0
|
1 /* Primitive operations on Lisp data types for XEmacs Lisp interpreter.
|
|
2 Copyright (C) 1985, 1986, 1988, 1992, 1993, 1994, 1995
|
|
3 Free Software Foundation, Inc.
|
|
4
|
|
5 This file is part of XEmacs.
|
|
6
|
|
7 XEmacs is free software; you can redistribute it and/or modify it
|
|
8 under the terms of the GNU General Public License as published by the
|
|
9 Free Software Foundation; either version 2, or (at your option) any
|
|
10 later version.
|
|
11
|
|
12 XEmacs is distributed in the hope that it will be useful, but WITHOUT
|
|
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
15 for more details.
|
|
16
|
|
17 You should have received a copy of the GNU General Public License
|
|
18 along with XEmacs; see the file COPYING. If not, write to
|
|
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
20 Boston, MA 02111-1307, USA. */
|
|
21
|
|
22 /* Synched up with: Mule 2.0, FSF 19.30. Some of FSF's data.c is in
|
|
23 XEmacs' symbols.c. */
|
|
24
|
|
25 /* This file has been Mule-ized. */
|
|
26
|
|
27 #include <config.h>
|
|
28 #include "lisp.h"
|
|
29
|
|
30 #include "buffer.h"
|
|
31 #include "bytecode.h"
|
272
|
32 #include "syssignal.h"
|
0
|
33
|
|
34 #ifdef LISP_FLOAT_TYPE
|
|
35 /* Need to define a differentiating symbol -- see sysfloat.h */
|
|
36 # define THIS_FILENAME data_c
|
|
37 # include "sysfloat.h"
|
|
38 #endif /* LISP_FLOAT_TYPE */
|
|
39
|
|
40 Lisp_Object Qnil, Qt, Qquote, Qlambda, Qunbound;
|
272
|
41 Lisp_Object Qerror_conditions, Qerror_message;
|
|
42 Lisp_Object Qerror, Qquit, Qwrong_type_argument, Qargs_out_of_range;
|
0
|
43 Lisp_Object Qvoid_variable, Qcyclic_variable_indirection;
|
|
44 Lisp_Object Qvoid_function, Qcyclic_function_indirection;
|
|
45 Lisp_Object Qsetting_constant, Qinvalid_read_syntax;
|
|
46 Lisp_Object Qmalformed_list, Qmalformed_property_list;
|
|
47 Lisp_Object Qcircular_list, Qcircular_property_list;
|
|
48 Lisp_Object Qinvalid_function, Qwrong_number_of_arguments, Qno_catch;
|
|
49 Lisp_Object Qio_error, Qend_of_file;
|
|
50 Lisp_Object Qarith_error, Qrange_error, Qdomain_error;
|
|
51 Lisp_Object Qsingularity_error, Qoverflow_error, Qunderflow_error;
|
|
52 Lisp_Object Qbeginning_of_buffer, Qend_of_buffer, Qbuffer_read_only;
|
272
|
53 Lisp_Object Qintegerp, Qnatnump, Qsymbolp, Qkeywordp;
|
|
54 Lisp_Object Qlistp, Qtrue_list_p, Qweak_listp;
|
380
|
55 Lisp_Object Qconsp, Qsubrp;
|
272
|
56 Lisp_Object Qcharacterp, Qstringp, Qarrayp, Qsequencep, Qvectorp;
|
|
57 Lisp_Object Qchar_or_string_p, Qmarkerp, Qinteger_or_marker_p, Qbufferp;
|
0
|
58 Lisp_Object Qinteger_or_char_p, Qinteger_char_or_marker_p;
|
272
|
59 Lisp_Object Qnumberp, Qnumber_or_marker_p, Qnumber_char_or_marker_p;
|
|
60 Lisp_Object Qbit_vectorp, Qbitp, Qcons, Qkeyword, Qcdr, Qignore;
|
0
|
61
|
|
62 #ifdef LISP_FLOAT_TYPE
|
|
63 Lisp_Object Qfloatp;
|
|
64 #endif
|
70
|
65
|
|
66 #ifdef DEBUG_XEMACS
|
|
67
|
|
68 int debug_issue_ebola_notices;
|
|
69
|
|
70 int debug_ebola_backtrace_length;
|
|
71
|
161
|
72 #if 0
|
|
73 /*#ifndef LRECORD_SYMBOL*/
|
159
|
74 #include "backtrace.h"
|
161
|
75 #endif
|
159
|
76
|
70
|
77 int
|
|
78 eq_with_ebola_notice (Lisp_Object obj1, Lisp_Object obj2)
|
|
79 {
|
380
|
80 if (debug_issue_ebola_notices != -42 /* abracadabra */ &&
|
|
81 (((CHARP (obj1) && INTP (obj2)) || (CHARP (obj2) && INTP (obj1)))
|
|
82 && (debug_issue_ebola_notices >= 2
|
|
83 || XCHAR_OR_INT (obj1) == XCHAR_OR_INT (obj2))))
|
70
|
84 {
|
380
|
85 write_c_string ("Comparison between integer and character is constant nil (",
|
|
86 Qexternal_debugging_output);
|
70
|
87 Fprinc (obj1, Qexternal_debugging_output);
|
380
|
88 write_c_string (" and ", Qexternal_debugging_output);
|
70
|
89 Fprinc (obj2, Qexternal_debugging_output);
|
380
|
90 write_c_string (")\n", Qexternal_debugging_output);
|
70
|
91 debug_short_backtrace (debug_ebola_backtrace_length);
|
|
92 }
|
|
93 return EQ (obj1, obj2);
|
|
94 }
|
|
95
|
|
96 #endif /* DEBUG_XEMACS */
|
|
97
|
|
98
|
0
|
99
|
|
100 Lisp_Object
|
|
101 wrong_type_argument (Lisp_Object predicate, Lisp_Object value)
|
|
102 {
|
|
103 /* This function can GC */
|
|
104 REGISTER Lisp_Object tem;
|
|
105 do
|
|
106 {
|
|
107 value = Fsignal (Qwrong_type_argument, list2 (predicate, value));
|
|
108 tem = call1 (predicate, value);
|
|
109 }
|
|
110 while (NILP (tem));
|
|
111 return value;
|
|
112 }
|
|
113
|
|
114 DOESNT_RETURN
|
|
115 dead_wrong_type_argument (Lisp_Object predicate, Lisp_Object value)
|
|
116 {
|
|
117 signal_error (Qwrong_type_argument, list2 (predicate, value));
|
|
118 }
|
|
119
|
20
|
120 DEFUN ("wrong-type-argument", Fwrong_type_argument, 2, 2, 0, /*
|
0
|
121 Signal an error until the correct type value is given by the user.
|
|
122 This function loops, signalling a continuable `wrong-type-argument' error
|
|
123 with PREDICATE and VALUE as the data associated with the error and then
|
|
124 calling PREDICATE on the returned value, until the value gotten satisfies
|
|
125 PREDICATE. At that point, the gotten value is returned.
|
20
|
126 */
|
|
127 (predicate, value))
|
0
|
128 {
|
|
129 return wrong_type_argument (predicate, value);
|
|
130 }
|
|
131
|
|
132 DOESNT_RETURN
|
276
|
133 pure_write_error (Lisp_Object obj)
|
0
|
134 {
|
276
|
135 signal_simple_error ("Attempt to modify read-only object", obj);
|
0
|
136 }
|
|
137
|
|
138 DOESNT_RETURN
|
|
139 args_out_of_range (Lisp_Object a1, Lisp_Object a2)
|
|
140 {
|
|
141 signal_error (Qargs_out_of_range, list2 (a1, a2));
|
|
142 }
|
|
143
|
|
144 DOESNT_RETURN
|
|
145 args_out_of_range_3 (Lisp_Object a1, Lisp_Object a2, Lisp_Object a3)
|
|
146 {
|
|
147 signal_error (Qargs_out_of_range, list3 (a1, a2, a3));
|
|
148 }
|
|
149
|
|
150 void
|
|
151 check_int_range (int val, int min, int max)
|
|
152 {
|
|
153 if (val < min || val > max)
|
272
|
154 args_out_of_range_3 (make_int (val), make_int (min), make_int (max));
|
0
|
155 }
|
|
156
|
|
157 /* On some machines, XINT needs a temporary location.
|
|
158 Here it is, in case it is needed. */
|
|
159
|
|
160 EMACS_INT sign_extend_temp;
|
|
161
|
|
162 /* On a few machines, XINT can only be done by calling this. */
|
|
163 /* XEmacs: only used by m/convex.h */
|
|
164 int sign_extend_lisp_int (EMACS_INT num);
|
|
165 int
|
|
166 sign_extend_lisp_int (EMACS_INT num)
|
|
167 {
|
|
168 if (num & (1L << (VALBITS - 1)))
|
|
169 return num | ((-1L) << VALBITS);
|
|
170 else
|
|
171 return num & ((1L << VALBITS) - 1);
|
|
172 }
|
|
173
|
|
174
|
|
175 /* Data type predicates */
|
|
176
|
20
|
177 DEFUN ("eq", Feq, 2, 2, 0, /*
|
272
|
178 Return t if the two args are the same Lisp object.
|
20
|
179 */
|
|
180 (obj1, obj2))
|
0
|
181 {
|
70
|
182 return EQ_WITH_EBOLA_NOTICE (obj1, obj2) ? Qt : Qnil;
|
|
183 }
|
|
184
|
|
185 DEFUN ("old-eq", Fold_eq, 2, 2, 0, /*
|
272
|
186 Return t if the two args are (in most cases) the same Lisp object.
|
70
|
187
|
|
188 Special kludge: A character is considered `old-eq' to its equivalent integer
|
|
189 even though they are not the same object and are in fact of different
|
|
190 types. This is ABSOLUTELY AND UTTERLY HORRENDOUS but is necessary to
|
|
191 preserve byte-code compatibility with v19. This kludge is known as the
|
280
|
192 \"char-int confoundance disease\" and appears in a number of other
|
70
|
193 functions with `old-foo' equivalents.
|
|
194
|
|
195 Do not use this function!
|
|
196 */
|
|
197 (obj1, obj2))
|
|
198 {
|
251
|
199 /* #### blasphemy */
|
70
|
200 return HACKEQ_UNSAFE (obj1, obj2) ? Qt : Qnil;
|
0
|
201 }
|
|
202
|
20
|
203 DEFUN ("null", Fnull, 1, 1, 0, /*
|
272
|
204 Return t if OBJECT is nil.
|
20
|
205 */
|
|
206 (object))
|
0
|
207 {
|
16
|
208 return NILP (object) ? Qt : Qnil;
|
0
|
209 }
|
|
210
|
20
|
211 DEFUN ("consp", Fconsp, 1, 1, 0, /*
|
380
|
212 Return t if OBJECT is a cons cell. `nil' is not a cons cell.
|
20
|
213 */
|
|
214 (object))
|
0
|
215 {
|
16
|
216 return CONSP (object) ? Qt : Qnil;
|
0
|
217 }
|
|
218
|
20
|
219 DEFUN ("atom", Fatom, 1, 1, 0, /*
|
380
|
220 Return t if OBJECT is not a cons cell. `nil' is not a cons cell.
|
20
|
221 */
|
|
222 (object))
|
0
|
223 {
|
16
|
224 return CONSP (object) ? Qnil : Qt;
|
0
|
225 }
|
|
226
|
20
|
227 DEFUN ("listp", Flistp, 1, 1, 0, /*
|
380
|
228 Return t if OBJECT is a list. `nil' is a list.
|
20
|
229 */
|
|
230 (object))
|
0
|
231 {
|
272
|
232 return LISTP (object) ? Qt : Qnil;
|
0
|
233 }
|
|
234
|
20
|
235 DEFUN ("nlistp", Fnlistp, 1, 1, 0, /*
|
380
|
236 Return t if OBJECT is not a list. `nil' is a list.
|
20
|
237 */
|
|
238 (object))
|
0
|
239 {
|
272
|
240 return LISTP (object) ? Qnil : Qt;
|
|
241 }
|
|
242
|
|
243 DEFUN ("true-list-p", Ftrue_list_p, 1, 1, 0, /*
|
|
244 Return t if OBJECT is a non-dotted, i.e. nil-terminated, list.
|
|
245 */
|
|
246 (object))
|
|
247 {
|
|
248 return TRUE_LIST_P (object) ? Qt : Qnil;
|
0
|
249 }
|
|
250
|
20
|
251 DEFUN ("symbolp", Fsymbolp, 1, 1, 0, /*
|
272
|
252 Return t if OBJECT is a symbol.
|
20
|
253 */
|
|
254 (object))
|
0
|
255 {
|
16
|
256 return SYMBOLP (object) ? Qt : Qnil;
|
0
|
257 }
|
|
258
|
20
|
259 DEFUN ("keywordp", Fkeywordp, 1, 1, 0, /*
|
272
|
260 Return t if OBJECT is a keyword.
|
20
|
261 */
|
|
262 (object))
|
0
|
263 {
|
16
|
264 return KEYWORDP (object) ? Qt : Qnil;
|
0
|
265 }
|
|
266
|
20
|
267 DEFUN ("vectorp", Fvectorp, 1, 1, 0, /*
|
380
|
268 Return t if OBJECT is a vector.
|
20
|
269 */
|
|
270 (object))
|
0
|
271 {
|
16
|
272 return VECTORP (object) ? Qt : Qnil;
|
0
|
273 }
|
|
274
|
20
|
275 DEFUN ("bit-vector-p", Fbit_vector_p, 1, 1, 0, /*
|
272
|
276 Return t if OBJECT is a bit vector.
|
20
|
277 */
|
|
278 (object))
|
0
|
279 {
|
16
|
280 return BIT_VECTORP (object) ? Qt : Qnil;
|
0
|
281 }
|
|
282
|
20
|
283 DEFUN ("stringp", Fstringp, 1, 1, 0, /*
|
272
|
284 Return t if OBJECT is a string.
|
20
|
285 */
|
|
286 (object))
|
0
|
287 {
|
16
|
288 return STRINGP (object) ? Qt : Qnil;
|
0
|
289 }
|
|
290
|
20
|
291 DEFUN ("arrayp", Farrayp, 1, 1, 0, /*
|
272
|
292 Return t if OBJECT is an array (string, vector, or bit vector).
|
20
|
293 */
|
|
294 (object))
|
0
|
295 {
|
272
|
296 return (VECTORP (object) ||
|
|
297 STRINGP (object) ||
|
|
298 BIT_VECTORP (object))
|
16
|
299 ? Qt : Qnil;
|
0
|
300 }
|
|
301
|
20
|
302 DEFUN ("sequencep", Fsequencep, 1, 1, 0, /*
|
272
|
303 Return t if OBJECT is a sequence (list or array).
|
20
|
304 */
|
|
305 (object))
|
0
|
306 {
|
380
|
307 return (LISTP (object) ||
|
272
|
308 VECTORP (object) ||
|
|
309 STRINGP (object) ||
|
|
310 BIT_VECTORP (object))
|
16
|
311 ? Qt : Qnil;
|
0
|
312 }
|
|
313
|
20
|
314 DEFUN ("markerp", Fmarkerp, 1, 1, 0, /*
|
272
|
315 Return t if OBJECT is a marker (editor pointer).
|
20
|
316 */
|
|
317 (object))
|
0
|
318 {
|
16
|
319 return MARKERP (object) ? Qt : Qnil;
|
0
|
320 }
|
|
321
|
20
|
322 DEFUN ("subrp", Fsubrp, 1, 1, 0, /*
|
272
|
323 Return t if OBJECT is a built-in function.
|
20
|
324 */
|
|
325 (object))
|
0
|
326 {
|
16
|
327 return SUBRP (object) ? Qt : Qnil;
|
0
|
328 }
|
|
329
|
20
|
330 DEFUN ("subr-min-args", Fsubr_min_args, 1, 1, 0, /*
|
0
|
331 Return minimum number of args built-in function SUBR may be called with.
|
20
|
332 */
|
|
333 (subr))
|
0
|
334 {
|
|
335 CHECK_SUBR (subr);
|
|
336 return make_int (XSUBR (subr)->min_args);
|
|
337 }
|
|
338
|
20
|
339 DEFUN ("subr-max-args", Fsubr_max_args, 1, 1, 0, /*
|
0
|
340 Return maximum number of args built-in function SUBR may be called with,
|
16
|
341 or nil if it takes an arbitrary number of arguments or is a special form.
|
20
|
342 */
|
|
343 (subr))
|
0
|
344 {
|
|
345 int nargs;
|
|
346 CHECK_SUBR (subr);
|
|
347 nargs = XSUBR (subr)->max_args;
|
|
348 if (nargs == MANY || nargs == UNEVALLED)
|
|
349 return Qnil;
|
|
350 else
|
|
351 return make_int (nargs);
|
|
352 }
|
|
353
|
209
|
354 DEFUN ("subr-interactive", Fsubr_interactive, 1, 1, 0, /*
|
|
355 Return the interactive spec of the subr object, or nil.
|
|
356 If non-nil, the return value will be a list whose first element is
|
|
357 `interactive' and whose second element is the interactive spec.
|
|
358 */
|
|
359 (subr))
|
|
360 {
|
|
361 CONST char *prompt;
|
|
362 CHECK_SUBR (subr);
|
|
363 prompt = XSUBR (subr)->prompt;
|
|
364 return prompt ? list2 (Qinteractive, build_string (prompt)) : Qnil;
|
|
365 }
|
|
366
|
0
|
367
|
20
|
368 DEFUN ("characterp", Fcharacterp, 1, 1, 0, /*
|
272
|
369 Return t if OBJECT is a character.
|
280
|
370 Unlike in XEmacs v19 and FSF Emacs, a character is its own primitive type.
|
70
|
371 Any character can be converted into an equivalent integer using
|
280
|
372 `char-int'. To convert the other way, use `int-char'; however,
|
70
|
373 only some integers can be converted into characters. Such an integer
|
110
|
374 is called a `char-int'; see `char-int-p'.
|
70
|
375
|
|
376 Some functions that work on integers (e.g. the comparison functions
|
|
377 <, <=, =, /=, etc. and the arithmetic functions +, -, *, etc.)
|
|
378 accept characters and implicitly convert them into integers. In
|
|
379 general, functions that work on characters also accept char-ints and
|
|
380 implicitly convert them into characters. WARNING: Neither of these
|
|
381 behaviors is very desirable, and they are maintained for backward
|
|
382 compatibility with old E-Lisp programs that confounded characters and
|
|
383 integers willy-nilly. These behaviors may change in the future; therefore,
|
|
384 do not rely on them. Instead, use the character-specific functions such
|
|
385 as `char='.
|
20
|
386 */
|
|
387 (object))
|
0
|
388 {
|
16
|
389 return CHARP (object) ? Qt : Qnil;
|
0
|
390 }
|
|
391
|
104
|
392 DEFUN ("char-to-int", Fchar_to_int, 1, 1, 0, /*
|
70
|
393 Convert a character into an equivalent integer.
|
|
394 The resulting integer will always be non-negative. The integers in
|
|
395 the range 0 - 255 map to characters as follows:
|
|
396
|
|
397 0 - 31 Control set 0
|
|
398 32 - 127 ASCII
|
|
399 128 - 159 Control set 1
|
|
400 160 - 255 Right half of ISO-8859-1
|
|
401
|
|
402 If support for Mule does not exist, these are the only valid character
|
|
403 values. When Mule support exists, the values assigned to other characters
|
|
404 may vary depending on the particular version of XEmacs, the order in which
|
|
405 character sets were loaded, etc., and you should not depend on them.
|
|
406 */
|
|
407 (ch))
|
|
408 {
|
|
409 CHECK_CHAR (ch);
|
|
410 return make_int (XCHAR (ch));
|
|
411 }
|
|
412
|
104
|
413 DEFUN ("int-to-char", Fint_to_char, 1, 1, 0, /*
|
70
|
414 Convert an integer into the equivalent character.
|
|
415 Not all integers correspond to valid characters; use `char-int-p' to
|
|
416 determine whether this is the case. If the integer cannot be converted,
|
|
417 nil is returned.
|
|
418 */
|
|
419 (integer))
|
|
420 {
|
|
421 CHECK_INT (integer);
|
|
422 if (CHAR_INTP (integer))
|
|
423 return make_char (XINT (integer));
|
|
424 else
|
|
425 return Qnil;
|
|
426 }
|
|
427
|
|
428 DEFUN ("char-int-p", Fchar_int_p, 1, 1, 0, /*
|
272
|
429 Return t if OBJECT is an integer that can be converted into a character.
|
280
|
430 See `char-int'.
|
70
|
431 */
|
|
432 (object))
|
|
433 {
|
|
434 return CHAR_INTP (object) ? Qt : Qnil;
|
|
435 }
|
|
436
|
|
437 DEFUN ("char-or-char-int-p", Fchar_or_char_int_p, 1, 1, 0, /*
|
272
|
438 Return t if OBJECT is a character or an integer that can be converted into one.
|
70
|
439 */
|
|
440 (object))
|
|
441 {
|
|
442 return CHAR_OR_CHAR_INTP (object) ? Qt : Qnil;
|
|
443 }
|
|
444
|
20
|
445 DEFUN ("char-or-string-p", Fchar_or_string_p, 1, 1, 0, /*
|
272
|
446 Return t if OBJECT is a character (or a char-int) or a string.
|
70
|
447 It is semi-hateful that we allow a char-int here, as it goes against
|
|
448 the name of this function, but it makes the most sense considering the
|
|
449 other steps we take to maintain compatibility with the old character/integer
|
|
450 confoundedness in older versions of E-Lisp.
|
20
|
451 */
|
|
452 (object))
|
0
|
453 {
|
16
|
454 return CHAR_OR_CHAR_INTP (object) || STRINGP (object) ? Qt : Qnil;
|
0
|
455 }
|
|
456
|
20
|
457 DEFUN ("integerp", Fintegerp, 1, 1, 0, /*
|
272
|
458 Return t if OBJECT is an integer.
|
20
|
459 */
|
|
460 (object))
|
0
|
461 {
|
16
|
462 return INTP (object) ? Qt : Qnil;
|
0
|
463 }
|
|
464
|
20
|
465 DEFUN ("integer-or-marker-p", Finteger_or_marker_p, 1, 1, 0, /*
|
272
|
466 Return t if OBJECT is an integer or a marker (editor pointer).
|
20
|
467 */
|
|
468 (object))
|
0
|
469 {
|
16
|
470 return INTP (object) || MARKERP (object) ? Qt : Qnil;
|
0
|
471 }
|
|
472
|
70
|
473 DEFUN ("integer-or-char-p", Finteger_or_char_p, 1, 1, 0, /*
|
272
|
474 Return t if OBJECT is an integer or a character.
|
70
|
475 */
|
|
476 (object))
|
|
477 {
|
|
478 return INTP (object) || CHARP (object) ? Qt : Qnil;
|
|
479 }
|
|
480
|
|
481 DEFUN ("integer-char-or-marker-p", Finteger_char_or_marker_p, 1, 1, 0, /*
|
272
|
482 Return t if OBJECT is an integer, character or a marker (editor pointer).
|
70
|
483 */
|
|
484 (object))
|
|
485 {
|
|
486 return INTP (object) || CHARP (object) || MARKERP (object) ? Qt : Qnil;
|
|
487 }
|
|
488
|
20
|
489 DEFUN ("natnump", Fnatnump, 1, 1, 0, /*
|
272
|
490 Return t if OBJECT is a nonnegative integer.
|
20
|
491 */
|
|
492 (object))
|
0
|
493 {
|
16
|
494 return NATNUMP (object) ? Qt : Qnil;
|
0
|
495 }
|
|
496
|
20
|
497 DEFUN ("bitp", Fbitp, 1, 1, 0, /*
|
272
|
498 Return t if OBJECT is a bit (0 or 1).
|
20
|
499 */
|
|
500 (object))
|
0
|
501 {
|
16
|
502 return BITP (object) ? Qt : Qnil;
|
0
|
503 }
|
|
504
|
20
|
505 DEFUN ("numberp", Fnumberp, 1, 1, 0, /*
|
272
|
506 Return t if OBJECT is a number (floating point or integer).
|
20
|
507 */
|
|
508 (object))
|
0
|
509 {
|
16
|
510 return INT_OR_FLOATP (object) ? Qt : Qnil;
|
0
|
511 }
|
|
512
|
20
|
513 DEFUN ("number-or-marker-p", Fnumber_or_marker_p, 1, 1, 0, /*
|
272
|
514 Return t if OBJECT is a number or a marker.
|
20
|
515 */
|
|
516 (object))
|
0
|
517 {
|
16
|
518 return INT_OR_FLOATP (object) || MARKERP (object) ? Qt : Qnil;
|
0
|
519 }
|
|
520
|
70
|
521 DEFUN ("number-char-or-marker-p", Fnumber_char_or_marker_p, 1, 1, 0, /*
|
272
|
522 Return t if OBJECT is a number, character or a marker.
|
70
|
523 */
|
|
524 (object))
|
|
525 {
|
|
526 return (INT_OR_FLOATP (object) ||
|
|
527 CHARP (object) ||
|
|
528 MARKERP (object))
|
|
529 ? Qt : Qnil;
|
|
530 }
|
|
531
|
0
|
532 #ifdef LISP_FLOAT_TYPE
|
20
|
533 DEFUN ("floatp", Ffloatp, 1, 1, 0, /*
|
272
|
534 Return t if OBJECT is a floating point number.
|
20
|
535 */
|
|
536 (object))
|
0
|
537 {
|
16
|
538 return FLOATP (object) ? Qt : Qnil;
|
0
|
539 }
|
|
540 #endif /* LISP_FLOAT_TYPE */
|
|
541
|
20
|
542 DEFUN ("type-of", Ftype_of, 1, 1, 0, /*
|
0
|
543 Return a symbol representing the type of OBJECT.
|
20
|
544 */
|
|
545 (object))
|
0
|
546 {
|
380
|
547 switch (XTYPE (object))
|
|
548 {
|
|
549 #ifndef LRECORD_CONS
|
|
550 case Lisp_Type_Cons: return Qcons;
|
|
551 #endif
|
|
552
|
|
553 #ifndef LRECORD_SYMBOL
|
|
554 case Lisp_Type_Symbol: return Qsymbol;
|
|
555 #endif
|
173
|
556
|
380
|
557 #ifndef LRECORD_STRING
|
|
558 case Lisp_Type_String: return Qstring;
|
|
559 #endif
|
|
560
|
|
561 #ifndef LRECORD_VECTOR
|
|
562 case Lisp_Type_Vector: return Qvector;
|
|
563 #endif
|
|
564
|
|
565 case Lisp_Type_Record:
|
|
566 return intern (XRECORD_LHEADER_IMPLEMENTATION (object)->name);
|
|
567
|
|
568 case Lisp_Type_Char: return Qcharacter;
|
|
569
|
|
570 default: return Qinteger;
|
|
571 }
|
0
|
572 }
|
|
573
|
|
574
|
|
575 /* Extract and set components of lists */
|
|
576
|
20
|
577 DEFUN ("car", Fcar, 1, 1, 0, /*
|
0
|
578 Return the car of LIST. If arg is nil, return nil.
|
|
579 Error if arg is not nil and not a cons cell. See also `car-safe'.
|
20
|
580 */
|
|
581 (list))
|
0
|
582 {
|
|
583 while (1)
|
|
584 {
|
|
585 if (CONSP (list))
|
|
586 return XCAR (list);
|
|
587 else if (NILP (list))
|
|
588 return Qnil;
|
|
589 else
|
272
|
590 list = wrong_type_argument (Qlistp, list);
|
0
|
591 }
|
|
592 }
|
|
593
|
20
|
594 DEFUN ("car-safe", Fcar_safe, 1, 1, 0, /*
|
0
|
595 Return the car of OBJECT if it is a cons cell, or else nil.
|
20
|
596 */
|
|
597 (object))
|
0
|
598 {
|
16
|
599 return CONSP (object) ? XCAR (object) : Qnil;
|
0
|
600 }
|
|
601
|
20
|
602 DEFUN ("cdr", Fcdr, 1, 1, 0, /*
|
0
|
603 Return the cdr of LIST. If arg is nil, return nil.
|
|
604 Error if arg is not nil and not a cons cell. See also `cdr-safe'.
|
20
|
605 */
|
|
606 (list))
|
0
|
607 {
|
|
608 while (1)
|
|
609 {
|
|
610 if (CONSP (list))
|
|
611 return XCDR (list);
|
|
612 else if (NILP (list))
|
|
613 return Qnil;
|
|
614 else
|
272
|
615 list = wrong_type_argument (Qlistp, list);
|
0
|
616 }
|
|
617 }
|
|
618
|
20
|
619 DEFUN ("cdr-safe", Fcdr_safe, 1, 1, 0, /*
|
272
|
620 Return the cdr of OBJECT if it is a cons cell, else nil.
|
20
|
621 */
|
|
622 (object))
|
0
|
623 {
|
16
|
624 return CONSP (object) ? XCDR (object) : Qnil;
|
0
|
625 }
|
|
626
|
20
|
627 DEFUN ("setcar", Fsetcar, 2, 2, 0, /*
|
272
|
628 Set the car of CONSCELL to be NEWCAR. Return NEWCAR.
|
20
|
629 */
|
|
630 (conscell, newcar))
|
0
|
631 {
|
|
632 if (!CONSP (conscell))
|
|
633 conscell = wrong_type_argument (Qconsp, conscell);
|
|
634
|
|
635 CHECK_IMPURE (conscell);
|
|
636 XCAR (conscell) = newcar;
|
|
637 return newcar;
|
|
638 }
|
|
639
|
20
|
640 DEFUN ("setcdr", Fsetcdr, 2, 2, 0, /*
|
272
|
641 Set the cdr of CONSCELL to be NEWCDR. Return NEWCDR.
|
20
|
642 */
|
|
643 (conscell, newcdr))
|
0
|
644 {
|
|
645 if (!CONSP (conscell))
|
|
646 conscell = wrong_type_argument (Qconsp, conscell);
|
|
647
|
|
648 CHECK_IMPURE (conscell);
|
|
649 XCDR (conscell) = newcdr;
|
|
650 return newcdr;
|
|
651 }
|
|
652
|
380
|
653 /* Find the function at the end of a chain of symbol function indirections.
|
0
|
654
|
380
|
655 If OBJECT is a symbol, find the end of its function chain and
|
0
|
656 return the value found there. If OBJECT is not a symbol, just
|
|
657 return it. If there is a cycle in the function chain, signal a
|
|
658 cyclic-function-indirection error.
|
|
659
|
|
660 This is like Findirect_function, except that it doesn't signal an
|
|
661 error if the chain ends up unbound. */
|
|
662 Lisp_Object
|
|
663 indirect_function (Lisp_Object object, int errorp)
|
|
664 {
|
380
|
665 #define FUNCTION_INDIRECTION_SUSPICION_LENGTH 16
|
|
666 Lisp_Object tortoise, hare;
|
|
667 int count;
|
0
|
668
|
380
|
669 for (hare = tortoise = object, count = 0;
|
|
670 SYMBOLP (hare);
|
|
671 hare = XSYMBOL (hare)->function, count++)
|
0
|
672 {
|
380
|
673 if (count < FUNCTION_INDIRECTION_SUSPICION_LENGTH) continue;
|
0
|
674
|
380
|
675 if (count & 1)
|
|
676 tortoise = XSYMBOL (tortoise)->function;
|
0
|
677 if (EQ (hare, tortoise))
|
173
|
678 return Fsignal (Qcyclic_function_indirection, list1 (object));
|
0
|
679 }
|
|
680
|
380
|
681 if (errorp && UNBOUNDP (hare))
|
|
682 signal_void_function_error (object);
|
|
683
|
0
|
684 return hare;
|
|
685 }
|
|
686
|
20
|
687 DEFUN ("indirect-function", Findirect_function, 1, 1, 0, /*
|
0
|
688 Return the function at the end of OBJECT's function chain.
|
|
689 If OBJECT is a symbol, follow all function indirections and return
|
|
690 the final function binding.
|
|
691 If OBJECT is not a symbol, just return it.
|
|
692 Signal a void-function error if the final symbol is unbound.
|
|
693 Signal a cyclic-function-indirection error if there is a loop in the
|
|
694 function chain of symbols.
|
20
|
695 */
|
|
696 (object))
|
0
|
697 {
|
|
698 return indirect_function (object, 1);
|
|
699 }
|
|
700
|
|
701 /* Extract and set vector and string elements */
|
|
702
|
20
|
703 DEFUN ("aref", Faref, 2, 2, 0, /*
|
0
|
704 Return the element of ARRAY at index INDEX.
|
380
|
705 ARRAY may be a vector, bit vector, or string. INDEX starts at 0.
|
20
|
706 */
|
380
|
707 (array, index_))
|
0
|
708 {
|
380
|
709 int idx;
|
0
|
710
|
|
711 retry:
|
380
|
712
|
|
713 if (INTP (index_)) idx = XINT (index_);
|
|
714 else if (CHARP (index_)) idx = XCHAR (index_); /* yuck! */
|
|
715 else
|
0
|
716 {
|
380
|
717 index_ = wrong_type_argument (Qinteger_or_char_p, index_);
|
|
718 goto retry;
|
0
|
719 }
|
380
|
720
|
|
721 if (idx < 0) goto range_error;
|
|
722
|
0
|
723 if (VECTORP (array))
|
|
724 {
|
380
|
725 if (idx >= XVECTOR_LENGTH (array)) goto range_error;
|
|
726 return XVECTOR_DATA (array)[idx];
|
0
|
727 }
|
|
728 else if (BIT_VECTORP (array))
|
|
729 {
|
380
|
730 if (idx >= bit_vector_length (XBIT_VECTOR (array))) goto range_error;
|
|
731 return make_int (bit_vector_bit (XBIT_VECTOR (array), idx));
|
0
|
732 }
|
|
733 else if (STRINGP (array))
|
|
734 {
|
380
|
735 if (idx >= XSTRING_CHAR_LENGTH (array)) goto range_error;
|
|
736 return make_char (string_char (XSTRING (array), idx));
|
0
|
737 }
|
|
738 #ifdef LOSING_BYTECODE
|
|
739 else if (COMPILED_FUNCTIONP (array))
|
|
740 {
|
|
741 /* Weird, gross compatibility kludge */
|
380
|
742 return Felt (array, index_);
|
0
|
743 }
|
|
744 #endif
|
|
745 else
|
|
746 {
|
|
747 check_losing_bytecode ("aref", array);
|
|
748 array = wrong_type_argument (Qarrayp, array);
|
|
749 goto retry;
|
|
750 }
|
380
|
751
|
|
752 range_error:
|
|
753 args_out_of_range (array, index_);
|
|
754 return Qnil; /* not reached */
|
0
|
755 }
|
|
756
|
20
|
757 DEFUN ("aset", Faset, 3, 3, 0, /*
|
380
|
758 Store into the element of ARRAY at index INDEX the value NEWVAL.
|
|
759 ARRAY may be a vector, bit vector, or string. INDEX starts at 0.
|
20
|
760 */
|
380
|
761 (array, index_, newval))
|
0
|
762 {
|
380
|
763 int idx;
|
|
764
|
|
765 retry:
|
0
|
766
|
380
|
767 if (INTP (index_)) idx = XINT (index_);
|
|
768 else if (CHARP (index_)) idx = XCHAR (index_); /* yuck! */
|
|
769 else
|
|
770 {
|
|
771 index_ = wrong_type_argument (Qinteger_or_char_p, index_);
|
|
772 goto retry;
|
|
773 }
|
0
|
774
|
380
|
775 if (idx < 0) goto range_error;
|
|
776
|
0
|
777 CHECK_IMPURE (array);
|
|
778
|
|
779 if (VECTORP (array))
|
|
780 {
|
380
|
781 if (idx >= XVECTOR_LENGTH (array)) goto range_error;
|
|
782 XVECTOR_DATA (array)[idx] = newval;
|
0
|
783 }
|
|
784 else if (BIT_VECTORP (array))
|
|
785 {
|
380
|
786 if (idx >= bit_vector_length (XBIT_VECTOR (array))) goto range_error;
|
0
|
787 CHECK_BIT (newval);
|
380
|
788 set_bit_vector_bit (XBIT_VECTOR (array), idx, !ZEROP (newval));
|
0
|
789 }
|
380
|
790 else if (STRINGP (array))
|
0
|
791 {
|
|
792 CHECK_CHAR_COERCE_INT (newval);
|
380
|
793 if (idx >= XSTRING_CHAR_LENGTH (array)) goto range_error;
|
|
794 set_string_char (XSTRING (array), idx, XCHAR (newval));
|
0
|
795 bump_string_modiff (array);
|
|
796 }
|
380
|
797 else
|
|
798 {
|
|
799 array = wrong_type_argument (Qarrayp, array);
|
|
800 goto retry;
|
|
801 }
|
0
|
802
|
|
803 return newval;
|
|
804
|
380
|
805 range_error:
|
|
806 args_out_of_range (array, index_);
|
|
807 return Qnil; /* not reached */
|
0
|
808 }
|
|
809
|
|
810
|
|
811 /**********************************************************************/
|
|
812 /* Arithmetic functions */
|
|
813 /**********************************************************************/
|
380
|
814 typedef struct
|
0
|
815 {
|
380
|
816 int int_p;
|
|
817 union
|
|
818 {
|
|
819 int ival;
|
|
820 double dval;
|
|
821 } c;
|
|
822 } int_or_double;
|
0
|
823
|
380
|
824 static void
|
|
825 number_char_or_marker_to_int_or_double (Lisp_Object obj, int_or_double *p)
|
|
826 {
|
|
827 retry:
|
|
828 p->int_p = 1;
|
|
829 if (INTP (obj)) p->c.ival = XINT (obj);
|
|
830 else if (CHARP (obj)) p->c.ival = XCHAR (obj);
|
|
831 else if (MARKERP (obj)) p->c.ival = marker_position (obj);
|
|
832 #ifdef LISP_FLOAT_TYPE
|
|
833 else if (FLOATP (obj)) p->c.dval = XFLOAT_DATA (obj), p->int_p = 0;
|
|
834 #endif
|
|
835 else
|
|
836 {
|
|
837 obj = wrong_type_argument (Qnumber_char_or_marker_p, obj);
|
|
838 goto retry;
|
0
|
839 }
|
|
840 }
|
|
841
|
380
|
842 static double
|
|
843 number_char_or_marker_to_double (Lisp_Object obj)
|
|
844 {
|
|
845 retry:
|
|
846 if (INTP (obj)) return (double) XINT (obj);
|
|
847 else if (CHARP (obj)) return (double) XCHAR (obj);
|
|
848 else if (MARKERP (obj)) return (double) marker_position (obj);
|
|
849 #ifdef LISP_FLOAT_TYPE
|
|
850 else if (FLOATP (obj)) return XFLOAT_DATA (obj);
|
|
851 #endif
|
|
852 else
|
|
853 {
|
|
854 obj = wrong_type_argument (Qnumber_char_or_marker_p, obj);
|
|
855 goto retry;
|
|
856 }
|
|
857 }
|
|
858
|
|
859 static int
|
|
860 integer_char_or_marker_to_int (Lisp_Object obj)
|
0
|
861 {
|
380
|
862 retry:
|
|
863 if (INTP (obj)) return XINT (obj);
|
|
864 else if (CHARP (obj)) return XCHAR (obj);
|
|
865 else if (MARKERP (obj)) return marker_position (obj);
|
|
866 else
|
|
867 {
|
|
868 obj = wrong_type_argument (Qinteger_char_or_marker_p, obj);
|
|
869 goto retry;
|
|
870 }
|
|
871 }
|
70
|
872
|
380
|
873 #define ARITHCOMPARE_MANY(op) \
|
|
874 { \
|
|
875 int_or_double iod1, iod2, *p = &iod1, *q = &iod2; \
|
|
876 Lisp_Object *args_end = args + nargs; \
|
|
877 \
|
|
878 number_char_or_marker_to_int_or_double (*args++, p); \
|
|
879 \
|
|
880 while (args < args_end) \
|
|
881 { \
|
|
882 number_char_or_marker_to_int_or_double (*args++, q); \
|
|
883 \
|
|
884 if (!((p->int_p && q->int_p) ? \
|
|
885 (p->c.ival op q->c.ival) : \
|
|
886 ((p->int_p ? (double) p->c.ival : p->c.dval) op \
|
|
887 (q->int_p ? (double) q->c.ival : q->c.dval)))) \
|
|
888 return Qnil; \
|
|
889 \
|
|
890 { /* swap */ int_or_double *r = p; p = q; q = r; } \
|
|
891 } \
|
|
892 return Qt; \
|
70
|
893 }
|
|
894
|
280
|
895 DEFUN ("=", Feqlsign, 1, MANY, 0, /*
|
|
896 Return t if all the arguments are numerically equal.
|
70
|
897 The arguments may be numbers, characters or markers.
|
|
898 */
|
|
899 (int nargs, Lisp_Object *args))
|
|
900 {
|
380
|
901 ARITHCOMPARE_MANY (==)
|
70
|
902 }
|
|
903
|
280
|
904 DEFUN ("<", Flss, 1, MANY, 0, /*
|
272
|
905 Return t if the sequence of arguments is monotonically increasing.
|
70
|
906 The arguments may be numbers, characters or markers.
|
|
907 */
|
|
908 (int nargs, Lisp_Object *args))
|
|
909 {
|
380
|
910 ARITHCOMPARE_MANY (<)
|
70
|
911 }
|
|
912
|
280
|
913 DEFUN (">", Fgtr, 1, MANY, 0, /*
|
272
|
914 Return t if the sequence of arguments is monotonically decreasing.
|
70
|
915 The arguments may be numbers, characters or markers.
|
|
916 */
|
|
917 (int nargs, Lisp_Object *args))
|
|
918 {
|
380
|
919 ARITHCOMPARE_MANY (>)
|
70
|
920 }
|
|
921
|
280
|
922 DEFUN ("<=", Fleq, 1, MANY, 0, /*
|
272
|
923 Return t if the sequence of arguments is monotonically nondecreasing.
|
70
|
924 The arguments may be numbers, characters or markers.
|
|
925 */
|
|
926 (int nargs, Lisp_Object *args))
|
|
927 {
|
380
|
928 ARITHCOMPARE_MANY (<=)
|
70
|
929 }
|
|
930
|
280
|
931 DEFUN (">=", Fgeq, 1, MANY, 0, /*
|
272
|
932 Return t if the sequence of arguments is monotonically nonincreasing.
|
70
|
933 The arguments may be numbers, characters or markers.
|
|
934 */
|
|
935 (int nargs, Lisp_Object *args))
|
|
936 {
|
380
|
937 ARITHCOMPARE_MANY (>=)
|
70
|
938 }
|
|
939
|
280
|
940 DEFUN ("/=", Fneq, 1, MANY, 0, /*
|
|
941 Return t if no two arguments are numerically equal.
|
70
|
942 The arguments may be numbers, characters or markers.
|
|
943 */
|
|
944 (int nargs, Lisp_Object *args))
|
|
945 {
|
380
|
946 Lisp_Object *args_end = args + nargs;
|
|
947 Lisp_Object *p, *q;
|
|
948
|
|
949 /* Unlike all the other comparisons, this is an N*N algorithm.
|
|
950 We could use a hash table for nargs > 50 to make this linear. */
|
|
951 for (p = args; p < args_end; p++)
|
|
952 {
|
|
953 int_or_double iod1, iod2;
|
|
954 number_char_or_marker_to_int_or_double (*p, &iod1);
|
|
955
|
|
956 for (q = p + 1; q < args_end; q++)
|
|
957 {
|
|
958 number_char_or_marker_to_int_or_double (*q, &iod2);
|
|
959
|
|
960 if (!((iod1.int_p && iod2.int_p) ?
|
|
961 (iod1.c.ival != iod2.c.ival) :
|
|
962 ((iod1.int_p ? (double) iod1.c.ival : iod1.c.dval) !=
|
|
963 (iod2.int_p ? (double) iod2.c.ival : iod2.c.dval))))
|
|
964 return Qnil;
|
|
965 }
|
|
966 }
|
|
967 return Qt;
|
70
|
968 }
|
|
969
|
20
|
970 DEFUN ("zerop", Fzerop, 1, 1, 0, /*
|
272
|
971 Return t if NUMBER is zero.
|
20
|
972 */
|
|
973 (number))
|
0
|
974 {
|
380
|
975 retry:
|
|
976 if (INTP (number))
|
|
977 return EQ (number, Qzero) ? Qt : Qnil;
|
0
|
978 #ifdef LISP_FLOAT_TYPE
|
380
|
979 else if (FLOATP (number))
|
|
980 return XFLOAT_DATA (number) == 0.0 ? Qt : Qnil;
|
0
|
981 #endif /* LISP_FLOAT_TYPE */
|
380
|
982 else
|
|
983 {
|
|
984 number = wrong_type_argument (Qnumberp, number);
|
|
985 goto retry;
|
|
986 }
|
0
|
987 }
|
|
988
|
|
989 /* Convert between a 32-bit value and a cons of two 16-bit values.
|
|
990 This is used to pass 32-bit integers to and from the user.
|
|
991 Use time_to_lisp() and lisp_to_time() for time values.
|
|
992
|
|
993 If you're thinking of using this to store a pointer into a Lisp Object
|
|
994 for internal purposes (such as when calling record_unwind_protect()),
|
|
995 try using make_opaque_ptr()/get_opaque_ptr() instead. */
|
|
996 Lisp_Object
|
|
997 word_to_lisp (unsigned int item)
|
|
998 {
|
|
999 return Fcons (make_int (item >> 16), make_int (item & 0xffff));
|
|
1000 }
|
|
1001
|
|
1002 unsigned int
|
|
1003 lisp_to_word (Lisp_Object item)
|
|
1004 {
|
|
1005 if (INTP (item))
|
|
1006 return XINT (item);
|
|
1007 else
|
|
1008 {
|
|
1009 Lisp_Object top = Fcar (item);
|
|
1010 Lisp_Object bot = Fcdr (item);
|
|
1011 CHECK_INT (top);
|
|
1012 CHECK_INT (bot);
|
|
1013 return (XINT (top) << 16) | (XINT (bot) & 0xffff);
|
|
1014 }
|
|
1015 }
|
|
1016
|
|
1017
|
20
|
1018 DEFUN ("number-to-string", Fnumber_to_string, 1, 1, 0, /*
|
0
|
1019 Convert NUM to a string by printing it in decimal.
|
|
1020 Uses a minus sign if negative.
|
|
1021 NUM may be an integer or a floating point number.
|
20
|
1022 */
|
|
1023 (num))
|
0
|
1024 {
|
|
1025 char buffer[VALBITS];
|
|
1026
|
|
1027 CHECK_INT_OR_FLOAT (num);
|
|
1028
|
|
1029 #ifdef LISP_FLOAT_TYPE
|
|
1030 if (FLOATP (num))
|
|
1031 {
|
|
1032 char pigbuf[350]; /* see comments in float_to_string */
|
|
1033
|
380
|
1034 float_to_string (pigbuf, XFLOAT_DATA (num));
|
173
|
1035 return build_string (pigbuf);
|
0
|
1036 }
|
|
1037 #endif /* LISP_FLOAT_TYPE */
|
|
1038
|
276
|
1039 long_to_string (buffer, XINT (num));
|
0
|
1040 return build_string (buffer);
|
|
1041 }
|
|
1042
|
169
|
1043 static int
|
|
1044 digit_to_number (int character, int base)
|
|
1045 {
|
272
|
1046 /* Assumes ASCII */
|
|
1047 int digit = ((character >= '0' && character <= '9') ? character - '0' :
|
|
1048 (character >= 'a' && character <= 'z') ? character - 'a' + 10 :
|
|
1049 (character >= 'A' && character <= 'Z') ? character - 'A' + 10 :
|
|
1050 -1);
|
169
|
1051
|
272
|
1052 return digit >= base ? -1 : digit;
|
169
|
1053 }
|
|
1054
|
|
1055 DEFUN ("string-to-number", Fstring_to_number, 1, 2, 0, /*
|
0
|
1056 Convert STRING to a number by parsing it as a decimal number.
|
|
1057 This parses both integers and floating point numbers.
|
|
1058 It ignores leading spaces and tabs.
|
169
|
1059
|
|
1060 If BASE, interpret STRING as a number in that base. If BASE isn't
|
|
1061 present, base 10 is used. BASE must be between 2 and 16 (inclusive).
|
|
1062 Floating point numbers always use base 10.
|
20
|
1063 */
|
169
|
1064 (string, base))
|
0
|
1065 {
|
|
1066 char *p;
|
169
|
1067 int b;
|
|
1068
|
0
|
1069 CHECK_STRING (string);
|
|
1070
|
169
|
1071 if (NILP (base))
|
|
1072 b = 10;
|
|
1073 else
|
|
1074 {
|
|
1075 CHECK_INT (base);
|
|
1076 b = XINT (base);
|
171
|
1077 check_int_range (b, 2, 16);
|
169
|
1078 }
|
|
1079
|
16
|
1080 p = (char *) XSTRING_DATA (string);
|
169
|
1081
|
0
|
1082 /* Skip any whitespace at the front of the number. Some versions of
|
|
1083 atoi do this anyway, so we might as well make Emacs lisp consistent. */
|
|
1084 while (*p == ' ' || *p == '\t')
|
|
1085 p++;
|
|
1086
|
|
1087 #ifdef LISP_FLOAT_TYPE
|
371
|
1088 if (isfloat_string (p))
|
0
|
1089 return make_float (atof (p));
|
|
1090 #endif /* LISP_FLOAT_TYPE */
|
|
1091
|
171
|
1092 if (b == 10)
|
169
|
1093 {
|
|
1094 /* Use the system-provided functions for base 10. */
|
380
|
1095 #if SIZEOF_EMACS_INT == SIZEOF_INT
|
272
|
1096 return make_int (atoi (p));
|
|
1097 #elif SIZEOF_EMACS_INT == SIZEOF_LONG
|
|
1098 return make_int (atol (p));
|
|
1099 #elif SIZEOF_EMACS_INT == SIZEOF_LONG_LONG
|
|
1100 return make_int (atoll (p));
|
|
1101 #endif
|
169
|
1102 }
|
0
|
1103 else
|
169
|
1104 {
|
|
1105 int digit, negative = 1;
|
|
1106 EMACS_INT v = 0;
|
|
1107
|
|
1108 if (*p == '-')
|
|
1109 {
|
|
1110 negative = -1;
|
|
1111 p++;
|
|
1112 }
|
|
1113 else if (*p == '+')
|
173
|
1114 p++;
|
169
|
1115 while (1)
|
|
1116 {
|
|
1117 digit = digit_to_number (*p++, b);
|
|
1118 if (digit < 0)
|
|
1119 break;
|
|
1120 v = v * b + digit;
|
|
1121 }
|
|
1122 return make_int (negative * v);
|
|
1123 }
|
0
|
1124 }
|
173
|
1125
|
16
|
1126
|
20
|
1127 DEFUN ("+", Fplus, 0, MANY, 0, /*
|
16
|
1128 Return sum of any number of arguments.
|
70
|
1129 The arguments should all be numbers, characters or markers.
|
20
|
1130 */
|
|
1131 (int nargs, Lisp_Object *args))
|
0
|
1132 {
|
380
|
1133 EMACS_INT iaccum = 0;
|
|
1134 Lisp_Object *args_end = args + nargs;
|
|
1135
|
|
1136 while (args < args_end)
|
|
1137 {
|
|
1138 int_or_double iod;
|
|
1139 number_char_or_marker_to_int_or_double (*args++, &iod);
|
|
1140 if (iod.int_p)
|
|
1141 iaccum += iod.c.ival;
|
|
1142 else
|
|
1143 {
|
|
1144 double daccum = (double) iaccum + iod.c.dval;
|
|
1145 while (args < args_end)
|
|
1146 daccum += number_char_or_marker_to_double (*args++);
|
|
1147 return make_float (daccum);
|
|
1148 }
|
|
1149 }
|
|
1150
|
|
1151 return make_int (iaccum);
|
0
|
1152 }
|
|
1153
|
380
|
1154 DEFUN ("-", Fminus, 1, MANY, 0, /*
|
70
|
1155 Negate number or subtract numbers, characters or markers.
|
0
|
1156 With one arg, negates it. With more than one arg,
|
|
1157 subtracts all but the first from the first.
|
20
|
1158 */
|
|
1159 (int nargs, Lisp_Object *args))
|
0
|
1160 {
|
380
|
1161 EMACS_INT iaccum;
|
|
1162 double daccum;
|
|
1163 Lisp_Object *args_end = args + nargs;
|
|
1164 int_or_double iod;
|
|
1165
|
|
1166 number_char_or_marker_to_int_or_double (*args++, &iod);
|
|
1167 if (iod.int_p)
|
|
1168 iaccum = nargs > 1 ? iod.c.ival : - iod.c.ival;
|
|
1169 else
|
|
1170 {
|
|
1171 daccum = nargs > 1 ? iod.c.dval : - iod.c.dval;
|
|
1172 goto do_float;
|
|
1173 }
|
|
1174
|
|
1175 while (args < args_end)
|
|
1176 {
|
|
1177 number_char_or_marker_to_int_or_double (*args++, &iod);
|
|
1178 if (iod.int_p)
|
|
1179 iaccum -= iod.c.ival;
|
|
1180 else
|
|
1181 {
|
|
1182 daccum = (double) iaccum - iod.c.dval;
|
|
1183 goto do_float;
|
|
1184 }
|
|
1185 }
|
|
1186
|
|
1187 return make_int (iaccum);
|
|
1188
|
|
1189 do_float:
|
|
1190 for (; args < args_end; args++)
|
|
1191 daccum -= number_char_or_marker_to_double (*args);
|
|
1192 return make_float (daccum);
|
0
|
1193 }
|
|
1194
|
20
|
1195 DEFUN ("*", Ftimes, 0, MANY, 0, /*
|
16
|
1196 Return product of any number of arguments.
|
70
|
1197 The arguments should all be numbers, characters or markers.
|
20
|
1198 */
|
|
1199 (int nargs, Lisp_Object *args))
|
0
|
1200 {
|
380
|
1201 EMACS_INT iaccum = 1;
|
|
1202 Lisp_Object *args_end = args + nargs;
|
|
1203
|
|
1204 while (args < args_end)
|
|
1205 {
|
|
1206 int_or_double iod;
|
|
1207 number_char_or_marker_to_int_or_double (*args++, &iod);
|
|
1208 if (iod.int_p)
|
|
1209 iaccum *= iod.c.ival;
|
|
1210 else
|
|
1211 {
|
|
1212 double daccum = (double) iaccum * iod.c.dval;
|
|
1213 while (args < args_end)
|
|
1214 daccum *= number_char_or_marker_to_double (*args++);
|
|
1215 return make_float (daccum);
|
|
1216 }
|
|
1217 }
|
|
1218
|
|
1219 return make_int (iaccum);
|
0
|
1220 }
|
|
1221
|
380
|
1222 DEFUN ("/", Fquo, 1, MANY, 0, /*
|
0
|
1223 Return first argument divided by all the remaining arguments.
|
70
|
1224 The arguments must be numbers, characters or markers.
|
380
|
1225 With one argument, reciprocates the argument.
|
|
1226 */
|
|
1227 (int nargs, Lisp_Object *args))
|
|
1228 {
|
|
1229 EMACS_INT iaccum;
|
|
1230 double daccum;
|
|
1231 Lisp_Object *args_end = args + nargs;
|
|
1232 int_or_double iod;
|
|
1233
|
|
1234 if (nargs == 1)
|
|
1235 iaccum = 1;
|
|
1236 else
|
|
1237 {
|
|
1238 number_char_or_marker_to_int_or_double (*args++, &iod);
|
|
1239 if (iod.int_p)
|
|
1240 iaccum = iod.c.ival;
|
|
1241 else
|
|
1242 {
|
|
1243 daccum = iod.c.dval;
|
|
1244 goto divide_floats;
|
|
1245 }
|
|
1246 }
|
|
1247
|
|
1248 while (args < args_end)
|
|
1249 {
|
|
1250 number_char_or_marker_to_int_or_double (*args++, &iod);
|
|
1251 if (iod.int_p)
|
|
1252 {
|
|
1253 if (iod.c.ival == 0) goto divide_by_zero;
|
|
1254 iaccum /= iod.c.ival;
|
|
1255 }
|
|
1256 else
|
|
1257 {
|
|
1258 if (iod.c.dval == 0) goto divide_by_zero;
|
|
1259 daccum = (double) iaccum / iod.c.dval;
|
|
1260 goto divide_floats;
|
|
1261 }
|
|
1262 }
|
|
1263
|
|
1264 return make_int (iaccum);
|
|
1265
|
|
1266 divide_floats:
|
|
1267 for (; args < args_end; args++)
|
|
1268 {
|
|
1269 double dval = number_char_or_marker_to_double (*args);
|
|
1270 if (dval == 0) goto divide_by_zero;
|
|
1271 daccum /= dval;
|
|
1272 }
|
|
1273 return make_float (daccum);
|
|
1274
|
|
1275 divide_by_zero:
|
|
1276 Fsignal (Qarith_error, Qnil);
|
|
1277 return Qnil; /* not reached */
|
|
1278 }
|
|
1279
|
|
1280 DEFUN ("max", Fmax, 1, MANY, 0, /*
|
|
1281 Return largest of all the arguments.
|
|
1282 All arguments must be numbers, characters or markers.
|
|
1283 The value is always a number; markers and characters are converted
|
|
1284 to numbers.
|
20
|
1285 */
|
|
1286 (int nargs, Lisp_Object *args))
|
0
|
1287 {
|
380
|
1288 EMACS_INT imax;
|
|
1289 double dmax;
|
|
1290 Lisp_Object *args_end = args + nargs;
|
|
1291 int_or_double iod;
|
|
1292
|
|
1293 number_char_or_marker_to_int_or_double (*args++, &iod);
|
|
1294 if (iod.int_p)
|
|
1295 imax = iod.c.ival;
|
|
1296 else
|
|
1297 {
|
|
1298 dmax = iod.c.dval;
|
|
1299 goto max_floats;
|
|
1300 }
|
|
1301
|
|
1302 while (args < args_end)
|
|
1303 {
|
|
1304 number_char_or_marker_to_int_or_double (*args++, &iod);
|
|
1305 if (iod.int_p)
|
|
1306 {
|
|
1307 if (imax < iod.c.ival) imax = iod.c.ival;
|
|
1308 }
|
|
1309 else
|
|
1310 {
|
|
1311 dmax = (double) imax;
|
|
1312 if (dmax < iod.c.dval) dmax = iod.c.dval;
|
|
1313 goto max_floats;
|
|
1314 }
|
|
1315 }
|
|
1316
|
|
1317 return make_int (imax);
|
|
1318
|
|
1319 max_floats:
|
|
1320 while (args < args_end)
|
|
1321 {
|
|
1322 double dval = number_char_or_marker_to_double (*args++);
|
|
1323 if (dmax < dval) dmax = dval;
|
|
1324 }
|
|
1325 return make_float (dmax);
|
|
1326 }
|
|
1327
|
|
1328 DEFUN ("min", Fmin, 1, MANY, 0, /*
|
|
1329 Return smallest of all the arguments.
|
|
1330 All arguments must be numbers, characters or markers.
|
|
1331 The value is always a number; markers and characters are converted
|
|
1332 to numbers.
|
|
1333 */
|
|
1334 (int nargs, Lisp_Object *args))
|
|
1335 {
|
|
1336 EMACS_INT imin;
|
|
1337 double dmin;
|
|
1338 Lisp_Object *args_end = args + nargs;
|
|
1339 int_or_double iod;
|
|
1340
|
|
1341 number_char_or_marker_to_int_or_double (*args++, &iod);
|
|
1342 if (iod.int_p)
|
|
1343 imin = iod.c.ival;
|
|
1344 else
|
|
1345 {
|
|
1346 dmin = iod.c.dval;
|
|
1347 goto min_floats;
|
|
1348 }
|
|
1349
|
|
1350 while (args < args_end)
|
|
1351 {
|
|
1352 number_char_or_marker_to_int_or_double (*args++, &iod);
|
|
1353 if (iod.int_p)
|
|
1354 {
|
|
1355 if (imin > iod.c.ival) imin = iod.c.ival;
|
|
1356 }
|
|
1357 else
|
|
1358 {
|
|
1359 dmin = (double) imin;
|
|
1360 if (dmin > iod.c.dval) dmin = iod.c.dval;
|
|
1361 goto min_floats;
|
|
1362 }
|
|
1363 }
|
|
1364
|
|
1365 return make_int (imin);
|
|
1366
|
|
1367 min_floats:
|
|
1368 while (args < args_end)
|
|
1369 {
|
|
1370 double dval = number_char_or_marker_to_double (*args++);
|
|
1371 if (dmin > dval) dmin = dval;
|
|
1372 }
|
|
1373 return make_float (dmin);
|
|
1374 }
|
|
1375
|
|
1376 DEFUN ("logand", Flogand, 0, MANY, 0, /*
|
|
1377 Return bitwise-and of all the arguments.
|
|
1378 Arguments may be integers, or markers or characters converted to integers.
|
|
1379 */
|
|
1380 (int nargs, Lisp_Object *args))
|
|
1381 {
|
|
1382 EMACS_INT bits = ~0;
|
|
1383 Lisp_Object *args_end = args + nargs;
|
|
1384
|
|
1385 while (args < args_end)
|
|
1386 bits &= integer_char_or_marker_to_int (*args++);
|
|
1387
|
|
1388 return make_int (bits);
|
|
1389 }
|
|
1390
|
|
1391 DEFUN ("logior", Flogior, 0, MANY, 0, /*
|
|
1392 Return bitwise-or of all the arguments.
|
|
1393 Arguments may be integers, or markers or characters converted to integers.
|
|
1394 */
|
|
1395 (int nargs, Lisp_Object *args))
|
|
1396 {
|
|
1397 EMACS_INT bits = 0;
|
|
1398 Lisp_Object *args_end = args + nargs;
|
|
1399
|
|
1400 while (args < args_end)
|
|
1401 bits |= integer_char_or_marker_to_int (*args++);
|
|
1402
|
|
1403 return make_int (bits);
|
|
1404 }
|
|
1405
|
|
1406 DEFUN ("logxor", Flogxor, 0, MANY, 0, /*
|
|
1407 Return bitwise-exclusive-or of all the arguments.
|
|
1408 Arguments may be integers, or markers or characters converted to integers.
|
|
1409 */
|
|
1410 (int nargs, Lisp_Object *args))
|
|
1411 {
|
|
1412 EMACS_INT bits = 0;
|
|
1413 Lisp_Object *args_end = args + nargs;
|
|
1414
|
|
1415 while (args < args_end)
|
|
1416 bits ^= integer_char_or_marker_to_int (*args++);
|
|
1417
|
|
1418 return make_int (bits);
|
|
1419 }
|
|
1420
|
|
1421 DEFUN ("lognot", Flognot, 1, 1, 0, /*
|
|
1422 Return the bitwise complement of NUMBER.
|
|
1423 NUMBER may be an integer, marker or character converted to integer.
|
|
1424 */
|
|
1425 (number))
|
|
1426 {
|
|
1427 return make_int (~ integer_char_or_marker_to_int (number));
|
0
|
1428 }
|
|
1429
|
20
|
1430 DEFUN ("%", Frem, 2, 2, 0, /*
|
0
|
1431 Return remainder of first arg divided by second.
|
70
|
1432 Both must be integers, characters or markers.
|
20
|
1433 */
|
|
1434 (num1, num2))
|
0
|
1435 {
|
380
|
1436 int ival1 = integer_char_or_marker_to_int (num1);
|
|
1437 int ival2 = integer_char_or_marker_to_int (num2);
|
0
|
1438
|
380
|
1439 if (ival2 == 0)
|
0
|
1440 Fsignal (Qarith_error, Qnil);
|
|
1441
|
380
|
1442 return make_int (ival1 % ival2);
|
0
|
1443 }
|
|
1444
|
|
1445 /* Note, ANSI *requires* the presence of the fmod() library routine.
|
|
1446 If your system doesn't have it, complain to your vendor, because
|
|
1447 that is a bug. */
|
|
1448
|
|
1449 #ifndef HAVE_FMOD
|
|
1450 double
|
|
1451 fmod (double f1, double f2)
|
|
1452 {
|
|
1453 if (f2 < 0.0)
|
|
1454 f2 = -f2;
|
173
|
1455 return f1 - f2 * floor (f1/f2);
|
0
|
1456 }
|
|
1457 #endif /* ! HAVE_FMOD */
|
|
1458
|
|
1459
|
20
|
1460 DEFUN ("mod", Fmod, 2, 2, 0, /*
|
0
|
1461 Return X modulo Y.
|
|
1462 The result falls between zero (inclusive) and Y (exclusive).
|
70
|
1463 Both X and Y must be numbers, characters or markers.
|
0
|
1464 If either argument is a float, a float will be returned.
|
20
|
1465 */
|
|
1466 (x, y))
|
0
|
1467 {
|
380
|
1468 int_or_double iod1, iod2;
|
|
1469 number_char_or_marker_to_int_or_double (x, &iod1);
|
|
1470 number_char_or_marker_to_int_or_double (y, &iod2);
|
0
|
1471
|
|
1472 #ifdef LISP_FLOAT_TYPE
|
380
|
1473 if (!iod1.int_p || !iod2.int_p)
|
0
|
1474 {
|
380
|
1475 double dval1 = iod1.int_p ? (double) iod1.c.ival : iod1.c.dval;
|
|
1476 double dval2 = iod2.int_p ? (double) iod2.c.ival : iod2.c.dval;
|
|
1477 if (dval2 == 0) goto divide_by_zero;
|
|
1478 dval1 = fmod (dval1, dval2);
|
0
|
1479
|
|
1480 /* If the "remainder" comes out with the wrong sign, fix it. */
|
380
|
1481 if (dval2 < 0 ? dval1 > 0 : dval1 < 0)
|
|
1482 dval1 += dval2;
|
0
|
1483
|
380
|
1484 return make_float (dval1);
|
|
1485 }
|
|
1486 #endif /* LISP_FLOAT_TYPE */
|
|
1487 {
|
|
1488 int ival;
|
|
1489 if (iod2.c.ival == 0) goto divide_by_zero;
|
0
|
1490
|
380
|
1491 ival = iod1.c.ival % iod2.c.ival;
|
|
1492
|
|
1493 /* If the "remainder" comes out with the wrong sign, fix it. */
|
|
1494 if (iod2.c.ival < 0 ? ival > 0 : ival < 0)
|
|
1495 ival += iod2.c.ival;
|
0
|
1496
|
380
|
1497 return make_int (ival);
|
|
1498 }
|
0
|
1499
|
380
|
1500 divide_by_zero:
|
|
1501 Fsignal (Qarith_error, Qnil);
|
|
1502 return Qnil; /* not reached */
|
0
|
1503 }
|
|
1504
|
20
|
1505 DEFUN ("ash", Fash, 2, 2, 0, /*
|
0
|
1506 Return VALUE with its bits shifted left by COUNT.
|
|
1507 If COUNT is negative, shifting is actually to the right.
|
|
1508 In this case, the sign bit is duplicated.
|
20
|
1509 */
|
|
1510 (value, count))
|
0
|
1511 {
|
|
1512 CHECK_INT_COERCE_CHAR (value);
|
380
|
1513 CONCHECK_INT (count);
|
0
|
1514
|
16
|
1515 return make_int (XINT (count) > 0 ?
|
70
|
1516 XINT (value) << XINT (count) :
|
|
1517 XINT (value) >> -XINT (count));
|
0
|
1518 }
|
|
1519
|
20
|
1520 DEFUN ("lsh", Flsh, 2, 2, 0, /*
|
0
|
1521 Return VALUE with its bits shifted left by COUNT.
|
|
1522 If COUNT is negative, shifting is actually to the right.
|
70
|
1523 In this case, zeros are shifted in on the left.
|
20
|
1524 */
|
|
1525 (value, count))
|
0
|
1526 {
|
|
1527 CHECK_INT_COERCE_CHAR (value);
|
380
|
1528 CONCHECK_INT (count);
|
0
|
1529
|
272
|
1530 return make_int (XINT (count) > 0 ?
|
|
1531 XUINT (value) << XINT (count) :
|
|
1532 XUINT (value) >> -XINT (count));
|
0
|
1533 }
|
|
1534
|
20
|
1535 DEFUN ("1+", Fadd1, 1, 1, 0, /*
|
380
|
1536 Return NUMBER plus one. NUMBER may be a number, character or marker.
|
70
|
1537 Markers and characters are converted to integers.
|
20
|
1538 */
|
|
1539 (number))
|
0
|
1540 {
|
380
|
1541 retry:
|
0
|
1542
|
380
|
1543 if (INTP (number)) return make_int (XINT (number) + 1);
|
|
1544 if (CHARP (number)) return make_int (XCHAR (number) + 1);
|
|
1545 if (MARKERP (number)) return make_int (marker_position (number) + 1);
|
0
|
1546 #ifdef LISP_FLOAT_TYPE
|
380
|
1547 if (FLOATP (number)) return make_float (XFLOAT_DATA (number) + 1.0);
|
0
|
1548 #endif /* LISP_FLOAT_TYPE */
|
|
1549
|
380
|
1550 number = wrong_type_argument (Qnumber_char_or_marker_p, number);
|
|
1551 goto retry;
|
0
|
1552 }
|
|
1553
|
20
|
1554 DEFUN ("1-", Fsub1, 1, 1, 0, /*
|
380
|
1555 Return NUMBER minus one. NUMBER may be a number, character or marker.
|
70
|
1556 Markers and characters are converted to integers.
|
20
|
1557 */
|
|
1558 (number))
|
0
|
1559 {
|
380
|
1560 retry:
|
0
|
1561
|
380
|
1562 if (INTP (number)) return make_int (XINT (number) - 1);
|
|
1563 if (CHARP (number)) return make_int (XCHAR (number) - 1);
|
|
1564 if (MARKERP (number)) return make_int (marker_position (number) - 1);
|
0
|
1565 #ifdef LISP_FLOAT_TYPE
|
380
|
1566 if (FLOATP (number)) return make_float (XFLOAT_DATA (number) - 1.0);
|
0
|
1567 #endif /* LISP_FLOAT_TYPE */
|
|
1568
|
380
|
1569 number = wrong_type_argument (Qnumber_char_or_marker_p, number);
|
|
1570 goto retry;
|
0
|
1571 }
|
|
1572
|
|
1573
|
|
1574 /************************************************************************/
|
|
1575 /* weak lists */
|
|
1576 /************************************************************************/
|
|
1577
|
|
1578 /* A weak list is like a normal list except that elements automatically
|
|
1579 disappear when no longer in use, i.e. when no longer GC-protected.
|
|
1580 The basic idea is that we don't mark the elements during GC, but
|
|
1581 wait for them to be marked elsewhere. If they're not marked, we
|
380
|
1582 remove them. This is analogous to weak hash tables; see the explanation
|
0
|
1583 there for more info. */
|
|
1584
|
|
1585 static Lisp_Object Vall_weak_lists; /* Gemarke es nicht!!! */
|
|
1586
|
|
1587 static Lisp_Object encode_weak_list_type (enum weak_list_type type);
|
|
1588
|
|
1589 static Lisp_Object
|
|
1590 mark_weak_list (Lisp_Object obj, void (*markobj) (Lisp_Object))
|
|
1591 {
|
|
1592 return Qnil; /* nichts ist gemarkt */
|
|
1593 }
|
|
1594
|
|
1595 static void
|
|
1596 print_weak_list (Lisp_Object obj, Lisp_Object printcharfun, int escapeflag)
|
|
1597 {
|
|
1598 if (print_readably)
|
|
1599 error ("printing unreadable object #<weak-list>");
|
173
|
1600
|
0
|
1601 write_c_string ("#<weak-list ", printcharfun);
|
|
1602 print_internal (encode_weak_list_type (XWEAK_LIST (obj)->type),
|
|
1603 printcharfun, 0);
|
|
1604 write_c_string (" ", printcharfun);
|
|
1605 print_internal (XWEAK_LIST (obj)->list, printcharfun, escapeflag);
|
|
1606 write_c_string (">", printcharfun);
|
|
1607 }
|
|
1608
|
|
1609 static int
|
380
|
1610 weak_list_equal (Lisp_Object obj1, Lisp_Object obj2, int depth)
|
0
|
1611 {
|
380
|
1612 struct weak_list *w1 = XWEAK_LIST (obj1);
|
|
1613 struct weak_list *w2 = XWEAK_LIST (obj2);
|
0
|
1614
|
173
|
1615 return ((w1->type == w2->type) &&
|
|
1616 internal_equal (w1->list, w2->list, depth + 1));
|
0
|
1617 }
|
|
1618
|
|
1619 static unsigned long
|
|
1620 weak_list_hash (Lisp_Object obj, int depth)
|
|
1621 {
|
|
1622 struct weak_list *w = XWEAK_LIST (obj);
|
|
1623
|
|
1624 return HASH2 ((unsigned long) w->type,
|
|
1625 internal_hash (w->list, depth + 1));
|
|
1626 }
|
|
1627
|
|
1628 Lisp_Object
|
|
1629 make_weak_list (enum weak_list_type type)
|
|
1630 {
|
272
|
1631 Lisp_Object result;
|
185
|
1632 struct weak_list *wl =
|
|
1633 alloc_lcrecord_type (struct weak_list, lrecord_weak_list);
|
0
|
1634
|
|
1635 wl->list = Qnil;
|
|
1636 wl->type = type;
|
|
1637 XSETWEAK_LIST (result, wl);
|
|
1638 wl->next_weak = Vall_weak_lists;
|
|
1639 Vall_weak_lists = result;
|
|
1640 return result;
|
|
1641 }
|
|
1642
|
272
|
1643 DEFINE_LRECORD_IMPLEMENTATION ("weak-list", weak_list,
|
|
1644 mark_weak_list, print_weak_list,
|
|
1645 0, weak_list_equal, weak_list_hash,
|
|
1646 struct weak_list);
|
0
|
1647 /*
|
|
1648 -- we do not mark the list elements (either the elements themselves
|
|
1649 or the cons cells that hold them) in the normal marking phase.
|
|
1650 -- at the end of marking, we go through all weak lists that are
|
|
1651 marked, and mark the cons cells that hold all marked
|
|
1652 objects, and possibly parts of the objects themselves.
|
|
1653 (See alloc.c, "after-mark".)
|
|
1654 -- after that, we prune away all the cons cells that are not marked.
|
|
1655
|
|
1656 WARNING WARNING WARNING WARNING WARNING:
|
|
1657
|
|
1658 The code in the following two functions is *unbelievably* tricky.
|
|
1659 Don't mess with it. You'll be sorry.
|
|
1660
|
|
1661 Linked lists just majorly suck, d'ya know?
|
|
1662 */
|
|
1663
|
|
1664 int
|
|
1665 finish_marking_weak_lists (int (*obj_marked_p) (Lisp_Object),
|
|
1666 void (*markobj) (Lisp_Object))
|
|
1667 {
|
|
1668 Lisp_Object rest;
|
|
1669 int did_mark = 0;
|
|
1670
|
|
1671 for (rest = Vall_weak_lists;
|
|
1672 !GC_NILP (rest);
|
|
1673 rest = XWEAK_LIST (rest)->next_weak)
|
|
1674 {
|
|
1675 Lisp_Object rest2;
|
|
1676 enum weak_list_type type = XWEAK_LIST (rest)->type;
|
|
1677
|
380
|
1678 if (! obj_marked_p (rest))
|
0
|
1679 /* The weak list is probably garbage. Ignore it. */
|
|
1680 continue;
|
|
1681
|
|
1682 for (rest2 = XWEAK_LIST (rest)->list;
|
|
1683 /* We need to be trickier since we're inside of GC;
|
|
1684 use CONSP instead of !NILP in case of user-visible
|
|
1685 imperfect lists */
|
|
1686 GC_CONSP (rest2);
|
|
1687 rest2 = XCDR (rest2))
|
|
1688 {
|
|
1689 Lisp_Object elem;
|
|
1690 /* If the element is "marked" (meaning depends on the type
|
|
1691 of weak list), we need to mark the cons containing the
|
|
1692 element, and maybe the element itself (if only some part
|
|
1693 was already marked). */
|
|
1694 int need_to_mark_cons = 0;
|
|
1695 int need_to_mark_elem = 0;
|
|
1696
|
|
1697 /* If a cons is already marked, then its car is already marked
|
|
1698 (either because of an external pointer or because of
|
|
1699 a previous call to this function), and likewise for all
|
|
1700 the rest of the elements in the list, so we can stop now. */
|
380
|
1701 if (obj_marked_p (rest2))
|
0
|
1702 break;
|
|
1703
|
|
1704 elem = XCAR (rest2);
|
|
1705
|
|
1706 switch (type)
|
|
1707 {
|
|
1708 case WEAK_LIST_SIMPLE:
|
380
|
1709 if (obj_marked_p (elem))
|
0
|
1710 need_to_mark_cons = 1;
|
|
1711 break;
|
|
1712
|
|
1713 case WEAK_LIST_ASSOC:
|
|
1714 if (!GC_CONSP (elem))
|
|
1715 {
|
|
1716 /* just leave bogus elements there */
|
|
1717 need_to_mark_cons = 1;
|
|
1718 need_to_mark_elem = 1;
|
|
1719 }
|
380
|
1720 else if (obj_marked_p (XCAR (elem)) &&
|
|
1721 obj_marked_p (XCDR (elem)))
|
0
|
1722 {
|
|
1723 need_to_mark_cons = 1;
|
|
1724 /* We still need to mark elem, because it's
|
|
1725 probably not marked. */
|
|
1726 need_to_mark_elem = 1;
|
|
1727 }
|
|
1728 break;
|
|
1729
|
|
1730 case WEAK_LIST_KEY_ASSOC:
|
|
1731 if (!GC_CONSP (elem))
|
|
1732 {
|
|
1733 /* just leave bogus elements there */
|
|
1734 need_to_mark_cons = 1;
|
|
1735 need_to_mark_elem = 1;
|
|
1736 }
|
380
|
1737 else if (obj_marked_p (XCAR (elem)))
|
0
|
1738 {
|
|
1739 need_to_mark_cons = 1;
|
|
1740 /* We still need to mark elem and XCDR (elem);
|
|
1741 marking elem does both */
|
|
1742 need_to_mark_elem = 1;
|
|
1743 }
|
|
1744 break;
|
|
1745
|
|
1746 case WEAK_LIST_VALUE_ASSOC:
|
|
1747 if (!GC_CONSP (elem))
|
|
1748 {
|
|
1749 /* just leave bogus elements there */
|
|
1750 need_to_mark_cons = 1;
|
|
1751 need_to_mark_elem = 1;
|
|
1752 }
|
380
|
1753 else if (obj_marked_p (XCDR (elem)))
|
0
|
1754 {
|
|
1755 need_to_mark_cons = 1;
|
|
1756 /* We still need to mark elem and XCAR (elem);
|
|
1757 marking elem does both */
|
|
1758 need_to_mark_elem = 1;
|
|
1759 }
|
|
1760 break;
|
|
1761
|
|
1762 default:
|
|
1763 abort ();
|
|
1764 }
|
|
1765
|
380
|
1766 if (need_to_mark_elem && ! obj_marked_p (elem))
|
0
|
1767 {
|
380
|
1768 markobj (elem);
|
0
|
1769 did_mark = 1;
|
|
1770 }
|
|
1771
|
|
1772 /* We also need to mark the cons that holds the elem or
|
|
1773 assoc-pair. We do *not* want to call (markobj) here
|
|
1774 because that will mark the entire list; we just want to
|
|
1775 mark the cons itself.
|
|
1776 */
|
|
1777 if (need_to_mark_cons)
|
|
1778 {
|
|
1779 struct Lisp_Cons *ptr = XCONS (rest2);
|
|
1780 if (!CONS_MARKED_P (ptr))
|
|
1781 {
|
|
1782 MARK_CONS (ptr);
|
|
1783 did_mark = 1;
|
|
1784 }
|
|
1785 }
|
|
1786 }
|
|
1787
|
|
1788 /* In case of imperfect list, need to mark the final cons
|
|
1789 because we're not removing it */
|
380
|
1790 if (!GC_NILP (rest2) && ! obj_marked_p (rest2))
|
0
|
1791 {
|
380
|
1792 markobj (rest2);
|
0
|
1793 did_mark = 1;
|
|
1794 }
|
|
1795 }
|
|
1796
|
|
1797 return did_mark;
|
|
1798 }
|
|
1799
|
|
1800 void
|
|
1801 prune_weak_lists (int (*obj_marked_p) (Lisp_Object))
|
|
1802 {
|
|
1803 Lisp_Object rest, prev = Qnil;
|
|
1804
|
|
1805 for (rest = Vall_weak_lists;
|
|
1806 !GC_NILP (rest);
|
|
1807 rest = XWEAK_LIST (rest)->next_weak)
|
|
1808 {
|
380
|
1809 if (! (obj_marked_p (rest)))
|
0
|
1810 {
|
|
1811 /* This weak list itself is garbage. Remove it from the list. */
|
|
1812 if (GC_NILP (prev))
|
|
1813 Vall_weak_lists = XWEAK_LIST (rest)->next_weak;
|
|
1814 else
|
|
1815 XWEAK_LIST (prev)->next_weak =
|
|
1816 XWEAK_LIST (rest)->next_weak;
|
|
1817 }
|
|
1818 else
|
|
1819 {
|
|
1820 Lisp_Object rest2, prev2 = Qnil;
|
|
1821 Lisp_Object tortoise;
|
|
1822 int go_tortoise = 0;
|
|
1823
|
|
1824 for (rest2 = XWEAK_LIST (rest)->list, tortoise = rest2;
|
|
1825 /* We need to be trickier since we're inside of GC;
|
|
1826 use CONSP instead of !NILP in case of user-visible
|
|
1827 imperfect lists */
|
|
1828 GC_CONSP (rest2);)
|
|
1829 {
|
|
1830 /* It suffices to check the cons for marking,
|
|
1831 regardless of the type of weak list:
|
|
1832
|
|
1833 -- if the cons is pointed to somewhere else,
|
|
1834 then it should stay around and will be marked.
|
|
1835 -- otherwise, if it should stay around, it will
|
|
1836 have been marked in finish_marking_weak_lists().
|
|
1837 -- otherwise, it's not marked and should disappear.
|
|
1838 */
|
380
|
1839 if (! obj_marked_p (rest2))
|
0
|
1840 {
|
|
1841 /* bye bye :-( */
|
|
1842 if (GC_NILP (prev2))
|
|
1843 XWEAK_LIST (rest)->list = XCDR (rest2);
|
|
1844 else
|
|
1845 XCDR (prev2) = XCDR (rest2);
|
|
1846 rest2 = XCDR (rest2);
|
|
1847 /* Ouch. Circularity checking is even trickier
|
|
1848 than I thought. When we cut out a link
|
|
1849 like this, we can't advance the turtle or
|
|
1850 it'll catch up to us. Imagine that we're
|
|
1851 standing on floor tiles and moving forward --
|
|
1852 what we just did here is as if the floor
|
|
1853 tile under us just disappeared and all the
|
|
1854 ones ahead of us slid one tile towards us.
|
|
1855 In other words, we didn't move at all;
|
|
1856 if the tortoise was one step behind us
|
|
1857 previously, it still is, and therefore
|
|
1858 it must not move. */
|
|
1859 }
|
|
1860 else
|
|
1861 {
|
|
1862 prev2 = rest2;
|
|
1863
|
|
1864 /* Implementing circularity checking is trickier here
|
|
1865 than in other places because we have to guarantee
|
|
1866 that we've processed all elements before exiting
|
|
1867 due to a circularity. (In most places, an error
|
|
1868 is issued upon encountering a circularity, so it
|
|
1869 doesn't really matter if all elements are processed.)
|
|
1870 The idea is that we process along with the hare
|
|
1871 rather than the tortoise. If at any point in
|
|
1872 our forward process we encounter the tortoise,
|
|
1873 we must have already visited the spot, so we exit.
|
|
1874 (If we process with the tortoise, we can fail to
|
|
1875 process cases where a cons points to itself, or
|
|
1876 where cons A points to cons B, which points to
|
|
1877 cons A.) */
|
173
|
1878
|
0
|
1879 rest2 = XCDR (rest2);
|
|
1880 if (go_tortoise)
|
|
1881 tortoise = XCDR (tortoise);
|
|
1882 go_tortoise = !go_tortoise;
|
|
1883 if (GC_EQ (rest2, tortoise))
|
|
1884 break;
|
|
1885 }
|
|
1886 }
|
|
1887
|
|
1888 prev = rest;
|
|
1889 }
|
|
1890 }
|
|
1891 }
|
|
1892
|
|
1893 static enum weak_list_type
|
|
1894 decode_weak_list_type (Lisp_Object symbol)
|
|
1895 {
|
|
1896 CHECK_SYMBOL (symbol);
|
16
|
1897 if (EQ (symbol, Qsimple)) return WEAK_LIST_SIMPLE;
|
|
1898 if (EQ (symbol, Qassoc)) return WEAK_LIST_ASSOC;
|
70
|
1899 if (EQ (symbol, Qold_assoc)) return WEAK_LIST_ASSOC; /* EBOLA ALERT! */
|
16
|
1900 if (EQ (symbol, Qkey_assoc)) return WEAK_LIST_KEY_ASSOC;
|
|
1901 if (EQ (symbol, Qvalue_assoc)) return WEAK_LIST_VALUE_ASSOC;
|
0
|
1902
|
|
1903 signal_simple_error ("Invalid weak list type", symbol);
|
|
1904 return WEAK_LIST_SIMPLE; /* not reached */
|
|
1905 }
|
|
1906
|
|
1907 static Lisp_Object
|
|
1908 encode_weak_list_type (enum weak_list_type type)
|
|
1909 {
|
|
1910 switch (type)
|
|
1911 {
|
16
|
1912 case WEAK_LIST_SIMPLE: return Qsimple;
|
|
1913 case WEAK_LIST_ASSOC: return Qassoc;
|
|
1914 case WEAK_LIST_KEY_ASSOC: return Qkey_assoc;
|
|
1915 case WEAK_LIST_VALUE_ASSOC: return Qvalue_assoc;
|
0
|
1916 default:
|
|
1917 abort ();
|
|
1918 }
|
|
1919
|
16
|
1920 return Qnil; /* not reached */
|
0
|
1921 }
|
|
1922
|
20
|
1923 DEFUN ("weak-list-p", Fweak_list_p, 1, 1, 0, /*
|
0
|
1924 Return non-nil if OBJECT is a weak list.
|
20
|
1925 */
|
|
1926 (object))
|
0
|
1927 {
|
|
1928 return WEAK_LISTP (object) ? Qt : Qnil;
|
|
1929 }
|
|
1930
|
20
|
1931 DEFUN ("make-weak-list", Fmake_weak_list, 0, 1, 0, /*
|
272
|
1932 Return a new weak list object of type TYPE.
|
0
|
1933 A weak list object is an object that contains a list. This list behaves
|
|
1934 like any other list except that its elements do not count towards
|
371
|
1935 garbage collection -- if the only pointer to an object in inside a weak
|
0
|
1936 list (other than pointers in similar objects such as weak hash tables),
|
|
1937 the object is garbage collected and automatically removed from the list.
|
|
1938 This is used internally, for example, to manage the list holding the
|
|
1939 children of an extent -- an extent that is unused but has a parent will
|
|
1940 still be reclaimed, and will automatically be removed from its parent's
|
|
1941 list of children.
|
|
1942
|
|
1943 Optional argument TYPE specifies the type of the weak list, and defaults
|
|
1944 to `simple'. Recognized types are
|
|
1945
|
|
1946 `simple' Objects in the list disappear if not pointed to.
|
|
1947 `assoc' Objects in the list disappear if they are conses
|
|
1948 and either the car or the cdr of the cons is not
|
|
1949 pointed to.
|
|
1950 `key-assoc' Objects in the list disappear if they are conses
|
|
1951 and the car is not pointed to.
|
|
1952 `value-assoc' Objects in the list disappear if they are conses
|
|
1953 and the cdr is not pointed to.
|
20
|
1954 */
|
|
1955 (type))
|
0
|
1956 {
|
|
1957 if (NILP (type))
|
|
1958 type = Qsimple;
|
|
1959
|
|
1960 return make_weak_list (decode_weak_list_type (type));
|
|
1961 }
|
|
1962
|
20
|
1963 DEFUN ("weak-list-type", Fweak_list_type, 1, 1, 0, /*
|
0
|
1964 Return the type of the given weak-list object.
|
20
|
1965 */
|
|
1966 (weak))
|
0
|
1967 {
|
|
1968 CHECK_WEAK_LIST (weak);
|
|
1969 return encode_weak_list_type (XWEAK_LIST (weak)->type);
|
|
1970 }
|
|
1971
|
20
|
1972 DEFUN ("weak-list-list", Fweak_list_list, 1, 1, 0, /*
|
0
|
1973 Return the list contained in a weak-list object.
|
20
|
1974 */
|
|
1975 (weak))
|
0
|
1976 {
|
|
1977 CHECK_WEAK_LIST (weak);
|
|
1978 return XWEAK_LIST_LIST (weak);
|
|
1979 }
|
|
1980
|
20
|
1981 DEFUN ("set-weak-list-list", Fset_weak_list_list, 2, 2, 0, /*
|
0
|
1982 Change the list contained in a weak-list object.
|
20
|
1983 */
|
|
1984 (weak, new_list))
|
0
|
1985 {
|
|
1986 CHECK_WEAK_LIST (weak);
|
|
1987 XWEAK_LIST_LIST (weak) = new_list;
|
|
1988 return new_list;
|
|
1989 }
|
|
1990
|
|
1991
|
|
1992 /************************************************************************/
|
|
1993 /* initialization */
|
|
1994 /************************************************************************/
|
|
1995
|
|
1996 static SIGTYPE
|
|
1997 arith_error (int signo)
|
|
1998 {
|
|
1999 EMACS_REESTABLISH_SIGNAL (signo, arith_error);
|
|
2000 EMACS_UNBLOCK_SIGNAL (signo);
|
|
2001 signal_error (Qarith_error, Qnil);
|
|
2002 }
|
|
2003
|
|
2004 void
|
|
2005 init_data_very_early (void)
|
|
2006 {
|
|
2007 /* Don't do this if just dumping out.
|
|
2008 We don't want to call `signal' in this case
|
|
2009 so that we don't have trouble with dumping
|
|
2010 signal-delivering routines in an inconsistent state. */
|
|
2011 #ifndef CANNOT_DUMP
|
|
2012 if (!initialized)
|
|
2013 return;
|
|
2014 #endif /* CANNOT_DUMP */
|
|
2015 signal (SIGFPE, arith_error);
|
|
2016 #ifdef uts
|
|
2017 signal (SIGEMT, arith_error);
|
|
2018 #endif /* uts */
|
|
2019 }
|
|
2020
|
|
2021 void
|
|
2022 init_errors_once_early (void)
|
|
2023 {
|
|
2024 defsymbol (&Qerror_conditions, "error-conditions");
|
|
2025 defsymbol (&Qerror_message, "error-message");
|
|
2026
|
|
2027 /* We declare the errors here because some other deferrors depend
|
|
2028 on some of the errors below. */
|
|
2029
|
|
2030 /* ERROR is used as a signaler for random errors for which nothing
|
|
2031 else is right */
|
|
2032
|
|
2033 deferror (&Qerror, "error", "error", Qnil);
|
|
2034 deferror (&Qquit, "quit", "Quit", Qnil);
|
|
2035
|
|
2036 deferror (&Qwrong_type_argument, "wrong-type-argument",
|
|
2037 "Wrong type argument", Qerror);
|
|
2038 deferror (&Qargs_out_of_range, "args-out-of-range", "Args out of range",
|
|
2039 Qerror);
|
|
2040 deferror (&Qvoid_function, "void-function",
|
|
2041 "Symbol's function definition is void", Qerror);
|
|
2042 deferror (&Qcyclic_function_indirection, "cyclic-function-indirection",
|
|
2043 "Symbol's chain of function indirections contains a loop", Qerror);
|
|
2044 deferror (&Qvoid_variable, "void-variable",
|
|
2045 "Symbol's value as variable is void", Qerror);
|
|
2046 deferror (&Qcyclic_variable_indirection, "cyclic-variable-indirection",
|
|
2047 "Symbol's chain of variable indirections contains a loop", Qerror);
|
|
2048 deferror (&Qsetting_constant, "setting-constant",
|
|
2049 "Attempt to set a constant symbol", Qerror);
|
|
2050 deferror (&Qinvalid_read_syntax, "invalid-read-syntax",
|
|
2051 "Invalid read syntax", Qerror);
|
380
|
2052
|
|
2053 /* Generated by list traversal macros */
|
0
|
2054 deferror (&Qmalformed_list, "malformed-list",
|
|
2055 "Malformed list", Qerror);
|
|
2056 deferror (&Qmalformed_property_list, "malformed-property-list",
|
380
|
2057 "Malformed property list", Qmalformed_list);
|
0
|
2058 deferror (&Qcircular_list, "circular-list",
|
|
2059 "Circular list", Qerror);
|
|
2060 deferror (&Qcircular_property_list, "circular-property-list",
|
380
|
2061 "Circular property list", Qcircular_list);
|
|
2062
|
0
|
2063 deferror (&Qinvalid_function, "invalid-function", "Invalid function",
|
|
2064 Qerror);
|
|
2065 deferror (&Qwrong_number_of_arguments, "wrong-number-of-arguments",
|
|
2066 "Wrong number of arguments", Qerror);
|
|
2067 deferror (&Qno_catch, "no-catch", "No catch for tag",
|
|
2068 Qerror);
|
|
2069 deferror (&Qbeginning_of_buffer, "beginning-of-buffer",
|
|
2070 "Beginning of buffer", Qerror);
|
|
2071 deferror (&Qend_of_buffer, "end-of-buffer", "End of buffer", Qerror);
|
|
2072 deferror (&Qbuffer_read_only, "buffer-read-only", "Buffer is read-only",
|
|
2073 Qerror);
|
|
2074
|
|
2075 deferror (&Qio_error, "io-error", "IO Error", Qerror);
|
|
2076 deferror (&Qend_of_file, "end-of-file", "End of stream", Qio_error);
|
|
2077
|
|
2078 deferror (&Qarith_error, "arith-error", "Arithmetic error", Qerror);
|
|
2079 deferror (&Qrange_error, "range-error", "Arithmetic range error",
|
|
2080 Qarith_error);
|
|
2081 deferror (&Qdomain_error, "domain-error", "Arithmetic domain error",
|
|
2082 Qarith_error);
|
|
2083 deferror (&Qsingularity_error, "singularity-error",
|
|
2084 "Arithmetic singularity error", Qdomain_error);
|
|
2085 deferror (&Qoverflow_error, "overflow-error",
|
|
2086 "Arithmetic overflow error", Qdomain_error);
|
|
2087 deferror (&Qunderflow_error, "underflow-error",
|
|
2088 "Arithmetic underflow error", Qdomain_error);
|
|
2089 }
|
|
2090
|
|
2091 void
|
|
2092 syms_of_data (void)
|
|
2093 {
|
|
2094 defsymbol (&Qcons, "cons");
|
|
2095 defsymbol (&Qkeyword, "keyword");
|
|
2096 defsymbol (&Qquote, "quote");
|
|
2097 defsymbol (&Qlambda, "lambda");
|
|
2098 defsymbol (&Qignore, "ignore");
|
|
2099 defsymbol (&Qlistp, "listp");
|
272
|
2100 defsymbol (&Qtrue_list_p, "true-list-p");
|
0
|
2101 defsymbol (&Qconsp, "consp");
|
|
2102 defsymbol (&Qsubrp, "subrp");
|
|
2103 defsymbol (&Qsymbolp, "symbolp");
|
|
2104 defsymbol (&Qkeywordp, "keywordp");
|
|
2105 defsymbol (&Qintegerp, "integerp");
|
|
2106 defsymbol (&Qcharacterp, "characterp");
|
|
2107 defsymbol (&Qnatnump, "natnump");
|
|
2108 defsymbol (&Qstringp, "stringp");
|
|
2109 defsymbol (&Qarrayp, "arrayp");
|
|
2110 defsymbol (&Qsequencep, "sequencep");
|
|
2111 defsymbol (&Qbufferp, "bufferp");
|
|
2112 defsymbol (&Qbitp, "bitp");
|
|
2113 defsymbol (&Qbit_vectorp, "bit-vector-p");
|
|
2114 defsymbol (&Qvectorp, "vectorp");
|
|
2115 defsymbol (&Qchar_or_string_p, "char-or-string-p");
|
|
2116 defsymbol (&Qmarkerp, "markerp");
|
|
2117 defsymbol (&Qinteger_or_marker_p, "integer-or-marker-p");
|
70
|
2118 defsymbol (&Qinteger_or_char_p, "integer-or-char-p");
|
|
2119 defsymbol (&Qinteger_char_or_marker_p, "integer-char-or-marker-p");
|
272
|
2120 defsymbol (&Qnumberp, "numberp");
|
|
2121 defsymbol (&Qnumber_or_marker_p, "number-or-marker-p");
|
|
2122 defsymbol (&Qnumber_char_or_marker_p, "number-char-or-marker-p");
|
|
2123 defsymbol (&Qcdr, "cdr");
|
|
2124 defsymbol (&Qweak_listp, "weak-list-p");
|
0
|
2125
|
|
2126 #ifdef LISP_FLOAT_TYPE
|
|
2127 defsymbol (&Qfloatp, "floatp");
|
|
2128 #endif /* LISP_FLOAT_TYPE */
|
|
2129
|
20
|
2130 DEFSUBR (Fwrong_type_argument);
|
0
|
2131
|
20
|
2132 DEFSUBR (Feq);
|
70
|
2133 DEFSUBR (Fold_eq);
|
20
|
2134 DEFSUBR (Fnull);
|
380
|
2135 Ffset (intern ("not"), intern ("null"));
|
20
|
2136 DEFSUBR (Flistp);
|
|
2137 DEFSUBR (Fnlistp);
|
272
|
2138 DEFSUBR (Ftrue_list_p);
|
20
|
2139 DEFSUBR (Fconsp);
|
|
2140 DEFSUBR (Fatom);
|
|
2141 DEFSUBR (Fchar_or_string_p);
|
|
2142 DEFSUBR (Fcharacterp);
|
70
|
2143 DEFSUBR (Fchar_int_p);
|
104
|
2144 DEFSUBR (Fchar_to_int);
|
|
2145 DEFSUBR (Fint_to_char);
|
70
|
2146 DEFSUBR (Fchar_or_char_int_p);
|
20
|
2147 DEFSUBR (Fintegerp);
|
|
2148 DEFSUBR (Finteger_or_marker_p);
|
70
|
2149 DEFSUBR (Finteger_or_char_p);
|
|
2150 DEFSUBR (Finteger_char_or_marker_p);
|
20
|
2151 DEFSUBR (Fnumberp);
|
|
2152 DEFSUBR (Fnumber_or_marker_p);
|
70
|
2153 DEFSUBR (Fnumber_char_or_marker_p);
|
0
|
2154 #ifdef LISP_FLOAT_TYPE
|
20
|
2155 DEFSUBR (Ffloatp);
|
0
|
2156 #endif /* LISP_FLOAT_TYPE */
|
20
|
2157 DEFSUBR (Fnatnump);
|
|
2158 DEFSUBR (Fsymbolp);
|
|
2159 DEFSUBR (Fkeywordp);
|
|
2160 DEFSUBR (Fstringp);
|
|
2161 DEFSUBR (Fvectorp);
|
|
2162 DEFSUBR (Fbitp);
|
|
2163 DEFSUBR (Fbit_vector_p);
|
|
2164 DEFSUBR (Farrayp);
|
|
2165 DEFSUBR (Fsequencep);
|
|
2166 DEFSUBR (Fmarkerp);
|
|
2167 DEFSUBR (Fsubrp);
|
|
2168 DEFSUBR (Fsubr_min_args);
|
|
2169 DEFSUBR (Fsubr_max_args);
|
209
|
2170 DEFSUBR (Fsubr_interactive);
|
20
|
2171 DEFSUBR (Ftype_of);
|
|
2172 DEFSUBR (Fcar);
|
|
2173 DEFSUBR (Fcdr);
|
|
2174 DEFSUBR (Fcar_safe);
|
|
2175 DEFSUBR (Fcdr_safe);
|
|
2176 DEFSUBR (Fsetcar);
|
|
2177 DEFSUBR (Fsetcdr);
|
|
2178 DEFSUBR (Findirect_function);
|
|
2179 DEFSUBR (Faref);
|
|
2180 DEFSUBR (Faset);
|
0
|
2181
|
20
|
2182 DEFSUBR (Fnumber_to_string);
|
|
2183 DEFSUBR (Fstring_to_number);
|
|
2184 DEFSUBR (Feqlsign);
|
|
2185 DEFSUBR (Flss);
|
|
2186 DEFSUBR (Fgtr);
|
|
2187 DEFSUBR (Fleq);
|
|
2188 DEFSUBR (Fgeq);
|
|
2189 DEFSUBR (Fneq);
|
|
2190 DEFSUBR (Fzerop);
|
|
2191 DEFSUBR (Fplus);
|
|
2192 DEFSUBR (Fminus);
|
|
2193 DEFSUBR (Ftimes);
|
|
2194 DEFSUBR (Fquo);
|
|
2195 DEFSUBR (Frem);
|
|
2196 DEFSUBR (Fmod);
|
|
2197 DEFSUBR (Fmax);
|
|
2198 DEFSUBR (Fmin);
|
|
2199 DEFSUBR (Flogand);
|
|
2200 DEFSUBR (Flogior);
|
|
2201 DEFSUBR (Flogxor);
|
|
2202 DEFSUBR (Flsh);
|
|
2203 DEFSUBR (Fash);
|
|
2204 DEFSUBR (Fadd1);
|
|
2205 DEFSUBR (Fsub1);
|
|
2206 DEFSUBR (Flognot);
|
0
|
2207
|
20
|
2208 DEFSUBR (Fweak_list_p);
|
|
2209 DEFSUBR (Fmake_weak_list);
|
|
2210 DEFSUBR (Fweak_list_type);
|
|
2211 DEFSUBR (Fweak_list_list);
|
|
2212 DEFSUBR (Fset_weak_list_list);
|
0
|
2213 }
|
|
2214
|
|
2215 void
|
|
2216 vars_of_data (void)
|
|
2217 {
|
|
2218 /* This must not be staticpro'd */
|
|
2219 Vall_weak_lists = Qnil;
|
70
|
2220
|
|
2221 #ifdef DEBUG_XEMACS
|
|
2222 DEFVAR_INT ("debug-issue-ebola-notices", &debug_issue_ebola_notices /*
|
380
|
2223 If non-zero, note when your code may be suffering from char-int confoundance.
|
70
|
2224 That is to say, if XEmacs encounters a usage of `eq', `memq', `equal',
|
380
|
2225 etc. where an int and a char with the same value are being compared,
|
70
|
2226 it will issue a notice on stderr to this effect, along with a backtrace.
|
|
2227 In such situations, the result would be different in XEmacs 19 versus
|
|
2228 XEmacs 20, and you probably don't want this.
|
|
2229
|
|
2230 Note that in order to see these notices, you have to byte compile your
|
|
2231 code under XEmacs 20 -- any code byte-compiled under XEmacs 19 will
|
|
2232 have its chars and ints all confounded in the byte code, making it
|
|
2233 impossible to accurately determine Ebola infection.
|
|
2234 */ );
|
|
2235
|
|
2236 debug_issue_ebola_notices = 2; /* #### temporary hack */
|
|
2237
|
|
2238 DEFVAR_INT ("debug-ebola-backtrace-length",
|
|
2239 &debug_ebola_backtrace_length /*
|
|
2240 Length (in stack frames) of short backtrace printed out in Ebola notices.
|
|
2241 See `debug-issue-ebola-notices'.
|
|
2242 */ );
|
159
|
2243 debug_ebola_backtrace_length = 32;
|
70
|
2244
|
|
2245 #endif /* DEBUG_XEMACS */
|
0
|
2246 }
|