428
|
1 /* Storage allocation and gc for XEmacs Lisp interpreter.
|
|
2 Copyright (C) 1985-1998 Free Software Foundation, Inc.
|
|
3 Copyright (C) 1995 Sun Microsystems, Inc.
|
|
4 Copyright (C) 1995, 1996 Ben Wing.
|
|
5
|
|
6 This file is part of XEmacs.
|
|
7
|
|
8 XEmacs is free software; you can redistribute it and/or modify it
|
|
9 under the terms of the GNU General Public License as published by the
|
|
10 Free Software Foundation; either version 2, or (at your option) any
|
|
11 later version.
|
|
12
|
|
13 XEmacs is distributed in the hope that it will be useful, but WITHOUT
|
|
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
16 for more details.
|
|
17
|
|
18 You should have received a copy of the GNU General Public License
|
|
19 along with XEmacs; see the file COPYING. If not, write to
|
|
20 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
21 Boston, MA 02111-1307, USA. */
|
|
22
|
|
23 /* Synched up with: FSF 19.28, Mule 2.0. Substantially different from
|
|
24 FSF. */
|
|
25
|
|
26 /* Authorship:
|
|
27
|
|
28 FSF: Original version; a long time ago.
|
|
29 Mly: Significantly rewritten to use new 3-bit tags and
|
|
30 nicely abstracted object definitions, for 19.8.
|
|
31 JWZ: Improved code to keep track of purespace usage and
|
|
32 issue nice purespace and GC stats.
|
|
33 Ben Wing: Cleaned up frob-block lrecord code, added error-checking
|
|
34 and various changes for Mule, for 19.12.
|
|
35 Added bit vectors for 19.13.
|
|
36 Added lcrecord lists for 19.14.
|
|
37 slb: Lots of work on the purification and dump time code.
|
|
38 Synched Doug Lea malloc support from Emacs 20.2.
|
|
39 og: Killed the purespace. Portable dumper.
|
|
40 */
|
|
41
|
|
42 #include <config.h>
|
|
43 #include "lisp.h"
|
|
44
|
|
45 #include "backtrace.h"
|
|
46 #include "buffer.h"
|
|
47 #include "bytecode.h"
|
|
48 #include "chartab.h"
|
|
49 #include "device.h"
|
|
50 #include "elhash.h"
|
|
51 #include "events.h"
|
|
52 #include "extents.h"
|
|
53 #include "frame.h"
|
|
54 #include "glyphs.h"
|
|
55 #include "opaque.h"
|
|
56 #include "redisplay.h"
|
|
57 #include "specifier.h"
|
|
58 #include "sysfile.h"
|
|
59 #include "window.h"
|
|
60 #include "console-stream.h"
|
|
61
|
|
62 #ifdef DOUG_LEA_MALLOC
|
|
63 #include <malloc.h>
|
|
64 #endif
|
|
65
|
|
66 #ifdef HAVE_MMAP
|
|
67 #include <unistd.h>
|
|
68 #include <sys/mman.h>
|
|
69 #endif
|
|
70
|
|
71 #ifdef PDUMP
|
|
72 typedef struct
|
|
73 {
|
|
74 const struct lrecord_description *desc;
|
|
75 int count;
|
|
76 } pdump_reloc_table;
|
|
77
|
|
78 static char *pdump_rt_list = 0;
|
|
79 #endif
|
|
80
|
|
81 EXFUN (Fgarbage_collect, 0);
|
|
82
|
|
83 /* Return the true size of a struct with a variable-length array field. */
|
|
84 #define STRETCHY_STRUCT_SIZEOF(stretchy_struct_type, \
|
|
85 stretchy_array_field, \
|
|
86 stretchy_array_length) \
|
|
87 (offsetof (stretchy_struct_type, stretchy_array_field) + \
|
|
88 (offsetof (stretchy_struct_type, stretchy_array_field[1]) - \
|
|
89 offsetof (stretchy_struct_type, stretchy_array_field[0])) * \
|
|
90 (stretchy_array_length))
|
|
91
|
|
92 #if 0 /* this is _way_ too slow to be part of the standard debug options */
|
|
93 #if defined(DEBUG_XEMACS) && defined(MULE)
|
|
94 #define VERIFY_STRING_CHARS_INTEGRITY
|
|
95 #endif
|
|
96 #endif
|
|
97
|
|
98 /* Define this to use malloc/free with no freelist for all datatypes,
|
|
99 the hope being that some debugging tools may help detect
|
|
100 freed memory references */
|
|
101 #ifdef USE_DEBUG_MALLOC /* Taking the above comment at face value -slb */
|
|
102 #include <dmalloc.h>
|
|
103 #define ALLOC_NO_POOLS
|
|
104 #endif
|
|
105
|
|
106 #ifdef DEBUG_XEMACS
|
|
107 static int debug_allocation;
|
|
108 static int debug_allocation_backtrace_length;
|
|
109 #endif
|
|
110
|
|
111 /* Number of bytes of consing done since the last gc */
|
|
112 EMACS_INT consing_since_gc;
|
|
113 #define INCREMENT_CONS_COUNTER_1(size) (consing_since_gc += (size))
|
|
114
|
|
115 #define debug_allocation_backtrace() \
|
|
116 do { \
|
|
117 if (debug_allocation_backtrace_length > 0) \
|
|
118 debug_short_backtrace (debug_allocation_backtrace_length); \
|
|
119 } while (0)
|
|
120
|
|
121 #ifdef DEBUG_XEMACS
|
|
122 #define INCREMENT_CONS_COUNTER(foosize, type) \
|
|
123 do { \
|
|
124 if (debug_allocation) \
|
|
125 { \
|
|
126 stderr_out ("allocating %s (size %ld)\n", type, (long)foosize); \
|
|
127 debug_allocation_backtrace (); \
|
|
128 } \
|
|
129 INCREMENT_CONS_COUNTER_1 (foosize); \
|
|
130 } while (0)
|
|
131 #define NOSEEUM_INCREMENT_CONS_COUNTER(foosize, type) \
|
|
132 do { \
|
|
133 if (debug_allocation > 1) \
|
|
134 { \
|
|
135 stderr_out ("allocating noseeum %s (size %ld)\n", type, (long)foosize); \
|
|
136 debug_allocation_backtrace (); \
|
|
137 } \
|
|
138 INCREMENT_CONS_COUNTER_1 (foosize); \
|
|
139 } while (0)
|
|
140 #else
|
|
141 #define INCREMENT_CONS_COUNTER(size, type) INCREMENT_CONS_COUNTER_1 (size)
|
|
142 #define NOSEEUM_INCREMENT_CONS_COUNTER(size, type) \
|
|
143 INCREMENT_CONS_COUNTER_1 (size)
|
|
144 #endif
|
|
145
|
|
146 #define DECREMENT_CONS_COUNTER(size) do { \
|
|
147 consing_since_gc -= (size); \
|
|
148 if (consing_since_gc < 0) \
|
|
149 consing_since_gc = 0; \
|
|
150 } while (0)
|
|
151
|
|
152 /* Number of bytes of consing since gc before another gc should be done. */
|
|
153 EMACS_INT gc_cons_threshold;
|
|
154
|
|
155 /* Nonzero during gc */
|
|
156 int gc_in_progress;
|
|
157
|
|
158 /* Number of times GC has happened at this level or below.
|
|
159 * Level 0 is most volatile, contrary to usual convention.
|
|
160 * (Of course, there's only one level at present) */
|
|
161 EMACS_INT gc_generation_number[1];
|
|
162
|
|
163 /* This is just for use by the printer, to allow things to print uniquely */
|
|
164 static int lrecord_uid_counter;
|
|
165
|
|
166 /* Nonzero when calling certain hooks or doing other things where
|
|
167 a GC would be bad */
|
|
168 int gc_currently_forbidden;
|
|
169
|
|
170 /* Hooks. */
|
|
171 Lisp_Object Vpre_gc_hook, Qpre_gc_hook;
|
|
172 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
|
|
173
|
|
174 /* "Garbage collecting" */
|
|
175 Lisp_Object Vgc_message;
|
|
176 Lisp_Object Vgc_pointer_glyph;
|
|
177 static CONST char gc_default_message[] = "Garbage collecting";
|
|
178 Lisp_Object Qgarbage_collecting;
|
|
179
|
|
180 #ifndef VIRT_ADDR_VARIES
|
|
181 extern
|
|
182 #endif /* VIRT_ADDR_VARIES */
|
|
183 EMACS_INT malloc_sbrk_used;
|
|
184
|
|
185 #ifndef VIRT_ADDR_VARIES
|
|
186 extern
|
|
187 #endif /* VIRT_ADDR_VARIES */
|
|
188 EMACS_INT malloc_sbrk_unused;
|
|
189
|
|
190 /* Non-zero means we're in the process of doing the dump */
|
|
191 int purify_flag;
|
|
192
|
|
193 #ifdef ERROR_CHECK_TYPECHECK
|
|
194
|
|
195 Error_behavior ERROR_ME, ERROR_ME_NOT, ERROR_ME_WARN;
|
|
196
|
|
197 #endif
|
|
198
|
|
199 int
|
|
200 c_readonly (Lisp_Object obj)
|
|
201 {
|
|
202 return POINTER_TYPE_P (XTYPE (obj)) && C_READONLY (obj);
|
|
203 }
|
|
204
|
|
205 int
|
|
206 lisp_readonly (Lisp_Object obj)
|
|
207 {
|
|
208 return POINTER_TYPE_P (XTYPE (obj)) && LISP_READONLY (obj);
|
|
209 }
|
|
210
|
|
211
|
|
212 /* Maximum amount of C stack to save when a GC happens. */
|
|
213
|
|
214 #ifndef MAX_SAVE_STACK
|
|
215 #define MAX_SAVE_STACK 0 /* 16000 */
|
|
216 #endif
|
|
217
|
|
218 /* Non-zero means ignore malloc warnings. Set during initialization. */
|
|
219 int ignore_malloc_warnings;
|
|
220
|
|
221
|
|
222 static void *breathing_space;
|
|
223
|
|
224 void
|
|
225 release_breathing_space (void)
|
|
226 {
|
|
227 if (breathing_space)
|
|
228 {
|
|
229 void *tmp = breathing_space;
|
|
230 breathing_space = 0;
|
|
231 xfree (tmp);
|
|
232 }
|
|
233 }
|
|
234
|
|
235 /* malloc calls this if it finds we are near exhausting storage */
|
|
236 void
|
|
237 malloc_warning (CONST char *str)
|
|
238 {
|
|
239 if (ignore_malloc_warnings)
|
|
240 return;
|
|
241
|
|
242 warn_when_safe
|
|
243 (Qmemory, Qcritical,
|
|
244 "%s\n"
|
|
245 "Killing some buffers may delay running out of memory.\n"
|
|
246 "However, certainly by the time you receive the 95%% warning,\n"
|
|
247 "you should clean up, kill this Emacs, and start a new one.",
|
|
248 str);
|
|
249 }
|
|
250
|
|
251 /* Called if malloc returns zero */
|
|
252 DOESNT_RETURN
|
|
253 memory_full (void)
|
|
254 {
|
|
255 /* Force a GC next time eval is called.
|
|
256 It's better to loop garbage-collecting (we might reclaim enough
|
|
257 to win) than to loop beeping and barfing "Memory exhausted"
|
|
258 */
|
|
259 consing_since_gc = gc_cons_threshold + 1;
|
|
260 release_breathing_space ();
|
|
261
|
|
262 /* Flush some histories which might conceivably contain garbalogical
|
|
263 inhibitors. */
|
|
264 if (!NILP (Fboundp (Qvalues)))
|
|
265 Fset (Qvalues, Qnil);
|
|
266 Vcommand_history = Qnil;
|
|
267
|
|
268 error ("Memory exhausted");
|
|
269 }
|
|
270
|
|
271 /* like malloc and realloc but check for no memory left, and block input. */
|
|
272
|
|
273 #undef xmalloc
|
|
274 void *
|
|
275 xmalloc (size_t size)
|
|
276 {
|
|
277 void *val = malloc (size);
|
|
278
|
|
279 if (!val && (size != 0)) memory_full ();
|
|
280 return val;
|
|
281 }
|
|
282
|
|
283 #undef xcalloc
|
|
284 static void *
|
|
285 xcalloc (size_t nelem, size_t elsize)
|
|
286 {
|
|
287 void *val = calloc (nelem, elsize);
|
|
288
|
|
289 if (!val && (nelem != 0)) memory_full ();
|
|
290 return val;
|
|
291 }
|
|
292
|
|
293 void *
|
|
294 xmalloc_and_zero (size_t size)
|
|
295 {
|
|
296 return xcalloc (size, sizeof (char));
|
|
297 }
|
|
298
|
|
299 #undef xrealloc
|
|
300 void *
|
|
301 xrealloc (void *block, size_t size)
|
|
302 {
|
|
303 /* We must call malloc explicitly when BLOCK is 0, since some
|
|
304 reallocs don't do this. */
|
|
305 void *val = block ? realloc (block, size) : malloc (size);
|
|
306
|
|
307 if (!val && (size != 0)) memory_full ();
|
|
308 return val;
|
|
309 }
|
|
310
|
|
311 void
|
|
312 #ifdef ERROR_CHECK_MALLOC
|
|
313 xfree_1 (void *block)
|
|
314 #else
|
|
315 xfree (void *block)
|
|
316 #endif
|
|
317 {
|
|
318 #ifdef ERROR_CHECK_MALLOC
|
|
319 /* Unbelievably, calling free() on 0xDEADBEEF doesn't cause an
|
|
320 error until much later on for many system mallocs, such as
|
|
321 the one that comes with Solaris 2.3. FMH!! */
|
|
322 assert (block != (void *) 0xDEADBEEF);
|
|
323 assert (block);
|
|
324 #endif /* ERROR_CHECK_MALLOC */
|
|
325 free (block);
|
|
326 }
|
|
327
|
|
328 #ifdef ERROR_CHECK_GC
|
|
329
|
|
330 #if SIZEOF_INT == 4
|
|
331 typedef unsigned int four_byte_t;
|
|
332 #elif SIZEOF_LONG == 4
|
|
333 typedef unsigned long four_byte_t;
|
|
334 #elif SIZEOF_SHORT == 4
|
|
335 typedef unsigned short four_byte_t;
|
|
336 #else
|
|
337 What kind of strange-ass system are we running on?
|
|
338 #endif
|
|
339
|
|
340 static void
|
|
341 deadbeef_memory (void *ptr, size_t size)
|
|
342 {
|
|
343 four_byte_t *ptr4 = (four_byte_t *) ptr;
|
|
344 size_t beefs = size >> 2;
|
|
345
|
|
346 /* In practice, size will always be a multiple of four. */
|
|
347 while (beefs--)
|
|
348 (*ptr4++) = 0xDEADBEEF;
|
|
349 }
|
|
350
|
|
351 #else /* !ERROR_CHECK_GC */
|
|
352
|
|
353
|
|
354 #define deadbeef_memory(ptr, size)
|
|
355
|
|
356 #endif /* !ERROR_CHECK_GC */
|
|
357
|
|
358 #undef xstrdup
|
|
359 char *
|
|
360 xstrdup (CONST char *str)
|
|
361 {
|
|
362 int len = strlen (str) + 1; /* for stupid terminating 0 */
|
|
363
|
|
364 void *val = xmalloc (len);
|
|
365 if (val == 0) return 0;
|
|
366 return (char *) memcpy (val, str, len);
|
|
367 }
|
|
368
|
|
369 #ifdef NEED_STRDUP
|
|
370 char *
|
|
371 strdup (CONST char *s)
|
|
372 {
|
|
373 return xstrdup (s);
|
|
374 }
|
|
375 #endif /* NEED_STRDUP */
|
|
376
|
|
377
|
|
378 static void *
|
|
379 allocate_lisp_storage (size_t size)
|
|
380 {
|
|
381 return xmalloc (size);
|
|
382 }
|
|
383
|
|
384
|
|
385 /* lrecords are chained together through their "next.v" field.
|
|
386 * After doing the mark phase, the GC will walk this linked
|
|
387 * list and free any record which hasn't been marked.
|
|
388 */
|
|
389 static struct lcrecord_header *all_lcrecords;
|
|
390
|
|
391 void *
|
|
392 alloc_lcrecord (size_t size, CONST struct lrecord_implementation *implementation)
|
|
393 {
|
|
394 struct lcrecord_header *lcheader;
|
|
395
|
|
396 #ifdef ERROR_CHECK_GC
|
|
397 if (implementation->static_size == 0)
|
|
398 assert (implementation->size_in_bytes_method);
|
|
399 else
|
|
400 assert (implementation->static_size == size);
|
|
401 #endif
|
|
402
|
|
403 lcheader = (struct lcrecord_header *) allocate_lisp_storage (size);
|
|
404 set_lheader_implementation (&(lcheader->lheader), implementation);
|
|
405 lcheader->next = all_lcrecords;
|
|
406 #if 1 /* mly prefers to see small ID numbers */
|
|
407 lcheader->uid = lrecord_uid_counter++;
|
|
408 #else /* jwz prefers to see real addrs */
|
|
409 lcheader->uid = (int) &lcheader;
|
|
410 #endif
|
|
411 lcheader->free = 0;
|
|
412 all_lcrecords = lcheader;
|
|
413 INCREMENT_CONS_COUNTER (size, implementation->name);
|
|
414 return lcheader;
|
|
415 }
|
|
416
|
|
417 #if 0 /* Presently unused */
|
|
418 /* Very, very poor man's EGC?
|
|
419 * This may be slow and thrash pages all over the place.
|
|
420 * Only call it if you really feel you must (and if the
|
|
421 * lrecord was fairly recently allocated).
|
|
422 * Otherwise, just let the GC do its job -- that's what it's there for
|
|
423 */
|
|
424 void
|
|
425 free_lcrecord (struct lcrecord_header *lcrecord)
|
|
426 {
|
|
427 if (all_lcrecords == lcrecord)
|
|
428 {
|
|
429 all_lcrecords = lcrecord->next;
|
|
430 }
|
|
431 else
|
|
432 {
|
|
433 struct lrecord_header *header = all_lcrecords;
|
|
434 for (;;)
|
|
435 {
|
|
436 struct lrecord_header *next = header->next;
|
|
437 if (next == lcrecord)
|
|
438 {
|
|
439 header->next = lrecord->next;
|
|
440 break;
|
|
441 }
|
|
442 else if (next == 0)
|
|
443 abort ();
|
|
444 else
|
|
445 header = next;
|
|
446 }
|
|
447 }
|
|
448 if (lrecord->implementation->finalizer)
|
|
449 lrecord->implementation->finalizer (lrecord, 0);
|
|
450 xfree (lrecord);
|
|
451 return;
|
|
452 }
|
|
453 #endif /* Unused */
|
|
454
|
|
455
|
|
456 static void
|
|
457 disksave_object_finalization_1 (void)
|
|
458 {
|
|
459 struct lcrecord_header *header;
|
|
460
|
|
461 for (header = all_lcrecords; header; header = header->next)
|
|
462 {
|
|
463 if (LHEADER_IMPLEMENTATION(&header->lheader)->finalizer &&
|
|
464 !header->free)
|
|
465 ((LHEADER_IMPLEMENTATION(&header->lheader)->finalizer)
|
|
466 (header, 1));
|
|
467 }
|
|
468 }
|
|
469
|
|
470 /* Semi-kludge -- lrecord_symbol_value_forward objects get stuck
|
|
471 in CONST space and you get SEGV's if you attempt to mark them.
|
|
472 This sits in lheader->implementation->marker. */
|
|
473
|
|
474 Lisp_Object
|
|
475 this_one_is_unmarkable (Lisp_Object obj)
|
|
476 {
|
|
477 abort ();
|
|
478 return Qnil;
|
|
479 }
|
|
480
|
|
481
|
|
482 /************************************************************************/
|
|
483 /* Debugger support */
|
|
484 /************************************************************************/
|
|
485 /* Give gdb/dbx enough information to decode Lisp Objects. We make
|
|
486 sure certain symbols are always defined, so gdb doesn't complain
|
438
|
487 about expressions in src/.gdbinit. See src/.gdbinit or src/.dbxrc
|
|
488 to see how this is used. */
|
428
|
489
|
|
490 EMACS_UINT dbg_valmask = ((1UL << VALBITS) - 1) << GCBITS;
|
|
491 EMACS_UINT dbg_typemask = (1UL << GCTYPEBITS) - 1;
|
|
492
|
|
493 #ifdef USE_UNION_TYPE
|
|
494 unsigned char dbg_USE_UNION_TYPE = 1;
|
|
495 #else
|
|
496 unsigned char dbg_USE_UNION_TYPE = 0;
|
|
497 #endif
|
|
498
|
|
499 unsigned char Lisp_Type_Int = 100;
|
|
500 unsigned char Lisp_Type_Cons = 101;
|
|
501 unsigned char Lisp_Type_String = 102;
|
|
502 unsigned char Lisp_Type_Vector = 103;
|
|
503 unsigned char Lisp_Type_Symbol = 104;
|
|
504
|
|
505 #ifndef MULE
|
|
506 unsigned char lrecord_char_table_entry;
|
|
507 unsigned char lrecord_charset;
|
|
508 #ifndef FILE_CODING
|
|
509 unsigned char lrecord_coding_system;
|
|
510 #endif
|
|
511 #endif
|
|
512
|
440
|
513 #if !((defined HAVE_X_WINDOWS) && \
|
|
514 (defined (HAVE_MENUBARS) || \
|
|
515 defined (HAVE_SCROLLBARS) || \
|
|
516 defined (HAVE_DIALOGS) || \
|
|
517 defined (HAVE_TOOLBARS) || \
|
|
518 defined (HAVE_WIDGETS)))
|
|
519 unsigned char lrecord_popup_data;
|
|
520 #endif
|
|
521
|
428
|
522 #ifndef HAVE_TOOLBARS
|
|
523 unsigned char lrecord_toolbar_button;
|
|
524 #endif
|
|
525
|
|
526 #ifndef TOOLTALK
|
|
527 unsigned char lrecord_tooltalk_message;
|
|
528 unsigned char lrecord_tooltalk_pattern;
|
|
529 #endif
|
|
530
|
|
531 #ifndef HAVE_DATABASE
|
|
532 unsigned char lrecord_database;
|
|
533 #endif
|
|
534
|
|
535 unsigned char dbg_valbits = VALBITS;
|
|
536 unsigned char dbg_gctypebits = GCTYPEBITS;
|
|
537
|
|
538 /* Macros turned into functions for ease of debugging.
|
|
539 Debuggers don't know about macros! */
|
|
540 int dbg_eq (Lisp_Object obj1, Lisp_Object obj2);
|
|
541 int
|
|
542 dbg_eq (Lisp_Object obj1, Lisp_Object obj2)
|
|
543 {
|
|
544 return EQ (obj1, obj2);
|
|
545 }
|
|
546
|
|
547
|
|
548 /************************************************************************/
|
|
549 /* Fixed-size type macros */
|
|
550 /************************************************************************/
|
|
551
|
|
552 /* For fixed-size types that are commonly used, we malloc() large blocks
|
|
553 of memory at a time and subdivide them into chunks of the correct
|
|
554 size for an object of that type. This is more efficient than
|
|
555 malloc()ing each object separately because we save on malloc() time
|
|
556 and overhead due to the fewer number of malloc()ed blocks, and
|
|
557 also because we don't need any extra pointers within each object
|
|
558 to keep them threaded together for GC purposes. For less common
|
|
559 (and frequently large-size) types, we use lcrecords, which are
|
|
560 malloc()ed individually and chained together through a pointer
|
|
561 in the lcrecord header. lcrecords do not need to be fixed-size
|
|
562 (i.e. two objects of the same type need not have the same size;
|
|
563 however, the size of a particular object cannot vary dynamically).
|
|
564 It is also much easier to create a new lcrecord type because no
|
|
565 additional code needs to be added to alloc.c. Finally, lcrecords
|
|
566 may be more efficient when there are only a small number of them.
|
|
567
|
|
568 The types that are stored in these large blocks (or "frob blocks")
|
|
569 are cons, float, compiled-function, symbol, marker, extent, event,
|
|
570 and string.
|
|
571
|
|
572 Note that strings are special in that they are actually stored in
|
|
573 two parts: a structure containing information about the string, and
|
|
574 the actual data associated with the string. The former structure
|
|
575 (a struct Lisp_String) is a fixed-size structure and is managed the
|
|
576 same way as all the other such types. This structure contains a
|
|
577 pointer to the actual string data, which is stored in structures of
|
|
578 type struct string_chars_block. Each string_chars_block consists
|
|
579 of a pointer to a struct Lisp_String, followed by the data for that
|
440
|
580 string, followed by another pointer to a Lisp_String, followed by
|
|
581 the data for that string, etc. At GC time, the data in these
|
|
582 blocks is compacted by searching sequentially through all the
|
428
|
583 blocks and compressing out any holes created by unmarked strings.
|
|
584 Strings that are more than a certain size (bigger than the size of
|
|
585 a string_chars_block, although something like half as big might
|
|
586 make more sense) are malloc()ed separately and not stored in
|
|
587 string_chars_blocks. Furthermore, no one string stretches across
|
|
588 two string_chars_blocks.
|
|
589
|
|
590 Vectors are each malloc()ed separately, similar to lcrecords.
|
|
591
|
|
592 In the following discussion, we use conses, but it applies equally
|
|
593 well to the other fixed-size types.
|
|
594
|
|
595 We store cons cells inside of cons_blocks, allocating a new
|
|
596 cons_block with malloc() whenever necessary. Cons cells reclaimed
|
|
597 by GC are put on a free list to be reallocated before allocating
|
|
598 any new cons cells from the latest cons_block. Each cons_block is
|
|
599 just under 2^n - MALLOC_OVERHEAD bytes long, since malloc (at least
|
|
600 the versions in malloc.c and gmalloc.c) really allocates in units
|
|
601 of powers of two and uses 4 bytes for its own overhead.
|
|
602
|
|
603 What GC actually does is to search through all the cons_blocks,
|
|
604 from the most recently allocated to the oldest, and put all
|
|
605 cons cells that are not marked (whether or not they're already
|
|
606 free) on a cons_free_list. The cons_free_list is a stack, and
|
|
607 so the cons cells in the oldest-allocated cons_block end up
|
|
608 at the head of the stack and are the first to be reallocated.
|
|
609 If any cons_block is entirely free, it is freed with free()
|
|
610 and its cons cells removed from the cons_free_list. Because
|
|
611 the cons_free_list ends up basically in memory order, we have
|
|
612 a high locality of reference (assuming a reasonable turnover
|
|
613 of allocating and freeing) and have a reasonable probability
|
|
614 of entirely freeing up cons_blocks that have been more recently
|
|
615 allocated. This stage is called the "sweep stage" of GC, and
|
|
616 is executed after the "mark stage", which involves starting
|
|
617 from all places that are known to point to in-use Lisp objects
|
|
618 (e.g. the obarray, where are all symbols are stored; the
|
|
619 current catches and condition-cases; the backtrace list of
|
|
620 currently executing functions; the gcpro list; etc.) and
|
|
621 recursively marking all objects that are accessible.
|
|
622
|
|
623 At the beginning of the sweep stage, the conses in the cons
|
|
624 blocks are in one of three states: in use and marked, in use
|
|
625 but not marked, and not in use (already freed). Any conses
|
|
626 that are marked have been marked in the mark stage just
|
|
627 executed, because as part of the sweep stage we unmark any
|
|
628 marked objects. The way we tell whether or not a cons cell
|
|
629 is in use is through the FREE_STRUCT_P macro. This basically
|
|
630 looks at the first 4 bytes (or however many bytes a pointer
|
|
631 fits in) to see if all the bits in those bytes are 1. The
|
|
632 resulting value (0xFFFFFFFF) is not a valid pointer and is
|
|
633 not a valid Lisp_Object. All current fixed-size types have
|
|
634 a pointer or Lisp_Object as their first element with the
|
|
635 exception of strings; they have a size value, which can
|
|
636 never be less than zero, and so 0xFFFFFFFF is invalid for
|
|
637 strings as well. Now assuming that a cons cell is in use,
|
|
638 the way we tell whether or not it is marked is to look at
|
|
639 the mark bit of its car (each Lisp_Object has one bit
|
|
640 reserved as a mark bit, in case it's needed). Note that
|
|
641 different types of objects use different fields to indicate
|
|
642 whether the object is marked, but the principle is the same.
|
|
643
|
|
644 Conses on the free_cons_list are threaded through a pointer
|
|
645 stored in the bytes directly after the bytes that are set
|
|
646 to 0xFFFFFFFF (we cannot overwrite these because the cons
|
|
647 is still in a cons_block and needs to remain marked as
|
|
648 not in use for the next time that GC happens). This
|
|
649 implies that all fixed-size types must be at least big
|
|
650 enough to store two pointers, which is indeed the case
|
|
651 for all current fixed-size types.
|
|
652
|
|
653 Some types of objects need additional "finalization" done
|
|
654 when an object is converted from in use to not in use;
|
|
655 this is the purpose of the ADDITIONAL_FREE_type macro.
|
|
656 For example, markers need to be removed from the chain
|
|
657 of markers that is kept in each buffer. This is because
|
|
658 markers in a buffer automatically disappear if the marker
|
|
659 is no longer referenced anywhere (the same does not
|
|
660 apply to extents, however).
|
|
661
|
|
662 WARNING: Things are in an extremely bizarre state when
|
|
663 the ADDITIONAL_FREE_type macros are called, so beware!
|
|
664
|
|
665 When ERROR_CHECK_GC is defined, we do things differently
|
|
666 so as to maximize our chances of catching places where
|
|
667 there is insufficient GCPROing. The thing we want to
|
|
668 avoid is having an object that we're using but didn't
|
|
669 GCPRO get freed by GC and then reallocated while we're
|
|
670 in the process of using it -- this will result in something
|
|
671 seemingly unrelated getting trashed, and is extremely
|
|
672 difficult to track down. If the object gets freed but
|
|
673 not reallocated, we can usually catch this because we
|
|
674 set all bytes of a freed object to 0xDEADBEEF. (The
|
|
675 first four bytes, however, are 0xFFFFFFFF, and the next
|
|
676 four are a pointer used to chain freed objects together;
|
|
677 we play some tricks with this pointer to make it more
|
|
678 bogus, so crashes are more likely to occur right away.)
|
|
679
|
|
680 We want freed objects to stay free as long as possible,
|
|
681 so instead of doing what we do above, we maintain the
|
|
682 free objects in a first-in first-out queue. We also
|
|
683 don't recompute the free list each GC, unlike above;
|
|
684 this ensures that the queue ordering is preserved.
|
|
685 [This means that we are likely to have worse locality
|
|
686 of reference, and that we can never free a frob block
|
|
687 once it's allocated. (Even if we know that all cells
|
|
688 in it are free, there's no easy way to remove all those
|
|
689 cells from the free list because the objects on the
|
|
690 free list are unlikely to be in memory order.)]
|
|
691 Furthermore, we never take objects off the free list
|
|
692 unless there's a large number (usually 1000, but
|
|
693 varies depending on type) of them already on the list.
|
|
694 This way, we ensure that an object that gets freed will
|
|
695 remain free for the next 1000 (or whatever) times that
|
440
|
696 an object of that type is allocated. */
|
428
|
697
|
|
698 #ifndef MALLOC_OVERHEAD
|
|
699 #ifdef GNU_MALLOC
|
|
700 #define MALLOC_OVERHEAD 0
|
|
701 #elif defined (rcheck)
|
|
702 #define MALLOC_OVERHEAD 20
|
|
703 #else
|
|
704 #define MALLOC_OVERHEAD 8
|
|
705 #endif
|
|
706 #endif /* MALLOC_OVERHEAD */
|
|
707
|
|
708 #if !defined(HAVE_MMAP) || defined(DOUG_LEA_MALLOC)
|
|
709 /* If we released our reserve (due to running out of memory),
|
|
710 and we have a fair amount free once again,
|
|
711 try to set aside another reserve in case we run out once more.
|
|
712
|
|
713 This is called when a relocatable block is freed in ralloc.c. */
|
|
714 void refill_memory_reserve (void);
|
|
715 void
|
|
716 refill_memory_reserve ()
|
|
717 {
|
|
718 if (breathing_space == 0)
|
|
719 breathing_space = (char *) malloc (4096 - MALLOC_OVERHEAD);
|
|
720 }
|
|
721 #endif
|
|
722
|
|
723 #ifdef ALLOC_NO_POOLS
|
|
724 # define TYPE_ALLOC_SIZE(type, structtype) 1
|
|
725 #else
|
|
726 # define TYPE_ALLOC_SIZE(type, structtype) \
|
|
727 ((2048 - MALLOC_OVERHEAD - sizeof (struct type##_block *)) \
|
|
728 / sizeof (structtype))
|
|
729 #endif /* ALLOC_NO_POOLS */
|
|
730
|
|
731 #define DECLARE_FIXED_TYPE_ALLOC(type, structtype) \
|
|
732 \
|
|
733 struct type##_block \
|
|
734 { \
|
|
735 struct type##_block *prev; \
|
|
736 structtype block[TYPE_ALLOC_SIZE (type, structtype)]; \
|
|
737 }; \
|
|
738 \
|
|
739 static struct type##_block *current_##type##_block; \
|
|
740 static int current_##type##_block_index; \
|
|
741 \
|
|
742 static structtype *type##_free_list; \
|
|
743 static structtype *type##_free_list_tail; \
|
|
744 \
|
|
745 static void \
|
|
746 init_##type##_alloc (void) \
|
|
747 { \
|
|
748 current_##type##_block = 0; \
|
|
749 current_##type##_block_index = \
|
|
750 countof (current_##type##_block->block); \
|
|
751 type##_free_list = 0; \
|
|
752 type##_free_list_tail = 0; \
|
|
753 } \
|
|
754 \
|
|
755 static int gc_count_num_##type##_in_use; \
|
|
756 static int gc_count_num_##type##_freelist
|
|
757
|
|
758 #define ALLOCATE_FIXED_TYPE_FROM_BLOCK(type, result) do { \
|
|
759 if (current_##type##_block_index \
|
|
760 == countof (current_##type##_block->block)) \
|
|
761 { \
|
|
762 struct type##_block *AFTFB_new = (struct type##_block *) \
|
|
763 allocate_lisp_storage (sizeof (struct type##_block)); \
|
|
764 AFTFB_new->prev = current_##type##_block; \
|
|
765 current_##type##_block = AFTFB_new; \
|
|
766 current_##type##_block_index = 0; \
|
|
767 } \
|
|
768 (result) = \
|
|
769 &(current_##type##_block->block[current_##type##_block_index++]); \
|
|
770 } while (0)
|
|
771
|
|
772 /* Allocate an instance of a type that is stored in blocks.
|
|
773 TYPE is the "name" of the type, STRUCTTYPE is the corresponding
|
|
774 structure type. */
|
|
775
|
|
776 #ifdef ERROR_CHECK_GC
|
|
777
|
|
778 /* Note: if you get crashes in this function, suspect incorrect calls
|
|
779 to free_cons() and friends. This happened once because the cons
|
|
780 cell was not GC-protected and was getting collected before
|
|
781 free_cons() was called. */
|
|
782
|
|
783 #define ALLOCATE_FIXED_TYPE_1(type, structtype, result) \
|
|
784 do \
|
|
785 { \
|
|
786 if (gc_count_num_##type##_freelist > \
|
|
787 MINIMUM_ALLOWED_FIXED_TYPE_CELLS_##type) \
|
|
788 { \
|
|
789 result = type##_free_list; \
|
|
790 /* Before actually using the chain pointer, we complement all its \
|
|
791 bits; see FREE_FIXED_TYPE(). */ \
|
|
792 type##_free_list = \
|
|
793 (structtype *) ~(unsigned long) \
|
|
794 (* (structtype **) ((char *) result + sizeof (void *))); \
|
|
795 gc_count_num_##type##_freelist--; \
|
|
796 } \
|
|
797 else \
|
|
798 ALLOCATE_FIXED_TYPE_FROM_BLOCK (type, result); \
|
|
799 MARK_STRUCT_AS_NOT_FREE (result); \
|
|
800 } while (0)
|
|
801
|
|
802 #else /* !ERROR_CHECK_GC */
|
|
803
|
|
804 #define ALLOCATE_FIXED_TYPE_1(type, structtype, result) \
|
|
805 do \
|
|
806 { \
|
|
807 if (type##_free_list) \
|
|
808 { \
|
|
809 result = type##_free_list; \
|
|
810 type##_free_list = \
|
|
811 * (structtype **) ((char *) result + sizeof (void *)); \
|
|
812 } \
|
|
813 else \
|
|
814 ALLOCATE_FIXED_TYPE_FROM_BLOCK (type, result); \
|
|
815 MARK_STRUCT_AS_NOT_FREE (result); \
|
|
816 } while (0)
|
|
817
|
|
818 #endif /* !ERROR_CHECK_GC */
|
|
819
|
|
820 #define ALLOCATE_FIXED_TYPE(type, structtype, result) \
|
|
821 do \
|
|
822 { \
|
|
823 ALLOCATE_FIXED_TYPE_1 (type, structtype, result); \
|
|
824 INCREMENT_CONS_COUNTER (sizeof (structtype), #type); \
|
|
825 } while (0)
|
|
826
|
|
827 #define NOSEEUM_ALLOCATE_FIXED_TYPE(type, structtype, result) \
|
|
828 do \
|
|
829 { \
|
|
830 ALLOCATE_FIXED_TYPE_1 (type, structtype, result); \
|
|
831 NOSEEUM_INCREMENT_CONS_COUNTER (sizeof (structtype), #type); \
|
|
832 } while (0)
|
|
833
|
|
834 /* INVALID_POINTER_VALUE should be a value that is invalid as a pointer
|
|
835 to a Lisp object and invalid as an actual Lisp_Object value. We have
|
|
836 to make sure that this value cannot be an integer in Lisp_Object form.
|
|
837 0xFFFFFFFF could be so on a 64-bit system, so we extend it to 64 bits.
|
|
838 On a 32-bit system, the type bits will be non-zero, making the value
|
|
839 be a pointer, and the pointer will be misaligned.
|
|
840
|
|
841 Even if Emacs is run on some weirdo system that allows and allocates
|
|
842 byte-aligned pointers, this pointer is at the very top of the address
|
|
843 space and so it's almost inconceivable that it could ever be valid. */
|
|
844
|
|
845 #if INTBITS == 32
|
|
846 # define INVALID_POINTER_VALUE 0xFFFFFFFF
|
|
847 #elif INTBITS == 48
|
|
848 # define INVALID_POINTER_VALUE 0xFFFFFFFFFFFF
|
|
849 #elif INTBITS == 64
|
|
850 # define INVALID_POINTER_VALUE 0xFFFFFFFFFFFFFFFF
|
|
851 #else
|
|
852 You have some weird system and need to supply a reasonable value here.
|
|
853 #endif
|
|
854
|
|
855 #define FREE_STRUCT_P(ptr) \
|
|
856 (* (void **) ptr == (void *) INVALID_POINTER_VALUE)
|
|
857 #define MARK_STRUCT_AS_FREE(ptr) \
|
|
858 (* (void **) ptr = (void *) INVALID_POINTER_VALUE)
|
|
859 #define MARK_STRUCT_AS_NOT_FREE(ptr) \
|
|
860 (* (void **) ptr = 0)
|
|
861
|
|
862 #ifdef ERROR_CHECK_GC
|
|
863
|
|
864 #define PUT_FIXED_TYPE_ON_FREE_LIST(type, structtype, ptr) \
|
|
865 do { if (type##_free_list_tail) \
|
|
866 { \
|
|
867 /* When we store the chain pointer, we complement all \
|
|
868 its bits; this should significantly increase its \
|
|
869 bogosity in case someone tries to use the value, and \
|
|
870 should make us dump faster if someone stores something \
|
|
871 over the pointer because when it gets un-complemented in \
|
|
872 ALLOCATED_FIXED_TYPE(), the resulting pointer will be \
|
|
873 extremely bogus. */ \
|
|
874 * (structtype **) \
|
|
875 ((char *) type##_free_list_tail + sizeof (void *)) = \
|
|
876 (structtype *) ~(unsigned long) ptr; \
|
|
877 } \
|
|
878 else \
|
|
879 type##_free_list = ptr; \
|
|
880 type##_free_list_tail = ptr; \
|
|
881 } while (0)
|
|
882
|
|
883 #else /* !ERROR_CHECK_GC */
|
|
884
|
|
885 #define PUT_FIXED_TYPE_ON_FREE_LIST(type, structtype, ptr) \
|
|
886 do { * (structtype **) ((char *) (ptr) + sizeof (void *)) = \
|
|
887 type##_free_list; \
|
|
888 type##_free_list = (ptr); \
|
|
889 } while (0)
|
|
890
|
|
891 #endif /* !ERROR_CHECK_GC */
|
|
892
|
|
893 /* TYPE and STRUCTTYPE are the same as in ALLOCATE_FIXED_TYPE(). */
|
|
894
|
|
895 #define FREE_FIXED_TYPE(type, structtype, ptr) do { \
|
|
896 structtype *FFT_ptr = (ptr); \
|
|
897 ADDITIONAL_FREE_##type (FFT_ptr); \
|
|
898 deadbeef_memory (FFT_ptr, sizeof (structtype)); \
|
|
899 PUT_FIXED_TYPE_ON_FREE_LIST (type, structtype, FFT_ptr); \
|
|
900 MARK_STRUCT_AS_FREE (FFT_ptr); \
|
|
901 } while (0)
|
|
902
|
|
903 /* Like FREE_FIXED_TYPE() but used when we are explicitly
|
|
904 freeing a structure through free_cons(), free_marker(), etc.
|
|
905 rather than through the normal process of sweeping.
|
|
906 We attempt to undo the changes made to the allocation counters
|
|
907 as a result of this structure being allocated. This is not
|
|
908 completely necessary but helps keep things saner: e.g. this way,
|
|
909 repeatedly allocating and freeing a cons will not result in
|
|
910 the consing-since-gc counter advancing, which would cause a GC
|
|
911 and somewhat defeat the purpose of explicitly freeing. */
|
|
912
|
|
913 #define FREE_FIXED_TYPE_WHEN_NOT_IN_GC(type, structtype, ptr) \
|
|
914 do { FREE_FIXED_TYPE (type, structtype, ptr); \
|
|
915 DECREMENT_CONS_COUNTER (sizeof (structtype)); \
|
|
916 gc_count_num_##type##_freelist++; \
|
|
917 } while (0)
|
|
918
|
|
919
|
|
920
|
|
921 /************************************************************************/
|
|
922 /* Cons allocation */
|
|
923 /************************************************************************/
|
|
924
|
440
|
925 DECLARE_FIXED_TYPE_ALLOC (cons, Lisp_Cons);
|
428
|
926 /* conses are used and freed so often that we set this really high */
|
|
927 /* #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_cons 20000 */
|
|
928 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_cons 2000
|
|
929
|
|
930 static Lisp_Object
|
|
931 mark_cons (Lisp_Object obj)
|
|
932 {
|
|
933 if (NILP (XCDR (obj)))
|
|
934 return XCAR (obj);
|
|
935
|
|
936 mark_object (XCAR (obj));
|
|
937 return XCDR (obj);
|
|
938 }
|
|
939
|
|
940 static int
|
|
941 cons_equal (Lisp_Object ob1, Lisp_Object ob2, int depth)
|
|
942 {
|
|
943 while (internal_equal (XCAR (ob1), XCAR (ob2), depth + 1))
|
|
944 {
|
|
945 ob1 = XCDR (ob1);
|
|
946 ob2 = XCDR (ob2);
|
|
947 if (! CONSP (ob1) || ! CONSP (ob2))
|
|
948 return internal_equal (ob1, ob2, depth + 1);
|
|
949 }
|
|
950 return 0;
|
|
951 }
|
|
952
|
|
953 static const struct lrecord_description cons_description[] = {
|
440
|
954 { XD_LISP_OBJECT, offsetof (Lisp_Cons, car) },
|
|
955 { XD_LISP_OBJECT, offsetof (Lisp_Cons, cdr) },
|
428
|
956 { XD_END }
|
|
957 };
|
|
958
|
|
959 DEFINE_BASIC_LRECORD_IMPLEMENTATION ("cons", cons,
|
|
960 mark_cons, print_cons, 0,
|
|
961 cons_equal,
|
|
962 /*
|
|
963 * No `hash' method needed.
|
|
964 * internal_hash knows how to
|
|
965 * handle conses.
|
|
966 */
|
|
967 0,
|
|
968 cons_description,
|
440
|
969 Lisp_Cons);
|
428
|
970
|
|
971 DEFUN ("cons", Fcons, 2, 2, 0, /*
|
|
972 Create a new cons, give it CAR and CDR as components, and return it.
|
|
973 */
|
|
974 (car, cdr))
|
|
975 {
|
|
976 /* This cannot GC. */
|
|
977 Lisp_Object val;
|
440
|
978 Lisp_Cons *c;
|
|
979
|
|
980 ALLOCATE_FIXED_TYPE (cons, Lisp_Cons, c);
|
428
|
981 set_lheader_implementation (&(c->lheader), &lrecord_cons);
|
|
982 XSETCONS (val, c);
|
|
983 c->car = car;
|
|
984 c->cdr = cdr;
|
|
985 return val;
|
|
986 }
|
|
987
|
|
988 /* This is identical to Fcons() but it used for conses that we're
|
|
989 going to free later, and is useful when trying to track down
|
|
990 "real" consing. */
|
|
991 Lisp_Object
|
|
992 noseeum_cons (Lisp_Object car, Lisp_Object cdr)
|
|
993 {
|
|
994 Lisp_Object val;
|
440
|
995 Lisp_Cons *c;
|
|
996
|
|
997 NOSEEUM_ALLOCATE_FIXED_TYPE (cons, Lisp_Cons, c);
|
428
|
998 set_lheader_implementation (&(c->lheader), &lrecord_cons);
|
|
999 XSETCONS (val, c);
|
|
1000 XCAR (val) = car;
|
|
1001 XCDR (val) = cdr;
|
|
1002 return val;
|
|
1003 }
|
|
1004
|
|
1005 DEFUN ("list", Flist, 0, MANY, 0, /*
|
|
1006 Return a newly created list with specified arguments as elements.
|
|
1007 Any number of arguments, even zero arguments, are allowed.
|
|
1008 */
|
|
1009 (int nargs, Lisp_Object *args))
|
|
1010 {
|
|
1011 Lisp_Object val = Qnil;
|
|
1012 Lisp_Object *argp = args + nargs;
|
|
1013
|
|
1014 while (argp > args)
|
|
1015 val = Fcons (*--argp, val);
|
|
1016 return val;
|
|
1017 }
|
|
1018
|
|
1019 Lisp_Object
|
|
1020 list1 (Lisp_Object obj0)
|
|
1021 {
|
|
1022 /* This cannot GC. */
|
|
1023 return Fcons (obj0, Qnil);
|
|
1024 }
|
|
1025
|
|
1026 Lisp_Object
|
|
1027 list2 (Lisp_Object obj0, Lisp_Object obj1)
|
|
1028 {
|
|
1029 /* This cannot GC. */
|
|
1030 return Fcons (obj0, Fcons (obj1, Qnil));
|
|
1031 }
|
|
1032
|
|
1033 Lisp_Object
|
|
1034 list3 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2)
|
|
1035 {
|
|
1036 /* This cannot GC. */
|
|
1037 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Qnil)));
|
|
1038 }
|
|
1039
|
|
1040 Lisp_Object
|
|
1041 cons3 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2)
|
|
1042 {
|
|
1043 /* This cannot GC. */
|
|
1044 return Fcons (obj0, Fcons (obj1, obj2));
|
|
1045 }
|
|
1046
|
|
1047 Lisp_Object
|
|
1048 acons (Lisp_Object key, Lisp_Object value, Lisp_Object alist)
|
|
1049 {
|
|
1050 return Fcons (Fcons (key, value), alist);
|
|
1051 }
|
|
1052
|
|
1053 Lisp_Object
|
|
1054 list4 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, Lisp_Object obj3)
|
|
1055 {
|
|
1056 /* This cannot GC. */
|
|
1057 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Fcons (obj3, Qnil))));
|
|
1058 }
|
|
1059
|
|
1060 Lisp_Object
|
|
1061 list5 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, Lisp_Object obj3,
|
|
1062 Lisp_Object obj4)
|
|
1063 {
|
|
1064 /* This cannot GC. */
|
|
1065 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Fcons (obj3, Fcons (obj4, Qnil)))));
|
|
1066 }
|
|
1067
|
|
1068 Lisp_Object
|
|
1069 list6 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, Lisp_Object obj3,
|
|
1070 Lisp_Object obj4, Lisp_Object obj5)
|
|
1071 {
|
|
1072 /* This cannot GC. */
|
|
1073 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Fcons (obj3, Fcons (obj4, Fcons (obj5, Qnil))))));
|
|
1074 }
|
|
1075
|
|
1076 DEFUN ("make-list", Fmake_list, 2, 2, 0, /*
|
|
1077 Return a new list of length LENGTH, with each element being INIT.
|
|
1078 */
|
|
1079 (length, init))
|
|
1080 {
|
|
1081 CHECK_NATNUM (length);
|
|
1082
|
|
1083 {
|
|
1084 Lisp_Object val = Qnil;
|
|
1085 size_t size = XINT (length);
|
|
1086
|
|
1087 while (size--)
|
|
1088 val = Fcons (init, val);
|
|
1089 return val;
|
|
1090 }
|
|
1091 }
|
|
1092
|
|
1093
|
|
1094 /************************************************************************/
|
|
1095 /* Float allocation */
|
|
1096 /************************************************************************/
|
|
1097
|
|
1098 #ifdef LISP_FLOAT_TYPE
|
|
1099
|
440
|
1100 DECLARE_FIXED_TYPE_ALLOC (float, Lisp_Float);
|
428
|
1101 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_float 1000
|
|
1102
|
|
1103 Lisp_Object
|
|
1104 make_float (double float_value)
|
|
1105 {
|
|
1106 Lisp_Object val;
|
440
|
1107 Lisp_Float *f;
|
|
1108
|
|
1109 ALLOCATE_FIXED_TYPE (float, Lisp_Float, f);
|
|
1110
|
|
1111 /* Avoid dump-time `uninitialized memory read' purify warnings. */
|
|
1112 if (sizeof (struct lrecord_header) + sizeof (double) != sizeof (*f))
|
|
1113 xzero (*f);
|
|
1114
|
428
|
1115 set_lheader_implementation (&(f->lheader), &lrecord_float);
|
|
1116 float_data (f) = float_value;
|
|
1117 XSETFLOAT (val, f);
|
|
1118 return val;
|
|
1119 }
|
|
1120
|
|
1121 #endif /* LISP_FLOAT_TYPE */
|
|
1122
|
|
1123
|
|
1124 /************************************************************************/
|
|
1125 /* Vector allocation */
|
|
1126 /************************************************************************/
|
|
1127
|
|
1128 static Lisp_Object
|
|
1129 mark_vector (Lisp_Object obj)
|
|
1130 {
|
|
1131 Lisp_Vector *ptr = XVECTOR (obj);
|
|
1132 int len = vector_length (ptr);
|
|
1133 int i;
|
|
1134
|
|
1135 for (i = 0; i < len - 1; i++)
|
|
1136 mark_object (ptr->contents[i]);
|
|
1137 return (len > 0) ? ptr->contents[len - 1] : Qnil;
|
|
1138 }
|
|
1139
|
|
1140 static size_t
|
|
1141 size_vector (CONST void *lheader)
|
|
1142 {
|
|
1143 return STRETCHY_STRUCT_SIZEOF (Lisp_Vector, contents,
|
|
1144 ((Lisp_Vector *) lheader)->size);
|
|
1145 }
|
|
1146
|
|
1147 static int
|
|
1148 vector_equal (Lisp_Object obj1, Lisp_Object obj2, int depth)
|
|
1149 {
|
|
1150 int len = XVECTOR_LENGTH (obj1);
|
|
1151 if (len != XVECTOR_LENGTH (obj2))
|
|
1152 return 0;
|
|
1153
|
|
1154 {
|
|
1155 Lisp_Object *ptr1 = XVECTOR_DATA (obj1);
|
|
1156 Lisp_Object *ptr2 = XVECTOR_DATA (obj2);
|
|
1157 while (len--)
|
|
1158 if (!internal_equal (*ptr1++, *ptr2++, depth + 1))
|
|
1159 return 0;
|
|
1160 }
|
|
1161 return 1;
|
|
1162 }
|
|
1163
|
|
1164 static const struct lrecord_description vector_description[] = {
|
440
|
1165 { XD_LONG, offsetof (Lisp_Vector, size) },
|
|
1166 { XD_LISP_OBJECT_ARRAY, offsetof (Lisp_Vector, contents), XD_INDIRECT(0, 0) },
|
428
|
1167 { XD_END }
|
|
1168 };
|
|
1169
|
|
1170 DEFINE_LRECORD_SEQUENCE_IMPLEMENTATION("vector", vector,
|
|
1171 mark_vector, print_vector, 0,
|
|
1172 vector_equal,
|
|
1173 /*
|
|
1174 * No `hash' method needed for
|
|
1175 * vectors. internal_hash
|
|
1176 * knows how to handle vectors.
|
|
1177 */
|
|
1178 0,
|
|
1179 vector_description,
|
|
1180 size_vector, Lisp_Vector);
|
|
1181
|
|
1182 /* #### should allocate `small' vectors from a frob-block */
|
|
1183 static Lisp_Vector *
|
|
1184 make_vector_internal (size_t sizei)
|
|
1185 {
|
|
1186 /* no vector_next */
|
|
1187 size_t sizem = STRETCHY_STRUCT_SIZEOF (Lisp_Vector, contents, sizei);
|
|
1188 Lisp_Vector *p = (Lisp_Vector *) alloc_lcrecord (sizem, &lrecord_vector);
|
|
1189
|
|
1190 p->size = sizei;
|
|
1191 return p;
|
|
1192 }
|
|
1193
|
|
1194 Lisp_Object
|
|
1195 make_vector (size_t length, Lisp_Object init)
|
|
1196 {
|
|
1197 Lisp_Vector *vecp = make_vector_internal (length);
|
|
1198 Lisp_Object *p = vector_data (vecp);
|
|
1199
|
|
1200 while (length--)
|
|
1201 *p++ = init;
|
|
1202
|
|
1203 {
|
|
1204 Lisp_Object vector;
|
|
1205 XSETVECTOR (vector, vecp);
|
|
1206 return vector;
|
|
1207 }
|
|
1208 }
|
|
1209
|
|
1210 DEFUN ("make-vector", Fmake_vector, 2, 2, 0, /*
|
|
1211 Return a new vector of length LENGTH, with each element being INIT.
|
|
1212 See also the function `vector'.
|
|
1213 */
|
|
1214 (length, init))
|
|
1215 {
|
|
1216 CONCHECK_NATNUM (length);
|
|
1217 return make_vector (XINT (length), init);
|
|
1218 }
|
|
1219
|
|
1220 DEFUN ("vector", Fvector, 0, MANY, 0, /*
|
|
1221 Return a newly created vector with specified arguments as elements.
|
|
1222 Any number of arguments, even zero arguments, are allowed.
|
|
1223 */
|
|
1224 (int nargs, Lisp_Object *args))
|
|
1225 {
|
|
1226 Lisp_Vector *vecp = make_vector_internal (nargs);
|
|
1227 Lisp_Object *p = vector_data (vecp);
|
|
1228
|
|
1229 while (nargs--)
|
|
1230 *p++ = *args++;
|
|
1231
|
|
1232 {
|
|
1233 Lisp_Object vector;
|
|
1234 XSETVECTOR (vector, vecp);
|
|
1235 return vector;
|
|
1236 }
|
|
1237 }
|
|
1238
|
|
1239 Lisp_Object
|
|
1240 vector1 (Lisp_Object obj0)
|
|
1241 {
|
|
1242 return Fvector (1, &obj0);
|
|
1243 }
|
|
1244
|
|
1245 Lisp_Object
|
|
1246 vector2 (Lisp_Object obj0, Lisp_Object obj1)
|
|
1247 {
|
|
1248 Lisp_Object args[2];
|
|
1249 args[0] = obj0;
|
|
1250 args[1] = obj1;
|
|
1251 return Fvector (2, args);
|
|
1252 }
|
|
1253
|
|
1254 Lisp_Object
|
|
1255 vector3 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2)
|
|
1256 {
|
|
1257 Lisp_Object args[3];
|
|
1258 args[0] = obj0;
|
|
1259 args[1] = obj1;
|
|
1260 args[2] = obj2;
|
|
1261 return Fvector (3, args);
|
|
1262 }
|
|
1263
|
|
1264 #if 0 /* currently unused */
|
|
1265
|
|
1266 Lisp_Object
|
|
1267 vector4 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2,
|
|
1268 Lisp_Object obj3)
|
|
1269 {
|
|
1270 Lisp_Object args[4];
|
|
1271 args[0] = obj0;
|
|
1272 args[1] = obj1;
|
|
1273 args[2] = obj2;
|
|
1274 args[3] = obj3;
|
|
1275 return Fvector (4, args);
|
|
1276 }
|
|
1277
|
|
1278 Lisp_Object
|
|
1279 vector5 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2,
|
|
1280 Lisp_Object obj3, Lisp_Object obj4)
|
|
1281 {
|
|
1282 Lisp_Object args[5];
|
|
1283 args[0] = obj0;
|
|
1284 args[1] = obj1;
|
|
1285 args[2] = obj2;
|
|
1286 args[3] = obj3;
|
|
1287 args[4] = obj4;
|
|
1288 return Fvector (5, args);
|
|
1289 }
|
|
1290
|
|
1291 Lisp_Object
|
|
1292 vector6 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2,
|
|
1293 Lisp_Object obj3, Lisp_Object obj4, Lisp_Object obj5)
|
|
1294 {
|
|
1295 Lisp_Object args[6];
|
|
1296 args[0] = obj0;
|
|
1297 args[1] = obj1;
|
|
1298 args[2] = obj2;
|
|
1299 args[3] = obj3;
|
|
1300 args[4] = obj4;
|
|
1301 args[5] = obj5;
|
|
1302 return Fvector (6, args);
|
|
1303 }
|
|
1304
|
|
1305 Lisp_Object
|
|
1306 vector7 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2,
|
|
1307 Lisp_Object obj3, Lisp_Object obj4, Lisp_Object obj5,
|
|
1308 Lisp_Object obj6)
|
|
1309 {
|
|
1310 Lisp_Object args[7];
|
|
1311 args[0] = obj0;
|
|
1312 args[1] = obj1;
|
|
1313 args[2] = obj2;
|
|
1314 args[3] = obj3;
|
|
1315 args[4] = obj4;
|
|
1316 args[5] = obj5;
|
|
1317 args[6] = obj6;
|
|
1318 return Fvector (7, args);
|
|
1319 }
|
|
1320
|
|
1321 Lisp_Object
|
|
1322 vector8 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2,
|
|
1323 Lisp_Object obj3, Lisp_Object obj4, Lisp_Object obj5,
|
|
1324 Lisp_Object obj6, Lisp_Object obj7)
|
|
1325 {
|
|
1326 Lisp_Object args[8];
|
|
1327 args[0] = obj0;
|
|
1328 args[1] = obj1;
|
|
1329 args[2] = obj2;
|
|
1330 args[3] = obj3;
|
|
1331 args[4] = obj4;
|
|
1332 args[5] = obj5;
|
|
1333 args[6] = obj6;
|
|
1334 args[7] = obj7;
|
|
1335 return Fvector (8, args);
|
|
1336 }
|
|
1337 #endif /* unused */
|
|
1338
|
|
1339 /************************************************************************/
|
|
1340 /* Bit Vector allocation */
|
|
1341 /************************************************************************/
|
|
1342
|
|
1343 static Lisp_Object all_bit_vectors;
|
|
1344
|
|
1345 /* #### should allocate `small' bit vectors from a frob-block */
|
440
|
1346 static Lisp_Bit_Vector *
|
428
|
1347 make_bit_vector_internal (size_t sizei)
|
|
1348 {
|
|
1349 size_t num_longs = BIT_VECTOR_LONG_STORAGE (sizei);
|
|
1350 size_t sizem = STRETCHY_STRUCT_SIZEOF (Lisp_Bit_Vector, bits, num_longs);
|
|
1351 Lisp_Bit_Vector *p = (Lisp_Bit_Vector *) allocate_lisp_storage (sizem);
|
|
1352 set_lheader_implementation (&(p->lheader), &lrecord_bit_vector);
|
|
1353
|
|
1354 INCREMENT_CONS_COUNTER (sizem, "bit-vector");
|
|
1355
|
|
1356 bit_vector_length (p) = sizei;
|
|
1357 bit_vector_next (p) = all_bit_vectors;
|
|
1358 /* make sure the extra bits in the last long are 0; the calling
|
|
1359 functions might not set them. */
|
|
1360 p->bits[num_longs - 1] = 0;
|
|
1361 XSETBIT_VECTOR (all_bit_vectors, p);
|
|
1362 return p;
|
|
1363 }
|
|
1364
|
|
1365 Lisp_Object
|
|
1366 make_bit_vector (size_t length, Lisp_Object init)
|
|
1367 {
|
440
|
1368 Lisp_Bit_Vector *p = make_bit_vector_internal (length);
|
428
|
1369 size_t num_longs = BIT_VECTOR_LONG_STORAGE (length);
|
|
1370
|
|
1371 CHECK_BIT (init);
|
|
1372
|
|
1373 if (ZEROP (init))
|
|
1374 memset (p->bits, 0, num_longs * sizeof (long));
|
|
1375 else
|
|
1376 {
|
|
1377 size_t bits_in_last = length & (LONGBITS_POWER_OF_2 - 1);
|
|
1378 memset (p->bits, ~0, num_longs * sizeof (long));
|
|
1379 /* But we have to make sure that the unused bits in the
|
|
1380 last long are 0, so that equal/hash is easy. */
|
|
1381 if (bits_in_last)
|
|
1382 p->bits[num_longs - 1] &= (1 << bits_in_last) - 1;
|
|
1383 }
|
|
1384
|
|
1385 {
|
|
1386 Lisp_Object bit_vector;
|
|
1387 XSETBIT_VECTOR (bit_vector, p);
|
|
1388 return bit_vector;
|
|
1389 }
|
|
1390 }
|
|
1391
|
|
1392 Lisp_Object
|
|
1393 make_bit_vector_from_byte_vector (unsigned char *bytevec, size_t length)
|
|
1394 {
|
|
1395 int i;
|
|
1396 Lisp_Bit_Vector *p = make_bit_vector_internal (length);
|
|
1397
|
|
1398 for (i = 0; i < length; i++)
|
|
1399 set_bit_vector_bit (p, i, bytevec[i]);
|
|
1400
|
|
1401 {
|
|
1402 Lisp_Object bit_vector;
|
|
1403 XSETBIT_VECTOR (bit_vector, p);
|
|
1404 return bit_vector;
|
|
1405 }
|
|
1406 }
|
|
1407
|
|
1408 DEFUN ("make-bit-vector", Fmake_bit_vector, 2, 2, 0, /*
|
|
1409 Return a new bit vector of length LENGTH. with each bit being INIT.
|
|
1410 Each element is set to INIT. See also the function `bit-vector'.
|
|
1411 */
|
|
1412 (length, init))
|
|
1413 {
|
|
1414 CONCHECK_NATNUM (length);
|
|
1415
|
|
1416 return make_bit_vector (XINT (length), init);
|
|
1417 }
|
|
1418
|
|
1419 DEFUN ("bit-vector", Fbit_vector, 0, MANY, 0, /*
|
|
1420 Return a newly created bit vector with specified arguments as elements.
|
|
1421 Any number of arguments, even zero arguments, are allowed.
|
|
1422 */
|
|
1423 (int nargs, Lisp_Object *args))
|
|
1424 {
|
|
1425 int i;
|
|
1426 Lisp_Bit_Vector *p = make_bit_vector_internal (nargs);
|
|
1427
|
|
1428 for (i = 0; i < nargs; i++)
|
|
1429 {
|
|
1430 CHECK_BIT (args[i]);
|
|
1431 set_bit_vector_bit (p, i, !ZEROP (args[i]));
|
|
1432 }
|
|
1433
|
|
1434 {
|
|
1435 Lisp_Object bit_vector;
|
|
1436 XSETBIT_VECTOR (bit_vector, p);
|
|
1437 return bit_vector;
|
|
1438 }
|
|
1439 }
|
|
1440
|
|
1441
|
|
1442 /************************************************************************/
|
|
1443 /* Compiled-function allocation */
|
|
1444 /************************************************************************/
|
|
1445
|
|
1446 DECLARE_FIXED_TYPE_ALLOC (compiled_function, Lisp_Compiled_Function);
|
|
1447 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_compiled_function 1000
|
|
1448
|
|
1449 static Lisp_Object
|
|
1450 make_compiled_function (void)
|
|
1451 {
|
|
1452 Lisp_Compiled_Function *f;
|
|
1453 Lisp_Object fun;
|
|
1454
|
|
1455 ALLOCATE_FIXED_TYPE (compiled_function, Lisp_Compiled_Function, f);
|
|
1456 set_lheader_implementation (&(f->lheader), &lrecord_compiled_function);
|
|
1457
|
|
1458 f->stack_depth = 0;
|
|
1459 f->specpdl_depth = 0;
|
|
1460 f->flags.documentationp = 0;
|
|
1461 f->flags.interactivep = 0;
|
|
1462 f->flags.domainp = 0; /* I18N3 */
|
|
1463 f->instructions = Qzero;
|
|
1464 f->constants = Qzero;
|
|
1465 f->arglist = Qnil;
|
|
1466 f->doc_and_interactive = Qnil;
|
|
1467 #ifdef COMPILED_FUNCTION_ANNOTATION_HACK
|
|
1468 f->annotated = Qnil;
|
|
1469 #endif
|
|
1470 XSETCOMPILED_FUNCTION (fun, f);
|
|
1471 return fun;
|
|
1472 }
|
|
1473
|
|
1474 DEFUN ("make-byte-code", Fmake_byte_code, 4, MANY, 0, /*
|
|
1475 Return a new compiled-function object.
|
|
1476 Usage: (arglist instructions constants stack-depth
|
|
1477 &optional doc-string interactive)
|
|
1478 Note that, unlike all other emacs-lisp functions, calling this with five
|
|
1479 arguments is NOT the same as calling it with six arguments, the last of
|
|
1480 which is nil. If the INTERACTIVE arg is specified as nil, then that means
|
|
1481 that this function was defined with `(interactive)'. If the arg is not
|
|
1482 specified, then that means the function is not interactive.
|
|
1483 This is terrible behavior which is retained for compatibility with old
|
|
1484 `.elc' files which expect these semantics.
|
|
1485 */
|
|
1486 (int nargs, Lisp_Object *args))
|
|
1487 {
|
|
1488 /* In a non-insane world this function would have this arglist...
|
|
1489 (arglist instructions constants stack_depth &optional doc_string interactive)
|
|
1490 */
|
|
1491 Lisp_Object fun = make_compiled_function ();
|
|
1492 Lisp_Compiled_Function *f = XCOMPILED_FUNCTION (fun);
|
|
1493
|
|
1494 Lisp_Object arglist = args[0];
|
|
1495 Lisp_Object instructions = args[1];
|
|
1496 Lisp_Object constants = args[2];
|
|
1497 Lisp_Object stack_depth = args[3];
|
|
1498 Lisp_Object doc_string = (nargs > 4) ? args[4] : Qnil;
|
|
1499 Lisp_Object interactive = (nargs > 5) ? args[5] : Qunbound;
|
|
1500
|
|
1501 if (nargs < 4 || nargs > 6)
|
|
1502 return Fsignal (Qwrong_number_of_arguments,
|
|
1503 list2 (intern ("make-byte-code"), make_int (nargs)));
|
|
1504
|
|
1505 /* Check for valid formal parameter list now, to allow us to use
|
|
1506 SPECBIND_FAST_UNSAFE() later in funcall_compiled_function(). */
|
|
1507 {
|
|
1508 Lisp_Object symbol, tail;
|
|
1509 EXTERNAL_LIST_LOOP_3 (symbol, arglist, tail)
|
|
1510 {
|
|
1511 CHECK_SYMBOL (symbol);
|
|
1512 if (EQ (symbol, Qt) ||
|
|
1513 EQ (symbol, Qnil) ||
|
|
1514 SYMBOL_IS_KEYWORD (symbol))
|
|
1515 signal_simple_error_2
|
|
1516 ("Invalid constant symbol in formal parameter list",
|
|
1517 symbol, arglist);
|
|
1518 }
|
|
1519 }
|
|
1520 f->arglist = arglist;
|
|
1521
|
|
1522 /* `instructions' is a string or a cons (string . int) for a
|
|
1523 lazy-loaded function. */
|
|
1524 if (CONSP (instructions))
|
|
1525 {
|
|
1526 CHECK_STRING (XCAR (instructions));
|
|
1527 CHECK_INT (XCDR (instructions));
|
|
1528 }
|
|
1529 else
|
|
1530 {
|
|
1531 CHECK_STRING (instructions);
|
|
1532 }
|
|
1533 f->instructions = instructions;
|
|
1534
|
|
1535 if (!NILP (constants))
|
|
1536 CHECK_VECTOR (constants);
|
|
1537 f->constants = constants;
|
|
1538
|
|
1539 CHECK_NATNUM (stack_depth);
|
|
1540 f->stack_depth = XINT (stack_depth);
|
|
1541
|
|
1542 #ifdef COMPILED_FUNCTION_ANNOTATION_HACK
|
|
1543 if (!NILP (Vcurrent_compiled_function_annotation))
|
|
1544 f->annotated = Fcopy (Vcurrent_compiled_function_annotation);
|
|
1545 else if (!NILP (Vload_file_name_internal_the_purecopy))
|
|
1546 f->annotated = Vload_file_name_internal_the_purecopy;
|
|
1547 else if (!NILP (Vload_file_name_internal))
|
|
1548 {
|
|
1549 struct gcpro gcpro1;
|
|
1550 GCPRO1 (fun); /* don't let fun get reaped */
|
|
1551 Vload_file_name_internal_the_purecopy =
|
|
1552 Ffile_name_nondirectory (Vload_file_name_internal);
|
|
1553 f->annotated = Vload_file_name_internal_the_purecopy;
|
|
1554 UNGCPRO;
|
|
1555 }
|
|
1556 #endif /* COMPILED_FUNCTION_ANNOTATION_HACK */
|
|
1557
|
|
1558 /* doc_string may be nil, string, int, or a cons (string . int).
|
|
1559 interactive may be list or string (or unbound). */
|
|
1560 f->doc_and_interactive = Qunbound;
|
|
1561 #ifdef I18N3
|
|
1562 if ((f->flags.domainp = !NILP (Vfile_domain)) != 0)
|
|
1563 f->doc_and_interactive = Vfile_domain;
|
|
1564 #endif
|
|
1565 if ((f->flags.interactivep = !UNBOUNDP (interactive)) != 0)
|
|
1566 {
|
|
1567 f->doc_and_interactive
|
|
1568 = (UNBOUNDP (f->doc_and_interactive) ? interactive :
|
|
1569 Fcons (interactive, f->doc_and_interactive));
|
|
1570 }
|
|
1571 if ((f->flags.documentationp = !NILP (doc_string)) != 0)
|
|
1572 {
|
|
1573 f->doc_and_interactive
|
|
1574 = (UNBOUNDP (f->doc_and_interactive) ? doc_string :
|
|
1575 Fcons (doc_string, f->doc_and_interactive));
|
|
1576 }
|
|
1577 if (UNBOUNDP (f->doc_and_interactive))
|
|
1578 f->doc_and_interactive = Qnil;
|
|
1579
|
|
1580 return fun;
|
|
1581 }
|
|
1582
|
|
1583
|
|
1584 /************************************************************************/
|
|
1585 /* Symbol allocation */
|
|
1586 /************************************************************************/
|
|
1587
|
440
|
1588 DECLARE_FIXED_TYPE_ALLOC (symbol, Lisp_Symbol);
|
428
|
1589 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_symbol 1000
|
|
1590
|
|
1591 DEFUN ("make-symbol", Fmake_symbol, 1, 1, 0, /*
|
|
1592 Return a newly allocated uninterned symbol whose name is NAME.
|
|
1593 Its value and function definition are void, and its property list is nil.
|
|
1594 */
|
|
1595 (name))
|
|
1596 {
|
|
1597 Lisp_Object val;
|
440
|
1598 Lisp_Symbol *p;
|
428
|
1599
|
|
1600 CHECK_STRING (name);
|
|
1601
|
440
|
1602 ALLOCATE_FIXED_TYPE (symbol, Lisp_Symbol, p);
|
428
|
1603 set_lheader_implementation (&(p->lheader), &lrecord_symbol);
|
|
1604 p->name = XSTRING (name);
|
|
1605 p->plist = Qnil;
|
|
1606 p->value = Qunbound;
|
|
1607 p->function = Qunbound;
|
|
1608 symbol_next (p) = 0;
|
|
1609 XSETSYMBOL (val, p);
|
|
1610 return val;
|
|
1611 }
|
|
1612
|
|
1613
|
|
1614 /************************************************************************/
|
|
1615 /* Extent allocation */
|
|
1616 /************************************************************************/
|
|
1617
|
|
1618 DECLARE_FIXED_TYPE_ALLOC (extent, struct extent);
|
|
1619 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_extent 1000
|
|
1620
|
|
1621 struct extent *
|
|
1622 allocate_extent (void)
|
|
1623 {
|
|
1624 struct extent *e;
|
|
1625
|
|
1626 ALLOCATE_FIXED_TYPE (extent, struct extent, e);
|
|
1627 set_lheader_implementation (&(e->lheader), &lrecord_extent);
|
|
1628 extent_object (e) = Qnil;
|
|
1629 set_extent_start (e, -1);
|
|
1630 set_extent_end (e, -1);
|
|
1631 e->plist = Qnil;
|
|
1632
|
|
1633 xzero (e->flags);
|
|
1634
|
|
1635 extent_face (e) = Qnil;
|
|
1636 e->flags.end_open = 1; /* default is for endpoints to behave like markers */
|
|
1637 e->flags.detachable = 1;
|
|
1638
|
|
1639 return e;
|
|
1640 }
|
|
1641
|
|
1642
|
|
1643 /************************************************************************/
|
|
1644 /* Event allocation */
|
|
1645 /************************************************************************/
|
|
1646
|
440
|
1647 DECLARE_FIXED_TYPE_ALLOC (event, Lisp_Event);
|
428
|
1648 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_event 1000
|
|
1649
|
|
1650 Lisp_Object
|
|
1651 allocate_event (void)
|
|
1652 {
|
|
1653 Lisp_Object val;
|
440
|
1654 Lisp_Event *e;
|
|
1655
|
|
1656 ALLOCATE_FIXED_TYPE (event, Lisp_Event, e);
|
428
|
1657 set_lheader_implementation (&(e->lheader), &lrecord_event);
|
|
1658
|
|
1659 XSETEVENT (val, e);
|
|
1660 return val;
|
|
1661 }
|
|
1662
|
|
1663
|
|
1664 /************************************************************************/
|
|
1665 /* Marker allocation */
|
|
1666 /************************************************************************/
|
|
1667
|
440
|
1668 DECLARE_FIXED_TYPE_ALLOC (marker, Lisp_Marker);
|
428
|
1669 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_marker 1000
|
|
1670
|
|
1671 DEFUN ("make-marker", Fmake_marker, 0, 0, 0, /*
|
|
1672 Return a new marker which does not point at any place.
|
|
1673 */
|
|
1674 ())
|
|
1675 {
|
|
1676 Lisp_Object val;
|
440
|
1677 Lisp_Marker *p;
|
|
1678
|
|
1679 ALLOCATE_FIXED_TYPE (marker, Lisp_Marker, p);
|
428
|
1680 set_lheader_implementation (&(p->lheader), &lrecord_marker);
|
|
1681 p->buffer = 0;
|
|
1682 p->memind = 0;
|
|
1683 marker_next (p) = 0;
|
|
1684 marker_prev (p) = 0;
|
|
1685 p->insertion_type = 0;
|
|
1686 XSETMARKER (val, p);
|
|
1687 return val;
|
|
1688 }
|
|
1689
|
|
1690 Lisp_Object
|
|
1691 noseeum_make_marker (void)
|
|
1692 {
|
|
1693 Lisp_Object val;
|
440
|
1694 Lisp_Marker *p;
|
|
1695
|
|
1696 NOSEEUM_ALLOCATE_FIXED_TYPE (marker, Lisp_Marker, p);
|
428
|
1697 set_lheader_implementation (&(p->lheader), &lrecord_marker);
|
|
1698 p->buffer = 0;
|
|
1699 p->memind = 0;
|
|
1700 marker_next (p) = 0;
|
|
1701 marker_prev (p) = 0;
|
|
1702 p->insertion_type = 0;
|
|
1703 XSETMARKER (val, p);
|
|
1704 return val;
|
|
1705 }
|
|
1706
|
|
1707
|
|
1708 /************************************************************************/
|
|
1709 /* String allocation */
|
|
1710 /************************************************************************/
|
|
1711
|
|
1712 /* The data for "short" strings generally resides inside of structs of type
|
|
1713 string_chars_block. The Lisp_String structure is allocated just like any
|
|
1714 other Lisp object (except for vectors), and these are freelisted when
|
|
1715 they get garbage collected. The data for short strings get compacted,
|
|
1716 but the data for large strings do not.
|
|
1717
|
|
1718 Previously Lisp_String structures were relocated, but this caused a lot
|
|
1719 of bus-errors because the C code didn't include enough GCPRO's for
|
|
1720 strings (since EVERY REFERENCE to a short string needed to be GCPRO'd so
|
|
1721 that the reference would get relocated).
|
|
1722
|
|
1723 This new method makes things somewhat bigger, but it is MUCH safer. */
|
|
1724
|
438
|
1725 DECLARE_FIXED_TYPE_ALLOC (string, Lisp_String);
|
428
|
1726 /* strings are used and freed quite often */
|
|
1727 /* #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_string 10000 */
|
|
1728 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_string 1000
|
|
1729
|
|
1730 static Lisp_Object
|
|
1731 mark_string (Lisp_Object obj)
|
|
1732 {
|
438
|
1733 Lisp_String *ptr = XSTRING (obj);
|
428
|
1734
|
|
1735 if (CONSP (ptr->plist) && EXTENT_INFOP (XCAR (ptr->plist)))
|
|
1736 flush_cached_extent_info (XCAR (ptr->plist));
|
|
1737 return ptr->plist;
|
|
1738 }
|
|
1739
|
|
1740 static int
|
|
1741 string_equal (Lisp_Object obj1, Lisp_Object obj2, int depth)
|
|
1742 {
|
|
1743 Bytecount len;
|
|
1744 return (((len = XSTRING_LENGTH (obj1)) == XSTRING_LENGTH (obj2)) &&
|
|
1745 !memcmp (XSTRING_DATA (obj1), XSTRING_DATA (obj2), len));
|
|
1746 }
|
|
1747
|
|
1748 static const struct lrecord_description string_description[] = {
|
440
|
1749 { XD_BYTECOUNT, offsetof (Lisp_String, size) },
|
|
1750 { XD_OPAQUE_DATA_PTR, offsetof (Lisp_String, data), XD_INDIRECT(0, 1) },
|
|
1751 { XD_LISP_OBJECT, offsetof (Lisp_String, plist) },
|
428
|
1752 { XD_END }
|
|
1753 };
|
|
1754
|
|
1755 DEFINE_BASIC_LRECORD_IMPLEMENTATION ("string", string,
|
|
1756 mark_string, print_string,
|
|
1757 /*
|
|
1758 * No `finalize', or `hash' methods.
|
|
1759 * internal_hash already knows how
|
|
1760 * to hash strings and finalization
|
|
1761 * is done with the
|
|
1762 * ADDITIONAL_FREE_string macro,
|
|
1763 * which is the standard way to do
|
|
1764 * finalization when using
|
|
1765 * SWEEP_FIXED_TYPE_BLOCK().
|
|
1766 */
|
|
1767 0, string_equal, 0,
|
|
1768 string_description,
|
438
|
1769 Lisp_String);
|
428
|
1770
|
|
1771 /* String blocks contain this many useful bytes. */
|
|
1772 #define STRING_CHARS_BLOCK_SIZE \
|
|
1773 ((Bytecount) (8192 - MALLOC_OVERHEAD - \
|
|
1774 ((2 * sizeof (struct string_chars_block *)) \
|
|
1775 + sizeof (EMACS_INT))))
|
|
1776 /* Block header for small strings. */
|
|
1777 struct string_chars_block
|
|
1778 {
|
|
1779 EMACS_INT pos;
|
|
1780 struct string_chars_block *next;
|
|
1781 struct string_chars_block *prev;
|
|
1782 /* Contents of string_chars_block->string_chars are interleaved
|
|
1783 string_chars structures (see below) and the actual string data */
|
|
1784 unsigned char string_chars[STRING_CHARS_BLOCK_SIZE];
|
|
1785 };
|
|
1786
|
|
1787 static struct string_chars_block *first_string_chars_block;
|
|
1788 static struct string_chars_block *current_string_chars_block;
|
|
1789
|
|
1790 /* If SIZE is the length of a string, this returns how many bytes
|
|
1791 * the string occupies in string_chars_block->string_chars
|
|
1792 * (including alignment padding).
|
|
1793 */
|
438
|
1794 #define STRING_FULLSIZE(size) \
|
|
1795 ALIGN_SIZE (((size) + 1 + sizeof (Lisp_String *)),\
|
|
1796 ALIGNOF (Lisp_String *))
|
428
|
1797
|
|
1798 #define BIG_STRING_FULLSIZE_P(fullsize) ((fullsize) >= STRING_CHARS_BLOCK_SIZE)
|
|
1799 #define BIG_STRING_SIZE_P(size) (BIG_STRING_FULLSIZE_P (STRING_FULLSIZE(size)))
|
|
1800
|
|
1801 struct string_chars
|
|
1802 {
|
438
|
1803 Lisp_String *string;
|
428
|
1804 unsigned char chars[1];
|
|
1805 };
|
|
1806
|
|
1807 struct unused_string_chars
|
|
1808 {
|
438
|
1809 Lisp_String *string;
|
428
|
1810 EMACS_INT fullsize;
|
|
1811 };
|
|
1812
|
|
1813 static void
|
|
1814 init_string_chars_alloc (void)
|
|
1815 {
|
|
1816 first_string_chars_block = xnew (struct string_chars_block);
|
|
1817 first_string_chars_block->prev = 0;
|
|
1818 first_string_chars_block->next = 0;
|
|
1819 first_string_chars_block->pos = 0;
|
|
1820 current_string_chars_block = first_string_chars_block;
|
|
1821 }
|
|
1822
|
|
1823 static struct string_chars *
|
438
|
1824 allocate_string_chars_struct (Lisp_String *string_it_goes_with,
|
428
|
1825 EMACS_INT fullsize)
|
|
1826 {
|
|
1827 struct string_chars *s_chars;
|
|
1828
|
438
|
1829 if (fullsize <=
|
|
1830 (countof (current_string_chars_block->string_chars)
|
|
1831 - current_string_chars_block->pos))
|
428
|
1832 {
|
|
1833 /* This string can fit in the current string chars block */
|
|
1834 s_chars = (struct string_chars *)
|
|
1835 (current_string_chars_block->string_chars
|
|
1836 + current_string_chars_block->pos);
|
|
1837 current_string_chars_block->pos += fullsize;
|
|
1838 }
|
|
1839 else
|
|
1840 {
|
|
1841 /* Make a new current string chars block */
|
|
1842 struct string_chars_block *new_scb = xnew (struct string_chars_block);
|
|
1843
|
|
1844 current_string_chars_block->next = new_scb;
|
|
1845 new_scb->prev = current_string_chars_block;
|
|
1846 new_scb->next = 0;
|
|
1847 current_string_chars_block = new_scb;
|
|
1848 new_scb->pos = fullsize;
|
|
1849 s_chars = (struct string_chars *)
|
|
1850 current_string_chars_block->string_chars;
|
|
1851 }
|
|
1852
|
|
1853 s_chars->string = string_it_goes_with;
|
|
1854
|
|
1855 INCREMENT_CONS_COUNTER (fullsize, "string chars");
|
|
1856
|
|
1857 return s_chars;
|
|
1858 }
|
|
1859
|
|
1860 Lisp_Object
|
|
1861 make_uninit_string (Bytecount length)
|
|
1862 {
|
438
|
1863 Lisp_String *s;
|
428
|
1864 EMACS_INT fullsize = STRING_FULLSIZE (length);
|
|
1865 Lisp_Object val;
|
|
1866
|
438
|
1867 assert (length >= 0 && fullsize > 0);
|
428
|
1868
|
|
1869 /* Allocate the string header */
|
438
|
1870 ALLOCATE_FIXED_TYPE (string, Lisp_String, s);
|
428
|
1871 set_lheader_implementation (&(s->lheader), &lrecord_string);
|
|
1872
|
438
|
1873 set_string_data (s, BIG_STRING_FULLSIZE_P (fullsize)
|
|
1874 ? xnew_array (Bufbyte, length + 1)
|
|
1875 : allocate_string_chars_struct (s, fullsize)->chars);
|
|
1876
|
428
|
1877 set_string_length (s, length);
|
|
1878 s->plist = Qnil;
|
|
1879
|
|
1880 set_string_byte (s, length, 0);
|
|
1881
|
|
1882 XSETSTRING (val, s);
|
|
1883 return val;
|
|
1884 }
|
|
1885
|
|
1886 #ifdef VERIFY_STRING_CHARS_INTEGRITY
|
|
1887 static void verify_string_chars_integrity (void);
|
|
1888 #endif
|
|
1889
|
|
1890 /* Resize the string S so that DELTA bytes can be inserted starting
|
|
1891 at POS. If DELTA < 0, it means deletion starting at POS. If
|
|
1892 POS < 0, resize the string but don't copy any characters. Use
|
|
1893 this if you're planning on completely overwriting the string.
|
|
1894 */
|
|
1895
|
|
1896 void
|
438
|
1897 resize_string (Lisp_String *s, Bytecount pos, Bytecount delta)
|
428
|
1898 {
|
438
|
1899 Bytecount oldfullsize, newfullsize;
|
428
|
1900 #ifdef VERIFY_STRING_CHARS_INTEGRITY
|
|
1901 verify_string_chars_integrity ();
|
|
1902 #endif
|
|
1903
|
|
1904 #ifdef ERROR_CHECK_BUFPOS
|
|
1905 if (pos >= 0)
|
|
1906 {
|
|
1907 assert (pos <= string_length (s));
|
|
1908 if (delta < 0)
|
|
1909 assert (pos + (-delta) <= string_length (s));
|
|
1910 }
|
|
1911 else
|
|
1912 {
|
|
1913 if (delta < 0)
|
|
1914 assert ((-delta) <= string_length (s));
|
|
1915 }
|
|
1916 #endif /* ERROR_CHECK_BUFPOS */
|
|
1917
|
|
1918 if (delta == 0)
|
|
1919 /* simplest case: no size change. */
|
|
1920 return;
|
438
|
1921
|
|
1922 if (pos >= 0 && delta < 0)
|
|
1923 /* If DELTA < 0, the functions below will delete the characters
|
|
1924 before POS. We want to delete characters *after* POS, however,
|
|
1925 so convert this to the appropriate form. */
|
|
1926 pos += -delta;
|
|
1927
|
|
1928 oldfullsize = STRING_FULLSIZE (string_length (s));
|
|
1929 newfullsize = STRING_FULLSIZE (string_length (s) + delta);
|
|
1930
|
|
1931 if (BIG_STRING_FULLSIZE_P (oldfullsize))
|
428
|
1932 {
|
438
|
1933 if (BIG_STRING_FULLSIZE_P (newfullsize))
|
428
|
1934 {
|
440
|
1935 /* Both strings are big. We can just realloc().
|
|
1936 But careful! If the string is shrinking, we have to
|
|
1937 memmove() _before_ realloc(), and if growing, we have to
|
|
1938 memmove() _after_ realloc() - otherwise the access is
|
|
1939 illegal, and we might crash. */
|
|
1940 Bytecount len = string_length (s) + 1 - pos;
|
|
1941
|
|
1942 if (delta < 0 && pos >= 0)
|
|
1943 memmove (string_data (s) + pos + delta, string_data (s) + pos, len);
|
438
|
1944 set_string_data (s, (Bufbyte *) xrealloc (string_data (s),
|
|
1945 string_length (s) + delta + 1));
|
440
|
1946 if (delta > 0 && pos >= 0)
|
|
1947 memmove (string_data (s) + pos + delta, string_data (s) + pos, len);
|
428
|
1948 }
|
438
|
1949 else /* String has been demoted from BIG_STRING. */
|
428
|
1950 {
|
438
|
1951 Bufbyte *new_data =
|
|
1952 allocate_string_chars_struct (s, newfullsize)->chars;
|
|
1953 Bufbyte *old_data = string_data (s);
|
|
1954
|
|
1955 if (pos >= 0)
|
|
1956 {
|
|
1957 memcpy (new_data, old_data, pos);
|
|
1958 memcpy (new_data + pos + delta, old_data + pos,
|
|
1959 string_length (s) + 1 - pos);
|
|
1960 }
|
|
1961 set_string_data (s, new_data);
|
|
1962 xfree (old_data);
|
|
1963 }
|
|
1964 }
|
|
1965 else /* old string is small */
|
|
1966 {
|
|
1967 if (oldfullsize == newfullsize)
|
|
1968 {
|
|
1969 /* special case; size change but the necessary
|
|
1970 allocation size won't change (up or down; code
|
|
1971 somewhere depends on there not being any unused
|
|
1972 allocation space, modulo any alignment
|
|
1973 constraints). */
|
428
|
1974 if (pos >= 0)
|
|
1975 {
|
|
1976 Bufbyte *addroff = pos + string_data (s);
|
|
1977
|
|
1978 memmove (addroff + delta, addroff,
|
|
1979 /* +1 due to zero-termination. */
|
|
1980 string_length (s) + 1 - pos);
|
|
1981 }
|
|
1982 }
|
|
1983 else
|
|
1984 {
|
438
|
1985 Bufbyte *old_data = string_data (s);
|
|
1986 Bufbyte *new_data =
|
|
1987 BIG_STRING_FULLSIZE_P (newfullsize)
|
|
1988 ? xnew_array (Bufbyte, string_length (s) + delta + 1)
|
|
1989 : allocate_string_chars_struct (s, newfullsize)->chars;
|
|
1990
|
428
|
1991 if (pos >= 0)
|
|
1992 {
|
438
|
1993 memcpy (new_data, old_data, pos);
|
|
1994 memcpy (new_data + pos + delta, old_data + pos,
|
428
|
1995 string_length (s) + 1 - pos);
|
|
1996 }
|
438
|
1997 set_string_data (s, new_data);
|
|
1998
|
|
1999 {
|
|
2000 /* We need to mark this chunk of the string_chars_block
|
|
2001 as unused so that compact_string_chars() doesn't
|
|
2002 freak. */
|
|
2003 struct string_chars *old_s_chars = (struct string_chars *)
|
|
2004 ((char *) old_data - offsetof (struct string_chars, chars));
|
|
2005 /* Sanity check to make sure we aren't hosed by strange
|
|
2006 alignment/padding. */
|
|
2007 assert (old_s_chars->string == s);
|
|
2008 MARK_STRUCT_AS_FREE (old_s_chars);
|
|
2009 ((struct unused_string_chars *) old_s_chars)->fullsize =
|
|
2010 oldfullsize;
|
|
2011 }
|
428
|
2012 }
|
438
|
2013 }
|
|
2014
|
|
2015 set_string_length (s, string_length (s) + delta);
|
|
2016 /* If pos < 0, the string won't be zero-terminated.
|
|
2017 Terminate now just to make sure. */
|
|
2018 string_data (s)[string_length (s)] = '\0';
|
|
2019
|
|
2020 if (pos >= 0)
|
|
2021 {
|
|
2022 Lisp_Object string;
|
|
2023
|
|
2024 XSETSTRING (string, s);
|
|
2025 /* We also have to adjust all of the extent indices after the
|
|
2026 place we did the change. We say "pos - 1" because
|
|
2027 adjust_extents() is exclusive of the starting position
|
|
2028 passed to it. */
|
|
2029 adjust_extents (string, pos - 1, string_length (s),
|
|
2030 delta);
|
428
|
2031 }
|
|
2032
|
|
2033 #ifdef VERIFY_STRING_CHARS_INTEGRITY
|
|
2034 verify_string_chars_integrity ();
|
|
2035 #endif
|
|
2036 }
|
|
2037
|
|
2038 #ifdef MULE
|
|
2039
|
|
2040 void
|
438
|
2041 set_string_char (Lisp_String *s, Charcount i, Emchar c)
|
428
|
2042 {
|
|
2043 Bufbyte newstr[MAX_EMCHAR_LEN];
|
|
2044 Bytecount bytoff = charcount_to_bytecount (string_data (s), i);
|
|
2045 Bytecount oldlen = charcount_to_bytecount (string_data (s) + bytoff, 1);
|
|
2046 Bytecount newlen = set_charptr_emchar (newstr, c);
|
|
2047
|
|
2048 if (oldlen != newlen)
|
|
2049 resize_string (s, bytoff, newlen - oldlen);
|
|
2050 /* Remember, string_data (s) might have changed so we can't cache it. */
|
|
2051 memcpy (string_data (s) + bytoff, newstr, newlen);
|
|
2052 }
|
|
2053
|
|
2054 #endif /* MULE */
|
|
2055
|
|
2056 DEFUN ("make-string", Fmake_string, 2, 2, 0, /*
|
|
2057 Return a new string of length LENGTH, with each character being INIT.
|
|
2058 LENGTH must be an integer and INIT must be a character.
|
|
2059 */
|
|
2060 (length, init))
|
|
2061 {
|
|
2062 CHECK_NATNUM (length);
|
|
2063 CHECK_CHAR_COERCE_INT (init);
|
|
2064 {
|
|
2065 Bufbyte init_str[MAX_EMCHAR_LEN];
|
|
2066 int len = set_charptr_emchar (init_str, XCHAR (init));
|
|
2067 Lisp_Object val = make_uninit_string (len * XINT (length));
|
|
2068
|
|
2069 if (len == 1)
|
|
2070 /* Optimize the single-byte case */
|
|
2071 memset (XSTRING_DATA (val), XCHAR (init), XSTRING_LENGTH (val));
|
|
2072 else
|
|
2073 {
|
|
2074 size_t i;
|
|
2075 Bufbyte *ptr = XSTRING_DATA (val);
|
|
2076
|
|
2077 for (i = XINT (length); i; i--)
|
|
2078 {
|
|
2079 Bufbyte *init_ptr = init_str;
|
|
2080 switch (len)
|
|
2081 {
|
|
2082 case 4: *ptr++ = *init_ptr++;
|
|
2083 case 3: *ptr++ = *init_ptr++;
|
|
2084 case 2: *ptr++ = *init_ptr++;
|
|
2085 case 1: *ptr++ = *init_ptr++;
|
|
2086 }
|
|
2087 }
|
|
2088 }
|
|
2089 return val;
|
|
2090 }
|
|
2091 }
|
|
2092
|
|
2093 DEFUN ("string", Fstring, 0, MANY, 0, /*
|
|
2094 Concatenate all the argument characters and make the result a string.
|
|
2095 */
|
|
2096 (int nargs, Lisp_Object *args))
|
|
2097 {
|
|
2098 Bufbyte *storage = alloca_array (Bufbyte, nargs * MAX_EMCHAR_LEN);
|
|
2099 Bufbyte *p = storage;
|
|
2100
|
|
2101 for (; nargs; nargs--, args++)
|
|
2102 {
|
|
2103 Lisp_Object lisp_char = *args;
|
|
2104 CHECK_CHAR_COERCE_INT (lisp_char);
|
|
2105 p += set_charptr_emchar (p, XCHAR (lisp_char));
|
|
2106 }
|
|
2107 return make_string (storage, p - storage);
|
|
2108 }
|
|
2109
|
|
2110
|
|
2111 /* Take some raw memory, which MUST already be in internal format,
|
|
2112 and package it up into a Lisp string. */
|
|
2113 Lisp_Object
|
|
2114 make_string (CONST Bufbyte *contents, Bytecount length)
|
|
2115 {
|
|
2116 Lisp_Object val;
|
|
2117
|
|
2118 /* Make sure we find out about bad make_string's when they happen */
|
|
2119 #if defined (ERROR_CHECK_BUFPOS) && defined (MULE)
|
|
2120 bytecount_to_charcount (contents, length); /* Just for the assertions */
|
|
2121 #endif
|
|
2122
|
|
2123 val = make_uninit_string (length);
|
|
2124 memcpy (XSTRING_DATA (val), contents, length);
|
|
2125 return val;
|
|
2126 }
|
|
2127
|
|
2128 /* Take some raw memory, encoded in some external data format,
|
|
2129 and convert it into a Lisp string. */
|
|
2130 Lisp_Object
|
|
2131 make_ext_string (CONST Extbyte *contents, EMACS_INT length,
|
440
|
2132 Lisp_Object coding_system)
|
428
|
2133 {
|
440
|
2134 Lisp_Object string;
|
|
2135 TO_INTERNAL_FORMAT (DATA, (contents, length),
|
|
2136 LISP_STRING, string,
|
|
2137 coding_system);
|
|
2138 return string;
|
428
|
2139 }
|
|
2140
|
|
2141 Lisp_Object
|
|
2142 build_string (CONST char *str)
|
|
2143 {
|
|
2144 /* Some strlen's crash and burn if passed null. */
|
|
2145 return make_string ((CONST Bufbyte *) str, (str ? strlen(str) : 0));
|
|
2146 }
|
|
2147
|
|
2148 Lisp_Object
|
440
|
2149 build_ext_string (CONST char *str, Lisp_Object coding_system)
|
428
|
2150 {
|
|
2151 /* Some strlen's crash and burn if passed null. */
|
440
|
2152 return make_ext_string ((CONST Extbyte *) str, (str ? strlen(str) : 0),
|
|
2153 coding_system);
|
428
|
2154 }
|
|
2155
|
|
2156 Lisp_Object
|
|
2157 build_translated_string (CONST char *str)
|
|
2158 {
|
|
2159 return build_string (GETTEXT (str));
|
|
2160 }
|
|
2161
|
|
2162 Lisp_Object
|
|
2163 make_string_nocopy (CONST Bufbyte *contents, Bytecount length)
|
|
2164 {
|
438
|
2165 Lisp_String *s;
|
428
|
2166 Lisp_Object val;
|
|
2167
|
|
2168 /* Make sure we find out about bad make_string_nocopy's when they happen */
|
|
2169 #if defined (ERROR_CHECK_BUFPOS) && defined (MULE)
|
|
2170 bytecount_to_charcount (contents, length); /* Just for the assertions */
|
|
2171 #endif
|
|
2172
|
|
2173 /* Allocate the string header */
|
438
|
2174 ALLOCATE_FIXED_TYPE (string, Lisp_String, s);
|
428
|
2175 set_lheader_implementation (&(s->lheader), &lrecord_string);
|
|
2176 SET_C_READONLY_RECORD_HEADER (&s->lheader);
|
|
2177 s->plist = Qnil;
|
|
2178 set_string_data (s, (Bufbyte *)contents);
|
|
2179 set_string_length (s, length);
|
|
2180
|
|
2181 XSETSTRING (val, s);
|
|
2182 return val;
|
|
2183 }
|
|
2184
|
|
2185
|
|
2186 /************************************************************************/
|
|
2187 /* lcrecord lists */
|
|
2188 /************************************************************************/
|
|
2189
|
|
2190 /* Lcrecord lists are used to manage the allocation of particular
|
|
2191 sorts of lcrecords, to avoid calling alloc_lcrecord() (and thus
|
|
2192 malloc() and garbage-collection junk) as much as possible.
|
|
2193 It is similar to the Blocktype class.
|
|
2194
|
|
2195 It works like this:
|
|
2196
|
|
2197 1) Create an lcrecord-list object using make_lcrecord_list().
|
|
2198 This is often done at initialization. Remember to staticpro_nodump
|
|
2199 this object! The arguments to make_lcrecord_list() are the
|
|
2200 same as would be passed to alloc_lcrecord().
|
|
2201 2) Instead of calling alloc_lcrecord(), call allocate_managed_lcrecord()
|
|
2202 and pass the lcrecord-list earlier created.
|
|
2203 3) When done with the lcrecord, call free_managed_lcrecord().
|
|
2204 The standard freeing caveats apply: ** make sure there are no
|
|
2205 pointers to the object anywhere! **
|
|
2206 4) Calling free_managed_lcrecord() is just like kissing the
|
|
2207 lcrecord goodbye as if it were garbage-collected. This means:
|
|
2208 -- the contents of the freed lcrecord are undefined, and the
|
|
2209 contents of something produced by allocate_managed_lcrecord()
|
|
2210 are undefined, just like for alloc_lcrecord().
|
|
2211 -- the mark method for the lcrecord's type will *NEVER* be called
|
|
2212 on freed lcrecords.
|
|
2213 -- the finalize method for the lcrecord's type will be called
|
|
2214 at the time that free_managed_lcrecord() is called.
|
|
2215
|
|
2216 */
|
|
2217
|
|
2218 static Lisp_Object
|
|
2219 mark_lcrecord_list (Lisp_Object obj)
|
|
2220 {
|
|
2221 struct lcrecord_list *list = XLCRECORD_LIST (obj);
|
|
2222 Lisp_Object chain = list->free;
|
|
2223
|
|
2224 while (!NILP (chain))
|
|
2225 {
|
|
2226 struct lrecord_header *lheader = XRECORD_LHEADER (chain);
|
|
2227 struct free_lcrecord_header *free_header =
|
|
2228 (struct free_lcrecord_header *) lheader;
|
|
2229
|
|
2230 #ifdef ERROR_CHECK_GC
|
|
2231 CONST struct lrecord_implementation *implementation
|
|
2232 = LHEADER_IMPLEMENTATION(lheader);
|
|
2233
|
|
2234 /* There should be no other pointers to the free list. */
|
|
2235 assert (!MARKED_RECORD_HEADER_P (lheader));
|
|
2236 /* Only lcrecords should be here. */
|
|
2237 assert (!implementation->basic_p);
|
|
2238 /* Only free lcrecords should be here. */
|
|
2239 assert (free_header->lcheader.free);
|
|
2240 /* The type of the lcrecord must be right. */
|
|
2241 assert (implementation == list->implementation);
|
|
2242 /* So must the size. */
|
|
2243 assert (implementation->static_size == 0
|
|
2244 || implementation->static_size == list->size);
|
|
2245 #endif /* ERROR_CHECK_GC */
|
|
2246
|
|
2247 MARK_RECORD_HEADER (lheader);
|
|
2248 chain = free_header->chain;
|
|
2249 }
|
|
2250
|
|
2251 return Qnil;
|
|
2252 }
|
|
2253
|
|
2254 DEFINE_LRECORD_IMPLEMENTATION ("lcrecord-list", lcrecord_list,
|
|
2255 mark_lcrecord_list, internal_object_printer,
|
|
2256 0, 0, 0, 0, struct lcrecord_list);
|
|
2257 Lisp_Object
|
|
2258 make_lcrecord_list (size_t size,
|
|
2259 CONST struct lrecord_implementation *implementation)
|
|
2260 {
|
|
2261 struct lcrecord_list *p = alloc_lcrecord_type (struct lcrecord_list,
|
|
2262 &lrecord_lcrecord_list);
|
|
2263 Lisp_Object val;
|
|
2264
|
|
2265 p->implementation = implementation;
|
|
2266 p->size = size;
|
|
2267 p->free = Qnil;
|
|
2268 XSETLCRECORD_LIST (val, p);
|
|
2269 return val;
|
|
2270 }
|
|
2271
|
|
2272 Lisp_Object
|
|
2273 allocate_managed_lcrecord (Lisp_Object lcrecord_list)
|
|
2274 {
|
|
2275 struct lcrecord_list *list = XLCRECORD_LIST (lcrecord_list);
|
|
2276 if (!NILP (list->free))
|
|
2277 {
|
|
2278 Lisp_Object val = list->free;
|
|
2279 struct free_lcrecord_header *free_header =
|
|
2280 (struct free_lcrecord_header *) XPNTR (val);
|
|
2281
|
|
2282 #ifdef ERROR_CHECK_GC
|
|
2283 struct lrecord_header *lheader =
|
|
2284 (struct lrecord_header *) free_header;
|
|
2285 CONST struct lrecord_implementation *implementation
|
|
2286 = LHEADER_IMPLEMENTATION (lheader);
|
|
2287
|
|
2288 /* There should be no other pointers to the free list. */
|
|
2289 assert (!MARKED_RECORD_HEADER_P (lheader));
|
|
2290 /* Only lcrecords should be here. */
|
|
2291 assert (!implementation->basic_p);
|
|
2292 /* Only free lcrecords should be here. */
|
|
2293 assert (free_header->lcheader.free);
|
|
2294 /* The type of the lcrecord must be right. */
|
|
2295 assert (implementation == list->implementation);
|
|
2296 /* So must the size. */
|
|
2297 assert (implementation->static_size == 0
|
|
2298 || implementation->static_size == list->size);
|
|
2299 #endif /* ERROR_CHECK_GC */
|
|
2300 list->free = free_header->chain;
|
|
2301 free_header->lcheader.free = 0;
|
|
2302 return val;
|
|
2303 }
|
|
2304 else
|
|
2305 {
|
|
2306 Lisp_Object val;
|
|
2307
|
|
2308 XSETOBJ (val, Lisp_Type_Record,
|
|
2309 alloc_lcrecord (list->size, list->implementation));
|
|
2310 return val;
|
|
2311 }
|
|
2312 }
|
|
2313
|
|
2314 void
|
|
2315 free_managed_lcrecord (Lisp_Object lcrecord_list, Lisp_Object lcrecord)
|
|
2316 {
|
|
2317 struct lcrecord_list *list = XLCRECORD_LIST (lcrecord_list);
|
|
2318 struct free_lcrecord_header *free_header =
|
|
2319 (struct free_lcrecord_header *) XPNTR (lcrecord);
|
|
2320 struct lrecord_header *lheader =
|
|
2321 (struct lrecord_header *) free_header;
|
|
2322 CONST struct lrecord_implementation *implementation
|
|
2323 = LHEADER_IMPLEMENTATION (lheader);
|
|
2324
|
|
2325 #ifdef ERROR_CHECK_GC
|
|
2326 /* Make sure the size is correct. This will catch, for example,
|
|
2327 putting a window configuration on the wrong free list. */
|
|
2328 if (implementation->size_in_bytes_method)
|
|
2329 assert (implementation->size_in_bytes_method (lheader) == list->size);
|
|
2330 else
|
|
2331 assert (implementation->static_size == list->size);
|
|
2332 #endif /* ERROR_CHECK_GC */
|
|
2333
|
|
2334 if (implementation->finalizer)
|
|
2335 implementation->finalizer (lheader, 0);
|
|
2336 free_header->chain = list->free;
|
|
2337 free_header->lcheader.free = 1;
|
|
2338 list->free = lcrecord;
|
|
2339 }
|
|
2340
|
|
2341
|
|
2342
|
|
2343
|
|
2344 DEFUN ("purecopy", Fpurecopy, 1, 1, 0, /*
|
|
2345 Kept for compatibility, returns its argument.
|
|
2346 Old:
|
|
2347 Make a copy of OBJECT in pure storage.
|
|
2348 Recursively copies contents of vectors and cons cells.
|
|
2349 Does not copy symbols.
|
|
2350 */
|
|
2351 (obj))
|
|
2352 {
|
|
2353 return obj;
|
|
2354 }
|
|
2355
|
|
2356
|
|
2357
|
|
2358 /************************************************************************/
|
|
2359 /* Garbage Collection */
|
|
2360 /************************************************************************/
|
|
2361
|
|
2362 /* This will be used more extensively In The Future */
|
|
2363 static int last_lrecord_type_index_assigned;
|
|
2364
|
|
2365 CONST struct lrecord_implementation *lrecord_implementations_table[128];
|
|
2366 #define max_lrecord_type (countof (lrecord_implementations_table) - 1)
|
|
2367
|
|
2368 struct gcpro *gcprolist;
|
|
2369
|
|
2370 /* 415 used Mly 29-Jun-93 */
|
|
2371 /* 1327 used slb 28-Feb-98 */
|
|
2372 /* 1328 used og 03-Oct-99 (moving slowly, heh?) */
|
|
2373 #ifdef HAVE_SHLIB
|
|
2374 #define NSTATICS 4000
|
|
2375 #else
|
|
2376 #define NSTATICS 2000
|
|
2377 #endif
|
|
2378 /* Not "static" because of linker lossage on some systems */
|
|
2379 Lisp_Object *staticvec[NSTATICS]
|
|
2380 /* Force it into data space! */
|
|
2381 = {0};
|
|
2382 static int staticidx;
|
|
2383
|
|
2384 /* Put an entry in staticvec, pointing at the variable whose address is given
|
|
2385 */
|
|
2386 void
|
|
2387 staticpro (Lisp_Object *varaddress)
|
|
2388 {
|
|
2389 if (staticidx >= countof (staticvec))
|
|
2390 /* #### This is now a dubious abort() since this routine may be called */
|
|
2391 /* by Lisp attempting to load a DLL. */
|
|
2392 abort ();
|
|
2393 staticvec[staticidx++] = varaddress;
|
|
2394 }
|
|
2395
|
|
2396 /* Not "static" because of linker lossage on some systems */
|
|
2397 Lisp_Object *staticvec_nodump[200]
|
|
2398 /* Force it into data space! */
|
|
2399 = {0};
|
|
2400 static int staticidx_nodump;
|
|
2401
|
|
2402 /* Put an entry in staticvec_nodump, pointing at the variable whose address is given
|
|
2403 */
|
|
2404 void
|
|
2405 staticpro_nodump (Lisp_Object *varaddress)
|
|
2406 {
|
|
2407 if (staticidx_nodump >= countof (staticvec_nodump))
|
|
2408 /* #### This is now a dubious abort() since this routine may be called */
|
|
2409 /* by Lisp attempting to load a DLL. */
|
|
2410 abort ();
|
|
2411 staticvec_nodump[staticidx_nodump++] = varaddress;
|
|
2412 }
|
|
2413
|
|
2414 /* Not "static" because of linker lossage on some systems */
|
440
|
2415 struct
|
|
2416 {
|
428
|
2417 void *data;
|
|
2418 const struct struct_description *desc;
|
|
2419 } dumpstructvec[200];
|
|
2420
|
|
2421 static int dumpstructidx;
|
|
2422
|
|
2423 /* Put an entry in dumpstructvec, pointing at the variable whose address is given
|
|
2424 */
|
|
2425 void
|
|
2426 dumpstruct (void *varaddress, const struct struct_description *desc)
|
|
2427 {
|
|
2428 if (dumpstructidx >= countof (dumpstructvec))
|
|
2429 abort ();
|
|
2430 dumpstructvec[dumpstructidx].data = varaddress;
|
|
2431 dumpstructvec[dumpstructidx].desc = desc;
|
|
2432 dumpstructidx++;
|
|
2433 }
|
|
2434
|
|
2435 Lisp_Object *pdump_wirevec[50];
|
|
2436 static int pdump_wireidx;
|
|
2437
|
|
2438 /* Put an entry in pdump_wirevec, pointing at the variable whose address is given
|
|
2439 */
|
|
2440 void
|
|
2441 pdump_wire (Lisp_Object *varaddress)
|
|
2442 {
|
|
2443 if (pdump_wireidx >= countof (pdump_wirevec))
|
|
2444 abort ();
|
|
2445 pdump_wirevec[pdump_wireidx++] = varaddress;
|
|
2446 }
|
|
2447
|
|
2448
|
|
2449 Lisp_Object *pdump_wirevec_list[50];
|
|
2450 static int pdump_wireidx_list;
|
|
2451
|
|
2452 /* Put an entry in pdump_wirevec_list, pointing at the variable whose address is given
|
|
2453 */
|
|
2454 void
|
|
2455 pdump_wire_list (Lisp_Object *varaddress)
|
|
2456 {
|
|
2457 if (pdump_wireidx_list >= countof (pdump_wirevec_list))
|
|
2458 abort ();
|
|
2459 pdump_wirevec_list[pdump_wireidx_list++] = varaddress;
|
|
2460 }
|
|
2461
|
|
2462
|
|
2463 /* Mark reference to a Lisp_Object. If the object referred to has not been
|
|
2464 seen yet, recursively mark all the references contained in it. */
|
|
2465
|
|
2466 void
|
|
2467 mark_object (Lisp_Object obj)
|
|
2468 {
|
|
2469 tail_recurse:
|
|
2470
|
|
2471 #ifdef ERROR_CHECK_GC
|
|
2472 assert (! (EQ (obj, Qnull_pointer)));
|
|
2473 #endif
|
|
2474 /* Checks we used to perform */
|
|
2475 /* if (EQ (obj, Qnull_pointer)) return; */
|
|
2476 /* if (!POINTER_TYPE_P (XGCTYPE (obj))) return; */
|
|
2477 /* if (PURIFIED (XPNTR (obj))) return; */
|
|
2478
|
|
2479 if (XTYPE (obj) == Lisp_Type_Record)
|
|
2480 {
|
|
2481 struct lrecord_header *lheader = XRECORD_LHEADER (obj);
|
|
2482 #if defined (ERROR_CHECK_GC)
|
|
2483 assert (lheader->type <= last_lrecord_type_index_assigned);
|
|
2484 #endif
|
|
2485 if (C_READONLY_RECORD_HEADER_P (lheader))
|
|
2486 return;
|
|
2487
|
|
2488 if (! MARKED_RECORD_HEADER_P (lheader) &&
|
|
2489 ! UNMARKABLE_RECORD_HEADER_P (lheader))
|
|
2490 {
|
|
2491 CONST struct lrecord_implementation *implementation =
|
|
2492 LHEADER_IMPLEMENTATION (lheader);
|
|
2493 MARK_RECORD_HEADER (lheader);
|
|
2494 #ifdef ERROR_CHECK_GC
|
|
2495 if (!implementation->basic_p)
|
|
2496 assert (! ((struct lcrecord_header *) lheader)->free);
|
|
2497 #endif
|
|
2498 if (implementation->marker)
|
|
2499 {
|
|
2500 obj = implementation->marker (obj);
|
|
2501 if (!NILP (obj)) goto tail_recurse;
|
|
2502 }
|
|
2503 }
|
|
2504 }
|
|
2505 }
|
|
2506
|
|
2507 /* mark all of the conses in a list and mark the final cdr; but
|
|
2508 DO NOT mark the cars.
|
|
2509
|
|
2510 Use only for internal lists! There should never be other pointers
|
|
2511 to the cons cells, because if so, the cars will remain unmarked
|
|
2512 even when they maybe should be marked. */
|
|
2513 void
|
|
2514 mark_conses_in_list (Lisp_Object obj)
|
|
2515 {
|
|
2516 Lisp_Object rest;
|
|
2517
|
|
2518 for (rest = obj; CONSP (rest); rest = XCDR (rest))
|
|
2519 {
|
|
2520 if (CONS_MARKED_P (XCONS (rest)))
|
|
2521 return;
|
|
2522 MARK_CONS (XCONS (rest));
|
|
2523 }
|
|
2524
|
|
2525 mark_object (rest);
|
|
2526 }
|
|
2527
|
|
2528
|
|
2529 /* Find all structures not marked, and free them. */
|
|
2530
|
|
2531 static int gc_count_num_bit_vector_used, gc_count_bit_vector_total_size;
|
|
2532 static int gc_count_bit_vector_storage;
|
|
2533 static int gc_count_num_short_string_in_use;
|
|
2534 static int gc_count_string_total_size;
|
|
2535 static int gc_count_short_string_total_size;
|
|
2536
|
|
2537 /* static int gc_count_total_records_used, gc_count_records_total_size; */
|
|
2538
|
|
2539
|
|
2540 int
|
|
2541 lrecord_type_index (CONST struct lrecord_implementation *implementation)
|
|
2542 {
|
|
2543 int type_index = *(implementation->lrecord_type_index);
|
|
2544 /* Have to do this circuitous validation test because of problems
|
|
2545 dumping out initialized variables (ie can't set xxx_type_index to -1
|
|
2546 because that would make xxx_type_index read-only in a dumped emacs. */
|
|
2547 if (type_index < 0 || type_index > max_lrecord_type
|
|
2548 || lrecord_implementations_table[type_index] != implementation)
|
|
2549 {
|
|
2550 assert (last_lrecord_type_index_assigned < max_lrecord_type);
|
|
2551 type_index = ++last_lrecord_type_index_assigned;
|
|
2552 lrecord_implementations_table[type_index] = implementation;
|
|
2553 *(implementation->lrecord_type_index) = type_index;
|
|
2554 }
|
|
2555 return type_index;
|
|
2556 }
|
|
2557
|
|
2558 /* stats on lcrecords in use - kinda kludgy */
|
|
2559
|
|
2560 static struct
|
|
2561 {
|
|
2562 int instances_in_use;
|
|
2563 int bytes_in_use;
|
|
2564 int instances_freed;
|
|
2565 int bytes_freed;
|
|
2566 int instances_on_free_list;
|
|
2567 } lcrecord_stats [countof (lrecord_implementations_table)];
|
|
2568
|
|
2569 static void
|
|
2570 tick_lcrecord_stats (CONST struct lrecord_header *h, int free_p)
|
|
2571 {
|
|
2572 CONST struct lrecord_implementation *implementation =
|
|
2573 LHEADER_IMPLEMENTATION (h);
|
|
2574 int type_index = lrecord_type_index (implementation);
|
|
2575
|
|
2576 if (((struct lcrecord_header *) h)->free)
|
|
2577 {
|
|
2578 assert (!free_p);
|
|
2579 lcrecord_stats[type_index].instances_on_free_list++;
|
|
2580 }
|
|
2581 else
|
|
2582 {
|
|
2583 size_t sz = (implementation->size_in_bytes_method
|
|
2584 ? implementation->size_in_bytes_method (h)
|
|
2585 : implementation->static_size);
|
|
2586
|
|
2587 if (free_p)
|
|
2588 {
|
|
2589 lcrecord_stats[type_index].instances_freed++;
|
|
2590 lcrecord_stats[type_index].bytes_freed += sz;
|
|
2591 }
|
|
2592 else
|
|
2593 {
|
|
2594 lcrecord_stats[type_index].instances_in_use++;
|
|
2595 lcrecord_stats[type_index].bytes_in_use += sz;
|
|
2596 }
|
|
2597 }
|
|
2598 }
|
|
2599
|
|
2600
|
|
2601 /* Free all unmarked records */
|
|
2602 static void
|
|
2603 sweep_lcrecords_1 (struct lcrecord_header **prev, int *used)
|
|
2604 {
|
|
2605 struct lcrecord_header *header;
|
|
2606 int num_used = 0;
|
|
2607 /* int total_size = 0; */
|
|
2608
|
|
2609 xzero (lcrecord_stats); /* Reset all statistics to 0. */
|
|
2610
|
|
2611 /* First go through and call all the finalize methods.
|
|
2612 Then go through and free the objects. There used to
|
|
2613 be only one loop here, with the call to the finalizer
|
|
2614 occurring directly before the xfree() below. That
|
|
2615 is marginally faster but much less safe -- if the
|
|
2616 finalize method for an object needs to reference any
|
|
2617 other objects contained within it (and many do),
|
|
2618 we could easily be screwed by having already freed that
|
|
2619 other object. */
|
|
2620
|
|
2621 for (header = *prev; header; header = header->next)
|
|
2622 {
|
|
2623 struct lrecord_header *h = &(header->lheader);
|
|
2624 if (!C_READONLY_RECORD_HEADER_P(h)
|
|
2625 && !MARKED_RECORD_HEADER_P (h)
|
|
2626 && ! (header->free))
|
|
2627 {
|
|
2628 if (LHEADER_IMPLEMENTATION (h)->finalizer)
|
|
2629 LHEADER_IMPLEMENTATION (h)->finalizer (h, 0);
|
|
2630 }
|
|
2631 }
|
|
2632
|
|
2633 for (header = *prev; header; )
|
|
2634 {
|
|
2635 struct lrecord_header *h = &(header->lheader);
|
|
2636 if (C_READONLY_RECORD_HEADER_P(h) || MARKED_RECORD_HEADER_P (h))
|
|
2637 {
|
|
2638 if (MARKED_RECORD_HEADER_P (h))
|
|
2639 UNMARK_RECORD_HEADER (h);
|
|
2640 num_used++;
|
|
2641 /* total_size += n->implementation->size_in_bytes (h);*/
|
440
|
2642 /* #### May modify header->next on a C_READONLY lcrecord */
|
428
|
2643 prev = &(header->next);
|
|
2644 header = *prev;
|
|
2645 tick_lcrecord_stats (h, 0);
|
|
2646 }
|
|
2647 else
|
|
2648 {
|
|
2649 struct lcrecord_header *next = header->next;
|
|
2650 *prev = next;
|
|
2651 tick_lcrecord_stats (h, 1);
|
|
2652 /* used to call finalizer right here. */
|
|
2653 xfree (header);
|
|
2654 header = next;
|
|
2655 }
|
|
2656 }
|
|
2657 *used = num_used;
|
|
2658 /* *total = total_size; */
|
|
2659 }
|
|
2660
|
|
2661
|
|
2662 static void
|
|
2663 sweep_bit_vectors_1 (Lisp_Object *prev,
|
|
2664 int *used, int *total, int *storage)
|
|
2665 {
|
|
2666 Lisp_Object bit_vector;
|
|
2667 int num_used = 0;
|
|
2668 int total_size = 0;
|
|
2669 int total_storage = 0;
|
|
2670
|
|
2671 /* BIT_VECTORP fails because the objects are marked, which changes
|
|
2672 their implementation */
|
|
2673 for (bit_vector = *prev; !EQ (bit_vector, Qzero); )
|
|
2674 {
|
|
2675 Lisp_Bit_Vector *v = XBIT_VECTOR (bit_vector);
|
|
2676 int len = v->size;
|
|
2677 if (C_READONLY_RECORD_HEADER_P(&(v->lheader)) || MARKED_RECORD_P (bit_vector))
|
|
2678 {
|
|
2679 if (MARKED_RECORD_P (bit_vector))
|
|
2680 UNMARK_RECORD_HEADER (&(v->lheader));
|
|
2681 total_size += len;
|
|
2682 total_storage +=
|
|
2683 MALLOC_OVERHEAD +
|
|
2684 STRETCHY_STRUCT_SIZEOF (Lisp_Bit_Vector, bits,
|
|
2685 BIT_VECTOR_LONG_STORAGE (len));
|
|
2686 num_used++;
|
440
|
2687 /* #### May modify next on a C_READONLY bitvector */
|
428
|
2688 prev = &(bit_vector_next (v));
|
|
2689 bit_vector = *prev;
|
|
2690 }
|
|
2691 else
|
|
2692 {
|
|
2693 Lisp_Object next = bit_vector_next (v);
|
|
2694 *prev = next;
|
|
2695 xfree (v);
|
|
2696 bit_vector = next;
|
|
2697 }
|
|
2698 }
|
|
2699 *used = num_used;
|
|
2700 *total = total_size;
|
|
2701 *storage = total_storage;
|
|
2702 }
|
|
2703
|
|
2704 /* And the Lord said: Thou shalt use the `c-backslash-region' command
|
|
2705 to make macros prettier. */
|
|
2706
|
|
2707 #ifdef ERROR_CHECK_GC
|
|
2708
|
|
2709 #define SWEEP_FIXED_TYPE_BLOCK(typename, obj_type) \
|
|
2710 do { \
|
|
2711 struct typename##_block *SFTB_current; \
|
|
2712 struct typename##_block **SFTB_prev; \
|
|
2713 int SFTB_limit; \
|
|
2714 int num_free = 0, num_used = 0; \
|
|
2715 \
|
|
2716 for (SFTB_prev = ¤t_##typename##_block, \
|
|
2717 SFTB_current = current_##typename##_block, \
|
|
2718 SFTB_limit = current_##typename##_block_index; \
|
|
2719 SFTB_current; \
|
|
2720 ) \
|
|
2721 { \
|
|
2722 int SFTB_iii; \
|
|
2723 \
|
|
2724 for (SFTB_iii = 0; SFTB_iii < SFTB_limit; SFTB_iii++) \
|
|
2725 { \
|
|
2726 obj_type *SFTB_victim = &(SFTB_current->block[SFTB_iii]); \
|
|
2727 \
|
|
2728 if (FREE_STRUCT_P (SFTB_victim)) \
|
|
2729 { \
|
|
2730 num_free++; \
|
|
2731 } \
|
|
2732 else if (C_READONLY_RECORD_HEADER_P (&SFTB_victim->lheader)) \
|
|
2733 { \
|
|
2734 num_used++; \
|
|
2735 } \
|
|
2736 else if (!MARKED_RECORD_HEADER_P (&SFTB_victim->lheader)) \
|
|
2737 { \
|
|
2738 num_free++; \
|
|
2739 FREE_FIXED_TYPE (typename, obj_type, SFTB_victim); \
|
|
2740 } \
|
|
2741 else \
|
|
2742 { \
|
|
2743 num_used++; \
|
|
2744 UNMARK_##typename (SFTB_victim); \
|
|
2745 } \
|
|
2746 } \
|
|
2747 SFTB_prev = &(SFTB_current->prev); \
|
|
2748 SFTB_current = SFTB_current->prev; \
|
|
2749 SFTB_limit = countof (current_##typename##_block->block); \
|
|
2750 } \
|
|
2751 \
|
|
2752 gc_count_num_##typename##_in_use = num_used; \
|
|
2753 gc_count_num_##typename##_freelist = num_free; \
|
|
2754 } while (0)
|
|
2755
|
|
2756 #else /* !ERROR_CHECK_GC */
|
|
2757
|
|
2758 #define SWEEP_FIXED_TYPE_BLOCK(typename, obj_type) \
|
|
2759 do { \
|
|
2760 struct typename##_block *SFTB_current; \
|
|
2761 struct typename##_block **SFTB_prev; \
|
|
2762 int SFTB_limit; \
|
|
2763 int num_free = 0, num_used = 0; \
|
|
2764 \
|
|
2765 typename##_free_list = 0; \
|
|
2766 \
|
|
2767 for (SFTB_prev = ¤t_##typename##_block, \
|
|
2768 SFTB_current = current_##typename##_block, \
|
|
2769 SFTB_limit = current_##typename##_block_index; \
|
|
2770 SFTB_current; \
|
|
2771 ) \
|
|
2772 { \
|
|
2773 int SFTB_iii; \
|
|
2774 int SFTB_empty = 1; \
|
|
2775 obj_type *SFTB_old_free_list = typename##_free_list; \
|
|
2776 \
|
|
2777 for (SFTB_iii = 0; SFTB_iii < SFTB_limit; SFTB_iii++) \
|
|
2778 { \
|
|
2779 obj_type *SFTB_victim = &(SFTB_current->block[SFTB_iii]); \
|
|
2780 \
|
|
2781 if (FREE_STRUCT_P (SFTB_victim)) \
|
|
2782 { \
|
|
2783 num_free++; \
|
|
2784 PUT_FIXED_TYPE_ON_FREE_LIST (typename, obj_type, SFTB_victim); \
|
|
2785 } \
|
|
2786 else if (C_READONLY_RECORD_HEADER_P (&SFTB_victim->lheader)) \
|
|
2787 { \
|
|
2788 SFTB_empty = 0; \
|
|
2789 num_used++; \
|
|
2790 } \
|
|
2791 else if (!MARKED_RECORD_HEADER_P (&SFTB_victim->lheader)) \
|
|
2792 { \
|
|
2793 num_free++; \
|
|
2794 FREE_FIXED_TYPE (typename, obj_type, SFTB_victim); \
|
|
2795 } \
|
|
2796 else \
|
|
2797 { \
|
|
2798 SFTB_empty = 0; \
|
|
2799 num_used++; \
|
|
2800 UNMARK_##typename (SFTB_victim); \
|
|
2801 } \
|
|
2802 } \
|
|
2803 if (!SFTB_empty) \
|
|
2804 { \
|
|
2805 SFTB_prev = &(SFTB_current->prev); \
|
|
2806 SFTB_current = SFTB_current->prev; \
|
|
2807 } \
|
|
2808 else if (SFTB_current == current_##typename##_block \
|
|
2809 && !SFTB_current->prev) \
|
|
2810 { \
|
|
2811 /* No real point in freeing sole allocation block */ \
|
|
2812 break; \
|
|
2813 } \
|
|
2814 else \
|
|
2815 { \
|
|
2816 struct typename##_block *SFTB_victim_block = SFTB_current; \
|
|
2817 if (SFTB_victim_block == current_##typename##_block) \
|
|
2818 current_##typename##_block_index \
|
|
2819 = countof (current_##typename##_block->block); \
|
|
2820 SFTB_current = SFTB_current->prev; \
|
|
2821 { \
|
|
2822 *SFTB_prev = SFTB_current; \
|
|
2823 xfree (SFTB_victim_block); \
|
|
2824 /* Restore free list to what it was before victim was swept */ \
|
|
2825 typename##_free_list = SFTB_old_free_list; \
|
|
2826 num_free -= SFTB_limit; \
|
|
2827 } \
|
|
2828 } \
|
|
2829 SFTB_limit = countof (current_##typename##_block->block); \
|
|
2830 } \
|
|
2831 \
|
|
2832 gc_count_num_##typename##_in_use = num_used; \
|
|
2833 gc_count_num_##typename##_freelist = num_free; \
|
|
2834 } while (0)
|
|
2835
|
|
2836 #endif /* !ERROR_CHECK_GC */
|
|
2837
|
|
2838
|
|
2839
|
|
2840
|
|
2841 static void
|
|
2842 sweep_conses (void)
|
|
2843 {
|
|
2844 #define UNMARK_cons(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
2845 #define ADDITIONAL_FREE_cons(ptr)
|
|
2846
|
440
|
2847 SWEEP_FIXED_TYPE_BLOCK (cons, Lisp_Cons);
|
428
|
2848 }
|
|
2849
|
|
2850 /* Explicitly free a cons cell. */
|
|
2851 void
|
440
|
2852 free_cons (Lisp_Cons *ptr)
|
428
|
2853 {
|
|
2854 #ifdef ERROR_CHECK_GC
|
|
2855 /* If the CAR is not an int, then it will be a pointer, which will
|
|
2856 always be four-byte aligned. If this cons cell has already been
|
|
2857 placed on the free list, however, its car will probably contain
|
|
2858 a chain pointer to the next cons on the list, which has cleverly
|
|
2859 had all its 0's and 1's inverted. This allows for a quick
|
|
2860 check to make sure we're not freeing something already freed. */
|
|
2861 if (POINTER_TYPE_P (XTYPE (ptr->car)))
|
|
2862 ASSERT_VALID_POINTER (XPNTR (ptr->car));
|
|
2863 #endif /* ERROR_CHECK_GC */
|
|
2864
|
|
2865 #ifndef ALLOC_NO_POOLS
|
440
|
2866 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (cons, Lisp_Cons, ptr);
|
428
|
2867 #endif /* ALLOC_NO_POOLS */
|
|
2868 }
|
|
2869
|
|
2870 /* explicitly free a list. You **must make sure** that you have
|
|
2871 created all the cons cells that make up this list and that there
|
|
2872 are no pointers to any of these cons cells anywhere else. If there
|
|
2873 are, you will lose. */
|
|
2874
|
|
2875 void
|
|
2876 free_list (Lisp_Object list)
|
|
2877 {
|
|
2878 Lisp_Object rest, next;
|
|
2879
|
|
2880 for (rest = list; !NILP (rest); rest = next)
|
|
2881 {
|
|
2882 next = XCDR (rest);
|
|
2883 free_cons (XCONS (rest));
|
|
2884 }
|
|
2885 }
|
|
2886
|
|
2887 /* explicitly free an alist. You **must make sure** that you have
|
|
2888 created all the cons cells that make up this alist and that there
|
|
2889 are no pointers to any of these cons cells anywhere else. If there
|
|
2890 are, you will lose. */
|
|
2891
|
|
2892 void
|
|
2893 free_alist (Lisp_Object alist)
|
|
2894 {
|
|
2895 Lisp_Object rest, next;
|
|
2896
|
|
2897 for (rest = alist; !NILP (rest); rest = next)
|
|
2898 {
|
|
2899 next = XCDR (rest);
|
|
2900 free_cons (XCONS (XCAR (rest)));
|
|
2901 free_cons (XCONS (rest));
|
|
2902 }
|
|
2903 }
|
|
2904
|
|
2905 static void
|
|
2906 sweep_compiled_functions (void)
|
|
2907 {
|
|
2908 #define UNMARK_compiled_function(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
2909 #define ADDITIONAL_FREE_compiled_function(ptr)
|
|
2910
|
|
2911 SWEEP_FIXED_TYPE_BLOCK (compiled_function, Lisp_Compiled_Function);
|
|
2912 }
|
|
2913
|
|
2914
|
|
2915 #ifdef LISP_FLOAT_TYPE
|
|
2916 static void
|
|
2917 sweep_floats (void)
|
|
2918 {
|
|
2919 #define UNMARK_float(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
2920 #define ADDITIONAL_FREE_float(ptr)
|
|
2921
|
440
|
2922 SWEEP_FIXED_TYPE_BLOCK (float, Lisp_Float);
|
428
|
2923 }
|
|
2924 #endif /* LISP_FLOAT_TYPE */
|
|
2925
|
|
2926 static void
|
|
2927 sweep_symbols (void)
|
|
2928 {
|
|
2929 #define UNMARK_symbol(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
2930 #define ADDITIONAL_FREE_symbol(ptr)
|
|
2931
|
440
|
2932 SWEEP_FIXED_TYPE_BLOCK (symbol, Lisp_Symbol);
|
428
|
2933 }
|
|
2934
|
|
2935 static void
|
|
2936 sweep_extents (void)
|
|
2937 {
|
|
2938 #define UNMARK_extent(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
2939 #define ADDITIONAL_FREE_extent(ptr)
|
|
2940
|
|
2941 SWEEP_FIXED_TYPE_BLOCK (extent, struct extent);
|
|
2942 }
|
|
2943
|
|
2944 static void
|
|
2945 sweep_events (void)
|
|
2946 {
|
|
2947 #define UNMARK_event(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
2948 #define ADDITIONAL_FREE_event(ptr)
|
|
2949
|
440
|
2950 SWEEP_FIXED_TYPE_BLOCK (event, Lisp_Event);
|
428
|
2951 }
|
|
2952
|
|
2953 static void
|
|
2954 sweep_markers (void)
|
|
2955 {
|
|
2956 #define UNMARK_marker(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
2957 #define ADDITIONAL_FREE_marker(ptr) \
|
|
2958 do { Lisp_Object tem; \
|
|
2959 XSETMARKER (tem, ptr); \
|
|
2960 unchain_marker (tem); \
|
|
2961 } while (0)
|
|
2962
|
440
|
2963 SWEEP_FIXED_TYPE_BLOCK (marker, Lisp_Marker);
|
428
|
2964 }
|
|
2965
|
|
2966 /* Explicitly free a marker. */
|
|
2967 void
|
440
|
2968 free_marker (Lisp_Marker *ptr)
|
428
|
2969 {
|
|
2970 #ifdef ERROR_CHECK_GC
|
|
2971 /* Perhaps this will catch freeing an already-freed marker. */
|
|
2972 Lisp_Object temmy;
|
|
2973 XSETMARKER (temmy, ptr);
|
|
2974 assert (MARKERP (temmy));
|
|
2975 #endif /* ERROR_CHECK_GC */
|
|
2976
|
|
2977 #ifndef ALLOC_NO_POOLS
|
440
|
2978 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (marker, Lisp_Marker, ptr);
|
428
|
2979 #endif /* ALLOC_NO_POOLS */
|
|
2980 }
|
|
2981
|
|
2982
|
|
2983 #if defined (MULE) && defined (VERIFY_STRING_CHARS_INTEGRITY)
|
|
2984
|
|
2985 static void
|
|
2986 verify_string_chars_integrity (void)
|
|
2987 {
|
|
2988 struct string_chars_block *sb;
|
|
2989
|
|
2990 /* Scan each existing string block sequentially, string by string. */
|
|
2991 for (sb = first_string_chars_block; sb; sb = sb->next)
|
|
2992 {
|
|
2993 int pos = 0;
|
|
2994 /* POS is the index of the next string in the block. */
|
|
2995 while (pos < sb->pos)
|
|
2996 {
|
|
2997 struct string_chars *s_chars =
|
|
2998 (struct string_chars *) &(sb->string_chars[pos]);
|
438
|
2999 Lisp_String *string;
|
428
|
3000 int size;
|
|
3001 int fullsize;
|
|
3002
|
|
3003 /* If the string_chars struct is marked as free (i.e. the STRING
|
|
3004 pointer is 0xFFFFFFFF) then this is an unused chunk of string
|
|
3005 storage. (See below.) */
|
|
3006
|
|
3007 if (FREE_STRUCT_P (s_chars))
|
|
3008 {
|
|
3009 fullsize = ((struct unused_string_chars *) s_chars)->fullsize;
|
|
3010 pos += fullsize;
|
|
3011 continue;
|
|
3012 }
|
|
3013
|
|
3014 string = s_chars->string;
|
|
3015 /* Must be 32-bit aligned. */
|
|
3016 assert ((((int) string) & 3) == 0);
|
|
3017
|
|
3018 size = string_length (string);
|
|
3019 fullsize = STRING_FULLSIZE (size);
|
|
3020
|
|
3021 assert (!BIG_STRING_FULLSIZE_P (fullsize));
|
|
3022 assert (string_data (string) == s_chars->chars);
|
|
3023 pos += fullsize;
|
|
3024 }
|
|
3025 assert (pos == sb->pos);
|
|
3026 }
|
|
3027 }
|
|
3028
|
|
3029 #endif /* MULE && ERROR_CHECK_GC */
|
|
3030
|
|
3031 /* Compactify string chars, relocating the reference to each --
|
|
3032 free any empty string_chars_block we see. */
|
|
3033 static void
|
|
3034 compact_string_chars (void)
|
|
3035 {
|
|
3036 struct string_chars_block *to_sb = first_string_chars_block;
|
|
3037 int to_pos = 0;
|
|
3038 struct string_chars_block *from_sb;
|
|
3039
|
|
3040 /* Scan each existing string block sequentially, string by string. */
|
|
3041 for (from_sb = first_string_chars_block; from_sb; from_sb = from_sb->next)
|
|
3042 {
|
|
3043 int from_pos = 0;
|
|
3044 /* FROM_POS is the index of the next string in the block. */
|
|
3045 while (from_pos < from_sb->pos)
|
|
3046 {
|
|
3047 struct string_chars *from_s_chars =
|
|
3048 (struct string_chars *) &(from_sb->string_chars[from_pos]);
|
|
3049 struct string_chars *to_s_chars;
|
438
|
3050 Lisp_String *string;
|
428
|
3051 int size;
|
|
3052 int fullsize;
|
|
3053
|
|
3054 /* If the string_chars struct is marked as free (i.e. the STRING
|
|
3055 pointer is 0xFFFFFFFF) then this is an unused chunk of string
|
|
3056 storage. This happens under Mule when a string's size changes
|
|
3057 in such a way that its fullsize changes. (Strings can change
|
|
3058 size because a different-length character can be substituted
|
|
3059 for another character.) In this case, after the bogus string
|
|
3060 pointer is the "fullsize" of this entry, i.e. how many bytes
|
|
3061 to skip. */
|
|
3062
|
|
3063 if (FREE_STRUCT_P (from_s_chars))
|
|
3064 {
|
|
3065 fullsize = ((struct unused_string_chars *) from_s_chars)->fullsize;
|
|
3066 from_pos += fullsize;
|
|
3067 continue;
|
|
3068 }
|
|
3069
|
|
3070 string = from_s_chars->string;
|
|
3071 assert (!(FREE_STRUCT_P (string)));
|
|
3072
|
|
3073 size = string_length (string);
|
|
3074 fullsize = STRING_FULLSIZE (size);
|
|
3075
|
|
3076 if (BIG_STRING_FULLSIZE_P (fullsize))
|
|
3077 abort ();
|
|
3078
|
|
3079 /* Just skip it if it isn't marked. */
|
|
3080 if (! MARKED_RECORD_HEADER_P (&(string->lheader)))
|
|
3081 {
|
|
3082 from_pos += fullsize;
|
|
3083 continue;
|
|
3084 }
|
|
3085
|
|
3086 /* If it won't fit in what's left of TO_SB, close TO_SB out
|
|
3087 and go on to the next string_chars_block. We know that TO_SB
|
|
3088 cannot advance past FROM_SB here since FROM_SB is large enough
|
|
3089 to currently contain this string. */
|
|
3090 if ((to_pos + fullsize) > countof (to_sb->string_chars))
|
|
3091 {
|
|
3092 to_sb->pos = to_pos;
|
|
3093 to_sb = to_sb->next;
|
|
3094 to_pos = 0;
|
|
3095 }
|
|
3096
|
|
3097 /* Compute new address of this string
|
|
3098 and update TO_POS for the space being used. */
|
|
3099 to_s_chars = (struct string_chars *) &(to_sb->string_chars[to_pos]);
|
|
3100
|
|
3101 /* Copy the string_chars to the new place. */
|
|
3102 if (from_s_chars != to_s_chars)
|
|
3103 memmove (to_s_chars, from_s_chars, fullsize);
|
|
3104
|
|
3105 /* Relocate FROM_S_CHARS's reference */
|
|
3106 set_string_data (string, &(to_s_chars->chars[0]));
|
|
3107
|
|
3108 from_pos += fullsize;
|
|
3109 to_pos += fullsize;
|
|
3110 }
|
|
3111 }
|
|
3112
|
|
3113 /* Set current to the last string chars block still used and
|
|
3114 free any that follow. */
|
|
3115 {
|
|
3116 struct string_chars_block *victim;
|
|
3117
|
|
3118 for (victim = to_sb->next; victim; )
|
|
3119 {
|
|
3120 struct string_chars_block *next = victim->next;
|
|
3121 xfree (victim);
|
|
3122 victim = next;
|
|
3123 }
|
|
3124
|
|
3125 current_string_chars_block = to_sb;
|
|
3126 current_string_chars_block->pos = to_pos;
|
|
3127 current_string_chars_block->next = 0;
|
|
3128 }
|
|
3129 }
|
|
3130
|
|
3131 #if 1 /* Hack to debug missing purecopy's */
|
|
3132 static int debug_string_purity;
|
|
3133
|
|
3134 static void
|
438
|
3135 debug_string_purity_print (Lisp_String *p)
|
428
|
3136 {
|
|
3137 Charcount i;
|
|
3138 Charcount s = string_char_length (p);
|
|
3139 putc ('\"', stderr);
|
|
3140 for (i = 0; i < s; i++)
|
|
3141 {
|
|
3142 Emchar ch = string_char (p, i);
|
|
3143 if (ch < 32 || ch >= 126)
|
|
3144 stderr_out ("\\%03o", ch);
|
|
3145 else if (ch == '\\' || ch == '\"')
|
|
3146 stderr_out ("\\%c", ch);
|
|
3147 else
|
|
3148 stderr_out ("%c", ch);
|
|
3149 }
|
|
3150 stderr_out ("\"\n");
|
|
3151 }
|
|
3152 #endif /* 1 */
|
|
3153
|
|
3154
|
|
3155 static void
|
|
3156 sweep_strings (void)
|
|
3157 {
|
|
3158 int num_small_used = 0, num_small_bytes = 0, num_bytes = 0;
|
|
3159 int debug = debug_string_purity;
|
|
3160
|
438
|
3161 #define UNMARK_string(ptr) do { \
|
|
3162 Lisp_String *p = (ptr); \
|
|
3163 size_t size = string_length (p); \
|
|
3164 UNMARK_RECORD_HEADER (&(p->lheader)); \
|
|
3165 num_bytes += size; \
|
|
3166 if (!BIG_STRING_SIZE_P (size)) \
|
|
3167 { num_small_bytes += size; \
|
|
3168 num_small_used++; \
|
|
3169 } \
|
|
3170 if (debug) \
|
|
3171 debug_string_purity_print (p); \
|
|
3172 } while (0)
|
|
3173 #define ADDITIONAL_FREE_string(ptr) do { \
|
|
3174 size_t size = string_length (ptr); \
|
|
3175 if (BIG_STRING_SIZE_P (size)) \
|
|
3176 xfree (ptr->data); \
|
|
3177 } while (0)
|
|
3178
|
|
3179 SWEEP_FIXED_TYPE_BLOCK (string, Lisp_String);
|
428
|
3180
|
|
3181 gc_count_num_short_string_in_use = num_small_used;
|
|
3182 gc_count_string_total_size = num_bytes;
|
|
3183 gc_count_short_string_total_size = num_small_bytes;
|
|
3184 }
|
|
3185
|
|
3186
|
|
3187 /* I hate duplicating all this crap! */
|
|
3188 int
|
|
3189 marked_p (Lisp_Object obj)
|
|
3190 {
|
|
3191 #ifdef ERROR_CHECK_GC
|
|
3192 assert (! (EQ (obj, Qnull_pointer)));
|
|
3193 #endif
|
|
3194 /* Checks we used to perform. */
|
|
3195 /* if (EQ (obj, Qnull_pointer)) return 1; */
|
|
3196 /* if (!POINTER_TYPE_P (XGCTYPE (obj))) return 1; */
|
|
3197 /* if (PURIFIED (XPNTR (obj))) return 1; */
|
|
3198
|
|
3199 if (XTYPE (obj) == Lisp_Type_Record)
|
|
3200 {
|
|
3201 struct lrecord_header *lheader = XRECORD_LHEADER (obj);
|
|
3202 #if defined (ERROR_CHECK_GC)
|
|
3203 assert (lheader->type <= last_lrecord_type_index_assigned);
|
|
3204 #endif
|
|
3205 return C_READONLY_RECORD_HEADER_P (lheader) || MARKED_RECORD_HEADER_P (lheader);
|
|
3206 }
|
|
3207 return 1;
|
|
3208 }
|
|
3209
|
|
3210 static void
|
|
3211 gc_sweep (void)
|
|
3212 {
|
|
3213 /* Free all unmarked records. Do this at the very beginning,
|
|
3214 before anything else, so that the finalize methods can safely
|
|
3215 examine items in the objects. sweep_lcrecords_1() makes
|
|
3216 sure to call all the finalize methods *before* freeing anything,
|
|
3217 to complete the safety. */
|
|
3218 {
|
|
3219 int ignored;
|
|
3220 sweep_lcrecords_1 (&all_lcrecords, &ignored);
|
|
3221 }
|
|
3222
|
|
3223 compact_string_chars ();
|
|
3224
|
|
3225 /* Finalize methods below (called through the ADDITIONAL_FREE_foo
|
|
3226 macros) must be *extremely* careful to make sure they're not
|
|
3227 referencing freed objects. The only two existing finalize
|
|
3228 methods (for strings and markers) pass muster -- the string
|
|
3229 finalizer doesn't look at anything but its own specially-
|
|
3230 created block, and the marker finalizer only looks at live
|
|
3231 buffers (which will never be freed) and at the markers before
|
|
3232 and after it in the chain (which, by induction, will never be
|
|
3233 freed because if so, they would have already removed themselves
|
|
3234 from the chain). */
|
|
3235
|
|
3236 /* Put all unmarked strings on free list, free'ing the string chars
|
|
3237 of large unmarked strings */
|
|
3238 sweep_strings ();
|
|
3239
|
|
3240 /* Put all unmarked conses on free list */
|
|
3241 sweep_conses ();
|
|
3242
|
|
3243 /* Free all unmarked bit vectors */
|
|
3244 sweep_bit_vectors_1 (&all_bit_vectors,
|
|
3245 &gc_count_num_bit_vector_used,
|
|
3246 &gc_count_bit_vector_total_size,
|
|
3247 &gc_count_bit_vector_storage);
|
|
3248
|
|
3249 /* Free all unmarked compiled-function objects */
|
|
3250 sweep_compiled_functions ();
|
|
3251
|
|
3252 #ifdef LISP_FLOAT_TYPE
|
|
3253 /* Put all unmarked floats on free list */
|
|
3254 sweep_floats ();
|
|
3255 #endif
|
|
3256
|
|
3257 /* Put all unmarked symbols on free list */
|
|
3258 sweep_symbols ();
|
|
3259
|
|
3260 /* Put all unmarked extents on free list */
|
|
3261 sweep_extents ();
|
|
3262
|
|
3263 /* Put all unmarked markers on free list.
|
|
3264 Dechain each one first from the buffer into which it points. */
|
|
3265 sweep_markers ();
|
|
3266
|
|
3267 sweep_events ();
|
|
3268
|
|
3269 #ifdef PDUMP
|
|
3270 /* Unmark all dumped objects */
|
|
3271 {
|
|
3272 int i;
|
|
3273 char *p = pdump_rt_list;
|
440
|
3274 if (p)
|
|
3275 for (;;)
|
428
|
3276 {
|
|
3277 pdump_reloc_table *rt = (pdump_reloc_table *)p;
|
|
3278 p += sizeof (pdump_reloc_table);
|
440
|
3279 if (rt->desc)
|
|
3280 {
|
|
3281 for (i=0; i<rt->count; i++)
|
|
3282 {
|
|
3283 UNMARK_RECORD_HEADER ((struct lrecord_header *)(*(EMACS_INT *)p));
|
|
3284 p += sizeof (EMACS_INT);
|
|
3285 }
|
|
3286 } else
|
|
3287 break;
|
428
|
3288 }
|
|
3289 }
|
|
3290 #endif
|
|
3291 }
|
|
3292
|
|
3293 /* Clearing for disksave. */
|
|
3294
|
|
3295 void
|
|
3296 disksave_object_finalization (void)
|
|
3297 {
|
|
3298 /* It's important that certain information from the environment not get
|
|
3299 dumped with the executable (pathnames, environment variables, etc.).
|
|
3300 To make it easier to tell when this has happened with strings(1) we
|
|
3301 clear some known-to-be-garbage blocks of memory, so that leftover
|
|
3302 results of old evaluation don't look like potential problems.
|
|
3303 But first we set some notable variables to nil and do one more GC,
|
|
3304 to turn those strings into garbage.
|
440
|
3305 */
|
428
|
3306
|
|
3307 /* Yeah, this list is pretty ad-hoc... */
|
|
3308 Vprocess_environment = Qnil;
|
|
3309 Vexec_directory = Qnil;
|
|
3310 Vdata_directory = Qnil;
|
|
3311 Vsite_directory = Qnil;
|
|
3312 Vdoc_directory = Qnil;
|
|
3313 Vconfigure_info_directory = Qnil;
|
|
3314 Vexec_path = Qnil;
|
|
3315 Vload_path = Qnil;
|
|
3316 /* Vdump_load_path = Qnil; */
|
|
3317 /* Release hash tables for locate_file */
|
|
3318 Flocate_file_clear_hashing (Qt);
|
|
3319 uncache_home_directory();
|
|
3320
|
|
3321 #if defined(LOADHIST) && !(defined(LOADHIST_DUMPED) || \
|
|
3322 defined(LOADHIST_BUILTIN))
|
|
3323 Vload_history = Qnil;
|
|
3324 #endif
|
|
3325 Vshell_file_name = Qnil;
|
|
3326
|
|
3327 garbage_collect_1 ();
|
|
3328
|
|
3329 /* Run the disksave finalization methods of all live objects. */
|
|
3330 disksave_object_finalization_1 ();
|
|
3331
|
|
3332 /* Zero out the uninitialized (really, unused) part of the containers
|
|
3333 for the live strings. */
|
|
3334 {
|
|
3335 struct string_chars_block *scb;
|
|
3336 for (scb = first_string_chars_block; scb; scb = scb->next)
|
|
3337 {
|
|
3338 int count = sizeof (scb->string_chars) - scb->pos;
|
|
3339
|
|
3340 assert (count >= 0 && count < STRING_CHARS_BLOCK_SIZE);
|
440
|
3341 if (count != 0)
|
|
3342 {
|
|
3343 /* from the block's fill ptr to the end */
|
|
3344 memset ((scb->string_chars + scb->pos), 0, count);
|
|
3345 }
|
428
|
3346 }
|
|
3347 }
|
|
3348
|
|
3349 /* There, that ought to be enough... */
|
|
3350
|
|
3351 }
|
|
3352
|
|
3353
|
|
3354 Lisp_Object
|
|
3355 restore_gc_inhibit (Lisp_Object val)
|
|
3356 {
|
|
3357 gc_currently_forbidden = XINT (val);
|
|
3358 return val;
|
|
3359 }
|
|
3360
|
|
3361 /* Maybe we want to use this when doing a "panic" gc after memory_full()? */
|
|
3362 static int gc_hooks_inhibited;
|
|
3363
|
|
3364
|
|
3365 void
|
|
3366 garbage_collect_1 (void)
|
|
3367 {
|
|
3368 #if MAX_SAVE_STACK > 0
|
|
3369 char stack_top_variable;
|
|
3370 extern char *stack_bottom;
|
|
3371 #endif
|
|
3372 struct frame *f;
|
|
3373 int speccount;
|
|
3374 int cursor_changed;
|
|
3375 Lisp_Object pre_gc_cursor;
|
|
3376 struct gcpro gcpro1;
|
|
3377
|
|
3378 if (gc_in_progress
|
|
3379 || gc_currently_forbidden
|
|
3380 || in_display
|
|
3381 || preparing_for_armageddon)
|
|
3382 return;
|
|
3383
|
|
3384 /* We used to call selected_frame() here.
|
|
3385
|
|
3386 The following functions cannot be called inside GC
|
|
3387 so we move to after the above tests. */
|
|
3388 {
|
|
3389 Lisp_Object frame;
|
|
3390 Lisp_Object device = Fselected_device (Qnil);
|
|
3391 if (NILP (device)) /* Could happen during startup, eg. if always_gc */
|
|
3392 return;
|
|
3393 frame = DEVICE_SELECTED_FRAME (XDEVICE (device));
|
|
3394 if (NILP (frame))
|
|
3395 signal_simple_error ("No frames exist on device", device);
|
|
3396 f = XFRAME (frame);
|
|
3397 }
|
|
3398
|
|
3399 pre_gc_cursor = Qnil;
|
|
3400 cursor_changed = 0;
|
|
3401
|
|
3402 GCPRO1 (pre_gc_cursor);
|
|
3403
|
|
3404 /* Very important to prevent GC during any of the following
|
|
3405 stuff that might run Lisp code; otherwise, we'll likely
|
|
3406 have infinite GC recursion. */
|
|
3407 speccount = specpdl_depth ();
|
|
3408 record_unwind_protect (restore_gc_inhibit,
|
|
3409 make_int (gc_currently_forbidden));
|
|
3410 gc_currently_forbidden = 1;
|
|
3411
|
|
3412 if (!gc_hooks_inhibited)
|
|
3413 run_hook_trapping_errors ("Error in pre-gc-hook", Qpre_gc_hook);
|
|
3414
|
|
3415 /* Now show the GC cursor/message. */
|
|
3416 if (!noninteractive)
|
|
3417 {
|
|
3418 if (FRAME_WIN_P (f))
|
|
3419 {
|
|
3420 Lisp_Object frame = make_frame (f);
|
|
3421 Lisp_Object cursor = glyph_image_instance (Vgc_pointer_glyph,
|
|
3422 FRAME_SELECTED_WINDOW (f),
|
|
3423 ERROR_ME_NOT, 1);
|
|
3424 pre_gc_cursor = f->pointer;
|
|
3425 if (POINTER_IMAGE_INSTANCEP (cursor)
|
|
3426 /* don't change if we don't know how to change back. */
|
|
3427 && POINTER_IMAGE_INSTANCEP (pre_gc_cursor))
|
|
3428 {
|
|
3429 cursor_changed = 1;
|
|
3430 Fset_frame_pointer (frame, cursor);
|
|
3431 }
|
|
3432 }
|
|
3433
|
|
3434 /* Don't print messages to the stream device. */
|
|
3435 if (!cursor_changed && !FRAME_STREAM_P (f))
|
|
3436 {
|
|
3437 char *msg = (STRINGP (Vgc_message)
|
|
3438 ? GETTEXT ((char *) XSTRING_DATA (Vgc_message))
|
|
3439 : 0);
|
|
3440 Lisp_Object args[2], whole_msg;
|
|
3441 args[0] = build_string (msg ? msg :
|
|
3442 GETTEXT ((CONST char *) gc_default_message));
|
|
3443 args[1] = build_string ("...");
|
|
3444 whole_msg = Fconcat (2, args);
|
|
3445 echo_area_message (f, (Bufbyte *) 0, whole_msg, 0, -1,
|
|
3446 Qgarbage_collecting);
|
|
3447 }
|
|
3448 }
|
|
3449
|
|
3450 /***** Now we actually start the garbage collection. */
|
|
3451
|
|
3452 gc_in_progress = 1;
|
|
3453
|
|
3454 gc_generation_number[0]++;
|
|
3455
|
|
3456 #if MAX_SAVE_STACK > 0
|
|
3457
|
|
3458 /* Save a copy of the contents of the stack, for debugging. */
|
|
3459 if (!purify_flag)
|
|
3460 {
|
|
3461 /* Static buffer in which we save a copy of the C stack at each GC. */
|
|
3462 static char *stack_copy;
|
|
3463 static size_t stack_copy_size;
|
|
3464
|
|
3465 ptrdiff_t stack_diff = &stack_top_variable - stack_bottom;
|
|
3466 size_t stack_size = (stack_diff > 0 ? stack_diff : -stack_diff);
|
|
3467 if (stack_size < MAX_SAVE_STACK)
|
|
3468 {
|
|
3469 if (stack_copy_size < stack_size)
|
|
3470 {
|
|
3471 stack_copy = (char *) xrealloc (stack_copy, stack_size);
|
|
3472 stack_copy_size = stack_size;
|
|
3473 }
|
|
3474
|
|
3475 memcpy (stack_copy,
|
|
3476 stack_diff > 0 ? stack_bottom : &stack_top_variable,
|
|
3477 stack_size);
|
|
3478 }
|
|
3479 }
|
|
3480 #endif /* MAX_SAVE_STACK > 0 */
|
|
3481
|
|
3482 /* Do some totally ad-hoc resource clearing. */
|
|
3483 /* #### generalize this? */
|
|
3484 clear_event_resource ();
|
|
3485 cleanup_specifiers ();
|
|
3486
|
|
3487 /* Mark all the special slots that serve as the roots of accessibility. */
|
|
3488
|
|
3489 { /* staticpro() */
|
|
3490 int i;
|
|
3491 for (i = 0; i < staticidx; i++)
|
|
3492 mark_object (*(staticvec[i]));
|
|
3493 for (i = 0; i < staticidx_nodump; i++)
|
438
|
3494 mark_object (*(staticvec_nodump[i]));
|
428
|
3495 }
|
|
3496
|
|
3497 { /* GCPRO() */
|
|
3498 struct gcpro *tail;
|
|
3499 int i;
|
|
3500 for (tail = gcprolist; tail; tail = tail->next)
|
|
3501 for (i = 0; i < tail->nvars; i++)
|
|
3502 mark_object (tail->var[i]);
|
|
3503 }
|
|
3504
|
|
3505 { /* specbind() */
|
|
3506 struct specbinding *bind;
|
|
3507 for (bind = specpdl; bind != specpdl_ptr; bind++)
|
|
3508 {
|
|
3509 mark_object (bind->symbol);
|
|
3510 mark_object (bind->old_value);
|
|
3511 }
|
|
3512 }
|
|
3513
|
|
3514 {
|
|
3515 struct catchtag *catch;
|
|
3516 for (catch = catchlist; catch; catch = catch->next)
|
|
3517 {
|
|
3518 mark_object (catch->tag);
|
|
3519 mark_object (catch->val);
|
|
3520 }
|
|
3521 }
|
|
3522
|
|
3523 {
|
|
3524 struct backtrace *backlist;
|
|
3525 for (backlist = backtrace_list; backlist; backlist = backlist->next)
|
|
3526 {
|
|
3527 int nargs = backlist->nargs;
|
|
3528 int i;
|
|
3529
|
|
3530 mark_object (*backlist->function);
|
|
3531 if (nargs == UNEVALLED || nargs == MANY)
|
|
3532 mark_object (backlist->args[0]);
|
|
3533 else
|
|
3534 for (i = 0; i < nargs; i++)
|
|
3535 mark_object (backlist->args[i]);
|
|
3536 }
|
|
3537 }
|
|
3538
|
|
3539 mark_redisplay ();
|
|
3540 mark_profiling_info ();
|
|
3541
|
|
3542 /* OK, now do the after-mark stuff. This is for things that
|
|
3543 are only marked when something else is marked (e.g. weak hash tables).
|
|
3544 There may be complex dependencies between such objects -- e.g.
|
|
3545 a weak hash table might be unmarked, but after processing a later
|
|
3546 weak hash table, the former one might get marked. So we have to
|
|
3547 iterate until nothing more gets marked. */
|
|
3548
|
|
3549 while (finish_marking_weak_hash_tables () > 0 ||
|
|
3550 finish_marking_weak_lists () > 0)
|
|
3551 ;
|
|
3552
|
|
3553 /* And prune (this needs to be called after everything else has been
|
|
3554 marked and before we do any sweeping). */
|
|
3555 /* #### this is somewhat ad-hoc and should probably be an object
|
|
3556 method */
|
|
3557 prune_weak_hash_tables ();
|
|
3558 prune_weak_lists ();
|
|
3559 prune_specifiers ();
|
|
3560 prune_syntax_tables ();
|
|
3561
|
|
3562 gc_sweep ();
|
|
3563
|
|
3564 consing_since_gc = 0;
|
|
3565 #ifndef DEBUG_XEMACS
|
|
3566 /* Allow you to set it really fucking low if you really want ... */
|
|
3567 if (gc_cons_threshold < 10000)
|
|
3568 gc_cons_threshold = 10000;
|
|
3569 #endif
|
|
3570
|
|
3571 gc_in_progress = 0;
|
|
3572
|
|
3573 /******* End of garbage collection ********/
|
|
3574
|
|
3575 run_hook_trapping_errors ("Error in post-gc-hook", Qpost_gc_hook);
|
|
3576
|
|
3577 /* Now remove the GC cursor/message */
|
|
3578 if (!noninteractive)
|
|
3579 {
|
|
3580 if (cursor_changed)
|
|
3581 Fset_frame_pointer (make_frame (f), pre_gc_cursor);
|
|
3582 else if (!FRAME_STREAM_P (f))
|
|
3583 {
|
|
3584 char *msg = (STRINGP (Vgc_message)
|
|
3585 ? GETTEXT ((char *) XSTRING_DATA (Vgc_message))
|
|
3586 : 0);
|
|
3587
|
|
3588 /* Show "...done" only if the echo area would otherwise be empty. */
|
|
3589 if (NILP (clear_echo_area (selected_frame (),
|
|
3590 Qgarbage_collecting, 0)))
|
|
3591 {
|
|
3592 Lisp_Object args[2], whole_msg;
|
|
3593 args[0] = build_string (msg ? msg :
|
|
3594 GETTEXT ((CONST char *)
|
|
3595 gc_default_message));
|
|
3596 args[1] = build_string ("... done");
|
|
3597 whole_msg = Fconcat (2, args);
|
|
3598 echo_area_message (selected_frame (), (Bufbyte *) 0,
|
|
3599 whole_msg, 0, -1,
|
|
3600 Qgarbage_collecting);
|
|
3601 }
|
|
3602 }
|
|
3603 }
|
|
3604
|
|
3605 /* now stop inhibiting GC */
|
|
3606 unbind_to (speccount, Qnil);
|
|
3607
|
|
3608 if (!breathing_space)
|
|
3609 {
|
|
3610 breathing_space = malloc (4096 - MALLOC_OVERHEAD);
|
|
3611 }
|
|
3612
|
|
3613 UNGCPRO;
|
|
3614 return;
|
|
3615 }
|
|
3616
|
|
3617 /* Debugging aids. */
|
|
3618
|
|
3619 static Lisp_Object
|
|
3620 gc_plist_hack (CONST char *name, int value, Lisp_Object tail)
|
|
3621 {
|
|
3622 /* C doesn't have local functions (or closures, or GC, or readable syntax,
|
|
3623 or portable numeric datatypes, or bit-vectors, or characters, or
|
|
3624 arrays, or exceptions, or ...) */
|
|
3625 return cons3 (intern (name), make_int (value), tail);
|
|
3626 }
|
|
3627
|
|
3628 #define HACK_O_MATIC(type, name, pl) do { \
|
|
3629 int s = 0; \
|
|
3630 struct type##_block *x = current_##type##_block; \
|
|
3631 while (x) { s += sizeof (*x) + MALLOC_OVERHEAD; x = x->prev; } \
|
|
3632 (pl) = gc_plist_hack ((name), s, (pl)); \
|
|
3633 } while (0)
|
|
3634
|
|
3635 DEFUN ("garbage-collect", Fgarbage_collect, 0, 0, "", /*
|
|
3636 Reclaim storage for Lisp objects no longer needed.
|
|
3637 Return info on amount of space in use:
|
|
3638 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
|
|
3639 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
|
|
3640 PLIST)
|
|
3641 where `PLIST' is a list of alternating keyword/value pairs providing
|
|
3642 more detailed information.
|
|
3643 Garbage collection happens automatically if you cons more than
|
|
3644 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
|
|
3645 */
|
|
3646 ())
|
|
3647 {
|
|
3648 Lisp_Object pl = Qnil;
|
|
3649 int i;
|
|
3650 int gc_count_vector_total_size = 0;
|
|
3651
|
|
3652 garbage_collect_1 ();
|
|
3653
|
|
3654 for (i = 0; i <= last_lrecord_type_index_assigned; i++)
|
|
3655 {
|
|
3656 if (lcrecord_stats[i].bytes_in_use != 0
|
|
3657 || lcrecord_stats[i].bytes_freed != 0
|
|
3658 || lcrecord_stats[i].instances_on_free_list != 0)
|
|
3659 {
|
|
3660 char buf [255];
|
|
3661 CONST char *name = lrecord_implementations_table[i]->name;
|
|
3662 int len = strlen (name);
|
|
3663 /* save this for the FSFmacs-compatible part of the summary */
|
|
3664 if (i == *lrecord_vector.lrecord_type_index)
|
|
3665 gc_count_vector_total_size =
|
|
3666 lcrecord_stats[i].bytes_in_use + lcrecord_stats[i].bytes_freed;
|
|
3667
|
|
3668 sprintf (buf, "%s-storage", name);
|
|
3669 pl = gc_plist_hack (buf, lcrecord_stats[i].bytes_in_use, pl);
|
|
3670 /* Okay, simple pluralization check for `symbol-value-varalias' */
|
|
3671 if (name[len-1] == 's')
|
|
3672 sprintf (buf, "%ses-freed", name);
|
|
3673 else
|
|
3674 sprintf (buf, "%ss-freed", name);
|
|
3675 if (lcrecord_stats[i].instances_freed != 0)
|
|
3676 pl = gc_plist_hack (buf, lcrecord_stats[i].instances_freed, pl);
|
|
3677 if (name[len-1] == 's')
|
|
3678 sprintf (buf, "%ses-on-free-list", name);
|
|
3679 else
|
|
3680 sprintf (buf, "%ss-on-free-list", name);
|
|
3681 if (lcrecord_stats[i].instances_on_free_list != 0)
|
|
3682 pl = gc_plist_hack (buf, lcrecord_stats[i].instances_on_free_list,
|
|
3683 pl);
|
|
3684 if (name[len-1] == 's')
|
|
3685 sprintf (buf, "%ses-used", name);
|
|
3686 else
|
|
3687 sprintf (buf, "%ss-used", name);
|
|
3688 pl = gc_plist_hack (buf, lcrecord_stats[i].instances_in_use, pl);
|
|
3689 }
|
|
3690 }
|
|
3691
|
|
3692 HACK_O_MATIC (extent, "extent-storage", pl);
|
|
3693 pl = gc_plist_hack ("extents-free", gc_count_num_extent_freelist, pl);
|
|
3694 pl = gc_plist_hack ("extents-used", gc_count_num_extent_in_use, pl);
|
|
3695 HACK_O_MATIC (event, "event-storage", pl);
|
|
3696 pl = gc_plist_hack ("events-free", gc_count_num_event_freelist, pl);
|
|
3697 pl = gc_plist_hack ("events-used", gc_count_num_event_in_use, pl);
|
|
3698 HACK_O_MATIC (marker, "marker-storage", pl);
|
|
3699 pl = gc_plist_hack ("markers-free", gc_count_num_marker_freelist, pl);
|
|
3700 pl = gc_plist_hack ("markers-used", gc_count_num_marker_in_use, pl);
|
|
3701 #ifdef LISP_FLOAT_TYPE
|
|
3702 HACK_O_MATIC (float, "float-storage", pl);
|
|
3703 pl = gc_plist_hack ("floats-free", gc_count_num_float_freelist, pl);
|
|
3704 pl = gc_plist_hack ("floats-used", gc_count_num_float_in_use, pl);
|
|
3705 #endif /* LISP_FLOAT_TYPE */
|
|
3706 HACK_O_MATIC (string, "string-header-storage", pl);
|
|
3707 pl = gc_plist_hack ("long-strings-total-length",
|
|
3708 gc_count_string_total_size
|
|
3709 - gc_count_short_string_total_size, pl);
|
|
3710 HACK_O_MATIC (string_chars, "short-string-storage", pl);
|
|
3711 pl = gc_plist_hack ("short-strings-total-length",
|
|
3712 gc_count_short_string_total_size, pl);
|
|
3713 pl = gc_plist_hack ("strings-free", gc_count_num_string_freelist, pl);
|
|
3714 pl = gc_plist_hack ("long-strings-used",
|
|
3715 gc_count_num_string_in_use
|
|
3716 - gc_count_num_short_string_in_use, pl);
|
|
3717 pl = gc_plist_hack ("short-strings-used",
|
|
3718 gc_count_num_short_string_in_use, pl);
|
|
3719
|
|
3720 HACK_O_MATIC (compiled_function, "compiled-function-storage", pl);
|
|
3721 pl = gc_plist_hack ("compiled-functions-free",
|
|
3722 gc_count_num_compiled_function_freelist, pl);
|
|
3723 pl = gc_plist_hack ("compiled-functions-used",
|
|
3724 gc_count_num_compiled_function_in_use, pl);
|
|
3725
|
|
3726 pl = gc_plist_hack ("bit-vector-storage", gc_count_bit_vector_storage, pl);
|
|
3727 pl = gc_plist_hack ("bit-vectors-total-length",
|
|
3728 gc_count_bit_vector_total_size, pl);
|
|
3729 pl = gc_plist_hack ("bit-vectors-used", gc_count_num_bit_vector_used, pl);
|
|
3730
|
|
3731 HACK_O_MATIC (symbol, "symbol-storage", pl);
|
|
3732 pl = gc_plist_hack ("symbols-free", gc_count_num_symbol_freelist, pl);
|
|
3733 pl = gc_plist_hack ("symbols-used", gc_count_num_symbol_in_use, pl);
|
|
3734
|
|
3735 HACK_O_MATIC (cons, "cons-storage", pl);
|
|
3736 pl = gc_plist_hack ("conses-free", gc_count_num_cons_freelist, pl);
|
|
3737 pl = gc_plist_hack ("conses-used", gc_count_num_cons_in_use, pl);
|
|
3738
|
|
3739 /* The things we do for backwards-compatibility */
|
|
3740 return
|
|
3741 list6 (Fcons (make_int (gc_count_num_cons_in_use),
|
|
3742 make_int (gc_count_num_cons_freelist)),
|
|
3743 Fcons (make_int (gc_count_num_symbol_in_use),
|
|
3744 make_int (gc_count_num_symbol_freelist)),
|
|
3745 Fcons (make_int (gc_count_num_marker_in_use),
|
|
3746 make_int (gc_count_num_marker_freelist)),
|
|
3747 make_int (gc_count_string_total_size),
|
|
3748 make_int (gc_count_vector_total_size),
|
|
3749 pl);
|
|
3750 }
|
|
3751 #undef HACK_O_MATIC
|
|
3752
|
|
3753 DEFUN ("consing-since-gc", Fconsing_since_gc, 0, 0, "", /*
|
|
3754 Return the number of bytes consed since the last garbage collection.
|
|
3755 \"Consed\" is a misnomer in that this actually counts allocation
|
|
3756 of all different kinds of objects, not just conses.
|
|
3757
|
|
3758 If this value exceeds `gc-cons-threshold', a garbage collection happens.
|
|
3759 */
|
|
3760 ())
|
|
3761 {
|
|
3762 return make_int (consing_since_gc);
|
|
3763 }
|
|
3764
|
440
|
3765 #if 0
|
428
|
3766 DEFUN ("memory-limit", Fmemory_limit, 0, 0, "", /*
|
|
3767 Return the address of the last byte Emacs has allocated, divided by 1024.
|
|
3768 This may be helpful in debugging Emacs's memory usage.
|
|
3769 The value is divided by 1024 to make sure it will fit in a lisp integer.
|
|
3770 */
|
|
3771 ())
|
|
3772 {
|
|
3773 return make_int ((EMACS_INT) sbrk (0) / 1024);
|
|
3774 }
|
440
|
3775 #endif
|
428
|
3776
|
|
3777
|
|
3778 int
|
|
3779 object_dead_p (Lisp_Object obj)
|
|
3780 {
|
|
3781 return ((BUFFERP (obj) && !BUFFER_LIVE_P (XBUFFER (obj))) ||
|
|
3782 (FRAMEP (obj) && !FRAME_LIVE_P (XFRAME (obj))) ||
|
|
3783 (WINDOWP (obj) && !WINDOW_LIVE_P (XWINDOW (obj))) ||
|
|
3784 (DEVICEP (obj) && !DEVICE_LIVE_P (XDEVICE (obj))) ||
|
|
3785 (CONSOLEP (obj) && !CONSOLE_LIVE_P (XCONSOLE (obj))) ||
|
|
3786 (EVENTP (obj) && !EVENT_LIVE_P (XEVENT (obj))) ||
|
|
3787 (EXTENTP (obj) && !EXTENT_LIVE_P (XEXTENT (obj))));
|
|
3788 }
|
|
3789
|
|
3790 #ifdef MEMORY_USAGE_STATS
|
|
3791
|
|
3792 /* Attempt to determine the actual amount of space that is used for
|
|
3793 the block allocated starting at PTR, supposedly of size "CLAIMED_SIZE".
|
|
3794
|
|
3795 It seems that the following holds:
|
|
3796
|
|
3797 1. When using the old allocator (malloc.c):
|
|
3798
|
|
3799 -- blocks are always allocated in chunks of powers of two. For
|
|
3800 each block, there is an overhead of 8 bytes if rcheck is not
|
|
3801 defined, 20 bytes if it is defined. In other words, a
|
|
3802 one-byte allocation needs 8 bytes of overhead for a total of
|
|
3803 9 bytes, and needs to have 16 bytes of memory chunked out for
|
|
3804 it.
|
|
3805
|
|
3806 2. When using the new allocator (gmalloc.c):
|
|
3807
|
|
3808 -- blocks are always allocated in chunks of powers of two up
|
|
3809 to 4096 bytes. Larger blocks are allocated in chunks of
|
|
3810 an integral multiple of 4096 bytes. The minimum block
|
|
3811 size is 2*sizeof (void *), or 16 bytes if SUNOS_LOCALTIME_BUG
|
|
3812 is defined. There is no per-block overhead, but there
|
|
3813 is an overhead of 3*sizeof (size_t) for each 4096 bytes
|
|
3814 allocated.
|
|
3815
|
|
3816 3. When using the system malloc, anything goes, but they are
|
|
3817 generally slower and more space-efficient than the GNU
|
|
3818 allocators. One possibly reasonable assumption to make
|
|
3819 for want of better data is that sizeof (void *), or maybe
|
|
3820 2 * sizeof (void *), is required as overhead and that
|
|
3821 blocks are allocated in the minimum required size except
|
|
3822 that some minimum block size is imposed (e.g. 16 bytes). */
|
|
3823
|
|
3824 size_t
|
|
3825 malloced_storage_size (void *ptr, size_t claimed_size,
|
|
3826 struct overhead_stats *stats)
|
|
3827 {
|
|
3828 size_t orig_claimed_size = claimed_size;
|
|
3829
|
|
3830 #ifdef GNU_MALLOC
|
|
3831
|
|
3832 if (claimed_size < 2 * sizeof (void *))
|
|
3833 claimed_size = 2 * sizeof (void *);
|
|
3834 # ifdef SUNOS_LOCALTIME_BUG
|
|
3835 if (claimed_size < 16)
|
|
3836 claimed_size = 16;
|
|
3837 # endif
|
|
3838 if (claimed_size < 4096)
|
|
3839 {
|
|
3840 int log = 1;
|
|
3841
|
|
3842 /* compute the log base two, more or less, then use it to compute
|
|
3843 the block size needed. */
|
|
3844 claimed_size--;
|
|
3845 /* It's big, it's heavy, it's wood! */
|
|
3846 while ((claimed_size /= 2) != 0)
|
|
3847 ++log;
|
|
3848 claimed_size = 1;
|
|
3849 /* It's better than bad, it's good! */
|
|
3850 while (log > 0)
|
|
3851 {
|
|
3852 claimed_size *= 2;
|
|
3853 log--;
|
|
3854 }
|
|
3855 /* We have to come up with some average about the amount of
|
|
3856 blocks used. */
|
|
3857 if ((size_t) (rand () & 4095) < claimed_size)
|
|
3858 claimed_size += 3 * sizeof (void *);
|
|
3859 }
|
|
3860 else
|
|
3861 {
|
|
3862 claimed_size += 4095;
|
|
3863 claimed_size &= ~4095;
|
|
3864 claimed_size += (claimed_size / 4096) * 3 * sizeof (size_t);
|
|
3865 }
|
|
3866
|
|
3867 #elif defined (SYSTEM_MALLOC)
|
|
3868
|
|
3869 if (claimed_size < 16)
|
|
3870 claimed_size = 16;
|
|
3871 claimed_size += 2 * sizeof (void *);
|
|
3872
|
|
3873 #else /* old GNU allocator */
|
|
3874
|
|
3875 # ifdef rcheck /* #### may not be defined here */
|
|
3876 claimed_size += 20;
|
|
3877 # else
|
|
3878 claimed_size += 8;
|
|
3879 # endif
|
|
3880 {
|
|
3881 int log = 1;
|
|
3882
|
|
3883 /* compute the log base two, more or less, then use it to compute
|
|
3884 the block size needed. */
|
|
3885 claimed_size--;
|
|
3886 /* It's big, it's heavy, it's wood! */
|
|
3887 while ((claimed_size /= 2) != 0)
|
|
3888 ++log;
|
|
3889 claimed_size = 1;
|
|
3890 /* It's better than bad, it's good! */
|
|
3891 while (log > 0)
|
|
3892 {
|
|
3893 claimed_size *= 2;
|
|
3894 log--;
|
|
3895 }
|
|
3896 }
|
|
3897
|
|
3898 #endif /* old GNU allocator */
|
|
3899
|
|
3900 if (stats)
|
|
3901 {
|
|
3902 stats->was_requested += orig_claimed_size;
|
|
3903 stats->malloc_overhead += claimed_size - orig_claimed_size;
|
|
3904 }
|
|
3905 return claimed_size;
|
|
3906 }
|
|
3907
|
|
3908 size_t
|
|
3909 fixed_type_block_overhead (size_t size)
|
|
3910 {
|
|
3911 size_t per_block = TYPE_ALLOC_SIZE (cons, unsigned char);
|
|
3912 size_t overhead = 0;
|
|
3913 size_t storage_size = malloced_storage_size (0, per_block, 0);
|
|
3914 while (size >= per_block)
|
|
3915 {
|
|
3916 size -= per_block;
|
|
3917 overhead += sizeof (void *) + per_block - storage_size;
|
|
3918 }
|
|
3919 if (rand () % per_block < size)
|
|
3920 overhead += sizeof (void *) + per_block - storage_size;
|
|
3921 return overhead;
|
|
3922 }
|
|
3923
|
|
3924 #endif /* MEMORY_USAGE_STATS */
|
|
3925
|
|
3926
|
|
3927 /* Initialization */
|
|
3928 void
|
|
3929 reinit_alloc_once_early (void)
|
|
3930 {
|
|
3931 gc_generation_number[0] = 0;
|
|
3932 breathing_space = 0;
|
|
3933 XSETINT (all_bit_vectors, 0); /* Qzero may not be set yet. */
|
|
3934 XSETINT (Vgc_message, 0);
|
|
3935 all_lcrecords = 0;
|
|
3936 ignore_malloc_warnings = 1;
|
|
3937 #ifdef DOUG_LEA_MALLOC
|
|
3938 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
|
|
3939 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
|
|
3940 #if 0 /* Moved to emacs.c */
|
|
3941 mallopt (M_MMAP_MAX, 64); /* max. number of mmap'ed areas */
|
|
3942 #endif
|
|
3943 #endif
|
|
3944 init_string_alloc ();
|
|
3945 init_string_chars_alloc ();
|
|
3946 init_cons_alloc ();
|
|
3947 init_symbol_alloc ();
|
|
3948 init_compiled_function_alloc ();
|
|
3949 #ifdef LISP_FLOAT_TYPE
|
|
3950 init_float_alloc ();
|
|
3951 #endif /* LISP_FLOAT_TYPE */
|
|
3952 init_marker_alloc ();
|
|
3953 init_extent_alloc ();
|
|
3954 init_event_alloc ();
|
|
3955
|
|
3956 ignore_malloc_warnings = 0;
|
|
3957
|
|
3958 staticidx_nodump = 0;
|
|
3959 dumpstructidx = 0;
|
|
3960 pdump_wireidx = 0;
|
|
3961
|
|
3962 consing_since_gc = 0;
|
|
3963 #if 1
|
|
3964 gc_cons_threshold = 500000; /* XEmacs change */
|
|
3965 #else
|
|
3966 gc_cons_threshold = 15000; /* debugging */
|
|
3967 #endif
|
|
3968 #ifdef VIRT_ADDR_VARIES
|
|
3969 malloc_sbrk_unused = 1<<22; /* A large number */
|
|
3970 malloc_sbrk_used = 100000; /* as reasonable as any number */
|
|
3971 #endif /* VIRT_ADDR_VARIES */
|
|
3972 lrecord_uid_counter = 259;
|
|
3973 debug_string_purity = 0;
|
|
3974 gcprolist = 0;
|
|
3975
|
|
3976 gc_currently_forbidden = 0;
|
|
3977 gc_hooks_inhibited = 0;
|
|
3978
|
|
3979 #ifdef ERROR_CHECK_TYPECHECK
|
|
3980 ERROR_ME.really_unlikely_name_to_have_accidentally_in_a_non_errb_structure =
|
|
3981 666;
|
|
3982 ERROR_ME_NOT.
|
|
3983 really_unlikely_name_to_have_accidentally_in_a_non_errb_structure = 42;
|
|
3984 ERROR_ME_WARN.
|
|
3985 really_unlikely_name_to_have_accidentally_in_a_non_errb_structure =
|
|
3986 3333632;
|
|
3987 #endif /* ERROR_CHECK_TYPECHECK */
|
|
3988 }
|
|
3989
|
|
3990 void
|
|
3991 init_alloc_once_early (void)
|
|
3992 {
|
|
3993 int iii;
|
|
3994
|
|
3995 reinit_alloc_once_early ();
|
|
3996
|
|
3997 last_lrecord_type_index_assigned = -1;
|
|
3998 for (iii = 0; iii < countof (lrecord_implementations_table); iii++)
|
|
3999 {
|
|
4000 lrecord_implementations_table[iii] = 0;
|
|
4001 }
|
|
4002
|
|
4003 /*
|
|
4004 * All the staticly
|
|
4005 * defined subr lrecords were initialized with lheader->type == 0.
|
|
4006 * See subr_lheader_initializer in lisp.h. Force type index 0 to be
|
|
4007 * assigned to lrecord_subr so that those predefined indexes match
|
|
4008 * reality.
|
|
4009 */
|
|
4010 lrecord_type_index (&lrecord_subr);
|
|
4011 assert (*(lrecord_subr.lrecord_type_index) == 0);
|
|
4012 /*
|
|
4013 * The same is true for symbol_value_forward objects, except the
|
|
4014 * type is 1.
|
|
4015 */
|
|
4016 lrecord_type_index (&lrecord_symbol_value_forward);
|
|
4017 assert (*(lrecord_symbol_value_forward.lrecord_type_index) == 1);
|
|
4018
|
|
4019 staticidx = 0;
|
|
4020 }
|
|
4021
|
|
4022 int pure_bytes_used = 0;
|
|
4023
|
|
4024 void
|
|
4025 reinit_alloc (void)
|
|
4026 {
|
|
4027 gcprolist = 0;
|
|
4028 }
|
|
4029
|
|
4030 void
|
|
4031 syms_of_alloc (void)
|
|
4032 {
|
|
4033 defsymbol (&Qpre_gc_hook, "pre-gc-hook");
|
|
4034 defsymbol (&Qpost_gc_hook, "post-gc-hook");
|
|
4035 defsymbol (&Qgarbage_collecting, "garbage-collecting");
|
|
4036
|
|
4037 DEFSUBR (Fcons);
|
|
4038 DEFSUBR (Flist);
|
|
4039 DEFSUBR (Fvector);
|
|
4040 DEFSUBR (Fbit_vector);
|
|
4041 DEFSUBR (Fmake_byte_code);
|
|
4042 DEFSUBR (Fmake_list);
|
|
4043 DEFSUBR (Fmake_vector);
|
|
4044 DEFSUBR (Fmake_bit_vector);
|
|
4045 DEFSUBR (Fmake_string);
|
|
4046 DEFSUBR (Fstring);
|
|
4047 DEFSUBR (Fmake_symbol);
|
|
4048 DEFSUBR (Fmake_marker);
|
|
4049 DEFSUBR (Fpurecopy);
|
|
4050 DEFSUBR (Fgarbage_collect);
|
440
|
4051 #if 0
|
428
|
4052 DEFSUBR (Fmemory_limit);
|
440
|
4053 #endif
|
428
|
4054 DEFSUBR (Fconsing_since_gc);
|
|
4055 }
|
|
4056
|
|
4057 void
|
|
4058 vars_of_alloc (void)
|
|
4059 {
|
|
4060 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold /*
|
|
4061 *Number of bytes of consing between garbage collections.
|
|
4062 \"Consing\" is a misnomer in that this actually counts allocation
|
|
4063 of all different kinds of objects, not just conses.
|
|
4064 Garbage collection can happen automatically once this many bytes have been
|
|
4065 allocated since the last garbage collection. All data types count.
|
|
4066
|
|
4067 Garbage collection happens automatically when `eval' or `funcall' are
|
|
4068 called. (Note that `funcall' is called implicitly as part of evaluation.)
|
|
4069 By binding this temporarily to a large number, you can effectively
|
|
4070 prevent garbage collection during a part of the program.
|
|
4071
|
|
4072 See also `consing-since-gc'.
|
|
4073 */ );
|
|
4074
|
|
4075 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used /*
|
|
4076 Number of bytes of sharable Lisp data allocated so far.
|
|
4077 */ );
|
|
4078
|
|
4079 #if 0
|
|
4080 DEFVAR_INT ("data-bytes-used", &malloc_sbrk_used /*
|
|
4081 Number of bytes of unshared memory allocated in this session.
|
|
4082 */ );
|
|
4083
|
|
4084 DEFVAR_INT ("data-bytes-free", &malloc_sbrk_unused /*
|
|
4085 Number of bytes of unshared memory remaining available in this session.
|
|
4086 */ );
|
|
4087 #endif
|
|
4088
|
|
4089 #ifdef DEBUG_XEMACS
|
|
4090 DEFVAR_INT ("debug-allocation", &debug_allocation /*
|
|
4091 If non-zero, print out information to stderr about all objects allocated.
|
|
4092 See also `debug-allocation-backtrace-length'.
|
|
4093 */ );
|
|
4094 debug_allocation = 0;
|
|
4095
|
|
4096 DEFVAR_INT ("debug-allocation-backtrace-length",
|
|
4097 &debug_allocation_backtrace_length /*
|
|
4098 Length (in stack frames) of short backtrace printed out by `debug-allocation'.
|
|
4099 */ );
|
|
4100 debug_allocation_backtrace_length = 2;
|
|
4101 #endif
|
|
4102
|
|
4103 DEFVAR_BOOL ("purify-flag", &purify_flag /*
|
|
4104 Non-nil means loading Lisp code in order to dump an executable.
|
|
4105 This means that certain objects should be allocated in readonly space.
|
|
4106 */ );
|
|
4107
|
|
4108 DEFVAR_LISP ("pre-gc-hook", &Vpre_gc_hook /*
|
|
4109 Function or functions to be run just before each garbage collection.
|
|
4110 Interrupts, garbage collection, and errors are inhibited while this hook
|
|
4111 runs, so be extremely careful in what you add here. In particular, avoid
|
|
4112 consing, and do not interact with the user.
|
|
4113 */ );
|
|
4114 Vpre_gc_hook = Qnil;
|
|
4115
|
|
4116 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook /*
|
|
4117 Function or functions to be run just after each garbage collection.
|
|
4118 Interrupts, garbage collection, and errors are inhibited while this hook
|
|
4119 runs, so be extremely careful in what you add here. In particular, avoid
|
|
4120 consing, and do not interact with the user.
|
|
4121 */ );
|
|
4122 Vpost_gc_hook = Qnil;
|
|
4123
|
|
4124 DEFVAR_LISP ("gc-message", &Vgc_message /*
|
|
4125 String to print to indicate that a garbage collection is in progress.
|
|
4126 This is printed in the echo area. If the selected frame is on a
|
|
4127 window system and `gc-pointer-glyph' specifies a value (i.e. a pointer
|
|
4128 image instance) in the domain of the selected frame, the mouse pointer
|
|
4129 will change instead of this message being printed.
|
|
4130 */ );
|
|
4131 Vgc_message = build_string (gc_default_message);
|
|
4132
|
|
4133 DEFVAR_LISP ("gc-pointer-glyph", &Vgc_pointer_glyph /*
|
|
4134 Pointer glyph used to indicate that a garbage collection is in progress.
|
|
4135 If the selected window is on a window system and this glyph specifies a
|
|
4136 value (i.e. a pointer image instance) in the domain of the selected
|
|
4137 window, the pointer will be changed as specified during garbage collection.
|
|
4138 Otherwise, a message will be printed in the echo area, as controlled
|
|
4139 by `gc-message'.
|
|
4140 */ );
|
|
4141 }
|
|
4142
|
|
4143 void
|
|
4144 complex_vars_of_alloc (void)
|
|
4145 {
|
|
4146 Vgc_pointer_glyph = Fmake_glyph_internal (Qpointer);
|
|
4147 }
|
|
4148
|
|
4149
|
|
4150 #ifdef PDUMP
|
|
4151
|
|
4152 /* The structure of the file
|
|
4153 *
|
|
4154 * 0 - header
|
|
4155 * 256 - dumped objects
|
|
4156 * stab_offset - nb_staticpro*(Lisp_Object *) from staticvec
|
|
4157 * - nb_staticpro*(relocated Lisp_Object) pointed to by staticpro
|
|
4158 * - nb_structdmp*pair(void *, adr) for pointers to structures
|
|
4159 * - lrecord_implementations_table[]
|
|
4160 * - relocation table
|
|
4161 * - wired variable address/value couples with the count preceding the list
|
438
|
4162 */
|
428
|
4163 typedef struct
|
|
4164 {
|
|
4165 char signature[8];
|
|
4166 EMACS_UINT stab_offset;
|
|
4167 EMACS_UINT reloc_address;
|
|
4168 int nb_staticpro;
|
|
4169 int nb_structdmp;
|
|
4170 int last_type;
|
|
4171 } dump_header;
|
|
4172
|
|
4173 char *pdump_start, *pdump_end;
|
|
4174
|
|
4175 static const unsigned char align_table[256] =
|
|
4176 {
|
|
4177 8, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
|
|
4178 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
|
|
4179 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
|
|
4180 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
|
|
4181 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
|
|
4182 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
|
|
4183 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
|
|
4184 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
|
|
4185 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
|
|
4186 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
|
|
4187 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
|
|
4188 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
|
|
4189 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
|
|
4190 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
|
|
4191 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
|
|
4192 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
|
|
4193 };
|
|
4194
|
|
4195 typedef struct pdump_entry_list_elmt
|
|
4196 {
|
|
4197 struct pdump_entry_list_elmt *next;
|
|
4198 const void *obj;
|
|
4199 size_t size;
|
|
4200 int count;
|
|
4201 int is_lrecord;
|
|
4202 EMACS_INT save_offset;
|
|
4203 } pdump_entry_list_elmt;
|
|
4204
|
|
4205 typedef struct
|
|
4206 {
|
|
4207 pdump_entry_list_elmt *first;
|
|
4208 int align;
|
|
4209 int count;
|
|
4210 } pdump_entry_list;
|
|
4211
|
|
4212 typedef struct pdump_struct_list_elmt
|
|
4213 {
|
|
4214 pdump_entry_list list;
|
|
4215 const struct struct_description *sdesc;
|
|
4216 } pdump_struct_list_elmt;
|
|
4217
|
|
4218 typedef struct
|
|
4219 {
|
|
4220 pdump_struct_list_elmt *list;
|
|
4221 int count;
|
|
4222 int size;
|
|
4223 } pdump_struct_list;
|
|
4224
|
|
4225 static pdump_entry_list pdump_object_table[256];
|
|
4226 static pdump_entry_list pdump_opaque_data_list;
|
|
4227 static pdump_struct_list pdump_struct_table;
|
|
4228 static pdump_entry_list_elmt *pdump_qnil;
|
|
4229
|
|
4230 static int pdump_alert_undump_object[256];
|
|
4231
|
|
4232 static unsigned long cur_offset;
|
|
4233 static size_t max_size;
|
|
4234 static int pdump_fd;
|
|
4235 static void *pdump_buf;
|
|
4236
|
|
4237 #define PDUMP_HASHSIZE 200001
|
|
4238
|
|
4239 static pdump_entry_list_elmt **pdump_hash;
|
|
4240
|
|
4241 /* Since most pointers are eight bytes aligned, the >>3 allows for a better hash */
|
|
4242 static int
|
|
4243 pdump_make_hash (const void *obj)
|
|
4244 {
|
|
4245 return ((unsigned long)(obj)>>3) % PDUMP_HASHSIZE;
|
|
4246 }
|
|
4247
|
|
4248 static pdump_entry_list_elmt *
|
|
4249 pdump_get_entry (const void *obj)
|
|
4250 {
|
440
|
4251 int pos = pdump_make_hash (obj);
|
428
|
4252 pdump_entry_list_elmt *e;
|
440
|
4253
|
|
4254 assert (obj != 0);
|
|
4255
|
428
|
4256 while ((e = pdump_hash[pos]) != 0)
|
|
4257 {
|
|
4258 if (e->obj == obj)
|
|
4259 return e;
|
|
4260
|
|
4261 pos++;
|
|
4262 if (pos == PDUMP_HASHSIZE)
|
|
4263 pos = 0;
|
|
4264 }
|
|
4265 return 0;
|
|
4266 }
|
|
4267
|
|
4268 static void
|
|
4269 pdump_add_entry (pdump_entry_list *list, const void *obj, size_t size, int count, int is_lrecord)
|
|
4270 {
|
|
4271 pdump_entry_list_elmt *e;
|
|
4272 int align;
|
|
4273 int pos = pdump_make_hash (obj);
|
|
4274
|
|
4275 while ((e = pdump_hash[pos]) != 0)
|
|
4276 {
|
|
4277 if (e->obj == obj)
|
|
4278 return;
|
438
|
4279
|
428
|
4280 pos++;
|
|
4281 if (pos == PDUMP_HASHSIZE)
|
|
4282 pos = 0;
|
|
4283 }
|
|
4284
|
440
|
4285 e = xnew (pdump_entry_list_elmt);
|
428
|
4286
|
|
4287 e->next = list->first;
|
|
4288 e->obj = obj;
|
|
4289 e->size = size;
|
|
4290 e->count = count;
|
|
4291 e->is_lrecord = is_lrecord;
|
|
4292 list->first = e;
|
|
4293
|
|
4294 list->count += count;
|
|
4295 pdump_hash[pos] = e;
|
|
4296
|
|
4297 align = align_table[size & 255];
|
440
|
4298 if (align < 2 && is_lrecord)
|
428
|
4299 align = 2;
|
|
4300
|
440
|
4301 if (align < list->align)
|
428
|
4302 list->align = align;
|
|
4303 }
|
|
4304
|
|
4305 static pdump_entry_list *
|
440
|
4306 pdump_get_entry_list (const struct struct_description *sdesc)
|
428
|
4307 {
|
|
4308 int i;
|
440
|
4309 for (i=0; i<pdump_struct_table.count; i++)
|
428
|
4310 if (pdump_struct_table.list[i].sdesc == sdesc)
|
|
4311 return &pdump_struct_table.list[i].list;
|
|
4312
|
|
4313 if (pdump_struct_table.size <= pdump_struct_table.count)
|
|
4314 {
|
|
4315 if (pdump_struct_table.size == -1)
|
|
4316 pdump_struct_table.size = 10;
|
|
4317 else
|
|
4318 pdump_struct_table.size = pdump_struct_table.size * 2;
|
440
|
4319 pdump_struct_table.list = (pdump_struct_list_elmt *)
|
|
4320 xrealloc (pdump_struct_table.list,
|
|
4321 pdump_struct_table.size * sizeof (pdump_struct_list_elmt));
|
428
|
4322 }
|
|
4323 pdump_struct_table.list[pdump_struct_table.count].list.first = 0;
|
|
4324 pdump_struct_table.list[pdump_struct_table.count].list.align = 8;
|
|
4325 pdump_struct_table.list[pdump_struct_table.count].list.count = 0;
|
|
4326 pdump_struct_table.list[pdump_struct_table.count].sdesc = sdesc;
|
438
|
4327
|
428
|
4328 return &pdump_struct_table.list[pdump_struct_table.count++].list;
|
|
4329 }
|
|
4330
|
440
|
4331 static struct
|
|
4332 {
|
|
4333 struct lrecord_header *obj;
|
428
|
4334 int position;
|
|
4335 int offset;
|
|
4336 } backtrace[65536];
|
|
4337
|
|
4338 static int depth;
|
|
4339
|
|
4340 static void pdump_backtrace (void)
|
|
4341 {
|
|
4342 int i;
|
|
4343 fprintf (stderr, "pdump backtrace :\n");
|
|
4344 for (i=0;i<depth;i++)
|
|
4345 {
|
|
4346 if (!backtrace[i].obj)
|
|
4347 fprintf (stderr, " - ind. (%d, %d)\n", backtrace[i].position, backtrace[i].offset);
|
|
4348 else
|
|
4349 {
|
|
4350 fprintf (stderr, " - %s (%d, %d)\n",
|
440
|
4351 LHEADER_IMPLEMENTATION (backtrace[i].obj)->name,
|
428
|
4352 backtrace[i].position,
|
|
4353 backtrace[i].offset);
|
|
4354 }
|
|
4355 }
|
|
4356 }
|
|
4357
|
|
4358 static void pdump_register_object (Lisp_Object obj);
|
|
4359 static void pdump_register_struct (const void *data, const struct struct_description *sdesc, int count);
|
|
4360
|
|
4361 static EMACS_INT
|
|
4362 pdump_get_indirect_count (EMACS_INT code, const struct lrecord_description *idesc, const void *idata)
|
|
4363 {
|
|
4364 EMACS_INT count;
|
|
4365 const void *irdata;
|
|
4366
|
|
4367 int line = XD_INDIRECT_VAL (code);
|
|
4368 int delta = XD_INDIRECT_DELTA (code);
|
|
4369
|
|
4370 irdata = ((char *)idata) + idesc[line].offset;
|
440
|
4371 switch (idesc[line].type)
|
|
4372 {
|
|
4373 case XD_SIZE_T:
|
|
4374 count = *(size_t *)irdata;
|
|
4375 break;
|
|
4376 case XD_INT:
|
|
4377 count = *(int *)irdata;
|
|
4378 break;
|
|
4379 case XD_LONG:
|
|
4380 count = *(long *)irdata;
|
|
4381 break;
|
|
4382 case XD_BYTECOUNT:
|
|
4383 count = *(Bytecount *)irdata;
|
|
4384 break;
|
|
4385 default:
|
|
4386 fprintf (stderr, "Unsupported count type : %d (line = %d, code=%ld)\n", idesc[line].type, line, (long)code);
|
|
4387 pdump_backtrace ();
|
|
4388 abort ();
|
|
4389 }
|
428
|
4390 count += delta;
|
|
4391 return count;
|
|
4392 }
|
|
4393
|
|
4394 static void
|
|
4395 pdump_register_sub (const void *data, const struct lrecord_description *desc, int me)
|
|
4396 {
|
|
4397 int pos;
|
|
4398
|
|
4399 restart:
|
|
4400 for (pos = 0; desc[pos].type != XD_END; pos++)
|
|
4401 {
|
440
|
4402 const void *rdata = (const char *)data + desc[pos].offset;
|
|
4403
|
428
|
4404 backtrace[me].position = pos;
|
|
4405 backtrace[me].offset = desc[pos].offset;
|
|
4406
|
440
|
4407 switch (desc[pos].type)
|
428
|
4408 {
|
|
4409 case XD_SPECIFIER_END:
|
|
4410 pos = 0;
|
440
|
4411 desc = ((const Lisp_Specifier *)data)->methods->extra_description;
|
428
|
4412 goto restart;
|
|
4413 case XD_SIZE_T:
|
|
4414 case XD_INT:
|
|
4415 case XD_LONG:
|
|
4416 case XD_BYTECOUNT:
|
|
4417 case XD_LO_RESET_NIL:
|
|
4418 case XD_INT_RESET:
|
|
4419 case XD_LO_LINK:
|
|
4420 break;
|
|
4421 case XD_OPAQUE_DATA_PTR:
|
|
4422 {
|
|
4423 EMACS_INT count = desc[pos].data1;
|
440
|
4424 if (XD_IS_INDIRECT (count))
|
428
|
4425 count = pdump_get_indirect_count (count, desc, data);
|
|
4426
|
|
4427 pdump_add_entry (&pdump_opaque_data_list,
|
|
4428 *(void **)rdata,
|
|
4429 count,
|
|
4430 1,
|
|
4431 0);
|
|
4432 break;
|
|
4433 }
|
|
4434 case XD_C_STRING:
|
|
4435 {
|
|
4436 const char *str = *(const char **)rdata;
|
|
4437 if (str)
|
|
4438 pdump_add_entry (&pdump_opaque_data_list, str, strlen (str)+1, 1, 0);
|
|
4439 break;
|
|
4440 }
|
|
4441 case XD_DOC_STRING:
|
|
4442 {
|
|
4443 const char *str = *(const char **)rdata;
|
|
4444 if ((EMACS_INT)str > 0)
|
|
4445 pdump_add_entry (&pdump_opaque_data_list, str, strlen (str)+1, 1, 0);
|
|
4446 break;
|
|
4447 }
|
|
4448 case XD_LISP_OBJECT:
|
|
4449 {
|
440
|
4450 const Lisp_Object *pobj = (const Lisp_Object *)rdata;
|
|
4451
|
|
4452 assert (desc[pos].data1 == 0);
|
|
4453
|
|
4454 backtrace[me].offset = (const char *)pobj - (const char *)data;
|
|
4455 pdump_register_object (*pobj);
|
|
4456 break;
|
|
4457 }
|
|
4458 case XD_LISP_OBJECT_ARRAY:
|
|
4459 {
|
|
4460 int i;
|
428
|
4461 EMACS_INT count = desc[pos].data1;
|
|
4462 if (XD_IS_INDIRECT (count))
|
|
4463 count = pdump_get_indirect_count (count, desc, data);
|
438
|
4464
|
440
|
4465 for (i = 0; i < count; i++)
|
|
4466 {
|
|
4467 const Lisp_Object *pobj = ((const Lisp_Object *)rdata) + i;
|
|
4468 Lisp_Object dobj = *pobj;
|
|
4469
|
|
4470 backtrace[me].offset = (const char *)pobj - (const char *)data;
|
|
4471 pdump_register_object (dobj);
|
|
4472 }
|
428
|
4473 break;
|
|
4474 }
|
|
4475 case XD_STRUCT_PTR:
|
|
4476 {
|
|
4477 EMACS_INT count = desc[pos].data1;
|
|
4478 const struct struct_description *sdesc = desc[pos].data2;
|
|
4479 const char *dobj = *(const char **)rdata;
|
440
|
4480 if (dobj)
|
|
4481 {
|
|
4482 if (XD_IS_INDIRECT (count))
|
|
4483 count = pdump_get_indirect_count (count, desc, data);
|
|
4484
|
|
4485 pdump_register_struct (dobj, sdesc, count);
|
|
4486 }
|
428
|
4487 break;
|
|
4488 }
|
|
4489 default:
|
|
4490 fprintf (stderr, "Unsupported dump type : %d\n", desc[pos].type);
|
|
4491 pdump_backtrace ();
|
|
4492 abort ();
|
|
4493 };
|
|
4494 }
|
|
4495 }
|
|
4496
|
|
4497 static void
|
|
4498 pdump_register_object (Lisp_Object obj)
|
|
4499 {
|
440
|
4500 struct lrecord_header *objh;
|
|
4501
|
|
4502 if (!POINTER_TYPE_P (XTYPE (obj)))
|
428
|
4503 return;
|
438
|
4504
|
440
|
4505 objh = XRECORD_LHEADER (obj);
|
|
4506 if (!objh)
|
|
4507 return;
|
|
4508
|
|
4509 if (pdump_get_entry (objh))
|
|
4510 return;
|
|
4511
|
|
4512 if (LHEADER_IMPLEMENTATION (objh)->description)
|
428
|
4513 {
|
|
4514 int me = depth++;
|
|
4515 if (me>65536)
|
|
4516 {
|
|
4517 fprintf (stderr, "Backtrace overflow, loop ?\n");
|
|
4518 abort ();
|
|
4519 }
|
440
|
4520 backtrace[me].obj = objh;
|
428
|
4521 backtrace[me].position = 0;
|
|
4522 backtrace[me].offset = 0;
|
|
4523
|
440
|
4524 pdump_add_entry (pdump_object_table + objh->type,
|
|
4525 objh,
|
|
4526 LHEADER_IMPLEMENTATION (objh)->static_size ?
|
|
4527 LHEADER_IMPLEMENTATION (objh)->static_size :
|
|
4528 LHEADER_IMPLEMENTATION (objh)->size_in_bytes_method (objh),
|
428
|
4529 1,
|
|
4530 1);
|
440
|
4531 pdump_register_sub (objh,
|
|
4532 LHEADER_IMPLEMENTATION (objh)->description,
|
428
|
4533 me);
|
|
4534 --depth;
|
|
4535 }
|
|
4536 else
|
|
4537 {
|
440
|
4538 pdump_alert_undump_object[objh->type]++;
|
|
4539 fprintf (stderr, "Undumpable object type : %s\n", LHEADER_IMPLEMENTATION (objh)->name);
|
428
|
4540 pdump_backtrace ();
|
|
4541 }
|
|
4542 }
|
|
4543
|
|
4544 static void
|
|
4545 pdump_register_struct (const void *data, const struct struct_description *sdesc, int count)
|
|
4546 {
|
|
4547 if (data && !pdump_get_entry (data))
|
|
4548 {
|
|
4549 int me = depth++;
|
|
4550 int i;
|
|
4551 if (me>65536)
|
|
4552 {
|
|
4553 fprintf (stderr, "Backtrace overflow, loop ?\n");
|
|
4554 abort ();
|
|
4555 }
|
|
4556 backtrace[me].obj = 0;
|
|
4557 backtrace[me].position = 0;
|
|
4558 backtrace[me].offset = 0;
|
438
|
4559
|
428
|
4560 pdump_add_entry (pdump_get_entry_list (sdesc),
|
|
4561 data,
|
|
4562 sdesc->size,
|
|
4563 count,
|
|
4564 0);
|
|
4565 for (i=0; i<count; i++)
|
|
4566 {
|
|
4567 pdump_register_sub (((char *)data) + sdesc->size*i,
|
|
4568 sdesc->description,
|
|
4569 me);
|
|
4570 }
|
|
4571 --depth;
|
|
4572 }
|
|
4573 }
|
|
4574
|
|
4575 static void
|
|
4576 pdump_dump_data (pdump_entry_list_elmt *elmt, const struct lrecord_description *desc)
|
|
4577 {
|
|
4578 size_t size = elmt->size;
|
|
4579 int count = elmt->count;
|
|
4580 if (desc)
|
|
4581 {
|
|
4582 int pos, i;
|
|
4583 memcpy (pdump_buf, elmt->obj, size*count);
|
438
|
4584
|
428
|
4585 for (i=0; i<count; i++)
|
|
4586 {
|
|
4587 char *cur = ((char *)pdump_buf) + i*size;
|
|
4588 restart:
|
|
4589 for (pos = 0; desc[pos].type != XD_END; pos++)
|
|
4590 {
|
440
|
4591 void *rdata = cur + desc[pos].offset;
|
428
|
4592 switch (desc[pos].type)
|
|
4593 {
|
|
4594 case XD_SPECIFIER_END:
|
440
|
4595 desc = ((const Lisp_Specifier *)(elmt->obj))->methods->extra_description;
|
428
|
4596 goto restart;
|
|
4597 case XD_SIZE_T:
|
|
4598 case XD_INT:
|
|
4599 case XD_LONG:
|
|
4600 case XD_BYTECOUNT:
|
|
4601 break;
|
|
4602 case XD_LO_RESET_NIL:
|
|
4603 {
|
|
4604 EMACS_INT count = desc[pos].data1;
|
|
4605 int i;
|
|
4606 if (XD_IS_INDIRECT (count))
|
|
4607 count = pdump_get_indirect_count (count, desc, elmt->obj);
|
|
4608 for (i=0; i<count; i++)
|
|
4609 ((EMACS_INT *)rdata)[i] = pdump_qnil->save_offset;
|
|
4610 break;
|
|
4611 }
|
|
4612 case XD_INT_RESET:
|
|
4613 {
|
|
4614 EMACS_INT val = desc[pos].data1;
|
|
4615 if (XD_IS_INDIRECT (val))
|
|
4616 val = pdump_get_indirect_count (val, desc, elmt->obj);
|
|
4617 *(int *)rdata = val;
|
|
4618 break;
|
|
4619 }
|
|
4620 case XD_OPAQUE_DATA_PTR:
|
|
4621 case XD_C_STRING:
|
|
4622 case XD_STRUCT_PTR:
|
|
4623 {
|
|
4624 void *ptr = *(void **)rdata;
|
|
4625 if (ptr)
|
|
4626 *(EMACS_INT *)rdata = pdump_get_entry (ptr)->save_offset;
|
|
4627 break;
|
|
4628 }
|
|
4629 case XD_LO_LINK:
|
|
4630 {
|
|
4631 Lisp_Object obj = *(Lisp_Object *)rdata;
|
|
4632 pdump_entry_list_elmt *elmt1;
|
440
|
4633 for (;;)
|
428
|
4634 {
|
440
|
4635 elmt1 = pdump_get_entry (XRECORD_LHEADER (obj));
|
428
|
4636 if (elmt1)
|
|
4637 break;
|
|
4638 obj = *(Lisp_Object *)(desc[pos].offset + (char *)(XRECORD_LHEADER (obj)));
|
|
4639 }
|
|
4640 *(EMACS_INT *)rdata = elmt1->save_offset;
|
|
4641 break;
|
|
4642 }
|
|
4643 case XD_LISP_OBJECT:
|
|
4644 {
|
440
|
4645 Lisp_Object *pobj = (Lisp_Object *) rdata;
|
|
4646
|
|
4647 assert (desc[pos].data1 == 0);
|
|
4648
|
|
4649 if (POINTER_TYPE_P (XTYPE (*pobj)) && XRECORD_LHEADER (*pobj))
|
|
4650 *(EMACS_INT *)pobj =
|
|
4651 pdump_get_entry (XRECORD_LHEADER (*pobj))->save_offset;
|
|
4652 break;
|
|
4653 }
|
|
4654 case XD_LISP_OBJECT_ARRAY:
|
|
4655 {
|
428
|
4656 EMACS_INT count = desc[pos].data1;
|
|
4657 int i;
|
|
4658 if (XD_IS_INDIRECT (count))
|
|
4659 count = pdump_get_indirect_count (count, desc, elmt->obj);
|
438
|
4660
|
440
|
4661 for (i=0; i<count; i++)
|
428
|
4662 {
|
|
4663 Lisp_Object *pobj = ((Lisp_Object *)rdata) + i;
|
440
|
4664 if (POINTER_TYPE_P (XTYPE (*pobj)) && XRECORD_LHEADER (*pobj))
|
|
4665 *(EMACS_INT *)pobj =
|
|
4666 pdump_get_entry (XRECORD_LHEADER (*pobj))->save_offset;
|
428
|
4667 }
|
|
4668 break;
|
|
4669 }
|
|
4670 case XD_DOC_STRING:
|
|
4671 {
|
|
4672 EMACS_INT str = *(EMACS_INT *)rdata;
|
|
4673 if (str > 0)
|
|
4674 *(EMACS_INT *)rdata = pdump_get_entry ((void *)str)->save_offset;
|
|
4675 break;
|
|
4676 }
|
|
4677 default:
|
|
4678 fprintf (stderr, "Unsupported dump type : %d\n", desc[pos].type);
|
|
4679 abort ();
|
|
4680 };
|
|
4681 }
|
|
4682 }
|
|
4683 }
|
|
4684 write (pdump_fd, desc ? pdump_buf : elmt->obj, size*count);
|
|
4685 if (elmt->is_lrecord && ((size*count) & 3))
|
|
4686 write (pdump_fd, "\0\0\0", 4-((size*count) & 3));
|
|
4687 }
|
|
4688
|
|
4689 static void
|
|
4690 pdump_reloc_one (void *data, EMACS_INT delta, const struct lrecord_description *desc)
|
|
4691 {
|
|
4692 int pos;
|
440
|
4693
|
|
4694 restart:
|
428
|
4695 for (pos = 0; desc[pos].type != XD_END; pos++)
|
|
4696 {
|
440
|
4697 void *rdata = (char *)data + desc[pos].offset;
|
|
4698 switch (desc[pos].type)
|
428
|
4699 {
|
440
|
4700 case XD_SPECIFIER_END:
|
|
4701 pos = 0;
|
|
4702 desc = ((const Lisp_Specifier *)data)->methods->extra_description;
|
|
4703 goto restart;
|
|
4704 case XD_SIZE_T:
|
|
4705 case XD_INT:
|
|
4706 case XD_LONG:
|
|
4707 case XD_BYTECOUNT:
|
|
4708 case XD_INT_RESET:
|
428
|
4709 break;
|
440
|
4710 case XD_OPAQUE_DATA_PTR:
|
|
4711 case XD_C_STRING:
|
|
4712 case XD_STRUCT_PTR:
|
|
4713 case XD_LO_LINK:
|
|
4714 {
|
|
4715 EMACS_INT ptr = *(EMACS_INT *)rdata;
|
|
4716 if (ptr)
|
|
4717 *(EMACS_INT *)rdata = ptr+delta;
|
|
4718 break;
|
|
4719 }
|
|
4720 case XD_LISP_OBJECT:
|
|
4721 {
|
|
4722 Lisp_Object *pobj = (Lisp_Object *) rdata;
|
|
4723
|
|
4724 assert (desc[pos].data1 == 0);
|
|
4725
|
|
4726 if (POINTER_TYPE_P (XTYPE (*pobj))
|
|
4727 && ! EQ (*pobj, Qnull_pointer))
|
|
4728 XSETOBJ (*pobj, XTYPE (*pobj), (char *) XPNTR (*pobj) + delta);
|
|
4729
|
|
4730 break;
|
|
4731 }
|
|
4732 case XD_LISP_OBJECT_ARRAY:
|
|
4733 case XD_LO_RESET_NIL:
|
|
4734 {
|
|
4735 EMACS_INT count = desc[pos].data1;
|
|
4736 int i;
|
|
4737 if (XD_IS_INDIRECT (count))
|
|
4738 count = pdump_get_indirect_count (count, desc, data);
|
|
4739
|
|
4740 for (i=0; i<count; i++)
|
|
4741 {
|
|
4742 Lisp_Object *pobj = (Lisp_Object *) rdata + i;
|
|
4743
|
|
4744 if (POINTER_TYPE_P (XTYPE (*pobj))
|
|
4745 && ! EQ (*pobj, Qnull_pointer))
|
|
4746 XSETOBJ (*pobj, XTYPE (*pobj), (char *) XPNTR (*pobj) + delta);
|
|
4747 }
|
|
4748 break;
|
|
4749 }
|
|
4750 case XD_DOC_STRING:
|
|
4751 {
|
|
4752 EMACS_INT str = *(EMACS_INT *)rdata;
|
|
4753 if (str > 0)
|
|
4754 *(EMACS_INT *)rdata = str + delta;
|
|
4755 break;
|
|
4756 }
|
|
4757 default:
|
|
4758 fprintf (stderr, "Unsupported dump type : %d\n", desc[pos].type);
|
|
4759 abort ();
|
|
4760 };
|
428
|
4761 }
|
|
4762 }
|
|
4763
|
|
4764 static void
|
|
4765 pdump_allocate_offset (pdump_entry_list_elmt *elmt, const struct lrecord_description *desc)
|
|
4766 {
|
|
4767 size_t size = (elmt->is_lrecord ? (elmt->size + 3) & ~3 : elmt->size)*elmt->count;
|
|
4768 elmt->save_offset = cur_offset;
|
|
4769 if (size>max_size)
|
|
4770 max_size = size;
|
|
4771 cur_offset += size;
|
|
4772 }
|
|
4773
|
|
4774 static void
|
440
|
4775 pdump_scan_by_alignment (void (*f)(pdump_entry_list_elmt *, const struct lrecord_description *))
|
428
|
4776 {
|
|
4777 int align, i;
|
|
4778 const struct lrecord_description *idesc;
|
|
4779 pdump_entry_list_elmt *elmt;
|
|
4780 for (align=8; align>=0; align--)
|
|
4781 {
|
|
4782 for (i=0; i<=last_lrecord_type_index_assigned; i++)
|
|
4783 if (pdump_object_table[i].align == align)
|
|
4784 {
|
|
4785 elmt = pdump_object_table[i].first;
|
|
4786 if (!elmt)
|
|
4787 continue;
|
|
4788 idesc = lrecord_implementations_table[i]->description;
|
|
4789 while (elmt)
|
|
4790 {
|
|
4791 f (elmt, idesc);
|
|
4792 elmt = elmt->next;
|
|
4793 }
|
|
4794 }
|
438
|
4795
|
428
|
4796 for (i=0; i<pdump_struct_table.count; i++)
|
440
|
4797 if (pdump_struct_table.list[i].list.align == align)
|
|
4798 {
|
|
4799 elmt = pdump_struct_table.list[i].list.first;
|
|
4800 idesc = pdump_struct_table.list[i].sdesc->description;
|
|
4801 while (elmt)
|
|
4802 {
|
|
4803 f (elmt, idesc);
|
|
4804 elmt = elmt->next;
|
|
4805 }
|
|
4806 }
|
438
|
4807
|
428
|
4808 elmt = pdump_opaque_data_list.first;
|
|
4809 while (elmt)
|
|
4810 {
|
|
4811 if (align_table[elmt->size & 255] == align)
|
|
4812 f (elmt, 0);
|
|
4813 elmt = elmt->next;
|
|
4814 }
|
|
4815 }
|
|
4816 }
|
|
4817
|
|
4818 static void
|
|
4819 pdump_dump_staticvec (void)
|
|
4820 {
|
440
|
4821 EMACS_INT *reloc = xnew_array (EMACS_INT, staticidx);
|
428
|
4822 int i;
|
|
4823 write (pdump_fd, staticvec, staticidx*sizeof (Lisp_Object *));
|
|
4824
|
440
|
4825 for (i=0; i<staticidx; i++)
|
428
|
4826 {
|
|
4827 Lisp_Object obj = *staticvec[i];
|
440
|
4828 if (POINTER_TYPE_P (XTYPE (obj)))
|
428
|
4829 reloc[i] = pdump_get_entry (XRECORD_LHEADER (obj))->save_offset;
|
|
4830 else
|
440
|
4831 reloc[i] = *(EMACS_INT *)(staticvec[i]);
|
428
|
4832 }
|
|
4833 write (pdump_fd, reloc, staticidx*sizeof (Lisp_Object));
|
|
4834 free (reloc);
|
|
4835 }
|
|
4836
|
|
4837 static void
|
|
4838 pdump_dump_structvec (void)
|
|
4839 {
|
|
4840 int i;
|
|
4841 for (i=0; i<dumpstructidx; i++)
|
|
4842 {
|
|
4843 EMACS_INT adr;
|
|
4844 write (pdump_fd, &(dumpstructvec[i].data), sizeof (void *));
|
|
4845 adr = pdump_get_entry (*(void **)(dumpstructvec[i].data))->save_offset;
|
|
4846 write (pdump_fd, &adr, sizeof (adr));
|
440
|
4847 }
|
428
|
4848 }
|
|
4849
|
|
4850 static void
|
|
4851 pdump_dump_itable (void)
|
|
4852 {
|
438
|
4853 write (pdump_fd, lrecord_implementations_table, sizeof (lrecord_implementations_table));
|
428
|
4854 }
|
|
4855
|
|
4856 static void
|
|
4857 pdump_dump_rtables (void)
|
|
4858 {
|
|
4859 int i, j;
|
|
4860 pdump_entry_list_elmt *elmt;
|
|
4861 pdump_reloc_table rt;
|
|
4862
|
|
4863 for (i=0; i<=last_lrecord_type_index_assigned; i++)
|
|
4864 {
|
|
4865 elmt = pdump_object_table[i].first;
|
440
|
4866 if (!elmt)
|
428
|
4867 continue;
|
|
4868 rt.desc = lrecord_implementations_table[i]->description;
|
|
4869 rt.count = pdump_object_table[i].count;
|
|
4870 write (pdump_fd, &rt, sizeof (rt));
|
|
4871 while (elmt)
|
|
4872 {
|
440
|
4873 EMACS_INT rdata = pdump_get_entry (elmt->obj)->save_offset;
|
428
|
4874 write (pdump_fd, &rdata, sizeof (rdata));
|
|
4875 elmt = elmt->next;
|
|
4876 }
|
440
|
4877 }
|
428
|
4878
|
|
4879 rt.desc = 0;
|
|
4880 rt.count = 0;
|
|
4881 write (pdump_fd, &rt, sizeof (rt));
|
|
4882
|
|
4883 for (i=0; i<pdump_struct_table.count; i++)
|
|
4884 {
|
|
4885 elmt = pdump_struct_table.list[i].list.first;
|
|
4886 rt.desc = pdump_struct_table.list[i].sdesc->description;
|
|
4887 rt.count = pdump_struct_table.list[i].list.count;
|
|
4888 write (pdump_fd, &rt, sizeof (rt));
|
|
4889 while (elmt)
|
|
4890 {
|
440
|
4891 EMACS_INT rdata = pdump_get_entry (elmt->obj)->save_offset;
|
|
4892 for (j=0; j<elmt->count; j++)
|
|
4893 {
|
|
4894 write (pdump_fd, &rdata, sizeof (rdata));
|
|
4895 rdata += elmt->size;
|
|
4896 }
|
428
|
4897 elmt = elmt->next;
|
|
4898 }
|
|
4899 }
|
|
4900 rt.desc = 0;
|
|
4901 rt.count = 0;
|
|
4902 write (pdump_fd, &rt, sizeof (rt));
|
|
4903 }
|
|
4904
|
|
4905 static void
|
|
4906 pdump_dump_wired (void)
|
|
4907 {
|
|
4908 EMACS_INT count = pdump_wireidx + pdump_wireidx_list;
|
|
4909 int i;
|
|
4910
|
|
4911 write (pdump_fd, &count, sizeof (count));
|
|
4912
|
|
4913 for (i=0; i<pdump_wireidx; i++)
|
|
4914 {
|
440
|
4915 EMACS_INT obj = pdump_get_entry (XRECORD_LHEADER (*(pdump_wirevec[i])))->save_offset;
|
428
|
4916 write (pdump_fd, &pdump_wirevec[i], sizeof (pdump_wirevec[i]));
|
|
4917 write (pdump_fd, &obj, sizeof (obj));
|
|
4918 }
|
438
|
4919
|
428
|
4920 for (i=0; i<pdump_wireidx_list; i++)
|
|
4921 {
|
|
4922 Lisp_Object obj = *(pdump_wirevec_list[i]);
|
|
4923 pdump_entry_list_elmt *elmt;
|
|
4924 EMACS_INT res;
|
|
4925
|
440
|
4926 for (;;)
|
428
|
4927 {
|
|
4928 const struct lrecord_description *desc;
|
|
4929 int pos;
|
|
4930 elmt = pdump_get_entry (XRECORD_LHEADER (obj));
|
|
4931 if (elmt)
|
|
4932 break;
|
|
4933 desc = XRECORD_LHEADER_IMPLEMENTATION (obj)->description;
|
|
4934 for (pos = 0; desc[pos].type != XD_LO_LINK; pos++)
|
|
4935 if (desc[pos].type == XD_END)
|
|
4936 abort ();
|
|
4937
|
|
4938 obj = *(Lisp_Object *)(desc[pos].offset + (char *)(XRECORD_LHEADER (obj)));
|
|
4939 }
|
|
4940 res = elmt->save_offset;
|
|
4941
|
|
4942 write (pdump_fd, &pdump_wirevec_list[i], sizeof (pdump_wirevec_list[i]));
|
|
4943 write (pdump_fd, &res, sizeof (res));
|
|
4944 }
|
|
4945 }
|
|
4946
|
|
4947 void
|
|
4948 pdump (void)
|
|
4949 {
|
|
4950 int i;
|
|
4951 Lisp_Object t_console, t_device, t_frame;
|
|
4952 int none;
|
|
4953 dump_header hd;
|
|
4954
|
|
4955 /* These appear in a DEFVAR_LISP, which does a staticpro() */
|
|
4956 t_console = Vterminal_console;
|
|
4957 t_frame = Vterminal_frame;
|
|
4958 t_device = Vterminal_device;
|
|
4959
|
|
4960 Vterminal_console = Qnil;
|
|
4961 Vterminal_frame = Qnil;
|
|
4962 Vterminal_device = Qnil;
|
|
4963
|
440
|
4964 pdump_hash = xnew_array_and_zero (pdump_entry_list_elmt *, PDUMP_HASHSIZE);
|
428
|
4965
|
|
4966 for (i=0; i<=last_lrecord_type_index_assigned; i++)
|
|
4967 {
|
|
4968 pdump_object_table[i].first = 0;
|
|
4969 pdump_object_table[i].align = 8;
|
|
4970 pdump_object_table[i].count = 0;
|
|
4971 pdump_alert_undump_object[i] = 0;
|
|
4972 }
|
|
4973 pdump_struct_table.count = 0;
|
|
4974 pdump_struct_table.size = -1;
|
438
|
4975
|
428
|
4976 pdump_opaque_data_list.first = 0;
|
|
4977 pdump_opaque_data_list.align = 8;
|
|
4978 pdump_opaque_data_list.count = 0;
|
|
4979 depth = 0;
|
|
4980
|
|
4981 for (i=0; i<staticidx; i++)
|
|
4982 pdump_register_object (*staticvec[i]);
|
|
4983 for (i=0; i<pdump_wireidx; i++)
|
|
4984 pdump_register_object (*pdump_wirevec[i]);
|
|
4985
|
|
4986 none = 1;
|
440
|
4987 for (i=0; i<=last_lrecord_type_index_assigned; i++)
|
428
|
4988 if (pdump_alert_undump_object[i])
|
|
4989 {
|
|
4990 if (none)
|
|
4991 printf ("Undumpable types list :\n");
|
|
4992 none = 0;
|
|
4993 printf (" - %s (%d)\n", lrecord_implementations_table[i]->name, pdump_alert_undump_object[i]);
|
|
4994 }
|
|
4995 if (!none)
|
|
4996 return;
|
|
4997
|
|
4998 for (i=0; i<dumpstructidx; i++)
|
438
|
4999 pdump_register_struct (*(void **)(dumpstructvec[i].data), dumpstructvec[i].desc, 1);
|
428
|
5000
|
|
5001 memcpy (hd.signature, "XEmacsDP", 8);
|
|
5002 hd.reloc_address = 0;
|
|
5003 hd.nb_staticpro = staticidx;
|
|
5004 hd.nb_structdmp = dumpstructidx;
|
|
5005 hd.last_type = last_lrecord_type_index_assigned;
|
438
|
5006
|
428
|
5007 cur_offset = 256;
|
|
5008 max_size = 0;
|
438
|
5009
|
440
|
5010 pdump_scan_by_alignment (pdump_allocate_offset);
|
428
|
5011 pdump_qnil = pdump_get_entry (XRECORD_LHEADER (Qnil));
|
|
5012
|
440
|
5013 pdump_buf = xmalloc (max_size);
|
|
5014 /* Avoid use of the `open' macro. We want the real function. */
|
|
5015 #undef open
|
|
5016 pdump_fd = open ("xemacs.dmp",
|
|
5017 O_WRONLY | O_CREAT | O_TRUNC | OPEN_BINARY, 0666);
|
428
|
5018 hd.stab_offset = (cur_offset + 3) & ~3;
|
|
5019
|
|
5020 write (pdump_fd, &hd, sizeof (hd));
|
|
5021 lseek (pdump_fd, 256, SEEK_SET);
|
|
5022
|
440
|
5023 pdump_scan_by_alignment (pdump_dump_data);
|
428
|
5024
|
|
5025 lseek (pdump_fd, hd.stab_offset, SEEK_SET);
|
|
5026
|
|
5027 pdump_dump_staticvec ();
|
|
5028 pdump_dump_structvec ();
|
|
5029 pdump_dump_itable ();
|
|
5030 pdump_dump_rtables ();
|
|
5031 pdump_dump_wired ();
|
|
5032
|
|
5033 close (pdump_fd);
|
|
5034 free (pdump_buf);
|
|
5035
|
|
5036 free (pdump_hash);
|
|
5037
|
|
5038 Vterminal_console = t_console;
|
|
5039 Vterminal_frame = t_frame;
|
|
5040 Vterminal_device = t_device;
|
|
5041 }
|
|
5042
|
|
5043 int
|
|
5044 pdump_load (void)
|
|
5045 {
|
|
5046 size_t length;
|
|
5047 int i;
|
|
5048 char *p;
|
|
5049 EMACS_INT delta;
|
|
5050 EMACS_INT count;
|
|
5051
|
440
|
5052 #define PDUMP_READ(p, type) (p = (char*) (((type *) p) + 1), *((type *) p - 1))
|
|
5053
|
428
|
5054 pdump_start = pdump_end = 0;
|
|
5055
|
440
|
5056 pdump_fd = open ("xemacs.dmp", O_RDONLY | OPEN_BINARY);
|
428
|
5057 if (pdump_fd<0)
|
|
5058 return 0;
|
|
5059
|
|
5060 length = lseek (pdump_fd, 0, SEEK_END);
|
|
5061 lseek (pdump_fd, 0, SEEK_SET);
|
|
5062
|
|
5063 #ifdef HAVE_MMAP
|
440
|
5064 pdump_start = (char *) mmap (0, length, PROT_READ|PROT_WRITE, MAP_PRIVATE, pdump_fd, 0);
|
428
|
5065 if (pdump_start == MAP_FAILED)
|
|
5066 pdump_start = 0;
|
|
5067 #endif
|
438
|
5068
|
428
|
5069 if (!pdump_start)
|
|
5070 {
|
440
|
5071 pdump_start = (char *)((((unsigned long)(xmalloc(length+255))) + 255) & ~255);
|
|
5072 read (pdump_fd, pdump_start, length);
|
428
|
5073 }
|
|
5074
|
|
5075 close (pdump_fd);
|
|
5076
|
|
5077 pdump_end = pdump_start + length;
|
|
5078
|
|
5079 staticidx = ((dump_header *)(pdump_start))->nb_staticpro;
|
440
|
5080 last_lrecord_type_index_assigned = ((dump_header *)pdump_start)->last_type;
|
428
|
5081 delta = ((EMACS_INT)pdump_start) - ((dump_header *)pdump_start)->reloc_address;
|
|
5082 p = pdump_start + ((dump_header *)pdump_start)->stab_offset;
|
|
5083
|
|
5084 /* Put back the staticvec in place */
|
|
5085 memcpy (staticvec, p, staticidx*sizeof (Lisp_Object *));
|
|
5086 p += staticidx*sizeof (Lisp_Object *);
|
|
5087 for (i=0; i<staticidx; i++)
|
|
5088 {
|
440
|
5089 Lisp_Object obj = PDUMP_READ (p, Lisp_Object);
|
|
5090 if (POINTER_TYPE_P (XTYPE (obj)))
|
|
5091 XSETOBJ (obj, XTYPE (obj), (char *) XPNTR (obj) + delta);
|
428
|
5092 *staticvec[i] = obj;
|
|
5093 }
|
|
5094
|
|
5095 /* Put back the dumpstructs */
|
|
5096 for (i=0; i<((dump_header *)pdump_start)->nb_structdmp; i++)
|
|
5097 {
|
440
|
5098 void **adr = PDUMP_READ (p, void **);
|
|
5099 *adr = (void *) (PDUMP_READ (p, char *) + delta);
|
428
|
5100 }
|
|
5101
|
|
5102 /* Put back the lrecord_implementations_table */
|
|
5103 memcpy (lrecord_implementations_table, p, sizeof (lrecord_implementations_table));
|
|
5104 p += sizeof (lrecord_implementations_table);
|
|
5105
|
|
5106 /* Give back their numbers to the lrecord implementations */
|
440
|
5107 for (i = 0; i < countof (lrecord_implementations_table); i++)
|
428
|
5108 if (lrecord_implementations_table[i])
|
|
5109 {
|
|
5110 *(lrecord_implementations_table[i]->lrecord_type_index) = i;
|
|
5111 last_lrecord_type_index_assigned = i;
|
|
5112 }
|
|
5113
|
|
5114 /* Do the relocations */
|
|
5115 pdump_rt_list = p;
|
|
5116 count = 2;
|
440
|
5117 for (;;)
|
428
|
5118 {
|
440
|
5119 pdump_reloc_table rt = PDUMP_READ (p, pdump_reloc_table);
|
|
5120 if (rt.desc)
|
|
5121 {
|
|
5122 for (i=0; i < rt.count; i++)
|
|
5123 {
|
|
5124 char *adr = delta + *(char **)p;
|
|
5125 *(char **)p = adr;
|
|
5126 pdump_reloc_one (adr, delta, rt.desc);
|
|
5127 p += sizeof (char *);
|
|
5128 }
|
|
5129 } else
|
|
5130 if (!(--count))
|
|
5131 break;
|
428
|
5132 }
|
|
5133
|
|
5134 /* Put the pdump_wire variables in place */
|
440
|
5135 count = PDUMP_READ (p, EMACS_INT);
|
428
|
5136
|
|
5137 for (i=0; i<count; i++)
|
|
5138 {
|
440
|
5139 Lisp_Object *var = PDUMP_READ (p, Lisp_Object *);
|
|
5140 Lisp_Object obj = PDUMP_READ (p, Lisp_Object);
|
|
5141
|
|
5142 if (POINTER_TYPE_P (XTYPE (obj)))
|
|
5143 XSETOBJ (obj, XTYPE (obj), (char *) XPNTR (obj) + delta);
|
|
5144
|
428
|
5145 *var = obj;
|
|
5146 }
|
|
5147
|
|
5148 /* Final cleanups */
|
|
5149 /* reorganize hash tables */
|
|
5150 p = pdump_rt_list;
|
440
|
5151 for (;;)
|
428
|
5152 {
|
440
|
5153 pdump_reloc_table rt = PDUMP_READ (p, pdump_reloc_table);
|
|
5154 if (!rt.desc)
|
428
|
5155 break;
|
440
|
5156 if (rt.desc == hash_table_description)
|
428
|
5157 {
|
440
|
5158 for (i=0; i < rt.count; i++)
|
|
5159 pdump_reorganize_hash_table (PDUMP_READ (p, Lisp_Object));
|
428
|
5160 break;
|
|
5161 } else
|
440
|
5162 p += sizeof (Lisp_Object) * rt.count;
|
428
|
5163 }
|
|
5164 return 1;
|
|
5165 }
|
|
5166
|
440
|
5167 #endif /* PDUMP */
|