Mercurial > hg > xemacs-beta
annotate src/mule-ccl.c @ 5554:a42e686a01bf
Automated merge with file:///Sources/xemacs-21.5-checked-out
| author | Aidan Kehoe <kehoea@parhasard.net> |
|---|---|
| date | Wed, 24 Aug 2011 11:07:26 +0100 |
| parents | 4dee0387b9de |
| children | 56144c8593a8 |
| rev | line source |
|---|---|
| 428 | 1 /* CCL (Code Conversion Language) interpreter. |
| 444 | 2 Copyright (C) 1995, 1997 Electrotechnical Laboratory, JAPAN. |
| 826 | 3 Copyright (C) 2002 Ben Wing. |
| 428 | 4 Licensed to the Free Software Foundation. |
| 5 | |
| 613 | 6 This file is part of XEmacs. |
| 428 | 7 |
|
5402
308d34e9f07d
Changed bulk of GPLv2 or later files identified by script
Mats Lidell <matsl@xemacs.org>
parents:
5183
diff
changeset
|
8 XEmacs is free software: you can redistribute it and/or modify it |
|
308d34e9f07d
Changed bulk of GPLv2 or later files identified by script
Mats Lidell <matsl@xemacs.org>
parents:
5183
diff
changeset
|
9 under the terms of the GNU General Public License as published by the |
|
308d34e9f07d
Changed bulk of GPLv2 or later files identified by script
Mats Lidell <matsl@xemacs.org>
parents:
5183
diff
changeset
|
10 Free Software Foundation, either version 3 of the License, or (at your |
|
308d34e9f07d
Changed bulk of GPLv2 or later files identified by script
Mats Lidell <matsl@xemacs.org>
parents:
5183
diff
changeset
|
11 option) any later version. |
| 428 | 12 |
|
5402
308d34e9f07d
Changed bulk of GPLv2 or later files identified by script
Mats Lidell <matsl@xemacs.org>
parents:
5183
diff
changeset
|
13 XEmacs is distributed in the hope that it will be useful, but WITHOUT |
|
308d34e9f07d
Changed bulk of GPLv2 or later files identified by script
Mats Lidell <matsl@xemacs.org>
parents:
5183
diff
changeset
|
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
308d34e9f07d
Changed bulk of GPLv2 or later files identified by script
Mats Lidell <matsl@xemacs.org>
parents:
5183
diff
changeset
|
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
308d34e9f07d
Changed bulk of GPLv2 or later files identified by script
Mats Lidell <matsl@xemacs.org>
parents:
5183
diff
changeset
|
16 for more details. |
| 428 | 17 |
| 18 You should have received a copy of the GNU General Public License | |
|
5402
308d34e9f07d
Changed bulk of GPLv2 or later files identified by script
Mats Lidell <matsl@xemacs.org>
parents:
5183
diff
changeset
|
19 along with XEmacs. If not, see <http://www.gnu.org/licenses/>. */ |
| 428 | 20 |
| 444 | 21 /* Synched up with : FSF Emacs 21.0.90 except TranslateCharacter */ |
| 428 | 22 |
| 23 #include <config.h> | |
| 771 | 24 #include "lisp.h" |
| 444 | 25 |
| 428 | 26 #include "buffer.h" |
| 771 | 27 #include "charset.h" |
| 428 | 28 #include "mule-ccl.h" |
| 29 #include "file-coding.h" | |
| 4072 | 30 #include "elhash.h" |
| 428 | 31 |
| 565 | 32 Lisp_Object Qccl_error; |
| 33 | |
| 428 | 34 /* This contains all code conversion map available to CCL. */ |
| 35 Lisp_Object Vcode_conversion_map_vector; | |
| 36 | |
| 444 | 37 /* This symbol is a property which associates with ccl program vector. |
| 3452 | 38 Ex: (get 'ccl-big5-encoder 'ccl-program) returns ccl program vector. |
| 39 Moved to general-slots.h. */ | |
| 40 /* Lisp_Object Qccl_program; */ | |
| 428 | 41 |
| 42 /* These symbols are properties which associate with code conversion | |
| 43 map and their ID respectively. */ | |
| 44 Lisp_Object Qcode_conversion_map; | |
| 45 Lisp_Object Qcode_conversion_map_id; | |
| 46 | |
| 47 /* Symbols of ccl program have this property, a value of the property | |
| 444 | 48 is an index for Vccl_program_table. */ |
| 428 | 49 Lisp_Object Qccl_program_idx; |
| 50 | |
| 444 | 51 /* Table of registered CCL programs. Each element is a vector of |
| 52 NAME, CCL_PROG, and RESOLVEDP where NAME (symbol) is the name of | |
| 53 the program, CCL_PROG (vector) is the compiled code of the program, | |
| 54 RESOLVEDP (t or nil) is the flag to tell if symbols in CCL_PROG is | |
| 55 already resolved to index numbers or not. */ | |
| 428 | 56 Lisp_Object Vccl_program_table; |
| 57 | |
| 4072 | 58 /* Vector of registered hash tables for translation. */ |
| 59 Lisp_Object Vtranslation_hash_table_vector; | |
| 60 | |
| 61 /* Return a hash table of id number ID. */ | |
| 62 #define GET_HASH_TABLE(id) \ | |
| 63 (XHASH_TABLE (XCDR(XVECTOR(Vtranslation_hash_table_vector)->contents[(id)]))) | |
| 64 /* Copied from fns.c. */ | |
| 65 #define HASH_VALUE(H, IDX) AREF ((H)->key_and_value, 2 * (IDX) + 1) | |
| 66 | |
| 428 | 67 /* CCL (Code Conversion Language) is a simple language which has |
| 68 operations on one input buffer, one output buffer, and 7 registers. | |
| 69 The syntax of CCL is described in `ccl.el'. Emacs Lisp function | |
| 70 `ccl-compile' compiles a CCL program and produces a CCL code which | |
| 71 is a vector of integers. The structure of this vector is as | |
| 72 follows: The 1st element: buffer-magnification, a factor for the | |
| 73 size of output buffer compared with the size of input buffer. The | |
| 74 2nd element: address of CCL code to be executed when encountered | |
| 75 with end of input stream. The 3rd and the remaining elements: CCL | |
| 76 codes. */ | |
| 77 | |
| 78 /* Header of CCL compiled code */ | |
| 79 #define CCL_HEADER_BUF_MAG 0 | |
| 80 #define CCL_HEADER_EOF 1 | |
| 81 #define CCL_HEADER_MAIN 2 | |
| 82 | |
| 83 /* CCL code is a sequence of 28-bit non-negative integers (i.e. the | |
| 84 MSB is always 0), each contains CCL command and/or arguments in the | |
| 85 following format: | |
| 86 | |
| 87 |----------------- integer (28-bit) ------------------| | |
| 88 |------- 17-bit ------|- 3-bit --|- 3-bit --|- 5-bit -| | |
| 89 |--constant argument--|-register-|-register-|-command-| | |
| 90 ccccccccccccccccc RRR rrr XXXXX | |
| 91 or | |
| 92 |------- relative address -------|-register-|-command-| | |
| 93 cccccccccccccccccccc rrr XXXXX | |
| 94 or | |
| 95 |------------- constant or other args ----------------| | |
| 96 cccccccccccccccccccccccccccc | |
| 97 | |
| 98 where, `cc...c' is a non-negative integer indicating constant value | |
| 99 (the left most `c' is always 0) or an absolute jump address, `RRR' | |
| 100 and `rrr' are CCL register number, `XXXXX' is one of the following | |
| 101 CCL commands. */ | |
| 102 | |
| 103 /* CCL commands | |
| 104 | |
| 105 Each comment fields shows one or more lines for command syntax and | |
| 106 the following lines for semantics of the command. In semantics, IC | |
| 107 stands for Instruction Counter. */ | |
| 108 | |
| 109 #define CCL_SetRegister 0x00 /* Set register a register value: | |
| 110 1:00000000000000000RRRrrrXXXXX | |
| 111 ------------------------------ | |
| 112 reg[rrr] = reg[RRR]; | |
| 113 */ | |
| 114 | |
| 115 #define CCL_SetShortConst 0x01 /* Set register a short constant value: | |
| 116 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX | |
| 117 ------------------------------ | |
| 118 reg[rrr] = CCCCCCCCCCCCCCCCCCC; | |
| 119 */ | |
| 120 | |
| 121 #define CCL_SetConst 0x02 /* Set register a constant value: | |
| 122 1:00000000000000000000rrrXXXXX | |
| 123 2:CONSTANT | |
| 124 ------------------------------ | |
| 125 reg[rrr] = CONSTANT; | |
| 126 IC++; | |
| 127 */ | |
| 128 | |
| 129 #define CCL_SetArray 0x03 /* Set register an element of array: | |
| 130 1:CCCCCCCCCCCCCCCCCRRRrrrXXXXX | |
| 131 2:ELEMENT[0] | |
| 132 3:ELEMENT[1] | |
| 133 ... | |
| 134 ------------------------------ | |
| 135 if (0 <= reg[RRR] < CC..C) | |
| 136 reg[rrr] = ELEMENT[reg[RRR]]; | |
| 137 IC += CC..C; | |
| 138 */ | |
| 139 | |
| 140 #define CCL_Jump 0x04 /* Jump: | |
| 141 1:A--D--D--R--E--S--S-000XXXXX | |
| 142 ------------------------------ | |
| 143 IC += ADDRESS; | |
| 144 */ | |
| 145 | |
| 146 /* Note: If CC..C is greater than 0, the second code is omitted. */ | |
| 147 | |
| 148 #define CCL_JumpCond 0x05 /* Jump conditional: | |
| 149 1:A--D--D--R--E--S--S-rrrXXXXX | |
| 150 ------------------------------ | |
| 151 if (!reg[rrr]) | |
| 152 IC += ADDRESS; | |
| 153 */ | |
| 154 | |
| 155 | |
| 156 #define CCL_WriteRegisterJump 0x06 /* Write register and jump: | |
| 157 1:A--D--D--R--E--S--S-rrrXXXXX | |
| 158 ------------------------------ | |
| 159 write (reg[rrr]); | |
| 160 IC += ADDRESS; | |
| 161 */ | |
| 162 | |
| 163 #define CCL_WriteRegisterReadJump 0x07 /* Write register, read, and jump: | |
| 164 1:A--D--D--R--E--S--S-rrrXXXXX | |
| 165 2:A--D--D--R--E--S--S-rrrYYYYY | |
| 166 ----------------------------- | |
| 167 write (reg[rrr]); | |
| 168 IC++; | |
| 169 read (reg[rrr]); | |
| 170 IC += ADDRESS; | |
| 171 */ | |
| 172 /* Note: If read is suspended, the resumed execution starts from the | |
| 173 second code (YYYYY == CCL_ReadJump). */ | |
| 174 | |
| 175 #define CCL_WriteConstJump 0x08 /* Write constant and jump: | |
| 176 1:A--D--D--R--E--S--S-000XXXXX | |
| 444 | 177 2:CONST |
| 428 | 178 ------------------------------ |
| 444 | 179 write (CONST); |
| 428 | 180 IC += ADDRESS; |
| 181 */ | |
| 182 | |
| 183 #define CCL_WriteConstReadJump 0x09 /* Write constant, read, and jump: | |
| 184 1:A--D--D--R--E--S--S-rrrXXXXX | |
| 444 | 185 2:CONST |
| 428 | 186 3:A--D--D--R--E--S--S-rrrYYYYY |
| 187 ----------------------------- | |
| 444 | 188 write (CONST); |
| 428 | 189 IC += 2; |
| 190 read (reg[rrr]); | |
| 191 IC += ADDRESS; | |
| 192 */ | |
| 193 /* Note: If read is suspended, the resumed execution starts from the | |
| 194 second code (YYYYY == CCL_ReadJump). */ | |
| 195 | |
| 196 #define CCL_WriteStringJump 0x0A /* Write string and jump: | |
| 197 1:A--D--D--R--E--S--S-000XXXXX | |
| 198 2:LENGTH | |
| 199 3:0000STRIN[0]STRIN[1]STRIN[2] | |
| 200 ... | |
| 201 ------------------------------ | |
| 202 write_string (STRING, LENGTH); | |
| 203 IC += ADDRESS; | |
| 204 */ | |
| 205 | |
| 206 #define CCL_WriteArrayReadJump 0x0B /* Write an array element, read, and jump: | |
| 207 1:A--D--D--R--E--S--S-rrrXXXXX | |
| 208 2:LENGTH | |
| 209 3:ELEMENET[0] | |
| 210 4:ELEMENET[1] | |
| 211 ... | |
| 212 N:A--D--D--R--E--S--S-rrrYYYYY | |
| 213 ------------------------------ | |
| 214 if (0 <= reg[rrr] < LENGTH) | |
| 215 write (ELEMENT[reg[rrr]]); | |
| 216 IC += LENGTH + 2; (... pointing at N+1) | |
| 217 read (reg[rrr]); | |
| 218 IC += ADDRESS; | |
| 219 */ | |
| 220 /* Note: If read is suspended, the resumed execution starts from the | |
| 221 Nth code (YYYYY == CCL_ReadJump). */ | |
| 222 | |
| 223 #define CCL_ReadJump 0x0C /* Read and jump: | |
| 224 1:A--D--D--R--E--S--S-rrrYYYYY | |
| 225 ----------------------------- | |
| 226 read (reg[rrr]); | |
| 227 IC += ADDRESS; | |
| 228 */ | |
| 229 | |
| 230 #define CCL_Branch 0x0D /* Jump by branch table: | |
| 231 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX | |
| 232 2:A--D--D--R--E-S-S[0]000XXXXX | |
| 233 3:A--D--D--R--E-S-S[1]000XXXXX | |
| 234 ... | |
| 235 ------------------------------ | |
| 236 if (0 <= reg[rrr] < CC..C) | |
| 237 IC += ADDRESS[reg[rrr]]; | |
| 238 else | |
| 239 IC += ADDRESS[CC..C]; | |
| 240 */ | |
| 241 | |
| 242 #define CCL_ReadRegister 0x0E /* Read bytes into registers: | |
| 243 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX | |
| 244 2:CCCCCCCCCCCCCCCCCCCCrrrXXXXX | |
| 245 ... | |
| 246 ------------------------------ | |
| 247 while (CCC--) | |
| 248 read (reg[rrr]); | |
| 249 */ | |
| 250 | |
| 251 #define CCL_WriteExprConst 0x0F /* write result of expression: | |
| 252 1:00000OPERATION000RRR000XXXXX | |
| 253 2:CONSTANT | |
| 254 ------------------------------ | |
| 255 write (reg[RRR] OPERATION CONSTANT); | |
| 256 IC++; | |
| 257 */ | |
| 258 | |
| 259 /* Note: If the Nth read is suspended, the resumed execution starts | |
| 260 from the Nth code. */ | |
| 261 | |
| 262 #define CCL_ReadBranch 0x10 /* Read one byte into a register, | |
| 263 and jump by branch table: | |
| 264 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX | |
| 265 2:A--D--D--R--E-S-S[0]000XXXXX | |
| 266 3:A--D--D--R--E-S-S[1]000XXXXX | |
| 267 ... | |
| 268 ------------------------------ | |
| 269 read (read[rrr]); | |
| 270 if (0 <= reg[rrr] < CC..C) | |
| 271 IC += ADDRESS[reg[rrr]]; | |
| 272 else | |
| 273 IC += ADDRESS[CC..C]; | |
| 274 */ | |
| 275 | |
| 276 #define CCL_WriteRegister 0x11 /* Write registers: | |
| 277 1:CCCCCCCCCCCCCCCCCCCrrrXXXXX | |
| 278 2:CCCCCCCCCCCCCCCCCCCrrrXXXXX | |
| 279 ... | |
| 280 ------------------------------ | |
| 281 while (CCC--) | |
| 282 write (reg[rrr]); | |
| 283 ... | |
| 284 */ | |
| 285 | |
| 286 /* Note: If the Nth write is suspended, the resumed execution | |
| 287 starts from the Nth code. */ | |
| 288 | |
| 289 #define CCL_WriteExprRegister 0x12 /* Write result of expression | |
| 290 1:00000OPERATIONRrrRRR000XXXXX | |
| 291 ------------------------------ | |
| 292 write (reg[RRR] OPERATION reg[Rrr]); | |
| 293 */ | |
| 294 | |
| 295 #define CCL_Call 0x13 /* Call the CCL program whose ID is | |
| 444 | 296 CC..C or cc..c. |
| 297 1:CCCCCCCCCCCCCCCCCCCCFFFXXXXX | |
| 298 [2:00000000cccccccccccccccccccc] | |
| 428 | 299 ------------------------------ |
| 444 | 300 if (FFF) |
| 301 call (cc..c) | |
| 302 IC++; | |
| 303 else | |
| 304 call (CC..C) | |
| 428 | 305 */ |
| 306 | |
| 307 #define CCL_WriteConstString 0x14 /* Write a constant or a string: | |
| 308 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX | |
| 309 [2:0000STRIN[0]STRIN[1]STRIN[2]] | |
| 310 [...] | |
| 311 ----------------------------- | |
| 312 if (!rrr) | |
| 313 write (CC..C) | |
| 314 else | |
| 315 write_string (STRING, CC..C); | |
| 316 IC += (CC..C + 2) / 3; | |
| 317 */ | |
| 318 | |
| 319 #define CCL_WriteArray 0x15 /* Write an element of array: | |
| 320 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX | |
| 321 2:ELEMENT[0] | |
| 322 3:ELEMENT[1] | |
| 323 ... | |
| 324 ------------------------------ | |
| 325 if (0 <= reg[rrr] < CC..C) | |
| 326 write (ELEMENT[reg[rrr]]); | |
| 327 IC += CC..C; | |
| 328 */ | |
| 329 | |
| 330 #define CCL_End 0x16 /* Terminate: | |
| 331 1:00000000000000000000000XXXXX | |
| 332 ------------------------------ | |
| 333 terminate (); | |
| 334 */ | |
| 335 | |
| 336 /* The following two codes execute an assignment arithmetic/logical | |
| 337 operation. The form of the operation is like REG OP= OPERAND. */ | |
| 338 | |
| 339 #define CCL_ExprSelfConst 0x17 /* REG OP= constant: | |
| 340 1:00000OPERATION000000rrrXXXXX | |
| 341 2:CONSTANT | |
| 342 ------------------------------ | |
| 343 reg[rrr] OPERATION= CONSTANT; | |
| 344 */ | |
| 345 | |
| 346 #define CCL_ExprSelfReg 0x18 /* REG1 OP= REG2: | |
| 347 1:00000OPERATION000RRRrrrXXXXX | |
| 348 ------------------------------ | |
| 349 reg[rrr] OPERATION= reg[RRR]; | |
| 350 */ | |
| 351 | |
| 352 /* The following codes execute an arithmetic/logical operation. The | |
| 353 form of the operation is like REG_X = REG_Y OP OPERAND2. */ | |
| 354 | |
| 355 #define CCL_SetExprConst 0x19 /* REG_X = REG_Y OP constant: | |
| 356 1:00000OPERATION000RRRrrrXXXXX | |
| 357 2:CONSTANT | |
| 358 ------------------------------ | |
| 359 reg[rrr] = reg[RRR] OPERATION CONSTANT; | |
| 360 IC++; | |
| 361 */ | |
| 362 | |
| 363 #define CCL_SetExprReg 0x1A /* REG1 = REG2 OP REG3: | |
| 364 1:00000OPERATIONRrrRRRrrrXXXXX | |
| 365 ------------------------------ | |
| 366 reg[rrr] = reg[RRR] OPERATION reg[Rrr]; | |
| 367 */ | |
| 368 | |
| 369 #define CCL_JumpCondExprConst 0x1B /* Jump conditional according to | |
| 370 an operation on constant: | |
| 371 1:A--D--D--R--E--S--S-rrrXXXXX | |
| 372 2:OPERATION | |
| 373 3:CONSTANT | |
| 374 ----------------------------- | |
| 375 reg[7] = reg[rrr] OPERATION CONSTANT; | |
| 376 if (!(reg[7])) | |
| 377 IC += ADDRESS; | |
| 378 else | |
| 379 IC += 2 | |
| 380 */ | |
| 381 | |
| 382 #define CCL_JumpCondExprReg 0x1C /* Jump conditional according to | |
| 383 an operation on register: | |
| 384 1:A--D--D--R--E--S--S-rrrXXXXX | |
| 385 2:OPERATION | |
| 386 3:RRR | |
| 387 ----------------------------- | |
| 388 reg[7] = reg[rrr] OPERATION reg[RRR]; | |
| 389 if (!reg[7]) | |
| 390 IC += ADDRESS; | |
| 391 else | |
| 392 IC += 2; | |
| 393 */ | |
| 394 | |
| 395 #define CCL_ReadJumpCondExprConst 0x1D /* Read and jump conditional according | |
| 396 to an operation on constant: | |
| 397 1:A--D--D--R--E--S--S-rrrXXXXX | |
| 398 2:OPERATION | |
| 399 3:CONSTANT | |
| 400 ----------------------------- | |
| 401 read (reg[rrr]); | |
| 402 reg[7] = reg[rrr] OPERATION CONSTANT; | |
| 403 if (!reg[7]) | |
| 404 IC += ADDRESS; | |
| 405 else | |
| 406 IC += 2; | |
| 407 */ | |
| 408 | |
| 409 #define CCL_ReadJumpCondExprReg 0x1E /* Read and jump conditional according | |
| 410 to an operation on register: | |
| 411 1:A--D--D--R--E--S--S-rrrXXXXX | |
| 412 2:OPERATION | |
| 413 3:RRR | |
| 414 ----------------------------- | |
| 415 read (reg[rrr]); | |
| 416 reg[7] = reg[rrr] OPERATION reg[RRR]; | |
| 417 if (!reg[7]) | |
| 418 IC += ADDRESS; | |
| 419 else | |
| 420 IC += 2; | |
| 421 */ | |
| 422 | |
| 456 | 423 #define CCL_Extension 0x1F /* Extended CCL code |
| 428 | 424 1:ExtendedCOMMNDRrrRRRrrrXXXXX |
| 444 | 425 2:ARGUMENT |
| 428 | 426 3:... |
| 427 ------------------------------ | |
| 428 extended_command (rrr,RRR,Rrr,ARGS) | |
| 429 */ | |
| 430 | |
| 442 | 431 /* |
| 428 | 432 Here after, Extended CCL Instructions. |
| 433 Bit length of extended command is 14. | |
| 434 Therefore, the instruction code range is 0..16384(0x3fff). | |
| 435 */ | |
| 436 | |
| 437 /* Read a multibyte characeter. | |
| 438 A code point is stored into reg[rrr]. A charset ID is stored into | |
| 439 reg[RRR]. */ | |
| 440 | |
| 441 #define CCL_ReadMultibyteChar2 0x00 /* Read Multibyte Character | |
| 442 1:ExtendedCOMMNDRrrRRRrrrXXXXX */ | |
| 443 | |
| 444 /* Write a multibyte character. | |
| 445 Write a character whose code point is reg[rrr] and the charset ID | |
| 446 is reg[RRR]. */ | |
| 447 | |
| 448 #define CCL_WriteMultibyteChar2 0x01 /* Write Multibyte Character | |
| 449 1:ExtendedCOMMNDRrrRRRrrrXXXXX */ | |
| 450 | |
| 451 /* Translate a character whose code point is reg[rrr] and the charset | |
| 452 ID is reg[RRR] by a translation table whose ID is reg[Rrr]. | |
| 453 | |
| 454 A translated character is set in reg[rrr] (code point) and reg[RRR] | |
| 455 (charset ID). */ | |
| 456 | |
| 457 #define CCL_TranslateCharacter 0x02 /* Translate a multibyte character | |
| 458 1:ExtendedCOMMNDRrrRRRrrrXXXXX */ | |
| 459 | |
| 460 /* Translate a character whose code point is reg[rrr] and the charset | |
| 461 ID is reg[RRR] by a translation table whose ID is ARGUMENT. | |
| 462 | |
| 463 A translated character is set in reg[rrr] (code point) and reg[RRR] | |
| 464 (charset ID). */ | |
| 465 | |
| 466 #define CCL_TranslateCharacterConstTbl 0x03 /* Translate a multibyte character | |
| 467 1:ExtendedCOMMNDRrrRRRrrrXXXXX | |
| 468 2:ARGUMENT(Translation Table ID) | |
| 469 */ | |
| 3439 | 470 /* Translate a character whose code point is reg[rrr] and charset ID is |
| 471 reg[RRR], into its Unicode code point, which will be written into | |
| 472 reg[rrr]. */ | |
| 473 | |
| 474 #define CCL_MuleToUnicode 0x04 | |
| 475 | |
| 476 /* Translate a Unicode code point, in reg[rrr], into a Mule character, | |
| 477 writing the charset ID into reg[RRR] and the code point into reg[Rrr]. */ | |
| 478 | |
| 479 #define CCL_UnicodeToMule 0x05 | |
| 428 | 480 |
| 481 /* Iterate looking up MAPs for reg[rrr] starting from the Nth (N = | |
| 482 reg[RRR]) MAP until some value is found. | |
| 483 | |
| 484 Each MAP is a Lisp vector whose element is number, nil, t, or | |
| 485 lambda. | |
| 486 If the element is nil, ignore the map and proceed to the next map. | |
| 487 If the element is t or lambda, finish without changing reg[rrr]. | |
| 488 If the element is a number, set reg[rrr] to the number and finish. | |
| 489 | |
| 444 | 490 Detail of the map structure is described in the comment for |
| 428 | 491 CCL_MapMultiple below. */ |
| 492 | |
| 493 #define CCL_IterateMultipleMap 0x10 /* Iterate multiple maps | |
| 494 1:ExtendedCOMMNDXXXRRRrrrXXXXX | |
| 495 2:NUMBER of MAPs | |
| 496 3:MAP-ID1 | |
| 497 4:MAP-ID2 | |
| 498 ... | |
| 442 | 499 */ |
| 428 | 500 |
| 501 /* Map the code in reg[rrr] by MAPs starting from the Nth (N = | |
| 502 reg[RRR]) map. | |
| 503 | |
| 504 MAPs are supplied in the succeeding CCL codes as follows: | |
| 505 | |
| 506 When CCL program gives this nested structure of map to this command: | |
| 507 ((MAP-ID11 | |
| 508 MAP-ID12 | |
| 509 (MAP-ID121 MAP-ID122 MAP-ID123) | |
| 510 MAP-ID13) | |
| 511 (MAP-ID21 | |
| 512 (MAP-ID211 (MAP-ID2111) MAP-ID212) | |
| 513 MAP-ID22)), | |
| 444 | 514 the compiled CCL code has this sequence: |
| 428 | 515 CCL_MapMultiple (CCL code of this command) |
| 516 16 (total number of MAPs and SEPARATORs) | |
| 517 -7 (1st SEPARATOR) | |
| 518 MAP-ID11 | |
| 519 MAP-ID12 | |
| 520 -3 (2nd SEPARATOR) | |
| 521 MAP-ID121 | |
| 522 MAP-ID122 | |
| 523 MAP-ID123 | |
| 524 MAP-ID13 | |
| 525 -7 (3rd SEPARATOR) | |
| 526 MAP-ID21 | |
| 527 -4 (4th SEPARATOR) | |
| 528 MAP-ID211 | |
| 529 -1 (5th SEPARATOR) | |
| 530 MAP_ID2111 | |
| 531 MAP-ID212 | |
| 532 MAP-ID22 | |
| 533 | |
| 534 A value of each SEPARATOR follows this rule: | |
| 535 MAP-SET := SEPARATOR [(MAP-ID | MAP-SET)]+ | |
| 536 SEPARATOR := -(number of MAP-IDs and SEPARATORs in the MAP-SET) | |
| 537 | |
| 538 (*)....Nest level of MAP-SET must not be over than MAX_MAP_SET_LEVEL. | |
| 539 | |
| 540 When some map fails to map (i.e. it doesn't have a value for | |
| 541 reg[rrr]), the mapping is treated as identity. | |
| 542 | |
| 543 The mapping is iterated for all maps in each map set (set of maps | |
| 544 separated by SEPARATOR) except in the case that lambda is | |
| 545 encountered. More precisely, the mapping proceeds as below: | |
| 546 | |
| 547 At first, VAL0 is set to reg[rrr], and it is translated by the | |
| 548 first map to VAL1. Then, VAL1 is translated by the next map to | |
| 549 VAL2. This mapping is iterated until the last map is used. The | |
| 444 | 550 result of the mapping is the last value of VAL?. When the mapping |
| 551 process reached to the end of the map set, it moves to the next | |
| 552 map set. If the next does not exit, the mapping process terminates, | |
| 553 and regard the last value as a result. | |
| 428 | 554 |
| 555 But, when VALm is mapped to VALn and VALn is not a number, the | |
| 444 | 556 mapping proceeds as follows: |
| 428 | 557 |
| 558 If VALn is nil, the lastest map is ignored and the mapping of VALm | |
| 444 | 559 proceeds to the next map. |
| 428 | 560 |
| 561 In VALn is t, VALm is reverted to reg[rrr] and the mapping of VALm | |
| 444 | 562 proceeds to the next map. |
| 428 | 563 |
| 444 | 564 If VALn is lambda, move to the next map set like reaching to the |
| 565 end of the current map set. | |
| 566 | |
|
5384
3889ef128488
Fix misspelled words, and some grammar, across the entire source tree.
Jerry James <james@xemacs.org>
parents:
5307
diff
changeset
|
567 If VALn is a symbol, call the CCL program referred to by it. |
| 444 | 568 Then, use reg[rrr] as a mapped value except for -1, -2 and -3. |
| 569 Such special values are regarded as nil, t, and lambda respectively. | |
| 428 | 570 |
| 571 Each map is a Lisp vector of the following format (a) or (b): | |
| 572 (a)......[STARTPOINT VAL1 VAL2 ...] | |
| 573 (b)......[t VAL STARTPOINT ENDPOINT], | |
| 574 where | |
| 575 STARTPOINT is an offset to be used for indexing a map, | |
| 576 ENDPOINT is a maximum index number of a map, | |
| 442 | 577 VAL and VALn is a number, nil, t, or lambda. |
| 428 | 578 |
| 579 Valid index range of a map of type (a) is: | |
| 580 STARTPOINT <= index < STARTPOINT + map_size - 1 | |
| 581 Valid index range of a map of type (b) is: | |
| 582 STARTPOINT <= index < ENDPOINT */ | |
| 583 | |
| 584 #define CCL_MapMultiple 0x11 /* Mapping by multiple code conversion maps | |
| 585 1:ExtendedCOMMNDXXXRRRrrrXXXXX | |
| 586 2:N-2 | |
| 587 3:SEPARATOR_1 (< 0) | |
| 588 4:MAP-ID_1 | |
| 589 5:MAP-ID_2 | |
| 590 ... | |
| 591 M:SEPARATOR_x (< 0) | |
| 592 M+1:MAP-ID_y | |
| 593 ... | |
| 594 N:SEPARATOR_z (< 0) | |
| 595 */ | |
| 444 | 596 #define MAX_MAP_SET_LEVEL 30 |
| 428 | 597 |
| 598 typedef struct | |
| 599 { | |
| 600 int rest_length; | |
| 601 int orig_val; | |
| 602 } tr_stack; | |
| 603 | |
| 604 static tr_stack mapping_stack[MAX_MAP_SET_LEVEL]; | |
| 605 static tr_stack *mapping_stack_pointer; | |
| 444 | 606 |
| 607 /* If this variable is non-zero, it indicates the stack_idx | |
| 608 of immediately called by CCL_MapMultiple. */ | |
| 450 | 609 static int stack_idx_of_map_multiple; |
| 444 | 610 |
| 611 #define PUSH_MAPPING_STACK(restlen, orig) \ | |
| 612 do { \ | |
| 613 mapping_stack_pointer->rest_length = (restlen); \ | |
| 614 mapping_stack_pointer->orig_val = (orig); \ | |
| 615 mapping_stack_pointer++; \ | |
| 616 } while (0) | |
| 617 | |
| 618 #define POP_MAPPING_STACK(restlen, orig) \ | |
| 619 do { \ | |
| 620 mapping_stack_pointer--; \ | |
| 621 (restlen) = mapping_stack_pointer->rest_length; \ | |
| 622 (orig) = mapping_stack_pointer->orig_val; \ | |
| 623 } while (0) | |
| 428 | 624 |
| 444 | 625 #define CCL_CALL_FOR_MAP_INSTRUCTION(symbol, ret_ic) \ |
| 626 do { \ | |
| 627 struct ccl_program called_ccl; \ | |
|
4745
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
628 /* We shouldn't ever call setup_ccl_program on a vector in \ |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
629 this context: */ \ |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
630 text_checking_assert (SYMBOLP (symbol)); \ |
| 444 | 631 if (stack_idx >= 256 \ |
| 632 || (setup_ccl_program (&called_ccl, (symbol)) != 0)) \ | |
| 633 { \ | |
| 634 if (stack_idx > 0) \ | |
| 635 { \ | |
| 636 ccl_prog = ccl_prog_stack_struct[0].ccl_prog; \ | |
| 637 ic = ccl_prog_stack_struct[0].ic; \ | |
| 4193 | 638 eof_ic = ccl_prog_stack_struct[0].eof_ic; \ |
| 444 | 639 } \ |
| 640 CCL_INVALID_CMD; \ | |
| 641 } \ | |
| 642 ccl_prog_stack_struct[stack_idx].ccl_prog = ccl_prog; \ | |
| 643 ccl_prog_stack_struct[stack_idx].ic = (ret_ic); \ | |
| 4193 | 644 ccl_prog_stack_struct[stack_idx].eof_ic = eof_ic; \ |
| 444 | 645 stack_idx++; \ |
| 646 ccl_prog = called_ccl.prog; \ | |
| 647 ic = CCL_HEADER_MAIN; \ | |
| 4193 | 648 eof_ic = XINT (ccl_prog[CCL_HEADER_EOF]); \ |
| 456 | 649 /* The "if (1)" prevents warning \ |
| 650 "end-of loop code not reached" */ \ | |
| 651 if (1) goto ccl_repeat; \ | |
| 444 | 652 } while (0) |
| 428 | 653 |
| 654 #define CCL_MapSingle 0x12 /* Map by single code conversion map | |
| 655 1:ExtendedCOMMNDXXXRRRrrrXXXXX | |
| 656 2:MAP-ID | |
| 657 ------------------------------ | |
| 658 Map reg[rrr] by MAP-ID. | |
| 659 If some valid mapping is found, | |
| 660 set reg[rrr] to the result, | |
| 661 else | |
| 662 set reg[RRR] to -1. | |
| 663 */ | |
| 664 | |
| 4072 | 665 #define CCL_LookupIntConstTbl 0x13 /* Lookup multibyte character by |
| 666 integer key. Afterwards R7 set | |
| 667 to 1 iff lookup succeeded. | |
| 668 1:ExtendedCOMMNDRrrRRRXXXXXXXX | |
| 669 2:ARGUMENT(Hash table ID) */ | |
| 670 | |
| 671 #define CCL_LookupCharConstTbl 0x14 /* Lookup integer by multibyte | |
| 672 character key. Afterwards R7 set | |
| 673 to 1 iff lookup succeeded. | |
| 674 1:ExtendedCOMMNDRrrRRRrrrXXXXX | |
| 675 2:ARGUMENT(Hash table ID) */ | |
| 676 | |
| 677 | |
| 428 | 678 /* CCL arithmetic/logical operators. */ |
| 679 #define CCL_PLUS 0x00 /* X = Y + Z */ | |
| 680 #define CCL_MINUS 0x01 /* X = Y - Z */ | |
| 681 #define CCL_MUL 0x02 /* X = Y * Z */ | |
| 682 #define CCL_DIV 0x03 /* X = Y / Z */ | |
| 683 #define CCL_MOD 0x04 /* X = Y % Z */ | |
| 684 #define CCL_AND 0x05 /* X = Y & Z */ | |
| 685 #define CCL_OR 0x06 /* X = Y | Z */ | |
| 686 #define CCL_XOR 0x07 /* X = Y ^ Z */ | |
| 687 #define CCL_LSH 0x08 /* X = Y << Z */ | |
| 688 #define CCL_RSH 0x09 /* X = Y >> Z */ | |
| 689 #define CCL_LSH8 0x0A /* X = (Y << 8) | Z */ | |
| 690 #define CCL_RSH8 0x0B /* X = Y >> 8, r[7] = Y & 0xFF */ | |
| 691 #define CCL_DIVMOD 0x0C /* X = Y / Z, r[7] = Y % Z */ | |
| 692 #define CCL_LS 0x10 /* X = (X < Y) */ | |
| 693 #define CCL_GT 0x11 /* X = (X > Y) */ | |
| 694 #define CCL_EQ 0x12 /* X = (X == Y) */ | |
| 695 #define CCL_LE 0x13 /* X = (X <= Y) */ | |
| 696 #define CCL_GE 0x14 /* X = (X >= Y) */ | |
| 697 #define CCL_NE 0x15 /* X = (X != Y) */ | |
| 698 | |
| 699 #define CCL_DECODE_SJIS 0x16 /* X = HIGHER_BYTE (DE-SJIS (Y, Z)) | |
| 700 r[7] = LOWER_BYTE (DE-SJIS (Y, Z)) */ | |
| 701 #define CCL_ENCODE_SJIS 0x17 /* X = HIGHER_BYTE (SJIS (Y, Z)) | |
| 702 r[7] = LOWER_BYTE (SJIS (Y, Z) */ | |
| 703 | |
| 444 | 704 /* Terminate CCL program successfully. */ |
| 462 | 705 #define CCL_SUCCESS \ |
| 706 do { \ | |
| 707 ccl->status = CCL_STAT_SUCCESS; \ | |
| 456 | 708 /* The "if (1)" inhibits the warning \ |
| 709 "end-of loop code not reached" */ \ | |
| 710 if (1) goto ccl_finish; \ | |
| 462 | 711 } while (0) |
| 444 | 712 |
| 428 | 713 /* Suspend CCL program because of reading from empty input buffer or |
| 714 writing to full output buffer. When this program is resumed, the | |
| 444 | 715 same I/O command is executed. */ |
| 462 | 716 #define CCL_SUSPEND(stat) \ |
| 717 do { \ | |
| 718 ic--; \ | |
| 456 | 719 ccl->status = (stat); \ |
| 720 /* The "if (1)" inhibits the warning \ | |
| 721 "end-of loop code not reached" */ \ | |
| 722 if (1) goto ccl_finish; \ | |
| 462 | 723 } while (0) |
| 428 | 724 |
| 725 /* Terminate CCL program because of invalid command. Should not occur | |
| 444 | 726 in the normal case. */ |
| 771 | 727 #define CCL_INVALID_CMD \ |
| 728 do { \ | |
| 729 ccl->status = CCL_STAT_INVALID_CMD; \ | |
| 730 /* enable this to debug invalid cmd errors */ \ | |
| 731 /* debug_break (); */ \ | |
| 732 /* The "if (1)" inhibits the warning \ | |
| 733 "end-of loop code not reached" */ \ | |
| 734 if (1) goto ccl_error_handler; \ | |
| 462 | 735 } while (0) |
| 428 | 736 |
| 737 /* Encode one character CH to multibyte form and write to the current | |
| 444 | 738 output buffer. At encoding time, if CH is less than 256, CH is |
| 739 written as is. At decoding time, if CH cannot be regarded as an | |
| 740 ASCII character, write it in multibyte form. */ | |
| 741 #define CCL_WRITE_CHAR(ch) \ | |
| 742 do { \ | |
| 743 if (!destination) \ | |
| 744 CCL_INVALID_CMD; \ | |
| 745 if (conversion_mode == CCL_MODE_ENCODING) \ | |
| 746 { \ | |
| 456 | 747 if ((ch) == '\n') \ |
| 444 | 748 { \ |
| 749 if (ccl->eol_type == CCL_CODING_EOL_CRLF) \ | |
| 750 { \ | |
| 751 Dynarr_add (destination, '\r'); \ | |
| 752 Dynarr_add (destination, '\n'); \ | |
| 753 } \ | |
| 754 else if (ccl->eol_type == CCL_CODING_EOL_CR) \ | |
| 755 Dynarr_add (destination, '\r'); \ | |
| 756 else \ | |
| 757 Dynarr_add (destination, '\n'); \ | |
| 758 } \ | |
| 456 | 759 else if ((ch) < 0x100) \ |
| 444 | 760 { \ |
| 761 Dynarr_add (destination, ch); \ | |
| 762 } \ | |
| 763 else \ | |
| 764 { \ | |
| 2286 | 765 Ibyte work[MAX_ICHAR_LEN]; \ |
| 444 | 766 int len; \ |
| 2286 | 767 len = non_ascii_set_itext_ichar (work, ch); \ |
| 444 | 768 Dynarr_add_many (destination, work, len); \ |
| 769 } \ | |
| 770 } \ | |
| 771 else \ | |
| 772 { \ | |
| 867 | 773 if (!ichar_multibyte_p(ch)) \ |
| 444 | 774 { \ |
| 775 Dynarr_add (destination, ch); \ | |
| 776 } \ | |
| 777 else \ | |
| 778 { \ | |
| 2286 | 779 Ibyte work[MAX_ICHAR_LEN]; \ |
| 444 | 780 int len; \ |
| 2286 | 781 len = non_ascii_set_itext_ichar (work, ch); \ |
| 444 | 782 Dynarr_add_many (destination, work, len); \ |
| 783 } \ | |
| 784 } \ | |
| 785 } while (0) | |
| 428 | 786 |
| 787 /* Write a string at ccl_prog[IC] of length LEN to the current output | |
| 444 | 788 buffer. But this macro treat this string as a binary. Therefore, |
| 789 cannot handle a multibyte string except for Control-1 characters. */ | |
| 790 #define CCL_WRITE_STRING(len) \ | |
| 791 do { \ | |
| 2286 | 792 Ibyte work[MAX_ICHAR_LEN]; \ |
| 793 int ch; \ | |
| 444 | 794 if (!destination) \ |
| 795 CCL_INVALID_CMD; \ | |
| 796 else if (conversion_mode == CCL_MODE_ENCODING) \ | |
| 797 { \ | |
| 456 | 798 for (i = 0; i < (len); i++) \ |
| 444 | 799 { \ |
| 4072 | 800 ch = ((XCHAR_OR_INT (ccl_prog[ic + (i / 3)])) \ |
| 444 | 801 >> ((2 - (i % 3)) * 8)) & 0xFF; \ |
| 802 if (ch == '\n') \ | |
| 803 { \ | |
| 804 if (ccl->eol_type == CCL_CODING_EOL_CRLF) \ | |
| 805 { \ | |
| 806 Dynarr_add (destination, '\r'); \ | |
| 807 Dynarr_add (destination, '\n'); \ | |
| 808 } \ | |
| 809 else if (ccl->eol_type == CCL_CODING_EOL_CR) \ | |
| 810 Dynarr_add (destination, '\r'); \ | |
| 811 else \ | |
| 812 Dynarr_add (destination, '\n'); \ | |
| 813 } \ | |
| 814 if (ch < 0x100) \ | |
| 815 { \ | |
| 816 Dynarr_add (destination, ch); \ | |
| 817 } \ | |
| 818 else \ | |
| 819 { \ | |
| 2286 | 820 non_ascii_set_itext_ichar (work, ch); \ |
| 444 | 821 Dynarr_add_many (destination, work, len); \ |
| 822 } \ | |
| 823 } \ | |
| 824 } \ | |
| 825 else \ | |
| 826 { \ | |
| 456 | 827 for (i = 0; i < (len); i++) \ |
| 444 | 828 { \ |
| 4072 | 829 ch = ((XCHAR_OR_INT (ccl_prog[ic + (i / 3)])) \ |
| 444 | 830 >> ((2 - (i % 3)) * 8)) & 0xFF; \ |
| 867 | 831 if (!ichar_multibyte_p(ch)) \ |
| 444 | 832 { \ |
| 833 Dynarr_add (destination, ch); \ | |
| 834 } \ | |
| 835 else \ | |
| 836 { \ | |
| 2286 | 837 non_ascii_set_itext_ichar (work, ch); \ |
| 444 | 838 Dynarr_add_many (destination, work, len); \ |
| 839 } \ | |
| 840 } \ | |
| 841 } \ | |
| 842 } while (0) | |
| 428 | 843 |
| 844 /* Read one byte from the current input buffer into Rth register. */ | |
| 444 | 845 #define CCL_READ_CHAR(r) \ |
| 846 do { \ | |
| 847 if (!src) \ | |
| 848 CCL_INVALID_CMD; \ | |
| 849 if (src < src_end) \ | |
| 456 | 850 (r) = *src++; \ |
| 444 | 851 else \ |
| 852 { \ | |
| 853 if (ccl->last_block) \ | |
| 854 { \ | |
| 855 ic = ccl->eof_ic; \ | |
| 856 goto ccl_repeat; \ | |
| 857 } \ | |
| 858 else \ | |
| 859 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_SRC); \ | |
| 860 } \ | |
| 861 } while (0) | |
| 862 | |
| 2830 | 863 #define POSSIBLE_LEADING_BYTE_P(leading_byte) \ |
| 4072 | 864 ((leading_byte >= MIN_LEADING_BYTE) && \ |
| 2829 | 865 (leading_byte - MIN_LEADING_BYTE) < NUM_LEADING_BYTES) |
| 444 | 866 |
| 867 /* Set C to the character code made from CHARSET and CODE. This is | |
| 867 | 868 like make_ichar but check the validity of CHARSET and CODE. If they |
| 444 | 869 are not valid, set C to (CODE & 0xFF) because that is usually the |
| 870 case that CCL_ReadMultibyteChar2 read an invalid code and it set | |
| 871 CODE to that invalid byte. */ | |
| 872 | |
| 873 /* On XEmacs, TranslateCharacter is not supported. Thus, this | |
| 3439 | 874 macro is only used in the MuleToUnicode transformation. */ |
| 444 | 875 #define CCL_MAKE_CHAR(charset, code, c) \ |
| 876 do { \ | |
| 3690 | 877 \ |
| 878 if (!POSSIBLE_LEADING_BYTE_P(charset)) \ | |
| 879 CCL_INVALID_CMD; \ | |
| 880 \ | |
| 3439 | 881 if ((charset) == LEADING_BYTE_ASCII) \ |
| 882 { \ | |
| 883 c = (code) & 0xFF; \ | |
| 884 } \ | |
| 885 else if ((charset) == LEADING_BYTE_CONTROL_1) \ | |
| 886 { \ | |
| 3690 | 887 c = ((code) & 0x1F) + 0x80; \ |
| 3439 | 888 } \ |
| 889 else if (!NILP(charset_by_leading_byte(charset)) \ | |
| 890 && ((code) >= 32) \ | |
| 4072 | 891 && ((code) < 256 || ((code >> 7) & 0x7F) >= 32)) \ |
| 444 | 892 { \ |
| 3439 | 893 int c1, c2 = 0; \ |
| 444 | 894 \ |
| 3439 | 895 if ((code) < 256) \ |
| 896 { \ | |
| 897 c1 = (code) & 0x7F; \ | |
| 898 c2 = 0; \ | |
| 899 } \ | |
| 900 else \ | |
| 901 { \ | |
| 4072 | 902 c1 = ((code) >> 7) & 0x7F; \ |
| 3439 | 903 c2 = (code) & 0x7F; \ |
| 904 } \ | |
| 905 c = make_ichar (charset_by_leading_byte(charset), \ | |
| 906 c1, c2); \ | |
| 444 | 907 } \ |
| 908 else \ | |
| 3439 | 909 { \ |
| 910 c = (code) & 0xFF; \ | |
| 911 } \ | |
| 912 } while (0) | |
| 428 | 913 |
| 914 | |
| 915 /* Execute CCL code on SRC_BYTES length text at SOURCE. The resulting | |
| 444 | 916 text goes to a place pointed by DESTINATION, the length of which |
| 917 should not exceed DST_BYTES. The bytes actually processed is | |
| 918 returned as *CONSUMED. The return value is the length of the | |
| 919 resulting text. As a side effect, the contents of CCL registers | |
| 428 | 920 are updated. If SOURCE or DESTINATION is NULL, only operations on |
| 921 registers are permitted. */ | |
| 922 | |
| 923 #ifdef CCL_DEBUG | |
| 924 #define CCL_DEBUG_BACKTRACE_LEN 256 | |
| 4072 | 925 int ccl_backtrace_table[CCL_DEBUG_BACKTRACE_LEN]; |
| 428 | 926 int ccl_backtrace_idx; |
| 927 #endif | |
| 928 | |
| 929 struct ccl_prog_stack | |
| 930 { | |
| 931 Lisp_Object *ccl_prog; /* Pointer to an array of CCL code. */ | |
| 932 int ic; /* Instruction Counter. */ | |
| 4193 | 933 int eof_ic; /* Instruction Counter to jump on EOF. */ |
| 428 | 934 }; |
| 935 | |
| 442 | 936 /* For the moment, we only support depth 256 of stack. */ |
| 428 | 937 static struct ccl_prog_stack ccl_prog_stack_struct[256]; |
| 938 | |
| 939 int | |
| 444 | 940 ccl_driver (struct ccl_program *ccl, |
| 941 const unsigned char *source, | |
| 942 unsigned_char_dynarr *destination, | |
| 943 int src_bytes, | |
| 944 int *consumed, | |
| 945 int conversion_mode) | |
| 428 | 946 { |
| 444 | 947 register int *reg = ccl->reg; |
| 948 register int ic = ccl->ic; | |
| 949 register int code = -1; | |
| 950 register int field1, field2; | |
| 951 register Lisp_Object *ccl_prog = ccl->prog; | |
| 442 | 952 const unsigned char *src = source, *src_end = src + src_bytes; |
| 444 | 953 int jump_address; |
|
5183
f283b08ff0c9
Avoid build failure, Apple's g++-4.0.1, Mac OS 10.4.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4967
diff
changeset
|
954 int i = 0, j, op; |
| 428 | 955 int stack_idx = ccl->stack_idx; |
| 956 /* Instruction counter of the current CCL code. */ | |
| 957 int this_ic = 0; | |
| 4193 | 958 int eof_ic = ccl->eof_ic; |
| 959 int eof_hit = 0; | |
| 428 | 960 |
| 4193 | 961 if (ic >= eof_ic) |
| 428 | 962 ic = CCL_HEADER_MAIN; |
| 963 | |
| 964 if (ccl->buf_magnification ==0) /* We can't produce any bytes. */ | |
| 444 | 965 destination = NULL; |
| 966 | |
| 967 /* Set mapping stack pointer. */ | |
| 968 mapping_stack_pointer = mapping_stack; | |
| 428 | 969 |
| 970 #ifdef CCL_DEBUG | |
| 971 ccl_backtrace_idx = 0; | |
| 972 #endif | |
| 973 | |
| 974 for (;;) | |
| 975 { | |
| 976 ccl_repeat: | |
| 977 #ifdef CCL_DEBUG | |
| 978 ccl_backtrace_table[ccl_backtrace_idx++] = ic; | |
| 979 if (ccl_backtrace_idx >= CCL_DEBUG_BACKTRACE_LEN) | |
| 980 ccl_backtrace_idx = 0; | |
| 981 ccl_backtrace_table[ccl_backtrace_idx] = 0; | |
| 982 #endif | |
| 983 | |
| 984 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit)) | |
| 985 { | |
| 986 /* We can't just signal Qquit, instead break the loop as if | |
| 987 the whole data is processed. Don't reset Vquit_flag, it | |
| 988 must be handled later at a safer place. */ | |
| 989 if (consumed) | |
| 990 src = source + src_bytes; | |
| 991 ccl->status = CCL_STAT_QUIT; | |
| 992 break; | |
| 993 } | |
| 994 | |
| 995 this_ic = ic; | |
| 4072 | 996 code = XCHAR_OR_INT (ccl_prog[ic]); ic++; |
| 428 | 997 field1 = code >> 8; |
| 998 field2 = (code & 0xFF) >> 5; | |
| 999 | |
| 1000 #define rrr field2 | |
| 1001 #define RRR (field1 & 7) | |
| 1002 #define Rrr ((field1 >> 3) & 7) | |
| 1003 #define ADDR field1 | |
| 1004 #define EXCMD (field1 >> 6) | |
| 1005 | |
| 1006 switch (code & 0x1F) | |
| 1007 { | |
| 1008 case CCL_SetRegister: /* 00000000000000000RRRrrrXXXXX */ | |
| 1009 reg[rrr] = reg[RRR]; | |
| 1010 break; | |
| 1011 | |
| 1012 case CCL_SetShortConst: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */ | |
| 1013 reg[rrr] = field1; | |
| 1014 break; | |
| 1015 | |
| 1016 case CCL_SetConst: /* 00000000000000000000rrrXXXXX */ | |
| 4072 | 1017 reg[rrr] = XCHAR_OR_INT (ccl_prog[ic]); |
| 428 | 1018 ic++; |
| 1019 break; | |
| 1020 | |
| 1021 case CCL_SetArray: /* CCCCCCCCCCCCCCCCCCCCRRRrrrXXXXX */ | |
| 1022 i = reg[RRR]; | |
| 1023 j = field1 >> 3; | |
| 647 | 1024 /* #### it's non-obvious to me that we need these casts, |
| 1025 but the left one was already there so clearly the intention | |
| 1026 was an unsigned comparison. --ben */ | |
| 1027 if ((unsigned int) i < (unsigned int) j) | |
| 4072 | 1028 reg[rrr] = XCHAR_OR_INT (ccl_prog[ic + i]); |
| 428 | 1029 ic += j; |
| 1030 break; | |
| 1031 | |
| 1032 case CCL_Jump: /* A--D--D--R--E--S--S-000XXXXX */ | |
| 1033 ic += ADDR; | |
| 1034 break; | |
| 1035 | |
| 1036 case CCL_JumpCond: /* A--D--D--R--E--S--S-rrrXXXXX */ | |
| 1037 if (!reg[rrr]) | |
| 1038 ic += ADDR; | |
| 1039 break; | |
| 1040 | |
| 1041 case CCL_WriteRegisterJump: /* A--D--D--R--E--S--S-rrrXXXXX */ | |
| 1042 i = reg[rrr]; | |
| 1043 CCL_WRITE_CHAR (i); | |
| 1044 ic += ADDR; | |
| 1045 break; | |
| 1046 | |
| 1047 case CCL_WriteRegisterReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */ | |
| 1048 i = reg[rrr]; | |
| 1049 CCL_WRITE_CHAR (i); | |
| 1050 ic++; | |
| 1051 CCL_READ_CHAR (reg[rrr]); | |
| 1052 ic += ADDR - 1; | |
| 1053 break; | |
| 1054 | |
| 1055 case CCL_WriteConstJump: /* A--D--D--R--E--S--S-000XXXXX */ | |
| 4072 | 1056 i = XCHAR_OR_INT (ccl_prog[ic]); |
| 428 | 1057 CCL_WRITE_CHAR (i); |
| 1058 ic += ADDR; | |
| 1059 break; | |
| 1060 | |
| 1061 case CCL_WriteConstReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */ | |
| 4072 | 1062 i = XCHAR_OR_INT (ccl_prog[ic]); |
| 428 | 1063 CCL_WRITE_CHAR (i); |
| 1064 ic++; | |
| 1065 CCL_READ_CHAR (reg[rrr]); | |
| 1066 ic += ADDR - 1; | |
| 1067 break; | |
| 1068 | |
| 1069 case CCL_WriteStringJump: /* A--D--D--R--E--S--S-000XXXXX */ | |
| 4072 | 1070 j = XCHAR_OR_INT (ccl_prog[ic]); |
| 428 | 1071 ic++; |
| 1072 CCL_WRITE_STRING (j); | |
| 1073 ic += ADDR - 1; | |
| 1074 break; | |
| 1075 | |
| 1076 case CCL_WriteArrayReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */ | |
| 1077 i = reg[rrr]; | |
| 4072 | 1078 j = XCHAR_OR_INT (ccl_prog[ic]); |
| 647 | 1079 /* #### see comment at CCL_SetArray */ |
| 1080 if ((unsigned int) i < (unsigned int) j) | |
| 428 | 1081 { |
| 4072 | 1082 i = XCHAR_OR_INT (ccl_prog[ic + 1 + i]); |
| 428 | 1083 CCL_WRITE_CHAR (i); |
| 1084 } | |
| 1085 ic += j + 2; | |
| 1086 CCL_READ_CHAR (reg[rrr]); | |
| 1087 ic += ADDR - (j + 2); | |
| 1088 break; | |
| 1089 | |
| 1090 case CCL_ReadJump: /* A--D--D--R--E--S--S-rrrYYYYY */ | |
| 1091 CCL_READ_CHAR (reg[rrr]); | |
| 1092 ic += ADDR; | |
| 1093 break; | |
| 1094 | |
| 1095 case CCL_ReadBranch: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */ | |
| 1096 CCL_READ_CHAR (reg[rrr]); | |
| 1097 /* fall through ... */ | |
| 1098 case CCL_Branch: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */ | |
| 647 | 1099 /* #### see comment at CCL_SetArray */ |
| 1100 if ((unsigned int) reg[rrr] < (unsigned int) field1) | |
| 4072 | 1101 ic += XCHAR_OR_INT (ccl_prog[ic + reg[rrr]]); |
| 428 | 1102 else |
| 4072 | 1103 ic += XCHAR_OR_INT (ccl_prog[ic + field1]); |
| 428 | 1104 break; |
| 1105 | |
| 1106 case CCL_ReadRegister: /* CCCCCCCCCCCCCCCCCCCCrrXXXXX */ | |
| 1107 while (1) | |
| 1108 { | |
| 1109 CCL_READ_CHAR (reg[rrr]); | |
| 1110 if (!field1) break; | |
| 4072 | 1111 code = XCHAR_OR_INT (ccl_prog[ic]); ic++; |
| 428 | 1112 field1 = code >> 8; |
| 1113 field2 = (code & 0xFF) >> 5; | |
| 1114 } | |
| 1115 break; | |
| 1116 | |
| 1117 case CCL_WriteExprConst: /* 1:00000OPERATION000RRR000XXXXX */ | |
| 1118 rrr = 7; | |
| 1119 i = reg[RRR]; | |
| 4072 | 1120 j = XCHAR_OR_INT (ccl_prog[ic]); |
| 428 | 1121 op = field1 >> 6; |
| 444 | 1122 jump_address = ic + 1; |
| 428 | 1123 goto ccl_set_expr; |
| 1124 | |
| 1125 case CCL_WriteRegister: /* CCCCCCCCCCCCCCCCCCCrrrXXXXX */ | |
| 1126 while (1) | |
| 1127 { | |
| 1128 i = reg[rrr]; | |
| 1129 CCL_WRITE_CHAR (i); | |
| 1130 if (!field1) break; | |
| 4072 | 1131 code = XCHAR_OR_INT (ccl_prog[ic]); ic++; |
| 428 | 1132 field1 = code >> 8; |
| 1133 field2 = (code & 0xFF) >> 5; | |
| 1134 } | |
| 1135 break; | |
| 1136 | |
| 1137 case CCL_WriteExprRegister: /* 1:00000OPERATIONRrrRRR000XXXXX */ | |
| 1138 rrr = 7; | |
| 1139 i = reg[RRR]; | |
| 1140 j = reg[Rrr]; | |
| 1141 op = field1 >> 6; | |
| 444 | 1142 jump_address = ic; |
| 428 | 1143 goto ccl_set_expr; |
| 1144 | |
| 444 | 1145 case CCL_Call: /* 1:CCCCCCCCCCCCCCCCCCCCFFFXXXXX */ |
| 428 | 1146 { |
| 1147 Lisp_Object slot; | |
| 444 | 1148 int prog_id; |
| 1149 | |
| 1150 /* If FFF is nonzero, the CCL program ID is in the | |
| 1151 following code. */ | |
| 1152 if (rrr) | |
| 1153 { | |
| 4072 | 1154 prog_id = XCHAR_OR_INT (ccl_prog[ic]); |
| 444 | 1155 ic++; |
| 1156 } | |
| 1157 else | |
| 1158 prog_id = field1; | |
| 428 | 1159 |
| 1160 if (stack_idx >= 256 | |
| 444 | 1161 || prog_id < 0 |
| 1162 || prog_id >= XVECTOR (Vccl_program_table)->size | |
| 1163 || (slot = XVECTOR (Vccl_program_table)->contents[prog_id], | |
| 1164 !VECTORP (slot)) | |
| 1165 || !VECTORP (XVECTOR (slot)->contents[1])) | |
| 428 | 1166 { |
| 1167 if (stack_idx > 0) | |
| 1168 { | |
| 1169 ccl_prog = ccl_prog_stack_struct[0].ccl_prog; | |
| 1170 ic = ccl_prog_stack_struct[0].ic; | |
| 4193 | 1171 eof_ic = ccl_prog_stack_struct[0].eof_ic; |
| 428 | 1172 } |
| 444 | 1173 CCL_INVALID_CMD; |
| 428 | 1174 } |
| 1175 | |
| 1176 ccl_prog_stack_struct[stack_idx].ccl_prog = ccl_prog; | |
| 1177 ccl_prog_stack_struct[stack_idx].ic = ic; | |
| 4193 | 1178 ccl_prog_stack_struct[stack_idx].eof_ic = eof_ic; |
| 428 | 1179 stack_idx++; |
| 444 | 1180 ccl_prog = XVECTOR (XVECTOR (slot)->contents[1])->contents; |
| 428 | 1181 ic = CCL_HEADER_MAIN; |
| 4193 | 1182 eof_ic = XINT (ccl_prog[CCL_HEADER_EOF]); |
| 428 | 1183 } |
| 1184 break; | |
| 1185 | |
| 1186 case CCL_WriteConstString: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */ | |
| 1187 if (!rrr) | |
| 1188 CCL_WRITE_CHAR (field1); | |
| 1189 else | |
| 1190 { | |
| 1191 CCL_WRITE_STRING (field1); | |
| 1192 ic += (field1 + 2) / 3; | |
| 1193 } | |
| 1194 break; | |
| 1195 | |
| 1196 case CCL_WriteArray: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */ | |
| 1197 i = reg[rrr]; | |
| 647 | 1198 /* #### see comment at CCL_SetArray */ |
| 1199 if ((unsigned int) i < (unsigned int) field1) | |
| 428 | 1200 { |
| 4072 | 1201 j = XCHAR_OR_INT (ccl_prog[ic + i]); |
| 428 | 1202 CCL_WRITE_CHAR (j); |
| 1203 } | |
| 1204 ic += field1; | |
| 1205 break; | |
| 1206 | |
| 1207 case CCL_End: /* 0000000000000000000000XXXXX */ | |
| 444 | 1208 if (stack_idx > 0) |
| 428 | 1209 { |
| 444 | 1210 stack_idx--; |
| 428 | 1211 ccl_prog = ccl_prog_stack_struct[stack_idx].ccl_prog; |
| 1212 ic = ccl_prog_stack_struct[stack_idx].ic; | |
| 4193 | 1213 eof_ic = ccl_prog_stack_struct[stack_idx].eof_ic; |
| 1214 if (eof_hit) | |
| 1215 ic = eof_ic; | |
| 428 | 1216 break; |
| 1217 } | |
| 1218 if (src) | |
| 1219 src = src_end; | |
| 1220 /* ccl->ic should points to this command code again to | |
| 1221 suppress further processing. */ | |
| 1222 ic--; | |
| 444 | 1223 CCL_SUCCESS; |
| 428 | 1224 |
| 1225 case CCL_ExprSelfConst: /* 00000OPERATION000000rrrXXXXX */ | |
| 4072 | 1226 i = XCHAR_OR_INT (ccl_prog[ic]); |
| 428 | 1227 ic++; |
| 1228 op = field1 >> 6; | |
| 1229 goto ccl_expr_self; | |
| 1230 | |
| 1231 case CCL_ExprSelfReg: /* 00000OPERATION000RRRrrrXXXXX */ | |
| 1232 i = reg[RRR]; | |
| 1233 op = field1 >> 6; | |
| 1234 | |
| 1235 ccl_expr_self: | |
| 1236 switch (op) | |
| 1237 { | |
| 1238 case CCL_PLUS: reg[rrr] += i; break; | |
| 1239 case CCL_MINUS: reg[rrr] -= i; break; | |
| 1240 case CCL_MUL: reg[rrr] *= i; break; | |
| 1241 case CCL_DIV: reg[rrr] /= i; break; | |
| 1242 case CCL_MOD: reg[rrr] %= i; break; | |
| 1243 case CCL_AND: reg[rrr] &= i; break; | |
| 1244 case CCL_OR: reg[rrr] |= i; break; | |
| 1245 case CCL_XOR: reg[rrr] ^= i; break; | |
| 1246 case CCL_LSH: reg[rrr] <<= i; break; | |
| 1247 case CCL_RSH: reg[rrr] >>= i; break; | |
| 1248 case CCL_LSH8: reg[rrr] <<= 8; reg[rrr] |= i; break; | |
| 1249 case CCL_RSH8: reg[7] = reg[rrr] & 0xFF; reg[rrr] >>= 8; break; | |
| 1250 case CCL_DIVMOD: reg[7] = reg[rrr] % i; reg[rrr] /= i; break; | |
| 1251 case CCL_LS: reg[rrr] = reg[rrr] < i; break; | |
| 1252 case CCL_GT: reg[rrr] = reg[rrr] > i; break; | |
| 1253 case CCL_EQ: reg[rrr] = reg[rrr] == i; break; | |
| 1254 case CCL_LE: reg[rrr] = reg[rrr] <= i; break; | |
| 1255 case CCL_GE: reg[rrr] = reg[rrr] >= i; break; | |
| 1256 case CCL_NE: reg[rrr] = reg[rrr] != i; break; | |
| 444 | 1257 default: CCL_INVALID_CMD; |
| 428 | 1258 } |
| 1259 break; | |
| 1260 | |
| 1261 case CCL_SetExprConst: /* 00000OPERATION000RRRrrrXXXXX */ | |
| 1262 i = reg[RRR]; | |
| 4072 | 1263 j = XCHAR_OR_INT (ccl_prog[ic]); |
| 428 | 1264 op = field1 >> 6; |
| 1265 jump_address = ++ic; | |
| 1266 goto ccl_set_expr; | |
| 1267 | |
| 1268 case CCL_SetExprReg: /* 00000OPERATIONRrrRRRrrrXXXXX */ | |
| 1269 i = reg[RRR]; | |
| 1270 j = reg[Rrr]; | |
| 1271 op = field1 >> 6; | |
| 1272 jump_address = ic; | |
| 1273 goto ccl_set_expr; | |
| 1274 | |
| 1275 case CCL_ReadJumpCondExprConst: /* A--D--D--R--E--S--S-rrrXXXXX */ | |
| 1276 CCL_READ_CHAR (reg[rrr]); | |
| 1277 case CCL_JumpCondExprConst: /* A--D--D--R--E--S--S-rrrXXXXX */ | |
| 1278 i = reg[rrr]; | |
| 4072 | 1279 op = XCHAR_OR_INT (ccl_prog[ic]); |
| 428 | 1280 jump_address = ic++ + ADDR; |
| 4072 | 1281 j = XCHAR_OR_INT (ccl_prog[ic]); |
| 428 | 1282 ic++; |
| 1283 rrr = 7; | |
| 1284 goto ccl_set_expr; | |
| 1285 | |
| 1286 case CCL_ReadJumpCondExprReg: /* A--D--D--R--E--S--S-rrrXXXXX */ | |
| 1287 CCL_READ_CHAR (reg[rrr]); | |
| 1288 case CCL_JumpCondExprReg: | |
| 1289 i = reg[rrr]; | |
| 4072 | 1290 op = XCHAR_OR_INT (ccl_prog[ic]); |
| 428 | 1291 jump_address = ic++ + ADDR; |
| 4072 | 1292 j = reg[XCHAR_OR_INT (ccl_prog[ic])]; |
| 428 | 1293 ic++; |
| 1294 rrr = 7; | |
| 1295 | |
| 1296 ccl_set_expr: | |
| 1297 switch (op) | |
| 1298 { | |
| 1299 case CCL_PLUS: reg[rrr] = i + j; break; | |
| 1300 case CCL_MINUS: reg[rrr] = i - j; break; | |
| 1301 case CCL_MUL: reg[rrr] = i * j; break; | |
| 1302 case CCL_DIV: reg[rrr] = i / j; break; | |
| 1303 case CCL_MOD: reg[rrr] = i % j; break; | |
| 1304 case CCL_AND: reg[rrr] = i & j; break; | |
| 1305 case CCL_OR: reg[rrr] = i | j; break; | |
| 444 | 1306 case CCL_XOR: reg[rrr] = i ^ j;; break; |
| 428 | 1307 case CCL_LSH: reg[rrr] = i << j; break; |
| 1308 case CCL_RSH: reg[rrr] = i >> j; break; | |
| 1309 case CCL_LSH8: reg[rrr] = (i << 8) | j; break; | |
| 1310 case CCL_RSH8: reg[rrr] = i >> 8; reg[7] = i & 0xFF; break; | |
| 1311 case CCL_DIVMOD: reg[rrr] = i / j; reg[7] = i % j; break; | |
| 1312 case CCL_LS: reg[rrr] = i < j; break; | |
| 1313 case CCL_GT: reg[rrr] = i > j; break; | |
| 1314 case CCL_EQ: reg[rrr] = i == j; break; | |
| 1315 case CCL_LE: reg[rrr] = i <= j; break; | |
| 1316 case CCL_GE: reg[rrr] = i >= j; break; | |
| 1317 case CCL_NE: reg[rrr] = i != j; break; | |
| 444 | 1318 case CCL_DECODE_SJIS: |
| 771 | 1319 /* DECODE_SHIFT_JIS set MSB for internal format |
| 444 | 1320 as opposed to Emacs. */ |
| 771 | 1321 DECODE_SHIFT_JIS (i, j, reg[rrr], reg[7]); |
| 444 | 1322 reg[rrr] &= 0x7F; |
| 1323 reg[7] &= 0x7F; | |
| 1324 break; | |
| 1325 case CCL_ENCODE_SJIS: | |
| 771 | 1326 /* ENCODE_SHIFT_JIS assumes MSB of SHIFT-JIS-char is set |
| 444 | 1327 as opposed to Emacs. */ |
| 771 | 1328 ENCODE_SHIFT_JIS (i | 0x80, j | 0x80, reg[rrr], reg[7]); |
| 444 | 1329 break; |
| 1330 default: CCL_INVALID_CMD; | |
| 428 | 1331 } |
| 1332 code &= 0x1F; | |
| 1333 if (code == CCL_WriteExprConst || code == CCL_WriteExprRegister) | |
| 1334 { | |
| 1335 i = reg[rrr]; | |
| 1336 CCL_WRITE_CHAR (i); | |
| 444 | 1337 ic = jump_address; |
| 428 | 1338 } |
| 1339 else if (!reg[rrr]) | |
| 1340 ic = jump_address; | |
| 1341 break; | |
| 1342 | |
| 456 | 1343 case CCL_Extension: |
| 428 | 1344 switch (EXCMD) |
| 1345 { | |
| 1346 case CCL_ReadMultibyteChar2: | |
| 1347 if (!src) | |
| 1348 CCL_INVALID_CMD; | |
| 1349 | |
| 462 | 1350 if (src >= src_end) |
| 1351 { | |
| 1352 src++; | |
| 456 | 1353 goto ccl_read_multibyte_character_suspend; |
| 462 | 1354 } |
| 1355 | |
| 1356 i = *src++; | |
| 1357 if (i < 0x80) | |
| 1358 { | |
| 1359 /* ASCII */ | |
| 1360 reg[rrr] = i; | |
| 1361 reg[RRR] = LEADING_BYTE_ASCII; | |
| 1362 } | |
| 2829 | 1363 /* Previously, these next two elses were reversed in order, |
| 1364 which should have worked fine, but is more fragile than | |
| 1365 this order. */ | |
| 1366 else if (LEADING_BYTE_CONTROL_1 == i) | |
| 1367 { | |
| 1368 if (src >= src_end) | |
| 1369 goto ccl_read_multibyte_character_suspend; | |
| 1370 reg[RRR] = i; | |
| 1371 reg[rrr] = (*src++ - 0xA0); | |
| 1372 } | |
| 462 | 1373 else if (i <= MAX_LEADING_BYTE_OFFICIAL_1) |
| 1374 { | |
| 1375 if (src >= src_end) | |
| 1376 goto ccl_read_multibyte_character_suspend; | |
| 1377 reg[RRR] = i; | |
| 1378 reg[rrr] = (*src++ & 0x7F); | |
| 1379 } | |
| 1380 else if (i <= MAX_LEADING_BYTE_OFFICIAL_2) | |
| 1381 { | |
| 1382 if ((src + 1) >= src_end) | |
| 1383 goto ccl_read_multibyte_character_suspend; | |
| 1384 reg[RRR] = i; | |
| 1385 i = (*src++ & 0x7F); | |
| 1386 reg[rrr] = ((i << 7) | (*src & 0x7F)); | |
| 1387 src++; | |
| 1388 } | |
| 1389 else if (i == PRE_LEADING_BYTE_PRIVATE_1) | |
| 1390 { | |
| 1391 if ((src + 1) >= src_end) | |
| 1392 goto ccl_read_multibyte_character_suspend; | |
| 1393 reg[RRR] = *src++; | |
| 4072 | 1394 reg[rrr] = (*src++ & 0xFF); |
| 462 | 1395 } |
| 1396 else if (i == PRE_LEADING_BYTE_PRIVATE_2) | |
| 1397 { | |
| 1398 if ((src + 2) >= src_end) | |
| 1399 goto ccl_read_multibyte_character_suspend; | |
| 1400 reg[RRR] = *src++; | |
| 1401 i = (*src++ & 0x7F); | |
| 1402 reg[rrr] = ((i << 7) | (*src & 0x7F)); | |
| 1403 src++; | |
| 1404 } | |
| 1405 else | |
| 1406 { | |
| 1407 /* INVALID CODE. Return a single byte character. */ | |
| 1408 reg[RRR] = LEADING_BYTE_ASCII; | |
| 1409 reg[rrr] = i; | |
| 1410 } | |
| 428 | 1411 break; |
| 1412 | |
| 1413 ccl_read_multibyte_character_suspend: | |
| 4193 | 1414 if (src <= src_end && ccl->last_block) |
| 1415 { | |
| 1416 /* #### Unclear when this happens. GNU use | |
| 1417 CHARSET_8_BIT_CONTROL here, which we can't. */ | |
| 1418 if (i < 0x80) | |
| 1419 { | |
| 1420 reg[RRR] = LEADING_BYTE_ASCII; | |
| 1421 reg[rrr] = i; | |
| 1422 } | |
| 1423 else if (i < 0xA0) | |
| 1424 { | |
| 1425 reg[RRR] = LEADING_BYTE_CONTROL_1; | |
| 1426 reg[rrr] = i - 0xA0; | |
| 1427 } | |
| 1428 else | |
| 1429 { | |
| 1430 reg[RRR] = LEADING_BYTE_LATIN_ISO8859_1; | |
| 1431 reg[rrr] = i & 0x7F; | |
| 1432 } | |
| 1433 break; | |
| 1434 } | |
| 428 | 1435 src--; |
| 1436 if (ccl->last_block) | |
| 1437 { | |
| 4193 | 1438 ic = eof_ic; |
| 1439 eof_hit = 1; | |
| 428 | 1440 goto ccl_repeat; |
| 1441 } | |
| 1442 else | |
| 1443 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_SRC); | |
| 1444 | |
| 1445 break; | |
| 1446 | |
| 1447 case CCL_WriteMultibyteChar2: | |
| 1448 i = reg[RRR]; /* charset */ | |
| 2829 | 1449 if (i == LEADING_BYTE_ASCII) |
| 428 | 1450 i = reg[rrr] & 0xFF; |
| 2829 | 1451 else if (LEADING_BYTE_CONTROL_1 == i) |
| 3690 | 1452 i = ((reg[rrr] & 0x1F) + 0x80); |
| 2829 | 1453 else if (POSSIBLE_LEADING_BYTE_P(i) && |
| 2830 | 1454 !NILP(charset_by_leading_byte(i))) |
| 2829 | 1455 { |
| 1456 if (XCHARSET_DIMENSION (charset_by_leading_byte (i)) == 1) | |
| 1457 i = (((i - FIELD2_TO_OFFICIAL_LEADING_BYTE) << 7) | |
| 1458 | (reg[rrr] & 0x7F)); | |
|
4525
d64f1060cd65
Fix off-by-one error in ccl_driver. <87iqr7v7p0.fsf@uwakimon.sk.tsukuba.ac.jp>
Stephen J. Turnbull <stephen@xemacs.org>
parents:
4295
diff
changeset
|
1459 else if (i <= MAX_LEADING_BYTE_OFFICIAL_2) |
| 2829 | 1460 i = ((i - FIELD1_TO_OFFICIAL_LEADING_BYTE) << 14) |
| 1461 | reg[rrr]; | |
| 1462 else | |
| 1463 i = ((i - FIELD1_TO_PRIVATE_LEADING_BYTE) << 14) | reg[rrr]; | |
| 1464 } | |
| 1465 else | |
| 1466 { | |
| 1467 /* No charset we know about; use U+3012 GETA MARK */ | |
| 1468 i = make_ichar | |
| 1469 (charset_by_leading_byte(LEADING_BYTE_JAPANESE_JISX0208), | |
| 1470 34, 46); | |
| 1471 } | |
| 428 | 1472 |
| 1473 CCL_WRITE_CHAR (i); | |
| 1474 | |
| 1475 break; | |
| 1476 | |
| 444 | 1477 case CCL_TranslateCharacter: |
| 428 | 1478 #if 0 |
| 3439 | 1479 /* XEmacs does not have translate_char, nor an |
| 1480 equivalent. We do nothing on this operation. */ | |
| 1481 CCL_MAKE_CHAR(reg[RRR], reg[rrr], op); | |
| 428 | 1482 op = translate_char (GET_TRANSLATION_TABLE (reg[Rrr]), |
| 1483 i, -1, 0, 0); | |
| 1484 SPLIT_CHAR (op, reg[RRR], i, j); | |
| 1485 if (j != -1) | |
| 1486 i = (i << 7) | j; | |
| 442 | 1487 |
| 428 | 1488 reg[rrr] = i; |
| 444 | 1489 #endif |
| 428 | 1490 break; |
| 1491 | |
| 1492 case CCL_TranslateCharacterConstTbl: | |
| 444 | 1493 #if 0 |
| 771 | 1494 /* XEmacs does not have translate_char or an equivalent. We |
| 1495 do nothing on this operation. */ | |
| 4072 | 1496 op = XCHAR_OR_INT (ccl_prog[ic]); /* table */ |
| 428 | 1497 ic++; |
| 444 | 1498 CCL_MAKE_CHAR (reg[RRR], reg[rrr], i); |
| 428 | 1499 op = translate_char (GET_TRANSLATION_TABLE (op), i, -1, 0, 0); |
| 1500 SPLIT_CHAR (op, reg[RRR], i, j); | |
| 1501 if (j != -1) | |
| 1502 i = (i << 7) | j; | |
| 442 | 1503 |
| 428 | 1504 reg[rrr] = i; |
| 444 | 1505 #endif |
| 428 | 1506 break; |
| 1507 | |
| 3439 | 1508 case CCL_MuleToUnicode: |
| 1509 { | |
| 1510 Lisp_Object ucs; | |
| 1511 | |
| 4072 | 1512 CCL_MAKE_CHAR (reg[rrr], reg[RRR], op); |
| 1513 | |
| 3439 | 1514 ucs = Fchar_to_unicode(make_char(op)); |
| 1515 | |
| 1516 if (NILP(ucs)) | |
| 1517 { | |
| 1518 /* Uhh, char-to-unicode doesn't return nil at the | |
| 1519 moment, only ever -1. */ | |
| 1520 reg[rrr] = 0xFFFD; /* REPLACEMENT CHARACTER */ | |
| 1521 } | |
| 1522 else | |
| 1523 { | |
| 4072 | 1524 reg[rrr] = XCHAR_OR_INT(ucs); |
| 3439 | 1525 if (-1 == reg[rrr]) |
| 1526 { | |
| 1527 reg[rrr] = 0xFFFD; /* REPLACEMENT CHARACTER */ | |
| 1528 } | |
| 1529 } | |
| 1530 break; | |
| 1531 } | |
| 1532 | |
| 1533 case CCL_UnicodeToMule: | |
| 1534 { | |
| 1535 Lisp_Object scratch; | |
| 1536 | |
| 1537 scratch = Funicode_to_char(make_int(reg[rrr]), Qnil); | |
| 1538 | |
| 1539 if (!NILP(scratch)) | |
| 1540 { | |
| 1541 op = XCHAR(scratch); | |
| 1542 BREAKUP_ICHAR (op, scratch, i, j); | |
| 1543 reg[RRR] = XCHARSET_ID(scratch); | |
| 1544 | |
| 1545 if (j != 0) | |
| 1546 { | |
| 4072 | 1547 i = (i << 7) | j; |
| 3439 | 1548 } |
| 1549 | |
| 1550 reg[rrr] = i; | |
| 1551 } | |
| 1552 else | |
| 1553 { | |
| 1554 reg[rrr] = reg[RRR] = 0; | |
| 1555 } | |
| 1556 break; | |
| 1557 } | |
| 1558 | |
| 4072 | 1559 case CCL_LookupIntConstTbl: |
| 1560 op = XCHAR_OR_INT (ccl_prog[ic]); /* table */ | |
| 1561 ic++; | |
| 1562 { | |
| 1563 struct Lisp_Hash_Table *h = GET_HASH_TABLE (op); | |
| 1564 htentry *e = find_htentry(make_int (reg[RRR]), h); | |
| 1565 Lisp_Object scratch; | |
| 1566 | |
| 1567 if (!HTENTRY_CLEAR_P(e)) | |
| 1568 { | |
| 1569 op = XCHARVAL (e->value); | |
| 1570 if (!valid_ichar_p(op)) | |
| 1571 { | |
| 1572 CCL_INVALID_CMD; | |
| 1573 } | |
| 1574 | |
| 1575 BREAKUP_ICHAR (op, scratch, i, j); | |
| 1576 reg[RRR] = XCHARSET_ID(scratch); | |
| 1577 | |
| 1578 if (j != 0) | |
| 1579 { | |
| 1580 i = (i << 7) | j; | |
| 1581 } | |
| 1582 reg[rrr] = i; | |
| 1583 reg[7] = 1; /* r7 true for success */ | |
| 1584 } | |
| 1585 else | |
| 1586 reg[7] = 0; | |
| 1587 } | |
| 1588 break; | |
| 1589 | |
| 1590 case CCL_LookupCharConstTbl: | |
| 1591 op = XCHAR_OR_INT (ccl_prog[ic]); /* table */ | |
| 1592 ic++; | |
| 1593 CCL_MAKE_CHAR (reg[RRR], reg[rrr], i); | |
| 1594 { | |
| 1595 struct Lisp_Hash_Table *h = GET_HASH_TABLE (op); | |
| 1596 htentry *e = find_htentry(make_int(i), h); | |
| 1597 | |
| 1598 if (!HTENTRY_CLEAR_P(e)) | |
| 1599 { | |
| 4078 | 1600 if (!INTP (e->value)) |
| 4072 | 1601 CCL_INVALID_CMD; |
| 4078 | 1602 reg[RRR] = XCHAR_OR_INT (e->value); |
| 4072 | 1603 reg[7] = 1; /* r7 true for success */ |
| 1604 } | |
| 1605 else | |
| 1606 reg[7] = 0; | |
| 1607 } | |
| 1608 break; | |
| 1609 | |
| 1610 | |
| 428 | 1611 case CCL_IterateMultipleMap: |
| 1612 { | |
| 1613 Lisp_Object map, content, attrib, value; | |
| 1614 int point, size, fin_ic; | |
| 1615 | |
| 4150 | 1616 j = XCHAR_OR_INT (ccl_prog[ic++]); /* number of maps. */ |
| 428 | 1617 fin_ic = ic + j; |
| 1618 op = reg[rrr]; | |
| 1619 if ((j > reg[RRR]) && (j >= 0)) | |
| 1620 { | |
| 1621 ic += reg[RRR]; | |
| 1622 i = reg[RRR]; | |
| 1623 } | |
| 1624 else | |
| 1625 { | |
| 1626 reg[RRR] = -1; | |
| 1627 ic = fin_ic; | |
| 1628 break; | |
| 1629 } | |
| 1630 | |
| 1631 for (;i < j;i++) | |
| 1632 { | |
| 1633 size = XVECTOR (Vcode_conversion_map_vector)->size; | |
| 4072 | 1634 point = XCHAR_OR_INT (ccl_prog[ic++]); |
| 428 | 1635 if (point >= size) continue; |
| 1636 map = | |
| 1637 XVECTOR (Vcode_conversion_map_vector)->contents[point]; | |
| 1638 | |
| 444 | 1639 /* Check map validity. */ |
| 428 | 1640 if (!CONSP (map)) continue; |
| 444 | 1641 map = XCDR (map); |
| 428 | 1642 if (!VECTORP (map)) continue; |
| 1643 size = XVECTOR (map)->size; | |
| 1644 if (size <= 1) continue; | |
| 1645 | |
| 1646 content = XVECTOR (map)->contents[0]; | |
| 1647 | |
| 1648 /* check map type, | |
| 1649 [STARTPOINT VAL1 VAL2 ...] or | |
| 444 | 1650 [t ELEMENT STARTPOINT ENDPOINT] */ |
| 1651 if (INTP (content)) | |
| 428 | 1652 { |
| 1653 point = XUINT (content); | |
| 1654 point = op - point + 1; | |
| 1655 if (!((point >= 1) && (point < size))) continue; | |
| 1656 content = XVECTOR (map)->contents[point]; | |
| 1657 } | |
| 1658 else if (EQ (content, Qt)) | |
| 1659 { | |
| 1660 if (size != 4) continue; | |
| 647 | 1661 /* #### see comment at CCL_SetArray; in this |
| 1662 case the casts are added but the XUINT was | |
| 1663 already present */ | |
| 1664 if (((unsigned int) op >= | |
| 1665 XUINT (XVECTOR (map)->contents[2])) | |
| 1666 && ((unsigned int) op < | |
| 1667 XUINT (XVECTOR (map)->contents[3]))) | |
| 428 | 1668 content = XVECTOR (map)->contents[1]; |
| 1669 else | |
| 1670 continue; | |
| 1671 } | |
| 442 | 1672 else |
| 428 | 1673 continue; |
| 1674 | |
| 1675 if (NILP (content)) | |
| 1676 continue; | |
| 444 | 1677 else if (INTP (content)) |
| 428 | 1678 { |
| 1679 reg[RRR] = i; | |
| 4072 | 1680 reg[rrr] = XCHAR_OR_INT(content); |
| 428 | 1681 break; |
| 1682 } | |
| 1683 else if (EQ (content, Qt) || EQ (content, Qlambda)) | |
| 1684 { | |
| 1685 reg[RRR] = i; | |
| 1686 break; | |
| 1687 } | |
| 1688 else if (CONSP (content)) | |
| 1689 { | |
| 444 | 1690 attrib = XCAR (content); |
| 1691 value = XCDR (content); | |
| 1692 if (!INTP (attrib) || !INTP (value)) | |
| 428 | 1693 continue; |
| 1694 reg[RRR] = i; | |
| 1695 reg[rrr] = XUINT (value); | |
| 1696 break; | |
| 1697 } | |
| 444 | 1698 else if (SYMBOLP (content)) |
| 1699 CCL_CALL_FOR_MAP_INSTRUCTION (content, fin_ic); | |
| 1700 else | |
| 1701 CCL_INVALID_CMD; | |
| 428 | 1702 } |
| 1703 if (i == j) | |
| 1704 reg[RRR] = -1; | |
| 1705 ic = fin_ic; | |
| 1706 } | |
| 1707 break; | |
| 442 | 1708 |
| 428 | 1709 case CCL_MapMultiple: |
| 1710 { | |
| 1711 Lisp_Object map, content, attrib, value; | |
| 1712 int point, size, map_vector_size; | |
| 1713 int map_set_rest_length, fin_ic; | |
| 444 | 1714 int current_ic = this_ic; |
| 1715 | |
| 1716 /* inhibit recursive call on MapMultiple. */ | |
| 1717 if (stack_idx_of_map_multiple > 0) | |
| 1718 { | |
| 1719 if (stack_idx_of_map_multiple <= stack_idx) | |
| 1720 { | |
| 1721 stack_idx_of_map_multiple = 0; | |
| 1722 mapping_stack_pointer = mapping_stack; | |
| 1723 CCL_INVALID_CMD; | |
| 1724 } | |
| 1725 } | |
| 1726 else | |
| 1727 mapping_stack_pointer = mapping_stack; | |
| 1728 stack_idx_of_map_multiple = 0; | |
| 428 | 1729 |
| 1730 map_set_rest_length = | |
| 4150 | 1731 XCHAR_OR_INT (ccl_prog[ic++]); /* number of maps and separators. */ |
| 428 | 1732 fin_ic = ic + map_set_rest_length; |
| 444 | 1733 op = reg[rrr]; |
| 1734 | |
| 428 | 1735 if ((map_set_rest_length > reg[RRR]) && (reg[RRR] >= 0)) |
| 1736 { | |
| 1737 ic += reg[RRR]; | |
| 1738 i = reg[RRR]; | |
| 1739 map_set_rest_length -= i; | |
| 1740 } | |
| 1741 else | |
| 1742 { | |
| 1743 ic = fin_ic; | |
| 1744 reg[RRR] = -1; | |
| 444 | 1745 mapping_stack_pointer = mapping_stack; |
| 428 | 1746 break; |
| 1747 } | |
| 444 | 1748 |
| 1749 if (mapping_stack_pointer <= (mapping_stack + 1)) | |
| 428 | 1750 { |
| 444 | 1751 /* Set up initial state. */ |
| 1752 mapping_stack_pointer = mapping_stack; | |
| 1753 PUSH_MAPPING_STACK (0, op); | |
| 1754 reg[RRR] = -1; | |
| 1755 } | |
| 1756 else | |
| 1757 { | |
| 1758 /* Recover after calling other ccl program. */ | |
| 1759 int orig_op; | |
| 428 | 1760 |
| 444 | 1761 POP_MAPPING_STACK (map_set_rest_length, orig_op); |
| 1762 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]); | |
| 1763 switch (op) | |
| 428 | 1764 { |
| 444 | 1765 case -1: |
| 1766 /* Regard it as Qnil. */ | |
| 1767 op = orig_op; | |
| 1768 i++; | |
| 1769 ic++; | |
| 1770 map_set_rest_length--; | |
| 1771 break; | |
| 1772 case -2: | |
| 1773 /* Regard it as Qt. */ | |
| 1774 op = reg[rrr]; | |
| 1775 i++; | |
| 1776 ic++; | |
| 1777 map_set_rest_length--; | |
| 1778 break; | |
| 1779 case -3: | |
| 1780 /* Regard it as Qlambda. */ | |
| 1781 op = orig_op; | |
| 428 | 1782 i += map_set_rest_length; |
| 444 | 1783 ic += map_set_rest_length; |
| 1784 map_set_rest_length = 0; | |
| 1785 break; | |
| 1786 default: | |
| 1787 /* Regard it as normal mapping. */ | |
| 428 | 1788 i += map_set_rest_length; |
| 444 | 1789 ic += map_set_rest_length; |
| 428 | 1790 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]); |
| 1791 break; | |
| 1792 } | |
| 1793 } | |
| 444 | 1794 map_vector_size = XVECTOR (Vcode_conversion_map_vector)->size; |
| 1795 | |
| 1796 do { | |
| 1797 for (;map_set_rest_length > 0;i++, ic++, map_set_rest_length--) | |
| 1798 { | |
| 4072 | 1799 point = XCHAR_OR_INT(ccl_prog[ic]); |
| 444 | 1800 if (point < 0) |
| 1801 { | |
| 1802 /* +1 is for including separator. */ | |
| 1803 point = -point + 1; | |
| 1804 if (mapping_stack_pointer | |
| 460 | 1805 >= mapping_stack + countof (mapping_stack)) |
| 444 | 1806 CCL_INVALID_CMD; |
| 1807 PUSH_MAPPING_STACK (map_set_rest_length - point, | |
| 1808 reg[rrr]); | |
| 1809 map_set_rest_length = point; | |
| 1810 reg[rrr] = op; | |
| 1811 continue; | |
| 1812 } | |
| 1813 | |
| 1814 if (point >= map_vector_size) continue; | |
| 1815 map = (XVECTOR (Vcode_conversion_map_vector) | |
| 1816 ->contents[point]); | |
| 1817 | |
| 1818 /* Check map validity. */ | |
| 1819 if (!CONSP (map)) continue; | |
| 1820 map = XCDR (map); | |
| 1821 if (!VECTORP (map)) continue; | |
| 1822 size = XVECTOR (map)->size; | |
| 1823 if (size <= 1) continue; | |
| 1824 | |
| 1825 content = XVECTOR (map)->contents[0]; | |
| 1826 | |
| 1827 /* check map type, | |
| 1828 [STARTPOINT VAL1 VAL2 ...] or | |
| 1829 [t ELEMENT STARTPOINT ENDPOINT] */ | |
| 1830 if (INTP (content)) | |
| 1831 { | |
| 1832 point = XUINT (content); | |
| 1833 point = op - point + 1; | |
| 1834 if (!((point >= 1) && (point < size))) continue; | |
| 1835 content = XVECTOR (map)->contents[point]; | |
| 1836 } | |
| 1837 else if (EQ (content, Qt)) | |
| 1838 { | |
| 1839 if (size != 4) continue; | |
| 647 | 1840 /* #### see comment at CCL_SetArray; in this |
| 1841 case the casts are added but the XUINT was | |
| 1842 already present */ | |
| 1843 if (((unsigned int) op >= | |
| 1844 XUINT (XVECTOR (map)->contents[2])) && | |
| 1845 ((unsigned int) op < | |
| 1846 XUINT (XVECTOR (map)->contents[3]))) | |
| 444 | 1847 content = XVECTOR (map)->contents[1]; |
| 1848 else | |
| 1849 continue; | |
| 1850 } | |
| 1851 else | |
| 1852 continue; | |
| 1853 | |
| 1854 if (NILP (content)) | |
| 1855 continue; | |
| 1856 | |
| 1857 reg[RRR] = i; | |
| 1858 if (INTP (content)) | |
| 1859 { | |
| 4072 | 1860 op = XCHAR_OR_INT (content); |
| 444 | 1861 i += map_set_rest_length - 1; |
| 1862 ic += map_set_rest_length - 1; | |
| 1863 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]); | |
| 1864 map_set_rest_length++; | |
| 1865 } | |
| 1866 else if (CONSP (content)) | |
| 1867 { | |
| 1868 attrib = XCAR (content); | |
| 1869 value = XCDR (content); | |
| 1870 if (!INTP (attrib) || !INTP (value)) | |
| 1871 continue; | |
| 1872 op = XUINT (value); | |
| 1873 i += map_set_rest_length - 1; | |
| 1874 ic += map_set_rest_length - 1; | |
| 1875 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]); | |
| 1876 map_set_rest_length++; | |
| 1877 } | |
| 1878 else if (EQ (content, Qt)) | |
| 1879 { | |
| 1880 op = reg[rrr]; | |
| 1881 } | |
| 1882 else if (EQ (content, Qlambda)) | |
| 1883 { | |
| 1884 i += map_set_rest_length; | |
| 1885 ic += map_set_rest_length; | |
| 1886 break; | |
| 1887 } | |
| 1888 else if (SYMBOLP (content)) | |
| 1889 { | |
| 1890 if (mapping_stack_pointer | |
| 460 | 1891 >= mapping_stack + countof (mapping_stack)) |
| 444 | 1892 CCL_INVALID_CMD; |
| 1893 PUSH_MAPPING_STACK (map_set_rest_length, reg[rrr]); | |
| 1894 PUSH_MAPPING_STACK (map_set_rest_length, op); | |
| 1895 stack_idx_of_map_multiple = stack_idx + 1; | |
| 1896 CCL_CALL_FOR_MAP_INSTRUCTION (content, current_ic); | |
| 1897 } | |
| 1898 else | |
| 1899 CCL_INVALID_CMD; | |
| 1900 } | |
| 1901 if (mapping_stack_pointer <= (mapping_stack + 1)) | |
| 1902 break; | |
| 1903 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]); | |
| 1904 i += map_set_rest_length; | |
| 1905 ic += map_set_rest_length; | |
| 1906 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]); | |
| 1907 } while (1); | |
| 1908 | |
| 428 | 1909 ic = fin_ic; |
| 1910 } | |
| 1911 reg[rrr] = op; | |
| 1912 break; | |
| 1913 | |
| 1914 case CCL_MapSingle: | |
| 1915 { | |
| 1916 Lisp_Object map, attrib, value, content; | |
| 1917 int size, point; | |
| 4150 | 1918 j = XCHAR_OR_INT (ccl_prog[ic++]); /* map_id */ |
| 428 | 1919 op = reg[rrr]; |
| 1920 if (j >= XVECTOR (Vcode_conversion_map_vector)->size) | |
| 1921 { | |
| 1922 reg[RRR] = -1; | |
| 1923 break; | |
| 1924 } | |
| 1925 map = XVECTOR (Vcode_conversion_map_vector)->contents[j]; | |
| 1926 if (!CONSP (map)) | |
| 1927 { | |
| 1928 reg[RRR] = -1; | |
| 1929 break; | |
| 1930 } | |
| 444 | 1931 map = XCDR (map); |
| 428 | 1932 if (!VECTORP (map)) |
| 1933 { | |
| 1934 reg[RRR] = -1; | |
| 1935 break; | |
| 1936 } | |
| 1937 size = XVECTOR (map)->size; | |
| 1938 point = XUINT (XVECTOR (map)->contents[0]); | |
| 1939 point = op - point + 1; | |
| 1940 reg[RRR] = 0; | |
| 1941 if ((size <= 1) || | |
| 1942 (!((point >= 1) && (point < size)))) | |
| 1943 reg[RRR] = -1; | |
| 1944 else | |
| 1945 { | |
| 444 | 1946 reg[RRR] = 0; |
| 428 | 1947 content = XVECTOR (map)->contents[point]; |
| 1948 if (NILP (content)) | |
| 1949 reg[RRR] = -1; | |
| 444 | 1950 else if (INTP (content)) |
| 4072 | 1951 reg[rrr] = XCHAR_OR_INT (content); |
| 444 | 1952 else if (EQ (content, Qt)); |
| 428 | 1953 else if (CONSP (content)) |
| 1954 { | |
| 444 | 1955 attrib = XCAR (content); |
| 1956 value = XCDR (content); | |
| 1957 if (!INTP (attrib) || !INTP (value)) | |
| 428 | 1958 continue; |
| 1959 reg[rrr] = XUINT(value); | |
| 1960 break; | |
| 1961 } | |
| 444 | 1962 else if (SYMBOLP (content)) |
| 1963 CCL_CALL_FOR_MAP_INSTRUCTION (content, ic); | |
| 428 | 1964 else |
| 1965 reg[RRR] = -1; | |
| 1966 } | |
| 1967 } | |
| 1968 break; | |
| 442 | 1969 |
| 428 | 1970 default: |
| 1971 CCL_INVALID_CMD; | |
| 1972 } | |
| 1973 break; | |
| 1974 | |
| 1975 default: | |
| 444 | 1976 CCL_INVALID_CMD; |
| 428 | 1977 } |
| 1978 } | |
| 1979 | |
| 1980 ccl_error_handler: | |
| 1981 if (destination) | |
| 1982 { | |
| 1983 /* We can insert an error message only if DESTINATION is | |
| 1984 specified and we still have a room to store the message | |
| 1985 there. */ | |
| 1986 char msg[256]; | |
| 1987 | |
| 1988 switch (ccl->status) | |
| 1989 { | |
| 1990 case CCL_STAT_INVALID_CMD: | |
| 1991 sprintf(msg, "\nCCL: Invalid command %x (ccl_code = %x) at %d.", | |
| 1992 code & 0x1F, code, this_ic); | |
| 1993 #ifdef CCL_DEBUG | |
| 1994 { | |
| 1995 int i = ccl_backtrace_idx - 1; | |
| 1996 int j; | |
| 1997 | |
| 1998 Dynarr_add_many (destination, (unsigned char *) msg, strlen (msg)); | |
| 1999 | |
| 2000 for (j = 0; j < CCL_DEBUG_BACKTRACE_LEN; j++, i--) | |
| 2001 { | |
| 2002 if (i < 0) i = CCL_DEBUG_BACKTRACE_LEN - 1; | |
| 2003 if (ccl_backtrace_table[i] == 0) | |
| 2004 break; | |
| 2005 sprintf(msg, " %d", ccl_backtrace_table[i]); | |
| 2006 Dynarr_add_many (destination, (unsigned char *) msg, strlen (msg)); | |
| 2007 } | |
| 2008 goto ccl_finish; | |
| 2009 } | |
| 2010 #endif | |
| 2011 break; | |
| 2012 | |
| 2013 case CCL_STAT_QUIT: | |
| 444 | 2014 sprintf(msg, "\nCCL: Exited."); |
| 428 | 2015 break; |
| 2016 | |
| 2017 default: | |
| 2018 sprintf(msg, "\nCCL: Unknown error type (%d).", ccl->status); | |
| 2019 } | |
| 2020 | |
| 2021 Dynarr_add_many (destination, (unsigned char *) msg, strlen (msg)); | |
| 2022 } | |
| 2023 | |
| 2024 ccl_finish: | |
| 2025 ccl->ic = ic; | |
| 2026 ccl->stack_idx = stack_idx; | |
| 2027 ccl->prog = ccl_prog; | |
| 2028 if (consumed) *consumed = src - source; | |
| 444 | 2029 if (!destination) |
| 428 | 2030 return 0; |
| 444 | 2031 return Dynarr_length (destination); |
| 2032 } | |
| 2033 | |
| 2034 /* Resolve symbols in the specified CCL code (Lisp vector). This | |
| 2035 function converts symbols of code conversion maps and character | |
| 2036 translation tables embedded in the CCL code into their ID numbers. | |
| 2037 | |
| 2038 The return value is a vector (CCL itself or a new vector in which | |
| 2039 all symbols are resolved), Qt if resolving of some symbol failed, | |
| 2040 or nil if CCL contains invalid data. */ | |
| 2041 | |
| 2042 static Lisp_Object | |
| 2043 resolve_symbol_ccl_program (Lisp_Object ccl) | |
| 2044 { | |
| 2045 int i, veclen, unresolved = 0; | |
| 2046 Lisp_Object result, contents, val; | |
| 2047 | |
| 2048 result = ccl; | |
| 2049 veclen = XVECTOR (result)->size; | |
| 2050 | |
| 2051 for (i = 0; i < veclen; i++) | |
| 2052 { | |
| 2053 contents = XVECTOR (result)->contents[i]; | |
| 4072 | 2054 /* XEmacs change; accept characters as well as integers, on the basis |
| 2055 that most CCL code written doesn't make a distinction. */ | |
| 2056 if (INTP (contents) || CHARP(contents)) | |
| 444 | 2057 continue; |
| 2058 else if (CONSP (contents) | |
| 2059 && SYMBOLP (XCAR (contents)) | |
| 2060 && SYMBOLP (XCDR (contents))) | |
| 2061 { | |
| 2062 /* This is the new style for embedding symbols. The form is | |
| 2063 (SYMBOL . PROPERTY). (get SYMBOL PROPERTY) should give | |
| 2064 an index number. */ | |
| 2065 | |
| 2066 if (EQ (result, ccl)) | |
| 2067 result = Fcopy_sequence (ccl); | |
| 2068 | |
| 2069 val = Fget (XCAR (contents), XCDR (contents), Qnil); | |
| 2070 if (NATNUMP (val)) | |
| 2071 XVECTOR (result)->contents[i] = val; | |
| 2072 else | |
| 2073 unresolved = 1; | |
| 2074 continue; | |
| 2075 } | |
| 2076 else if (SYMBOLP (contents)) | |
| 2077 { | |
| 2078 /* This is the old style for embedding symbols. This style | |
| 2079 may lead to a bug if, for instance, a translation table | |
| 2080 and a code conversion map have the same name. */ | |
| 2081 if (EQ (result, ccl)) | |
| 2082 result = Fcopy_sequence (ccl); | |
| 2083 | |
| 2084 val = Fget (contents, Qcode_conversion_map_id, Qnil); | |
| 2085 if (NATNUMP (val)) | |
| 2086 XVECTOR (result)->contents[i] = val; | |
| 2087 else | |
| 2088 { | |
| 2089 val = Fget (contents, Qccl_program_idx, Qnil); | |
| 2090 if (NATNUMP (val)) | |
| 2091 XVECTOR (result)->contents[i] = val; | |
| 2092 else | |
| 2093 unresolved = 1; | |
| 2094 } | |
| 2095 continue; | |
| 2096 } | |
| 2097 return Qnil; | |
| 2098 } | |
| 2099 | |
| 2100 return (unresolved ? Qt : result); | |
| 2101 } | |
| 2102 | |
| 2103 /* Return the compiled code (vector) of CCL program CCL_PROG. | |
| 2104 CCL_PROG is a name (symbol) of the program or already compiled | |
| 2105 code. If necessary, resolve symbols in the compiled code to index | |
| 2106 numbers. If we failed to get the compiled code or to resolve | |
| 2107 symbols, return Qnil. */ | |
| 2108 | |
| 2109 static Lisp_Object | |
| 2110 ccl_get_compiled_code (Lisp_Object ccl_prog) | |
| 2111 { | |
| 2112 Lisp_Object val, slot; | |
| 2113 | |
| 2114 if (VECTORP (ccl_prog)) | |
| 2115 { | |
| 2116 val = resolve_symbol_ccl_program (ccl_prog); | |
| 2117 return (VECTORP (val) ? val : Qnil); | |
| 2118 } | |
| 2119 if (!SYMBOLP (ccl_prog)) | |
| 2120 return Qnil; | |
| 2121 | |
| 2122 val = Fget (ccl_prog, Qccl_program_idx, Qnil); | |
| 2123 if (! NATNUMP (val) | |
|
5307
c096d8051f89
Have NATNUMP give t for positive bignums; check limits appropriately.
Aidan Kehoe <kehoea@parhasard.net>
parents:
5183
diff
changeset
|
2124 || -1 != bytecode_arithcompare (val, Flength (Vccl_program_table))) |
| 444 | 2125 return Qnil; |
| 2126 slot = XVECTOR_DATA (Vccl_program_table)[XINT (val)]; | |
| 2127 if (! VECTORP (slot) | |
| 2128 || XVECTOR (slot)->size != 3 | |
| 2129 || ! VECTORP (XVECTOR_DATA (slot)[1])) | |
| 2130 return Qnil; | |
| 2131 if (NILP (XVECTOR_DATA (slot)[2])) | |
| 2132 { | |
| 2133 val = resolve_symbol_ccl_program (XVECTOR_DATA (slot)[1]); | |
| 2134 if (! VECTORP (val)) | |
| 2135 return Qnil; | |
| 2136 XVECTOR_DATA (slot)[1] = val; | |
| 2137 XVECTOR_DATA (slot)[2] = Qt; | |
| 2138 } | |
| 2139 return XVECTOR_DATA (slot)[1]; | |
| 428 | 2140 } |
| 2141 | |
| 2142 /* Setup fields of the structure pointed by CCL appropriately for the | |
| 444 | 2143 execution of CCL program CCL_PROG. CCL_PROG is the name (symbol) |
| 2144 of the CCL program or the already compiled code (vector). | |
| 2145 Return 0 if we succeed this setup, else return -1. | |
| 2146 | |
| 2147 If CCL_PROG is nil, we just reset the structure pointed by CCL. */ | |
| 2148 int | |
| 2149 setup_ccl_program (struct ccl_program *ccl, Lisp_Object ccl_prog) | |
| 428 | 2150 { |
| 771 | 2151 xzero (*ccl); /* XEmacs change */ |
| 444 | 2152 if (! NILP (ccl_prog)) |
| 428 | 2153 { |
|
4745
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2154 Lisp_Object new_prog = ccl_get_compiled_code (ccl_prog); |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2155 |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2156 if (VECTORP (ccl_prog)) |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2157 { |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2158 /* Make sure we're not allocating unreachable memory in this |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2159 function: */ |
|
4748
27b09b4219b1
Fix the union build, setup_ccl_program; thank you Robert Delius Royar.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4745
diff
changeset
|
2160 assert (EQ (ccl_prog, new_prog)); |
|
4745
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2161 } |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2162 |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2163 ccl_prog = new_prog; |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2164 |
| 444 | 2165 if (! VECTORP (ccl_prog)) |
| 2166 return -1; | |
|
4745
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2167 |
| 444 | 2168 ccl->size = XVECTOR_LENGTH (ccl_prog); |
| 2169 ccl->prog = XVECTOR_DATA (ccl_prog); | |
| 2170 ccl->eof_ic = XINT (XVECTOR_DATA (ccl_prog)[CCL_HEADER_EOF]); | |
| 2171 ccl->buf_magnification = XINT (XVECTOR_DATA (ccl_prog)[CCL_HEADER_BUF_MAG]); | |
| 428 | 2172 } |
| 2173 ccl->ic = CCL_HEADER_MAIN; | |
| 444 | 2174 ccl->eol_type = CCL_CODING_EOL_LF; |
| 2175 return 0; | |
| 428 | 2176 } |
| 2177 | |
|
4745
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2178 static Lisp_Object |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2179 find_ccl_program (Lisp_Object object, int *unresolved_symbols) |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2180 { |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2181 struct ccl_program test_ccl; |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2182 |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2183 if (NULL != unresolved_symbols) |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2184 { |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2185 *unresolved_symbols = 0; |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2186 } |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2187 |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2188 if (VECTORP (object)) |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2189 { |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2190 object = resolve_symbol_ccl_program (object); |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2191 if (EQ (Qt, object)) |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2192 { |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2193 if (NULL != unresolved_symbols) |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2194 { |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2195 *unresolved_symbols = 1; |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2196 } |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2197 return Qnil; |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2198 } |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2199 } |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2200 else if (!SYMBOLP (object)) |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2201 { |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2202 return Qnil; |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2203 } |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2204 |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2205 if (setup_ccl_program (&test_ccl, object) < 0) |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2206 { |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2207 return Qnil; |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2208 } |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2209 |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2210 return object; |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2211 } |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2212 |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2213 Lisp_Object |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2214 get_ccl_program (Lisp_Object object) |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2215 { |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2216 int unresolved_symbols = 0; |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2217 Lisp_Object val = find_ccl_program (object, &unresolved_symbols); |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2218 |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2219 if (unresolved_symbols) |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2220 { |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2221 invalid_argument ("Unresolved symbol(s) in CCL program", object); |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2222 } |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2223 else if (NILP (val)) |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2224 { |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2225 invalid_argument ("Invalid CCL program", object); |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2226 } |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2227 |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2228 return val; |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2229 } |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2230 |
| 444 | 2231 #ifdef emacs |
| 428 | 2232 |
| 444 | 2233 DEFUN ("ccl-program-p", Fccl_program_p, 1, 1, 0, /* |
| 2234 Return t if OBJECT is a CCL program name or a compiled CCL program code. | |
| 2235 See the documentation of `define-ccl-program' for the detail of CCL program. | |
| 2236 */ | |
| 2237 (object)) | |
| 2238 { | |
|
4745
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2239 return NILP (find_ccl_program (object, NULL)) ? Qnil : Qt; |
| 428 | 2240 } |
| 2241 | |
| 2242 DEFUN ("ccl-execute", Fccl_execute, 2, 2, 0, /* | |
| 2243 Execute CCL-PROGRAM with registers initialized by REGISTERS. | |
| 2244 | |
| 444 | 2245 CCL-PROGRAM is a CCL program name (symbol) |
| 428 | 2246 or a compiled code generated by `ccl-compile' (for backward compatibility, |
| 444 | 2247 in this case, the overhead of the execution is bigger than the former case). |
| 428 | 2248 No I/O commands should appear in CCL-PROGRAM. |
| 2249 | |
| 2250 REGISTERS is a vector of [R0 R1 ... R7] where RN is an initial value | |
| 2251 of Nth register. | |
| 2252 | |
| 444 | 2253 As side effect, each element of REGISTERS holds the value of |
| 428 | 2254 corresponding register after the execution. |
| 444 | 2255 |
| 2256 See the documentation of `define-ccl-program' for the detail of CCL program. | |
| 428 | 2257 */ |
| 444 | 2258 (ccl_prog, reg)) |
| 428 | 2259 { |
| 2260 struct ccl_program ccl; | |
|
4745
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2261 struct gcpro gcpro1; |
| 428 | 2262 int i; |
| 2263 | |
|
4745
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2264 ccl_prog = get_ccl_program (ccl_prog); |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2265 /* get_ccl_program may have consed. GCPROing shouldn't be necessary at the |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2266 moment, but maybe someday CCL will call Lisp: */ |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2267 GCPRO1 (ccl_prog); |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2268 |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2269 i = setup_ccl_program (&ccl, ccl_prog); |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2270 |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2271 text_checking_assert (i >= 0); |
| 428 | 2272 |
| 2273 CHECK_VECTOR (reg); | |
| 2274 if (XVECTOR_LENGTH (reg) != 8) | |
| 563 | 2275 syntax_error ("Length of vector REGISTERS is not 8", Qunbound); |
| 428 | 2276 |
| 2277 for (i = 0; i < 8; i++) | |
| 4072 | 2278 ccl.reg[i] = (INTP (XVECTOR_DATA (reg)[i]) || CHARP (XVECTOR_DATA (reg)[i]) |
| 2279 ? XCHAR_OR_INT (XVECTOR_DATA (reg)[i]) | |
| 428 | 2280 : 0); |
| 2281 | |
| 444 | 2282 ccl_driver (&ccl, (const unsigned char *)0, |
| 2283 (unsigned_char_dynarr *)0, 0, (int *)0, | |
| 2284 CCL_MODE_ENCODING); | |
| 428 | 2285 QUIT; |
| 2286 if (ccl.status != CCL_STAT_SUCCESS) | |
| 563 | 2287 signal_error (Qccl_error, "Error in CCL program at code numbered ...", make_int (ccl.ic)); |
| 428 | 2288 |
| 2289 for (i = 0; i < 8; i++) | |
| 793 | 2290 XVECTOR (reg)->contents[i] = make_int (ccl.reg[i]); |
|
4745
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2291 |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2292 RETURN_UNGCPRO (Qnil); |
| 428 | 2293 } |
| 2294 | |
| 444 | 2295 DEFUN ("ccl-execute-on-string", Fccl_execute_on_string, |
| 2296 3, 4, 0, /* | |
| 428 | 2297 Execute CCL-PROGRAM with initial STATUS on STRING. |
| 2298 | |
| 2299 CCL-PROGRAM is a symbol registered by register-ccl-program, | |
| 2300 or a compiled code generated by `ccl-compile' (for backward compatibility, | |
| 2301 in this case, the execution is slower). | |
| 2302 | |
| 2303 Read buffer is set to STRING, and write buffer is allocated automatically. | |
| 2304 | |
| 2305 STATUS is a vector of [R0 R1 ... R7 IC], where | |
| 2306 R0..R7 are initial values of corresponding registers, | |
| 2307 IC is the instruction counter specifying from where to start the program. | |
| 2308 If R0..R7 are nil, they are initialized to 0. | |
| 2309 If IC is nil, it is initialized to head of the CCL program. | |
| 2310 | |
| 2311 If optional 4th arg CONTINUE is non-nil, keep IC on read operation | |
| 444 | 2312 when read buffer is exhausted, else, IC is always set to the end of |
| 428 | 2313 CCL-PROGRAM on exit. |
| 2314 | |
| 2315 It returns the contents of write buffer as a string, | |
| 2316 and as side effect, STATUS is updated. | |
| 444 | 2317 |
| 2318 See the documentation of `define-ccl-program' for the detail of CCL program. | |
| 428 | 2319 */ |
| 444 | 2320 (ccl_prog, status, string, continue_)) |
| 428 | 2321 { |
| 2322 Lisp_Object val; | |
| 2323 struct ccl_program ccl; | |
| 2324 int i, produced; | |
| 2325 unsigned_char_dynarr *outbuf; | |
|
4745
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2326 struct gcpro gcpro1, gcpro2, gcpro3; |
| 428 | 2327 |
|
4745
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2328 ccl_prog = get_ccl_program (ccl_prog); |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2329 i = setup_ccl_program (&ccl, ccl_prog); |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2330 |
|
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2331 text_checking_assert (i >= 0); |
| 428 | 2332 |
| 2333 CHECK_VECTOR (status); | |
| 444 | 2334 if (XVECTOR (status)->size != 9) |
| 563 | 2335 syntax_error ("Length of vector STATUS is not 9", Qunbound); |
| 444 | 2336 CHECK_STRING (string); |
| 428 | 2337 |
|
4745
0c54de4c4b9d
Resolve the unregistered-CCL-programs-get-garbage-collected problem correctly
Aidan Kehoe <kehoea@parhasard.net>
parents:
4525
diff
changeset
|
2338 GCPRO3 (status, string, ccl_prog); |
| 444 | 2339 |
| 428 | 2340 for (i = 0; i < 8; i++) |
| 2341 { | |
| 2342 if (NILP (XVECTOR_DATA (status)[i])) | |
| 793 | 2343 XVECTOR_DATA (status)[i] = make_int (0); |
| 428 | 2344 if (INTP (XVECTOR_DATA (status)[i])) |
| 2345 ccl.reg[i] = XINT (XVECTOR_DATA (status)[i]); | |
| 4072 | 2346 if (CHARP (XVECTOR_DATA (status)[i])) |
| 2347 ccl.reg[i] = XCHAR (XVECTOR_DATA (status)[i]); | |
| 428 | 2348 } |
| 4072 | 2349 if (INTP (XVECTOR (status)->contents[i]) || |
| 2350 CHARP (XVECTOR (status)->contents[i])) | |
| 428 | 2351 { |
| 4072 | 2352 i = XCHAR_OR_INT (XVECTOR_DATA (status)[8]); |
| 428 | 2353 if (ccl.ic < i && i < ccl.size) |
| 2354 ccl.ic = i; | |
| 2355 } | |
| 2356 outbuf = Dynarr_new (unsigned_char); | |
| 444 | 2357 ccl.last_block = NILP (continue_); |
| 2358 produced = ccl_driver (&ccl, XSTRING_DATA (string), outbuf, | |
| 2359 XSTRING_LENGTH (string), | |
| 2360 (int *) 0, | |
| 2361 CCL_MODE_DECODING); | |
| 428 | 2362 for (i = 0; i < 8; i++) |
| 793 | 2363 XVECTOR_DATA (status)[i] = make_int (ccl.reg[i]); |
| 2364 XVECTOR_DATA (status)[8] = make_int (ccl.ic); | |
| 428 | 2365 UNGCPRO; |
| 2366 | |
| 4967 | 2367 val = make_string (Dynarr_begin (outbuf), produced); |
| 428 | 2368 Dynarr_free (outbuf); |
| 2369 QUIT; | |
| 444 | 2370 if (ccl.status == CCL_STAT_SUSPEND_BY_DST) |
| 563 | 2371 signal_error (Qccl_error, "Output buffer for the CCL programs overflow", Qunbound); |
| 428 | 2372 if (ccl.status != CCL_STAT_SUCCESS |
| 444 | 2373 && ccl.status != CCL_STAT_SUSPEND_BY_SRC) |
| 563 | 2374 signal_error (Qccl_error, "Error in CCL program at code numbered...", make_int (ccl.ic)); |
| 428 | 2375 |
| 2376 return val; | |
| 2377 } | |
| 2378 | |
| 444 | 2379 DEFUN ("register-ccl-program", Fregister_ccl_program, |
| 2380 2, 2, 0, /* | |
| 2381 Register CCL program CCL-PROG as NAME in `ccl-program-table'. | |
| 2382 CCL-PROG should be a compiled CCL program (vector), or nil. | |
| 2383 If it is nil, just reserve NAME as a CCL program name. | |
| 428 | 2384 Return index number of the registered CCL program. |
| 2385 */ | |
| 444 | 2386 (name, ccl_prog)) |
| 428 | 2387 { |
| 2388 int len = XVECTOR_LENGTH (Vccl_program_table); | |
| 444 | 2389 int idx; |
| 2390 Lisp_Object resolved; | |
| 428 | 2391 |
| 2392 CHECK_SYMBOL (name); | |
| 444 | 2393 resolved = Qnil; |
| 428 | 2394 if (!NILP (ccl_prog)) |
| 2395 { | |
| 2396 CHECK_VECTOR (ccl_prog); | |
| 444 | 2397 resolved = resolve_symbol_ccl_program (ccl_prog); |
| 2398 if (! NILP (resolved)) | |
| 428 | 2399 { |
| 444 | 2400 ccl_prog = resolved; |
| 2401 resolved = Qt; | |
| 428 | 2402 } |
| 2403 } | |
| 2404 | |
| 444 | 2405 for (idx = 0; idx < len; idx++) |
| 428 | 2406 { |
| 444 | 2407 Lisp_Object slot; |
| 2408 | |
| 2409 slot = XVECTOR_DATA (Vccl_program_table)[idx]; | |
| 2410 if (!VECTORP (slot)) | |
| 2411 /* This is the first unused slot. Register NAME here. */ | |
| 2412 break; | |
| 2413 | |
| 2414 if (EQ (name, XVECTOR_DATA (slot)[0])) | |
| 2415 { | |
| 2416 /* Update this slot. */ | |
| 2417 XVECTOR_DATA (slot)[1] = ccl_prog; | |
| 2418 XVECTOR_DATA (slot)[2] = resolved; | |
| 2419 return make_int (idx); | |
| 2420 } | |
| 2421 } | |
| 2422 | |
| 2423 if (idx == len) | |
| 2424 { | |
| 2425 /* Extend the table. */ | |
| 2426 Lisp_Object new_table; | |
| 428 | 2427 int j; |
| 2428 | |
| 444 | 2429 new_table = Fmake_vector (make_int (len * 2), Qnil); |
| 428 | 2430 for (j = 0; j < len; j++) |
| 2431 XVECTOR_DATA (new_table)[j] | |
| 2432 = XVECTOR_DATA (Vccl_program_table)[j]; | |
| 2433 Vccl_program_table = new_table; | |
| 2434 } | |
| 2435 | |
| 444 | 2436 { |
| 2437 Lisp_Object elt; | |
| 2438 | |
| 2439 elt = Fmake_vector (make_int (3), Qnil); | |
| 2440 XVECTOR_DATA (elt)[0] = name; | |
| 2441 XVECTOR_DATA (elt)[1] = ccl_prog; | |
| 2442 XVECTOR_DATA (elt)[2] = resolved; | |
| 2443 XVECTOR_DATA (Vccl_program_table)[idx] = elt; | |
| 2444 } | |
| 2445 | |
| 2446 Fput (name, Qccl_program_idx, make_int (idx)); | |
| 2447 return make_int (idx); | |
| 428 | 2448 } |
| 2449 | |
| 2450 /* Register code conversion map. | |
| 2451 A code conversion map consists of numbers, Qt, Qnil, and Qlambda. | |
| 2452 The first element is start code point. | |
| 2453 The rest elements are mapped numbers. | |
| 2454 Symbol t means to map to an original number before mapping. | |
| 2455 Symbol nil means that the corresponding element is empty. | |
| 442 | 2456 Symbol lambda means to terminate mapping here. |
| 428 | 2457 */ |
| 2458 | |
| 2459 DEFUN ("register-code-conversion-map", Fregister_code_conversion_map, | |
| 444 | 2460 2, 2, 0, /* |
| 2461 Register SYMBOL as code conversion map MAP. | |
| 2462 Return index number of the registered map. | |
| 2463 */ | |
| 2464 (symbol, map)) | |
| 428 | 2465 { |
| 444 | 2466 int len = XVECTOR_LENGTH (Vcode_conversion_map_vector); |
| 428 | 2467 int i; |
| 444 | 2468 Lisp_Object idx; |
| 428 | 2469 |
| 444 | 2470 CHECK_SYMBOL (symbol); |
| 2471 CHECK_VECTOR (map); | |
| 442 | 2472 |
| 428 | 2473 for (i = 0; i < len; i++) |
| 2474 { | |
| 444 | 2475 Lisp_Object slot = XVECTOR_DATA (Vcode_conversion_map_vector)[i]; |
| 428 | 2476 |
| 2477 if (!CONSP (slot)) | |
| 2478 break; | |
| 2479 | |
| 444 | 2480 if (EQ (symbol, XCAR (slot))) |
| 428 | 2481 { |
| 444 | 2482 idx = make_int (i); |
| 2483 XCDR (slot) = map; | |
| 428 | 2484 Fput (symbol, Qcode_conversion_map, map); |
| 444 | 2485 Fput (symbol, Qcode_conversion_map_id, idx); |
| 2486 return idx; | |
| 428 | 2487 } |
| 2488 } | |
| 2489 | |
| 2490 if (i == len) | |
| 2491 { | |
| 2492 Lisp_Object new_vector = Fmake_vector (make_int (len * 2), Qnil); | |
| 2493 int j; | |
| 2494 | |
| 2495 for (j = 0; j < len; j++) | |
| 444 | 2496 XVECTOR_DATA (new_vector)[j] |
| 2497 = XVECTOR_DATA (Vcode_conversion_map_vector)[j]; | |
| 428 | 2498 Vcode_conversion_map_vector = new_vector; |
| 2499 } | |
| 2500 | |
| 444 | 2501 idx = make_int (i); |
| 428 | 2502 Fput (symbol, Qcode_conversion_map, map); |
| 444 | 2503 Fput (symbol, Qcode_conversion_map_id, idx); |
| 2504 XVECTOR_DATA (Vcode_conversion_map_vector)[i] = Fcons (symbol, map); | |
| 2505 return idx; | |
| 428 | 2506 } |
| 2507 | |
| 2508 | |
| 2509 void | |
| 2510 syms_of_mule_ccl (void) | |
| 2511 { | |
| 565 | 2512 DEFERROR_STANDARD (Qccl_error, Qconversion_error); |
| 2513 | |
| 444 | 2514 DEFSUBR (Fccl_program_p); |
| 428 | 2515 DEFSUBR (Fccl_execute); |
| 2516 DEFSUBR (Fccl_execute_on_string); | |
| 2517 DEFSUBR (Fregister_ccl_program); | |
| 444 | 2518 DEFSUBR (Fregister_code_conversion_map); |
| 428 | 2519 } |
| 2520 | |
| 2521 void | |
| 2522 vars_of_mule_ccl (void) | |
| 2523 { | |
| 4072 | 2524 |
| 428 | 2525 staticpro (&Vccl_program_table); |
| 2526 Vccl_program_table = Fmake_vector (make_int (32), Qnil); | |
| 2527 | |
| 4072 | 2528 #ifdef DEBUG_XEMACS |
| 2529 DEFVAR_LISP ("ccl-program-table", | |
| 2530 &Vccl_program_table /* | |
| 2531 Vector containing all registered CCL programs. | |
| 2532 */ ); | |
| 2533 #endif | |
| 563 | 2534 DEFSYMBOL (Qccl_program); |
| 2535 DEFSYMBOL (Qccl_program_idx); | |
| 2536 DEFSYMBOL (Qcode_conversion_map); | |
| 2537 DEFSYMBOL (Qcode_conversion_map_id); | |
| 428 | 2538 |
| 2539 DEFVAR_LISP ("code-conversion-map-vector", &Vcode_conversion_map_vector /* | |
| 444 | 2540 Vector of code conversion maps. |
| 2541 */ ); | |
| 428 | 2542 Vcode_conversion_map_vector = Fmake_vector (make_int (16), Qnil); |
| 2543 | |
| 4072 | 2544 DEFVAR_LISP ("translation-hash-table-vector", |
| 2545 &Vtranslation_hash_table_vector /* | |
| 2546 Vector containing all translation hash tables ever defined. | |
| 2547 Comprises pairs (SYMBOL . TABLE) where SYMBOL and TABLE were set up by calls | |
| 2548 to `define-translation-hash-table'. The vector is indexed by the table id | |
| 2549 used by CCL. | |
| 428 | 2550 */ ); |
| 4072 | 2551 Vtranslation_hash_table_vector = Qnil; |
| 2552 | |
| 428 | 2553 } |
| 2554 | |
| 2555 #endif /* emacs */ |
