259
|
1 /* Code conversion functions.
|
|
2 Copyright (C) 1991, 1995 Free Software Foundation, Inc.
|
|
3 Copyright (C) 1995 Sun Microsystems, Inc.
|
|
4
|
|
5 This file is part of XEmacs.
|
|
6
|
|
7 XEmacs is free software; you can redistribute it and/or modify it
|
|
8 under the terms of the GNU General Public License as published by the
|
|
9 Free Software Foundation; either version 2, or (at your option) any
|
|
10 later version.
|
|
11
|
|
12 XEmacs is distributed in the hope that it will be useful, but WITHOUT
|
|
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
15 for more details.
|
|
16
|
|
17 You should have received a copy of the GNU General Public License
|
|
18 along with XEmacs; see the file COPYING. If not, write to
|
|
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
20 Boston, MA 02111-1307, USA. */
|
|
21
|
|
22 /* Synched up with: Mule 2.3. Not in FSF. */
|
|
23
|
298
|
24 /* Rewritten by Ben Wing <ben@xemacs.org>. */
|
259
|
25
|
|
26 #include <config.h>
|
|
27 #include "lisp.h"
|
|
28 #include "buffer.h"
|
|
29 #include "elhash.h"
|
|
30 #include "insdel.h"
|
|
31 #include "lstream.h"
|
|
32 #ifdef MULE
|
|
33 #include "mule-ccl.h"
|
|
34 #endif
|
|
35 #include "file-coding.h"
|
|
36
|
|
37 Lisp_Object Qbuffer_file_coding_system, Qcoding_system_error;
|
|
38
|
|
39 Lisp_Object Vkeyboard_coding_system;
|
|
40 Lisp_Object Vterminal_coding_system;
|
|
41 Lisp_Object Vcoding_system_for_read;
|
|
42 Lisp_Object Vcoding_system_for_write;
|
|
43 Lisp_Object Vfile_name_coding_system;
|
|
44
|
|
45 /* Table of symbols identifying each coding category. */
|
|
46 Lisp_Object coding_category_symbol[CODING_CATEGORY_LAST + 1];
|
|
47
|
|
48 /* Coding system currently associated with each coding category. */
|
|
49 Lisp_Object coding_category_system[CODING_CATEGORY_LAST + 1];
|
|
50
|
|
51 /* Table of all coding categories in decreasing order of priority.
|
|
52 This describes a permutation of the possible coding categories. */
|
|
53 int coding_category_by_priority[CODING_CATEGORY_LAST + 1];
|
|
54
|
|
55 Lisp_Object Qcoding_system_p;
|
|
56
|
|
57 Lisp_Object Qno_conversion, Qccl, Qiso2022;
|
|
58 /* Qinternal in general.c */
|
|
59
|
|
60 Lisp_Object Qmnemonic, Qeol_type;
|
|
61 Lisp_Object Qcr, Qcrlf, Qlf;
|
|
62 Lisp_Object Qeol_cr, Qeol_crlf, Qeol_lf;
|
|
63 Lisp_Object Qpost_read_conversion;
|
|
64 Lisp_Object Qpre_write_conversion;
|
|
65
|
|
66 #ifdef MULE
|
|
67 Lisp_Object Qbig5, Qshift_jis;
|
|
68 Lisp_Object Qcharset_g0, Qcharset_g1, Qcharset_g2, Qcharset_g3;
|
|
69 Lisp_Object Qforce_g0_on_output, Qforce_g1_on_output;
|
|
70 Lisp_Object Qforce_g2_on_output, Qforce_g3_on_output;
|
|
71 Lisp_Object Qno_iso6429;
|
|
72 Lisp_Object Qinput_charset_conversion, Qoutput_charset_conversion;
|
263
|
73 Lisp_Object Qctext, Qescape_quoted;
|
259
|
74 Lisp_Object Qshort, Qno_ascii_eol, Qno_ascii_cntl, Qseven, Qlock_shift;
|
263
|
75 #endif
|
|
76 Lisp_Object Qencode, Qdecode;
|
259
|
77
|
380
|
78 Lisp_Object Vcoding_system_hash_table;
|
259
|
79
|
|
80 int enable_multibyte_characters;
|
|
81
|
|
82 #ifdef MULE
|
|
83 /* Additional information used by the ISO2022 decoder and detector. */
|
|
84 struct iso2022_decoder
|
|
85 {
|
|
86 /* CHARSET holds the character sets currently assigned to the G0
|
|
87 through G3 variables. It is initialized from the array
|
|
88 INITIAL_CHARSET in CODESYS. */
|
|
89 Lisp_Object charset[4];
|
|
90
|
|
91 /* Which registers are currently invoked into the left (GL) and
|
|
92 right (GR) halves of the 8-bit encoding space? */
|
|
93 int register_left, register_right;
|
|
94
|
|
95 /* ISO_ESC holds a value indicating part of an escape sequence
|
|
96 that has already been seen. */
|
|
97 enum iso_esc_flag esc;
|
|
98
|
|
99 /* This records the bytes we've seen so far in an escape sequence,
|
|
100 in case the sequence is invalid (we spit out the bytes unchanged). */
|
|
101 unsigned char esc_bytes[8];
|
|
102
|
|
103 /* Index for next byte to store in ISO escape sequence. */
|
|
104 int esc_bytes_index;
|
|
105
|
|
106 /* Stuff seen so far when composing a string. */
|
|
107 unsigned_char_dynarr *composite_chars;
|
|
108
|
|
109 /* If we saw an invalid designation sequence for a particular
|
|
110 register, we flag it here and switch to ASCII. The next time we
|
|
111 see a valid designation for this register, we turn off the flag
|
|
112 and do the designation normally, but pretend the sequence was
|
|
113 invalid. The effect of all this is that (most of the time) the
|
|
114 escape sequences for both the switch to the unknown charset, and
|
|
115 the switch back to the known charset, get inserted literally into
|
|
116 the buffer and saved out as such. The hope is that we can
|
|
117 preserve the escape sequences so that the resulting written out
|
|
118 file makes sense. If we don't do any of this, the designation
|
|
119 to the invalid charset will be preserved but that switch back
|
|
120 to the known charset will probably get eaten because it was
|
|
121 the same charset that was already present in the register. */
|
|
122 unsigned char invalid_designated[4];
|
|
123
|
|
124 /* We try to do similar things as above for direction-switching
|
|
125 sequences. If we encountered a direction switch while an
|
|
126 invalid designation was present, or an invalid designation
|
|
127 just after a direction switch (i.e. no valid designation
|
|
128 encountered yet), we insert the direction-switch escape
|
|
129 sequence literally into the output stream, and later on
|
|
130 insert the corresponding direction-restoring escape sequence
|
|
131 literally also. */
|
|
132 unsigned int switched_dir_and_no_valid_charset_yet :1;
|
|
133 unsigned int invalid_switch_dir :1;
|
|
134
|
|
135 /* Tells the decoder to output the escape sequence literally
|
|
136 even though it was valid. Used in the games we play to
|
|
137 avoid lossage when we encounter invalid designations. */
|
|
138 unsigned int output_literally :1;
|
|
139 /* We encountered a direction switch followed by an invalid
|
|
140 designation. We didn't output the direction switch
|
|
141 literally because we didn't know about the invalid designation;
|
|
142 but we have to do so now. */
|
|
143 unsigned int output_direction_sequence :1;
|
|
144 };
|
272
|
145 #endif /* MULE */
|
|
146 EXFUN (Fcopy_coding_system, 2);
|
259
|
147 #ifdef MULE
|
|
148 struct detection_state;
|
|
149 static int detect_coding_sjis (struct detection_state *st,
|
|
150 CONST unsigned char *src,
|
|
151 unsigned int n);
|
|
152 static void decode_coding_sjis (Lstream *decoding,
|
|
153 CONST unsigned char *src,
|
|
154 unsigned_char_dynarr *dst,
|
|
155 unsigned int n);
|
|
156 static void encode_coding_sjis (Lstream *encoding,
|
|
157 CONST unsigned char *src,
|
|
158 unsigned_char_dynarr *dst,
|
|
159 unsigned int n);
|
|
160 static int detect_coding_big5 (struct detection_state *st,
|
|
161 CONST unsigned char *src,
|
|
162 unsigned int n);
|
|
163 static void decode_coding_big5 (Lstream *decoding,
|
|
164 CONST unsigned char *src,
|
|
165 unsigned_char_dynarr *dst, unsigned int n);
|
|
166 static void encode_coding_big5 (Lstream *encoding,
|
|
167 CONST unsigned char *src,
|
|
168 unsigned_char_dynarr *dst, unsigned int n);
|
|
169 static int postprocess_iso2022_mask (int mask);
|
|
170 static void reset_iso2022 (Lisp_Object coding_system,
|
|
171 struct iso2022_decoder *iso);
|
|
172 static int detect_coding_iso2022 (struct detection_state *st,
|
|
173 CONST unsigned char *src,
|
|
174 unsigned int n);
|
|
175 static void decode_coding_iso2022 (Lstream *decoding,
|
|
176 CONST unsigned char *src,
|
|
177 unsigned_char_dynarr *dst, unsigned int n);
|
|
178 static void encode_coding_iso2022 (Lstream *encoding,
|
|
179 CONST unsigned char *src,
|
|
180 unsigned_char_dynarr *dst, unsigned int n);
|
|
181 #endif /* MULE */
|
|
182 static void decode_coding_no_conversion (Lstream *decoding,
|
|
183 CONST unsigned char *src,
|
|
184 unsigned_char_dynarr *dst,
|
|
185 unsigned int n);
|
|
186 static void encode_coding_no_conversion (Lstream *encoding,
|
|
187 CONST unsigned char *src,
|
|
188 unsigned_char_dynarr *dst,
|
|
189 unsigned int n);
|
|
190 static void mule_decode (Lstream *decoding, CONST unsigned char *src,
|
|
191 unsigned_char_dynarr *dst, unsigned int n);
|
|
192 static void mule_encode (Lstream *encoding, CONST unsigned char *src,
|
|
193 unsigned_char_dynarr *dst, unsigned int n);
|
|
194
|
|
195 typedef struct codesys_prop codesys_prop;
|
|
196 struct codesys_prop
|
|
197 {
|
|
198 Lisp_Object sym;
|
|
199 int prop_type;
|
|
200 };
|
|
201
|
|
202 typedef struct
|
|
203 {
|
|
204 Dynarr_declare (codesys_prop);
|
|
205 } codesys_prop_dynarr;
|
|
206
|
|
207 codesys_prop_dynarr *the_codesys_prop_dynarr;
|
|
208
|
|
209 enum codesys_prop_enum
|
|
210 {
|
|
211 CODESYS_PROP_ALL_OK,
|
|
212 CODESYS_PROP_ISO2022,
|
|
213 CODESYS_PROP_CCL
|
|
214 };
|
|
215
|
|
216
|
|
217 /************************************************************************/
|
|
218 /* Coding system functions */
|
|
219 /************************************************************************/
|
|
220
|
|
221 static Lisp_Object mark_coding_system (Lisp_Object, void (*) (Lisp_Object));
|
|
222 static void print_coding_system (Lisp_Object, Lisp_Object, int);
|
|
223 static void finalize_coding_system (void *header, int for_disksave);
|
|
224
|
|
225 DEFINE_LRECORD_IMPLEMENTATION ("coding-system", coding_system,
|
|
226 mark_coding_system, print_coding_system,
|
|
227 finalize_coding_system,
|
|
228 0, 0, struct Lisp_Coding_System);
|
|
229
|
|
230 static Lisp_Object
|
|
231 mark_coding_system (Lisp_Object obj, void (*markobj) (Lisp_Object))
|
|
232 {
|
|
233 struct Lisp_Coding_System *codesys = XCODING_SYSTEM (obj);
|
|
234
|
380
|
235 markobj (CODING_SYSTEM_NAME (codesys));
|
|
236 markobj (CODING_SYSTEM_DOC_STRING (codesys));
|
|
237 markobj (CODING_SYSTEM_MNEMONIC (codesys));
|
|
238 markobj (CODING_SYSTEM_EOL_LF (codesys));
|
|
239 markobj (CODING_SYSTEM_EOL_CRLF (codesys));
|
|
240 markobj (CODING_SYSTEM_EOL_CR (codesys));
|
259
|
241
|
|
242 switch (CODING_SYSTEM_TYPE (codesys))
|
|
243 {
|
|
244 #ifdef MULE
|
|
245 int i;
|
|
246 case CODESYS_ISO2022:
|
|
247 for (i = 0; i < 4; i++)
|
380
|
248 markobj (CODING_SYSTEM_ISO2022_INITIAL_CHARSET (codesys, i));
|
259
|
249 if (codesys->iso2022.input_conv)
|
|
250 {
|
|
251 for (i = 0; i < Dynarr_length (codesys->iso2022.input_conv); i++)
|
|
252 {
|
|
253 struct charset_conversion_spec *ccs =
|
|
254 Dynarr_atp (codesys->iso2022.input_conv, i);
|
380
|
255 markobj (ccs->from_charset);
|
|
256 markobj (ccs->to_charset);
|
259
|
257 }
|
|
258 }
|
|
259 if (codesys->iso2022.output_conv)
|
|
260 {
|
|
261 for (i = 0; i < Dynarr_length (codesys->iso2022.output_conv); i++)
|
|
262 {
|
|
263 struct charset_conversion_spec *ccs =
|
|
264 Dynarr_atp (codesys->iso2022.output_conv, i);
|
380
|
265 markobj (ccs->from_charset);
|
|
266 markobj (ccs->to_charset);
|
259
|
267 }
|
|
268 }
|
|
269 break;
|
|
270
|
|
271 case CODESYS_CCL:
|
380
|
272 markobj (CODING_SYSTEM_CCL_DECODE (codesys));
|
|
273 markobj (CODING_SYSTEM_CCL_ENCODE (codesys));
|
259
|
274 break;
|
272
|
275 #endif /* MULE */
|
259
|
276 default:
|
|
277 break;
|
|
278 }
|
|
279
|
380
|
280 markobj (CODING_SYSTEM_PRE_WRITE_CONVERSION (codesys));
|
259
|
281 return CODING_SYSTEM_POST_READ_CONVERSION (codesys);
|
|
282 }
|
|
283
|
|
284 static void
|
|
285 print_coding_system (Lisp_Object obj, Lisp_Object printcharfun,
|
|
286 int escapeflag)
|
|
287 {
|
|
288 struct Lisp_Coding_System *c = XCODING_SYSTEM (obj);
|
|
289 if (print_readably)
|
|
290 error ("printing unreadable object #<coding_system 0x%x>",
|
|
291 c->header.uid);
|
|
292
|
|
293 write_c_string ("#<coding_system ", printcharfun);
|
|
294 print_internal (c->name, printcharfun, 1);
|
|
295 write_c_string (">", printcharfun);
|
|
296 }
|
|
297
|
|
298 static void
|
|
299 finalize_coding_system (void *header, int for_disksave)
|
|
300 {
|
|
301 struct Lisp_Coding_System *c = (struct Lisp_Coding_System *) header;
|
|
302 /* Since coding systems never go away, this function is not
|
|
303 necessary. But it would be necessary if we changed things
|
|
304 so that coding systems could go away. */
|
|
305 if (!for_disksave) /* see comment in lstream.c */
|
|
306 {
|
|
307 switch (CODING_SYSTEM_TYPE (c))
|
|
308 {
|
|
309 #ifdef MULE
|
|
310 case CODESYS_ISO2022:
|
|
311 if (c->iso2022.input_conv)
|
|
312 {
|
|
313 Dynarr_free (c->iso2022.input_conv);
|
|
314 c->iso2022.input_conv = 0;
|
|
315 }
|
|
316 if (c->iso2022.output_conv)
|
|
317 {
|
|
318 Dynarr_free (c->iso2022.output_conv);
|
|
319 c->iso2022.output_conv = 0;
|
|
320 }
|
|
321 break;
|
272
|
322 #endif /* MULE */
|
259
|
323 default:
|
|
324 break;
|
|
325 }
|
|
326 }
|
|
327 }
|
|
328
|
|
329 static enum eol_type
|
|
330 symbol_to_eol_type (Lisp_Object symbol)
|
|
331 {
|
|
332 CHECK_SYMBOL (symbol);
|
|
333 if (NILP (symbol)) return EOL_AUTODETECT;
|
|
334 if (EQ (symbol, Qlf)) return EOL_LF;
|
|
335 if (EQ (symbol, Qcrlf)) return EOL_CRLF;
|
|
336 if (EQ (symbol, Qcr)) return EOL_CR;
|
|
337
|
|
338 signal_simple_error ("Unrecognized eol type", symbol);
|
|
339 return EOL_AUTODETECT; /* not reached */
|
|
340 }
|
|
341
|
|
342 static Lisp_Object
|
|
343 eol_type_to_symbol (enum eol_type type)
|
|
344 {
|
|
345 switch (type)
|
|
346 {
|
380
|
347 default: abort ();
|
259
|
348 case EOL_LF: return Qlf;
|
|
349 case EOL_CRLF: return Qcrlf;
|
|
350 case EOL_CR: return Qcr;
|
|
351 case EOL_AUTODETECT: return Qnil;
|
|
352 }
|
|
353 }
|
|
354
|
|
355 static void
|
|
356 setup_eol_coding_systems (struct Lisp_Coding_System *codesys)
|
|
357 {
|
272
|
358 Lisp_Object codesys_obj;
|
259
|
359 int len = string_length (XSYMBOL (CODING_SYSTEM_NAME (codesys))->name);
|
|
360 char *codesys_name = (char *) alloca (len + 7);
|
261
|
361 int mlen = -1;
|
265
|
362 char *codesys_mnemonic=0;
|
259
|
363
|
|
364 Lisp_Object codesys_name_sym, sub_codesys_obj;
|
|
365
|
|
366 /* kludge */
|
|
367
|
|
368 XSETCODING_SYSTEM (codesys_obj, codesys);
|
|
369
|
|
370 memcpy (codesys_name,
|
|
371 string_data (XSYMBOL (CODING_SYSTEM_NAME (codesys))->name), len);
|
|
372
|
261
|
373 if (STRINGP (CODING_SYSTEM_MNEMONIC (codesys)))
|
|
374 {
|
272
|
375 mlen = XSTRING_LENGTH (CODING_SYSTEM_MNEMONIC (codesys));
|
261
|
376 codesys_mnemonic = (char *) alloca (mlen + 7);
|
|
377 memcpy (codesys_mnemonic,
|
|
378 XSTRING_DATA (CODING_SYSTEM_MNEMONIC (codesys)), mlen);
|
|
379 }
|
259
|
380
|
272
|
381 #define DEFINE_SUB_CODESYS(op_sys, op_sys_abbr, Type) do { \
|
|
382 strcpy (codesys_name + len, "-" op_sys); \
|
|
383 if (mlen != -1) \
|
|
384 strcpy (codesys_mnemonic + mlen, op_sys_abbr); \
|
|
385 codesys_name_sym = intern (codesys_name); \
|
|
386 sub_codesys_obj = Fcopy_coding_system (codesys_obj, codesys_name_sym); \
|
|
387 XCODING_SYSTEM_EOL_TYPE (sub_codesys_obj) = Type; \
|
|
388 if (mlen != -1) \
|
|
389 XCODING_SYSTEM_MNEMONIC(sub_codesys_obj) = \
|
|
390 build_string (codesys_mnemonic); \
|
|
391 CODING_SYSTEM_##Type (codesys) = sub_codesys_obj; \
|
259
|
392 } while (0)
|
|
393
|
|
394 DEFINE_SUB_CODESYS("unix", "", EOL_LF);
|
263
|
395 DEFINE_SUB_CODESYS("dos", ":T", EOL_CRLF);
|
|
396 DEFINE_SUB_CODESYS("mac", ":t", EOL_CR);
|
259
|
397 }
|
|
398
|
|
399 DEFUN ("coding-system-p", Fcoding_system_p, 1, 1, 0, /*
|
272
|
400 Return t if OBJECT is a coding system.
|
259
|
401 A coding system is an object that defines how text containing multiple
|
|
402 character sets is encoded into a stream of (typically 8-bit) bytes.
|
|
403 The coding system is used to decode the stream into a series of
|
|
404 characters (which may be from multiple charsets) when the text is read
|
|
405 from a file or process, and is used to encode the text back into the
|
|
406 same format when it is written out to a file or process.
|
|
407
|
|
408 For example, many ISO2022-compliant coding systems (such as Compound
|
|
409 Text, which is used for inter-client data under the X Window System)
|
|
410 use escape sequences to switch between different charsets -- Japanese
|
|
411 Kanji, for example, is invoked with "ESC $ ( B"; ASCII is invoked
|
|
412 with "ESC ( B"; and Cyrillic is invoked with "ESC - L". See
|
|
413 `make-coding-system' for more information.
|
|
414
|
|
415 Coding systems are normally identified using a symbol, and the
|
|
416 symbol is accepted in place of the actual coding system object whenever
|
|
417 a coding system is called for. (This is similar to how faces work.)
|
|
418 */
|
|
419 (object))
|
|
420 {
|
|
421 return CODING_SYSTEMP (object) ? Qt : Qnil;
|
|
422 }
|
|
423
|
|
424 DEFUN ("find-coding-system", Ffind_coding_system, 1, 1, 0, /*
|
|
425 Retrieve the coding system of the given name.
|
|
426
|
|
427 If CODING-SYSTEM-OR-NAME is a coding-system object, it is simply
|
|
428 returned. Otherwise, CODING-SYSTEM-OR-NAME should be a symbol.
|
|
429 If there is no such coding system, nil is returned. Otherwise the
|
|
430 associated coding system object is returned.
|
|
431 */
|
|
432 (coding_system_or_name))
|
|
433 {
|
272
|
434 if (CODING_SYSTEMP (coding_system_or_name))
|
|
435 return coding_system_or_name;
|
|
436
|
259
|
437 if (NILP (coding_system_or_name))
|
|
438 coding_system_or_name = Qbinary;
|
272
|
439 else
|
|
440 CHECK_SYMBOL (coding_system_or_name);
|
259
|
441
|
380
|
442 return Fgethash (coding_system_or_name, Vcoding_system_hash_table, Qnil);
|
259
|
443 }
|
|
444
|
|
445 DEFUN ("get-coding-system", Fget_coding_system, 1, 1, 0, /*
|
|
446 Retrieve the coding system of the given name.
|
|
447 Same as `find-coding-system' except that if there is no such
|
|
448 coding system, an error is signaled instead of returning nil.
|
|
449 */
|
|
450 (name))
|
|
451 {
|
|
452 Lisp_Object coding_system = Ffind_coding_system (name);
|
|
453
|
|
454 if (NILP (coding_system))
|
|
455 signal_simple_error ("No such coding system", name);
|
|
456 return coding_system;
|
|
457 }
|
|
458
|
|
459 /* We store the coding systems in hash tables with the names as the key and the
|
|
460 actual coding system object as the value. Occasionally we need to use them
|
|
461 in a list format. These routines provide us with that. */
|
|
462 struct coding_system_list_closure
|
|
463 {
|
|
464 Lisp_Object *coding_system_list;
|
|
465 };
|
|
466
|
|
467 static int
|
380
|
468 add_coding_system_to_list_mapper (Lisp_Object key, Lisp_Object value,
|
259
|
469 void *coding_system_list_closure)
|
|
470 {
|
|
471 /* This function can GC */
|
|
472 struct coding_system_list_closure *cscl =
|
|
473 (struct coding_system_list_closure *) coding_system_list_closure;
|
380
|
474 Lisp_Object *coding_system_list = cscl->coding_system_list;
|
|
475
|
|
476 *coding_system_list = Fcons (XCODING_SYSTEM (value)->name,
|
259
|
477 *coding_system_list);
|
|
478 return 0;
|
|
479 }
|
|
480
|
|
481 DEFUN ("coding-system-list", Fcoding_system_list, 0, 0, 0, /*
|
|
482 Return a list of the names of all defined coding systems.
|
|
483 */
|
|
484 ())
|
|
485 {
|
|
486 Lisp_Object coding_system_list = Qnil;
|
|
487 struct gcpro gcpro1;
|
|
488 struct coding_system_list_closure coding_system_list_closure;
|
|
489
|
|
490 GCPRO1 (coding_system_list);
|
|
491 coding_system_list_closure.coding_system_list = &coding_system_list;
|
380
|
492 elisp_maphash (add_coding_system_to_list_mapper, Vcoding_system_hash_table,
|
259
|
493 &coding_system_list_closure);
|
|
494 UNGCPRO;
|
|
495
|
|
496 return coding_system_list;
|
|
497 }
|
|
498
|
|
499 DEFUN ("coding-system-name", Fcoding_system_name, 1, 1, 0, /*
|
|
500 Return the name of the given coding system.
|
|
501 */
|
|
502 (coding_system))
|
|
503 {
|
|
504 coding_system = Fget_coding_system (coding_system);
|
|
505 return XCODING_SYSTEM_NAME (coding_system);
|
|
506 }
|
|
507
|
|
508 static struct Lisp_Coding_System *
|
|
509 allocate_coding_system (enum coding_system_type type, Lisp_Object name)
|
|
510 {
|
|
511 struct Lisp_Coding_System *codesys =
|
|
512 alloc_lcrecord_type (struct Lisp_Coding_System, lrecord_coding_system);
|
|
513
|
|
514 zero_lcrecord (codesys);
|
|
515 CODING_SYSTEM_PRE_WRITE_CONVERSION (codesys) = Qnil;
|
|
516 CODING_SYSTEM_POST_READ_CONVERSION (codesys) = Qnil;
|
|
517 CODING_SYSTEM_EOL_TYPE (codesys) = EOL_AUTODETECT;
|
|
518 CODING_SYSTEM_EOL_CRLF (codesys) = Qnil;
|
|
519 CODING_SYSTEM_EOL_CR (codesys) = Qnil;
|
|
520 CODING_SYSTEM_EOL_LF (codesys) = Qnil;
|
|
521 CODING_SYSTEM_TYPE (codesys) = type;
|
261
|
522 CODING_SYSTEM_MNEMONIC (codesys) = Qnil;
|
259
|
523 #ifdef MULE
|
|
524 if (type == CODESYS_ISO2022)
|
|
525 {
|
|
526 int i;
|
|
527 for (i = 0; i < 4; i++)
|
|
528 CODING_SYSTEM_ISO2022_INITIAL_CHARSET (codesys, i) = Qnil;
|
|
529 }
|
|
530 else if (type == CODESYS_CCL)
|
|
531 {
|
|
532 CODING_SYSTEM_CCL_DECODE (codesys) = Qnil;
|
|
533 CODING_SYSTEM_CCL_ENCODE (codesys) = Qnil;
|
|
534 }
|
272
|
535 #endif /* MULE */
|
259
|
536 CODING_SYSTEM_NAME (codesys) = name;
|
|
537
|
|
538 return codesys;
|
|
539 }
|
|
540
|
|
541 #ifdef MULE
|
|
542 /* Given a list of charset conversion specs as specified in a Lisp
|
|
543 program, parse it into STORE_HERE. */
|
|
544
|
|
545 static void
|
|
546 parse_charset_conversion_specs (charset_conversion_spec_dynarr *store_here,
|
|
547 Lisp_Object spec_list)
|
|
548 {
|
|
549 Lisp_Object rest;
|
|
550
|
|
551 EXTERNAL_LIST_LOOP (rest, spec_list)
|
|
552 {
|
|
553 Lisp_Object car = XCAR (rest);
|
|
554 Lisp_Object from, to;
|
|
555 struct charset_conversion_spec spec;
|
|
556
|
|
557 if (!CONSP (car) || !CONSP (XCDR (car)) || !NILP (XCDR (XCDR (car))))
|
|
558 signal_simple_error ("Invalid charset conversion spec", car);
|
|
559 from = Fget_charset (XCAR (car));
|
|
560 to = Fget_charset (XCAR (XCDR (car)));
|
|
561 if (XCHARSET_TYPE (from) != XCHARSET_TYPE (to))
|
|
562 signal_simple_error_2
|
|
563 ("Attempted conversion between different charset types",
|
|
564 from, to);
|
|
565 spec.from_charset = from;
|
|
566 spec.to_charset = to;
|
|
567
|
|
568 Dynarr_add (store_here, spec);
|
|
569 }
|
|
570 }
|
|
571
|
|
572 /* Given a dynarr LOAD_HERE of internally-stored charset conversion
|
|
573 specs, return the equivalent as the Lisp programmer would see it.
|
|
574
|
|
575 If LOAD_HERE is 0, return Qnil. */
|
|
576
|
|
577 static Lisp_Object
|
|
578 unparse_charset_conversion_specs (charset_conversion_spec_dynarr *load_here)
|
|
579 {
|
|
580 int i;
|
272
|
581 Lisp_Object result;
|
259
|
582
|
|
583 if (!load_here)
|
|
584 return Qnil;
|
272
|
585 for (i = 0, result = Qnil; i < Dynarr_length (load_here); i++)
|
259
|
586 {
|
272
|
587 struct charset_conversion_spec *ccs = Dynarr_atp (load_here, i);
|
259
|
588 result = Fcons (list2 (ccs->from_charset, ccs->to_charset), result);
|
|
589 }
|
|
590
|
|
591 return Fnreverse (result);
|
|
592 }
|
|
593
|
272
|
594 #endif /* MULE */
|
259
|
595
|
|
596 DEFUN ("make-coding-system", Fmake_coding_system, 2, 4, 0, /*
|
|
597 Register symbol NAME as a coding system.
|
|
598
|
|
599 TYPE describes the conversion method used and should be one of
|
|
600
|
|
601 nil or 'undecided
|
|
602 Automatic conversion. XEmacs attempts to detect the coding system
|
|
603 used in the file.
|
|
604 'no-conversion
|
|
605 No conversion. Use this for binary files and such. On output,
|
|
606 graphic characters that are not in ASCII or Latin-1 will be
|
|
607 replaced by a ?. (For a no-conversion-encoded buffer, these
|
|
608 characters will only be present if you explicitly insert them.)
|
|
609 'shift-jis
|
|
610 Shift-JIS (a Japanese encoding commonly used in PC operating systems).
|
|
611 'iso2022
|
|
612 Any ISO2022-compliant encoding. Among other things, this includes
|
|
613 JIS (the Japanese encoding commonly used for e-mail), EUC (the
|
|
614 standard Unix encoding for Japanese and other languages), and
|
|
615 Compound Text (the encoding used in X11). You can specify more
|
371
|
616 specific information about the conversion with the FLAGS argument.
|
259
|
617 'big5
|
|
618 Big5 (the encoding commonly used for Taiwanese).
|
|
619 'ccl
|
|
620 The conversion is performed using a user-written pseudo-code
|
|
621 program. CCL (Code Conversion Language) is the name of this
|
|
622 pseudo-code.
|
|
623 'internal
|
|
624 Write out or read in the raw contents of the memory representing
|
|
625 the buffer's text. This is primarily useful for debugging
|
|
626 purposes, and is only enabled when XEmacs has been compiled with
|
|
627 DEBUG_XEMACS defined (via the --debug configure option).
|
|
628 WARNING: Reading in a file using 'internal conversion can result
|
|
629 in an internal inconsistency in the memory representing a
|
|
630 buffer's text, which will produce unpredictable results and may
|
|
631 cause XEmacs to crash. Under normal circumstances you should
|
|
632 never use 'internal conversion.
|
|
633
|
|
634 DOC-STRING is a string describing the coding system.
|
|
635
|
|
636 PROPS is a property list, describing the specific nature of the
|
|
637 character set. Recognized properties are:
|
|
638
|
|
639 'mnemonic
|
|
640 String to be displayed in the modeline when this coding system is
|
|
641 active.
|
|
642
|
|
643 'eol-type
|
|
644 End-of-line conversion to be used. It should be one of
|
|
645
|
|
646 nil
|
|
647 Automatically detect the end-of-line type (LF, CRLF,
|
|
648 or CR). Also generate subsidiary coding systems named
|
|
649 `NAME-unix', `NAME-dos', and `NAME-mac', that are
|
|
650 identical to this coding system but have an EOL-TYPE
|
|
651 value of 'lf, 'crlf, and 'cr, respectively.
|
|
652 'lf
|
|
653 The end of a line is marked externally using ASCII LF.
|
|
654 Since this is also the way that XEmacs represents an
|
|
655 end-of-line internally, specifying this option results
|
|
656 in no end-of-line conversion. This is the standard
|
|
657 format for Unix text files.
|
|
658 'crlf
|
|
659 The end of a line is marked externally using ASCII
|
|
660 CRLF. This is the standard format for MS-DOS text
|
|
661 files.
|
|
662 'cr
|
|
663 The end of a line is marked externally using ASCII CR.
|
|
664 This is the standard format for Macintosh text files.
|
|
665 t
|
|
666 Automatically detect the end-of-line type but do not
|
|
667 generate subsidiary coding systems. (This value is
|
|
668 converted to nil when stored internally, and
|
|
669 `coding-system-property' will return nil.)
|
|
670
|
|
671 'post-read-conversion
|
|
672 Function called after a file has been read in, to perform the
|
|
673 decoding. Called with two arguments, BEG and END, denoting
|
|
674 a region of the current buffer to be decoded.
|
|
675
|
|
676 'pre-write-conversion
|
|
677 Function called before a file is written out, to perform the
|
|
678 encoding. Called with two arguments, BEG and END, denoting
|
|
679 a region of the current buffer to be encoded.
|
|
680
|
|
681
|
|
682 The following additional properties are recognized if TYPE is 'iso2022:
|
|
683
|
|
684 'charset-g0
|
|
685 'charset-g1
|
|
686 'charset-g2
|
|
687 'charset-g3
|
|
688 The character set initially designated to the G0 - G3 registers.
|
|
689 The value should be one of
|
|
690
|
|
691 -- A charset object (designate that character set)
|
|
692 -- nil (do not ever use this register)
|
|
693 -- t (no character set is initially designated to
|
|
694 the register, but may be later on; this automatically
|
|
695 sets the corresponding `force-g*-on-output' property)
|
|
696
|
|
697 'force-g0-on-output
|
|
698 'force-g1-on-output
|
|
699 'force-g2-on-output
|
|
700 'force-g2-on-output
|
|
701 If non-nil, send an explicit designation sequence on output before
|
|
702 using the specified register.
|
|
703
|
|
704 'short
|
|
705 If non-nil, use the short forms "ESC $ @", "ESC $ A", and
|
|
706 "ESC $ B" on output in place of the full designation sequences
|
|
707 "ESC $ ( @", "ESC $ ( A", and "ESC $ ( B".
|
|
708
|
|
709 'no-ascii-eol
|
|
710 If non-nil, don't designate ASCII to G0 at each end of line on output.
|
|
711 Setting this to non-nil also suppresses other state-resetting that
|
|
712 normally happens at the end of a line.
|
|
713
|
|
714 'no-ascii-cntl
|
|
715 If non-nil, don't designate ASCII to G0 before control chars on output.
|
|
716
|
|
717 'seven
|
|
718 If non-nil, use 7-bit environment on output. Otherwise, use 8-bit
|
|
719 environment.
|
|
720
|
|
721 'lock-shift
|
|
722 If non-nil, use locking-shift (SO/SI) instead of single-shift
|
|
723 or designation by escape sequence.
|
|
724
|
|
725 'no-iso6429
|
|
726 If non-nil, don't use ISO6429's direction specification.
|
|
727
|
|
728 'escape-quoted
|
|
729 If non-nil, literal control characters that are the same as
|
|
730 the beginning of a recognized ISO2022 or ISO6429 escape sequence
|
|
731 (in particular, ESC (0x1B), SO (0x0E), SI (0x0F), SS2 (0x8E),
|
|
732 SS3 (0x8F), and CSI (0x9B)) are "quoted" with an escape character
|
|
733 so that they can be properly distinguished from an escape sequence.
|
|
734 (Note that doing this results in a non-portable encoding.) This
|
|
735 encoding flag is used for byte-compiled files. Note that ESC
|
|
736 is a good choice for a quoting character because there are no
|
|
737 escape sequences whose second byte is a character from the Control-0
|
|
738 or Control-1 character sets; this is explicitly disallowed by the
|
|
739 ISO2022 standard.
|
|
740
|
|
741 'input-charset-conversion
|
|
742 A list of conversion specifications, specifying conversion of
|
|
743 characters in one charset to another when decoding is performed.
|
|
744 Each specification is a list of two elements: the source charset,
|
|
745 and the destination charset.
|
|
746
|
|
747 'output-charset-conversion
|
|
748 A list of conversion specifications, specifying conversion of
|
|
749 characters in one charset to another when encoding is performed.
|
|
750 The form of each specification is the same as for
|
|
751 'input-charset-conversion.
|
|
752
|
|
753
|
|
754 The following additional properties are recognized (and required)
|
|
755 if TYPE is 'ccl:
|
|
756
|
|
757 'decode
|
|
758 CCL program used for decoding (converting to internal format).
|
|
759
|
|
760 'encode
|
|
761 CCL program used for encoding (converting to external format).
|
|
762 */
|
|
763 (name, type, doc_string, props))
|
|
764 {
|
|
765 struct Lisp_Coding_System *codesys;
|
|
766 Lisp_Object rest, key, value;
|
|
767 enum coding_system_type ty;
|
|
768 int need_to_setup_eol_systems = 1;
|
|
769
|
|
770 /* Convert type to constant */
|
|
771 if (NILP (type) || EQ (type, Qundecided))
|
|
772 { ty = CODESYS_AUTODETECT; }
|
|
773 #ifdef MULE
|
|
774 else if (EQ (type, Qshift_jis)) { ty = CODESYS_SHIFT_JIS; }
|
|
775 else if (EQ (type, Qiso2022)) { ty = CODESYS_ISO2022; }
|
|
776 else if (EQ (type, Qbig5)) { ty = CODESYS_BIG5; }
|
|
777 else if (EQ (type, Qccl)) { ty = CODESYS_CCL; }
|
|
778 #endif
|
|
779 else if (EQ (type, Qno_conversion)) { ty = CODESYS_NO_CONVERSION; }
|
|
780 #ifdef DEBUG_XEMACS
|
|
781 else if (EQ (type, Qinternal)) { ty = CODESYS_INTERNAL; }
|
|
782 #endif
|
|
783 else
|
|
784 signal_simple_error ("Invalid coding system type", type);
|
|
785
|
|
786 CHECK_SYMBOL (name);
|
|
787
|
|
788 codesys = allocate_coding_system (ty, name);
|
|
789
|
|
790 if (NILP (doc_string))
|
|
791 doc_string = build_string ("");
|
|
792 else
|
|
793 CHECK_STRING (doc_string);
|
|
794 CODING_SYSTEM_DOC_STRING (codesys) = doc_string;
|
|
795
|
|
796 EXTERNAL_PROPERTY_LIST_LOOP (rest, key, value, props)
|
|
797 {
|
|
798 if (EQ (key, Qmnemonic))
|
|
799 {
|
|
800 if (!NILP (value))
|
|
801 CHECK_STRING (value);
|
|
802 CODING_SYSTEM_MNEMONIC (codesys) = value;
|
|
803 }
|
|
804
|
|
805 else if (EQ (key, Qeol_type))
|
|
806 {
|
|
807 need_to_setup_eol_systems = NILP (value);
|
|
808 if (EQ (value, Qt))
|
|
809 value = Qnil;
|
|
810 CODING_SYSTEM_EOL_TYPE (codesys) = symbol_to_eol_type (value);
|
|
811 }
|
|
812
|
|
813 else if (EQ (key, Qpost_read_conversion)) CODING_SYSTEM_POST_READ_CONVERSION (codesys) = value;
|
|
814 else if (EQ (key, Qpre_write_conversion)) CODING_SYSTEM_PRE_WRITE_CONVERSION (codesys) = value;
|
|
815 #ifdef MULE
|
|
816 else if (ty == CODESYS_ISO2022)
|
|
817 {
|
|
818 #define FROB_INITIAL_CHARSET(charset_num) \
|
|
819 CODING_SYSTEM_ISO2022_INITIAL_CHARSET (codesys, charset_num) = \
|
|
820 ((EQ (value, Qt) || EQ (value, Qnil)) ? value : Fget_charset (value))
|
|
821
|
|
822 if (EQ (key, Qcharset_g0)) FROB_INITIAL_CHARSET (0);
|
|
823 else if (EQ (key, Qcharset_g1)) FROB_INITIAL_CHARSET (1);
|
|
824 else if (EQ (key, Qcharset_g2)) FROB_INITIAL_CHARSET (2);
|
|
825 else if (EQ (key, Qcharset_g3)) FROB_INITIAL_CHARSET (3);
|
|
826
|
|
827 #define FROB_FORCE_CHARSET(charset_num) \
|
|
828 CODING_SYSTEM_ISO2022_FORCE_CHARSET_ON_OUTPUT (codesys, charset_num) = !NILP (value)
|
|
829
|
|
830 else if (EQ (key, Qforce_g0_on_output)) FROB_FORCE_CHARSET (0);
|
|
831 else if (EQ (key, Qforce_g1_on_output)) FROB_FORCE_CHARSET (1);
|
|
832 else if (EQ (key, Qforce_g2_on_output)) FROB_FORCE_CHARSET (2);
|
|
833 else if (EQ (key, Qforce_g3_on_output)) FROB_FORCE_CHARSET (3);
|
|
834
|
|
835 #define FROB_BOOLEAN_PROPERTY(prop) \
|
|
836 CODING_SYSTEM_ISO2022_##prop (codesys) = !NILP (value)
|
|
837
|
|
838 else if (EQ (key, Qshort)) FROB_BOOLEAN_PROPERTY (SHORT);
|
|
839 else if (EQ (key, Qno_ascii_eol)) FROB_BOOLEAN_PROPERTY (NO_ASCII_EOL);
|
|
840 else if (EQ (key, Qno_ascii_cntl)) FROB_BOOLEAN_PROPERTY (NO_ASCII_CNTL);
|
|
841 else if (EQ (key, Qseven)) FROB_BOOLEAN_PROPERTY (SEVEN);
|
|
842 else if (EQ (key, Qlock_shift)) FROB_BOOLEAN_PROPERTY (LOCK_SHIFT);
|
|
843 else if (EQ (key, Qno_iso6429)) FROB_BOOLEAN_PROPERTY (NO_ISO6429);
|
|
844 else if (EQ (key, Qescape_quoted)) FROB_BOOLEAN_PROPERTY (ESCAPE_QUOTED);
|
|
845
|
|
846 else if (EQ (key, Qinput_charset_conversion))
|
|
847 {
|
|
848 codesys->iso2022.input_conv =
|
|
849 Dynarr_new (charset_conversion_spec);
|
|
850 parse_charset_conversion_specs (codesys->iso2022.input_conv,
|
|
851 value);
|
|
852 }
|
|
853 else if (EQ (key, Qoutput_charset_conversion))
|
|
854 {
|
|
855 codesys->iso2022.output_conv =
|
|
856 Dynarr_new (charset_conversion_spec);
|
|
857 parse_charset_conversion_specs (codesys->iso2022.output_conv,
|
|
858 value);
|
|
859 }
|
|
860 else
|
|
861 signal_simple_error ("Unrecognized property", key);
|
|
862 }
|
|
863 else if (EQ (type, Qccl))
|
|
864 {
|
|
865 if (EQ (key, Qdecode))
|
|
866 {
|
|
867 CHECK_VECTOR (value);
|
|
868 CODING_SYSTEM_CCL_DECODE (codesys) = value;
|
|
869 }
|
|
870 else if (EQ (key, Qencode))
|
|
871 {
|
|
872 CHECK_VECTOR (value);
|
|
873 CODING_SYSTEM_CCL_ENCODE (codesys) = value;
|
|
874 }
|
|
875 else
|
|
876 signal_simple_error ("Unrecognized property", key);
|
|
877 }
|
|
878 #endif /* MULE */
|
|
879 else
|
|
880 signal_simple_error ("Unrecognized property", key);
|
|
881 }
|
|
882
|
|
883 if (need_to_setup_eol_systems)
|
|
884 setup_eol_coding_systems (codesys);
|
|
885
|
|
886 {
|
|
887 Lisp_Object codesys_obj;
|
|
888 XSETCODING_SYSTEM (codesys_obj, codesys);
|
380
|
889 Fputhash (name, codesys_obj, Vcoding_system_hash_table);
|
259
|
890 return codesys_obj;
|
|
891 }
|
|
892 }
|
|
893
|
|
894 DEFUN ("copy-coding-system", Fcopy_coding_system, 2, 2, 0, /*
|
|
895 Copy OLD-CODING-SYSTEM to NEW-NAME.
|
|
896 If NEW-NAME does not name an existing coding system, a new one will
|
|
897 be created.
|
|
898 */
|
|
899 (old_coding_system, new_name))
|
|
900 {
|
|
901 Lisp_Object new_coding_system;
|
|
902 old_coding_system = Fget_coding_system (old_coding_system);
|
|
903 new_coding_system = Ffind_coding_system (new_name);
|
|
904 if (NILP (new_coding_system))
|
|
905 {
|
|
906 XSETCODING_SYSTEM (new_coding_system,
|
|
907 allocate_coding_system
|
|
908 (XCODING_SYSTEM_TYPE (old_coding_system),
|
|
909 new_name));
|
380
|
910 Fputhash (new_name, new_coding_system, Vcoding_system_hash_table);
|
259
|
911 }
|
|
912
|
|
913 {
|
|
914 struct Lisp_Coding_System *to = XCODING_SYSTEM (new_coding_system);
|
|
915 struct Lisp_Coding_System *from = XCODING_SYSTEM (old_coding_system);
|
|
916 memcpy (((char *) to ) + sizeof (to->header),
|
|
917 ((char *) from) + sizeof (from->header),
|
|
918 sizeof (*from) - sizeof (from->header));
|
|
919 to->name = new_name;
|
|
920 }
|
|
921 return new_coding_system;
|
|
922 }
|
|
923
|
|
924 static Lisp_Object
|
|
925 subsidiary_coding_system (Lisp_Object coding_system, enum eol_type type)
|
|
926 {
|
|
927 struct Lisp_Coding_System *cs = XCODING_SYSTEM (coding_system);
|
|
928 Lisp_Object new_coding_system;
|
|
929
|
|
930 if (CODING_SYSTEM_EOL_TYPE (cs) != EOL_AUTODETECT)
|
|
931 return coding_system;
|
|
932
|
|
933 switch (type)
|
|
934 {
|
|
935 case EOL_AUTODETECT: return coding_system;
|
|
936 case EOL_LF: new_coding_system = CODING_SYSTEM_EOL_LF (cs); break;
|
|
937 case EOL_CR: new_coding_system = CODING_SYSTEM_EOL_CR (cs); break;
|
|
938 case EOL_CRLF: new_coding_system = CODING_SYSTEM_EOL_CRLF (cs); break;
|
|
939 default: abort ();
|
|
940 }
|
|
941
|
|
942 return NILP (new_coding_system) ? coding_system : new_coding_system;
|
|
943 }
|
|
944
|
|
945 DEFUN ("subsidiary-coding-system", Fsubsidiary_coding_system, 2, 2, 0, /*
|
|
946 Return the subsidiary coding system of CODING-SYSTEM with eol type EOL-TYPE.
|
|
947 */
|
|
948 (coding_system, eol_type))
|
|
949 {
|
|
950 coding_system = Fget_coding_system (coding_system);
|
|
951
|
|
952 return subsidiary_coding_system (coding_system,
|
|
953 symbol_to_eol_type (eol_type));
|
|
954 }
|
|
955
|
|
956
|
|
957 /************************************************************************/
|
|
958 /* Coding system accessors */
|
|
959 /************************************************************************/
|
|
960
|
|
961 DEFUN ("coding-system-doc-string", Fcoding_system_doc_string, 1, 1, 0, /*
|
|
962 Return the doc string for CODING-SYSTEM.
|
|
963 */
|
|
964 (coding_system))
|
|
965 {
|
|
966 coding_system = Fget_coding_system (coding_system);
|
|
967 return XCODING_SYSTEM_DOC_STRING (coding_system);
|
|
968 }
|
|
969
|
|
970 DEFUN ("coding-system-type", Fcoding_system_type, 1, 1, 0, /*
|
|
971 Return the type of CODING-SYSTEM.
|
|
972 */
|
|
973 (coding_system))
|
|
974 {
|
|
975 switch (XCODING_SYSTEM_TYPE (Fget_coding_system (coding_system)))
|
|
976 {
|
380
|
977 default: abort ();
|
259
|
978 case CODESYS_AUTODETECT: return Qundecided;
|
|
979 #ifdef MULE
|
|
980 case CODESYS_SHIFT_JIS: return Qshift_jis;
|
|
981 case CODESYS_ISO2022: return Qiso2022;
|
|
982 case CODESYS_BIG5: return Qbig5;
|
|
983 case CODESYS_CCL: return Qccl;
|
|
984 #endif
|
|
985 case CODESYS_NO_CONVERSION: return Qno_conversion;
|
|
986 #ifdef DEBUG_XEMACS
|
|
987 case CODESYS_INTERNAL: return Qinternal;
|
|
988 #endif
|
|
989 }
|
|
990 }
|
|
991
|
|
992 #ifdef MULE
|
|
993 static
|
|
994 Lisp_Object coding_system_charset (Lisp_Object coding_system, int gnum)
|
|
995 {
|
|
996 Lisp_Object cs
|
|
997 = XCODING_SYSTEM_ISO2022_INITIAL_CHARSET (coding_system, gnum);
|
272
|
998
|
|
999 return CHARSETP (cs) ? XCHARSET_NAME (cs) : Qnil;
|
259
|
1000 }
|
|
1001
|
|
1002 DEFUN ("coding-system-charset", Fcoding_system_charset, 2, 2, 0, /*
|
|
1003 Return initial charset of CODING-SYSTEM designated to GNUM.
|
|
1004 GNUM allows 0 .. 3.
|
|
1005 */
|
|
1006 (coding_system, gnum))
|
|
1007 {
|
|
1008 coding_system = Fget_coding_system (coding_system);
|
|
1009 CHECK_INT (gnum);
|
|
1010
|
272
|
1011 return coding_system_charset (coding_system, XINT (gnum));
|
259
|
1012 }
|
272
|
1013 #endif /* MULE */
|
259
|
1014
|
|
1015 DEFUN ("coding-system-property", Fcoding_system_property, 2, 2, 0, /*
|
|
1016 Return the PROP property of CODING-SYSTEM.
|
|
1017 */
|
|
1018 (coding_system, prop))
|
|
1019 {
|
|
1020 int i, ok = 0;
|
|
1021 enum coding_system_type type;
|
|
1022
|
|
1023 coding_system = Fget_coding_system (coding_system);
|
|
1024 CHECK_SYMBOL (prop);
|
|
1025 type = XCODING_SYSTEM_TYPE (coding_system);
|
|
1026
|
|
1027 for (i = 0; !ok && i < Dynarr_length (the_codesys_prop_dynarr); i++)
|
|
1028 if (EQ (Dynarr_at (the_codesys_prop_dynarr, i).sym, prop))
|
|
1029 {
|
|
1030 ok = 1;
|
|
1031 switch (Dynarr_at (the_codesys_prop_dynarr, i).prop_type)
|
|
1032 {
|
|
1033 case CODESYS_PROP_ALL_OK:
|
|
1034 break;
|
|
1035 #ifdef MULE
|
|
1036 case CODESYS_PROP_ISO2022:
|
|
1037 if (type != CODESYS_ISO2022)
|
|
1038 signal_simple_error
|
|
1039 ("Property only valid in ISO2022 coding systems",
|
|
1040 prop);
|
|
1041 break;
|
|
1042
|
|
1043 case CODESYS_PROP_CCL:
|
|
1044 if (type != CODESYS_CCL)
|
|
1045 signal_simple_error
|
|
1046 ("Property only valid in CCL coding systems",
|
|
1047 prop);
|
|
1048 break;
|
|
1049 #endif /* MULE */
|
|
1050 default:
|
|
1051 abort ();
|
|
1052 }
|
|
1053 }
|
|
1054
|
|
1055 if (!ok)
|
|
1056 signal_simple_error ("Unrecognized property", prop);
|
|
1057
|
|
1058 if (EQ (prop, Qname))
|
|
1059 return XCODING_SYSTEM_NAME (coding_system);
|
|
1060 else if (EQ (prop, Qtype))
|
|
1061 return Fcoding_system_type (coding_system);
|
|
1062 else if (EQ (prop, Qdoc_string))
|
|
1063 return XCODING_SYSTEM_DOC_STRING (coding_system);
|
|
1064 else if (EQ (prop, Qmnemonic))
|
|
1065 return XCODING_SYSTEM_MNEMONIC (coding_system);
|
|
1066 else if (EQ (prop, Qeol_type))
|
|
1067 return eol_type_to_symbol (XCODING_SYSTEM_EOL_TYPE (coding_system));
|
|
1068 else if (EQ (prop, Qeol_lf))
|
|
1069 return XCODING_SYSTEM_EOL_LF (coding_system);
|
|
1070 else if (EQ (prop, Qeol_crlf))
|
|
1071 return XCODING_SYSTEM_EOL_CRLF (coding_system);
|
|
1072 else if (EQ (prop, Qeol_cr))
|
|
1073 return XCODING_SYSTEM_EOL_CR (coding_system);
|
|
1074 else if (EQ (prop, Qpost_read_conversion))
|
|
1075 return XCODING_SYSTEM_POST_READ_CONVERSION (coding_system);
|
|
1076 else if (EQ (prop, Qpre_write_conversion))
|
|
1077 return XCODING_SYSTEM_PRE_WRITE_CONVERSION (coding_system);
|
|
1078 #ifdef MULE
|
|
1079 else if (type == CODESYS_ISO2022)
|
|
1080 {
|
|
1081 if (EQ (prop, Qcharset_g0))
|
|
1082 return coding_system_charset (coding_system, 0);
|
|
1083 else if (EQ (prop, Qcharset_g1))
|
|
1084 return coding_system_charset (coding_system, 1);
|
|
1085 else if (EQ (prop, Qcharset_g2))
|
|
1086 return coding_system_charset (coding_system, 2);
|
|
1087 else if (EQ (prop, Qcharset_g3))
|
|
1088 return coding_system_charset (coding_system, 3);
|
|
1089
|
|
1090 #define FORCE_CHARSET(charset_num) \
|
|
1091 (XCODING_SYSTEM_ISO2022_FORCE_CHARSET_ON_OUTPUT \
|
|
1092 (coding_system, charset_num) ? Qt : Qnil)
|
|
1093
|
|
1094 else if (EQ (prop, Qforce_g0_on_output)) return FORCE_CHARSET (0);
|
|
1095 else if (EQ (prop, Qforce_g1_on_output)) return FORCE_CHARSET (1);
|
|
1096 else if (EQ (prop, Qforce_g2_on_output)) return FORCE_CHARSET (2);
|
|
1097 else if (EQ (prop, Qforce_g3_on_output)) return FORCE_CHARSET (3);
|
|
1098
|
|
1099 #define LISP_BOOLEAN(prop) \
|
|
1100 (XCODING_SYSTEM_ISO2022_##prop (coding_system) ? Qt : Qnil)
|
|
1101
|
|
1102 else if (EQ (prop, Qshort)) return LISP_BOOLEAN (SHORT);
|
|
1103 else if (EQ (prop, Qno_ascii_eol)) return LISP_BOOLEAN (NO_ASCII_EOL);
|
|
1104 else if (EQ (prop, Qno_ascii_cntl)) return LISP_BOOLEAN (NO_ASCII_CNTL);
|
|
1105 else if (EQ (prop, Qseven)) return LISP_BOOLEAN (SEVEN);
|
|
1106 else if (EQ (prop, Qlock_shift)) return LISP_BOOLEAN (LOCK_SHIFT);
|
|
1107 else if (EQ (prop, Qno_iso6429)) return LISP_BOOLEAN (NO_ISO6429);
|
|
1108 else if (EQ (prop, Qescape_quoted)) return LISP_BOOLEAN (ESCAPE_QUOTED);
|
|
1109
|
|
1110 else if (EQ (prop, Qinput_charset_conversion))
|
|
1111 return
|
|
1112 unparse_charset_conversion_specs
|
|
1113 (XCODING_SYSTEM (coding_system)->iso2022.input_conv);
|
|
1114 else if (EQ (prop, Qoutput_charset_conversion))
|
|
1115 return
|
|
1116 unparse_charset_conversion_specs
|
|
1117 (XCODING_SYSTEM (coding_system)->iso2022.output_conv);
|
|
1118 else
|
|
1119 abort ();
|
|
1120 }
|
|
1121 else if (type == CODESYS_CCL)
|
|
1122 {
|
|
1123 if (EQ (prop, Qdecode))
|
|
1124 return XCODING_SYSTEM_CCL_DECODE (coding_system);
|
|
1125 else if (EQ (prop, Qencode))
|
|
1126 return XCODING_SYSTEM_CCL_ENCODE (coding_system);
|
|
1127 else
|
|
1128 abort ();
|
|
1129 }
|
|
1130 #endif /* MULE */
|
|
1131 else
|
|
1132 abort ();
|
|
1133
|
|
1134 return Qnil; /* not reached */
|
|
1135 }
|
|
1136
|
|
1137
|
|
1138 /************************************************************************/
|
|
1139 /* Coding category functions */
|
|
1140 /************************************************************************/
|
|
1141
|
|
1142 static int
|
|
1143 decode_coding_category (Lisp_Object symbol)
|
|
1144 {
|
|
1145 int i;
|
|
1146
|
|
1147 CHECK_SYMBOL (symbol);
|
|
1148 for (i = 0; i <= CODING_CATEGORY_LAST; i++)
|
|
1149 if (EQ (coding_category_symbol[i], symbol))
|
|
1150 return i;
|
|
1151
|
|
1152 signal_simple_error ("Unrecognized coding category", symbol);
|
|
1153 return 0; /* not reached */
|
|
1154 }
|
|
1155
|
|
1156 DEFUN ("coding-category-list", Fcoding_category_list, 0, 0, 0, /*
|
|
1157 Return a list of all recognized coding categories.
|
|
1158 */
|
|
1159 ())
|
|
1160 {
|
|
1161 int i;
|
|
1162 Lisp_Object list = Qnil;
|
|
1163
|
|
1164 for (i = CODING_CATEGORY_LAST; i >= 0; i--)
|
|
1165 list = Fcons (coding_category_symbol[i], list);
|
|
1166 return list;
|
|
1167 }
|
|
1168
|
|
1169 DEFUN ("set-coding-priority-list", Fset_coding_priority_list, 1, 1, 0, /*
|
|
1170 Change the priority order of the coding categories.
|
|
1171 LIST should be list of coding categories, in descending order of
|
|
1172 priority. Unspecified coding categories will be lower in priority
|
|
1173 than all specified ones, in the same relative order they were in
|
|
1174 previously.
|
|
1175 */
|
|
1176 (list))
|
|
1177 {
|
|
1178 int category_to_priority[CODING_CATEGORY_LAST + 1];
|
|
1179 int i, j;
|
|
1180 Lisp_Object rest;
|
|
1181
|
|
1182 /* First generate a list that maps coding categories to priorities. */
|
|
1183
|
|
1184 for (i = 0; i <= CODING_CATEGORY_LAST; i++)
|
|
1185 category_to_priority[i] = -1;
|
|
1186
|
|
1187 /* Highest priority comes from the specified list. */
|
|
1188 i = 0;
|
|
1189 EXTERNAL_LIST_LOOP (rest, list)
|
|
1190 {
|
|
1191 int cat = decode_coding_category (XCAR (rest));
|
|
1192
|
|
1193 if (category_to_priority[cat] >= 0)
|
|
1194 signal_simple_error ("Duplicate coding category in list", XCAR (rest));
|
|
1195 category_to_priority[cat] = i++;
|
|
1196 }
|
|
1197
|
|
1198 /* Now go through the existing categories by priority to retrieve
|
|
1199 the categories not yet specified and preserve their priority
|
|
1200 order. */
|
|
1201 for (j = 0; j <= CODING_CATEGORY_LAST; j++)
|
|
1202 {
|
|
1203 int cat = coding_category_by_priority[j];
|
|
1204 if (category_to_priority[cat] < 0)
|
|
1205 category_to_priority[cat] = i++;
|
|
1206 }
|
|
1207
|
|
1208 /* Now we need to construct the inverse of the mapping we just
|
|
1209 constructed. */
|
|
1210
|
|
1211 for (i = 0; i <= CODING_CATEGORY_LAST; i++)
|
|
1212 coding_category_by_priority[category_to_priority[i]] = i;
|
|
1213
|
|
1214 /* Phew! That was confusing. */
|
|
1215 return Qnil;
|
|
1216 }
|
|
1217
|
|
1218 DEFUN ("coding-priority-list", Fcoding_priority_list, 0, 0, 0, /*
|
|
1219 Return a list of coding categories in descending order of priority.
|
|
1220 */
|
|
1221 ())
|
|
1222 {
|
|
1223 int i;
|
|
1224 Lisp_Object list = Qnil;
|
|
1225
|
|
1226 for (i = CODING_CATEGORY_LAST; i >= 0; i--)
|
|
1227 list = Fcons (coding_category_symbol[coding_category_by_priority[i]],
|
|
1228 list);
|
|
1229 return list;
|
|
1230 }
|
|
1231
|
|
1232 DEFUN ("set-coding-category-system", Fset_coding_category_system, 2, 2, 0, /*
|
|
1233 Change the coding system associated with a coding category.
|
|
1234 */
|
|
1235 (coding_category, coding_system))
|
|
1236 {
|
|
1237 int cat = decode_coding_category (coding_category);
|
|
1238
|
|
1239 coding_system = Fget_coding_system (coding_system);
|
|
1240 coding_category_system[cat] = coding_system;
|
|
1241 return Qnil;
|
|
1242 }
|
|
1243
|
|
1244 DEFUN ("coding-category-system", Fcoding_category_system, 1, 1, 0, /*
|
|
1245 Return the coding system associated with a coding category.
|
|
1246 */
|
|
1247 (coding_category))
|
|
1248 {
|
|
1249 int cat = decode_coding_category (coding_category);
|
|
1250 Lisp_Object sys = coding_category_system[cat];
|
|
1251
|
|
1252 if (!NILP (sys))
|
|
1253 return XCODING_SYSTEM_NAME (sys);
|
|
1254 return Qnil;
|
|
1255 }
|
|
1256
|
|
1257
|
|
1258 /************************************************************************/
|
|
1259 /* Detecting the encoding of data */
|
|
1260 /************************************************************************/
|
|
1261
|
|
1262 struct detection_state
|
|
1263 {
|
|
1264 enum eol_type eol_type;
|
|
1265 int seen_non_ascii;
|
|
1266 int mask;
|
|
1267 #ifdef MULE
|
|
1268 struct
|
|
1269 {
|
|
1270 int mask;
|
|
1271 int in_second_byte;
|
|
1272 }
|
|
1273 big5;
|
|
1274
|
|
1275 struct
|
|
1276 {
|
|
1277 int mask;
|
|
1278 int in_second_byte;
|
|
1279 }
|
|
1280 shift_jis;
|
|
1281
|
|
1282 struct
|
|
1283 {
|
|
1284 int mask;
|
|
1285 int initted;
|
|
1286 struct iso2022_decoder iso;
|
|
1287 unsigned int flags;
|
|
1288 int high_byte_count;
|
|
1289 unsigned int saw_single_shift:1;
|
|
1290 }
|
|
1291 iso2022;
|
|
1292 #endif
|
|
1293 struct
|
|
1294 {
|
|
1295 int seen_anything;
|
|
1296 int just_saw_cr;
|
|
1297 }
|
|
1298 eol;
|
|
1299 };
|
|
1300
|
|
1301 static int
|
|
1302 acceptable_control_char_p (int c)
|
|
1303 {
|
|
1304 switch (c)
|
|
1305 {
|
|
1306 /* Allow and ignore control characters that you might
|
|
1307 reasonably see in a text file */
|
|
1308 case '\r':
|
|
1309 case '\n':
|
|
1310 case '\t':
|
|
1311 case 7: /* bell */
|
|
1312 case 8: /* backspace */
|
|
1313 case 11: /* vertical tab */
|
|
1314 case 12: /* form feed */
|
|
1315 case 26: /* MS-DOS C-z junk */
|
|
1316 case 31: /* '^_' -- for info */
|
|
1317 return 1;
|
|
1318 default:
|
|
1319 return 0;
|
|
1320 }
|
|
1321 }
|
|
1322
|
|
1323 static int
|
|
1324 mask_has_at_most_one_bit_p (int mask)
|
|
1325 {
|
|
1326 /* Perhaps the only thing useful you learn from intensive Microsoft
|
|
1327 technical interviews */
|
|
1328 return (mask & (mask - 1)) == 0;
|
|
1329 }
|
|
1330
|
|
1331 static enum eol_type
|
|
1332 detect_eol_type (struct detection_state *st, CONST unsigned char *src,
|
|
1333 unsigned int n)
|
|
1334 {
|
|
1335 int c;
|
|
1336
|
|
1337 while (n--)
|
|
1338 {
|
|
1339 c = *src++;
|
|
1340 if (c == '\r')
|
|
1341 st->eol.just_saw_cr = 1;
|
|
1342 else
|
|
1343 {
|
|
1344 if (c == '\n')
|
|
1345 {
|
|
1346 if (st->eol.just_saw_cr)
|
|
1347 return EOL_CRLF;
|
|
1348 else if (st->eol.seen_anything)
|
|
1349 return EOL_LF;
|
|
1350 }
|
|
1351 else if (st->eol.just_saw_cr)
|
|
1352 return EOL_CR;
|
|
1353 st->eol.just_saw_cr = 0;
|
|
1354 }
|
|
1355 st->eol.seen_anything = 1;
|
|
1356 }
|
|
1357
|
|
1358 return EOL_AUTODETECT;
|
|
1359 }
|
|
1360
|
|
1361 /* Attempt to determine the encoding and EOL type of the given text.
|
|
1362 Before calling this function for the first type, you must initialize
|
|
1363 st->eol_type as appropriate and initialize st->mask to ~0.
|
|
1364
|
|
1365 st->eol_type holds the determined EOL type, or EOL_AUTODETECT if
|
|
1366 not yet known.
|
|
1367
|
|
1368 st->mask holds the determined coding category mask, or ~0 if only
|
|
1369 ASCII has been seen so far.
|
|
1370
|
|
1371 Returns:
|
|
1372
|
|
1373 0 == st->eol_type is EOL_AUTODETECT and/or more than coding category
|
|
1374 is present in st->mask
|
|
1375 1 == definitive answers are here for both st->eol_type and st->mask
|
|
1376 */
|
|
1377
|
|
1378 static int
|
|
1379 detect_coding_type (struct detection_state *st, CONST unsigned char *src,
|
|
1380 unsigned int n, int just_do_eol)
|
|
1381 {
|
|
1382 int c;
|
|
1383
|
|
1384 if (st->eol_type == EOL_AUTODETECT)
|
|
1385 st->eol_type = detect_eol_type (st, src, n);
|
|
1386
|
|
1387 if (just_do_eol)
|
|
1388 return st->eol_type != EOL_AUTODETECT;
|
|
1389
|
|
1390 if (!st->seen_non_ascii)
|
|
1391 {
|
|
1392 for (; n; n--, src++)
|
|
1393 {
|
|
1394 c = *src;
|
|
1395 if ((c < 0x20 && !acceptable_control_char_p (c)) || c >= 0x80)
|
|
1396 {
|
|
1397 st->seen_non_ascii = 1;
|
|
1398 #ifdef MULE
|
|
1399 st->shift_jis.mask = ~0;
|
|
1400 st->big5.mask = ~0;
|
|
1401 st->iso2022.mask = ~0;
|
|
1402 #endif
|
|
1403 break;
|
|
1404 }
|
|
1405 }
|
|
1406 }
|
|
1407
|
|
1408 if (!n)
|
|
1409 return 0;
|
|
1410 #ifdef MULE
|
|
1411 if (!mask_has_at_most_one_bit_p (st->iso2022.mask))
|
|
1412 st->iso2022.mask = detect_coding_iso2022 (st, src, n);
|
|
1413 if (!mask_has_at_most_one_bit_p (st->shift_jis.mask))
|
|
1414 st->shift_jis.mask = detect_coding_sjis (st, src, n);
|
|
1415 if (!mask_has_at_most_one_bit_p (st->big5.mask))
|
|
1416 st->big5.mask = detect_coding_big5 (st, src, n);
|
|
1417
|
|
1418 st->mask = st->iso2022.mask | st->shift_jis.mask | st->big5.mask;
|
|
1419 #endif
|
|
1420 {
|
|
1421 int retval = mask_has_at_most_one_bit_p (st->mask);
|
|
1422 st->mask |= CODING_CATEGORY_NO_CONVERSION_MASK;
|
|
1423 return retval && st->eol_type != EOL_AUTODETECT;
|
|
1424 }
|
|
1425 }
|
|
1426
|
|
1427 static Lisp_Object
|
|
1428 coding_system_from_mask (int mask)
|
|
1429 {
|
|
1430 if (mask == ~0)
|
|
1431 {
|
|
1432 /* If the file was entirely or basically ASCII, use the
|
|
1433 default value of `buffer-file-coding-system'. */
|
|
1434 Lisp_Object retval =
|
|
1435 XBUFFER (Vbuffer_defaults)->buffer_file_coding_system;
|
|
1436 if (!NILP (retval))
|
|
1437 {
|
|
1438 retval = Ffind_coding_system (retval);
|
|
1439 if (NILP (retval))
|
|
1440 {
|
|
1441 warn_when_safe
|
|
1442 (Qbad_variable, Qwarning,
|
|
1443 "Invalid `default-buffer-file-coding-system', set to nil");
|
|
1444 XBUFFER (Vbuffer_defaults)->buffer_file_coding_system = Qnil;
|
|
1445 }
|
|
1446 }
|
|
1447 if (NILP (retval))
|
|
1448 retval = Fget_coding_system (Qno_conversion);
|
|
1449 return retval;
|
|
1450 }
|
|
1451 else
|
|
1452 {
|
|
1453 int i;
|
|
1454 int cat = -1;
|
|
1455 #ifdef MULE
|
|
1456 mask = postprocess_iso2022_mask (mask);
|
|
1457 #endif
|
|
1458 /* Look through the coding categories by priority and find
|
|
1459 the first one that is allowed. */
|
|
1460 for (i = 0; i <= CODING_CATEGORY_LAST; i++)
|
|
1461 {
|
|
1462 cat = coding_category_by_priority[i];
|
|
1463 if ((mask & (1 << cat)) &&
|
|
1464 !NILP (coding_category_system[cat]))
|
|
1465 break;
|
|
1466 }
|
|
1467 if (cat >= 0)
|
|
1468 return coding_category_system[cat];
|
|
1469 else
|
|
1470 return Fget_coding_system (Qno_conversion);
|
|
1471 }
|
|
1472 }
|
|
1473
|
|
1474 /* Given a seekable read stream and potential coding system and EOL type
|
|
1475 as specified, do any autodetection that is called for. If the
|
|
1476 coding system and/or EOL type are not autodetect, they will be left
|
|
1477 alone; but this function will never return an autodetect coding system
|
|
1478 or EOL type.
|
|
1479
|
|
1480 This function does not automatically fetch subsidiary coding systems;
|
|
1481 that should be unnecessary with the explicit eol-type argument. */
|
|
1482
|
|
1483 void
|
|
1484 determine_real_coding_system (Lstream *stream, Lisp_Object *codesys_in_out,
|
|
1485 enum eol_type *eol_type_in_out)
|
|
1486 {
|
|
1487 struct detection_state decst;
|
|
1488
|
|
1489 if (*eol_type_in_out == EOL_AUTODETECT)
|
|
1490 *eol_type_in_out = XCODING_SYSTEM_EOL_TYPE (*codesys_in_out);
|
|
1491
|
272
|
1492 xzero (decst);
|
259
|
1493 decst.eol_type = *eol_type_in_out;
|
|
1494 decst.mask = ~0;
|
|
1495
|
|
1496 /* If autodetection is called for, do it now. */
|
|
1497 if (XCODING_SYSTEM_TYPE (*codesys_in_out) == CODESYS_AUTODETECT ||
|
|
1498 *eol_type_in_out == EOL_AUTODETECT)
|
|
1499 {
|
|
1500
|
|
1501 while (1)
|
|
1502 {
|
|
1503 unsigned char random_buffer[4096];
|
|
1504 int nread;
|
|
1505
|
|
1506 nread = Lstream_read (stream, random_buffer, sizeof (random_buffer));
|
|
1507 if (!nread)
|
|
1508 break;
|
|
1509 if (detect_coding_type (&decst, random_buffer, nread,
|
|
1510 XCODING_SYSTEM_TYPE (*codesys_in_out) !=
|
|
1511 CODESYS_AUTODETECT))
|
|
1512 break;
|
|
1513 }
|
|
1514
|
|
1515 *eol_type_in_out = decst.eol_type;
|
|
1516 if (XCODING_SYSTEM_TYPE (*codesys_in_out) == CODESYS_AUTODETECT)
|
|
1517 *codesys_in_out = coding_system_from_mask (decst.mask);
|
|
1518 }
|
|
1519
|
|
1520 /* If we absolutely can't determine the EOL type, just assume LF. */
|
|
1521 if (*eol_type_in_out == EOL_AUTODETECT)
|
|
1522 *eol_type_in_out = EOL_LF;
|
|
1523
|
|
1524 Lstream_rewind (stream);
|
|
1525 }
|
|
1526
|
|
1527 DEFUN ("detect-coding-region", Fdetect_coding_region, 2, 3, 0, /*
|
|
1528 Detect coding system of the text in the region between START and END.
|
|
1529 Returned a list of possible coding systems ordered by priority.
|
|
1530 If only ASCII characters are found, it returns 'undecided or one of
|
|
1531 its subsidiary coding systems according to a detected end-of-line
|
|
1532 type. Optional arg BUFFER defaults to the current buffer.
|
|
1533 */
|
|
1534 (start, end, buffer))
|
|
1535 {
|
|
1536 Lisp_Object val = Qnil;
|
|
1537 struct buffer *buf = decode_buffer (buffer, 0);
|
|
1538 Bufpos b, e;
|
|
1539 Lisp_Object instream, lb_instream;
|
|
1540 Lstream *istr, *lb_istr;
|
|
1541 struct detection_state decst;
|
|
1542 struct gcpro gcpro1, gcpro2;
|
|
1543
|
|
1544 get_buffer_range_char (buf, start, end, &b, &e, 0);
|
|
1545 lb_instream = make_lisp_buffer_input_stream (buf, b, e, 0);
|
|
1546 lb_istr = XLSTREAM (lb_instream);
|
|
1547 instream = make_encoding_input_stream (lb_istr, Fget_coding_system (Qbinary));
|
|
1548 istr = XLSTREAM (instream);
|
|
1549 GCPRO2 (instream, lb_instream);
|
272
|
1550 xzero (decst);
|
259
|
1551 decst.eol_type = EOL_AUTODETECT;
|
|
1552 decst.mask = ~0;
|
|
1553 while (1)
|
|
1554 {
|
|
1555 unsigned char random_buffer[4096];
|
|
1556 int nread = Lstream_read (istr, random_buffer, sizeof (random_buffer));
|
|
1557
|
|
1558 if (!nread)
|
|
1559 break;
|
|
1560 if (detect_coding_type (&decst, random_buffer, nread, 0))
|
|
1561 break;
|
|
1562 }
|
|
1563
|
|
1564 if (decst.mask == ~0)
|
|
1565 val = subsidiary_coding_system (Fget_coding_system (Qundecided),
|
|
1566 decst.eol_type);
|
|
1567 else
|
|
1568 {
|
|
1569 int i;
|
|
1570
|
|
1571 val = Qnil;
|
|
1572 #ifdef MULE
|
|
1573 decst.mask = postprocess_iso2022_mask (decst.mask);
|
|
1574 #endif
|
|
1575 for (i = CODING_CATEGORY_LAST; i >= 0; i--)
|
|
1576 {
|
|
1577 int sys = coding_category_by_priority[i];
|
|
1578 if (decst.mask & (1 << sys))
|
|
1579 {
|
|
1580 Lisp_Object codesys = coding_category_system[sys];
|
|
1581 if (!NILP (codesys))
|
|
1582 codesys = subsidiary_coding_system (codesys, decst.eol_type);
|
|
1583 val = Fcons (codesys, val);
|
|
1584 }
|
|
1585 }
|
|
1586 }
|
|
1587 Lstream_close (istr);
|
|
1588 UNGCPRO;
|
|
1589 Lstream_delete (istr);
|
|
1590 Lstream_delete (lb_istr);
|
|
1591 return val;
|
|
1592 }
|
|
1593
|
|
1594
|
|
1595 /************************************************************************/
|
|
1596 /* Converting to internal Mule format ("decoding") */
|
|
1597 /************************************************************************/
|
|
1598
|
|
1599 /* A decoding stream is a stream used for decoding text (i.e.
|
|
1600 converting from some external format to internal format).
|
|
1601 The decoding-stream object keeps track of the actual coding
|
|
1602 stream, the stream that is at the other end, and data that
|
|
1603 needs to be persistent across the lifetime of the stream. */
|
|
1604
|
|
1605 /* Handle the EOL stuff related to just-read-in character C.
|
|
1606 EOL_TYPE is the EOL type of the coding stream.
|
|
1607 FLAGS is the current value of FLAGS in the coding stream, and may
|
|
1608 be modified by this macro. (The macro only looks at the
|
|
1609 CODING_STATE_CR flag.) DST is the Dynarr to which the decoded
|
|
1610 bytes are to be written. You need to also define a local goto
|
|
1611 label "label_continue_loop" that is at the end of the main
|
|
1612 character-reading loop.
|
|
1613
|
|
1614 If C is a CR character, then this macro handles it entirely and
|
|
1615 jumps to label_continue_loop. Otherwise, this macro does not add
|
|
1616 anything to DST, and continues normally. You should continue
|
|
1617 processing C normally after this macro. */
|
|
1618
|
|
1619 #define DECODE_HANDLE_EOL_TYPE(eol_type, c, flags, dst) \
|
|
1620 do { \
|
|
1621 if (c == '\r') \
|
|
1622 { \
|
|
1623 if (eol_type == EOL_CR) \
|
|
1624 Dynarr_add (dst, '\n'); \
|
|
1625 else if (eol_type != EOL_CRLF || flags & CODING_STATE_CR) \
|
|
1626 Dynarr_add (dst, c); \
|
|
1627 else \
|
|
1628 flags |= CODING_STATE_CR; \
|
|
1629 goto label_continue_loop; \
|
|
1630 } \
|
|
1631 else if (flags & CODING_STATE_CR) \
|
|
1632 { /* eol_type == CODING_SYSTEM_EOL_CRLF */ \
|
|
1633 if (c != '\n') \
|
|
1634 Dynarr_add (dst, '\r'); \
|
|
1635 flags &= ~CODING_STATE_CR; \
|
|
1636 } \
|
|
1637 } while (0)
|
|
1638
|
|
1639 /* C should be a binary character in the range 0 - 255; convert
|
|
1640 to internal format and add to Dynarr DST. */
|
|
1641
|
|
1642 #define DECODE_ADD_BINARY_CHAR(c, dst) \
|
|
1643 do { \
|
|
1644 if (BYTE_ASCII_P (c)) \
|
|
1645 Dynarr_add (dst, c); \
|
|
1646 else if (BYTE_C1_P (c)) \
|
|
1647 { \
|
|
1648 Dynarr_add (dst, LEADING_BYTE_CONTROL_1); \
|
|
1649 Dynarr_add (dst, c + 0x20); \
|
|
1650 } \
|
|
1651 else \
|
|
1652 { \
|
|
1653 Dynarr_add (dst, LEADING_BYTE_LATIN_ISO8859_1); \
|
|
1654 Dynarr_add (dst, c); \
|
|
1655 } \
|
|
1656 } while (0)
|
|
1657
|
|
1658 #define DECODE_OUTPUT_PARTIAL_CHAR(ch) \
|
|
1659 do { \
|
|
1660 if (ch) \
|
|
1661 { \
|
|
1662 DECODE_ADD_BINARY_CHAR (ch, dst); \
|
|
1663 ch = 0; \
|
|
1664 } \
|
|
1665 } while (0)
|
|
1666
|
|
1667 #define DECODE_HANDLE_END_OF_CONVERSION(flags, ch, dst) \
|
|
1668 do { \
|
|
1669 DECODE_OUTPUT_PARTIAL_CHAR (ch); \
|
|
1670 if ((flags & CODING_STATE_END) && \
|
|
1671 (flags & CODING_STATE_CR)) \
|
|
1672 Dynarr_add (dst, '\r'); \
|
|
1673 } while (0)
|
|
1674
|
|
1675 #define DECODING_STREAM_DATA(stream) LSTREAM_TYPE_DATA (stream, decoding)
|
|
1676
|
|
1677 struct decoding_stream
|
|
1678 {
|
|
1679 /* Coding system that governs the conversion. */
|
|
1680 struct Lisp_Coding_System *codesys;
|
|
1681
|
|
1682 /* Stream that we read the encoded data from or
|
|
1683 write the decoded data to. */
|
|
1684 Lstream *other_end;
|
|
1685
|
|
1686 /* If we are reading, then we can return only a fixed amount of
|
|
1687 data, so if the conversion resulted in too much data, we store it
|
|
1688 here for retrieval the next time around. */
|
|
1689 unsigned_char_dynarr *runoff;
|
|
1690
|
|
1691 /* FLAGS holds flags indicating the current state of the decoding.
|
|
1692 Some of these flags are dependent on the coding system. */
|
|
1693 unsigned int flags;
|
|
1694
|
|
1695 /* CH holds a partially built-up character. Since we only deal
|
|
1696 with one- and two-byte characters at the moment, we only use
|
|
1697 this to store the first byte of a two-byte character. */
|
|
1698 unsigned int ch;
|
|
1699
|
|
1700 /* EOL_TYPE specifies the type of end-of-line conversion that
|
|
1701 currently applies. We need to keep this separate from the
|
|
1702 EOL type stored in CODESYS because the latter might indicate
|
|
1703 automatic EOL-type detection while the former will always
|
|
1704 indicate a particular EOL type. */
|
|
1705 enum eol_type eol_type;
|
|
1706 #ifdef MULE
|
|
1707 /* Additional ISO2022 information. We define the structure above
|
|
1708 because it's also needed by the detection routines. */
|
|
1709 struct iso2022_decoder iso2022;
|
|
1710
|
|
1711 /* Additional information (the state of the running CCL program)
|
|
1712 used by the CCL decoder. */
|
|
1713 struct ccl_program ccl;
|
|
1714 #endif
|
|
1715 struct detection_state decst;
|
|
1716 };
|
|
1717
|
272
|
1718 static int decoding_reader (Lstream *stream, unsigned char *data, size_t size);
|
|
1719 static int decoding_writer (Lstream *stream, CONST unsigned char *data, size_t size);
|
259
|
1720 static int decoding_rewinder (Lstream *stream);
|
|
1721 static int decoding_seekable_p (Lstream *stream);
|
|
1722 static int decoding_flusher (Lstream *stream);
|
|
1723 static int decoding_closer (Lstream *stream);
|
|
1724
|
|
1725 static Lisp_Object decoding_marker (Lisp_Object stream,
|
|
1726 void (*markobj) (Lisp_Object));
|
|
1727
|
|
1728 DEFINE_LSTREAM_IMPLEMENTATION ("decoding", lstream_decoding,
|
|
1729 sizeof (struct decoding_stream));
|
|
1730
|
|
1731 static Lisp_Object
|
|
1732 decoding_marker (Lisp_Object stream, void (*markobj) (Lisp_Object))
|
|
1733 {
|
|
1734 Lstream *str = DECODING_STREAM_DATA (XLSTREAM (stream))->other_end;
|
|
1735 Lisp_Object str_obj;
|
|
1736
|
|
1737 /* We do not need to mark the coding systems or charsets stored
|
|
1738 within the stream because they are stored in a global list
|
|
1739 and automatically marked. */
|
|
1740
|
|
1741 XSETLSTREAM (str_obj, str);
|
380
|
1742 markobj (str_obj);
|
259
|
1743 if (str->imp->marker)
|
|
1744 return (str->imp->marker) (str_obj, markobj);
|
|
1745 else
|
|
1746 return Qnil;
|
|
1747 }
|
|
1748
|
|
1749 /* Read SIZE bytes of data and store it into DATA. We are a decoding stream
|
|
1750 so we read data from the other end, decode it, and store it into DATA. */
|
|
1751
|
|
1752 static int
|
272
|
1753 decoding_reader (Lstream *stream, unsigned char *data, size_t size)
|
259
|
1754 {
|
|
1755 struct decoding_stream *str = DECODING_STREAM_DATA (stream);
|
|
1756 unsigned char *orig_data = data;
|
|
1757 int read_size;
|
|
1758 int error_occurred = 0;
|
|
1759
|
|
1760 /* We need to interface to mule_decode(), which expects to take some
|
|
1761 amount of data and store the result into a Dynarr. We have
|
|
1762 mule_decode() store into str->runoff, and take data from there
|
|
1763 as necessary. */
|
|
1764
|
|
1765 /* We loop until we have enough data, reading chunks from the other
|
|
1766 end and decoding it. */
|
|
1767 while (1)
|
|
1768 {
|
|
1769 /* Take data from the runoff if we can. Make sure to take at
|
|
1770 most SIZE bytes, and delete the data from the runoff. */
|
|
1771 if (Dynarr_length (str->runoff) > 0)
|
|
1772 {
|
272
|
1773 size_t chunk = min (size, (size_t) Dynarr_length (str->runoff));
|
259
|
1774 memcpy (data, Dynarr_atp (str->runoff, 0), chunk);
|
|
1775 Dynarr_delete_many (str->runoff, 0, chunk);
|
|
1776 data += chunk;
|
|
1777 size -= chunk;
|
|
1778 }
|
|
1779
|
|
1780 if (size == 0)
|
|
1781 break; /* No more room for data */
|
|
1782
|
|
1783 if (str->flags & CODING_STATE_END)
|
|
1784 /* This means that on the previous iteration, we hit the EOF on
|
|
1785 the other end. We loop once more so that mule_decode() can
|
|
1786 output any final stuff it may be holding, or any "go back
|
|
1787 to a sane state" escape sequences. (This latter makes sense
|
|
1788 during encoding.) */
|
|
1789 break;
|
|
1790
|
|
1791 /* Exhausted the runoff, so get some more. DATA has at least
|
|
1792 SIZE bytes left of storage in it, so it's OK to read directly
|
|
1793 into it. (We'll be overwriting above, after we've decoded it
|
|
1794 into the runoff.) */
|
|
1795 read_size = Lstream_read (str->other_end, data, size);
|
|
1796 if (read_size < 0)
|
|
1797 {
|
|
1798 error_occurred = 1;
|
|
1799 break;
|
|
1800 }
|
|
1801 if (read_size == 0)
|
|
1802 /* There might be some more end data produced in the translation.
|
|
1803 See the comment above. */
|
|
1804 str->flags |= CODING_STATE_END;
|
|
1805 mule_decode (stream, data, str->runoff, read_size);
|
|
1806 }
|
|
1807
|
|
1808 if (data - orig_data == 0)
|
|
1809 return error_occurred ? -1 : 0;
|
|
1810 else
|
|
1811 return data - orig_data;
|
|
1812 }
|
|
1813
|
|
1814 static int
|
272
|
1815 decoding_writer (Lstream *stream, CONST unsigned char *data, size_t size)
|
259
|
1816 {
|
|
1817 struct decoding_stream *str = DECODING_STREAM_DATA (stream);
|
|
1818 int retval;
|
|
1819
|
|
1820 /* Decode all our data into the runoff, and then attempt to write
|
|
1821 it all out to the other end. Remove whatever chunk we succeeded
|
|
1822 in writing. */
|
|
1823 mule_decode (stream, data, str->runoff, size);
|
|
1824 retval = Lstream_write (str->other_end, Dynarr_atp (str->runoff, 0),
|
|
1825 Dynarr_length (str->runoff));
|
|
1826 if (retval > 0)
|
|
1827 Dynarr_delete_many (str->runoff, 0, retval);
|
|
1828 /* Do NOT return retval. The return value indicates how much
|
|
1829 of the incoming data was written, not how many bytes were
|
|
1830 written. */
|
|
1831 return size;
|
|
1832 }
|
|
1833
|
|
1834 static void
|
|
1835 reset_decoding_stream (struct decoding_stream *str)
|
|
1836 {
|
|
1837 #ifdef MULE
|
|
1838 if (CODING_SYSTEM_TYPE (str->codesys) == CODESYS_ISO2022)
|
|
1839 {
|
272
|
1840 Lisp_Object coding_system;
|
259
|
1841 XSETCODING_SYSTEM (coding_system, str->codesys);
|
|
1842 reset_iso2022 (coding_system, &str->iso2022);
|
|
1843 }
|
|
1844 else if (CODING_SYSTEM_TYPE (str->codesys) == CODESYS_CCL)
|
|
1845 {
|
|
1846 setup_ccl_program (&str->ccl, CODING_SYSTEM_CCL_DECODE (str->codesys));
|
|
1847 }
|
272
|
1848 #endif /* MULE */
|
259
|
1849 str->flags = str->ch = 0;
|
|
1850 }
|
|
1851
|
|
1852 static int
|
|
1853 decoding_rewinder (Lstream *stream)
|
|
1854 {
|
|
1855 struct decoding_stream *str = DECODING_STREAM_DATA (stream);
|
|
1856 reset_decoding_stream (str);
|
|
1857 Dynarr_reset (str->runoff);
|
|
1858 return Lstream_rewind (str->other_end);
|
|
1859 }
|
|
1860
|
|
1861 static int
|
|
1862 decoding_seekable_p (Lstream *stream)
|
|
1863 {
|
|
1864 struct decoding_stream *str = DECODING_STREAM_DATA (stream);
|
|
1865 return Lstream_seekable_p (str->other_end);
|
|
1866 }
|
|
1867
|
|
1868 static int
|
|
1869 decoding_flusher (Lstream *stream)
|
|
1870 {
|
|
1871 struct decoding_stream *str = DECODING_STREAM_DATA (stream);
|
|
1872 return Lstream_flush (str->other_end);
|
|
1873 }
|
|
1874
|
|
1875 static int
|
|
1876 decoding_closer (Lstream *stream)
|
|
1877 {
|
|
1878 struct decoding_stream *str = DECODING_STREAM_DATA (stream);
|
|
1879 if (stream->flags & LSTREAM_FL_WRITE)
|
|
1880 {
|
|
1881 str->flags |= CODING_STATE_END;
|
|
1882 decoding_writer (stream, 0, 0);
|
|
1883 }
|
|
1884 Dynarr_free (str->runoff);
|
|
1885 #ifdef MULE
|
|
1886 if (str->iso2022.composite_chars)
|
|
1887 Dynarr_free (str->iso2022.composite_chars);
|
|
1888 #endif
|
|
1889 return Lstream_close (str->other_end);
|
|
1890 }
|
|
1891
|
|
1892 Lisp_Object
|
|
1893 decoding_stream_coding_system (Lstream *stream)
|
|
1894 {
|
272
|
1895 Lisp_Object coding_system;
|
259
|
1896 struct decoding_stream *str = DECODING_STREAM_DATA (stream);
|
|
1897
|
|
1898 XSETCODING_SYSTEM (coding_system, str->codesys);
|
|
1899 return subsidiary_coding_system (coding_system, str->eol_type);
|
|
1900 }
|
|
1901
|
|
1902 void
|
|
1903 set_decoding_stream_coding_system (Lstream *lstr, Lisp_Object codesys)
|
|
1904 {
|
|
1905 struct Lisp_Coding_System *cs = XCODING_SYSTEM (codesys);
|
|
1906 struct decoding_stream *str = DECODING_STREAM_DATA (lstr);
|
|
1907 str->codesys = cs;
|
|
1908 if (CODING_SYSTEM_EOL_TYPE (cs) != EOL_AUTODETECT)
|
|
1909 str->eol_type = CODING_SYSTEM_EOL_TYPE (cs);
|
|
1910 reset_decoding_stream (str);
|
|
1911 }
|
|
1912
|
|
1913 /* WARNING WARNING WARNING WARNING!!!!! If you open up a decoding
|
|
1914 stream for writing, no automatic code detection will be performed.
|
|
1915 The reason for this is that automatic code detection requires a
|
|
1916 seekable input. Things will also fail if you open a decoding
|
|
1917 stream for reading using a non-fully-specified coding system and
|
|
1918 a non-seekable input stream. */
|
|
1919
|
|
1920 static Lisp_Object
|
|
1921 make_decoding_stream_1 (Lstream *stream, Lisp_Object codesys,
|
|
1922 CONST char *mode)
|
|
1923 {
|
|
1924 Lstream *lstr = Lstream_new (lstream_decoding, mode);
|
|
1925 struct decoding_stream *str = DECODING_STREAM_DATA (lstr);
|
|
1926 Lisp_Object obj;
|
|
1927
|
272
|
1928 xzero (*str);
|
259
|
1929 str->other_end = stream;
|
|
1930 str->runoff = (unsigned_char_dynarr *) Dynarr_new (unsigned_char);
|
|
1931 str->eol_type = EOL_AUTODETECT;
|
|
1932 if (!strcmp (mode, "r")
|
|
1933 && Lstream_seekable_p (stream))
|
|
1934 /* We can determine the coding system now. */
|
|
1935 determine_real_coding_system (stream, &codesys, &str->eol_type);
|
|
1936 set_decoding_stream_coding_system (lstr, codesys);
|
|
1937 str->decst.eol_type = str->eol_type;
|
|
1938 str->decst.mask = ~0;
|
|
1939 XSETLSTREAM (obj, lstr);
|
|
1940 return obj;
|
|
1941 }
|
|
1942
|
|
1943 Lisp_Object
|
|
1944 make_decoding_input_stream (Lstream *stream, Lisp_Object codesys)
|
|
1945 {
|
|
1946 return make_decoding_stream_1 (stream, codesys, "r");
|
|
1947 }
|
|
1948
|
|
1949 Lisp_Object
|
|
1950 make_decoding_output_stream (Lstream *stream, Lisp_Object codesys)
|
|
1951 {
|
|
1952 return make_decoding_stream_1 (stream, codesys, "w");
|
|
1953 }
|
|
1954
|
|
1955 /* Note: the decode_coding_* functions all take the same
|
|
1956 arguments as mule_decode(), which is to say some SRC data of
|
|
1957 size N, which is to be stored into dynamic array DST.
|
|
1958 DECODING is the stream within which the decoding is
|
|
1959 taking place, but no data is actually read from or
|
|
1960 written to that stream; that is handled in decoding_reader()
|
|
1961 or decoding_writer(). This allows the same functions to
|
|
1962 be used for both reading and writing. */
|
|
1963
|
|
1964 static void
|
|
1965 mule_decode (Lstream *decoding, CONST unsigned char *src,
|
|
1966 unsigned_char_dynarr *dst, unsigned int n)
|
|
1967 {
|
|
1968 struct decoding_stream *str = DECODING_STREAM_DATA (decoding);
|
|
1969
|
|
1970 /* If necessary, do encoding-detection now. We do this when
|
|
1971 we're a writing stream or a non-seekable reading stream,
|
|
1972 meaning that we can't just process the whole input,
|
|
1973 rewind, and start over. */
|
|
1974
|
|
1975 if (CODING_SYSTEM_TYPE (str->codesys) == CODESYS_AUTODETECT ||
|
|
1976 str->eol_type == EOL_AUTODETECT)
|
|
1977 {
|
272
|
1978 Lisp_Object codesys;
|
259
|
1979
|
|
1980 XSETCODING_SYSTEM (codesys, str->codesys);
|
|
1981 detect_coding_type (&str->decst, src, n,
|
|
1982 CODING_SYSTEM_TYPE (str->codesys) !=
|
|
1983 CODESYS_AUTODETECT);
|
|
1984 if (CODING_SYSTEM_TYPE (str->codesys) == CODESYS_AUTODETECT &&
|
|
1985 str->decst.mask != ~0)
|
|
1986 /* #### This is cheesy. What we really ought to do is
|
|
1987 buffer up a certain amount of data so as to get a
|
|
1988 less random result. */
|
|
1989 codesys = coding_system_from_mask (str->decst.mask);
|
|
1990 str->eol_type = str->decst.eol_type;
|
|
1991 if (XCODING_SYSTEM (codesys) != str->codesys)
|
|
1992 {
|
|
1993 /* Preserve the CODING_STATE_END flag in case it was set.
|
|
1994 If we erase it, bad things might happen. */
|
|
1995 int was_end = str->flags & CODING_STATE_END;
|
|
1996 set_decoding_stream_coding_system (decoding, codesys);
|
|
1997 if (was_end)
|
|
1998 str->flags |= CODING_STATE_END;
|
|
1999 }
|
|
2000 }
|
|
2001
|
|
2002 switch (CODING_SYSTEM_TYPE (str->codesys))
|
|
2003 {
|
|
2004 #ifdef DEBUG_XEMACS
|
|
2005 case CODESYS_INTERNAL:
|
|
2006 Dynarr_add_many (dst, src, n);
|
|
2007 break;
|
|
2008 #endif
|
|
2009 case CODESYS_AUTODETECT:
|
|
2010 /* If we got this far and still haven't decided on the coding
|
|
2011 system, then do no conversion. */
|
|
2012 case CODESYS_NO_CONVERSION:
|
|
2013 decode_coding_no_conversion (decoding, src, dst, n);
|
|
2014 break;
|
|
2015 #ifdef MULE
|
|
2016 case CODESYS_SHIFT_JIS:
|
|
2017 decode_coding_sjis (decoding, src, dst, n);
|
|
2018 break;
|
|
2019 case CODESYS_BIG5:
|
|
2020 decode_coding_big5 (decoding, src, dst, n);
|
|
2021 break;
|
|
2022 case CODESYS_CCL:
|
|
2023 ccl_driver (&str->ccl, src, dst, n, 0);
|
|
2024 break;
|
|
2025 case CODESYS_ISO2022:
|
|
2026 decode_coding_iso2022 (decoding, src, dst, n);
|
|
2027 break;
|
272
|
2028 #endif /* MULE */
|
259
|
2029 default:
|
|
2030 abort ();
|
|
2031 }
|
|
2032 }
|
|
2033
|
|
2034 DEFUN ("decode-coding-region", Fdecode_coding_region, 3, 4, 0, /*
|
|
2035 Decode the text between START and END which is encoded in CODING-SYSTEM.
|
|
2036 This is useful if you've read in encoded text from a file without decoding
|
|
2037 it (e.g. you read in a JIS-formatted file but used the `binary' or
|
|
2038 `no-conversion' coding system, so that it shows up as "^[$B!<!+^[(B").
|
|
2039 Return length of decoded text.
|
|
2040 BUFFER defaults to the current buffer if unspecified.
|
|
2041 */
|
|
2042 (start, end, coding_system, buffer))
|
|
2043 {
|
|
2044 Bufpos b, e;
|
|
2045 struct buffer *buf = decode_buffer (buffer, 0);
|
|
2046 Lisp_Object instream, lb_outstream, de_outstream, outstream;
|
|
2047 Lstream *istr, *ostr;
|
|
2048 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
|
|
2049
|
|
2050 get_buffer_range_char (buf, start, end, &b, &e, 0);
|
|
2051
|
|
2052 barf_if_buffer_read_only (buf, b, e);
|
|
2053
|
|
2054 coding_system = Fget_coding_system (coding_system);
|
|
2055 instream = make_lisp_buffer_input_stream (buf, b, e, 0);
|
|
2056 lb_outstream = make_lisp_buffer_output_stream (buf, b, 0);
|
|
2057 de_outstream = make_decoding_output_stream (XLSTREAM (lb_outstream),
|
|
2058 coding_system);
|
|
2059 outstream = make_encoding_output_stream (XLSTREAM (de_outstream),
|
|
2060 Fget_coding_system (Qbinary));
|
|
2061 istr = XLSTREAM (instream);
|
|
2062 ostr = XLSTREAM (outstream);
|
|
2063 GCPRO4 (instream, lb_outstream, de_outstream, outstream);
|
|
2064
|
|
2065 /* The chain of streams looks like this:
|
|
2066
|
|
2067 [BUFFER] <----- send through
|
|
2068 ------> [ENCODE AS BINARY]
|
|
2069 ------> [DECODE AS SPECIFIED]
|
|
2070 ------> [BUFFER]
|
|
2071 */
|
|
2072
|
|
2073 while (1)
|
|
2074 {
|
|
2075 char tempbuf[1024]; /* some random amount */
|
|
2076 Bufpos newpos, even_newer_pos;
|
|
2077 Bufpos oldpos = lisp_buffer_stream_startpos (istr);
|
|
2078 int size_in_bytes = Lstream_read (istr, tempbuf, sizeof (tempbuf));
|
|
2079
|
|
2080 if (!size_in_bytes)
|
|
2081 break;
|
|
2082 newpos = lisp_buffer_stream_startpos (istr);
|
|
2083 Lstream_write (ostr, tempbuf, size_in_bytes);
|
|
2084 even_newer_pos = lisp_buffer_stream_startpos (istr);
|
|
2085 buffer_delete_range (buf, even_newer_pos - (newpos - oldpos),
|
|
2086 even_newer_pos, 0);
|
|
2087 }
|
|
2088 Lstream_close (istr);
|
|
2089 Lstream_close (ostr);
|
|
2090 UNGCPRO;
|
|
2091 Lstream_delete (istr);
|
|
2092 Lstream_delete (ostr);
|
|
2093 Lstream_delete (XLSTREAM (de_outstream));
|
|
2094 Lstream_delete (XLSTREAM (lb_outstream));
|
|
2095 return Qnil;
|
|
2096 }
|
|
2097
|
|
2098
|
|
2099 /************************************************************************/
|
|
2100 /* Converting to an external encoding ("encoding") */
|
|
2101 /************************************************************************/
|
|
2102
|
|
2103 /* An encoding stream is an output stream. When you create the
|
|
2104 stream, you specify the coding system that governs the encoding
|
|
2105 and another stream that the resulting encoded data is to be
|
|
2106 sent to, and then start sending data to it. */
|
|
2107
|
|
2108 #define ENCODING_STREAM_DATA(stream) LSTREAM_TYPE_DATA (stream, encoding)
|
|
2109
|
|
2110 struct encoding_stream
|
|
2111 {
|
|
2112 /* Coding system that governs the conversion. */
|
|
2113 struct Lisp_Coding_System *codesys;
|
|
2114
|
|
2115 /* Stream that we read the encoded data from or
|
|
2116 write the decoded data to. */
|
|
2117 Lstream *other_end;
|
|
2118
|
|
2119 /* If we are reading, then we can return only a fixed amount of
|
|
2120 data, so if the conversion resulted in too much data, we store it
|
|
2121 here for retrieval the next time around. */
|
|
2122 unsigned_char_dynarr *runoff;
|
|
2123
|
|
2124 /* FLAGS holds flags indicating the current state of the encoding.
|
|
2125 Some of these flags are dependent on the coding system. */
|
|
2126 unsigned int flags;
|
|
2127
|
|
2128 /* CH holds a partially built-up character. Since we only deal
|
|
2129 with one- and two-byte characters at the moment, we only use
|
|
2130 this to store the first byte of a two-byte character. */
|
|
2131 unsigned int ch;
|
|
2132 #ifdef MULE
|
|
2133 /* Additional information used by the ISO2022 encoder. */
|
|
2134 struct
|
|
2135 {
|
|
2136 /* CHARSET holds the character sets currently assigned to the G0
|
|
2137 through G3 registers. It is initialized from the array
|
|
2138 INITIAL_CHARSET in CODESYS. */
|
|
2139 Lisp_Object charset[4];
|
|
2140
|
|
2141 /* Which registers are currently invoked into the left (GL) and
|
|
2142 right (GR) halves of the 8-bit encoding space? */
|
|
2143 int register_left, register_right;
|
|
2144
|
|
2145 /* Whether we need to explicitly designate the charset in the
|
|
2146 G? register before using it. It is initialized from the
|
|
2147 array FORCE_CHARSET_ON_OUTPUT in CODESYS. */
|
|
2148 unsigned char force_charset_on_output[4];
|
|
2149
|
|
2150 /* Other state variables that need to be preserved across
|
|
2151 invocations. */
|
|
2152 Lisp_Object current_charset;
|
|
2153 int current_half;
|
|
2154 int current_char_boundary;
|
|
2155 } iso2022;
|
|
2156
|
|
2157 /* Additional information (the state of the running CCL program)
|
|
2158 used by the CCL encoder. */
|
|
2159 struct ccl_program ccl;
|
272
|
2160 #endif /* MULE */
|
259
|
2161 };
|
|
2162
|
272
|
2163 static int encoding_reader (Lstream *stream, unsigned char *data, size_t size);
|
259
|
2164 static int encoding_writer (Lstream *stream, CONST unsigned char *data,
|
272
|
2165 size_t size);
|
259
|
2166 static int encoding_rewinder (Lstream *stream);
|
|
2167 static int encoding_seekable_p (Lstream *stream);
|
|
2168 static int encoding_flusher (Lstream *stream);
|
|
2169 static int encoding_closer (Lstream *stream);
|
|
2170
|
|
2171 static Lisp_Object encoding_marker (Lisp_Object stream,
|
|
2172 void (*markobj) (Lisp_Object));
|
|
2173
|
|
2174 DEFINE_LSTREAM_IMPLEMENTATION ("encoding", lstream_encoding,
|
|
2175 sizeof (struct encoding_stream));
|
|
2176
|
|
2177 static Lisp_Object
|
|
2178 encoding_marker (Lisp_Object stream, void (*markobj) (Lisp_Object))
|
|
2179 {
|
|
2180 Lstream *str = ENCODING_STREAM_DATA (XLSTREAM (stream))->other_end;
|
|
2181 Lisp_Object str_obj;
|
|
2182
|
|
2183 /* We do not need to mark the coding systems or charsets stored
|
|
2184 within the stream because they are stored in a global list
|
|
2185 and automatically marked. */
|
|
2186
|
|
2187 XSETLSTREAM (str_obj, str);
|
380
|
2188 markobj (str_obj);
|
259
|
2189 if (str->imp->marker)
|
|
2190 return (str->imp->marker) (str_obj, markobj);
|
|
2191 else
|
|
2192 return Qnil;
|
|
2193 }
|
|
2194
|
|
2195 /* Read SIZE bytes of data and store it into DATA. We are a encoding stream
|
|
2196 so we read data from the other end, encode it, and store it into DATA. */
|
|
2197
|
|
2198 static int
|
272
|
2199 encoding_reader (Lstream *stream, unsigned char *data, size_t size)
|
259
|
2200 {
|
|
2201 struct encoding_stream *str = ENCODING_STREAM_DATA (stream);
|
|
2202 unsigned char *orig_data = data;
|
|
2203 int read_size;
|
|
2204 int error_occurred = 0;
|
|
2205
|
|
2206 /* We need to interface to mule_encode(), which expects to take some
|
|
2207 amount of data and store the result into a Dynarr. We have
|
|
2208 mule_encode() store into str->runoff, and take data from there
|
|
2209 as necessary. */
|
|
2210
|
|
2211 /* We loop until we have enough data, reading chunks from the other
|
|
2212 end and encoding it. */
|
|
2213 while (1)
|
|
2214 {
|
|
2215 /* Take data from the runoff if we can. Make sure to take at
|
|
2216 most SIZE bytes, and delete the data from the runoff. */
|
|
2217 if (Dynarr_length (str->runoff) > 0)
|
|
2218 {
|
272
|
2219 int chunk = min ((int) size, Dynarr_length (str->runoff));
|
259
|
2220 memcpy (data, Dynarr_atp (str->runoff, 0), chunk);
|
|
2221 Dynarr_delete_many (str->runoff, 0, chunk);
|
|
2222 data += chunk;
|
|
2223 size -= chunk;
|
|
2224 }
|
|
2225
|
|
2226 if (size == 0)
|
|
2227 break; /* No more room for data */
|
|
2228
|
|
2229 if (str->flags & CODING_STATE_END)
|
|
2230 /* This means that on the previous iteration, we hit the EOF on
|
|
2231 the other end. We loop once more so that mule_encode() can
|
|
2232 output any final stuff it may be holding, or any "go back
|
|
2233 to a sane state" escape sequences. (This latter makes sense
|
|
2234 during encoding.) */
|
|
2235 break;
|
|
2236
|
|
2237 /* Exhausted the runoff, so get some more. DATA at least SIZE bytes
|
|
2238 left of storage in it, so it's OK to read directly into it.
|
|
2239 (We'll be overwriting above, after we've encoded it into the
|
|
2240 runoff.) */
|
|
2241 read_size = Lstream_read (str->other_end, data, size);
|
|
2242 if (read_size < 0)
|
|
2243 {
|
|
2244 error_occurred = 1;
|
|
2245 break;
|
|
2246 }
|
|
2247 if (read_size == 0)
|
|
2248 /* There might be some more end data produced in the translation.
|
|
2249 See the comment above. */
|
|
2250 str->flags |= CODING_STATE_END;
|
|
2251 mule_encode (stream, data, str->runoff, read_size);
|
|
2252 }
|
|
2253
|
|
2254 if (data == orig_data)
|
|
2255 return error_occurred ? -1 : 0;
|
|
2256 else
|
|
2257 return data - orig_data;
|
|
2258 }
|
|
2259
|
|
2260 static int
|
272
|
2261 encoding_writer (Lstream *stream, CONST unsigned char *data, size_t size)
|
259
|
2262 {
|
|
2263 struct encoding_stream *str = ENCODING_STREAM_DATA (stream);
|
|
2264 int retval;
|
|
2265
|
|
2266 /* Encode all our data into the runoff, and then attempt to write
|
|
2267 it all out to the other end. Remove whatever chunk we succeeded
|
|
2268 in writing. */
|
|
2269 mule_encode (stream, data, str->runoff, size);
|
|
2270 retval = Lstream_write (str->other_end, Dynarr_atp (str->runoff, 0),
|
|
2271 Dynarr_length (str->runoff));
|
|
2272 if (retval > 0)
|
|
2273 Dynarr_delete_many (str->runoff, 0, retval);
|
|
2274 /* Do NOT return retval. The return value indicates how much
|
|
2275 of the incoming data was written, not how many bytes were
|
|
2276 written. */
|
|
2277 return size;
|
|
2278 }
|
|
2279
|
|
2280 static void
|
|
2281 reset_encoding_stream (struct encoding_stream *str)
|
|
2282 {
|
272
|
2283 #ifdef MULE
|
259
|
2284 switch (CODING_SYSTEM_TYPE (str->codesys))
|
|
2285 {
|
|
2286 case CODESYS_ISO2022:
|
|
2287 {
|
|
2288 int i;
|
|
2289
|
|
2290 for (i = 0; i < 4; i++)
|
|
2291 {
|
|
2292 str->iso2022.charset[i] =
|
|
2293 CODING_SYSTEM_ISO2022_INITIAL_CHARSET (str->codesys, i);
|
|
2294 str->iso2022.force_charset_on_output[i] =
|
|
2295 CODING_SYSTEM_ISO2022_FORCE_CHARSET_ON_OUTPUT (str->codesys, i);
|
|
2296 }
|
|
2297 str->iso2022.register_left = 0;
|
|
2298 str->iso2022.register_right = 1;
|
|
2299 str->iso2022.current_charset = Qnil;
|
|
2300 str->iso2022.current_half = 0;
|
|
2301 str->iso2022.current_char_boundary = 1;
|
|
2302 break;
|
|
2303 }
|
|
2304 case CODESYS_CCL:
|
|
2305 setup_ccl_program (&str->ccl, CODING_SYSTEM_CCL_ENCODE (str->codesys));
|
|
2306 break;
|
|
2307 default:
|
|
2308 break;
|
|
2309 }
|
272
|
2310 #endif /* MULE */
|
259
|
2311
|
|
2312 str->flags = str->ch = 0;
|
|
2313 }
|
|
2314
|
|
2315 static int
|
|
2316 encoding_rewinder (Lstream *stream)
|
|
2317 {
|
|
2318 struct encoding_stream *str = ENCODING_STREAM_DATA (stream);
|
|
2319 reset_encoding_stream (str);
|
|
2320 Dynarr_reset (str->runoff);
|
|
2321 return Lstream_rewind (str->other_end);
|
|
2322 }
|
|
2323
|
|
2324 static int
|
|
2325 encoding_seekable_p (Lstream *stream)
|
|
2326 {
|
|
2327 struct encoding_stream *str = ENCODING_STREAM_DATA (stream);
|
|
2328 return Lstream_seekable_p (str->other_end);
|
|
2329 }
|
|
2330
|
|
2331 static int
|
|
2332 encoding_flusher (Lstream *stream)
|
|
2333 {
|
|
2334 struct encoding_stream *str = ENCODING_STREAM_DATA (stream);
|
|
2335 return Lstream_flush (str->other_end);
|
|
2336 }
|
|
2337
|
|
2338 static int
|
|
2339 encoding_closer (Lstream *stream)
|
|
2340 {
|
|
2341 struct encoding_stream *str = ENCODING_STREAM_DATA (stream);
|
|
2342 if (stream->flags & LSTREAM_FL_WRITE)
|
|
2343 {
|
|
2344 str->flags |= CODING_STATE_END;
|
|
2345 encoding_writer (stream, 0, 0);
|
|
2346 }
|
|
2347 Dynarr_free (str->runoff);
|
|
2348 return Lstream_close (str->other_end);
|
|
2349 }
|
|
2350
|
|
2351 Lisp_Object
|
|
2352 encoding_stream_coding_system (Lstream *stream)
|
|
2353 {
|
272
|
2354 Lisp_Object coding_system;
|
259
|
2355 struct encoding_stream *str = ENCODING_STREAM_DATA (stream);
|
|
2356
|
|
2357 XSETCODING_SYSTEM (coding_system, str->codesys);
|
|
2358 return coding_system;
|
|
2359 }
|
|
2360
|
|
2361 void
|
|
2362 set_encoding_stream_coding_system (Lstream *lstr, Lisp_Object codesys)
|
|
2363 {
|
|
2364 struct Lisp_Coding_System *cs = XCODING_SYSTEM (codesys);
|
|
2365 struct encoding_stream *str = ENCODING_STREAM_DATA (lstr);
|
|
2366 str->codesys = cs;
|
|
2367 reset_encoding_stream (str);
|
|
2368 }
|
|
2369
|
|
2370 static Lisp_Object
|
|
2371 make_encoding_stream_1 (Lstream *stream, Lisp_Object codesys,
|
|
2372 CONST char *mode)
|
|
2373 {
|
|
2374 Lstream *lstr = Lstream_new (lstream_encoding, mode);
|
|
2375 struct encoding_stream *str = ENCODING_STREAM_DATA (lstr);
|
|
2376 Lisp_Object obj;
|
|
2377
|
272
|
2378 xzero (*str);
|
259
|
2379 str->runoff = Dynarr_new (unsigned_char);
|
|
2380 str->other_end = stream;
|
|
2381 set_encoding_stream_coding_system (lstr, codesys);
|
|
2382 XSETLSTREAM (obj, lstr);
|
|
2383 return obj;
|
|
2384 }
|
|
2385
|
|
2386 Lisp_Object
|
|
2387 make_encoding_input_stream (Lstream *stream, Lisp_Object codesys)
|
|
2388 {
|
|
2389 return make_encoding_stream_1 (stream, codesys, "r");
|
|
2390 }
|
|
2391
|
|
2392 Lisp_Object
|
|
2393 make_encoding_output_stream (Lstream *stream, Lisp_Object codesys)
|
|
2394 {
|
|
2395 return make_encoding_stream_1 (stream, codesys, "w");
|
|
2396 }
|
|
2397
|
|
2398 /* Convert N bytes of internally-formatted data stored in SRC to an
|
|
2399 external format, according to the encoding stream ENCODING.
|
|
2400 Store the encoded data into DST. */
|
|
2401
|
|
2402 static void
|
|
2403 mule_encode (Lstream *encoding, CONST unsigned char *src,
|
|
2404 unsigned_char_dynarr *dst, unsigned int n)
|
|
2405 {
|
|
2406 struct encoding_stream *str = ENCODING_STREAM_DATA (encoding);
|
|
2407
|
|
2408 switch (CODING_SYSTEM_TYPE (str->codesys))
|
|
2409 {
|
|
2410 #ifdef DEBUG_XEMACS
|
|
2411 case CODESYS_INTERNAL:
|
|
2412 Dynarr_add_many (dst, src, n);
|
|
2413 break;
|
|
2414 #endif
|
|
2415 case CODESYS_AUTODETECT:
|
|
2416 /* If we got this far and still haven't decided on the coding
|
|
2417 system, then do no conversion. */
|
|
2418 case CODESYS_NO_CONVERSION:
|
|
2419 encode_coding_no_conversion (encoding, src, dst, n);
|
|
2420 break;
|
|
2421 #ifdef MULE
|
|
2422 case CODESYS_SHIFT_JIS:
|
|
2423 encode_coding_sjis (encoding, src, dst, n);
|
|
2424 break;
|
|
2425 case CODESYS_BIG5:
|
|
2426 encode_coding_big5 (encoding, src, dst, n);
|
|
2427 break;
|
|
2428 case CODESYS_CCL:
|
|
2429 ccl_driver (&str->ccl, src, dst, n, 0);
|
|
2430 break;
|
|
2431 case CODESYS_ISO2022:
|
|
2432 encode_coding_iso2022 (encoding, src, dst, n);
|
|
2433 break;
|
|
2434 #endif /* MULE */
|
|
2435 default:
|
|
2436 abort ();
|
|
2437 }
|
|
2438 }
|
|
2439
|
|
2440 DEFUN ("encode-coding-region", Fencode_coding_region, 3, 4, 0, /*
|
|
2441 Encode the text between START and END using CODING-SYSTEM.
|
|
2442 This will, for example, convert Japanese characters into stuff such as
|
|
2443 "^[$B!<!+^[(B" if you use the JIS encoding. Return length of encoded
|
|
2444 text. BUFFER defaults to the current buffer if unspecified.
|
|
2445 */
|
|
2446 (start, end, coding_system, buffer))
|
|
2447 {
|
|
2448 Bufpos b, e;
|
|
2449 struct buffer *buf = decode_buffer (buffer, 0);
|
|
2450 Lisp_Object instream, lb_outstream, de_outstream, outstream;
|
|
2451 Lstream *istr, *ostr;
|
|
2452 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
|
|
2453
|
|
2454 get_buffer_range_char (buf, start, end, &b, &e, 0);
|
|
2455
|
|
2456 barf_if_buffer_read_only (buf, b, e);
|
|
2457
|
|
2458 coding_system = Fget_coding_system (coding_system);
|
|
2459 instream = make_lisp_buffer_input_stream (buf, b, e, 0);
|
|
2460 lb_outstream = make_lisp_buffer_output_stream (buf, b, 0);
|
|
2461 de_outstream = make_decoding_output_stream (XLSTREAM (lb_outstream),
|
|
2462 Fget_coding_system (Qbinary));
|
|
2463 outstream = make_encoding_output_stream (XLSTREAM (de_outstream),
|
|
2464 coding_system);
|
|
2465 istr = XLSTREAM (instream);
|
|
2466 ostr = XLSTREAM (outstream);
|
|
2467 GCPRO4 (instream, outstream, de_outstream, lb_outstream);
|
|
2468 /* The chain of streams looks like this:
|
|
2469
|
|
2470 [BUFFER] <----- send through
|
|
2471 ------> [ENCODE AS SPECIFIED]
|
|
2472 ------> [DECODE AS BINARY]
|
|
2473 ------> [BUFFER]
|
|
2474 */
|
|
2475 while (1)
|
|
2476 {
|
|
2477 char tempbuf[1024]; /* some random amount */
|
|
2478 Bufpos newpos, even_newer_pos;
|
|
2479 Bufpos oldpos = lisp_buffer_stream_startpos (istr);
|
|
2480 int size_in_bytes = Lstream_read (istr, tempbuf, sizeof (tempbuf));
|
|
2481
|
|
2482 if (!size_in_bytes)
|
|
2483 break;
|
|
2484 newpos = lisp_buffer_stream_startpos (istr);
|
|
2485 Lstream_write (ostr, tempbuf, size_in_bytes);
|
|
2486 even_newer_pos = lisp_buffer_stream_startpos (istr);
|
|
2487 buffer_delete_range (buf, even_newer_pos - (newpos - oldpos),
|
|
2488 even_newer_pos, 0);
|
|
2489 }
|
|
2490
|
|
2491 {
|
|
2492 Charcount retlen =
|
|
2493 lisp_buffer_stream_startpos (XLSTREAM (instream)) - b;
|
|
2494 Lstream_close (istr);
|
|
2495 Lstream_close (ostr);
|
|
2496 UNGCPRO;
|
|
2497 Lstream_delete (istr);
|
|
2498 Lstream_delete (ostr);
|
|
2499 Lstream_delete (XLSTREAM (de_outstream));
|
|
2500 Lstream_delete (XLSTREAM (lb_outstream));
|
|
2501 return make_int (retlen);
|
|
2502 }
|
|
2503 }
|
|
2504
|
|
2505 #ifdef MULE
|
|
2506
|
|
2507 /************************************************************************/
|
|
2508 /* Shift-JIS methods */
|
|
2509 /************************************************************************/
|
|
2510
|
|
2511 /* Shift-JIS is a coding system encoding three character sets: ASCII, right
|
|
2512 half of JISX0201-Kana, and JISX0208. An ASCII character is encoded
|
|
2513 as is. A character of JISX0201-Kana (TYPE94 character set) is
|
|
2514 encoded by "position-code + 0x80". A character of JISX0208
|
|
2515 (TYPE94x94 character set) is encoded in 2-byte but two
|
|
2516 position-codes are divided and shifted so that it fit in the range
|
|
2517 below.
|
|
2518
|
|
2519 --- CODE RANGE of Shift-JIS ---
|
|
2520 (character set) (range)
|
|
2521 ASCII 0x00 .. 0x7F
|
|
2522 JISX0201-Kana 0xA0 .. 0xDF
|
|
2523 JISX0208 (1st byte) 0x80 .. 0x9F and 0xE0 .. 0xEF
|
|
2524 (2nd byte) 0x40 .. 0x7E and 0x80 .. 0xFC
|
|
2525 -------------------------------
|
|
2526
|
|
2527 */
|
|
2528
|
|
2529 /* Is this the first byte of a Shift-JIS two-byte char? */
|
|
2530
|
|
2531 #define BYTE_SJIS_TWO_BYTE_1_P(c) \
|
|
2532 (((c) >= 0x81 && (c) <= 0x9F) || ((c) >= 0xE0 && (c) <= 0xEF))
|
|
2533
|
|
2534 /* Is this the second byte of a Shift-JIS two-byte char? */
|
|
2535
|
|
2536 #define BYTE_SJIS_TWO_BYTE_2_P(c) \
|
|
2537 (((c) >= 0x40 && (c) <= 0x7E) || ((c) >= 0x80 && (c) <= 0xFC))
|
|
2538
|
|
2539 #define BYTE_SJIS_KATAKANA_P(c) \
|
|
2540 ((c) >= 0xA1 && (c) <= 0xDF)
|
|
2541
|
|
2542 static int
|
|
2543 detect_coding_sjis (struct detection_state *st, CONST unsigned char *src,
|
|
2544 unsigned int n)
|
|
2545 {
|
|
2546 int c;
|
|
2547
|
|
2548 while (n--)
|
|
2549 {
|
|
2550 c = *src++;
|
|
2551 if (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO)
|
|
2552 return 0;
|
|
2553 if (st->shift_jis.in_second_byte)
|
|
2554 {
|
|
2555 st->shift_jis.in_second_byte = 0;
|
|
2556 if (c < 0x40)
|
|
2557 return 0;
|
|
2558 }
|
|
2559 else if ((c >= 0x80 && c < 0xA0) || c >= 0xE0)
|
|
2560 st->shift_jis.in_second_byte = 1;
|
|
2561 }
|
|
2562 return CODING_CATEGORY_SHIFT_JIS_MASK;
|
|
2563 }
|
|
2564
|
|
2565 /* Convert Shift-JIS data to internal format. */
|
|
2566
|
|
2567 static void
|
|
2568 decode_coding_sjis (Lstream *decoding, CONST unsigned char *src,
|
|
2569 unsigned_char_dynarr *dst, unsigned int n)
|
|
2570 {
|
|
2571 unsigned char c;
|
|
2572 unsigned int flags, ch;
|
|
2573 enum eol_type eol_type;
|
|
2574 struct decoding_stream *str = DECODING_STREAM_DATA (decoding);
|
|
2575
|
|
2576 CODING_STREAM_DECOMPOSE (str, flags, ch);
|
|
2577 eol_type = str->eol_type;
|
|
2578
|
|
2579 while (n--)
|
|
2580 {
|
|
2581 c = *src++;
|
|
2582
|
|
2583 if (ch)
|
|
2584 {
|
|
2585 /* Previous character was first byte of Shift-JIS Kanji char. */
|
|
2586 if (BYTE_SJIS_TWO_BYTE_2_P (c))
|
|
2587 {
|
|
2588 unsigned char e1, e2;
|
|
2589
|
|
2590 Dynarr_add (dst, LEADING_BYTE_JAPANESE_JISX0208);
|
|
2591 DECODE_SJIS (ch, c, e1, e2);
|
|
2592 Dynarr_add (dst, e1);
|
|
2593 Dynarr_add (dst, e2);
|
|
2594 }
|
|
2595 else
|
|
2596 {
|
|
2597 DECODE_ADD_BINARY_CHAR (ch, dst);
|
|
2598 DECODE_ADD_BINARY_CHAR (c, dst);
|
|
2599 }
|
|
2600 ch = 0;
|
|
2601 }
|
|
2602 else
|
|
2603 {
|
|
2604 DECODE_HANDLE_EOL_TYPE (eol_type, c, flags, dst);
|
|
2605 if (BYTE_SJIS_TWO_BYTE_1_P (c))
|
|
2606 ch = c;
|
|
2607 else if (BYTE_SJIS_KATAKANA_P (c))
|
|
2608 {
|
|
2609 Dynarr_add (dst, LEADING_BYTE_KATAKANA_JISX0201);
|
|
2610 Dynarr_add (dst, c);
|
|
2611 }
|
|
2612 else
|
|
2613 DECODE_ADD_BINARY_CHAR (c, dst);
|
|
2614 }
|
|
2615 label_continue_loop:;
|
|
2616 }
|
|
2617
|
|
2618 DECODE_HANDLE_END_OF_CONVERSION (flags, ch, dst);
|
|
2619
|
|
2620 CODING_STREAM_COMPOSE (str, flags, ch);
|
|
2621 }
|
|
2622
|
|
2623 /* Convert internally-formatted data to Shift-JIS. */
|
|
2624
|
|
2625 static void
|
|
2626 encode_coding_sjis (Lstream *encoding, CONST unsigned char *src,
|
|
2627 unsigned_char_dynarr *dst, unsigned int n)
|
|
2628 {
|
|
2629 unsigned char c;
|
|
2630 struct encoding_stream *str = ENCODING_STREAM_DATA (encoding);
|
|
2631 unsigned int flags, ch;
|
|
2632 enum eol_type eol_type;
|
|
2633
|
|
2634 CODING_STREAM_DECOMPOSE (str, flags, ch);
|
|
2635 eol_type = CODING_SYSTEM_EOL_TYPE (str->codesys);
|
|
2636
|
|
2637 while (n--)
|
|
2638 {
|
|
2639 c = *src++;
|
|
2640 if (c == '\n')
|
|
2641 {
|
|
2642 if (eol_type != EOL_LF && eol_type != EOL_AUTODETECT)
|
|
2643 Dynarr_add (dst, '\r');
|
|
2644 if (eol_type != EOL_CR)
|
|
2645 Dynarr_add (dst, '\n');
|
|
2646 ch = 0;
|
|
2647 }
|
|
2648 else if (BYTE_ASCII_P (c))
|
|
2649 {
|
|
2650 Dynarr_add (dst, c);
|
|
2651 ch = 0;
|
|
2652 }
|
|
2653 else if (BUFBYTE_LEADING_BYTE_P (c))
|
|
2654 ch = (c == LEADING_BYTE_KATAKANA_JISX0201 ||
|
|
2655 c == LEADING_BYTE_JAPANESE_JISX0208_1978 ||
|
|
2656 c == LEADING_BYTE_JAPANESE_JISX0208) ? c : 0;
|
|
2657 else if (ch)
|
|
2658 {
|
|
2659 if (ch == LEADING_BYTE_KATAKANA_JISX0201)
|
|
2660 {
|
|
2661 Dynarr_add (dst, c);
|
|
2662 ch = 0;
|
|
2663 }
|
|
2664 else if (ch == LEADING_BYTE_JAPANESE_JISX0208_1978 ||
|
|
2665 ch == LEADING_BYTE_JAPANESE_JISX0208)
|
|
2666 ch = c;
|
|
2667 else
|
|
2668 {
|
|
2669 unsigned char j1, j2;
|
|
2670 ENCODE_SJIS (ch, c, j1, j2);
|
|
2671 Dynarr_add (dst, j1);
|
|
2672 Dynarr_add (dst, j2);
|
|
2673 ch = 0;
|
|
2674 }
|
|
2675 }
|
|
2676 }
|
|
2677
|
|
2678 CODING_STREAM_COMPOSE (str, flags, ch);
|
|
2679 }
|
|
2680
|
|
2681 DEFUN ("decode-shift-jis-char", Fdecode_shift_jis_char, 1, 1, 0, /*
|
|
2682 Decode a JISX0208 character of Shift-JIS coding-system.
|
|
2683 CODE is the character code in Shift-JIS as a cons of type bytes.
|
|
2684 Return the corresponding character.
|
|
2685 */
|
|
2686 (code))
|
|
2687 {
|
|
2688 unsigned char c1, c2, s1, s2;
|
|
2689
|
|
2690 CHECK_CONS (code);
|
|
2691 CHECK_INT (XCAR (code));
|
|
2692 CHECK_INT (XCDR (code));
|
|
2693 s1 = XINT (XCAR (code));
|
|
2694 s2 = XINT (XCDR (code));
|
|
2695 if (BYTE_SJIS_TWO_BYTE_1_P (s1) &&
|
|
2696 BYTE_SJIS_TWO_BYTE_2_P (s2))
|
|
2697 {
|
|
2698 DECODE_SJIS (s1, s2, c1, c2);
|
|
2699 return make_char (MAKE_CHAR (Vcharset_japanese_jisx0208,
|
|
2700 c1 & 0x7F, c2 & 0x7F));
|
|
2701 }
|
|
2702 else
|
|
2703 return Qnil;
|
|
2704 }
|
|
2705
|
|
2706 DEFUN ("encode-shift-jis-char", Fencode_shift_jis_char, 1, 1, 0, /*
|
|
2707 Encode a JISX0208 character CHAR to SHIFT-JIS coding-system.
|
|
2708 Return the corresponding character code in SHIFT-JIS as a cons of two bytes.
|
|
2709 */
|
|
2710 (ch))
|
|
2711 {
|
|
2712 Lisp_Object charset;
|
|
2713 int c1, c2, s1, s2;
|
|
2714
|
|
2715 CHECK_CHAR_COERCE_INT (ch);
|
|
2716 BREAKUP_CHAR (XCHAR (ch), charset, c1, c2);
|
|
2717 if (EQ (charset, Vcharset_japanese_jisx0208))
|
|
2718 {
|
|
2719 ENCODE_SJIS (c1 | 0x80, c2 | 0x80, s1, s2);
|
|
2720 return Fcons (make_int (s1), make_int (s2));
|
|
2721 }
|
|
2722 else
|
|
2723 return Qnil;
|
|
2724 }
|
|
2725
|
|
2726
|
|
2727 /************************************************************************/
|
|
2728 /* Big5 methods */
|
|
2729 /************************************************************************/
|
|
2730
|
|
2731 /* BIG5 is a coding system encoding two character sets: ASCII and
|
|
2732 Big5. An ASCII character is encoded as is. Big5 is a two-byte
|
|
2733 character set and is encoded in two-byte.
|
|
2734
|
|
2735 --- CODE RANGE of BIG5 ---
|
|
2736 (character set) (range)
|
|
2737 ASCII 0x00 .. 0x7F
|
|
2738 Big5 (1st byte) 0xA1 .. 0xFE
|
|
2739 (2nd byte) 0x40 .. 0x7E and 0xA1 .. 0xFE
|
|
2740 --------------------------
|
|
2741
|
|
2742 Since the number of characters in Big5 is larger than maximum
|
|
2743 characters in Emacs' charset (96x96), it can't be handled as one
|
380
|
2744 charset. So, in Emacs, Big5 is divided into two: `charset-big5-1'
|
259
|
2745 and `charset-big5-2'. Both <type>s are TYPE94x94. The former
|
|
2746 contains frequently used characters and the latter contains less
|
|
2747 frequently used characters. */
|
|
2748
|
|
2749 #define BYTE_BIG5_TWO_BYTE_1_P(c) \
|
|
2750 ((c) >= 0xA1 && (c) <= 0xFE)
|
|
2751
|
|
2752 /* Is this the second byte of a Shift-JIS two-byte char? */
|
|
2753
|
|
2754 #define BYTE_BIG5_TWO_BYTE_2_P(c) \
|
|
2755 (((c) >= 0x40 && (c) <= 0x7E) || ((c) >= 0xA1 && (c) <= 0xFE))
|
|
2756
|
|
2757 /* Number of Big5 characters which have the same code in 1st byte. */
|
|
2758
|
|
2759 #define BIG5_SAME_ROW (0xFF - 0xA1 + 0x7F - 0x40)
|
|
2760
|
|
2761 /* Code conversion macros. These are macros because they are used in
|
|
2762 inner loops during code conversion.
|
|
2763
|
|
2764 Note that temporary variables in macros introduce the classic
|
|
2765 dynamic-scoping problems with variable names. We use capital-
|
|
2766 lettered variables in the assumption that XEmacs does not use
|
|
2767 capital letters in variables except in a very formalized way
|
|
2768 (e.g. Qstring). */
|
|
2769
|
|
2770 /* Convert Big5 code (b1, b2) into its internal string representation
|
|
2771 (lb, c1, c2). */
|
|
2772
|
|
2773 /* There is a much simpler way to split the Big5 charset into two.
|
|
2774 For the moment I'm going to leave the algorithm as-is because it
|
|
2775 claims to separate out the most-used characters into a single
|
|
2776 charset, which perhaps will lead to optimizations in various
|
|
2777 places.
|
|
2778
|
|
2779 The way the algorithm works is something like this:
|
|
2780
|
|
2781 Big5 can be viewed as a 94x157 charset, where the row is
|
|
2782 encoded into the bytes 0xA1 .. 0xFE and the column is encoded
|
|
2783 into the bytes 0x40 .. 0x7E and 0xA1 .. 0xFE. As for frequency,
|
|
2784 the split between low and high column numbers is apparently
|
|
2785 meaningless; ascending rows produce less and less frequent chars.
|
|
2786 Therefore, we assign the lower half of rows (0xA1 .. 0xC8) to
|
|
2787 the first charset, and the upper half (0xC9 .. 0xFE) to the
|
|
2788 second. To do the conversion, we convert the character into
|
|
2789 a single number where 0 .. 156 is the first row, 157 .. 313
|
|
2790 is the second, etc. That way, the characters are ordered by
|
|
2791 decreasing frequency. Then we just chop the space in two
|
|
2792 and coerce the result into a 94x94 space.
|
|
2793 */
|
|
2794
|
|
2795 #define DECODE_BIG5(b1, b2, lb, c1, c2) do \
|
|
2796 { \
|
|
2797 int B1 = b1, B2 = b2; \
|
|
2798 unsigned int I \
|
|
2799 = (B1 - 0xA1) * BIG5_SAME_ROW + B2 - (B2 < 0x7F ? 0x40 : 0x62); \
|
|
2800 \
|
|
2801 if (B1 < 0xC9) \
|
|
2802 { \
|
|
2803 lb = LEADING_BYTE_CHINESE_BIG5_1; \
|
|
2804 } \
|
|
2805 else \
|
|
2806 { \
|
|
2807 lb = LEADING_BYTE_CHINESE_BIG5_2; \
|
|
2808 I -= (BIG5_SAME_ROW) * (0xC9 - 0xA1); \
|
|
2809 } \
|
|
2810 c1 = I / (0xFF - 0xA1) + 0xA1; \
|
|
2811 c2 = I % (0xFF - 0xA1) + 0xA1; \
|
|
2812 } while (0)
|
|
2813
|
|
2814 /* Convert the internal string representation of a Big5 character
|
|
2815 (lb, c1, c2) into Big5 code (b1, b2). */
|
|
2816
|
|
2817 #define ENCODE_BIG5(lb, c1, c2, b1, b2) do \
|
|
2818 { \
|
|
2819 unsigned int I = ((c1) - 0xA1) * (0xFF - 0xA1) + ((c2) - 0xA1); \
|
|
2820 \
|
|
2821 if (lb == LEADING_BYTE_CHINESE_BIG5_2) \
|
|
2822 { \
|
|
2823 I += BIG5_SAME_ROW * (0xC9 - 0xA1); \
|
|
2824 } \
|
|
2825 b1 = I / BIG5_SAME_ROW + 0xA1; \
|
|
2826 b2 = I % BIG5_SAME_ROW; \
|
|
2827 b2 += b2 < 0x3F ? 0x40 : 0x62; \
|
|
2828 } while (0)
|
|
2829
|
|
2830 static int
|
|
2831 detect_coding_big5 (struct detection_state *st, CONST unsigned char *src,
|
|
2832 unsigned int n)
|
|
2833 {
|
|
2834 int c;
|
|
2835
|
|
2836 while (n--)
|
|
2837 {
|
|
2838 c = *src++;
|
|
2839 if (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO ||
|
|
2840 (c >= 0x80 && c <= 0xA0))
|
|
2841 return 0;
|
|
2842 if (st->big5.in_second_byte)
|
|
2843 {
|
|
2844 st->big5.in_second_byte = 0;
|
|
2845 if (c < 0x40 || (c >= 0x80 && c <= 0xA0))
|
|
2846 return 0;
|
|
2847 }
|
|
2848 else if (c >= 0xA1)
|
|
2849 st->big5.in_second_byte = 1;
|
|
2850 }
|
|
2851 return CODING_CATEGORY_BIG5_MASK;
|
|
2852 }
|
|
2853
|
|
2854 /* Convert Big5 data to internal format. */
|
|
2855
|
|
2856 static void
|
|
2857 decode_coding_big5 (Lstream *decoding, CONST unsigned char *src,
|
|
2858 unsigned_char_dynarr *dst, unsigned int n)
|
|
2859 {
|
|
2860 unsigned char c;
|
|
2861 unsigned int flags, ch;
|
|
2862 enum eol_type eol_type;
|
|
2863 struct decoding_stream *str = DECODING_STREAM_DATA (decoding);
|
|
2864
|
|
2865 CODING_STREAM_DECOMPOSE (str, flags, ch);
|
|
2866 eol_type = str->eol_type;
|
|
2867
|
|
2868 while (n--)
|
|
2869 {
|
|
2870 c = *src++;
|
|
2871 if (ch)
|
|
2872 {
|
|
2873 /* Previous character was first byte of Big5 char. */
|
|
2874 if (BYTE_BIG5_TWO_BYTE_2_P (c))
|
|
2875 {
|
|
2876 unsigned char b1, b2, b3;
|
|
2877 DECODE_BIG5 (ch, c, b1, b2, b3);
|
|
2878 Dynarr_add (dst, b1);
|
|
2879 Dynarr_add (dst, b2);
|
|
2880 Dynarr_add (dst, b3);
|
|
2881 }
|
|
2882 else
|
|
2883 {
|
|
2884 DECODE_ADD_BINARY_CHAR (ch, dst);
|
|
2885 DECODE_ADD_BINARY_CHAR (c, dst);
|
|
2886 }
|
|
2887 ch = 0;
|
|
2888 }
|
|
2889 else
|
|
2890 {
|
|
2891 DECODE_HANDLE_EOL_TYPE (eol_type, c, flags, dst);
|
|
2892 if (BYTE_BIG5_TWO_BYTE_1_P (c))
|
|
2893 ch = c;
|
|
2894 else
|
|
2895 DECODE_ADD_BINARY_CHAR (c, dst);
|
|
2896 }
|
|
2897 label_continue_loop:;
|
|
2898 }
|
|
2899
|
|
2900 DECODE_HANDLE_END_OF_CONVERSION (flags, ch, dst);
|
|
2901
|
|
2902 CODING_STREAM_COMPOSE (str, flags, ch);
|
|
2903 }
|
|
2904
|
|
2905 /* Convert internally-formatted data to Big5. */
|
|
2906
|
|
2907 static void
|
|
2908 encode_coding_big5 (Lstream *encoding, CONST unsigned char *src,
|
|
2909 unsigned_char_dynarr *dst, unsigned int n)
|
|
2910 {
|
|
2911 unsigned char c;
|
|
2912 struct encoding_stream *str = ENCODING_STREAM_DATA (encoding);
|
|
2913 unsigned int flags, ch;
|
|
2914 enum eol_type eol_type;
|
|
2915
|
|
2916 CODING_STREAM_DECOMPOSE (str, flags, ch);
|
|
2917 eol_type = CODING_SYSTEM_EOL_TYPE (str->codesys);
|
|
2918
|
|
2919 while (n--)
|
|
2920 {
|
|
2921 c = *src++;
|
|
2922 if (c == '\n')
|
|
2923 {
|
|
2924 if (eol_type != EOL_LF && eol_type != EOL_AUTODETECT)
|
|
2925 Dynarr_add (dst, '\r');
|
|
2926 if (eol_type != EOL_CR)
|
|
2927 Dynarr_add (dst, '\n');
|
|
2928 }
|
|
2929 else if (BYTE_ASCII_P (c))
|
|
2930 {
|
|
2931 /* ASCII. */
|
|
2932 Dynarr_add (dst, c);
|
|
2933 }
|
|
2934 else if (BUFBYTE_LEADING_BYTE_P (c))
|
|
2935 {
|
|
2936 if (c == LEADING_BYTE_CHINESE_BIG5_1 ||
|
|
2937 c == LEADING_BYTE_CHINESE_BIG5_2)
|
|
2938 {
|
|
2939 /* A recognized leading byte. */
|
|
2940 ch = c;
|
|
2941 continue; /* not done with this character. */
|
|
2942 }
|
|
2943 /* otherwise just ignore this character. */
|
|
2944 }
|
|
2945 else if (ch == LEADING_BYTE_CHINESE_BIG5_1 ||
|
|
2946 ch == LEADING_BYTE_CHINESE_BIG5_2)
|
|
2947 {
|
|
2948 /* Previous char was a recognized leading byte. */
|
|
2949 ch = (ch << 8) | c;
|
|
2950 continue; /* not done with this character. */
|
|
2951 }
|
|
2952 else if (ch)
|
|
2953 {
|
|
2954 /* Encountering second byte of a Big5 character. */
|
|
2955 unsigned char b1, b2;
|
|
2956
|
|
2957 ENCODE_BIG5 (ch >> 8, ch & 0xFF, c, b1, b2);
|
|
2958 Dynarr_add (dst, b1);
|
|
2959 Dynarr_add (dst, b2);
|
|
2960 }
|
|
2961
|
|
2962 ch = 0;
|
|
2963 }
|
|
2964
|
|
2965 CODING_STREAM_COMPOSE (str, flags, ch);
|
|
2966 }
|
|
2967
|
|
2968
|
|
2969 DEFUN ("decode-big5-char", Fdecode_big5_char, 1, 1, 0, /*
|
|
2970 Decode a Big5 character CODE of BIG5 coding-system.
|
|
2971 CODE is the character code in BIG5, a cons of two integers.
|
|
2972 Return the corresponding character.
|
|
2973 */
|
|
2974 (code))
|
|
2975 {
|
|
2976 unsigned char c1, c2, b1, b2;
|
|
2977
|
|
2978 CHECK_CONS (code);
|
|
2979 CHECK_INT (XCAR (code));
|
|
2980 CHECK_INT (XCDR (code));
|
|
2981 b1 = XINT (XCAR (code));
|
|
2982 b2 = XINT (XCDR (code));
|
|
2983 if (BYTE_BIG5_TWO_BYTE_1_P (b1) &&
|
|
2984 BYTE_BIG5_TWO_BYTE_2_P (b2))
|
|
2985 {
|
|
2986 int leading_byte;
|
|
2987 Lisp_Object charset;
|
|
2988 DECODE_BIG5 (b1, b2, leading_byte, c1, c2);
|
|
2989 charset = CHARSET_BY_LEADING_BYTE (leading_byte);
|
|
2990 return make_char (MAKE_CHAR (charset, c1 & 0x7F, c2 & 0x7F));
|
|
2991 }
|
|
2992 else
|
|
2993 return Qnil;
|
|
2994 }
|
|
2995
|
|
2996 DEFUN ("encode-big5-char", Fencode_big5_char, 1, 1, 0, /*
|
|
2997 Encode the Big5 character CH to BIG5 coding-system.
|
|
2998 Return the corresponding character code in Big5.
|
|
2999 */
|
|
3000 (ch))
|
|
3001 {
|
|
3002 Lisp_Object charset;
|
|
3003 int c1, c2, b1, b2;
|
|
3004
|
|
3005 CHECK_CHAR_COERCE_INT (ch);
|
|
3006 BREAKUP_CHAR (XCHAR (ch), charset, c1, c2);
|
|
3007 if (EQ (charset, Vcharset_chinese_big5_1) ||
|
|
3008 EQ (charset, Vcharset_chinese_big5_2))
|
|
3009 {
|
|
3010 ENCODE_BIG5 (XCHARSET_LEADING_BYTE (charset), c1 | 0x80, c2 | 0x80,
|
|
3011 b1, b2);
|
|
3012 return Fcons (make_int (b1), make_int (b2));
|
|
3013 }
|
|
3014 else
|
|
3015 return Qnil;
|
|
3016 }
|
|
3017
|
|
3018
|
|
3019 /************************************************************************/
|
|
3020 /* ISO2022 methods */
|
|
3021 /************************************************************************/
|
|
3022
|
|
3023 /* The following note describes the coding system ISO2022 briefly.
|
|
3024 Since the intention of this note is to help understanding of the
|
|
3025 programs in this file, some parts are NOT ACCURATE or OVERLY
|
|
3026 SIMPLIFIED. For thorough understanding, please refer to the
|
|
3027 original document of ISO2022.
|
|
3028
|
|
3029 ISO2022 provides many mechanisms to encode several character sets
|
|
3030 in 7-bit and 8-bit environments. If one chooses 7-bit environment,
|
|
3031 all text is encoded by codes of less than 128. This may make the
|
|
3032 encoded text a little bit longer, but the text get more stability
|
|
3033 to pass through several gateways (some of them strip off MSB).
|
|
3034
|
|
3035 There are two kind of character sets: control character set and
|
|
3036 graphic character set. The former contains control characters such
|
|
3037 as `newline' and `escape' to provide control functions (control
|
|
3038 functions are provided also by escape sequence). The latter
|
|
3039 contains graphic characters such as 'A' and '-'. Emacs recognizes
|
|
3040 two control character sets and many graphic character sets.
|
|
3041
|
|
3042 Graphic character sets are classified into one of four types,
|
|
3043 according to the dimension and number of characters in the set:
|
|
3044 TYPE94, TYPE96, TYPE94x94, and TYPE96x96. In addition, each
|
|
3045 character set is assigned an identification byte, unique for each
|
|
3046 type, called "final character" (denoted as <F> hereafter). The <F>
|
|
3047 of each character set is decided by ECMA(*) when it is registered
|
|
3048 in ISO. Code range of <F> is 0x30..0x7F (0x30..0x3F are for
|
|
3049 private use only).
|
|
3050
|
|
3051 Note (*): ECMA = European Computer Manufacturers Association
|
|
3052
|
|
3053 Here are examples of graphic character set [NAME(<F>)]:
|
|
3054 o TYPE94 -- ASCII('B'), right-half-of-JISX0201('I'), ...
|
|
3055 o TYPE96 -- right-half-of-ISO8859-1('A'), ...
|
|
3056 o TYPE94x94 -- GB2312('A'), JISX0208('B'), ...
|
|
3057 o TYPE96x96 -- none for the moment
|
|
3058
|
|
3059 A code area (1byte=8bits) is divided into 4 areas, C0, GL, C1, and GR.
|
|
3060 C0 [0x00..0x1F] -- control character plane 0
|
|
3061 GL [0x20..0x7F] -- graphic character plane 0
|
|
3062 C1 [0x80..0x9F] -- control character plane 1
|
|
3063 GR [0xA0..0xFF] -- graphic character plane 1
|
|
3064
|
|
3065 A control character set is directly designated and invoked to C0 or
|
|
3066 C1 by an escape sequence. The most common case is that:
|
|
3067 - ISO646's control character set is designated/invoked to C0, and
|
|
3068 - ISO6429's control character set is designated/invoked to C1,
|
|
3069 and usually these designations/invocations are omitted in encoded
|
|
3070 text. In a 7-bit environment, only C0 can be used, and a control
|
|
3071 character for C1 is encoded by an appropriate escape sequence to
|
|
3072 fit into the environment. All control characters for C1 are
|
|
3073 defined to have corresponding escape sequences.
|
|
3074
|
|
3075 A graphic character set is at first designated to one of four
|
|
3076 graphic registers (G0 through G3), then these graphic registers are
|
|
3077 invoked to GL or GR. These designations and invocations can be
|
|
3078 done independently. The most common case is that G0 is invoked to
|
|
3079 GL, G1 is invoked to GR, and ASCII is designated to G0. Usually
|
|
3080 these invocations and designations are omitted in encoded text.
|
|
3081 In a 7-bit environment, only GL can be used.
|
|
3082
|
|
3083 When a graphic character set of TYPE94 or TYPE94x94 is invoked to
|
|
3084 GL, codes 0x20 and 0x7F of the GL area work as control characters
|
|
3085 SPACE and DEL respectively, and code 0xA0 and 0xFF of GR area
|
|
3086 should not be used.
|
|
3087
|
|
3088 There are two ways of invocation: locking-shift and single-shift.
|
|
3089 With locking-shift, the invocation lasts until the next different
|
|
3090 invocation, whereas with single-shift, the invocation works only
|
|
3091 for the following character and doesn't affect locking-shift.
|
|
3092 Invocations are done by the following control characters or escape
|
|
3093 sequences.
|
|
3094
|
|
3095 ----------------------------------------------------------------------
|
|
3096 abbrev function cntrl escape seq description
|
|
3097 ----------------------------------------------------------------------
|
|
3098 SI/LS0 (shift-in) 0x0F none invoke G0 into GL
|
|
3099 SO/LS1 (shift-out) 0x0E none invoke G1 into GL
|
|
3100 LS1R (locking-shift-1 right) none ESC '~' invoke G1 into GR
|
|
3101 LS2 (locking-shift-2) none ESC 'n' invoke G2 into GL
|
|
3102 LS2R (locking-shift-2 right) none ESC '}' invoke G2 into GR
|
|
3103 LS3 (locking-shift-3) none ESC 'o' invoke G3 into GL
|
|
3104 LS3R (locking-shift 3 right) none ESC '|' invoke G3 into GR
|
|
3105 SS2 (single-shift-2) 0x8E ESC 'N' invoke G2 for one char
|
|
3106 SS3 (single-shift-3) 0x8F ESC 'O' invoke G3 for one char
|
|
3107 ----------------------------------------------------------------------
|
|
3108 The first four are for locking-shift. Control characters for these
|
|
3109 functions are defined by macros ISO_CODE_XXX in `coding.h'.
|
|
3110
|
|
3111 Designations are done by the following escape sequences.
|
|
3112 ----------------------------------------------------------------------
|
|
3113 escape sequence description
|
|
3114 ----------------------------------------------------------------------
|
|
3115 ESC '(' <F> designate TYPE94<F> to G0
|
|
3116 ESC ')' <F> designate TYPE94<F> to G1
|
|
3117 ESC '*' <F> designate TYPE94<F> to G2
|
|
3118 ESC '+' <F> designate TYPE94<F> to G3
|
|
3119 ESC ',' <F> designate TYPE96<F> to G0 (*)
|
|
3120 ESC '-' <F> designate TYPE96<F> to G1
|
|
3121 ESC '.' <F> designate TYPE96<F> to G2
|
|
3122 ESC '/' <F> designate TYPE96<F> to G3
|
|
3123 ESC '$' '(' <F> designate TYPE94x94<F> to G0 (**)
|
|
3124 ESC '$' ')' <F> designate TYPE94x94<F> to G1
|
|
3125 ESC '$' '*' <F> designate TYPE94x94<F> to G2
|
|
3126 ESC '$' '+' <F> designate TYPE94x94<F> to G3
|
|
3127 ESC '$' ',' <F> designate TYPE96x96<F> to G0 (*)
|
|
3128 ESC '$' '-' <F> designate TYPE96x96<F> to G1
|
|
3129 ESC '$' '.' <F> designate TYPE96x96<F> to G2
|
|
3130 ESC '$' '/' <F> designate TYPE96x96<F> to G3
|
|
3131 ----------------------------------------------------------------------
|
|
3132 In this list, "TYPE94<F>" means a graphic character set of type TYPE94
|
|
3133 and final character <F>, and etc.
|
|
3134
|
|
3135 Note (*): Although these designations are not allowed in ISO2022,
|
|
3136 Emacs accepts them on decoding, and produces them on encoding
|
|
3137 TYPE96 or TYPE96x96 character set in a coding system which is
|
|
3138 characterized as 7-bit environment, non-locking-shift, and
|
|
3139 non-single-shift.
|
|
3140
|
|
3141 Note (**): If <F> is '@', 'A', or 'B', the intermediate character
|
|
3142 '(' can be omitted. We call this as "short-form" here after.
|
|
3143
|
|
3144 Now you may notice that there are a lot of ways for encoding the
|
|
3145 same multilingual text in ISO2022. Actually, there exist many
|
|
3146 coding systems such as Compound Text (used in X's inter client
|
|
3147 communication, ISO-2022-JP (used in Japanese internet), ISO-2022-KR
|
|
3148 (used in Korean internet), EUC (Extended UNIX Code, used in Asian
|
|
3149 localized platforms), and all of these are variants of ISO2022.
|
|
3150
|
|
3151 In addition to the above, Emacs handles two more kinds of escape
|
|
3152 sequences: ISO6429's direction specification and Emacs' private
|
|
3153 sequence for specifying character composition.
|
|
3154
|
|
3155 ISO6429's direction specification takes the following format:
|
|
3156 o CSI ']' -- end of the current direction
|
|
3157 o CSI '0' ']' -- end of the current direction
|
|
3158 o CSI '1' ']' -- start of left-to-right text
|
|
3159 o CSI '2' ']' -- start of right-to-left text
|
|
3160 The control character CSI (0x9B: control sequence introducer) is
|
|
3161 abbreviated to the escape sequence ESC '[' in 7-bit environment.
|
|
3162
|
|
3163 Character composition specification takes the following format:
|
|
3164 o ESC '0' -- start character composition
|
|
3165 o ESC '1' -- end character composition
|
|
3166 Since these are not standard escape sequences of any ISO, the use
|
|
3167 of them for these meanings is restricted to Emacs only. */
|
|
3168
|
|
3169 static void
|
|
3170 reset_iso2022 (Lisp_Object coding_system, struct iso2022_decoder *iso)
|
|
3171 {
|
|
3172 int i;
|
|
3173
|
|
3174 for (i = 0; i < 4; i++)
|
|
3175 {
|
|
3176 if (!NILP (coding_system))
|
|
3177 iso->charset[i] =
|
|
3178 XCODING_SYSTEM_ISO2022_INITIAL_CHARSET (coding_system, i);
|
|
3179 else
|
|
3180 iso->charset[i] = Qt;
|
|
3181 iso->invalid_designated[i] = 0;
|
|
3182 }
|
|
3183 iso->esc = ISO_ESC_NOTHING;
|
|
3184 iso->esc_bytes_index = 0;
|
|
3185 iso->register_left = 0;
|
|
3186 iso->register_right = 1;
|
|
3187 iso->switched_dir_and_no_valid_charset_yet = 0;
|
|
3188 iso->invalid_switch_dir = 0;
|
|
3189 iso->output_direction_sequence = 0;
|
|
3190 iso->output_literally = 0;
|
|
3191 if (iso->composite_chars)
|
|
3192 Dynarr_reset (iso->composite_chars);
|
|
3193 }
|
|
3194
|
|
3195 static int
|
|
3196 fit_to_be_escape_quoted (unsigned char c)
|
|
3197 {
|
|
3198 switch (c)
|
|
3199 {
|
|
3200 case ISO_CODE_ESC:
|
|
3201 case ISO_CODE_CSI:
|
|
3202 case ISO_CODE_SS2:
|
|
3203 case ISO_CODE_SS3:
|
|
3204 case ISO_CODE_SO:
|
|
3205 case ISO_CODE_SI:
|
|
3206 return 1;
|
|
3207
|
|
3208 default:
|
|
3209 return 0;
|
|
3210 }
|
|
3211 }
|
|
3212
|
|
3213 /* Parse one byte of an ISO2022 escape sequence.
|
|
3214 If the result is an invalid escape sequence, return 0 and
|
|
3215 do not change anything in STR. Otherwise, if the result is
|
|
3216 an incomplete escape sequence, update ISO2022.ESC and
|
|
3217 ISO2022.ESC_BYTES and return -1. Otherwise, update
|
|
3218 all the state variables (but not ISO2022.ESC_BYTES) and
|
|
3219 return 1.
|
|
3220
|
|
3221 If CHECK_INVALID_CHARSETS is non-zero, check for designation
|
|
3222 or invocation of an invalid character set and treat that as
|
|
3223 an unrecognized escape sequence. */
|
|
3224
|
|
3225 static int
|
|
3226 parse_iso2022_esc (Lisp_Object codesys, struct iso2022_decoder *iso,
|
|
3227 unsigned char c, unsigned int *flags,
|
|
3228 int check_invalid_charsets)
|
|
3229 {
|
|
3230 /* (1) If we're at the end of a designation sequence, CS is the
|
|
3231 charset being designated and REG is the register to designate
|
|
3232 it to.
|
|
3233
|
|
3234 (2) If we're at the end of a locking-shift sequence, REG is
|
|
3235 the register to invoke and HALF (0 == left, 1 == right) is
|
|
3236 the half to invoke it into.
|
|
3237
|
|
3238 (3) If we're at the end of a single-shift sequence, REG is
|
|
3239 the register to invoke. */
|
|
3240 Lisp_Object cs = Qnil;
|
|
3241 int reg, half;
|
|
3242
|
|
3243 /* NOTE: This code does goto's all over the fucking place.
|
|
3244 The reason for this is that we're basically implementing
|
|
3245 a state machine here, and hierarchical languages like C
|
|
3246 don't really provide a clean way of doing this. */
|
|
3247
|
|
3248 if (! (*flags & CODING_STATE_ESCAPE))
|
|
3249 /* At beginning of escape sequence; we need to reset our
|
|
3250 escape-state variables. */
|
|
3251 iso->esc = ISO_ESC_NOTHING;
|
|
3252
|
|
3253 iso->output_literally = 0;
|
|
3254 iso->output_direction_sequence = 0;
|
|
3255
|
|
3256 switch (iso->esc)
|
|
3257 {
|
|
3258 case ISO_ESC_NOTHING:
|
|
3259 iso->esc_bytes_index = 0;
|
|
3260 switch (c)
|
|
3261 {
|
|
3262 case ISO_CODE_ESC: /* Start escape sequence */
|
|
3263 *flags |= CODING_STATE_ESCAPE;
|
|
3264 iso->esc = ISO_ESC;
|
|
3265 goto not_done;
|
|
3266
|
|
3267 case ISO_CODE_CSI: /* ISO6429 (specifying directionality) */
|
|
3268 *flags |= CODING_STATE_ESCAPE;
|
|
3269 iso->esc = ISO_ESC_5_11;
|
|
3270 goto not_done;
|
|
3271
|
|
3272 case ISO_CODE_SO: /* locking shift 1 */
|
|
3273 reg = 1; half = 0;
|
|
3274 goto locking_shift;
|
|
3275 case ISO_CODE_SI: /* locking shift 0 */
|
|
3276 reg = 0; half = 0;
|
|
3277 goto locking_shift;
|
|
3278
|
|
3279 case ISO_CODE_SS2: /* single shift */
|
|
3280 reg = 2;
|
|
3281 goto single_shift;
|
|
3282 case ISO_CODE_SS3: /* single shift */
|
|
3283 reg = 3;
|
|
3284 goto single_shift;
|
|
3285
|
|
3286 default: /* Other control characters */
|
|
3287 return 0;
|
|
3288 }
|
|
3289
|
|
3290 case ISO_ESC:
|
|
3291 switch (c)
|
|
3292 {
|
|
3293 /**** single shift ****/
|
|
3294
|
|
3295 case 'N': /* single shift 2 */
|
|
3296 reg = 2;
|
|
3297 goto single_shift;
|
|
3298 case 'O': /* single shift 3 */
|
|
3299 reg = 3;
|
|
3300 goto single_shift;
|
|
3301
|
|
3302 /**** locking shift ****/
|
|
3303
|
|
3304 case '~': /* locking shift 1 right */
|
|
3305 reg = 1; half = 1;
|
|
3306 goto locking_shift;
|
|
3307 case 'n': /* locking shift 2 */
|
|
3308 reg = 2; half = 0;
|
|
3309 goto locking_shift;
|
|
3310 case '}': /* locking shift 2 right */
|
|
3311 reg = 2; half = 1;
|
|
3312 goto locking_shift;
|
|
3313 case 'o': /* locking shift 3 */
|
|
3314 reg = 3; half = 0;
|
|
3315 goto locking_shift;
|
|
3316 case '|': /* locking shift 3 right */
|
|
3317 reg = 3; half = 1;
|
|
3318 goto locking_shift;
|
|
3319
|
|
3320 /**** composite ****/
|
|
3321
|
|
3322 case '0':
|
|
3323 iso->esc = ISO_ESC_START_COMPOSITE;
|
|
3324 *flags = (*flags & CODING_STATE_ISO2022_LOCK) |
|
|
3325 CODING_STATE_COMPOSITE;
|
|
3326 return 1;
|
|
3327
|
|
3328 case '1':
|
|
3329 iso->esc = ISO_ESC_END_COMPOSITE;
|
|
3330 *flags = (*flags & CODING_STATE_ISO2022_LOCK) &
|
|
3331 ~CODING_STATE_COMPOSITE;
|
|
3332 return 1;
|
|
3333
|
|
3334 /**** directionality ****/
|
|
3335
|
|
3336 case '[':
|
|
3337 iso->esc = ISO_ESC_5_11;
|
|
3338 goto not_done;
|
|
3339
|
|
3340 /**** designation ****/
|
|
3341
|
|
3342 case '$': /* multibyte charset prefix */
|
|
3343 iso->esc = ISO_ESC_2_4;
|
|
3344 goto not_done;
|
|
3345
|
|
3346 default:
|
|
3347 if (0x28 <= c && c <= 0x2F)
|
|
3348 {
|
|
3349 iso->esc = (enum iso_esc_flag) (c - 0x28 + ISO_ESC_2_8);
|
|
3350 goto not_done;
|
|
3351 }
|
|
3352
|
|
3353 /* This function is called with CODESYS equal to nil when
|
|
3354 doing coding-system detection. */
|
|
3355 if (!NILP (codesys)
|
|
3356 && XCODING_SYSTEM_ISO2022_ESCAPE_QUOTED (codesys)
|
|
3357 && fit_to_be_escape_quoted (c))
|
|
3358 {
|
|
3359 iso->esc = ISO_ESC_LITERAL;
|
|
3360 *flags &= CODING_STATE_ISO2022_LOCK;
|
|
3361 return 1;
|
|
3362 }
|
|
3363
|
|
3364 /* bzzzt! */
|
|
3365 return 0;
|
|
3366 }
|
|
3367
|
|
3368
|
|
3369
|
|
3370 /**** directionality ****/
|
|
3371
|
|
3372 case ISO_ESC_5_11: /* ISO6429 direction control */
|
|
3373 if (c == ']')
|
|
3374 {
|
|
3375 *flags &= (CODING_STATE_ISO2022_LOCK & ~CODING_STATE_R2L);
|
|
3376 goto directionality;
|
|
3377 }
|
|
3378 if (c == '0') iso->esc = ISO_ESC_5_11_0;
|
|
3379 else if (c == '1') iso->esc = ISO_ESC_5_11_1;
|
|
3380 else if (c == '2') iso->esc = ISO_ESC_5_11_2;
|
|
3381 else return 0;
|
|
3382 goto not_done;
|
|
3383
|
|
3384 case ISO_ESC_5_11_0:
|
|
3385 if (c == ']')
|
|
3386 {
|
|
3387 *flags &= (CODING_STATE_ISO2022_LOCK & ~CODING_STATE_R2L);
|
|
3388 goto directionality;
|
|
3389 }
|
|
3390 return 0;
|
|
3391
|
|
3392 case ISO_ESC_5_11_1:
|
|
3393 if (c == ']')
|
|
3394 {
|
|
3395 *flags = (CODING_STATE_ISO2022_LOCK & ~CODING_STATE_R2L);
|
|
3396 goto directionality;
|
|
3397 }
|
|
3398 return 0;
|
|
3399
|
|
3400 case ISO_ESC_5_11_2:
|
|
3401 if (c == ']')
|
|
3402 {
|
|
3403 *flags = (*flags & CODING_STATE_ISO2022_LOCK) | CODING_STATE_R2L;
|
|
3404 goto directionality;
|
|
3405 }
|
|
3406 return 0;
|
|
3407
|
|
3408 directionality:
|
|
3409 iso->esc = ISO_ESC_DIRECTIONALITY;
|
|
3410 /* Various junk here to attempt to preserve the direction sequences
|
|
3411 literally in the text if they would otherwise be swallowed due
|
|
3412 to invalid designations that don't show up as actual charset
|
|
3413 changes in the text. */
|
|
3414 if (iso->invalid_switch_dir)
|
|
3415 {
|
|
3416 /* We already inserted a direction switch literally into the
|
|
3417 text. We assume (#### this may not be right) that the
|
|
3418 next direction switch is the one going the other way,
|
|
3419 and we need to output that literally as well. */
|
|
3420 iso->output_literally = 1;
|
|
3421 iso->invalid_switch_dir = 0;
|
|
3422 }
|
|
3423 else
|
|
3424 {
|
|
3425 int jj;
|
|
3426
|
|
3427 /* If we are in the thrall of an invalid designation,
|
|
3428 then stick the directionality sequence literally into the
|
|
3429 output stream so it ends up in the original text again. */
|
|
3430 for (jj = 0; jj < 4; jj++)
|
|
3431 if (iso->invalid_designated[jj])
|
|
3432 break;
|
|
3433 if (jj < 4)
|
|
3434 {
|
|
3435 iso->output_literally = 1;
|
|
3436 iso->invalid_switch_dir = 1;
|
|
3437 }
|
|
3438 else
|
|
3439 /* Indicate that we haven't yet seen a valid designation,
|
|
3440 so that if a switch-dir is directly followed by an
|
|
3441 invalid designation, both get inserted literally. */
|
|
3442 iso->switched_dir_and_no_valid_charset_yet = 1;
|
|
3443 }
|
|
3444 return 1;
|
|
3445
|
|
3446
|
|
3447 /**** designation ****/
|
|
3448
|
|
3449 case ISO_ESC_2_4:
|
|
3450 if (0x28 <= c && c <= 0x2F)
|
|
3451 {
|
|
3452 iso->esc = (enum iso_esc_flag) (c - 0x28 + ISO_ESC_2_4_8);
|
|
3453 goto not_done;
|
|
3454 }
|
|
3455 if (0x40 <= c && c <= 0x42)
|
|
3456 {
|
|
3457 cs = CHARSET_BY_ATTRIBUTES (CHARSET_TYPE_94X94, c,
|
|
3458 *flags & CODING_STATE_R2L ?
|
|
3459 CHARSET_RIGHT_TO_LEFT :
|
|
3460 CHARSET_LEFT_TO_RIGHT);
|
|
3461 reg = 0;
|
|
3462 goto designated;
|
|
3463 }
|
|
3464 return 0;
|
|
3465
|
|
3466 default:
|
|
3467 {
|
|
3468 int type =-1;
|
|
3469
|
|
3470 if (c < '0' || c > '~')
|
|
3471 return 0; /* bad final byte */
|
|
3472
|
|
3473 if (iso->esc >= ISO_ESC_2_8 &&
|
|
3474 iso->esc <= ISO_ESC_2_15)
|
|
3475 {
|
|
3476 type = ((iso->esc >= ISO_ESC_2_12) ?
|
|
3477 CHARSET_TYPE_96 : CHARSET_TYPE_94);
|
|
3478 reg = (iso->esc - ISO_ESC_2_8) & 3;
|
|
3479 }
|
|
3480 else if (iso->esc >= ISO_ESC_2_4_8 &&
|
|
3481 iso->esc <= ISO_ESC_2_4_15)
|
|
3482 {
|
|
3483 type = ((iso->esc >= ISO_ESC_2_4_12) ?
|
|
3484 CHARSET_TYPE_96X96 : CHARSET_TYPE_94X94);
|
|
3485 reg = (iso->esc - ISO_ESC_2_4_8) & 3;
|
|
3486 }
|
|
3487 else
|
|
3488 {
|
|
3489 /* Can this ever be reached? -slb */
|
|
3490 abort();
|
|
3491 }
|
|
3492
|
|
3493 cs = CHARSET_BY_ATTRIBUTES (type, c,
|
|
3494 *flags & CODING_STATE_R2L ?
|
|
3495 CHARSET_RIGHT_TO_LEFT :
|
|
3496 CHARSET_LEFT_TO_RIGHT);
|
|
3497 goto designated;
|
|
3498 }
|
|
3499 }
|
|
3500
|
|
3501 not_done:
|
|
3502 iso->esc_bytes[iso->esc_bytes_index++] = (unsigned char) c;
|
|
3503 return -1;
|
|
3504
|
|
3505 single_shift:
|
|
3506 if (check_invalid_charsets && !CHARSETP (iso->charset[reg]))
|
|
3507 /* can't invoke something that ain't there. */
|
|
3508 return 0;
|
|
3509 iso->esc = ISO_ESC_SINGLE_SHIFT;
|
|
3510 *flags &= CODING_STATE_ISO2022_LOCK;
|
|
3511 if (reg == 2)
|
|
3512 *flags |= CODING_STATE_SS2;
|
|
3513 else
|
|
3514 *flags |= CODING_STATE_SS3;
|
|
3515 return 1;
|
|
3516
|
|
3517 locking_shift:
|
|
3518 if (check_invalid_charsets &&
|
|
3519 !CHARSETP (iso->charset[reg]))
|
|
3520 /* can't invoke something that ain't there. */
|
|
3521 return 0;
|
|
3522 if (half)
|
|
3523 iso->register_right = reg;
|
|
3524 else
|
|
3525 iso->register_left = reg;
|
|
3526 *flags &= CODING_STATE_ISO2022_LOCK;
|
|
3527 iso->esc = ISO_ESC_LOCKING_SHIFT;
|
|
3528 return 1;
|
|
3529
|
|
3530 designated:
|
|
3531 if (NILP (cs) && check_invalid_charsets)
|
|
3532 {
|
|
3533 iso->invalid_designated[reg] = 1;
|
|
3534 iso->charset[reg] = Vcharset_ascii;
|
|
3535 iso->esc = ISO_ESC_DESIGNATE;
|
|
3536 *flags &= CODING_STATE_ISO2022_LOCK;
|
|
3537 iso->output_literally = 1;
|
|
3538 if (iso->switched_dir_and_no_valid_charset_yet)
|
|
3539 {
|
|
3540 /* We encountered a switch-direction followed by an
|
|
3541 invalid designation. Ensure that the switch-direction
|
|
3542 gets outputted; otherwise it will probably get eaten
|
|
3543 when the text is written out again. */
|
|
3544 iso->switched_dir_and_no_valid_charset_yet = 0;
|
|
3545 iso->output_direction_sequence = 1;
|
|
3546 /* And make sure that the switch-dir going the other
|
|
3547 way gets outputted, as well. */
|
|
3548 iso->invalid_switch_dir = 1;
|
|
3549 }
|
|
3550 return 1;
|
|
3551 }
|
|
3552 /* This function is called with CODESYS equal to nil when
|
|
3553 doing coding-system detection. */
|
|
3554 if (!NILP (codesys))
|
|
3555 {
|
|
3556 charset_conversion_spec_dynarr *dyn =
|
|
3557 XCODING_SYSTEM (codesys)->iso2022.input_conv;
|
|
3558
|
|
3559 if (dyn)
|
|
3560 {
|
|
3561 int i;
|
|
3562
|
|
3563 for (i = 0; i < Dynarr_length (dyn); i++)
|
|
3564 {
|
|
3565 struct charset_conversion_spec *spec = Dynarr_atp (dyn, i);
|
|
3566 if (EQ (cs, spec->from_charset))
|
|
3567 cs = spec->to_charset;
|
|
3568 }
|
|
3569 }
|
|
3570 }
|
|
3571
|
|
3572 iso->charset[reg] = cs;
|
|
3573 iso->esc = ISO_ESC_DESIGNATE;
|
|
3574 *flags &= CODING_STATE_ISO2022_LOCK;
|
|
3575 if (iso->invalid_designated[reg])
|
|
3576 {
|
|
3577 iso->invalid_designated[reg] = 0;
|
|
3578 iso->output_literally = 1;
|
|
3579 }
|
|
3580 if (iso->switched_dir_and_no_valid_charset_yet)
|
|
3581 iso->switched_dir_and_no_valid_charset_yet = 0;
|
|
3582 return 1;
|
|
3583 }
|
|
3584
|
|
3585 static int
|
|
3586 detect_coding_iso2022 (struct detection_state *st, CONST unsigned char *src,
|
|
3587 unsigned int n)
|
|
3588 {
|
|
3589 int mask;
|
|
3590
|
|
3591 /* #### There are serious deficiencies in the recognition mechanism
|
388
|
3592 here. This needs to be much smarter if it's going to cut it.
|
|
3593 The sequence "\xff\x0f" is currently detected as LOCK_SHIFT while
|
|
3594 it should be detected as Latin-1.
|
|
3595 All the ISO2022 stuff in this file should be synced up with the
|
|
3596 code from FSF Emacs-20.4, in which Mule should be more or less stable.
|
|
3597 Perhaps we should wait till R2L works in FSF Emacs? */
|
259
|
3598
|
|
3599 if (!st->iso2022.initted)
|
|
3600 {
|
|
3601 reset_iso2022 (Qnil, &st->iso2022.iso);
|
|
3602 st->iso2022.mask = (CODING_CATEGORY_ISO_7_MASK |
|
|
3603 CODING_CATEGORY_ISO_8_DESIGNATE_MASK |
|
|
3604 CODING_CATEGORY_ISO_8_1_MASK |
|
|
3605 CODING_CATEGORY_ISO_8_2_MASK |
|
|
3606 CODING_CATEGORY_ISO_LOCK_SHIFT_MASK);
|
|
3607 st->iso2022.flags = 0;
|
|
3608 st->iso2022.high_byte_count = 0;
|
|
3609 st->iso2022.saw_single_shift = 0;
|
|
3610 st->iso2022.initted = 1;
|
|
3611 }
|
|
3612
|
|
3613 mask = st->iso2022.mask;
|
|
3614
|
|
3615 while (n--)
|
|
3616 {
|
388
|
3617 int c = *src++;
|
259
|
3618 if (c >= 0xA0)
|
|
3619 {
|
|
3620 mask &= ~CODING_CATEGORY_ISO_7_MASK;
|
|
3621 st->iso2022.high_byte_count++;
|
|
3622 }
|
|
3623 else
|
|
3624 {
|
|
3625 if (st->iso2022.high_byte_count && !st->iso2022.saw_single_shift)
|
|
3626 {
|
|
3627 if (st->iso2022.high_byte_count & 1)
|
|
3628 /* odd number of high bytes; assume not iso-8-2 */
|
|
3629 mask &= ~CODING_CATEGORY_ISO_8_2_MASK;
|
|
3630 }
|
|
3631 st->iso2022.high_byte_count = 0;
|
|
3632 st->iso2022.saw_single_shift = 0;
|
|
3633 if (c > 0x80)
|
|
3634 mask &= ~CODING_CATEGORY_ISO_7_MASK;
|
|
3635 }
|
|
3636 if (!(st->iso2022.flags & CODING_STATE_ESCAPE)
|
|
3637 && (BYTE_C0_P (c) || BYTE_C1_P (c)))
|
|
3638 { /* control chars */
|
|
3639 switch (c)
|
|
3640 {
|
|
3641 /* Allow and ignore control characters that you might
|
|
3642 reasonably see in a text file */
|
|
3643 case '\r':
|
|
3644 case '\n':
|
|
3645 case '\t':
|
|
3646 case 7: /* bell */
|
|
3647 case 8: /* backspace */
|
|
3648 case 11: /* vertical tab */
|
|
3649 case 12: /* form feed */
|
|
3650 case 26: /* MS-DOS C-z junk */
|
|
3651 case 31: /* '^_' -- for info */
|
|
3652 goto label_continue_loop;
|
|
3653
|
|
3654 default:
|
|
3655 break;
|
|
3656 }
|
|
3657 }
|
|
3658
|
|
3659 if ((st->iso2022.flags & CODING_STATE_ESCAPE) || BYTE_C0_P (c)
|
|
3660 || BYTE_C1_P (c))
|
|
3661 {
|
|
3662 if (parse_iso2022_esc (Qnil, &st->iso2022.iso, c,
|
|
3663 &st->iso2022.flags, 0))
|
|
3664 {
|
|
3665 switch (st->iso2022.iso.esc)
|
|
3666 {
|
|
3667 case ISO_ESC_DESIGNATE:
|
|
3668 mask &= ~CODING_CATEGORY_ISO_8_1_MASK;
|
|
3669 mask &= ~CODING_CATEGORY_ISO_8_2_MASK;
|
|
3670 break;
|
|
3671 case ISO_ESC_LOCKING_SHIFT:
|
|
3672 mask = CODING_CATEGORY_ISO_LOCK_SHIFT_MASK;
|
|
3673 goto ran_out_of_chars;
|
|
3674 case ISO_ESC_SINGLE_SHIFT:
|
|
3675 mask &= ~CODING_CATEGORY_ISO_8_DESIGNATE_MASK;
|
|
3676 st->iso2022.saw_single_shift = 1;
|
|
3677 break;
|
|
3678 default:
|
|
3679 break;
|
|
3680 }
|
|
3681 }
|
|
3682 else
|
|
3683 {
|
|
3684 mask = 0;
|
|
3685 goto ran_out_of_chars;
|
|
3686 }
|
|
3687 }
|
|
3688 label_continue_loop:;
|
|
3689 }
|
|
3690
|
|
3691 ran_out_of_chars:
|
|
3692
|
|
3693 return mask;
|
|
3694 }
|
|
3695
|
|
3696 static int
|
|
3697 postprocess_iso2022_mask (int mask)
|
|
3698 {
|
|
3699 /* #### kind of cheesy */
|
|
3700 /* If seven-bit ISO is allowed, then assume that the encoding is
|
|
3701 entirely seven-bit and turn off the eight-bit ones. */
|
|
3702 if (mask & CODING_CATEGORY_ISO_7_MASK)
|
|
3703 mask &= ~ (CODING_CATEGORY_ISO_8_DESIGNATE_MASK |
|
|
3704 CODING_CATEGORY_ISO_8_1_MASK |
|
|
3705 CODING_CATEGORY_ISO_8_2_MASK);
|
|
3706 return mask;
|
|
3707 }
|
|
3708
|
|
3709 /* If FLAGS is a null pointer or specifies right-to-left motion,
|
|
3710 output a switch-dir-to-left-to-right sequence to DST.
|
|
3711 Also update FLAGS if it is not a null pointer.
|
|
3712 If INTERNAL_P is set, we are outputting in internal format and
|
|
3713 need to handle the CSI differently. */
|
|
3714
|
|
3715 static void
|
|
3716 restore_left_to_right_direction (struct Lisp_Coding_System *codesys,
|
|
3717 unsigned_char_dynarr *dst,
|
|
3718 unsigned int *flags,
|
|
3719 int internal_p)
|
|
3720 {
|
|
3721 if (!flags || (*flags & CODING_STATE_R2L))
|
|
3722 {
|
|
3723 if (CODING_SYSTEM_ISO2022_SEVEN (codesys))
|
|
3724 {
|
|
3725 Dynarr_add (dst, ISO_CODE_ESC);
|
|
3726 Dynarr_add (dst, '[');
|
|
3727 }
|
|
3728 else if (internal_p)
|
|
3729 DECODE_ADD_BINARY_CHAR (ISO_CODE_CSI, dst);
|
|
3730 else
|
|
3731 Dynarr_add (dst, ISO_CODE_CSI);
|
|
3732 Dynarr_add (dst, '0');
|
|
3733 Dynarr_add (dst, ']');
|
|
3734 if (flags)
|
|
3735 *flags &= ~CODING_STATE_R2L;
|
|
3736 }
|
|
3737 }
|
|
3738
|
|
3739 /* If FLAGS is a null pointer or specifies a direction different from
|
|
3740 DIRECTION (which should be either CHARSET_RIGHT_TO_LEFT or
|
|
3741 CHARSET_LEFT_TO_RIGHT), output the appropriate switch-dir escape
|
|
3742 sequence to DST. Also update FLAGS if it is not a null pointer.
|
|
3743 If INTERNAL_P is set, we are outputting in internal format and
|
|
3744 need to handle the CSI differently. */
|
|
3745
|
|
3746 static void
|
|
3747 ensure_correct_direction (int direction, struct Lisp_Coding_System *codesys,
|
|
3748 unsigned_char_dynarr *dst, unsigned int *flags,
|
|
3749 int internal_p)
|
|
3750 {
|
|
3751 if ((!flags || (*flags & CODING_STATE_R2L)) &&
|
|
3752 direction == CHARSET_LEFT_TO_RIGHT)
|
|
3753 restore_left_to_right_direction (codesys, dst, flags, internal_p);
|
|
3754 else if (!CODING_SYSTEM_ISO2022_NO_ISO6429 (codesys)
|
|
3755 && (!flags || !(*flags & CODING_STATE_R2L)) &&
|
|
3756 direction == CHARSET_RIGHT_TO_LEFT)
|
|
3757 {
|
|
3758 if (CODING_SYSTEM_ISO2022_SEVEN (codesys))
|
|
3759 {
|
|
3760 Dynarr_add (dst, ISO_CODE_ESC);
|
|
3761 Dynarr_add (dst, '[');
|
|
3762 }
|
|
3763 else if (internal_p)
|
|
3764 DECODE_ADD_BINARY_CHAR (ISO_CODE_CSI, dst);
|
|
3765 else
|
|
3766 Dynarr_add (dst, ISO_CODE_CSI);
|
|
3767 Dynarr_add (dst, '2');
|
|
3768 Dynarr_add (dst, ']');
|
|
3769 if (flags)
|
|
3770 *flags |= CODING_STATE_R2L;
|
|
3771 }
|
|
3772 }
|
|
3773
|
|
3774 /* Convert ISO2022-format data to internal format. */
|
|
3775
|
|
3776 static void
|
|
3777 decode_coding_iso2022 (Lstream *decoding, CONST unsigned char *src,
|
|
3778 unsigned_char_dynarr *dst, unsigned int n)
|
|
3779 {
|
|
3780 unsigned int flags, ch;
|
|
3781 enum eol_type eol_type;
|
|
3782 struct decoding_stream *str = DECODING_STREAM_DATA (decoding);
|
272
|
3783 Lisp_Object coding_system;
|
259
|
3784 unsigned_char_dynarr *real_dst = dst;
|
|
3785
|
|
3786 CODING_STREAM_DECOMPOSE (str, flags, ch);
|
|
3787 eol_type = str->eol_type;
|
|
3788 XSETCODING_SYSTEM (coding_system, str->codesys);
|
|
3789
|
|
3790 if (flags & CODING_STATE_COMPOSITE)
|
|
3791 dst = str->iso2022.composite_chars;
|
|
3792
|
|
3793 while (n--)
|
|
3794 {
|
388
|
3795 unsigned char c = *src++;
|
259
|
3796 if (flags & CODING_STATE_ESCAPE)
|
|
3797 { /* Within ESC sequence */
|
|
3798 int retval = parse_iso2022_esc (coding_system, &str->iso2022,
|
|
3799 c, &flags, 1);
|
|
3800
|
|
3801 if (retval)
|
|
3802 {
|
|
3803 switch (str->iso2022.esc)
|
|
3804 {
|
|
3805 case ISO_ESC_START_COMPOSITE:
|
|
3806 if (str->iso2022.composite_chars)
|
|
3807 Dynarr_reset (str->iso2022.composite_chars);
|
|
3808 else
|
|
3809 str->iso2022.composite_chars = Dynarr_new (unsigned_char);
|
|
3810 dst = str->iso2022.composite_chars;
|
|
3811 break;
|
|
3812 case ISO_ESC_END_COMPOSITE:
|
|
3813 {
|
|
3814 Bufbyte comstr[MAX_EMCHAR_LEN];
|
|
3815 Bytecount len;
|
|
3816 Emchar emch = lookup_composite_char (Dynarr_atp (dst, 0),
|
|
3817 Dynarr_length (dst));
|
|
3818 dst = real_dst;
|
|
3819 len = set_charptr_emchar (comstr, emch);
|
|
3820 Dynarr_add_many (dst, comstr, len);
|
|
3821 break;
|
|
3822 }
|
|
3823
|
|
3824 case ISO_ESC_LITERAL:
|
|
3825 DECODE_ADD_BINARY_CHAR (c, dst);
|
|
3826 break;
|
|
3827
|
|
3828 default:
|
|
3829 /* Everything else handled already */
|
|
3830 break;
|
|
3831 }
|
|
3832 }
|
|
3833
|
|
3834 /* Attempted error recovery. */
|
|
3835 if (str->iso2022.output_direction_sequence)
|
|
3836 ensure_correct_direction (flags & CODING_STATE_R2L ?
|
|
3837 CHARSET_RIGHT_TO_LEFT :
|
|
3838 CHARSET_LEFT_TO_RIGHT,
|
|
3839 str->codesys, dst, 0, 1);
|
|
3840 /* More error recovery. */
|
|
3841 if (!retval || str->iso2022.output_literally)
|
|
3842 {
|
|
3843 /* Output the (possibly invalid) sequence */
|
|
3844 int i;
|
|
3845 for (i = 0; i < str->iso2022.esc_bytes_index; i++)
|
|
3846 DECODE_ADD_BINARY_CHAR (str->iso2022.esc_bytes[i], dst);
|
|
3847 flags &= CODING_STATE_ISO2022_LOCK;
|
|
3848 if (!retval)
|
|
3849 n++, src--;/* Repeat the loop with the same character. */
|
|
3850 else
|
|
3851 {
|
|
3852 /* No sense in reprocessing the final byte of the
|
|
3853 escape sequence; it could mess things up anyway.
|
|
3854 Just add it now. */
|
|
3855 DECODE_ADD_BINARY_CHAR (c, dst);
|
|
3856 }
|
|
3857 }
|
|
3858 ch = 0;
|
|
3859 }
|
|
3860 else if (BYTE_C0_P (c) || BYTE_C1_P (c))
|
|
3861 { /* Control characters */
|
|
3862
|
|
3863 /***** Error-handling *****/
|
|
3864
|
|
3865 /* If we were in the middle of a character, dump out the
|
|
3866 partial character. */
|
|
3867 DECODE_OUTPUT_PARTIAL_CHAR (ch);
|
|
3868
|
|
3869 /* If we just saw a single-shift character, dump it out.
|
|
3870 This may dump out the wrong sort of single-shift character,
|
|
3871 but least it will give an indication that something went
|
|
3872 wrong. */
|
|
3873 if (flags & CODING_STATE_SS2)
|
|
3874 {
|
|
3875 DECODE_ADD_BINARY_CHAR (ISO_CODE_SS2, dst);
|
|
3876 flags &= ~CODING_STATE_SS2;
|
|
3877 }
|
|
3878 if (flags & CODING_STATE_SS3)
|
|
3879 {
|
|
3880 DECODE_ADD_BINARY_CHAR (ISO_CODE_SS3, dst);
|
|
3881 flags &= ~CODING_STATE_SS3;
|
|
3882 }
|
|
3883
|
|
3884 /***** Now handle the control characters. *****/
|
|
3885
|
|
3886 /* Handle CR/LF */
|
|
3887 DECODE_HANDLE_EOL_TYPE (eol_type, c, flags, dst);
|
|
3888
|
|
3889 flags &= CODING_STATE_ISO2022_LOCK;
|
|
3890
|
|
3891 if (!parse_iso2022_esc (coding_system, &str->iso2022, c, &flags, 1))
|
|
3892 DECODE_ADD_BINARY_CHAR (c, dst);
|
|
3893 }
|
|
3894 else
|
|
3895 { /* Graphic characters */
|
|
3896 Lisp_Object charset;
|
|
3897 int lb;
|
|
3898 int reg;
|
|
3899
|
|
3900 DECODE_HANDLE_EOL_TYPE (eol_type, c, flags, dst);
|
|
3901
|
|
3902 /* Now determine the charset. */
|
|
3903 reg = ((flags & CODING_STATE_SS2) ? 2
|
|
3904 : (flags & CODING_STATE_SS3) ? 3
|
|
3905 : !BYTE_ASCII_P (c) ? str->iso2022.register_right
|
|
3906 : str->iso2022.register_left);
|
|
3907 charset = str->iso2022.charset[reg];
|
|
3908
|
|
3909 /* Error checking: */
|
388
|
3910 if (! CHARSETP (charset)
|
|
3911 || str->iso2022.invalid_designated[reg]
|
259
|
3912 || (((c & 0x7F) == ' ' || (c & 0x7F) == ISO_CODE_DEL)
|
|
3913 && XCHARSET_CHARS (charset) == 94))
|
|
3914 /* Mrmph. We are trying to invoke a register that has no
|
|
3915 or an invalid charset in it, or trying to add a character
|
|
3916 outside the range of the charset. Insert that char literally
|
|
3917 to preserve it for the output. */
|
|
3918 {
|
|
3919 DECODE_OUTPUT_PARTIAL_CHAR (ch);
|
|
3920 DECODE_ADD_BINARY_CHAR (c, dst);
|
|
3921 }
|
|
3922
|
|
3923 else
|
|
3924 {
|
|
3925 /* Things are probably hunky-dorey. */
|
|
3926
|
|
3927 /* Fetch reverse charset, maybe. */
|
|
3928 if (((flags & CODING_STATE_R2L) &&
|
|
3929 XCHARSET_DIRECTION (charset) == CHARSET_LEFT_TO_RIGHT)
|
|
3930 ||
|
|
3931 (!(flags & CODING_STATE_R2L) &&
|
|
3932 XCHARSET_DIRECTION (charset) == CHARSET_RIGHT_TO_LEFT))
|
|
3933 {
|
|
3934 Lisp_Object new_charset =
|
|
3935 XCHARSET_REVERSE_DIRECTION_CHARSET (charset);
|
|
3936 if (!NILP (new_charset))
|
|
3937 charset = new_charset;
|
|
3938 }
|
|
3939
|
|
3940 lb = XCHARSET_LEADING_BYTE (charset);
|
|
3941 switch (XCHARSET_REP_BYTES (charset))
|
|
3942 {
|
|
3943 case 1: /* ASCII */
|
|
3944 DECODE_OUTPUT_PARTIAL_CHAR (ch);
|
|
3945 Dynarr_add (dst, c & 0x7F);
|
|
3946 break;
|
|
3947
|
|
3948 case 2: /* one-byte official */
|
|
3949 DECODE_OUTPUT_PARTIAL_CHAR (ch);
|
|
3950 Dynarr_add (dst, lb);
|
|
3951 Dynarr_add (dst, c | 0x80);
|
|
3952 break;
|
|
3953
|
|
3954 case 3: /* one-byte private or two-byte official */
|
|
3955 if (XCHARSET_PRIVATE_P (charset))
|
|
3956 {
|
|
3957 DECODE_OUTPUT_PARTIAL_CHAR (ch);
|
|
3958 Dynarr_add (dst, PRE_LEADING_BYTE_PRIVATE_1);
|
|
3959 Dynarr_add (dst, lb);
|
|
3960 Dynarr_add (dst, c | 0x80);
|
|
3961 }
|
|
3962 else
|
|
3963 {
|
|
3964 if (ch)
|
|
3965 {
|
|
3966 Dynarr_add (dst, lb);
|
|
3967 Dynarr_add (dst, ch | 0x80);
|
|
3968 Dynarr_add (dst, c | 0x80);
|
|
3969 ch = 0;
|
|
3970 }
|
|
3971 else
|
|
3972 ch = c;
|
|
3973 }
|
|
3974 break;
|
|
3975
|
|
3976 default: /* two-byte private */
|
|
3977 if (ch)
|
|
3978 {
|
|
3979 Dynarr_add (dst, PRE_LEADING_BYTE_PRIVATE_2);
|
|
3980 Dynarr_add (dst, lb);
|
|
3981 Dynarr_add (dst, ch | 0x80);
|
|
3982 Dynarr_add (dst, c | 0x80);
|
|
3983 ch = 0;
|
|
3984 }
|
|
3985 else
|
|
3986 ch = c;
|
|
3987 }
|
|
3988 }
|
|
3989
|
|
3990 if (!ch)
|
|
3991 flags &= CODING_STATE_ISO2022_LOCK;
|
|
3992 }
|
|
3993
|
|
3994 label_continue_loop:;
|
|
3995 }
|
|
3996
|
|
3997 if (flags & CODING_STATE_END)
|
|
3998 DECODE_OUTPUT_PARTIAL_CHAR (ch);
|
|
3999
|
|
4000 CODING_STREAM_COMPOSE (str, flags, ch);
|
|
4001 }
|
|
4002
|
|
4003
|
|
4004 /***** ISO2022 encoder *****/
|
|
4005
|
|
4006 /* Designate CHARSET into register REG. */
|
|
4007
|
|
4008 static void
|
|
4009 iso2022_designate (Lisp_Object charset, unsigned char reg,
|
|
4010 struct encoding_stream *str, unsigned_char_dynarr *dst)
|
|
4011 {
|
|
4012 CONST char *inter94 = "()*+", *inter96= ",-./";
|
272
|
4013 unsigned int type;
|
259
|
4014 unsigned char final;
|
|
4015 Lisp_Object old_charset = str->iso2022.charset[reg];
|
|
4016
|
|
4017 str->iso2022.charset[reg] = charset;
|
|
4018 if (!CHARSETP (charset))
|
|
4019 /* charset might be an initial nil or t. */
|
|
4020 return;
|
|
4021 type = XCHARSET_TYPE (charset);
|
|
4022 final = XCHARSET_FINAL (charset);
|
|
4023 if (!str->iso2022.force_charset_on_output[reg] &&
|
|
4024 CHARSETP (old_charset) &&
|
|
4025 XCHARSET_TYPE (old_charset) == type &&
|
|
4026 XCHARSET_FINAL (old_charset) == final)
|
|
4027 return;
|
|
4028
|
|
4029 str->iso2022.force_charset_on_output[reg] = 0;
|
|
4030
|
|
4031 {
|
|
4032 charset_conversion_spec_dynarr *dyn =
|
|
4033 str->codesys->iso2022.output_conv;
|
|
4034
|
|
4035 if (dyn)
|
|
4036 {
|
|
4037 int i;
|
|
4038
|
|
4039 for (i = 0; i < Dynarr_length (dyn); i++)
|
|
4040 {
|
|
4041 struct charset_conversion_spec *spec = Dynarr_atp (dyn, i);
|
|
4042 if (EQ (charset, spec->from_charset))
|
|
4043 charset = spec->to_charset;
|
|
4044 }
|
|
4045 }
|
|
4046 }
|
|
4047
|
|
4048 Dynarr_add (dst, ISO_CODE_ESC);
|
|
4049 switch (type)
|
|
4050 {
|
|
4051 case CHARSET_TYPE_94:
|
|
4052 Dynarr_add (dst, inter94[reg]);
|
|
4053 break;
|
|
4054 case CHARSET_TYPE_96:
|
|
4055 Dynarr_add (dst, inter96[reg]);
|
|
4056 break;
|
|
4057 case CHARSET_TYPE_94X94:
|
|
4058 Dynarr_add (dst, '$');
|
|
4059 if (reg != 0
|
|
4060 || !(CODING_SYSTEM_ISO2022_SHORT (str->codesys))
|
|
4061 || final < '@'
|
|
4062 || final > 'B')
|
|
4063 Dynarr_add (dst, inter94[reg]);
|
|
4064 break;
|
|
4065 case CHARSET_TYPE_96X96:
|
|
4066 Dynarr_add (dst, '$');
|
|
4067 Dynarr_add (dst, inter96[reg]);
|
|
4068 break;
|
|
4069 }
|
|
4070 Dynarr_add (dst, final);
|
|
4071 }
|
|
4072
|
|
4073 static void
|
|
4074 ensure_normal_shift (struct encoding_stream *str, unsigned_char_dynarr *dst)
|
|
4075 {
|
|
4076 if (str->iso2022.register_left != 0)
|
|
4077 {
|
|
4078 Dynarr_add (dst, ISO_CODE_SI);
|
|
4079 str->iso2022.register_left = 0;
|
|
4080 }
|
|
4081 }
|
|
4082
|
|
4083 static void
|
|
4084 ensure_shift_out (struct encoding_stream *str, unsigned_char_dynarr *dst)
|
|
4085 {
|
|
4086 if (str->iso2022.register_left != 1)
|
|
4087 {
|
|
4088 Dynarr_add (dst, ISO_CODE_SO);
|
|
4089 str->iso2022.register_left = 1;
|
|
4090 }
|
|
4091 }
|
|
4092
|
|
4093 /* Convert internally-formatted data to ISO2022 format. */
|
|
4094
|
|
4095 static void
|
|
4096 encode_coding_iso2022 (Lstream *encoding, CONST unsigned char *src,
|
|
4097 unsigned_char_dynarr *dst, unsigned int n)
|
|
4098 {
|
|
4099 unsigned char charmask, c;
|
|
4100 unsigned int flags, ch;
|
|
4101 enum eol_type eol_type;
|
|
4102 unsigned char char_boundary;
|
|
4103 struct encoding_stream *str = ENCODING_STREAM_DATA (encoding);
|
|
4104 struct Lisp_Coding_System *codesys = str->codesys;
|
|
4105 int i;
|
|
4106 Lisp_Object charset;
|
|
4107 int half;
|
|
4108
|
|
4109 /* flags for handling composite chars. We do a little switcharoo
|
|
4110 on the source while we're outputting the composite char. */
|
|
4111 unsigned int saved_n = 0;
|
|
4112 CONST unsigned char *saved_src = NULL;
|
|
4113 int in_composite = 0;
|
|
4114
|
|
4115 CODING_STREAM_DECOMPOSE (str, flags, ch);
|
|
4116 eol_type = CODING_SYSTEM_EOL_TYPE (str->codesys);
|
|
4117 char_boundary = str->iso2022.current_char_boundary;
|
|
4118 charset = str->iso2022.current_charset;
|
|
4119 half = str->iso2022.current_half;
|
|
4120
|
|
4121 back_to_square_n:
|
|
4122 while (n--)
|
|
4123 {
|
|
4124 c = *src++;
|
|
4125
|
|
4126 if (BYTE_ASCII_P (c))
|
|
4127 { /* Processing ASCII character */
|
|
4128 ch = 0;
|
|
4129
|
|
4130 restore_left_to_right_direction (codesys, dst, &flags, 0);
|
|
4131
|
|
4132 /* Make sure G0 contains ASCII */
|
|
4133 if ((c > ' ' && c < ISO_CODE_DEL) ||
|
|
4134 !CODING_SYSTEM_ISO2022_NO_ASCII_CNTL (codesys))
|
|
4135 {
|
|
4136 ensure_normal_shift (str, dst);
|
|
4137 iso2022_designate (Vcharset_ascii, 0, str, dst);
|
|
4138 }
|
|
4139
|
|
4140 /* If necessary, restore everything to the default state
|
|
4141 at end-of-line */
|
|
4142 if (c == '\n' &&
|
|
4143 !(CODING_SYSTEM_ISO2022_NO_ASCII_EOL (codesys)))
|
|
4144 {
|
|
4145 restore_left_to_right_direction (codesys, dst, &flags, 0);
|
|
4146
|
|
4147 ensure_normal_shift (str, dst);
|
|
4148
|
|
4149 for (i = 0; i < 4; i++)
|
|
4150 {
|
|
4151 Lisp_Object initial_charset =
|
|
4152 CODING_SYSTEM_ISO2022_INITIAL_CHARSET (codesys, i);
|
|
4153 iso2022_designate (initial_charset, i, str, dst);
|
|
4154 }
|
|
4155 }
|
|
4156 if (c == '\n')
|
|
4157 {
|
|
4158 if (eol_type != EOL_LF && eol_type != EOL_AUTODETECT)
|
|
4159 Dynarr_add (dst, '\r');
|
|
4160 if (eol_type != EOL_CR)
|
|
4161 Dynarr_add (dst, c);
|
|
4162 }
|
|
4163 else
|
|
4164 {
|
|
4165 if (CODING_SYSTEM_ISO2022_ESCAPE_QUOTED (codesys)
|
|
4166 && fit_to_be_escape_quoted (c))
|
|
4167 Dynarr_add (dst, ISO_CODE_ESC);
|
|
4168 Dynarr_add (dst, c);
|
|
4169 }
|
|
4170 char_boundary = 1;
|
|
4171 }
|
|
4172
|
|
4173 else if (BUFBYTE_LEADING_BYTE_P (c) || BUFBYTE_LEADING_BYTE_P (ch))
|
|
4174 { /* Processing Leading Byte */
|
|
4175 ch = 0;
|
|
4176 charset = CHARSET_BY_LEADING_BYTE (c);
|
|
4177 if (LEADING_BYTE_PREFIX_P(c))
|
|
4178 ch = c;
|
|
4179 else if (!EQ (charset, Vcharset_control_1)
|
371
|
4180 && !EQ (charset, Vcharset_composite))
|
259
|
4181 {
|
|
4182 int reg;
|
|
4183
|
|
4184 ensure_correct_direction (XCHARSET_DIRECTION (charset),
|
|
4185 codesys, dst, &flags, 0);
|
|
4186
|
|
4187 /* Now determine which register to use. */
|
|
4188 reg = -1;
|
|
4189 for (i = 0; i < 4; i++)
|
|
4190 {
|
|
4191 if (EQ (charset, str->iso2022.charset[i]) ||
|
|
4192 EQ (charset,
|
|
4193 CODING_SYSTEM_ISO2022_INITIAL_CHARSET (codesys, i)))
|
|
4194 {
|
|
4195 reg = i;
|
|
4196 break;
|
|
4197 }
|
|
4198 }
|
|
4199
|
|
4200 if (reg == -1)
|
|
4201 {
|
|
4202 if (XCHARSET_GRAPHIC (charset) != 0)
|
|
4203 {
|
|
4204 if (!NILP (str->iso2022.charset[1]) &&
|
|
4205 (!CODING_SYSTEM_ISO2022_SEVEN (codesys) ||
|
|
4206 CODING_SYSTEM_ISO2022_LOCK_SHIFT (codesys)))
|
|
4207 reg = 1;
|
|
4208 else if (!NILP (str->iso2022.charset[2]))
|
|
4209 reg = 2;
|
|
4210 else if (!NILP (str->iso2022.charset[3]))
|
|
4211 reg = 3;
|
|
4212 else
|
|
4213 reg = 0;
|
|
4214 }
|
|
4215 else
|
|
4216 reg = 0;
|
|
4217 }
|
|
4218
|
|
4219 iso2022_designate (charset, reg, str, dst);
|
|
4220
|
|
4221 /* Now invoke that register. */
|
|
4222 switch (reg)
|
|
4223 {
|
|
4224 case 0:
|
|
4225 ensure_normal_shift (str, dst);
|
|
4226 half = 0;
|
|
4227 break;
|
|
4228
|
|
4229 case 1:
|
|
4230 if (CODING_SYSTEM_ISO2022_SEVEN (codesys))
|
|
4231 {
|
|
4232 ensure_shift_out (str, dst);
|
|
4233 half = 0;
|
|
4234 }
|
|
4235 else
|
|
4236 half = 1;
|
|
4237 break;
|
|
4238
|
|
4239 case 2:
|
|
4240 if (CODING_SYSTEM_ISO2022_SEVEN (str->codesys))
|
|
4241 {
|
|
4242 Dynarr_add (dst, ISO_CODE_ESC);
|
|
4243 Dynarr_add (dst, 'N');
|
|
4244 half = 0;
|
|
4245 }
|
|
4246 else
|
|
4247 {
|
|
4248 Dynarr_add (dst, ISO_CODE_SS2);
|
|
4249 half = 1;
|
|
4250 }
|
|
4251 break;
|
|
4252
|
|
4253 case 3:
|
|
4254 if (CODING_SYSTEM_ISO2022_SEVEN (str->codesys))
|
|
4255 {
|
|
4256 Dynarr_add (dst, ISO_CODE_ESC);
|
|
4257 Dynarr_add (dst, 'O');
|
|
4258 half = 0;
|
|
4259 }
|
|
4260 else
|
|
4261 {
|
|
4262 Dynarr_add (dst, ISO_CODE_SS3);
|
|
4263 half = 1;
|
|
4264 }
|
|
4265 break;
|
|
4266
|
|
4267 default:
|
|
4268 abort ();
|
|
4269 }
|
|
4270 }
|
|
4271 char_boundary = 0;
|
|
4272 }
|
|
4273 else
|
|
4274 { /* Processing Non-ASCII character */
|
|
4275 charmask = (half == 0 ? 0x7F : 0xFF);
|
|
4276 char_boundary = 1;
|
|
4277 if (EQ (charset, Vcharset_control_1))
|
|
4278 {
|
|
4279 if (CODING_SYSTEM_ISO2022_ESCAPE_QUOTED (codesys)
|
|
4280 && fit_to_be_escape_quoted (c))
|
|
4281 Dynarr_add (dst, ISO_CODE_ESC);
|
|
4282 /* you asked for it ... */
|
|
4283 Dynarr_add (dst, c - 0x20);
|
|
4284 }
|
|
4285 else
|
|
4286 {
|
|
4287 switch (XCHARSET_REP_BYTES (charset))
|
|
4288 {
|
|
4289 case 2:
|
|
4290 Dynarr_add (dst, c & charmask);
|
|
4291 break;
|
|
4292 case 3:
|
|
4293 if (XCHARSET_PRIVATE_P (charset))
|
|
4294 {
|
|
4295 Dynarr_add (dst, c & charmask);
|
|
4296 ch = 0;
|
|
4297 }
|
|
4298 else if (ch)
|
|
4299 {
|
|
4300 if (EQ (charset, Vcharset_composite))
|
|
4301 {
|
|
4302 if (in_composite)
|
|
4303 {
|
|
4304 /* #### Bother! We don't know how to
|
|
4305 handle this yet. */
|
|
4306 Dynarr_add (dst, '~');
|
|
4307 }
|
|
4308 else
|
|
4309 {
|
|
4310 Emchar emch = MAKE_CHAR (Vcharset_composite,
|
|
4311 ch & 0x7F, c & 0x7F);
|
|
4312 Lisp_Object lstr = composite_char_string (emch);
|
|
4313 saved_n = n;
|
|
4314 saved_src = src;
|
|
4315 in_composite = 1;
|
|
4316 src = XSTRING_DATA (lstr);
|
|
4317 n = XSTRING_LENGTH (lstr);
|
|
4318 Dynarr_add (dst, ISO_CODE_ESC);
|
|
4319 Dynarr_add (dst, '0'); /* start composing */
|
|
4320 }
|
|
4321 }
|
|
4322 else
|
|
4323 {
|
|
4324 Dynarr_add (dst, ch & charmask);
|
|
4325 Dynarr_add (dst, c & charmask);
|
|
4326 }
|
|
4327 ch = 0;
|
|
4328 }
|
|
4329 else
|
|
4330 {
|
|
4331 ch = c;
|
|
4332 char_boundary = 0;
|
|
4333 }
|
|
4334 break;
|
|
4335 case 4:
|
|
4336 if (ch)
|
|
4337 {
|
|
4338 Dynarr_add (dst, ch & charmask);
|
|
4339 Dynarr_add (dst, c & charmask);
|
|
4340 ch = 0;
|
|
4341 }
|
|
4342 else
|
|
4343 {
|
|
4344 ch = c;
|
|
4345 char_boundary = 0;
|
|
4346 }
|
|
4347 break;
|
|
4348 default:
|
|
4349 abort ();
|
|
4350 }
|
|
4351 }
|
|
4352 }
|
|
4353 }
|
|
4354
|
|
4355 if (in_composite)
|
|
4356 {
|
|
4357 n = saved_n;
|
|
4358 src = saved_src;
|
|
4359 in_composite = 0;
|
|
4360 Dynarr_add (dst, ISO_CODE_ESC);
|
|
4361 Dynarr_add (dst, '1'); /* end composing */
|
|
4362 goto back_to_square_n; /* Wheeeeeeeee ..... */
|
|
4363 }
|
|
4364
|
|
4365 if (char_boundary && flags & CODING_STATE_END)
|
|
4366 {
|
|
4367 restore_left_to_right_direction (codesys, dst, &flags, 0);
|
|
4368 ensure_normal_shift (str, dst);
|
|
4369 for (i = 0; i < 4; i++)
|
|
4370 {
|
|
4371 Lisp_Object initial_charset =
|
|
4372 CODING_SYSTEM_ISO2022_INITIAL_CHARSET (codesys, i);
|
|
4373 iso2022_designate (initial_charset, i, str, dst);
|
|
4374 }
|
|
4375 }
|
|
4376
|
|
4377 CODING_STREAM_COMPOSE (str, flags, ch);
|
|
4378 str->iso2022.current_char_boundary = char_boundary;
|
|
4379 str->iso2022.current_charset = charset;
|
|
4380 str->iso2022.current_half = half;
|
|
4381
|
|
4382 /* Verbum caro factum est! */
|
|
4383 }
|
|
4384 #endif /* MULE */
|
|
4385
|
|
4386 /************************************************************************/
|
|
4387 /* No-conversion methods */
|
|
4388 /************************************************************************/
|
|
4389
|
|
4390 /* This is used when reading in "binary" files -- i.e. files that may
|
|
4391 contain all 256 possible byte values and that are not to be
|
|
4392 interpreted as being in any particular decoding. */
|
|
4393 static void
|
|
4394 decode_coding_no_conversion (Lstream *decoding, CONST unsigned char *src,
|
|
4395 unsigned_char_dynarr *dst, unsigned int n)
|
|
4396 {
|
|
4397 unsigned char c;
|
|
4398 unsigned int flags, ch;
|
|
4399 enum eol_type eol_type;
|
|
4400 struct decoding_stream *str = DECODING_STREAM_DATA (decoding);
|
|
4401
|
|
4402 CODING_STREAM_DECOMPOSE (str, flags, ch);
|
|
4403 eol_type = str->eol_type;
|
|
4404
|
|
4405 while (n--)
|
|
4406 {
|
|
4407 c = *src++;
|
|
4408
|
|
4409 DECODE_HANDLE_EOL_TYPE (eol_type, c, flags, dst);
|
|
4410 DECODE_ADD_BINARY_CHAR (c, dst);
|
|
4411 label_continue_loop:;
|
|
4412 }
|
|
4413
|
|
4414 DECODE_HANDLE_END_OF_CONVERSION (flags, ch, dst);
|
|
4415
|
|
4416 CODING_STREAM_COMPOSE (str, flags, ch);
|
|
4417 }
|
|
4418
|
|
4419 static void
|
|
4420 encode_coding_no_conversion (Lstream *encoding, CONST unsigned char *src,
|
|
4421 unsigned_char_dynarr *dst, unsigned int n)
|
|
4422 {
|
|
4423 unsigned char c;
|
|
4424 struct encoding_stream *str = ENCODING_STREAM_DATA (encoding);
|
|
4425 unsigned int flags, ch;
|
|
4426 enum eol_type eol_type;
|
|
4427
|
|
4428 CODING_STREAM_DECOMPOSE (str, flags, ch);
|
|
4429 eol_type = CODING_SYSTEM_EOL_TYPE (str->codesys);
|
|
4430
|
|
4431 while (n--)
|
|
4432 {
|
|
4433 c = *src++;
|
|
4434 if (c == '\n')
|
|
4435 {
|
|
4436 if (eol_type != EOL_LF && eol_type != EOL_AUTODETECT)
|
|
4437 Dynarr_add (dst, '\r');
|
|
4438 if (eol_type != EOL_CR)
|
|
4439 Dynarr_add (dst, '\n');
|
|
4440 ch = 0;
|
|
4441 }
|
|
4442 else if (BYTE_ASCII_P (c))
|
|
4443 {
|
|
4444 assert (ch == 0);
|
|
4445 Dynarr_add (dst, c);
|
|
4446 }
|
|
4447 else if (BUFBYTE_LEADING_BYTE_P (c))
|
|
4448 {
|
|
4449 assert (ch == 0);
|
|
4450 if (c == LEADING_BYTE_LATIN_ISO8859_1 ||
|
|
4451 c == LEADING_BYTE_CONTROL_1)
|
|
4452 ch = c;
|
|
4453 else
|
|
4454 Dynarr_add (dst, '~'); /* untranslatable character */
|
|
4455 }
|
|
4456 else
|
|
4457 {
|
|
4458 if (ch == LEADING_BYTE_LATIN_ISO8859_1)
|
|
4459 Dynarr_add (dst, c);
|
|
4460 else if (ch == LEADING_BYTE_CONTROL_1)
|
|
4461 {
|
|
4462 assert (c < 0xC0);
|
|
4463 Dynarr_add (dst, c - 0x20);
|
|
4464 }
|
|
4465 /* else it should be the second or third byte of an
|
|
4466 untranslatable character, so ignore it */
|
|
4467 ch = 0;
|
|
4468 }
|
|
4469 }
|
|
4470
|
|
4471 CODING_STREAM_COMPOSE (str, flags, ch);
|
|
4472 }
|
|
4473
|
|
4474
|
|
4475 /************************************************************************/
|
|
4476 /* Simple internal/external functions */
|
|
4477 /************************************************************************/
|
|
4478
|
|
4479 static Extbyte_dynarr *conversion_out_dynarr;
|
|
4480 static Bufbyte_dynarr *conversion_in_dynarr;
|
|
4481
|
|
4482 /* Determine coding system from coding format */
|
|
4483
|
371
|
4484 /* #### not correct for all values of `fmt'! */
|
380
|
4485 static Lisp_Object
|
|
4486 external_data_format_to_coding_system (enum external_data_format fmt)
|
|
4487 {
|
|
4488 switch (fmt)
|
|
4489 {
|
|
4490 case FORMAT_FILENAME:
|
|
4491 case FORMAT_TERMINAL:
|
|
4492 if (EQ (Vfile_name_coding_system, Qnil) ||
|
|
4493 EQ (Vfile_name_coding_system, Qbinary))
|
|
4494 return Qnil;
|
|
4495 else
|
|
4496 return Fget_coding_system (Vfile_name_coding_system);
|
371
|
4497 #ifdef MULE
|
380
|
4498 case FORMAT_CTEXT:
|
|
4499 return Fget_coding_system (Qctext);
|
371
|
4500 #endif
|
380
|
4501 default:
|
|
4502 return Qnil;
|
|
4503 }
|
|
4504 }
|
371
|
4505
|
272
|
4506 Extbyte *
|
259
|
4507 convert_to_external_format (CONST Bufbyte *ptr,
|
|
4508 Bytecount len,
|
|
4509 Extcount *len_out,
|
|
4510 enum external_data_format fmt)
|
|
4511 {
|
380
|
4512 Lisp_Object coding_system = external_data_format_to_coding_system (fmt);
|
259
|
4513
|
|
4514 if (!conversion_out_dynarr)
|
|
4515 conversion_out_dynarr = Dynarr_new (Extbyte);
|
|
4516 else
|
|
4517 Dynarr_reset (conversion_out_dynarr);
|
|
4518
|
|
4519 if (NILP (coding_system))
|
|
4520 {
|
|
4521 CONST Bufbyte *end = ptr + len;
|
|
4522
|
|
4523 for (; ptr < end;)
|
|
4524 {
|
|
4525 Bufbyte c =
|
|
4526 (BYTE_ASCII_P (*ptr)) ? *ptr :
|
|
4527 (*ptr == LEADING_BYTE_CONTROL_1) ? (*(ptr+1) - 0x20) :
|
|
4528 (*ptr == LEADING_BYTE_LATIN_ISO8859_1) ? (*(ptr+1)) :
|
|
4529 '~';
|
|
4530
|
|
4531 Dynarr_add (conversion_out_dynarr, (Extbyte) c);
|
|
4532 INC_CHARPTR (ptr);
|
|
4533 }
|
|
4534
|
|
4535 #ifdef ERROR_CHECK_BUFPOS
|
|
4536 assert (ptr == end);
|
|
4537 #endif
|
|
4538 }
|
|
4539 else
|
|
4540 {
|
|
4541 Lisp_Object instream, outstream, da_outstream;
|
|
4542 Lstream *istr, *ostr;
|
|
4543 struct gcpro gcpro1, gcpro2, gcpro3;
|
|
4544 char tempbuf[1024]; /* some random amount */
|
|
4545
|
|
4546 instream = make_fixed_buffer_input_stream ((unsigned char *) ptr, len);
|
|
4547 da_outstream = make_dynarr_output_stream
|
|
4548 ((unsigned_char_dynarr *) conversion_out_dynarr);
|
|
4549 outstream =
|
|
4550 make_encoding_output_stream (XLSTREAM (da_outstream), coding_system);
|
|
4551 istr = XLSTREAM (instream);
|
|
4552 ostr = XLSTREAM (outstream);
|
|
4553 GCPRO3 (instream, outstream, da_outstream);
|
|
4554 while (1)
|
|
4555 {
|
|
4556 int size_in_bytes = Lstream_read (istr, tempbuf, sizeof (tempbuf));
|
|
4557 if (!size_in_bytes)
|
|
4558 break;
|
|
4559 Lstream_write (ostr, tempbuf, size_in_bytes);
|
|
4560 }
|
|
4561 Lstream_close (istr);
|
|
4562 Lstream_close (ostr);
|
|
4563 UNGCPRO;
|
|
4564 Lstream_delete (istr);
|
|
4565 Lstream_delete (ostr);
|
|
4566 Lstream_delete (XLSTREAM (da_outstream));
|
|
4567 }
|
|
4568
|
|
4569 *len_out = Dynarr_length (conversion_out_dynarr);
|
|
4570 Dynarr_add (conversion_out_dynarr, 0); /* remember to zero-terminate! */
|
|
4571 return Dynarr_atp (conversion_out_dynarr, 0);
|
|
4572 }
|
|
4573
|
272
|
4574 Bufbyte *
|
259
|
4575 convert_from_external_format (CONST Extbyte *ptr,
|
|
4576 Extcount len,
|
|
4577 Bytecount *len_out,
|
|
4578 enum external_data_format fmt)
|
|
4579 {
|
380
|
4580 Lisp_Object coding_system = external_data_format_to_coding_system (fmt);
|
259
|
4581
|
|
4582 if (!conversion_in_dynarr)
|
|
4583 conversion_in_dynarr = Dynarr_new (Bufbyte);
|
|
4584 else
|
|
4585 Dynarr_reset (conversion_in_dynarr);
|
|
4586
|
|
4587 if (NILP (coding_system))
|
|
4588 {
|
|
4589 CONST Extbyte *end = ptr + len;
|
|
4590 for (; ptr < end; ptr++)
|
|
4591 {
|
|
4592 Extbyte c = *ptr;
|
|
4593 DECODE_ADD_BINARY_CHAR (c, conversion_in_dynarr);
|
|
4594 }
|
|
4595 }
|
|
4596 else
|
|
4597 {
|
|
4598 Lisp_Object instream, outstream, da_outstream;
|
|
4599 Lstream *istr, *ostr;
|
|
4600 struct gcpro gcpro1, gcpro2, gcpro3;
|
|
4601 char tempbuf[1024]; /* some random amount */
|
|
4602
|
|
4603 instream = make_fixed_buffer_input_stream ((unsigned char *) ptr, len);
|
|
4604 da_outstream = make_dynarr_output_stream
|
|
4605 ((unsigned_char_dynarr *) conversion_in_dynarr);
|
|
4606 outstream =
|
|
4607 make_decoding_output_stream (XLSTREAM (da_outstream), coding_system);
|
|
4608 istr = XLSTREAM (instream);
|
|
4609 ostr = XLSTREAM (outstream);
|
|
4610 GCPRO3 (instream, outstream, da_outstream);
|
|
4611 while (1)
|
|
4612 {
|
|
4613 int size_in_bytes = Lstream_read (istr, tempbuf, sizeof (tempbuf));
|
|
4614 if (!size_in_bytes)
|
|
4615 break;
|
|
4616 Lstream_write (ostr, tempbuf, size_in_bytes);
|
|
4617 }
|
|
4618 Lstream_close (istr);
|
|
4619 Lstream_close (ostr);
|
|
4620 UNGCPRO;
|
|
4621 Lstream_delete (istr);
|
|
4622 Lstream_delete (ostr);
|
|
4623 Lstream_delete (XLSTREAM (da_outstream));
|
|
4624 }
|
|
4625
|
|
4626 *len_out = Dynarr_length (conversion_in_dynarr);
|
|
4627 Dynarr_add (conversion_in_dynarr, 0); /* remember to zero-terminate! */
|
|
4628 return Dynarr_atp (conversion_in_dynarr, 0);
|
|
4629 }
|
|
4630
|
|
4631
|
|
4632 /************************************************************************/
|
|
4633 /* Initialization */
|
|
4634 /************************************************************************/
|
|
4635
|
|
4636 void
|
371
|
4637 syms_of_mule_coding (void)
|
259
|
4638 {
|
|
4639 defsymbol (&Qbuffer_file_coding_system, "buffer-file-coding-system");
|
|
4640 deferror (&Qcoding_system_error, "coding-system-error",
|
|
4641 "Coding-system error", Qio_error);
|
|
4642
|
|
4643 DEFSUBR (Fcoding_system_p);
|
|
4644 DEFSUBR (Ffind_coding_system);
|
|
4645 DEFSUBR (Fget_coding_system);
|
|
4646 DEFSUBR (Fcoding_system_list);
|
|
4647 DEFSUBR (Fcoding_system_name);
|
|
4648 DEFSUBR (Fmake_coding_system);
|
|
4649 DEFSUBR (Fcopy_coding_system);
|
|
4650 DEFSUBR (Fsubsidiary_coding_system);
|
|
4651
|
|
4652 DEFSUBR (Fcoding_system_type);
|
|
4653 DEFSUBR (Fcoding_system_doc_string);
|
|
4654 #ifdef MULE
|
|
4655 DEFSUBR (Fcoding_system_charset);
|
|
4656 #endif
|
|
4657 DEFSUBR (Fcoding_system_property);
|
|
4658
|
|
4659 DEFSUBR (Fcoding_category_list);
|
|
4660 DEFSUBR (Fset_coding_priority_list);
|
|
4661 DEFSUBR (Fcoding_priority_list);
|
|
4662 DEFSUBR (Fset_coding_category_system);
|
|
4663 DEFSUBR (Fcoding_category_system);
|
|
4664
|
|
4665 DEFSUBR (Fdetect_coding_region);
|
|
4666 DEFSUBR (Fdecode_coding_region);
|
|
4667 DEFSUBR (Fencode_coding_region);
|
|
4668 #ifdef MULE
|
|
4669 DEFSUBR (Fdecode_shift_jis_char);
|
|
4670 DEFSUBR (Fencode_shift_jis_char);
|
|
4671 DEFSUBR (Fdecode_big5_char);
|
|
4672 DEFSUBR (Fencode_big5_char);
|
|
4673 #endif /* MULE */
|
|
4674 defsymbol (&Qcoding_system_p, "coding-system-p");
|
|
4675 defsymbol (&Qno_conversion, "no-conversion");
|
|
4676 #ifdef MULE
|
|
4677 defsymbol (&Qbig5, "big5");
|
|
4678 defsymbol (&Qshift_jis, "shift-jis");
|
|
4679 defsymbol (&Qccl, "ccl");
|
|
4680 defsymbol (&Qiso2022, "iso2022");
|
|
4681 #endif /* MULE */
|
|
4682 defsymbol (&Qmnemonic, "mnemonic");
|
|
4683 defsymbol (&Qeol_type, "eol-type");
|
|
4684 defsymbol (&Qpost_read_conversion, "post-read-conversion");
|
|
4685 defsymbol (&Qpre_write_conversion, "pre-write-conversion");
|
|
4686
|
|
4687 defsymbol (&Qcr, "cr");
|
|
4688 defsymbol (&Qlf, "lf");
|
|
4689 defsymbol (&Qcrlf, "crlf");
|
|
4690 defsymbol (&Qeol_cr, "eol-cr");
|
|
4691 defsymbol (&Qeol_lf, "eol-lf");
|
|
4692 defsymbol (&Qeol_crlf, "eol-crlf");
|
|
4693 #ifdef MULE
|
|
4694 defsymbol (&Qcharset_g0, "charset-g0");
|
|
4695 defsymbol (&Qcharset_g1, "charset-g1");
|
|
4696 defsymbol (&Qcharset_g2, "charset-g2");
|
|
4697 defsymbol (&Qcharset_g3, "charset-g3");
|
|
4698 defsymbol (&Qforce_g0_on_output, "force-g0-on-output");
|
|
4699 defsymbol (&Qforce_g1_on_output, "force-g1-on-output");
|
|
4700 defsymbol (&Qforce_g2_on_output, "force-g2-on-output");
|
|
4701 defsymbol (&Qforce_g3_on_output, "force-g3-on-output");
|
|
4702 defsymbol (&Qno_iso6429, "no-iso6429");
|
|
4703 defsymbol (&Qinput_charset_conversion, "input-charset-conversion");
|
|
4704 defsymbol (&Qoutput_charset_conversion, "output-charset-conversion");
|
272
|
4705
|
259
|
4706 defsymbol (&Qshort, "short");
|
|
4707 defsymbol (&Qno_ascii_eol, "no-ascii-eol");
|
|
4708 defsymbol (&Qno_ascii_cntl, "no-ascii-cntl");
|
|
4709 defsymbol (&Qseven, "seven");
|
|
4710 defsymbol (&Qlock_shift, "lock-shift");
|
|
4711 defsymbol (&Qescape_quoted, "escape-quoted");
|
272
|
4712 #endif /* MULE */
|
259
|
4713 defsymbol (&Qencode, "encode");
|
|
4714 defsymbol (&Qdecode, "decode");
|
|
4715
|
|
4716 #ifdef MULE
|
|
4717 defsymbol (&Qctext, "ctext");
|
|
4718 defsymbol (&coding_category_symbol[CODING_CATEGORY_SHIFT_JIS],
|
|
4719 "shift-jis");
|
|
4720 defsymbol (&coding_category_symbol[CODING_CATEGORY_BIG5],
|
|
4721 "big5");
|
|
4722 defsymbol (&coding_category_symbol[CODING_CATEGORY_ISO_7],
|
|
4723 "iso-7");
|
|
4724 defsymbol (&coding_category_symbol[CODING_CATEGORY_ISO_8_DESIGNATE],
|
|
4725 "iso-8-designate");
|
|
4726 defsymbol (&coding_category_symbol[CODING_CATEGORY_ISO_8_1],
|
|
4727 "iso-8-1");
|
|
4728 defsymbol (&coding_category_symbol[CODING_CATEGORY_ISO_8_2],
|
|
4729 "iso-8-2");
|
|
4730 defsymbol (&coding_category_symbol[CODING_CATEGORY_ISO_LOCK_SHIFT],
|
|
4731 "iso-lock-shift");
|
272
|
4732 #endif /* MULE */
|
259
|
4733 defsymbol (&coding_category_symbol[CODING_CATEGORY_NO_CONVERSION],
|
|
4734 "no-conversion");
|
|
4735 }
|
|
4736
|
|
4737 void
|
371
|
4738 lstream_type_create_mule_coding (void)
|
259
|
4739 {
|
|
4740 LSTREAM_HAS_METHOD (decoding, reader);
|
|
4741 LSTREAM_HAS_METHOD (decoding, writer);
|
|
4742 LSTREAM_HAS_METHOD (decoding, rewinder);
|
|
4743 LSTREAM_HAS_METHOD (decoding, seekable_p);
|
|
4744 LSTREAM_HAS_METHOD (decoding, flusher);
|
|
4745 LSTREAM_HAS_METHOD (decoding, closer);
|
|
4746 LSTREAM_HAS_METHOD (decoding, marker);
|
|
4747
|
|
4748 LSTREAM_HAS_METHOD (encoding, reader);
|
|
4749 LSTREAM_HAS_METHOD (encoding, writer);
|
|
4750 LSTREAM_HAS_METHOD (encoding, rewinder);
|
|
4751 LSTREAM_HAS_METHOD (encoding, seekable_p);
|
|
4752 LSTREAM_HAS_METHOD (encoding, flusher);
|
|
4753 LSTREAM_HAS_METHOD (encoding, closer);
|
|
4754 LSTREAM_HAS_METHOD (encoding, marker);
|
|
4755 }
|
|
4756
|
|
4757 void
|
371
|
4758 vars_of_mule_coding (void)
|
259
|
4759 {
|
|
4760 int i;
|
|
4761
|
|
4762 /* Initialize to something reasonable ... */
|
|
4763 for (i = 0; i <= CODING_CATEGORY_LAST; i++)
|
|
4764 {
|
|
4765 coding_category_system[i] = Qnil;
|
|
4766 coding_category_by_priority[i] = i;
|
|
4767 }
|
|
4768
|
|
4769 Fprovide (intern ("file-coding"));
|
|
4770
|
|
4771 DEFVAR_LISP ("keyboard-coding-system", &Vkeyboard_coding_system /*
|
|
4772 Coding system used for TTY keyboard input.
|
|
4773 Not used under a windowing system.
|
|
4774 */ );
|
|
4775 Vkeyboard_coding_system = Qnil;
|
|
4776
|
|
4777 DEFVAR_LISP ("terminal-coding-system", &Vterminal_coding_system /*
|
|
4778 Coding system used for TTY display output.
|
|
4779 Not used under a windowing system.
|
|
4780 */ );
|
|
4781 Vterminal_coding_system = Qnil;
|
|
4782
|
|
4783 DEFVAR_LISP ("coding-system-for-read", &Vcoding_system_for_read /*
|
|
4784 Overriding coding system used when writing a file or process.
|
|
4785 You should *bind* this, not set it. If this is non-nil, it specifies
|
|
4786 the coding system that will be used when a file or process is read
|
|
4787 in, and overrides `buffer-file-coding-system-for-read',
|
|
4788 `insert-file-contents-pre-hook', etc. Use those variables instead of
|
|
4789 this one for permanent changes to the environment.
|
|
4790 */ );
|
|
4791 Vcoding_system_for_read = Qnil;
|
|
4792
|
|
4793 DEFVAR_LISP ("coding-system-for-write",
|
|
4794 &Vcoding_system_for_write /*
|
|
4795 Overriding coding system used when writing a file or process.
|
|
4796 You should *bind* this, not set it. If this is non-nil, it specifies
|
|
4797 the coding system that will be used when a file or process is wrote
|
|
4798 in, and overrides `buffer-file-coding-system',
|
|
4799 `write-region-pre-hook', etc. Use those variables instead of this one
|
|
4800 for permanent changes to the environment.
|
|
4801 */ );
|
|
4802 Vcoding_system_for_write = Qnil;
|
|
4803
|
|
4804 DEFVAR_LISP ("file-name-coding-system", &Vfile_name_coding_system /*
|
|
4805 Coding system used to convert pathnames when accessing files.
|
|
4806 */ );
|
|
4807 Vfile_name_coding_system = Qnil;
|
|
4808
|
|
4809 DEFVAR_BOOL ("enable-multibyte-characters", &enable_multibyte_characters /*
|
|
4810 Non-nil means the buffer contents are regarded as multi-byte form
|
|
4811 of characters, not a binary code. This affects the display, file I/O,
|
|
4812 and behaviors of various editing commands.
|
|
4813
|
|
4814 Setting this to nil does not do anything.
|
|
4815 */ );
|
|
4816 enable_multibyte_characters = 1;
|
|
4817 }
|
|
4818
|
|
4819 void
|
371
|
4820 complex_vars_of_mule_coding (void)
|
259
|
4821 {
|
380
|
4822 staticpro (&Vcoding_system_hash_table);
|
|
4823 Vcoding_system_hash_table =
|
|
4824 make_lisp_hash_table (50, HASH_TABLE_NON_WEAK, HASH_TABLE_EQ);
|
259
|
4825
|
|
4826 the_codesys_prop_dynarr = Dynarr_new (codesys_prop);
|
|
4827
|
|
4828 #define DEFINE_CODESYS_PROP(Prop_Type, Sym) do \
|
|
4829 { \
|
|
4830 struct codesys_prop csp; \
|
|
4831 csp.sym = (Sym); \
|
|
4832 csp.prop_type = (Prop_Type); \
|
|
4833 Dynarr_add (the_codesys_prop_dynarr, csp); \
|
|
4834 } while (0)
|
|
4835
|
|
4836 DEFINE_CODESYS_PROP (CODESYS_PROP_ALL_OK, Qmnemonic);
|
|
4837 DEFINE_CODESYS_PROP (CODESYS_PROP_ALL_OK, Qeol_type);
|
|
4838 DEFINE_CODESYS_PROP (CODESYS_PROP_ALL_OK, Qeol_cr);
|
|
4839 DEFINE_CODESYS_PROP (CODESYS_PROP_ALL_OK, Qeol_crlf);
|
|
4840 DEFINE_CODESYS_PROP (CODESYS_PROP_ALL_OK, Qeol_lf);
|
|
4841 DEFINE_CODESYS_PROP (CODESYS_PROP_ALL_OK, Qpost_read_conversion);
|
|
4842 DEFINE_CODESYS_PROP (CODESYS_PROP_ALL_OK, Qpre_write_conversion);
|
|
4843 #ifdef MULE
|
|
4844 DEFINE_CODESYS_PROP (CODESYS_PROP_ISO2022, Qcharset_g0);
|
|
4845 DEFINE_CODESYS_PROP (CODESYS_PROP_ISO2022, Qcharset_g1);
|
|
4846 DEFINE_CODESYS_PROP (CODESYS_PROP_ISO2022, Qcharset_g2);
|
|
4847 DEFINE_CODESYS_PROP (CODESYS_PROP_ISO2022, Qcharset_g3);
|
|
4848 DEFINE_CODESYS_PROP (CODESYS_PROP_ISO2022, Qforce_g0_on_output);
|
|
4849 DEFINE_CODESYS_PROP (CODESYS_PROP_ISO2022, Qforce_g1_on_output);
|
|
4850 DEFINE_CODESYS_PROP (CODESYS_PROP_ISO2022, Qforce_g2_on_output);
|
|
4851 DEFINE_CODESYS_PROP (CODESYS_PROP_ISO2022, Qforce_g3_on_output);
|
|
4852 DEFINE_CODESYS_PROP (CODESYS_PROP_ISO2022, Qshort);
|
|
4853 DEFINE_CODESYS_PROP (CODESYS_PROP_ISO2022, Qno_ascii_eol);
|
|
4854 DEFINE_CODESYS_PROP (CODESYS_PROP_ISO2022, Qno_ascii_cntl);
|
|
4855 DEFINE_CODESYS_PROP (CODESYS_PROP_ISO2022, Qseven);
|
|
4856 DEFINE_CODESYS_PROP (CODESYS_PROP_ISO2022, Qlock_shift);
|
|
4857 DEFINE_CODESYS_PROP (CODESYS_PROP_ISO2022, Qno_iso6429);
|
|
4858 DEFINE_CODESYS_PROP (CODESYS_PROP_ISO2022, Qescape_quoted);
|
|
4859 DEFINE_CODESYS_PROP (CODESYS_PROP_ISO2022, Qinput_charset_conversion);
|
|
4860 DEFINE_CODESYS_PROP (CODESYS_PROP_ISO2022, Qoutput_charset_conversion);
|
|
4861
|
|
4862 DEFINE_CODESYS_PROP (CODESYS_PROP_CCL, Qencode);
|
|
4863 DEFINE_CODESYS_PROP (CODESYS_PROP_CCL, Qdecode);
|
|
4864 #endif /* MULE */
|
|
4865 /* Need to create this here or we're really screwed. */
|
|
4866 Fmake_coding_system (Qno_conversion, Qno_conversion, build_string ("No conversion"),
|
|
4867 list2 (Qmnemonic, build_string ("Noconv")));
|
|
4868
|
|
4869 Fcopy_coding_system (Fcoding_system_property (Qno_conversion, Qeol_lf),
|
|
4870 Qbinary);
|
|
4871
|
|
4872 /* Need this for bootstrapping */
|
|
4873 coding_category_system[CODING_CATEGORY_NO_CONVERSION] =
|
|
4874 Fget_coding_system (Qno_conversion);
|
|
4875 }
|