
183
|
3177
|
0
|
3178 store_op2 (op, loc, arg1, arg2);
|
|
3179 }
|
|
3180
|
|
3181
|
|
3182 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
|
|
3183 after an alternative or a begin-subexpression. We assume there is at
|
|
3184 least one character before the ^. */
|
|
3185
|
|
3186 static boolean
|
|
3187 at_begline_loc_p (CONST char *pattern, CONST char *p, reg_syntax_t syntax)
|
|
3188 {
|
|
3189 CONST char *prev = p - 2;
|
|
3190 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
|
183
|
3191
|
0
|
3192 return
|
|
3193 /* After a subexpression? */
|
|
3194 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
|
|
3195 /* After an alternative? */
|
|
3196 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
|
|
3197 }
|
|
3198
|
|
3199
|
|
3200 /* The dual of at_begline_loc_p. This one is for $. We assume there is
|
|
3201 at least one character after the $, i.e., `P < PEND'. */
|
|
3202
|
|
3203 static boolean
|
|
3204 at_endline_loc_p (CONST char *p, CONST char *pend, int syntax)
|
|
3205 {
|
|
3206 CONST char *next = p;
|
|
3207 boolean next_backslash = *next == '\\';
|
|
3208 CONST char *next_next = p + 1 < pend ? p + 1 : 0;
|
183
|
3209
|
0
|
3210 return
|
|
3211 /* Before a subexpression? */
|
|
3212 (syntax & RE_NO_BK_PARENS ? *next == ')'
|
|
3213 : next_backslash && next_next && *next_next == ')')
|
|
3214 /* Before an alternative? */
|
|
3215 || (syntax & RE_NO_BK_VBAR ? *next == '|'
|
|
3216 : next_backslash && next_next && *next_next == '|');
|
|
3217 }
|
|
3218
|
|
3219
|
183
|
3220 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
|
0
|
3221 false if it's not. */
|
|
3222
|
|
3223 static boolean
|
|
3224 group_in_compile_stack (compile_stack_type compile_stack, regnum_t regnum)
|
|
3225 {
|
|
3226 int this_element;
|
|
3227
|
183
|
3228 for (this_element = compile_stack.avail - 1;
|
|
3229 this_element >= 0;
|
0
|
3230 this_element--)
|
|
3231 if (compile_stack.stack[this_element].regnum == regnum)
|
|
3232 return true;
|
|
3233
|
|
3234 return false;
|
|
3235 }
|
|
3236
|
|
3237
|
|
3238 /* Read the ending character of a range (in a bracket expression) from the
|
|
3239 uncompiled pattern *P_PTR (which ends at PEND). We assume the
|
|
3240 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
|
|
3241 Then we set the translation of all bits between the starting and
|
|
3242 ending characters (inclusive) in the compiled pattern B.
|
183
|
3243
|
0
|
3244 Return an error code.
|
183
|
3245
|
0
|
3246 We use these short variable names so we can use the same macros as
|
|
3247 `regex_compile' itself. */
|
|
3248
|
|
3249 static reg_errcode_t
|
|
3250 compile_range (CONST char **p_ptr, CONST char *pend, char *translate,
|
|
3251 reg_syntax_t syntax, unsigned char *b)
|
|
3252 {
|
|
3253 unsigned this_char;
|
|
3254
|
|
3255 CONST char *p = *p_ptr;
|
|
3256 int range_start, range_end;
|
183
|
3257
|
0
|
3258 if (p == pend)
|
|
3259 return REG_ERANGE;
|
|
3260
|
|
3261 /* Even though the pattern is a signed `char *', we need to fetch
|
|
3262 with unsigned char *'s; if the high bit of the pattern character
|
|
3263 is set, the range endpoints will be negative if we fetch using a
|
|
3264 signed char *.
|
|
3265
|
183
|
3266 We also want to fetch the endpoints without translating them; the
|
0
|
3267 appropriate translation is done in the bit-setting loop below. */
|
|
3268 /* The SVR4 compiler on the 3B2 had trouble with unsigned CONST char *. */
|
|
3269 range_start = ((CONST unsigned char *) p)[-2];
|
|
3270 range_end = ((CONST unsigned char *) p)[0];
|
|
3271
|
|
3272 /* Have to increment the pointer into the pattern string, so the
|
|
3273 caller isn't still at the ending character. */
|
|
3274 (*p_ptr)++;
|
|
3275
|
|
3276 /* If the start is after the end, the range is empty. */
|
|
3277 if (range_start > range_end)
|
|
3278 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
|
|
3279
|
|
3280 /* Here we see why `this_char' has to be larger than an `unsigned
|
|
3281 char' -- the range is inclusive, so if `range_end' == 0xff
|
|
3282 (assuming 8-bit characters), we would otherwise go into an infinite
|
|
3283 loop, since all characters <= 0xff. */
|
|
3284 for (this_char = range_start; this_char <= range_end; this_char++)
|
|
3285 {
|
|
3286 SET_LIST_BIT (TRANSLATE (this_char));
|
|
3287 }
|
183
|
3288
|
0
|
3289 return REG_NOERROR;
|
|
3290 }
|
70
|
3291
|
|
3292 #ifdef MULE
|
|
3293
|
|
3294 static reg_errcode_t
|
|
3295 compile_extended_range (CONST char **p_ptr, CONST char *pend, char *translate,
|
|
3296 reg_syntax_t syntax, Lisp_Object rtab)
|
|
3297 {
|
157
|
3298 Emchar this_char, range_start, range_end;
|
|
3299 CONST Bufbyte *p;
|
183
|
3300
|
157
|
3301 if (*p_ptr == pend)
|
70
|
3302 return REG_ERANGE;
|
|
3303
|
157
|
3304 p = (CONST Bufbyte *) *p_ptr;
|
|
3305 range_end = charptr_emchar (p);
|
70
|
3306 p--; /* back to '-' */
|
|
3307 DEC_CHARPTR (p); /* back to start of range */
|
183
|
3308 /* We also want to fetch the endpoints without translating them; the
|
70
|
3309 appropriate translation is done in the bit-setting loop below. */
|
157
|
3310 range_start = charptr_emchar (p);
|
70
|
3311 INC_CHARPTR (*p_ptr);
|
|
3312
|
|
3313 /* If the start is after the end, the range is empty. */
|
|
3314 if (range_start > range_end)
|
|
3315 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
|
|
3316
|
|
3317 /* Can't have ranges spanning different charsets, except maybe for
|
|
3318 ranges entirely witin the first 256 chars. */
|
183
|
3319
|
70
|
3320 if ((range_start >= 0x100 || range_end >= 0x100)
|
|
3321 && CHAR_LEADING_BYTE (range_start) !=
|
|
3322 CHAR_LEADING_BYTE (range_end))
|
|
3323 return REG_ERANGESPAN;
|
|
3324
|
|
3325 /* As advertised, translations only work over the 0 - 0x7F range.
|
|
3326 Making this kind of stuff work generally is much harder.
|
|
3327 Iterating over the whole range like this would be way efficient
|
|
3328 if the range encompasses 10,000 chars or something. You'd have
|
|
3329 to do something like this:
|
|
3330
|
|
3331 range_table a;
|
|
3332 range_table b;
|
|
3333 map over translation table in [range_start, range_end] of
|
|
3334 (put the mapped range in a;
|
|
3335 put the translation in b)
|
|
3336 invert the range in a and truncate to [range_start, range_end]
|
|
3337 compute the union of a, b
|
|
3338 union the result into rtab
|
|
3339 */
|
|
3340 for (this_char = range_start;
|
|
3341 this_char <= range_end && this_char < 0x80; this_char++)
|
|
3342 {
|
|
3343 SET_RANGETAB_BIT (TRANSLATE (this_char));
|
|
3344 }
|
|
3345
|
|
3346 if (this_char <= range_end)
|
|
3347 put_range_table (rtab, this_char, range_end, Qt);
|
183
|
3348
|
70
|
3349 return REG_NOERROR;
|
|
3350 }
|
|
3351
|
|
3352 #endif /* MULE */
|
0
|
3353
|
|
3354 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
|
|
3355 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
|
|
3356 characters can start a string that matches the pattern. This fastmap
|
|
3357 is used by re_search to skip quickly over impossible starting points.
|
|
3358
|
|
3359 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
|
|
3360 area as BUFP->fastmap.
|
183
|
3361
|
0
|
3362 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
|
|
3363 the pattern buffer.
|
|
3364
|
|
3365 Returns 0 if we succeed, -2 if an internal error. */
|
|
3366
|
|
3367 int
|
|
3368 re_compile_fastmap (struct re_pattern_buffer *bufp)
|
|
3369 {
|
|
3370 int j, k;
|
|
3371 #ifdef MATCH_MAY_ALLOCATE
|
|
3372 fail_stack_type fail_stack;
|
|
3373 #endif
|
|
3374 DECLARE_DESTINATION
|
|
3375 /* We don't push any register information onto the failure stack. */
|
183
|
3376
|
203
|
3377 REGISTER char *fastmap = bufp->fastmap;
|
0
|
3378 unsigned char *pattern = bufp->buffer;
|
|
3379 unsigned long size = bufp->used;
|
|
3380 unsigned char *p = pattern;
|
203
|
3381 REGISTER unsigned char *pend = pattern + size;
|
0
|
3382
|
|
3383 #ifdef REL_ALLOC
|
|
3384 /* This holds the pointer to the failure stack, when
|
|
3385 it is allocated relocatably. */
|
|
3386 fail_stack_elt_t *failure_stack_ptr;
|
|
3387 #endif
|
|
3388
|
|
3389 /* Assume that each path through the pattern can be null until
|
|
3390 proven otherwise. We set this false at the bottom of switch
|
|
3391 statement, to which we get only if a particular path doesn't
|
|
3392 match the empty string. */
|
|
3393 boolean path_can_be_null = true;
|
|
3394
|
|
3395 /* We aren't doing a `succeed_n' to begin with. */
|
|
3396 boolean succeed_n_p = false;
|
|
3397
|
|
3398 assert (fastmap != NULL && p != NULL);
|
183
|
3399
|
0
|
3400 INIT_FAIL_STACK ();
|
282
|
3401 memset (fastmap, 0, 1 << BYTEWIDTH); /* Assume nothing's valid. */
|
0
|
3402 bufp->fastmap_accurate = 1; /* It will be when we're done. */
|
|
3403 bufp->can_be_null = 0;
|
183
|
3404
|
0
|
3405 while (1)
|
|
3406 {
|
|
3407 if (p == pend || *p == succeed)
|
|
3408 {
|
|
3409 /* We have reached the (effective) end of pattern. */
|
|
3410 if (!FAIL_STACK_EMPTY ())
|
|
3411 {
|
|
3412 bufp->can_be_null |= path_can_be_null;
|
|
3413
|
|
3414 /* Reset for next path. */
|
|
3415 path_can_be_null = true;
|
|
3416
|
|
3417 p = fail_stack.stack[--fail_stack.avail].pointer;
|
|
3418
|
|
3419 continue;
|
|
3420 }
|
|
3421 else
|
|
3422 break;
|
|
3423 }
|
|
3424
|
|
3425 /* We should never be about to go beyond the end of the pattern. */
|
|
3426 assert (p < pend);
|
183
|
3427
|
0
|
3428 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
|
|
3429 {
|
|
3430
|
|
3431 /* I guess the idea here is to simply not bother with a fastmap
|
|
3432 if a backreference is used, since it's too hard to figure out
|
|
3433 the fastmap for the corresponding group. Setting
|
|
3434 `can_be_null' stops `re_search_2' from using the fastmap, so
|
|
3435 that is all we do. */
|
|
3436 case duplicate:
|
|
3437 bufp->can_be_null = 1;
|
|
3438 goto done;
|
|
3439
|
|
3440
|
|
3441 /* Following are the cases which match a character. These end
|
|
3442 with `break'. */
|
|
3443
|
|
3444 case exactn:
|
|
3445 fastmap[p[1]] = 1;
|
|
3446 break;
|
|
3447
|
|
3448
|
|
3449 case charset:
|
70
|
3450 /* XEmacs: Under Mule, these bit vectors will
|
|
3451 only contain values for characters below 0x80. */
|
0
|
3452 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
|
|
3453 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
|
|
3454 fastmap[j] = 1;
|
|
3455 break;
|
|
3456
|
|
3457
|
|
3458 case charset_not:
|
|
3459 /* Chars beyond end of map must be allowed. */
|
70
|
3460 #ifdef MULE
|
|
3461 for (j = *p * BYTEWIDTH; j < 0x80; j++)
|
|
3462 fastmap[j] = 1;
|
|
3463 /* And all extended characters must be allowed, too. */
|
|
3464 for (j = 0x80; j < 0xA0; j++)
|
|
3465 fastmap[j] = 1;
|
185
|
3466 #else /* ! MULE */
|
0
|
3467 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
|
|
3468 fastmap[j] = 1;
|
185
|
3469 #endif /* ! MULE */
|
0
|
3470
|
|
3471 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
|
|
3472 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
|
|
3473 fastmap[j] = 1;
|
|
3474 break;
|
|
3475
|
70
|
3476 #ifdef MULE
|
|
3477 case charset_mule:
|
|
3478 {
|
|
3479 int nentries;
|
|
3480 int i;
|
|
3481
|
|
3482 nentries = unified_range_table_nentries (p);
|
|
3483 for (i = 0; i < nentries; i++)
|
|
3484 {
|
|
3485 EMACS_INT first, last;
|
|
3486 Lisp_Object dummy_val;
|
|
3487 int jj;
|
|
3488 Bufbyte strr[MAX_EMCHAR_LEN];
|
|
3489
|
|
3490 unified_range_table_get_range (p, i, &first, &last,
|
|
3491 &dummy_val);
|
|
3492 for (jj = first; jj <= last && jj < 0x80; jj++)
|
|
3493 fastmap[jj] = 1;
|
|
3494 /* Ranges below 0x100 can span charsets, but there
|
|
3495 are only two (Control-1 and Latin-1), and
|
|
3496 either first or last has to be in them. */
|
|
3497 set_charptr_emchar (strr, first);
|
|
3498 fastmap[*strr] = 1;
|
|
3499 if (last < 0x100)
|
|
3500 {
|
|
3501 set_charptr_emchar (strr, last);
|
|
3502 fastmap[*strr] = 1;
|
|
3503 }
|
|
3504 }
|
|
3505 }
|
|
3506 break;
|
|
3507
|
|
3508 case charset_mule_not:
|
|
3509 {
|
|
3510 int nentries;
|
|
3511 int i;
|
|
3512
|
|
3513 nentries = unified_range_table_nentries (p);
|
|
3514 for (i = 0; i < nentries; i++)
|
|
3515 {
|
|
3516 EMACS_INT first, last;
|
|
3517 Lisp_Object dummy_val;
|
|
3518 int jj;
|
|
3519 int smallest_prev = 0;
|
|
3520
|
|
3521 unified_range_table_get_range (p, i, &first, &last,
|
|
3522 &dummy_val);
|
|
3523 for (jj = smallest_prev; jj < first && jj < 0x80; jj++)
|
|
3524 fastmap[jj] = 1;
|
|
3525 smallest_prev = last + 1;
|
|
3526 if (smallest_prev >= 0x80)
|
|
3527 break;
|
|
3528 }
|
|
3529 /* Calculating which leading bytes are actually allowed
|
|
3530 here is rather difficult, so we just punt and allow
|
|
3531 all of them. */
|
|
3532 for (i = 0x80; i < 0xA0; i++)
|
|
3533 fastmap[i] = 1;
|
|
3534 }
|
|
3535 break;
|
|
3536 #endif /* MULE */
|
|
3537
|
0
|
3538
|
|
3539 case wordchar:
|
|
3540 #ifdef emacs
|
|
3541 k = (int) Sword;
|
|
3542 goto matchsyntax;
|
|
3543 #else
|
|
3544 for (j = 0; j < (1 << BYTEWIDTH); j++)
|
70
|
3545 if (SYNTAX_UNSAFE
|
|
3546 (XCHAR_TABLE
|
|
3547 (regex_emacs_buffer->mirror_syntax_table), j) == Sword)
|
0
|
3548 fastmap[j] = 1;
|
|
3549 break;
|
|
3550 #endif
|
|
3551
|
|
3552
|
|
3553 case notwordchar:
|
|
3554 #ifdef emacs
|
|
3555 k = (int) Sword;
|
|
3556 goto matchnotsyntax;
|
|
3557 #else
|
|
3558 for (j = 0; j < (1 << BYTEWIDTH); j++)
|
70
|
3559 if (SYNTAX_UNSAFE
|
|
3560 (XCHAR_TABLE
|
|
3561 (regex_emacs_buffer->mirror_syntax_table), j) != Sword)
|
0
|
3562 fastmap[j] = 1;
|
|
3563 break;
|
|
3564 #endif
|
|
3565
|
|
3566
|
|
3567 case anychar:
|
|
3568 {
|
|
3569 int fastmap_newline = fastmap['\n'];
|
|
3570
|
|
3571 /* `.' matches anything ... */
|
70
|
3572 #ifdef MULE
|
|
3573 /* "anything" only includes bytes that can be the
|
|
3574 first byte of a character. */
|
|
3575 for (j = 0; j < 0xA0; j++)
|
|
3576 fastmap[j] = 1;
|
|
3577 #else
|
0
|
3578 for (j = 0; j < (1 << BYTEWIDTH); j++)
|
|
3579 fastmap[j] = 1;
|
70
|
3580 #endif
|
0
|
3581
|
|
3582 /* ... except perhaps newline. */
|
|
3583 if (!(bufp->syntax & RE_DOT_NEWLINE))
|
|
3584 fastmap['\n'] = fastmap_newline;
|
|
3585
|
|
3586 /* Return if we have already set `can_be_null'; if we have,
|
|
3587 then the fastmap is irrelevant. Something's wrong here. */
|
|
3588 else if (bufp->can_be_null)
|
|
3589 goto done;
|
|
3590
|
|
3591 /* Otherwise, have to check alternative paths. */
|
|
3592 break;
|
|
3593 }
|
|
3594
|
|
3595 #ifdef emacs
|
|
3596 case syntaxspec:
|
|
3597 k = *p++;
|
|
3598 matchsyntax:
|
70
|
3599 #ifdef MULE
|
|
3600 for (j = 0; j < 0x80; j++)
|
|
3601 if (SYNTAX_UNSAFE
|
|
3602 (XCHAR_TABLE
|
|
3603 (regex_emacs_buffer->mirror_syntax_table), j) ==
|
0
|
3604 (enum syntaxcode) k)
|
|
3605 fastmap[j] = 1;
|
70
|
3606 for (j = 0x80; j < 0xA0; j++)
|
|
3607 {
|
183
|
3608 if (LEADING_BYTE_PREFIX_P(j))
|
70
|
3609 /* too complicated to calculate this right */
|
|
3610 fastmap[j] = 1;
|
|
3611 else
|
|
3612 {
|
|
3613 int multi_p;
|
|
3614 Lisp_Object cset;
|
|
3615
|
|
3616 cset = CHARSET_BY_LEADING_BYTE (j);
|
|
3617 if (CHARSETP (cset))
|
|
3618 {
|
|
3619 if (charset_syntax (regex_emacs_buffer, cset,
|
|
3620 &multi_p)
|
|
3621 == Sword || multi_p)
|
|
3622 fastmap[j] = 1;
|
|
3623 }
|
|
3624 }
|
|
3625 }
|
|
3626 #else /* ! MULE */
|
|
3627 for (j = 0; j < (1 << BYTEWIDTH); j++)
|
|
3628 if (SYNTAX_UNSAFE
|
|
3629 (XCHAR_TABLE
|
|
3630 (regex_emacs_buffer->mirror_syntax_table), j) ==
|
|
3631 (enum syntaxcode) k)
|
|
3632 fastmap[j] = 1;
|
|
3633 #endif /* ! MULE */
|
0
|
3634 break;
|
|
3635
|
|
3636
|
|
3637 case notsyntaxspec:
|
|
3638 k = *p++;
|
|
3639 matchnotsyntax:
|
70
|
3640 #ifdef MULE
|
|
3641 for (j = 0; j < 0x80; j++)
|
|
3642 if (SYNTAX_UNSAFE
|
|
3643 (XCHAR_TABLE
|
|
3644 (regex_emacs_buffer->mirror_syntax_table), j) !=
|
0
|
3645 (enum syntaxcode) k)
|
|
3646 fastmap[j] = 1;
|
70
|
3647 for (j = 0x80; j < 0xA0; j++)
|
|
3648 {
|
183
|
3649 if (LEADING_BYTE_PREFIX_P(j))
|
70
|
3650 /* too complicated to calculate this right */
|
|
3651 fastmap[j] = 1;
|
|
3652 else
|
|
3653 {
|
|
3654 int multi_p;
|
|
3655 Lisp_Object cset;
|
|
3656
|
|
3657 cset = CHARSET_BY_LEADING_BYTE (j);
|
|
3658 if (CHARSETP (cset))
|
|
3659 {
|
|
3660 if (charset_syntax (regex_emacs_buffer, cset,
|
|
3661 &multi_p)
|
|
3662 != Sword || multi_p)
|
|
3663 fastmap[j] = 1;
|
|
3664 }
|
|
3665 }
|
|
3666 }
|
|
3667 #else /* ! MULE */
|
|
3668 for (j = 0; j < (1 << BYTEWIDTH); j++)
|
|
3669 if (SYNTAX_UNSAFE
|
|
3670 (XCHAR_TABLE
|
|
3671 (regex_emacs_buffer->mirror_syntax_table), j) !=
|
|
3672 (enum syntaxcode) k)
|
|
3673 fastmap[j] = 1;
|
|
3674 #endif /* ! MULE */
|
0
|
3675 break;
|
|
3676
|
104
|
3677 #ifdef MULE
|
|
3678 /* 97/2/17 jhod category patch */
|
|
3679 case categoryspec:
|
|
3680 case notcategoryspec:
|
|
3681 bufp->can_be_null = 1;
|
157
|
3682 return 0;
|
104
|
3683 /* end if category patch */
|
|
3684 #endif /* MULE */
|
0
|
3685
|
|
3686 /* All cases after this match the empty string. These end with
|
|
3687 `continue'. */
|
|
3688
|
|
3689
|
|
3690 case before_dot:
|
|
3691 case at_dot:
|
|
3692 case after_dot:
|
|
3693 continue;
|
|
3694 #endif /* not emacs */
|
|
3695
|
|
3696
|
|
3697 case no_op:
|
|
3698 case begline:
|
|
3699 case endline:
|
|
3700 case begbuf:
|
|
3701 case endbuf:
|
|
3702 case wordbound:
|
|
3703 case notwordbound:
|
|
3704 case wordbeg:
|
|
3705 case wordend:
|
|
3706 case push_dummy_failure:
|
|
3707 continue;
|
|
3708
|
|
3709
|
|
3710 case jump_n:
|
|
3711 case pop_failure_jump:
|
|
3712 case maybe_pop_jump:
|
|
3713 case jump:
|
|
3714 case jump_past_alt:
|
|
3715 case dummy_failure_jump:
|
|
3716 EXTRACT_NUMBER_AND_INCR (j, p);
|
183
|
3717 p += j;
|
0
|
3718 if (j > 0)
|
|
3719 continue;
|
183
|
3720
|
0
|
3721 /* Jump backward implies we just went through the body of a
|
|
3722 loop and matched nothing. Opcode jumped to should be
|
|
3723 `on_failure_jump' or `succeed_n'. Just treat it like an
|
|
3724 ordinary jump. For a * loop, it has pushed its failure
|
|
3725 point already; if so, discard that as redundant. */
|
|
3726 if ((re_opcode_t) *p != on_failure_jump
|
|
3727 && (re_opcode_t) *p != succeed_n)
|
|
3728 continue;
|
|
3729
|
|
3730 p++;
|
|
3731 EXTRACT_NUMBER_AND_INCR (j, p);
|
183
|
3732 p += j;
|
|
3733
|
0
|
3734 /* If what's on the stack is where we are now, pop it. */
|
183
|
3735 if (!FAIL_STACK_EMPTY ()
|
0
|
3736 && fail_stack.stack[fail_stack.avail - 1].pointer == p)
|
|
3737 fail_stack.avail--;
|
|
3738
|
|
3739 continue;
|
|
3740
|
|
3741
|
|
3742 case on_failure_jump:
|
|
3743 case on_failure_keep_string_jump:
|
|
3744 handle_on_failure_jump:
|
|
3745 EXTRACT_NUMBER_AND_INCR (j, p);
|
|
3746
|
|
3747 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
|
|
3748 end of the pattern. We don't want to push such a point,
|
|
3749 since when we restore it above, entering the switch will
|
|
3750 increment `p' past the end of the pattern. We don't need
|
|
3751 to push such a point since we obviously won't find any more
|
|
3752 fastmap entries beyond `pend'. Such a pattern can match
|
|
3753 the null string, though. */
|
|
3754 if (p + j < pend)
|
|
3755 {
|
|
3756 if (!PUSH_PATTERN_OP (p + j, fail_stack))
|
|
3757 {
|
|
3758 RESET_FAIL_STACK ();
|
|
3759 return -2;
|
|
3760 }
|
|
3761 }
|
|
3762 else
|
|
3763 bufp->can_be_null = 1;
|
|
3764
|
|
3765 if (succeed_n_p)
|
|
3766 {
|
|
3767 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
|
|
3768 succeed_n_p = false;
|
|
3769 }
|
|
3770
|
|
3771 continue;
|
|
3772
|
|
3773
|
|
3774 case succeed_n:
|
|
3775 /* Get to the number of times to succeed. */
|
183
|
3776 p += 2;
|
0
|
3777
|
|
3778 /* Increment p past the n for when k != 0. */
|
|
3779 EXTRACT_NUMBER_AND_INCR (k, p);
|
|
3780 if (k == 0)
|
|
3781 {
|
|
3782 p -= 4;
|
|
3783 succeed_n_p = true; /* Spaghetti code alert. */
|
|
3784 goto handle_on_failure_jump;
|
|
3785 }
|
|
3786 continue;
|
|
3787
|
|
3788
|
|
3789 case set_number_at:
|
|
3790 p += 4;
|
|
3791 continue;
|
|
3792
|
|
3793
|
|
3794 case start_memory:
|
|
3795 case stop_memory:
|
|
3796 p += 2;
|
|
3797 continue;
|
|
3798
|
|
3799
|
|
3800 default:
|
|
3801 abort (); /* We have listed all the cases. */
|
|
3802 } /* switch *p++ */
|
|
3803
|
|
3804 /* Getting here means we have found the possible starting
|
|
3805 characters for one path of the pattern -- and that the empty
|
|
3806 string does not match. We need not follow this path further.
|
|
3807 Instead, look at the next alternative (remembered on the
|
|
3808 stack), or quit if no more. The test at the top of the loop
|
|
3809 does these things. */
|
|
3810 path_can_be_null = false;
|
|
3811 p = pend;
|
|
3812 } /* while p */
|
|
3813
|
|
3814 /* Set `can_be_null' for the last path (also the first path, if the
|
|
3815 pattern is empty). */
|
|
3816 bufp->can_be_null |= path_can_be_null;
|
|
3817
|
|
3818 done:
|
|
3819 RESET_FAIL_STACK ();
|
|
3820 return 0;
|
|
3821 } /* re_compile_fastmap */
|
|
3822
|
|
3823 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
|
|
3824 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
|
|
3825 this memory for recording register information. STARTS and ENDS
|
|
3826 must be allocated using the malloc library routine, and must each
|
|
3827 be at least NUM_REGS * sizeof (regoff_t) bytes long.
|
|
3828
|
|
3829 If NUM_REGS == 0, then subsequent matches should allocate their own
|
|
3830 register data.
|
|
3831
|
|
3832 Unless this function is called, the first search or match using
|
|
3833 PATTERN_BUFFER will allocate its own register data, without
|
|
3834 freeing the old data. */
|
|
3835
|
|
3836 void
|
|
3837 re_set_registers (struct re_pattern_buffer *bufp, struct re_registers *regs,
|
|
3838 unsigned num_regs, regoff_t *starts, regoff_t *ends)
|
|
3839 {
|
|
3840 if (num_regs)
|
|
3841 {
|
|
3842 bufp->regs_allocated = REGS_REALLOCATE;
|
|
3843 regs->num_regs = num_regs;
|
|
3844 regs->start = starts;
|
|
3845 regs->end = ends;
|
|
3846 }
|
|
3847 else
|
|
3848 {
|
|
3849 bufp->regs_allocated = REGS_UNALLOCATED;
|
|
3850 regs->num_regs = 0;
|
|
3851 regs->start = regs->end = (regoff_t *) 0;
|
|
3852 }
|
|
3853 }
|
|
3854
|
|
3855 /* Searching routines. */
|
|
3856
|
|
3857 /* Like re_search_2, below, but only one string is specified, and
|
|
3858 doesn't let you say where to stop matching. */
|
|
3859
|
|
3860 int
|
|
3861 re_search (struct re_pattern_buffer *bufp, CONST char *string, int size,
|
|
3862 int startpos, int range, struct re_registers *regs)
|
|
3863 {
|
183
|
3864 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
|
0
|
3865 regs, size);
|
|
3866 }
|
|
3867
|
102
|
3868 #ifndef emacs
|
|
3869 /* Snarfed from src/lisp.h, needed for compiling [ce]tags. */
|
|
3870 # define bytecount_to_charcount(ptr, len) (len)
|
|
3871 # define charcount_to_bytecount(ptr, len) (len)
|
|
3872 typedef int Charcount;
|
|
3873 #endif
|
0
|
3874
|
|
3875 /* Using the compiled pattern in BUFP->buffer, first tries to match the
|
|
3876 virtual concatenation of STRING1 and STRING2, starting first at index
|
|
3877 STARTPOS, then at STARTPOS + 1, and so on.
|
102
|
3878
|
|
3879 With MULE, STARTPOS is a byte position, not a char position. And the
|
|
3880 search will increment STARTPOS by the width of the current leading
|
|
3881 character.
|
183
|
3882
|
0
|
3883 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
|
183
|
3884
|
0
|
3885 RANGE is how far to scan while trying to match. RANGE = 0 means try
|
|
3886 only at STARTPOS; in general, the last start tried is STARTPOS +
|
|
3887 RANGE.
|
102
|
3888
|
|
3889 With MULE, RANGE is a byte position, not a char position. The last
|
|
3890 start tried is the character starting <= STARTPOS + RANGE.
|
183
|
3891
|
0
|
3892 In REGS, return the indices of the virtual concatenation of STRING1
|
|
3893 and STRING2 that matched the entire BUFP->buffer and its contained
|
|
3894 subexpressions.
|
183
|
3895
|
0
|
3896 Do not consider matching one past the index STOP in the virtual
|
|
3897 concatenation of STRING1 and STRING2.
|
|
3898
|
|
3899 We return either the position in the strings at which the match was
|
|
3900 found, -1 if no match, or -2 if error (such as failure
|
|
3901 stack overflow). */
|
|
3902
|
|
3903 int
|
|
3904 re_search_2 (struct re_pattern_buffer *bufp, CONST char *string1,
|
|
3905 int size1, CONST char *string2, int size2, int startpos,
|
|
3906 int range, struct re_registers *regs, int stop)
|
|
3907 {
|
|
3908 int val;
|
203
|
3909 REGISTER char *fastmap = bufp->fastmap;
|
|
3910 REGISTER char *translate = bufp->translate;
|
0
|
3911 int total_size = size1 + size2;
|
|
3912 int endpos = startpos + range;
|
|
3913 #ifdef REGEX_BEGLINE_CHECK
|
|
3914 int anchored_at_begline = 0;
|
|
3915 #endif
|
104
|
3916 CONST unsigned char *d;
|
|
3917 Charcount d_size;
|
0
|
3918
|
|
3919 /* Check for out-of-range STARTPOS. */
|
|
3920 if (startpos < 0 || startpos > total_size)
|
|
3921 return -1;
|
183
|
3922
|
0
|
3923 /* Fix up RANGE if it might eventually take us outside
|
|
3924 the virtual concatenation of STRING1 and STRING2. */
|
102
|
3925 if (endpos < 0)
|
|
3926 range = 0 - startpos;
|
0
|
3927 else if (endpos > total_size)
|
|
3928 range = total_size - startpos;
|
|
3929
|
|
3930 /* If the search isn't to be a backwards one, don't waste time in a
|
|
3931 search for a pattern that must be anchored. */
|
|
3932 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
|
|
3933 {
|
|
3934 if (startpos > 0)
|
|
3935 return -1;
|
|
3936 else
|
126
|
3937 {
|
|
3938 d = ((CONST unsigned char *)
|
|
3939 (startpos >= size1 ? string2 - size1 : string1) + startpos);
|
|
3940 range = charcount_to_bytecount (d, 1);
|
|
3941 }
|
0
|
3942 }
|
|
3943
|
|
3944 /* Update the fastmap now if not correct already. */
|
|
3945 if (fastmap && !bufp->fastmap_accurate)
|
|
3946 if (re_compile_fastmap (bufp) == -2)
|
|
3947 return -2;
|
183
|
3948
|
0
|
3949 #ifdef REGEX_BEGLINE_CHECK
|
|
3950 {
|
|
3951 int i = 0;
|
|
3952
|
|
3953 while (i < bufp->used)
|
|
3954 {
|
|
3955 if (bufp->buffer[i] == start_memory ||
|
|
3956 bufp->buffer[i] == stop_memory)
|
|
3957 i += 2;
|
|
3958 else
|
|
3959 break;
|
|
3960 }
|
|
3961 anchored_at_begline = i < bufp->used && bufp->buffer[i] == begline;
|
|
3962 }
|
|
3963 #endif
|
|
3964
|
|
3965 /* Loop through the string, looking for a place to start matching. */
|
|
3966 for (;;)
|
183
|
3967 {
|
0
|
3968 #ifdef REGEX_BEGLINE_CHECK
|
|
3969 /* If the regex is anchored at the beginning of a line (i.e. with a ^),
|
|
3970 then we can speed things up by skipping to the next beginning-of-
|
|
3971 line. */
|
|
3972 if (anchored_at_begline && startpos > 0 && startpos != size1 &&
|
|
3973 range > 0)
|
|
3974 {
|
|
3975 /* whose stupid idea was it anyway to make this
|
|
3976 function take two strings to match?? */
|
|
3977 int lim = 0;
|
|
3978 int irange = range;
|
102
|
3979
|
0
|
3980 if (startpos < size1 && startpos + range >= size1)
|
|
3981 lim = range - (size1 - startpos);
|
|
3982
|
102
|
3983 d = ((CONST unsigned char *)
|
|
3984 (startpos >= size1 ? string2 - size1 : string1) + startpos);
|
104
|
3985 DEC_CHARPTR(d); /* Ok, since startpos != size1. */
|
|
3986 d_size = charcount_to_bytecount (d, 1);
|
0
|
3987
|
|
3988 if (translate)
|
102
|
3989 #ifdef MULE
|
|
3990 while (range > lim && (*d >= 0x80 || translate[*d] != '\n'))
|
|
3991 #else
|
|
3992 while (range > lim && translate[*d] != '\n')
|
|
3993 #endif
|
|
3994 {
|
104
|
3995 d += d_size; /* Speedier INC_CHARPTR(d) */
|
|
3996 d_size = charcount_to_bytecount (d, 1);
|
|
3997 range -= d_size;
|
102
|
3998 }
|
0
|
3999 else
|
102
|
4000 while (range > lim && *d != '\n')
|
|
4001 {
|
104
|
4002 d += d_size; /* Speedier INC_CHARPTR(d) */
|
|
4003 d_size = charcount_to_bytecount (d, 1);
|
|
4004 range -= d_size;
|
102
|
4005 }
|
|
4006
|
0
|
4007 startpos += irange - range;
|
|
4008 }
|
|
4009 #endif /* REGEX_BEGLINE_CHECK */
|
|
4010
|
|
4011 /* If a fastmap is supplied, skip quickly over characters that
|
|
4012 cannot be the start of a match. If the pattern can match the
|
|
4013 null string, however, we don't need to skip characters; we want
|
|
4014 the first null string. */
|
|
4015 if (fastmap && startpos < total_size && !bufp->can_be_null)
|
|
4016 {
|
|
4017 if (range > 0) /* Searching forwards. */
|
|
4018 {
|
104
|
4019 int lim = 0;
|
0
|
4020 int irange = range;
|
|
4021
|
|
4022 if (startpos < size1 && startpos + range >= size1)
|
|
4023 lim = range - (size1 - startpos);
|
|
4024
|
102
|
4025 d = ((CONST unsigned char *)
|
|
4026 (startpos >= size1 ? string2 - size1 : string1) + startpos);
|
104
|
4027
|
0
|
4028 /* Written out as an if-else to avoid testing `translate'
|
|
4029 inside the loop. */
|
|
4030 if (translate)
|
272
|
4031 while (range > lim &&
|
102
|
4032 #ifdef MULE
|
272
|
4033 *d < 0x80 &&
|
102
|
4034 #endif
|
272
|
4035 !fastmap[(unsigned char)translate[*d]])
|
102
|
4036 {
|
104
|
4037 d_size = charcount_to_bytecount (d, 1);
|
|
4038 range -= d_size;
|
|
4039 d += d_size; /* Speedier INC_CHARPTR(d) */
|
102
|
4040 }
|
0
|
4041 else
|
102
|
4042 while (range > lim && !fastmap[*d])
|
|
4043 {
|
104
|
4044 d_size = charcount_to_bytecount (d, 1);
|
|
4045 range -= d_size;
|
|
4046 d += d_size; /* Speedier INC_CHARPTR(d) */
|
102
|
4047 }
|
0
|
4048
|
|
4049 startpos += irange - range;
|
|
4050 }
|
|
4051 else /* Searching backwards. */
|
|
4052 {
|
104
|
4053 unsigned char c = (size1 == 0 || startpos >= size1
|
183
|
4054 ? string2[startpos - size1]
|
104
|
4055 : string1[startpos]);
|
102
|
4056 #ifdef MULE
|
|
4057 if (c < 0x80 && !fastmap[(unsigned char) TRANSLATE (c)])
|
|
4058 #else
|
0
|
4059 if (!fastmap[(unsigned char) TRANSLATE (c)])
|
102
|
4060 #endif
|
0
|
4061 goto advance;
|
|
4062 }
|
|
4063 }
|
|
4064
|
|
4065 /* If can't match the null string, and that's all we have left, fail. */
|
|
4066 if (range >= 0 && startpos == total_size && fastmap
|
|
4067 && !bufp->can_be_null)
|
|
4068 return -1;
|
|
4069
|
|
4070 #ifdef emacs /* XEmacs added, w/removal of immediate_quit */
|
|
4071 if (!no_quit_in_re_search)
|
|
4072 QUIT;
|
|
4073 #endif
|
|
4074 val = re_match_2_internal (bufp, string1, size1, string2, size2,
|
|
4075 startpos, regs, stop);
|
|
4076 #ifndef REGEX_MALLOC
|
|
4077 #ifdef C_ALLOCA
|
|
4078 alloca (0);
|
|
4079 #endif
|
|
4080 #endif
|
|
4081
|
|
4082 if (val >= 0)
|
|
4083 return startpos;
|
183
|
4084
|
0
|
4085 if (val == -2)
|
|
4086 return -2;
|
|
4087
|
|
4088 advance:
|
183
|
4089 if (!range)
|
102
|
4090 break;
|
183
|
4091 else if (range > 0)
|
104
|
4092 {
|
|
4093 d = ((CONST unsigned char *)
|
|
4094 (startpos >= size1 ? string2 - size1 : string1) + startpos);
|
|
4095 d_size = charcount_to_bytecount (d, 1);
|
|
4096 range -= d_size;
|
|
4097 startpos += d_size;
|
|
4098 }
|
|
4099 else
|
|
4100 {
|
|
4101 /* Note startpos > size1 not >=. If we are on the
|
|
4102 string1/string2 boundary, we want to backup into string1. */
|
|
4103 d = ((CONST unsigned char *)
|
|
4104 (startpos > size1 ? string2 - size1 : string1) + startpos);
|
|
4105 DEC_CHARPTR(d);
|
|
4106 d_size = charcount_to_bytecount (d, 1);
|
|
4107 range += d_size;
|
|
4108 startpos -= d_size;
|
|
4109 }
|
0
|
4110 }
|
|
4111 return -1;
|
|
4112 } /* re_search_2 */
|
|
4113
|
|
4114 /* Declarations and macros for re_match_2. */
|
|
4115
|
|
4116 /* This converts PTR, a pointer into one of the search strings `string1'
|
|
4117 and `string2' into an offset from the beginning of that string. */
|
|
4118 #define POINTER_TO_OFFSET(ptr) \
|
|
4119 (FIRST_STRING_P (ptr) \
|
|
4120 ? ((regoff_t) ((ptr) - string1)) \
|
|
4121 : ((regoff_t) ((ptr) - string2 + size1)))
|
|
4122
|
|
4123 /* Macros for dealing with the split strings in re_match_2. */
|
|
4124
|
|
4125 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
|
|
4126
|
|
4127 /* Call before fetching a character with *d. This switches over to
|
|
4128 string2 if necessary. */
|
|
4129 #define PREFETCH() \
|
|
4130 while (d == dend) \
|
|
4131 { \
|
|
4132 /* End of string2 => fail. */ \
|
|
4133 if (dend == end_match_2) \
|
|
4134 goto fail; \
|
|
4135 /* End of string1 => advance to string2. */ \
|
|
4136 d = string2; \
|
|
4137 dend = end_match_2; \
|
|
4138 }
|
|
4139
|
|
4140
|
|
4141 /* Test if at very beginning or at very end of the virtual concatenation
|
|
4142 of `string1' and `string2'. If only one string, it's `string2'. */
|
|
4143 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
|
183
|
4144 #define AT_STRINGS_END(d) ((d) == end2)
|
0
|
4145
|
|
4146 /* XEmacs change:
|
|
4147 If the given position straddles the string gap, return the equivalent
|
|
4148 position that is before or after the gap, respectively; otherwise,
|
|
4149 return the same position. */
|
|
4150 #define POS_BEFORE_GAP_UNSAFE(d) ((d) == string2 ? end1 : (d))
|
|
4151 #define POS_AFTER_GAP_UNSAFE(d) ((d) == end1 ? string2 : (d))
|
|
4152
|
|
4153 /* Test if CH is a word-constituent character. (XEmacs change) */
|
|
4154 #define WORDCHAR_P_UNSAFE(ch) \
|
70
|
4155 (SYNTAX_UNSAFE (XCHAR_TABLE (regex_emacs_buffer->mirror_syntax_table), \
|
|
4156 ch) == Sword)
|
0
|
4157
|
|
4158 /* Free everything we malloc. */
|
|
4159 #ifdef MATCH_MAY_ALLOCATE
|
|
4160 #define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
|
|
4161 #define FREE_VARIABLES() \
|
|
4162 do { \
|
|
4163 REGEX_FREE_STACK (fail_stack.stack); \
|
|
4164 FREE_VAR (regstart); \
|
|
4165 FREE_VAR (regend); \
|
|
4166 FREE_VAR (old_regstart); \
|
|
4167 FREE_VAR (old_regend); \
|
|
4168 FREE_VAR (best_regstart); \
|
|
4169 FREE_VAR (best_regend); \
|
|
4170 FREE_VAR (reg_info); \
|
|
4171 FREE_VAR (reg_dummy); \
|
|
4172 FREE_VAR (reg_info_dummy); \
|
|
4173 } while (0)
|
|
4174 #else
|
|
4175 #define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
|
|
4176 #endif /* not MATCH_MAY_ALLOCATE */
|
|
4177
|
|
4178 /* These values must meet several constraints. They must not be valid
|
|
4179 register values; since we have a limit of 255 registers (because
|
|
4180 we use only one byte in the pattern for the register number), we can
|
|
4181 use numbers larger than 255. They must differ by 1, because of
|
|
4182 NUM_FAILURE_ITEMS above. And the value for the lowest register must
|
|
4183 be larger than the value for the highest register, so we do not try
|
|
4184 to actually save any registers when none are active. */
|
|
4185 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
|
|
4186 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
|
|
4187
|
|
4188 /* Matching routines. */
|
|
4189
|
|
4190 #ifndef emacs /* Emacs never uses this. */
|
|
4191 /* re_match is like re_match_2 except it takes only a single string. */
|
|
4192
|
|
4193 int
|
|
4194 re_match (struct re_pattern_buffer *bufp, CONST char *string, int size,
|
|
4195 int pos, struct re_registers *regs)
|
|
4196 {
|
|
4197 int result = re_match_2_internal (bufp, NULL, 0, string, size,
|
|
4198 pos, regs, size);
|
|
4199 alloca (0);
|
|
4200 return result;
|
|
4201 }
|
|
4202 #endif /* not emacs */
|
|
4203
|
|
4204
|
|
4205 /* re_match_2 matches the compiled pattern in BUFP against the
|
2
|
4206 (virtual) concatenation of STRING1 and STRING2 (of length SIZE1 and
|
|
4207 SIZE2, respectively). We start matching at POS, and stop matching
|
|
4208 at STOP.
|
183
|
4209
|
0
|
4210 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
|
|
4211 store offsets for the substring each group matched in REGS. See the
|
|
4212 documentation for exactly how many groups we fill.
|
|
4213
|
|
4214 We return -1 if no match, -2 if an internal error (such as the
|
|
4215 failure stack overflowing). Otherwise, we return the length of the
|
|
4216 matched substring. */
|
|
4217
|
|
4218 int
|
|
4219 re_match_2 (struct re_pattern_buffer *bufp, CONST char *string1,
|
|
4220 int size1, CONST char *string2, int size2, int pos,
|
|
4221 struct re_registers *regs, int stop)
|
|
4222 {
|
|
4223 int result = re_match_2_internal (bufp, string1, size1, string2, size2,
|
|
4224 pos, regs, stop);
|
|
4225 alloca (0);
|
|
4226 return result;
|
|
4227 }
|
|
4228
|
|
4229 /* This is a separate function so that we can force an alloca cleanup
|
|
4230 afterwards. */
|
|
4231 static int
|
|
4232 re_match_2_internal (struct re_pattern_buffer *bufp, CONST char *string1,
|
|
4233 int size1, CONST char *string2, int size2, int pos,
|
|
4234 struct re_registers *regs, int stop)
|
|
4235 {
|
|
4236 /* General temporaries. */
|
|
4237 int mcnt;
|
|
4238 unsigned char *p1;
|
|
4239 int should_succeed; /* XEmacs change */
|
|
4240
|
|
4241 /* Just past the end of the corresponding string. */
|
|
4242 CONST char *end1, *end2;
|
|
4243
|
|
4244 /* Pointers into string1 and string2, just past the last characters in
|
|
4245 each to consider matching. */
|
|
4246 CONST char *end_match_1, *end_match_2;
|
|
4247
|
|
4248 /* Where we are in the data, and the end of the current string. */
|
|
4249 CONST char *d, *dend;
|
183
|
4250
|
0
|
4251 /* Where we are in the pattern, and the end of the pattern. */
|
|
4252 unsigned char *p = bufp->buffer;
|
203
|
4253 REGISTER unsigned char *pend = p + bufp->used;
|
0
|
4254
|
|
4255 /* Mark the opcode just after a start_memory, so we can test for an
|
|
4256 empty subpattern when we get to the stop_memory. */
|
|
4257 unsigned char *just_past_start_mem = 0;
|
|
4258
|
|
4259 /* We use this to map every character in the string. */
|
|
4260 char *translate = bufp->translate;
|
|
4261
|
|
4262 /* Failure point stack. Each place that can handle a failure further
|
|
4263 down the line pushes a failure point on this stack. It consists of
|
|
4264 restart, regend, and reg_info for all registers corresponding to
|
|
4265 the subexpressions we're currently inside, plus the number of such
|
|
4266 registers, and, finally, two char *'s. The first char * is where
|
|
4267 to resume scanning the pattern; the second one is where to resume
|
|
4268 scanning the strings. If the latter is zero, the failure point is
|
|
4269 a ``dummy''; if a failure happens and the failure point is a dummy,
|
2
|
4270 it gets discarded and the next one is tried. */
|
0
|
4271 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
|
|
4272 fail_stack_type fail_stack;
|
|
4273 #endif
|
|
4274 #ifdef DEBUG
|
|
4275 static unsigned failure_id;
|
|
4276 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
|
|
4277 #endif
|
|
4278
|
|
4279 #ifdef REL_ALLOC
|
|
4280 /* This holds the pointer to the failure stack, when
|
|
4281 it is allocated relocatably. */
|
|
4282 fail_stack_elt_t *failure_stack_ptr;
|
|
4283 #endif
|
|
4284
|
|
4285 /* We fill all the registers internally, independent of what we
|
|
4286 return, for use in backreferences. The number here includes
|
|
4287 an element for register zero. */
|
|
4288 unsigned num_regs = bufp->re_nsub + 1;
|
183
|
4289
|
0
|
4290 /* The currently active registers. */
|
|
4291 unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG;
|
|
4292 unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG;
|
|
4293
|
|
4294 /* Information on the contents of registers. These are pointers into
|
|
4295 the input strings; they record just what was matched (on this
|
|
4296 attempt) by a subexpression part of the pattern, that is, the
|
|
4297 regnum-th regstart pointer points to where in the pattern we began
|
|
4298 matching and the regnum-th regend points to right after where we
|
|
4299 stopped matching the regnum-th subexpression. (The zeroth register
|
|
4300 keeps track of what the whole pattern matches.) */
|
|
4301 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
|
|
4302 CONST char **regstart, **regend;
|
|
4303 #endif
|
|
4304
|
|
4305 /* If a group that's operated upon by a repetition operator fails to
|
|
4306 match anything, then the register for its start will need to be
|
|
4307 restored because it will have been set to wherever in the string we
|
|
4308 are when we last see its open-group operator. Similarly for a
|
|
4309 register's end. */
|
|
4310 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
|
|
4311 CONST char **old_regstart, **old_regend;
|
|
4312 #endif
|
|
4313
|
|
4314 /* The is_active field of reg_info helps us keep track of which (possibly
|
|
4315 nested) subexpressions we are currently in. The matched_something
|
|
4316 field of reg_info[reg_num] helps us tell whether or not we have
|
|
4317 matched any of the pattern so far this time through the reg_num-th
|
|
4318 subexpression. These two fields get reset each time through any
|
|
4319 loop their register is in. */
|
|
4320 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
|
183
|
4321 register_info_type *reg_info;
|
0
|
4322 #endif
|
|
4323
|
|
4324 /* The following record the register info as found in the above
|
183
|
4325 variables when we find a match better than any we've seen before.
|
0
|
4326 This happens as we backtrack through the failure points, which in
|
|
4327 turn happens only if we have not yet matched the entire string. */
|
|
4328 unsigned best_regs_set = false;
|
|
4329 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
|
|
4330 CONST char **best_regstart, **best_regend;
|
|
4331 #endif
|
183
|
4332
|
0
|
4333 /* Logically, this is `best_regend[0]'. But we don't want to have to
|
|
4334 allocate space for that if we're not allocating space for anything
|
|
4335 else (see below). Also, we never need info about register 0 for
|
|
4336 any of the other register vectors, and it seems rather a kludge to
|
|
4337 treat `best_regend' differently than the rest. So we keep track of
|
|
4338 the end of the best match so far in a separate variable. We
|
|
4339 initialize this to NULL so that when we backtrack the first time
|
|
4340 and need to test it, it's not garbage. */
|
|
4341 CONST char *match_end = NULL;
|
|
4342
|
|
4343 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
|
|
4344 int set_regs_matched_done = 0;
|
|
4345
|
|
4346 /* Used when we pop values we don't care about. */
|
|
4347 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
|
|
4348 CONST char **reg_dummy;
|
|
4349 register_info_type *reg_info_dummy;
|
|
4350 #endif
|
|
4351
|
|
4352 #ifdef DEBUG
|
|
4353 /* Counts the total number of registers pushed. */
|
183
|
4354 unsigned num_regs_pushed = 0;
|
0
|
4355 #endif
|
|
4356
|
185
|
4357 /* 1 if this match ends in the same string (string1 or string2)
|
|
4358 as the best previous match. */
|
|
4359 boolean same_str_p;
|
|
4360
|
|
4361 /* 1 if this match is the best seen so far. */
|
|
4362 boolean best_match_p;
|
|
4363
|
0
|
4364 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
|
183
|
4365
|
0
|
4366 INIT_FAIL_STACK ();
|
183
|
4367
|
0
|
4368 #ifdef MATCH_MAY_ALLOCATE
|
|
4369 /* Do not bother to initialize all the register variables if there are
|
|
4370 no groups in the pattern, as it takes a fair amount of time. If
|
|
4371 there are groups, we include space for register 0 (the whole
|
|
4372 pattern), even though we never use it, since it simplifies the
|
|
4373 array indexing. We should fix this. */
|
|
4374 if (bufp->re_nsub)
|
|
4375 {
|
185
|
4376 regstart = REGEX_TALLOC (num_regs, CONST char *);
|
|
4377 regend = REGEX_TALLOC (num_regs, CONST char *);
|
|
4378 old_regstart = REGEX_TALLOC (num_regs, CONST char *);
|
|
4379 old_regend = REGEX_TALLOC (num_regs, CONST char *);
|
|
4380 best_regstart = REGEX_TALLOC (num_regs, CONST char *);
|
|
4381 best_regend = REGEX_TALLOC (num_regs, CONST char *);
|
|
4382 reg_info = REGEX_TALLOC (num_regs, register_info_type);
|
|
4383 reg_dummy = REGEX_TALLOC (num_regs, CONST char *);
|
0
|
4384 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
|
|
4385
|
183
|
4386 if (!(regstart && regend && old_regstart && old_regend && reg_info
|
|
4387 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
|
0
|
4388 {
|
|
4389 FREE_VARIABLES ();
|
|
4390 return -2;
|
|
4391 }
|
|
4392 }
|
|
4393 else
|
|
4394 {
|
|
4395 /* We must initialize all our variables to NULL, so that
|
|
4396 `FREE_VARIABLES' doesn't try to free them. */
|
|
4397 regstart = regend = old_regstart = old_regend = best_regstart
|
|
4398 = best_regend = reg_dummy = NULL;
|
|
4399 reg_info = reg_info_dummy = (register_info_type *) NULL;
|
|
4400 }
|
|
4401 #endif /* MATCH_MAY_ALLOCATE */
|
|
4402
|
|
4403 /* The starting position is bogus. */
|
|
4404 if (pos < 0 || pos > size1 + size2)
|
|
4405 {
|
|
4406 FREE_VARIABLES ();
|
|
4407 return -1;
|
|
4408 }
|
183
|
4409
|
0
|
4410 /* Initialize subexpression text positions to -1 to mark ones that no
|
|
4411 start_memory/stop_memory has been seen for. Also initialize the
|
|
4412 register information struct. */
|
|
4413 for (mcnt = 1; mcnt < num_regs; mcnt++)
|
|
4414 {
|
183
|
4415 regstart[mcnt] = regend[mcnt]
|
0
|
4416 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
|
183
|
4417
|
0
|
4418 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
|
|
4419 IS_ACTIVE (reg_info[mcnt]) = 0;
|
|
4420 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
|
|
4421 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
|
|
4422 }
|
183
|
4423
|
0
|
4424 /* We move `string1' into `string2' if the latter's empty -- but not if
|
|
4425 `string1' is null. */
|
|
4426 if (size2 == 0 && string1 != NULL)
|
|
4427 {
|
|
4428 string2 = string1;
|
|
4429 size2 = size1;
|
|
4430 string1 = 0;
|
|
4431 size1 = 0;
|
|
4432 }
|
|
4433 end1 = string1 + size1;
|
|
4434 end2 = string2 + size2;
|
|
4435
|
|
4436 /* Compute where to stop matching, within the two strings. */
|
|
4437 if (stop <= size1)
|
|
4438 {
|
|
4439 end_match_1 = string1 + stop;
|
|
4440 end_match_2 = string2;
|
|
4441 }
|
|
4442 else
|
|
4443 {
|
|
4444 end_match_1 = end1;
|
|
4445 end_match_2 = string2 + stop - size1;
|
|
4446 }
|
|
4447
|
183
|
4448 /* `p' scans through the pattern as `d' scans through the data.
|
0
|
4449 `dend' is the end of the input string that `d' points within. `d'
|
|
4450 is advanced into the following input string whenever necessary, but
|
|
4451 this happens before fetching; therefore, at the beginning of the
|
|
4452 loop, `d' can be pointing at the end of a string, but it cannot
|
|
4453 equal `string2'. */
|
|
4454 if (size1 > 0 && pos <= size1)
|
|
4455 {
|
|
4456 d = string1 + pos;
|
|
4457 dend = end_match_1;
|
|
4458 }
|
|
4459 else
|
|
4460 {
|
|
4461 d = string2 + pos - size1;
|
|
4462 dend = end_match_2;
|
|
4463 }
|
|
4464
|
|
4465 DEBUG_PRINT1 ("The compiled pattern is: ");
|
|
4466 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
|
|
4467 DEBUG_PRINT1 ("The string to match is: `");
|
|
4468 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
|
|
4469 DEBUG_PRINT1 ("'\n");
|
183
|
4470
|
0
|
4471 /* This loops over pattern commands. It exits by returning from the
|
|
4472 function if the match is complete, or it drops through if the match
|
|
4473 fails at this starting point in the input data. */
|
|
4474 for (;;)
|
|
4475 {
|
175
|
4476 DEBUG_PRINT2 ("\n0x%p: ", p);
|
284
|
4477 #ifdef emacs /* XEmacs added, w/removal of immediate_quit */
|
|
4478 if (!no_quit_in_re_search)
|
|
4479 QUIT;
|
|
4480 #endif
|
0
|
4481
|
|
4482 if (p == pend)
|
|
4483 { /* End of pattern means we might have succeeded. */
|
|
4484 DEBUG_PRINT1 ("end of pattern ... ");
|
183
|
4485
|
0
|
4486 /* If we haven't matched the entire string, and we want the
|
|
4487 longest match, try backtracking. */
|
|
4488 if (d != end_match_2)
|
|
4489 {
|
185
|
4490 same_str_p = (FIRST_STRING_P (match_end)
|
|
4491 == MATCHING_IN_FIRST_STRING);
|
0
|
4492
|
|
4493 /* AIX compiler got confused when this was combined
|
|
4494 with the previous declaration. */
|
|
4495 if (same_str_p)
|
|
4496 best_match_p = d > match_end;
|
|
4497 else
|
|
4498 best_match_p = !MATCHING_IN_FIRST_STRING;
|
|
4499
|
|
4500 DEBUG_PRINT1 ("backtracking.\n");
|
183
|
4501
|
0
|
4502 if (!FAIL_STACK_EMPTY ())
|
|
4503 { /* More failure points to try. */
|
|
4504
|
|
4505 /* If exceeds best match so far, save it. */
|
|
4506 if (!best_regs_set || best_match_p)
|
|
4507 {
|
|
4508 best_regs_set = true;
|
|
4509 match_end = d;
|
183
|
4510
|
0
|
4511 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
|
183
|
4512
|
0
|
4513 for (mcnt = 1; mcnt < num_regs; mcnt++)
|
|
4514 {
|
|
4515 best_regstart[mcnt] = regstart[mcnt];
|
|
4516 best_regend[mcnt] = regend[mcnt];
|
|
4517 }
|
|
4518 }
|
183
|
4519 goto fail;
|
0
|
4520 }
|
|
4521
|
|
4522 /* If no failure points, don't restore garbage. And if
|
|
4523 last match is real best match, don't restore second
|
|
4524 best one. */
|
|
4525 else if (best_regs_set && !best_match_p)
|
|
4526 {
|
|
4527 restore_best_regs:
|
|
4528 /* Restore best match. It may happen that `dend ==
|
|
4529 end_match_1' while the restored d is in string2.
|
|
4530 For example, the pattern `x.*y.*z' against the
|
|
4531 strings `x-' and `y-z-', if the two strings are
|
|
4532 not consecutive in memory. */
|
|
4533 DEBUG_PRINT1 ("Restoring best registers.\n");
|
183
|
4534
|
0
|
4535 d = match_end;
|
|
4536 dend = ((d >= string1 && d <= end1)
|
|
4537 ? end_match_1 : end_match_2);
|
|
4538
|
|
4539 for (mcnt = 1; mcnt < num_regs; mcnt++)
|
|
4540 {
|
|
4541 regstart[mcnt] = best_regstart[mcnt];
|
|
4542 regend[mcnt] = best_regend[mcnt];
|
|
4543 }
|
|
4544 }
|
|
4545 } /* d != end_match_2 */
|
|
4546
|
|
4547 succeed_label:
|
|
4548 DEBUG_PRINT1 ("Accepting match.\n");
|
|
4549
|
|
4550 /* If caller wants register contents data back, do it. */
|
|
4551 if (regs && !bufp->no_sub)
|
|
4552 {
|
|
4553 /* Have the register data arrays been allocated? */
|
|
4554 if (bufp->regs_allocated == REGS_UNALLOCATED)
|
|
4555 { /* No. So allocate them with malloc. We need one
|
|
4556 extra element beyond `num_regs' for the `-1' marker
|
|
4557 GNU code uses. */
|
|
4558 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
|
|
4559 regs->start = TALLOC (regs->num_regs, regoff_t);
|
|
4560 regs->end = TALLOC (regs->num_regs, regoff_t);
|
|
4561 if (regs->start == NULL || regs->end == NULL)
|
|
4562 {
|
|
4563 FREE_VARIABLES ();
|
|
4564 return -2;
|
|
4565 }
|
|
4566 bufp->regs_allocated = REGS_REALLOCATE;
|
|
4567 }
|
|
4568 else if (bufp->regs_allocated == REGS_REALLOCATE)
|
|
4569 { /* Yes. If we need more elements than were already
|
|
4570 allocated, reallocate them. If we need fewer, just
|
|
4571 leave it alone. */
|
|
4572 if (regs->num_regs < num_regs + 1)
|
|
4573 {
|
|
4574 regs->num_regs = num_regs + 1;
|
|
4575 RETALLOC (regs->start, regs->num_regs, regoff_t);
|
|
4576 RETALLOC (regs->end, regs->num_regs, regoff_t);
|
|
4577 if (regs->start == NULL || regs->end == NULL)
|
|
4578 {
|
|
4579 FREE_VARIABLES ();
|
|
4580 return -2;
|
|
4581 }
|
|
4582 }
|
|
4583 }
|
|
4584 else
|
|
4585 {
|
|
4586 /* These braces fend off a "empty body in an else-statement"
|
|
4587 warning under GCC when assert expands to nothing. */
|
|
4588 assert (bufp->regs_allocated == REGS_FIXED);
|
|
4589 }
|
|
4590
|
|
4591 /* Convert the pointer data in `regstart' and `regend' to
|
|
4592 indices. Register zero has to be set differently,
|
|
4593 since we haven't kept track of any info for it. */
|
|
4594 if (regs->num_regs > 0)
|
|
4595 {
|
|
4596 regs->start[0] = pos;
|
|
4597 regs->end[0] = (MATCHING_IN_FIRST_STRING
|
|
4598 ? ((regoff_t) (d - string1))
|
|
4599 : ((regoff_t) (d - string2 + size1)));
|
|
4600 }
|
183
|
4601
|
0
|
4602 /* Go through the first `min (num_regs, regs->num_regs)'
|
|
4603 registers, since that is all we initialized. */
|
|
4604 for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++)
|
|
4605 {
|
|
4606 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
|
|
4607 regs->start[mcnt] = regs->end[mcnt] = -1;
|
|
4608 else
|
|
4609 {
|
|
4610 regs->start[mcnt]
|
|
4611 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
|
|
4612 regs->end[mcnt]
|
|
4613 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
|
|
4614 }
|
|
4615 }
|
183
|
4616
|
0
|
4617 /* If the regs structure we return has more elements than
|
|
4618 were in the pattern, set the extra elements to -1. If
|
|
4619 we (re)allocated the registers, this is the case,
|
|
4620 because we always allocate enough to have at least one
|
|
4621 -1 at the end. */
|
|
4622 for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
|
|
4623 regs->start[mcnt] = regs->end[mcnt] = -1;
|
|
4624 } /* regs && !bufp->no_sub */
|
|
4625
|
|
4626 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
|
|
4627 nfailure_points_pushed, nfailure_points_popped,
|
|
4628 nfailure_points_pushed - nfailure_points_popped);
|
|
4629 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
|
|
4630
|
183
|
4631 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
|
|
4632 ? string1
|
0
|
4633 : string2 - size1);
|
|
4634
|
|
4635 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
|
|
4636
|
|
4637 FREE_VARIABLES ();
|
|
4638 return mcnt;
|
|
4639 }
|
|
4640
|
|
4641 /* Otherwise match next pattern command. */
|
|
4642 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
|
|
4643 {
|
|
4644 /* Ignore these. Used to ignore the n of succeed_n's which
|
|
4645 currently have n == 0. */
|
|
4646 case no_op:
|
|
4647 DEBUG_PRINT1 ("EXECUTING no_op.\n");
|
|
4648 break;
|
|
4649
|
|
4650 case succeed:
|
|
4651 DEBUG_PRINT1 ("EXECUTING succeed.\n");
|
|
4652 goto succeed_label;
|
|
4653
|
|
4654 /* Match the next n pattern characters exactly. The following
|
|
4655 byte in the pattern defines n, and the n bytes after that
|
|
4656 are the characters to match. */
|
|
4657 case exactn:
|
|
4658 mcnt = *p++;
|
|
4659 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
|
|
4660
|
|
4661 /* This is written out as an if-else so we don't waste time
|
|
4662 testing `translate' inside the loop. */
|
|
4663 if (translate)
|
|
4664 {
|
|
4665 do
|
|
4666 {
|
|
4667 PREFETCH ();
|
|
4668 if (translate[(unsigned char) *d++] != (char) *p++)
|
|
4669 goto fail;
|
|
4670 }
|
|
4671 while (--mcnt);
|
|
4672 }
|
|
4673 else
|
|
4674 {
|
|
4675 do
|
|
4676 {
|
|
4677 PREFETCH ();
|
|
4678 if (*d++ != (char) *p++) goto fail;
|
|
4679 }
|
|
4680 while (--mcnt);
|
|
4681 }
|
|
4682 SET_REGS_MATCHED ();
|
|
4683 break;
|
|
4684
|
|
4685
|
|
4686 /* Match any character except possibly a newline or a null. */
|
|
4687 case anychar:
|
|
4688 DEBUG_PRINT1 ("EXECUTING anychar.\n");
|
|
4689
|
|
4690 PREFETCH ();
|
|
4691
|
|
4692 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
|
|
4693 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
|
|
4694 goto fail;
|
|
4695
|
|
4696 SET_REGS_MATCHED ();
|
|
4697 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
|
|
4698 INC_CHARPTR (d); /* XEmacs change */
|
|
4699 break;
|
|
4700
|
|
4701
|
|
4702 case charset:
|
|
4703 case charset_not:
|
|
4704 {
|
203
|
4705 REGISTER unsigned char c;
|
0
|
4706 boolean not = (re_opcode_t) *(p - 1) == charset_not;
|
|
4707
|
|
4708 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
|
|
4709
|
|
4710 PREFETCH ();
|
|
4711 c = TRANSLATE (*d); /* The character to match. */
|
|
4712
|
|
4713 /* Cast to `unsigned' instead of `unsigned char' in case the
|
|
4714 bit list is a full 32 bytes long. */
|
|
4715 if (c < (unsigned) (*p * BYTEWIDTH)
|
|
4716 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
|
|
4717 not = !not;
|
|
4718
|
|
4719 p += 1 + *p;
|
|
4720
|
|
4721 if (!not) goto fail;
|
183
|
4722
|
0
|
4723 SET_REGS_MATCHED ();
|
70
|
4724 INC_CHARPTR (d); /* XEmacs change */
|
0
|
4725 break;
|
|
4726 }
|
|
4727
|
70
|
4728 #ifdef MULE
|
|
4729 case charset_mule:
|
|
4730 case charset_mule_not:
|
|
4731 {
|
203
|
4732 REGISTER Emchar c;
|
70
|
4733 boolean not = (re_opcode_t) *(p - 1) == charset_mule_not;
|
|
4734
|
|
4735 DEBUG_PRINT2 ("EXECUTING charset_mule%s.\n", not ? "_not" : "");
|
|
4736
|
|
4737 PREFETCH ();
|
|
4738 c = charptr_emchar ((CONST Bufbyte *) d);
|
|
4739 c = TRANSLATE_EXTENDED_UNSAFE (c); /* The character to match. */
|
|
4740
|
|
4741 if (EQ (Qt, unified_range_table_lookup (p, c, Qnil)))
|
|
4742 not = !not;
|
|
4743
|
|
4744 p += unified_range_table_bytes_used (p);
|
183
|
4745
|
70
|
4746 if (!not) goto fail;
|
183
|
4747
|
70
|
4748 SET_REGS_MATCHED ();
|
|
4749 INC_CHARPTR (d);
|
|
4750 break;
|
|
4751 }
|
185
|
4752 #endif /* MULE */
|
70
|
4753
|
0
|
4754
|
|
4755 /* The beginning of a group is represented by start_memory.
|
|
4756 The arguments are the register number in the next byte, and the
|
|
4757 number of groups inner to this one in the next. The text
|
|
4758 matched within the group is recorded (in the internal
|
|
4759 registers data structure) under the register number. */
|
|
4760 case start_memory:
|
|
4761 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
|
|
4762
|
|
4763 /* Find out if this group can match the empty string. */
|
|
4764 p1 = p; /* To send to group_match_null_string_p. */
|
183
|
4765
|
0
|
4766 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
|
183
|
4767 REG_MATCH_NULL_STRING_P (reg_info[*p])
|
0
|
4768 = group_match_null_string_p (&p1, pend, reg_info);
|
|
4769
|
|
4770 /* Save the position in the string where we were the last time
|
|
4771 we were at this open-group operator in case the group is
|
|
4772 operated upon by a repetition operator, e.g., with `(a*)*b'
|
|
4773 against `ab'; then we want to ignore where we are now in
|
|
4774 the string in case this attempt to match fails. */
|
|
4775 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
|
|
4776 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
|
|
4777 : regstart[*p];
|
183
|
4778 DEBUG_PRINT2 (" old_regstart: %d\n",
|
0
|
4779 POINTER_TO_OFFSET (old_regstart[*p]));
|
|
4780
|
|
4781 regstart[*p] = d;
|
|
4782 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
|
|
4783
|
|
4784 IS_ACTIVE (reg_info[*p]) = 1;
|
|
4785 MATCHED_SOMETHING (reg_info[*p]) = 0;
|
|
4786
|
|
4787 /* Clear this whenever we change the register activity status. */
|
|
4788 set_regs_matched_done = 0;
|
183
|
4789
|
0
|
4790 /* This is the new highest active register. */
|
|
4791 highest_active_reg = *p;
|
183
|
4792
|
0
|
4793 /* If nothing was active before, this is the new lowest active
|
|
4794 register. */
|
|
4795 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
|
|
4796 lowest_active_reg = *p;
|
|
4797
|
|
4798 /* Move past the register number and inner group count. */
|
|
4799 p += 2;
|
|
4800 just_past_start_mem = p;
|
|
4801
|
|
4802 break;
|
|
4803
|
|
4804
|
|
4805 /* The stop_memory opcode represents the end of a group. Its
|
|
4806 arguments are the same as start_memory's: the register
|
|
4807 number, and the number of inner groups. */
|
|
4808 case stop_memory:
|
|
4809 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
|
183
|
4810
|
0
|
4811 /* We need to save the string position the last time we were at
|
|
4812 this close-group operator in case the group is operated
|
|
4813 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
|
|
4814 against `aba'; then we want to ignore where we are now in
|
|
4815 the string in case this attempt to match fails. */
|
|
4816 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
|
|
4817 ? REG_UNSET (regend[*p]) ? d : regend[*p]
|
|
4818 : regend[*p];
|
183
|
4819 DEBUG_PRINT2 (" old_regend: %d\n",
|
0
|
4820 POINTER_TO_OFFSET (old_regend[*p]));
|
|
4821
|
|
4822 regend[*p] = d;
|
|
4823 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
|
|
4824
|
|
4825 /* This register isn't active anymore. */
|
|
4826 IS_ACTIVE (reg_info[*p]) = 0;
|
|
4827
|
|
4828 /* Clear this whenever we change the register activity status. */
|
|
4829 set_regs_matched_done = 0;
|
|
4830
|
|
4831 /* If this was the only register active, nothing is active
|
|
4832 anymore. */
|
|
4833 if (lowest_active_reg == highest_active_reg)
|
|
4834 {
|
|
4835 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
|
|
4836 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
|
|
4837 }
|
|
4838 else
|
|
4839 { /* We must scan for the new highest active register, since
|
|
4840 it isn't necessarily one less than now: consider
|
|
4841 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
|
|
4842 new highest active register is 1. */
|
|
4843 unsigned char r = *p - 1;
|
|
4844 while (r > 0 && !IS_ACTIVE (reg_info[r]))
|
|
4845 r--;
|
183
|
4846
|
0
|
4847 /* If we end up at register zero, that means that we saved
|
|
4848 the registers as the result of an `on_failure_jump', not
|
|
4849 a `start_memory', and we jumped to past the innermost
|
|
4850 `stop_memory'. For example, in ((.)*) we save
|
|
4851 registers 1 and 2 as a result of the *, but when we pop
|
|
4852 back to the second ), we are at the stop_memory 1.
|
|
4853 Thus, nothing is active. */
|
|
4854 if (r == 0)
|
|
4855 {
|
|
4856 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
|
|
4857 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
|
|
4858 }
|
|
4859 else
|
318
|
4860 {
|
|
4861 highest_active_reg = r;
|
|
4862
|
|
4863 /* 98/9/21 jhod: We've also gotta set lowest_active_reg, don't we? */
|
|
4864 r = 1;
|
|
4865 while (r < highest_active_reg && !IS_ACTIVE(reg_info[r]))
|
|
4866 r++;
|
|
4867 lowest_active_reg = r;
|
|
4868 }
|
|
4869 }
|
183
|
4870
|
0
|
4871 /* If just failed to match something this time around with a
|
|
4872 group that's operated on by a repetition operator, try to
|
|
4873 force exit from the ``loop'', and restore the register
|
|
4874 information for this group that we had before trying this
|
|
4875 last match. */
|
|
4876 if ((!MATCHED_SOMETHING (reg_info[*p])
|
|
4877 || just_past_start_mem == p - 1)
|
183
|
4878 && (p + 2) < pend)
|
0
|
4879 {
|
|
4880 boolean is_a_jump_n = false;
|
183
|
4881
|
0
|
4882 p1 = p + 2;
|
|
4883 mcnt = 0;
|
|
4884 switch ((re_opcode_t) *p1++)
|
|
4885 {
|
|
4886 case jump_n:
|
|
4887 is_a_jump_n = true;
|
|
4888 case pop_failure_jump:
|
|
4889 case maybe_pop_jump:
|
|
4890 case jump:
|
|
4891 case dummy_failure_jump:
|
|
4892 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
|
|
4893 if (is_a_jump_n)
|
|
4894 p1 += 2;
|
|
4895 break;
|
183
|
4896
|
0
|
4897 default:
|
|
4898 /* do nothing */ ;
|
|
4899 }
|
|
4900 p1 += mcnt;
|
183
|
4901
|
0
|
4902 /* If the next operation is a jump backwards in the pattern
|
|
4903 to an on_failure_jump right before the start_memory
|
|
4904 corresponding to this stop_memory, exit from the loop
|
|
4905 by forcing a failure after pushing on the stack the
|
|
4906 on_failure_jump's jump in the pattern, and d. */
|
|
4907 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
|
|
4908 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
|
|
4909 {
|
|
4910 /* If this group ever matched anything, then restore
|
|
4911 what its registers were before trying this last
|
|
4912 failed match, e.g., with `(a*)*b' against `ab' for
|
|
4913 regstart[1], and, e.g., with `((a*)*(b*)*)*'
|
|
4914 against `aba' for regend[3].
|
183
|
4915
|
0
|
4916 Also restore the registers for inner groups for,
|
|
4917 e.g., `((a*)(b*))*' against `aba' (register 3 would
|
|
4918 otherwise get trashed). */
|
183
|
4919
|
0
|
4920 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
|
|
4921 {
|
183
|
4922 unsigned r;
|
|
4923
|
0
|
4924 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
|
183
|
4925
|
0
|
4926 /* Restore this and inner groups' (if any) registers. */
|
|
4927 for (r = *p; r < *p + *(p + 1); r++)
|
|
4928 {
|
|
4929 regstart[r] = old_regstart[r];
|
|
4930
|
|
4931 /* xx why this test? */
|
|
4932 if (old_regend[r] >= regstart[r])
|
|
4933 regend[r] = old_regend[r];
|
183
|
4934 }
|
0
|
4935 }
|
|
4936 p1++;
|
|
4937 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
|
|
4938 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
|
|
4939
|
|
4940 goto fail;
|
|
4941 }
|
|
4942 }
|
183
|
4943
|
0
|
4944 /* Move past the register number and the inner group count. */
|
|
4945 p += 2;
|
|
4946 break;
|
|
4947
|
|
4948
|
|
4949 /* \<digit> has been turned into a `duplicate' command which is
|
|
4950 followed by the numeric value of <digit> as the register number. */
|
|
4951 case duplicate:
|
|
4952 {
|
203
|
4953 REGISTER CONST char *d2, *dend2;
|
0
|
4954 int regno = *p++; /* Get which register to match against. */
|
|
4955 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
|
|
4956
|
|
4957 /* Can't back reference a group which we've never matched. */
|
|
4958 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
|
|
4959 goto fail;
|
183
|
4960
|
0
|
4961 /* Where in input to try to start matching. */
|
|
4962 d2 = regstart[regno];
|
183
|
4963
|
0
|
4964 /* Where to stop matching; if both the place to start and
|
|
4965 the place to stop matching are in the same string, then
|
|
4966 set to the place to stop, otherwise, for now have to use
|
|
4967 the end of the first string. */
|
|
4968
|
183
|
4969 dend2 = ((FIRST_STRING_P (regstart[regno])
|
0
|
4970 == FIRST_STRING_P (regend[regno]))
|
|
4971 ? regend[regno] : end_match_1);
|
|
4972 for (;;)
|
|
4973 {
|
|
4974 /* If necessary, advance to next segment in register
|
|
4975 contents. */
|
|
4976 while (d2 == dend2)
|
|
4977 {
|
|
4978 if (dend2 == end_match_2) break;
|
|
4979 if (dend2 == regend[regno]) break;
|
|
4980
|
|
4981 /* End of string1 => advance to string2. */
|
|
4982 d2 = string2;
|
|
4983 dend2 = regend[regno];
|
|
4984 }
|
|
4985 /* At end of register contents => success */
|
|
4986 if (d2 == dend2) break;
|
|
4987
|
|
4988 /* If necessary, advance to next segment in data. */
|
|
4989 PREFETCH ();
|
|
4990
|
|
4991 /* How many characters left in this segment to match. */
|
|
4992 mcnt = dend - d;
|
183
|
4993
|
0
|
4994 /* Want how many consecutive characters we can match in
|
|
4995 one shot, so, if necessary, adjust the count. */
|
|
4996 if (mcnt > dend2 - d2)
|
|
4997 mcnt = dend2 - d2;
|
183
|
4998
|
0
|
4999 /* Compare that many; failure if mismatch, else move
|
|
5000 past them. */
|
183
|
5001 if (translate
|
0
|
5002 ? bcmp_translate ((unsigned char *) d,
|
183
|
5003 (unsigned char *) d2, mcnt, translate)
|
0
|
5004 : memcmp (d, d2, mcnt))
|
|
5005 goto fail;
|
|
5006 d += mcnt, d2 += mcnt;
|
|
5007
|
|
5008 /* Do this because we've match some characters. */
|
|
5009 SET_REGS_MATCHED ();
|
|
5010 }
|
|
5011 }
|
|
5012 break;
|
|
5013
|
|
5014
|
|
5015 /* begline matches the empty string at the beginning of the string
|
|
5016 (unless `not_bol' is set in `bufp'), and, if
|
|
5017 `newline_anchor' is set, after newlines. */
|
|
5018 case begline:
|
|
5019 DEBUG_PRINT1 ("EXECUTING begline.\n");
|
183
|
5020
|
0
|
5021 if (AT_STRINGS_BEG (d))
|
|
5022 {
|
|
5023 if (!bufp->not_bol) break;
|
|
5024 }
|
|
5025 else if (d[-1] == '\n' && bufp->newline_anchor)
|
|
5026 {
|
|
5027 break;
|
|
5028 }
|
|
5029 /* In all other cases, we fail. */
|
|
5030 goto fail;
|
|
5031
|
|
5032
|
|
5033 /* endline is the dual of begline. */
|
|
5034 case endline:
|
|
5035 DEBUG_PRINT1 ("EXECUTING endline.\n");
|
|
5036
|
|
5037 if (AT_STRINGS_END (d))
|
|
5038 {
|
|
5039 if (!bufp->not_eol) break;
|
|
5040 }
|
183
|
5041
|
0
|
5042 /* We have to ``prefetch'' the next character. */
|
|
5043 else if ((d == end1 ? *string2 : *d) == '\n'
|
|
5044 && bufp->newline_anchor)
|
|
5045 {
|
|
5046 break;
|
|
5047 }
|
|
5048 goto fail;
|
|
5049
|
|
5050
|
|
5051 /* Match at the very beginning of the data. */
|
|
5052 case begbuf:
|
|
5053 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
|
|
5054 if (AT_STRINGS_BEG (d))
|
|
5055 break;
|
|
5056 goto fail;
|
|
5057
|
|
5058
|
|
5059 /* Match at the very end of the data. */
|
|
5060 case endbuf:
|
|
5061 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
|
|
5062 if (AT_STRINGS_END (d))
|
|
5063 break;
|
|
5064 goto fail;
|
|
5065
|
|
5066
|
|
5067 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
|
|
5068 pushes NULL as the value for the string on the stack. Then
|
|
5069 `pop_failure_point' will keep the current value for the
|
|
5070 string, instead of restoring it. To see why, consider
|
|
5071 matching `foo\nbar' against `.*\n'. The .* matches the foo;
|
|
5072 then the . fails against the \n. But the next thing we want
|
|
5073 to do is match the \n against the \n; if we restored the
|
|
5074 string value, we would be back at the foo.
|
183
|
5075
|
0
|
5076 Because this is used only in specific cases, we don't need to
|
|
5077 check all the things that `on_failure_jump' does, to make
|
|
5078 sure the right things get saved on the stack. Hence we don't
|
|
5079 share its code. The only reason to push anything on the
|
|
5080 stack at all is that otherwise we would have to change
|
|
5081 `anychar's code to do something besides goto fail in this
|
|
5082 case; that seems worse than this. */
|
|
5083 case on_failure_keep_string_jump:
|
|
5084 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
|
183
|
5085
|
0
|
5086 EXTRACT_NUMBER_AND_INCR (mcnt, p);
|
175
|
5087 DEBUG_PRINT3 (" %d (to 0x%p):\n", mcnt, p + mcnt);
|
0
|
5088
|
185
|
5089 PUSH_FAILURE_POINT (p + mcnt, (char *) 0, -2);
|
0
|
5090 break;
|
|
5091
|
|
5092
|
|
5093 /* Uses of on_failure_jump:
|
183
|
5094
|
0
|
5095 Each alternative starts with an on_failure_jump that points
|
|
5096 to the beginning of the next alternative. Each alternative
|
|
5097 except the last ends with a jump that in effect jumps past
|
|
5098 the rest of the alternatives. (They really jump to the
|
|
5099 ending jump of the following alternative, because tensioning
|
|
5100 these jumps is a hassle.)
|
|
5101
|
|
5102 Repeats start with an on_failure_jump that points past both
|
|
5103 the repetition text and either the following jump or
|
|
5104 pop_failure_jump back to this on_failure_jump. */
|
|
5105 case on_failure_jump:
|
|
5106 on_failure:
|
|
5107 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
|
|
5108
|
|
5109 EXTRACT_NUMBER_AND_INCR (mcnt, p);
|
175
|
5110 DEBUG_PRINT3 (" %d (to 0x%p)", mcnt, p + mcnt);
|
0
|
5111
|
|
5112 /* If this on_failure_jump comes right before a group (i.e.,
|
|
5113 the original * applied to a group), save the information
|
|
5114 for that group and all inner ones, so that if we fail back
|
|
5115 to this point, the group's information will be correct.
|
|
5116 For example, in \(a*\)*\1, we need the preceding group,
|
|
5117 and in \(\(a*\)b*\)\2, we need the inner group. */
|
|
5118
|
|
5119 /* We can't use `p' to check ahead because we push
|
|
5120 a failure point to `p + mcnt' after we do this. */
|
|
5121 p1 = p;
|
|
5122
|
|
5123 /* We need to skip no_op's before we look for the
|
|
5124 start_memory in case this on_failure_jump is happening as
|
|
5125 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
|
|
5126 against aba. */
|
|
5127 while (p1 < pend && (re_opcode_t) *p1 == no_op)
|
|
5128 p1++;
|
|
5129
|
|
5130 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
|
|
5131 {
|
|
5132 /* We have a new highest active register now. This will
|
|
5133 get reset at the start_memory we are about to get to,
|
|
5134 but we will have saved all the registers relevant to
|
|
5135 this repetition op, as described above. */
|
|
5136 highest_active_reg = *(p1 + 1) + *(p1 + 2);
|
|
5137 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
|
|
5138 lowest_active_reg = *(p1 + 1);
|
|
5139 }
|
|
5140
|
|
5141 DEBUG_PRINT1 (":\n");
|
|
5142 PUSH_FAILURE_POINT (p + mcnt, d, -2);
|
|
5143 break;
|
|
5144
|
|
5145
|
|
5146 /* A smart repeat ends with `maybe_pop_jump'.
|
|
5147 We change it to either `pop_failure_jump' or `jump'. */
|
|
5148 case maybe_pop_jump:
|
|
5149 EXTRACT_NUMBER_AND_INCR (mcnt, p);
|
|
5150 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
|
|
5151 {
|
203
|
5152 REGISTER unsigned char *p2 = p;
|
0
|
5153
|
|
5154 /* Compare the beginning of the repeat with what in the
|
|
5155 pattern follows its end. If we can establish that there
|
|
5156 is nothing that they would both match, i.e., that we
|
|
5157 would have to backtrack because of (as in, e.g., `a*a')
|
|
5158 then we can change to pop_failure_jump, because we'll
|
|
5159 never have to backtrack.
|
183
|
5160
|
0
|
5161 This is not true in the case of alternatives: in
|
|
5162 `(a|ab)*' we do need to backtrack to the `ab' alternative
|
|
5163 (e.g., if the string was `ab'). But instead of trying to
|
|
5164 detect that here, the alternative has put on a dummy
|
|
5165 failure point which is what we will end up popping. */
|
|
5166
|
|
5167 /* Skip over open/close-group commands.
|
|
5168 If what follows this loop is a ...+ construct,
|
|
5169 look at what begins its body, since we will have to
|
|
5170 match at least one of that. */
|
|
5171 while (1)
|
|
5172 {
|
|
5173 if (p2 + 2 < pend
|
|
5174 && ((re_opcode_t) *p2 == stop_memory
|
|
5175 || (re_opcode_t) *p2 == start_memory))
|
|
5176 p2 += 3;
|
|
5177 else if (p2 + 6 < pend
|
|
5178 && (re_opcode_t) *p2 == dummy_failure_jump)
|
|
5179 p2 += 6;
|
|
5180 else
|
|
5181 break;
|
|
5182 }
|
|
5183
|
|
5184 p1 = p + mcnt;
|
|
5185 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
|
183
|
5186 to the `maybe_finalize_jump' of this case. Examine what
|
0
|
5187 follows. */
|
|
5188
|
|
5189 /* If we're at the end of the pattern, we can change. */
|
|
5190 if (p2 == pend)
|
|
5191 {
|
|
5192 /* Consider what happens when matching ":\(.*\)"
|
|
5193 against ":/". I don't really understand this code
|
|
5194 yet. */
|
|
5195 p[-3] = (unsigned char) pop_failure_jump;
|
|
5196 DEBUG_PRINT1
|
|
5197 (" End of pattern: change to `pop_failure_jump'.\n");
|
|
5198 }
|
|
5199
|
|
5200 else if ((re_opcode_t) *p2 == exactn
|
|
5201 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
|
|
5202 {
|
203
|
5203 REGISTER unsigned char c
|
0
|
5204 = *p2 == (unsigned char) endline ? '\n' : p2[2];
|
|
5205
|
|
5206 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
|
|
5207 {
|
|
5208 p[-3] = (unsigned char) pop_failure_jump;
|
|
5209 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
|
|
5210 c, p1[5]);
|
|
5211 }
|
183
|
5212
|
0
|
5213 else if ((re_opcode_t) p1[3] == charset
|
|
5214 || (re_opcode_t) p1[3] == charset_not)
|
|
5215 {
|
|
5216 int not = (re_opcode_t) p1[3] == charset_not;
|
183
|
5217
|
0
|
5218 if (c < (unsigned char) (p1[4] * BYTEWIDTH)
|
|
5219 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
|
|
5220 not = !not;
|
|
5221
|
|
5222 /* `not' is equal to 1 if c would match, which means
|
|
5223 that we can't change to pop_failure_jump. */
|
|
5224 if (!not)
|
|
5225 {
|
|
5226 p[-3] = (unsigned char) pop_failure_jump;
|
|
5227 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
|
|
5228 }
|
|
5229 }
|
|
5230 }
|
|
5231 else if ((re_opcode_t) *p2 == charset)
|
|
5232 {
|
|
5233 #ifdef DEBUG
|
203
|
5234 REGISTER unsigned char c
|
0
|
5235 = *p2 == (unsigned char) endline ? '\n' : p2[2];
|
|
5236 #endif
|
|
5237
|
|
5238 if ((re_opcode_t) p1[3] == exactn
|
102
|
5239 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
|
|
5240 && (p2[2 + p1[5] / BYTEWIDTH]
|
|
5241 & (1 << (p1[5] % BYTEWIDTH)))))
|
0
|
5242 {
|
|
5243 p[-3] = (unsigned char) pop_failure_jump;
|
|
5244 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
|
|
5245 c, p1[5]);
|
|
5246 }
|
183
|
5247
|
0
|
5248 else if ((re_opcode_t) p1[3] == charset_not)
|
|
5249 {
|
|
5250 int idx;
|
|
5251 /* We win if the charset_not inside the loop
|
|
5252 lists every character listed in the charset after. */
|
|
5253 for (idx = 0; idx < (int) p2[1]; idx++)
|
|
5254 if (! (p2[2 + idx] == 0
|
|
5255 || (idx < (int) p1[4]
|
|
5256 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
|
|
5257 break;
|
|
5258
|
|
5259 if (idx == p2[1])
|
|
5260 {
|
|
5261 p[-3] = (unsigned char) pop_failure_jump;
|
|
5262 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
|
|
5263 }
|
|
5264 }
|
|
5265 else if ((re_opcode_t) p1[3] == charset)
|
|
5266 {
|
|
5267 int idx;
|
|
5268 /* We win if the charset inside the loop
|
|
5269 has no overlap with the one after the loop. */
|
|
5270 for (idx = 0;
|
|
5271 idx < (int) p2[1] && idx < (int) p1[4];
|
|
5272 idx++)
|
|
5273 if ((p2[2 + idx] & p1[5 + idx]) != 0)
|
|
5274 break;
|
|
5275
|
|
5276 if (idx == p2[1] || idx == p1[4])
|
|
5277 {
|
|
5278 p[-3] = (unsigned char) pop_failure_jump;
|
|
5279 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
|
|
5280 }
|
|
5281 }
|
|
5282 }
|
|
5283 }
|
|
5284 p -= 2; /* Point at relative address again. */
|
|
5285 if ((re_opcode_t) p[-1] != pop_failure_jump)
|
|
5286 {
|
|
5287 p[-1] = (unsigned char) jump;
|
|
5288 DEBUG_PRINT1 (" Match => jump.\n");
|
|
5289 goto unconditional_jump;
|
|
5290 }
|
|
5291 /* Note fall through. */
|
|
5292
|
|
5293
|
|
5294 /* The end of a simple repeat has a pop_failure_jump back to
|
|
5295 its matching on_failure_jump, where the latter will push a
|
|
5296 failure point. The pop_failure_jump takes off failure
|
|
5297 points put on by this pop_failure_jump's matching
|
|
5298 on_failure_jump; we got through the pattern to here from the
|
|
5299 matching on_failure_jump, so didn't fail. */
|
|
5300 case pop_failure_jump:
|
|
5301 {
|
|
5302 /* We need to pass separate storage for the lowest and
|
|
5303 highest registers, even though we don't care about the
|
|
5304 actual values. Otherwise, we will restore only one
|
|
5305 register from the stack, since lowest will == highest in
|
|
5306 `pop_failure_point'. */
|
|
5307 unsigned dummy_low_reg, dummy_high_reg;
|
|
5308 unsigned char *pdummy;
|
272
|
5309 CONST char *sdummy = NULL;
|
0
|
5310
|
|
5311 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
|
|
5312 POP_FAILURE_POINT (sdummy, pdummy,
|
|
5313 dummy_low_reg, dummy_high_reg,
|
|
5314 reg_dummy, reg_dummy, reg_info_dummy);
|
|
5315 }
|
|
5316 /* Note fall through. */
|
|
5317
|
183
|
5318
|
0
|
5319 /* Unconditionally jump (without popping any failure points). */
|
|
5320 case jump:
|
|
5321 unconditional_jump:
|
|
5322 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
|
|
5323 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
|
|
5324 p += mcnt; /* Do the jump. */
|
175
|
5325 DEBUG_PRINT2 ("(to 0x%p).\n", p);
|
0
|
5326 break;
|
|
5327
|
183
|
5328
|
0
|
5329 /* We need this opcode so we can detect where alternatives end
|
|
5330 in `group_match_null_string_p' et al. */
|
|
5331 case jump_past_alt:
|
|
5332 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
|
|
5333 goto unconditional_jump;
|
|
5334
|
|
5335
|
|
5336 /* Normally, the on_failure_jump pushes a failure point, which
|
|
5337 then gets popped at pop_failure_jump. We will end up at
|
|
5338 pop_failure_jump, also, and with a pattern of, say, `a+', we
|
|
5339 are skipping over the on_failure_jump, so we have to push
|
|
5340 something meaningless for pop_failure_jump to pop. */
|
|
5341 case dummy_failure_jump:
|
|
5342 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
|
|
5343 /* It doesn't matter what we push for the string here. What
|
|
5344 the code at `fail' tests is the value for the pattern. */
|
185
|
5345 PUSH_FAILURE_POINT ((unsigned char *) 0, (char *) 0, -2);
|
0
|
5346 goto unconditional_jump;
|
|
5347
|
|
5348
|
|
5349 /* At the end of an alternative, we need to push a dummy failure
|
|
5350 point in case we are followed by a `pop_failure_jump', because
|
|
5351 we don't want the failure point for the alternative to be
|
|
5352 popped. For example, matching `(a|ab)*' against `aab'
|
|
5353 requires that we match the `ab' alternative. */
|
|
5354 case push_dummy_failure:
|
|
5355 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
|
|
5356 /* See comments just above at `dummy_failure_jump' about the
|
|
5357 two zeroes. */
|
185
|
5358 PUSH_FAILURE_POINT ((unsigned char *) 0, (char *) 0, -2);
|
0
|
5359 break;
|
|
5360
|
|
5361 /* Have to succeed matching what follows at least n times.
|
|
5362 After that, handle like `on_failure_jump'. */
|
183
|
5363 case succeed_n:
|
0
|
5364 EXTRACT_NUMBER (mcnt, p + 2);
|
|
5365 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
|
|
5366
|
|
5367 assert (mcnt >= 0);
|
|
5368 /* Originally, this is how many times we HAVE to succeed. */
|
|
5369 if (mcnt > 0)
|
|
5370 {
|
|
5371 mcnt--;
|
|
5372 p += 2;
|
|
5373 STORE_NUMBER_AND_INCR (p, mcnt);
|
175
|
5374 DEBUG_PRINT3 (" Setting 0x%p to %d.\n", p, mcnt);
|
0
|
5375 }
|
|
5376 else if (mcnt == 0)
|
|
5377 {
|
175
|
5378 DEBUG_PRINT2 (" Setting two bytes from 0x%p to no_op.\n", p+2);
|
0
|
5379 p[2] = (unsigned char) no_op;
|
|
5380 p[3] = (unsigned char) no_op;
|
|
5381 goto on_failure;
|
|
5382 }
|
|
5383 break;
|
183
|
5384
|
|
5385 case jump_n:
|
0
|
5386 EXTRACT_NUMBER (mcnt, p + 2);
|
|
5387 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
|
|
5388
|
|
5389 /* Originally, this is how many times we CAN jump. */
|
|
5390 if (mcnt)
|
|
5391 {
|
|
5392 mcnt--;
|
|
5393 STORE_NUMBER (p + 2, mcnt);
|
183
|
5394 goto unconditional_jump;
|
0
|
5395 }
|
|
5396 /* If don't have to jump any more, skip over the rest of command. */
|
183
|
5397 else
|
|
5398 p += 4;
|
0
|
5399 break;
|
183
|
5400
|
0
|
5401 case set_number_at:
|
|
5402 {
|
|
5403 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
|
|
5404
|
|
5405 EXTRACT_NUMBER_AND_INCR (mcnt, p);
|
|
5406 p1 = p + mcnt;
|
|
5407 EXTRACT_NUMBER_AND_INCR (mcnt, p);
|
175
|
5408 DEBUG_PRINT3 (" Setting 0x%p to %d.\n", p1, mcnt);
|
0
|
5409 STORE_NUMBER (p1, mcnt);
|
|
5410 break;
|
|
5411 }
|
|
5412
|
|
5413 case wordbound:
|
|
5414 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
|
|
5415 should_succeed = 1;
|
|
5416 matchwordbound:
|
|
5417 {
|
|
5418 /* XEmacs change */
|
|
5419 int result;
|
|
5420 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
|
|
5421 result = 1;
|
|
5422 else
|
|
5423 {
|
|
5424 CONST unsigned char *d_before =
|
|
5425 (CONST unsigned char *) POS_BEFORE_GAP_UNSAFE (d);
|
|
5426 CONST unsigned char *d_after =
|
|
5427 (CONST unsigned char *) POS_AFTER_GAP_UNSAFE (d);
|
|
5428 Emchar emch1, emch2;
|
|
5429
|
|
5430 DEC_CHARPTR (d_before);
|
|
5431 emch1 = charptr_emchar (d_before);
|
|
5432 emch2 = charptr_emchar (d_after);
|
|
5433 result = (WORDCHAR_P_UNSAFE (emch1) !=
|
|
5434 WORDCHAR_P_UNSAFE (emch2));
|
|
5435 }
|
|
5436 if (result == should_succeed)
|
|
5437 break;
|
|
5438 goto fail;
|
|
5439 }
|
|
5440
|
|
5441 case notwordbound:
|
|
5442 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
|
|
5443 should_succeed = 0;
|
|
5444 goto matchwordbound;
|
|
5445
|
|
5446 case wordbeg:
|
|
5447 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
|
|
5448 {
|
|
5449 /* XEmacs: this originally read:
|
|
5450
|
|
5451 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
|
|
5452 break;
|
|
5453
|
|
5454 */
|
|
5455 CONST unsigned char *dtmp =
|
|
5456 (CONST unsigned char *) POS_AFTER_GAP_UNSAFE (d);
|
|
5457 Emchar emch = charptr_emchar (dtmp);
|
|
5458 if (!WORDCHAR_P_UNSAFE (emch))
|
|
5459 goto fail;
|
|
5460 if (AT_STRINGS_BEG (d))
|
|
5461 break;
|
|
5462 dtmp = (CONST unsigned char *) POS_BEFORE_GAP_UNSAFE (d);
|
|
5463 DEC_CHARPTR (dtmp);
|
|
5464 emch = charptr_emchar (dtmp);
|
|
5465 if (!WORDCHAR_P_UNSAFE (emch))
|
|
5466 break;
|
|
5467 goto fail;
|
|
5468 }
|
|
5469
|
|
5470 case wordend:
|
|
5471 DEBUG_PRINT1 ("EXECUTING wordend.\n");
|
|
5472 {
|
|
5473 /* XEmacs: this originally read:
|
|
5474
|
|
5475 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
|
|
5476 && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
|
|
5477 break;
|
|
5478
|
|
5479 The or condition is incorrect (reversed).
|
|
5480 */
|
|
5481 CONST unsigned char *dtmp;
|
|
5482 Emchar emch;
|
|
5483 if (AT_STRINGS_BEG (d))
|
|
5484 goto fail;
|
|
5485 dtmp = (CONST unsigned char *) POS_BEFORE_GAP_UNSAFE (d);
|
|
5486 DEC_CHARPTR (dtmp);
|
|
5487 emch = charptr_emchar (dtmp);
|
|
5488 if (!WORDCHAR_P_UNSAFE (emch))
|
|
5489 goto fail;
|
|
5490 if (AT_STRINGS_END (d))
|
|
5491 break;
|
|
5492 dtmp = (CONST unsigned char *) POS_AFTER_GAP_UNSAFE (d);
|
|
5493 emch = charptr_emchar (dtmp);
|
|
5494 if (!WORDCHAR_P_UNSAFE (emch))
|
|
5495 break;
|
|
5496 goto fail;
|
|
5497 }
|
|
5498
|
|
5499 #ifdef emacs
|
|
5500 case before_dot:
|
|
5501 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
|
367
|
5502 if (!regex_emacs_buffer_p
|
|
5503 || (BUF_PTR_BYTE_POS (regex_emacs_buffer, (unsigned char *) d)
|
|
5504 >= BUF_PT (regex_emacs_buffer)))
|
0
|
5505 goto fail;
|
|
5506 break;
|
183
|
5507
|
0
|
5508 case at_dot:
|
|
5509 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
|
367
|
5510 if (!regex_emacs_buffer_p
|
|
5511 || (BUF_PTR_BYTE_POS (regex_emacs_buffer, (unsigned char *) d)
|
|
5512 != BUF_PT (regex_emacs_buffer)))
|
0
|
5513 goto fail;
|
|
5514 break;
|
183
|
5515
|
0
|
5516 case after_dot:
|
|
5517 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
|
367
|
5518 if (!regex_emacs_buffer_p
|
|
5519 || (BUF_PTR_BYTE_POS (regex_emacs_buffer, (unsigned char *) d)
|
|
5520 <= BUF_PT (regex_emacs_buffer)))
|
0
|
5521 goto fail;
|
|
5522 break;
|
|
5523 #if 0 /* not emacs19 */
|
|
5524 case at_dot:
|
|
5525 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
|
|
5526 if (BUF_PTR_BYTE_POS (regex_emacs_buffer, (unsigned char *) d) + 1
|
|
5527 != BUF_PT (regex_emacs_buffer))
|
|
5528 goto fail;
|
|
5529 break;
|
|
5530 #endif /* not emacs19 */
|
|
5531
|
|
5532 case syntaxspec:
|
|
5533 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
|
|
5534 mcnt = *p++;
|
|
5535 goto matchsyntax;
|
|
5536
|
|
5537 case wordchar:
|
|
5538 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
|
|
5539 mcnt = (int) Sword;
|
|
5540 matchsyntax:
|
|
5541 should_succeed = 1;
|
|
5542 matchornotsyntax:
|
|
5543 {
|
|
5544 int matches;
|
|
5545 Emchar emch;
|
|
5546
|
|
5547 PREFETCH ();
|
|
5548 emch = charptr_emchar ((CONST Bufbyte *) d);
|
70
|
5549 matches = (SYNTAX_UNSAFE
|
|
5550 (XCHAR_TABLE (regex_emacs_buffer->mirror_syntax_table),
|
|
5551 emch) == (enum syntaxcode) mcnt);
|
0
|
5552 INC_CHARPTR (d);
|
|
5553 if (matches != should_succeed)
|
|
5554 goto fail;
|
|
5555 SET_REGS_MATCHED ();
|
|
5556 }
|
|
5557 break;
|
|
5558
|
|
5559 case notsyntaxspec:
|
|
5560 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
|
|
5561 mcnt = *p++;
|
|
5562 goto matchnotsyntax;
|
|
5563
|
|
5564 case notwordchar:
|
|
5565 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
|
|
5566 mcnt = (int) Sword;
|
|
5567 matchnotsyntax:
|
|
5568 should_succeed = 0;
|
|
5569 goto matchornotsyntax;
|
|
5570
|
104
|
5571 #ifdef MULE
|
|
5572 /* 97/2/17 jhod Mule category code patch */
|
|
5573 case categoryspec:
|
|
5574 should_succeed = 1;
|
|
5575 matchornotcategory:
|
|
5576 {
|
|
5577 Emchar emch;
|
|
5578
|
|
5579 mcnt = *p++;
|
|
5580 PREFETCH ();
|
|
5581 emch = charptr_emchar ((CONST Bufbyte *) d);
|
|
5582 INC_CHARPTR (d);
|
110
|
5583 if (check_category_char(emch, regex_emacs_buffer->category_table,
|
|
5584 mcnt, should_succeed))
|
104
|
5585 goto fail;
|
|
5586 SET_REGS_MATCHED ();
|
|
5587 }
|
|
5588 break;
|
183
|
5589
|
104
|
5590 case notcategoryspec:
|
|
5591 should_succeed = 0;
|
|
5592 goto matchornotcategory;
|
|
5593 /* end of category patch */
|
|
5594 #endif /* MULE */
|
0
|
5595 #else /* not emacs */
|
|
5596 case wordchar:
|
|
5597 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
|
|
5598 PREFETCH ();
|
|
5599 if (!WORDCHAR_P_UNSAFE ((int) (*d)))
|
|
5600 goto fail;
|
|
5601 SET_REGS_MATCHED ();
|
|
5602 d++;
|
|
5603 break;
|
183
|
5604
|
0
|
5605 case notwordchar:
|
|
5606 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
|
|
5607 PREFETCH ();
|
|
5608 if (!WORDCHAR_P_UNSAFE ((int) (*d)))
|
|
5609 goto fail;
|
|
5610 SET_REGS_MATCHED ();
|
|
5611 d++;
|
|
5612 break;
|
|
5613 #endif /* not emacs */
|
183
|
5614
|
0
|
5615 default:
|
|
5616 abort ();
|
|
5617 }
|
|
5618 continue; /* Successfully executed one pattern command; keep going. */
|
|
5619
|
|
5620
|
|
5621 /* We goto here if a matching operation fails. */
|
|
5622 fail:
|
|
5623 if (!FAIL_STACK_EMPTY ())
|
|
5624 { /* A restart point is known. Restore to that state. */
|
|
5625 DEBUG_PRINT1 ("\nFAIL:\n");
|
|
5626 POP_FAILURE_POINT (d, p,
|
|
5627 lowest_active_reg, highest_active_reg,
|
|
5628 regstart, regend, reg_info);
|
|
5629
|
|
5630 /* If this failure point is a dummy, try the next one. */
|
|
5631 if (!p)
|
|
5632 goto fail;
|
|
5633
|
|
5634 /* If we failed to the end of the pattern, don't examine *p. */
|
|
5635 assert (p <= pend);
|
|
5636 if (p < pend)
|
|
5637 {
|
|
5638 boolean is_a_jump_n = false;
|
183
|
5639
|
0
|
5640 /* If failed to a backwards jump that's part of a repetition
|
|
5641 loop, need to pop this failure point and use the next one. */
|
|
5642 switch ((re_opcode_t) *p)
|
|
5643 {
|
|
5644 case jump_n:
|
|
5645 is_a_jump_n = true;
|
|
5646 case maybe_pop_jump:
|
|
5647 case pop_failure_jump:
|
|
5648 case jump:
|
|
5649 p1 = p + 1;
|
|
5650 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
|
183
|
5651 p1 += mcnt;
|
0
|
5652
|
|
5653 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
|
|
5654 || (!is_a_jump_n
|
|
5655 && (re_opcode_t) *p1 == on_failure_jump))
|
|
5656 goto fail;
|
|
5657 break;
|
|
5658 default:
|
|
5659 /* do nothing */ ;
|
|
5660 }
|
|
5661 }
|
|
5662
|
|
5663 if (d >= string1 && d <= end1)
|
|
5664 dend = end_match_1;
|
|
5665 }
|
|
5666 else
|
|
5667 break; /* Matching at this starting point really fails. */
|
|
5668 } /* for (;;) */
|
|
5669
|
|
5670 if (best_regs_set)
|
|
5671 goto restore_best_regs;
|
|
5672
|
|
5673 FREE_VARIABLES ();
|
|
5674
|
|
5675 return -1; /* Failure to match. */
|
|
5676 } /* re_match_2 */
|
|
5677
|
|
5678 /* Subroutine definitions for re_match_2. */
|
|
5679
|
|
5680
|
|
5681 /* We are passed P pointing to a register number after a start_memory.
|
183
|
5682
|
0
|
5683 Return true if the pattern up to the corresponding stop_memory can
|
|
5684 match the empty string, and false otherwise.
|
183
|
5685
|
0
|
5686 If we find the matching stop_memory, sets P to point to one past its number.
|
|
5687 Otherwise, sets P to an undefined byte less than or equal to END.
|
|
5688
|
|
5689 We don't handle duplicates properly (yet). */
|
|
5690
|
|
5691 static boolean
|
|
5692 group_match_null_string_p (unsigned char **p, unsigned char *end,
|
|
5693 register_info_type *reg_info)
|
|
5694 {
|
|
5695 int mcnt;
|
|
5696 /* Point to after the args to the start_memory. */
|
|
5697 unsigned char *p1 = *p + 2;
|
183
|
5698
|
0
|
5699 while (p1 < end)
|
|
5700 {
|
|
5701 /* Skip over opcodes that can match nothing, and return true or
|
|
5702 false, as appropriate, when we get to one that can't, or to the
|
|
5703 matching stop_memory. */
|
183
|
5704
|
0
|
5705 switch ((re_opcode_t) *p1)
|
|
5706 {
|
|
5707 /* Could be either a loop or a series of alternatives. */
|
|
5708 case on_failure_jump:
|
|
5709 p1++;
|
|
5710 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
|
183
|
5711
|
0
|
5712 /* If the next operation is not a jump backwards in the
|
|
5713 pattern. */
|
|
5714
|
|
5715 if (mcnt >= 0)
|
|
5716 {
|
|
5717 /* Go through the on_failure_jumps of the alternatives,
|
|
5718 seeing if any of the alternatives cannot match nothing.
|
|
5719 The last alternative starts with only a jump,
|
|
5720 whereas the rest start with on_failure_jump and end
|
|
5721 with a jump, e.g., here is the pattern for `a|b|c':
|
|
5722
|
|
5723 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
|
|
5724 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
|
183
|
5725 /exactn/1/c
|
0
|
5726
|
|
5727 So, we have to first go through the first (n-1)
|
|
5728 alternatives and then deal with the last one separately. */
|
|
5729
|
|
5730
|
|
5731 /* Deal with the first (n-1) alternatives, which start
|
|
5732 with an on_failure_jump (see above) that jumps to right
|
|
5733 past a jump_past_alt. */
|
|
5734
|
|
5735 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
|
|
5736 {
|
|
5737 /* `mcnt' holds how many bytes long the alternative
|
|
5738 is, including the ending `jump_past_alt' and
|
|
5739 its number. */
|
|
5740
|
183
|
5741 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
|
0
|
5742 reg_info))
|
|
5743 return false;
|
|
5744
|
|
5745 /* Move to right after this alternative, including the
|
|
5746 jump_past_alt. */
|
183
|
5747 p1 += mcnt;
|
0
|
5748
|
|
5749 /* Break if it's the beginning of an n-th alternative
|
|
5750 that doesn't begin with an on_failure_jump. */
|
|
5751 if ((re_opcode_t) *p1 != on_failure_jump)
|
|
5752 break;
|
183
|
5753
|
0
|
5754 /* Still have to check that it's not an n-th
|
|
5755 alternative that starts with an on_failure_jump. */
|
|
5756 p1++;
|
|
5757 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
|
|
5758 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
|
|
5759 {
|
|
5760 /* Get to the beginning of the n-th alternative. */
|
|
5761 p1 -= 3;
|
|
5762 break;
|
|
5763 }
|
|
5764 }
|
|
5765
|
|
5766 /* Deal with the last alternative: go back and get number
|
|
5767 of the `jump_past_alt' just before it. `mcnt' contains
|
|
5768 the length of the alternative. */
|
|
5769 EXTRACT_NUMBER (mcnt, p1 - 2);
|
|
5770
|
|
5771 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
|
|
5772 return false;
|
|
5773
|
|
5774 p1 += mcnt; /* Get past the n-th alternative. */
|
|
5775 } /* if mcnt > 0 */
|
|
5776 break;
|
|
5777
|
183
|
5778
|
0
|
5779 case stop_memory:
|
|
5780 assert (p1[1] == **p);
|
|
5781 *p = p1 + 2;
|
|
5782 return true;
|
|
5783
|
183
|
5784
|
|
5785 default:
|
0
|
5786 if (!common_op_match_null_string_p (&p1, end, reg_info))
|
|
5787 return false;
|
|
5788 }
|
|
5789 } /* while p1 < end */
|
|
5790
|
|
5791 return false;
|
|
5792 } /* group_match_null_string_p */
|
|
5793
|
|
5794
|
|
5795 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
|
|
5796 It expects P to be the first byte of a single alternative and END one
|
|
5797 byte past the last. The alternative can contain groups. */
|
183
|
5798
|
0
|
5799 static boolean
|
|
5800 alt_match_null_string_p (unsigned char *p, unsigned char *end,
|
|
5801 register_info_type *reg_info)
|
|
5802 {
|
|
5803 int mcnt;
|
|
5804 unsigned char *p1 = p;
|
183
|
5805
|
0
|
5806 while (p1 < end)
|
|
5807 {
|
183
|
5808 /* Skip over opcodes that can match nothing, and break when we get
|
0
|
5809 to one that can't. */
|
183
|
5810
|
0
|
5811 switch ((re_opcode_t) *p1)
|
|
5812 {
|
|
5813 /* It's a loop. */
|
|
5814 case on_failure_jump:
|
|
5815 p1++;
|
|
5816 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
|
|
5817 p1 += mcnt;
|
|
5818 break;
|
183
|
5819
|
|
5820 default:
|
0
|
5821 if (!common_op_match_null_string_p (&p1, end, reg_info))
|
|
5822 return false;
|
|
5823 }
|
|
5824 } /* while p1 < end */
|
|
5825
|
|
5826 return true;
|
|
5827 } /* alt_match_null_string_p */
|
|
5828
|
|
5829
|
|
5830 /* Deals with the ops common to group_match_null_string_p and
|
183
|
5831 alt_match_null_string_p.
|
|
5832
|
0
|
5833 Sets P to one after the op and its arguments, if any. */
|
|
5834
|
|
5835 static boolean
|
|
5836 common_op_match_null_string_p (unsigned char **p, unsigned char *end,
|
|
5837 register_info_type *reg_info)
|
|
5838 {
|
|
5839 int mcnt;
|
|
5840 boolean ret;
|
|
5841 int reg_no;
|
|
5842 unsigned char *p1 = *p;
|
|
5843
|
|
5844 switch ((re_opcode_t) *p1++)
|
|
5845 {
|
|
5846 case no_op:
|
|
5847 case begline:
|
|
5848 case endline:
|
|
5849 case begbuf:
|
|
5850 case endbuf:
|
|
5851 case wordbeg:
|
|
5852 case wordend:
|
|
5853 case wordbound:
|
|
5854 case notwordbound:
|
|
5855 #ifdef emacs
|
|
5856 case before_dot:
|
|
5857 case at_dot:
|
|
5858 case after_dot:
|
|
5859 #endif
|
|
5860 break;
|
|
5861
|
|
5862 case start_memory:
|
|
5863 reg_no = *p1;
|
|
5864 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
|
|
5865 ret = group_match_null_string_p (&p1, end, reg_info);
|
183
|
5866
|
0
|
5867 /* Have to set this here in case we're checking a group which
|
|
5868 contains a group and a back reference to it. */
|
|
5869
|
|
5870 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
|
|
5871 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
|
|
5872
|
|
5873 if (!ret)
|
|
5874 return false;
|
|
5875 break;
|
183
|
5876
|
0
|
5877 /* If this is an optimized succeed_n for zero times, make the jump. */
|
|
5878 case jump:
|
|
5879 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
|
|
5880 if (mcnt >= 0)
|
|
5881 p1 += mcnt;
|
|
5882 else
|
|
5883 return false;
|
|
5884 break;
|
|
5885
|
|
5886 case succeed_n:
|
|
5887 /* Get to the number of times to succeed. */
|
183
|
5888 p1 += 2;
|
0
|
5889 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
|
|
5890
|
|
5891 if (mcnt == 0)
|
|
5892 {
|
|
5893 p1 -= 4;
|
|
5894 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
|
|
5895 p1 += mcnt;
|
|
5896 }
|
|
5897 else
|
|
5898 return false;
|
|
5899 break;
|
|
5900
|
183
|
5901 case duplicate:
|
0
|
5902 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
|
|
5903 return false;
|
|
5904 break;
|
|
5905
|
|
5906 case set_number_at:
|
|
5907 p1 += 4;
|
|
5908
|
|
5909 default:
|
|
5910 /* All other opcodes mean we cannot match the empty string. */
|
|
5911 return false;
|
|
5912 }
|
|
5913
|
|
5914 *p = p1;
|
|
5915 return true;
|
|
5916 } /* common_op_match_null_string_p */
|
|
5917
|
|
5918
|
|
5919 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
|
|
5920 bytes; nonzero otherwise. */
|
183
|
5921
|
0
|
5922 static int
|
|
5923 bcmp_translate (CONST unsigned char *s1, CONST unsigned char *s2,
|
203
|
5924 REGISTER int len, char *translate)
|
0
|
5925 {
|
203
|
5926 REGISTER CONST unsigned char *p1 = s1, *p2 = s2;
|
0
|
5927 while (len)
|
|
5928 {
|
|
5929 if (translate[*p1++] != translate[*p2++]) return 1;
|
|
5930 len--;
|
|
5931 }
|
|
5932 return 0;
|
|
5933 }
|
|
5934
|
|
5935 /* Entry points for GNU code. */
|
|
5936
|
|
5937 /* re_compile_pattern is the GNU regular expression compiler: it
|
|
5938 compiles PATTERN (of length SIZE) and puts the result in BUFP.
|
|
5939 Returns 0 if the pattern was valid, otherwise an error string.
|
183
|
5940
|
0
|
5941 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
|
|
5942 are set in BUFP on entry.
|
183
|
5943
|
0
|
5944 We call regex_compile to do the actual compilation. */
|
|
5945
|
|
5946 CONST char *
|
|
5947 re_compile_pattern (CONST char *pattern, int length,
|
|
5948 struct re_pattern_buffer *bufp)
|
|
5949 {
|
|
5950 reg_errcode_t ret;
|
183
|
5951
|
0
|
5952 /* GNU code is written to assume at least RE_NREGS registers will be set
|
|
5953 (and at least one extra will be -1). */
|
|
5954 bufp->regs_allocated = REGS_UNALLOCATED;
|
183
|
5955
|
0
|
5956 /* And GNU code determines whether or not to get register information
|
|
5957 by passing null for the REGS argument to re_match, etc., not by
|
|
5958 setting no_sub. */
|
|
5959 bufp->no_sub = 0;
|
183
|
5960
|
0
|
5961 /* Match anchors at newline. */
|
|
5962 bufp->newline_anchor = 1;
|
183
|
5963
|
0
|
5964 ret = regex_compile (pattern, length, re_syntax_options, bufp);
|
|
5965
|
|
5966 if (!ret)
|
|
5967 return NULL;
|
|
5968 return gettext (re_error_msgid[(int) ret]);
|
183
|
5969 }
|
0
|
5970
|
|
5971 /* Entry points compatible with 4.2 BSD regex library. We don't define
|
|
5972 them unless specifically requested. */
|
|
5973
|
|
5974 #ifdef _REGEX_RE_COMP
|
|
5975
|
|
5976 /* BSD has one and only one pattern buffer. */
|
|
5977 static struct re_pattern_buffer re_comp_buf;
|
|
5978
|
|
5979 char *
|
|
5980 re_comp (CONST char *s)
|
|
5981 {
|
|
5982 reg_errcode_t ret;
|
183
|
5983
|
0
|
5984 if (!s)
|
|
5985 {
|
|
5986 if (!re_comp_buf.buffer)
|
|
5987 return gettext ("No previous regular expression");
|
|
5988 return 0;
|
|
5989 }
|
|
5990
|
|
5991 if (!re_comp_buf.buffer)
|
|
5992 {
|
|
5993 re_comp_buf.buffer = (unsigned char *) malloc (200);
|
|
5994 if (re_comp_buf.buffer == NULL)
|
|
5995 return gettext (re_error_msgid[(int) REG_ESPACE]);
|
|
5996 re_comp_buf.allocated = 200;
|
|
5997
|
|
5998 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
|
|
5999 if (re_comp_buf.fastmap == NULL)
|
|
6000 return gettext (re_error_msgid[(int) REG_ESPACE]);
|
|
6001 }
|
|
6002
|
|
6003 /* Since `re_exec' always passes NULL for the `regs' argument, we
|
|
6004 don't need to initialize the pattern buffer fields which affect it. */
|
|
6005
|
|
6006 /* Match anchors at newlines. */
|
|
6007 re_comp_buf.newline_anchor = 1;
|
|
6008
|
|
6009 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
|
183
|
6010
|
0
|
6011 if (!ret)
|
|
6012 return NULL;
|
|
6013
|
|
6014 /* Yes, we're discarding `CONST' here if !HAVE_LIBINTL. */
|
|
6015 return (char *) gettext (re_error_msgid[(int) ret]);
|
|
6016 }
|
|
6017
|
|
6018
|
|
6019 int
|
|
6020 re_exec (CONST char *s)
|
|
6021 {
|
|
6022 CONST int len = strlen (s);
|
|
6023 return
|
|
6024 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
|
|
6025 }
|
|
6026 #endif /* _REGEX_RE_COMP */
|
|
6027
|
|
6028 /* POSIX.2 functions. Don't define these for Emacs. */
|
|
6029
|
|
6030 #ifndef emacs
|
|
6031
|
|
6032 /* regcomp takes a regular expression as a string and compiles it.
|
|
6033
|
|
6034 PREG is a regex_t *. We do not expect any fields to be initialized,
|
|
6035 since POSIX says we shouldn't. Thus, we set
|
|
6036
|
|
6037 `buffer' to the compiled pattern;
|
|
6038 `used' to the length of the compiled pattern;
|
|
6039 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
|
|
6040 REG_EXTENDED bit in CFLAGS is set; otherwise, to
|
|
6041 RE_SYNTAX_POSIX_BASIC;
|
|
6042 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
|
|
6043 `fastmap' and `fastmap_accurate' to zero;
|
|
6044 `re_nsub' to the number of subexpressions in PATTERN.
|
|
6045
|
|
6046 PATTERN is the address of the pattern string.
|
|
6047
|
|
6048 CFLAGS is a series of bits which affect compilation.
|
|
6049
|
|
6050 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
|
|
6051 use POSIX basic syntax.
|
|
6052
|
|
6053 If REG_NEWLINE is set, then . and [^...] don't match newline.
|
|
6054 Also, regexec will try a match beginning after every newline.
|
|
6055
|
|
6056 If REG_ICASE is set, then we considers upper- and lowercase
|
|
6057 versions of letters to be equivalent when matching.
|
|
6058
|
|
6059 If REG_NOSUB is set, then when PREG is passed to regexec, that
|
|
6060 routine will report only success or failure, and nothing about the
|
|
6061 registers.
|
|
6062
|
|
6063 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
|
|
6064 the return codes and their meanings.) */
|
|
6065
|
|
6066 int
|
|
6067 regcomp (regex_t *preg, CONST char *pattern, int cflags)
|
|
6068 {
|
|
6069 reg_errcode_t ret;
|
|
6070 unsigned syntax
|
|
6071 = (cflags & REG_EXTENDED) ?
|
|
6072 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
|
|
6073
|
|
6074 /* regex_compile will allocate the space for the compiled pattern. */
|
|
6075 preg->buffer = 0;
|
|
6076 preg->allocated = 0;
|
|
6077 preg->used = 0;
|
183
|
6078
|
0
|
6079 /* Don't bother to use a fastmap when searching. This simplifies the
|
|
6080 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
|
|
6081 characters after newlines into the fastmap. This way, we just try
|
|
6082 every character. */
|
|
6083 preg->fastmap = 0;
|
183
|
6084
|
0
|
6085 if (cflags & REG_ICASE)
|
|
6086 {
|
|
6087 unsigned i;
|
183
|
6088
|
0
|
6089 preg->translate = (char *) malloc (CHAR_SET_SIZE);
|
|
6090 if (preg->translate == NULL)
|
|
6091 return (int) REG_ESPACE;
|
|
6092
|
|
6093 /* Map uppercase characters to corresponding lowercase ones. */
|
|
6094 for (i = 0; i < CHAR_SET_SIZE; i++)
|
|
6095 preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
|
|
6096 }
|
|
6097 else
|
|
6098 preg->translate = NULL;
|
|
6099
|
|
6100 /* If REG_NEWLINE is set, newlines are treated differently. */
|
|
6101 if (cflags & REG_NEWLINE)
|
|
6102 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
|
|
6103 syntax &= ~RE_DOT_NEWLINE;
|
|
6104 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
|
|
6105 /* It also changes the matching behavior. */
|
|
6106 preg->newline_anchor = 1;
|
|
6107 }
|
|
6108 else
|
|
6109 preg->newline_anchor = 0;
|
|
6110
|
|
6111 preg->no_sub = !!(cflags & REG_NOSUB);
|
|
6112
|
183
|
6113 /* POSIX says a null character in the pattern terminates it, so we
|
0
|
6114 can use strlen here in compiling the pattern. */
|
|
6115 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
|
183
|
6116
|
0
|
6117 /* POSIX doesn't distinguish between an unmatched open-group and an
|
|
6118 unmatched close-group: both are REG_EPAREN. */
|
|
6119 if (ret == REG_ERPAREN) ret = REG_EPAREN;
|
183
|
6120
|
0
|
6121 return (int) ret;
|
|
6122 }
|
|
6123
|
|
6124
|
|
6125 /* regexec searches for a given pattern, specified by PREG, in the
|
|
6126 string STRING.
|
183
|
6127
|
0
|
6128 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
|
|
6129 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
|
|
6130 least NMATCH elements, and we set them to the offsets of the
|
|
6131 corresponding matched substrings.
|
183
|
6132
|
0
|
6133 EFLAGS specifies `execution flags' which affect matching: if
|
|
6134 REG_NOTBOL is set, then ^ does not match at the beginning of the
|
|
6135 string; if REG_NOTEOL is set, then $ does not match at the end.
|
183
|
6136
|
0
|
6137 We return 0 if we find a match and REG_NOMATCH if not. */
|
|
6138
|
|
6139 int
|
|
6140 regexec (CONST regex_t *preg, CONST char *string, size_t nmatch,
|
|
6141 regmatch_t pmatch[], int eflags)
|
|
6142 {
|
|
6143 int ret;
|
|
6144 struct re_registers regs;
|
|
6145 regex_t private_preg;
|
|
6146 int len = strlen (string);
|
|
6147 boolean want_reg_info = !preg->no_sub && nmatch > 0;
|
|
6148
|
|
6149 private_preg = *preg;
|
183
|
6150
|
0
|
6151 private_preg.not_bol = !!(eflags & REG_NOTBOL);
|
|
6152 private_preg.not_eol = !!(eflags & REG_NOTEOL);
|
183
|
6153
|
0
|
6154 /* The user has told us exactly how many registers to return
|
|
6155 information about, via `nmatch'. We have to pass that on to the
|
|
6156 matching routines. */
|
|
6157 private_preg.regs_allocated = REGS_FIXED;
|
183
|
6158
|
0
|
6159 if (want_reg_info)
|
|
6160 {
|
|
6161 regs.num_regs = nmatch;
|
|
6162 regs.start = TALLOC (nmatch, regoff_t);
|
|
6163 regs.end = TALLOC (nmatch, regoff_t);
|
|
6164 if (regs.start == NULL || regs.end == NULL)
|
|
6165 return (int) REG_NOMATCH;
|
|
6166 }
|
|
6167
|
|
6168 /* Perform the searching operation. */
|
|
6169 ret = re_search (&private_preg, string, len,
|
|
6170 /* start: */ 0, /* range: */ len,
|
|
6171 want_reg_info ? ®s : (struct re_registers *) 0);
|
183
|
6172
|
0
|
6173 /* Copy the register information to the POSIX structure. */
|
|
6174 if (want_reg_info)
|
|
6175 {
|
|
6176 if (ret >= 0)
|
|
6177 {
|
|
6178 unsigned r;
|
|
6179
|
|
6180 for (r = 0; r < nmatch; r++)
|
|
6181 {
|
|
6182 pmatch[r].rm_so = regs.start[r];
|
|
6183 pmatch[r].rm_eo = regs.end[r];
|
|
6184 }
|
|
6185 }
|
|
6186
|
|
6187 /* If we needed the temporary register info, free the space now. */
|
|
6188 free (regs.start);
|
|
6189 free (regs.end);
|
|
6190 }
|
|
6191
|
|
6192 /* We want zero return to mean success, unlike `re_search'. */
|
|
6193 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
|
|
6194 }
|
|
6195
|
|
6196
|
|
6197 /* Returns a message corresponding to an error code, ERRCODE, returned
|
|
6198 from either regcomp or regexec. We don't use PREG here. */
|
|
6199
|
|
6200 size_t
|
|
6201 regerror (int errcode, CONST regex_t *preg, char *errbuf, size_t errbuf_size)
|
|
6202 {
|
|
6203 CONST char *msg;
|
|
6204 size_t msg_size;
|
|
6205
|
|
6206 if (errcode < 0
|
|
6207 || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
|
183
|
6208 /* Only error codes returned by the rest of the code should be passed
|
0
|
6209 to this routine. If we are given anything else, or if other regex
|
|
6210 code generates an invalid error code, then the program has a bug.
|
|
6211 Dump core so we can fix it. */
|
|
6212 abort ();
|
|
6213
|
|
6214 msg = gettext (re_error_msgid[errcode]);
|
|
6215
|
|
6216 msg_size = strlen (msg) + 1; /* Includes the null. */
|
183
|
6217
|
0
|
6218 if (errbuf_size != 0)
|
|
6219 {
|
|
6220 if (msg_size > errbuf_size)
|
|
6221 {
|
|
6222 strncpy (errbuf, msg, errbuf_size - 1);
|
|
6223 errbuf[errbuf_size - 1] = 0;
|
|
6224 }
|
|
6225 else
|
|
6226 strcpy (errbuf, msg);
|
|
6227 }
|
|
6228
|
|
6229 return msg_size;
|
|
6230 }
|
|
6231
|
|
6232
|
|
6233 /* Free dynamically allocated space used by PREG. */
|
|
6234
|
|
6235 void
|
|
6236 regfree (regex_t *preg)
|
|
6237 {
|
|
6238 if (preg->buffer != NULL)
|
|
6239 free (preg->buffer);
|
|
6240 preg->buffer = NULL;
|
183
|
6241
|
0
|
6242 preg->allocated = 0;
|
|
6243 preg->used = 0;
|
|
6244
|
|
6245 if (preg->fastmap != NULL)
|
|
6246 free (preg->fastmap);
|
|
6247 preg->fastmap = NULL;
|
|
6248 preg->fastmap_accurate = 0;
|
|
6249
|
|
6250 if (preg->translate != NULL)
|
|
6251 free (preg->translate);
|
|
6252 preg->translate = NULL;
|
|
6253 }
|
|
6254
|
|
6255 #endif /* not emacs */
|
|
6256
|
|
6257 /*
|
|
6258 Local variables:
|
|
6259 make-backup-files: t
|
|
6260 version-control: t
|
|
6261 trim-versions-without-asking: nil
|
|
6262 End:
|
|
6263 */
|