0
|
1 /* The "lrecord" structure (header of a compound lisp object).
|
|
2 Copyright (C) 1993, 1994, 1995 Free Software Foundation, Inc.
|
|
3 Copyright (C) 1996 Ben Wing.
|
|
4
|
|
5 This file is part of XEmacs.
|
|
6
|
|
7 XEmacs is free software; you can redistribute it and/or modify it
|
|
8 under the terms of the GNU General Public License as published by the
|
|
9 Free Software Foundation; either version 2, or (at your option) any
|
|
10 later version.
|
|
11
|
|
12 XEmacs is distributed in the hope that it will be useful, but WITHOUT
|
|
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
15 for more details.
|
|
16
|
|
17 You should have received a copy of the GNU General Public License
|
|
18 along with XEmacs; see the file COPYING. If not, write to
|
|
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
20 Boston, MA 02111-1307, USA. */
|
|
21
|
|
22 /* Synched up with: Not in FSF. */
|
|
23
|
398
|
24 #ifndef INCLUDED_lrecord_h_
|
|
25 #define INCLUDED_lrecord_h_
|
0
|
26
|
|
27 /* The "lrecord" type of Lisp object is used for all object types
|
|
28 other than a few simple ones. This allows many types to be
|
398
|
29 implemented but only a few bits required in a Lisp object for type
|
|
30 information. (The tradeoff is that each object has its type marked
|
|
31 in it, thereby increasing its size.) All lrecords begin with a
|
|
32 `struct lrecord_header', which identifies the lisp object type, by
|
|
33 providing an index into a table of `struct lrecord_implementation',
|
|
34 which describes the behavior of the lisp object. It also contains
|
|
35 some other data bits.
|
0
|
36
|
272
|
37 Lrecords are of two types: straight lrecords, and lcrecords.
|
|
38 Straight lrecords are used for those types of objects that have
|
|
39 their own allocation routines (typically allocated out of 2K chunks
|
|
40 of memory called `frob blocks'). These objects have a `struct
|
|
41 lrecord_header' at the top, containing only the bits needed to find
|
|
42 the lrecord_implementation for the object. There are special
|
|
43 routines in alloc.c to deal with each such object type.
|
0
|
44
|
398
|
45 Lcrecords are used for less common sorts of objects that don't do
|
|
46 their own allocation. Each such object is malloc()ed individually,
|
|
47 and the objects are chained together through a `next' pointer.
|
|
48 Lcrecords have a `struct lcrecord_header' at the top, which
|
|
49 contains a `struct lrecord_header' and a `next' pointer, and are
|
|
50 allocated using alloc_lcrecord().
|
0
|
51
|
|
52 Creating a new lcrecord type is fairly easy; just follow the
|
380
|
53 lead of some existing type (e.g. hash tables). Note that you
|
0
|
54 do not need to supply all the methods (see below); reasonable
|
|
55 defaults are provided for many of them. Alternatively, if you're
|
|
56 just looking for a way of encapsulating data (which possibly
|
|
57 could contain Lisp_Objects in it), you may well be able to use
|
|
58 the opaque type. */
|
|
59
|
|
60 struct lrecord_header
|
2
|
61 {
|
211
|
62 /* index into lrecord_implementations_table[] */
|
398
|
63 unsigned int type :8;
|
|
64 /* 1 if the object is marked during GC. */
|
|
65 unsigned int mark :1;
|
|
66 /* 1 if the object resides in read-only space */
|
|
67 unsigned int c_readonly :1;
|
|
68 /* 1 if the object is readonly from lisp */
|
|
69 unsigned int lisp_readonly :1;
|
2
|
70 };
|
211
|
71
|
243
|
72 struct lrecord_implementation;
|
398
|
73 int lrecord_type_index (const struct lrecord_implementation *implementation);
|
272
|
74
|
398
|
75 #define set_lheader_implementation(header,imp) do { \
|
380
|
76 struct lrecord_header* SLI_header = (header); \
|
398
|
77 SLI_header->type = lrecord_type_index (imp); \
|
|
78 SLI_header->mark = 0; \
|
|
79 SLI_header->c_readonly = 0; \
|
|
80 SLI_header->lisp_readonly = 0; \
|
272
|
81 } while (0)
|
0
|
82
|
|
83 struct lcrecord_header
|
2
|
84 {
|
|
85 struct lrecord_header lheader;
|
380
|
86
|
398
|
87 /* The `next' field is normally used to chain all lcrecords together
|
2
|
88 so that the GC can find (and free) all of them.
|
398
|
89 `alloc_lcrecord' threads lcrecords together.
|
185
|
90
|
380
|
91 The `next' field may be used for other purposes as long as some
|
|
92 other mechanism is provided for letting the GC do its work.
|
|
93
|
|
94 For example, the event and marker object types allocate members
|
|
95 out of memory chunks, and are able to find all unmarked members
|
|
96 by sweeping through the elements of the list of chunks. */
|
2
|
97 struct lcrecord_header *next;
|
380
|
98
|
|
99 /* The `uid' field is just for debugging/printing convenience.
|
|
100 Having this slot doesn't hurt us much spacewise, since an
|
|
101 lcrecord already has the above slots plus malloc overhead. */
|
2
|
102 unsigned int uid :31;
|
380
|
103
|
|
104 /* The `free' field is a flag that indicates whether this lcrecord
|
|
105 is on a "free list". Free lists are used to minimize the number
|
|
106 of calls to malloc() when we're repeatedly allocating and freeing
|
|
107 a number of the same sort of lcrecord. Lcrecords on a free list
|
|
108 always get marked in a different fashion, so we can use this flag
|
|
109 as a sanity check to make sure that free lists only have freed
|
|
110 lcrecords and there are no freed lcrecords elsewhere. */
|
2
|
111 unsigned int free :1;
|
|
112 };
|
0
|
113
|
|
114 /* Used for lcrecords in an lcrecord-list. */
|
|
115 struct free_lcrecord_header
|
2
|
116 {
|
|
117 struct lcrecord_header lcheader;
|
|
118 Lisp_Object chain;
|
|
119 };
|
0
|
120
|
|
121 /* see alloc.c for an explanation */
|
398
|
122 Lisp_Object this_one_is_unmarkable (Lisp_Object obj);
|
0
|
123
|
|
124 struct lrecord_implementation
|
2
|
125 {
|
398
|
126 const char *name;
|
|
127
|
|
128 /* `marker' is called at GC time, to make sure that all Lisp_Objects
|
2
|
129 pointed to by this object get properly marked. It should call
|
|
130 the mark_object function on all Lisp_Objects in the object. If
|
|
131 the return value is non-nil, it should be a Lisp_Object to be
|
|
132 marked (don't call the mark_object function explicitly on it,
|
|
133 because the GC routines will do this). Doing it this way reduces
|
|
134 recursion, so the object returned should preferably be the one
|
|
135 with the deepest level of Lisp_Object pointers. This function
|
|
136 can be NULL, meaning no GC marking is necessary. */
|
398
|
137 Lisp_Object (*marker) (Lisp_Object);
|
|
138
|
|
139 /* `printer' converts the object to a printed representation.
|
|
140 This can be NULL; in this case default_object_printer() will be
|
|
141 used instead. */
|
2
|
142 void (*printer) (Lisp_Object, Lisp_Object printcharfun, int escapeflag);
|
398
|
143
|
|
144 /* `finalizer' is called at GC time when the object is about to
|
2
|
145 be freed, and at dump time (FOR_DISKSAVE will be non-zero in this
|
|
146 case). It should perform any necessary cleanup (e.g. freeing
|
398
|
147 malloc()ed memory). This can be NULL, meaning no special
|
2
|
148 finalization is necessary.
|
185
|
149
|
398
|
150 WARNING: remember that `finalizer' is called at dump time even
|
2
|
151 though the object is not being freed. */
|
|
152 void (*finalizer) (void *header, int for_disksave);
|
398
|
153
|
2
|
154 /* This can be NULL, meaning compare objects with EQ(). */
|
|
155 int (*equal) (Lisp_Object obj1, Lisp_Object obj2, int depth);
|
398
|
156
|
|
157 /* `hash' generates hash values for use with hash tables that have
|
|
158 `equal' as their test function. This can be NULL, meaning use
|
|
159 the Lisp_Object itself as the hash. But, you must still satisfy
|
|
160 the constraint that if two objects are `equal', then they *must*
|
|
161 hash to the same value in order for hash tables to work properly.
|
|
162 This means that `hash' can be NULL only if the `equal' method is
|
|
163 also NULL. */
|
2
|
164 unsigned long (*hash) (Lisp_Object, int);
|
398
|
165
|
|
166 /* External data layout description */
|
|
167 const struct lrecord_description *description;
|
|
168
|
|
169 /* These functions allow any object type to have builtin property
|
|
170 lists that can be manipulated from the lisp level with
|
|
171 `get', `put', `remprop', and `object-plist'. */
|
2
|
172 Lisp_Object (*getprop) (Lisp_Object obj, Lisp_Object prop);
|
|
173 int (*putprop) (Lisp_Object obj, Lisp_Object prop, Lisp_Object val);
|
|
174 int (*remprop) (Lisp_Object obj, Lisp_Object prop);
|
|
175 Lisp_Object (*plist) (Lisp_Object obj);
|
0
|
176
|
398
|
177 /* Only one of `static_size' and `size_in_bytes_method' is non-0.
|
|
178 If both are 0, this type is not instantiable by alloc_lcrecord(). */
|
272
|
179 size_t static_size;
|
398
|
180 size_t (*size_in_bytes_method) (const void *header);
|
|
181
|
2
|
182 /* A unique subtag-code (dynamically) assigned to this datatype. */
|
|
183 /* (This is a pointer so the rest of this structure can be read-only.) */
|
|
184 int *lrecord_type_index;
|
398
|
185
|
2
|
186 /* A "basic" lrecord is any lrecord that's not an lcrecord, i.e.
|
|
187 one that does not have an lcrecord_header at the front and which
|
|
188 is (usually) allocated in frob blocks. We only use this flag for
|
|
189 some consistency checking, and that only when error-checking is
|
|
190 enabled. */
|
398
|
191 unsigned int basic_p :1;
|
2
|
192 };
|
0
|
193
|
398
|
194 extern const struct lrecord_implementation *lrecord_implementations_table[];
|
211
|
195
|
398
|
196 #define XRECORD_LHEADER_IMPLEMENTATION(obj) \
|
211
|
197 (lrecord_implementations_table[XRECORD_LHEADER (obj)->type])
|
398
|
198 #define LHEADER_IMPLEMENTATION(lh) (lrecord_implementations_table[(lh)->type])
|
211
|
199
|
0
|
200 extern int gc_in_progress;
|
|
201
|
398
|
202 #define MARKED_RECORD_P(obj) (gc_in_progress && XRECORD_LHEADER (obj)->mark)
|
|
203 #define MARKED_RECORD_HEADER_P(lheader) ((lheader)->mark)
|
|
204 #define MARK_RECORD_HEADER(lheader) ((void) ((lheader)->mark = 1))
|
|
205 #define UNMARK_RECORD_HEADER(lheader) ((void) ((lheader)->mark = 0))
|
211
|
206
|
|
207 #define UNMARKABLE_RECORD_HEADER_P(lheader) \
|
380
|
208 (LHEADER_IMPLEMENTATION (lheader)->marker == this_one_is_unmarkable)
|
207
|
209
|
398
|
210 #define C_READONLY_RECORD_HEADER_P(lheader) ((lheader)->c_readonly)
|
|
211 #define LISP_READONLY_RECORD_HEADER_P(lheader) ((lheader)->lisp_readonly)
|
|
212 #define SET_C_READONLY_RECORD_HEADER(lheader) \
|
|
213 ((void) ((lheader)->c_readonly = (lheader)->lisp_readonly = 1))
|
|
214 #define SET_LISP_READONLY_RECORD_HEADER(lheader) \
|
|
215 ((void) ((lheader)->lisp_readonly = 1))
|
|
216
|
|
217 /* External description stuff
|
|
218
|
|
219 A lrecord external description is an array of values. The first
|
|
220 value of each line is a type, the second the offset in the lrecord
|
|
221 structure. Following values are parameters, their presence, type
|
|
222 and number is type-dependant.
|
|
223
|
|
224 The description ends with a "XD_END" or "XD_SPECIFIER_END" record.
|
|
225
|
|
226 Some example descriptions :
|
|
227
|
|
228 static const struct lrecord_description cons_description[] = {
|
|
229 { XD_LISP_OBJECT, offsetof (Lisp_Cons, car) },
|
|
230 { XD_LISP_OBJECT, offsetof (Lisp_Cons, cdr) },
|
|
231 { XD_END }
|
|
232 };
|
|
233
|
|
234 Which means "two lisp objects starting at the 'car' and 'cdr' elements"
|
|
235
|
|
236 static const struct lrecord_description string_description[] = {
|
|
237 { XD_BYTECOUNT, offsetof (Lisp_String, size) },
|
|
238 { XD_OPAQUE_DATA_PTR, offsetof (Lisp_String, data), XD_INDIRECT(0, 1) },
|
|
239 { XD_LISP_OBJECT, offsetof (Lisp_String, plist) },
|
|
240 { XD_END }
|
|
241 };
|
|
242 "A pointer to string data at 'data', the size of the pointed array being the value
|
|
243 of the size variable plus 1, and one lisp object at 'plist'"
|
|
244
|
|
245 The existing types :
|
|
246 XD_LISP_OBJECT
|
|
247 A Lisp object. This is also the type to use for pointers to other lrecords.
|
|
248
|
|
249 XD_LISP_OBJECT_ARRAY
|
|
250 An array of Lisp objects or pointers to lrecords.
|
|
251 The third element is the count.
|
|
252
|
|
253 XD_LO_RESET_NIL
|
|
254 Lisp objects which will be reset to Qnil when dumping. Useful for cleaning
|
|
255 up caches.
|
|
256
|
|
257 XD_LO_LINK
|
|
258 Link in a linked list of objects of the same type.
|
|
259
|
|
260 XD_OPAQUE_PTR
|
|
261 Pointer to undumpable data. Must be NULL when dumping.
|
|
262
|
|
263 XD_STRUCT_PTR
|
|
264 Pointer to described struct. Parameters are number of structures and
|
|
265 struct_description.
|
|
266
|
|
267 XD_OPAQUE_DATA_PTR
|
|
268 Pointer to dumpable opaque data. Parameter is the size of the data.
|
|
269 Pointed data must be relocatable without changes.
|
|
270
|
|
271 XD_C_STRING
|
|
272 Pointer to a C string.
|
|
273
|
|
274 XD_DOC_STRING
|
|
275 Pointer to a doc string (C string if positive, opaque value if negative)
|
|
276
|
|
277 XD_INT_RESET
|
|
278 An integer which will be reset to a given value in the dump file.
|
|
279
|
|
280
|
|
281 XD_SIZE_T
|
|
282 size_t value. Used for counts.
|
|
283
|
|
284 XD_INT
|
|
285 int value. Used for counts.
|
|
286
|
|
287 XD_LONG
|
|
288 long value. Used for counts.
|
|
289
|
|
290 XD_BYTECOUNT
|
|
291 bytecount value. Used for counts.
|
|
292
|
|
293 XD_END
|
|
294 Special type indicating the end of the array.
|
|
295
|
|
296 XD_SPECIFIER_END
|
|
297 Special type indicating the end of the array for a specifier. Extra
|
|
298 description is going to be fetched from the specifier methods.
|
|
299
|
|
300
|
|
301 Special macros:
|
|
302 XD_INDIRECT(line, delta)
|
|
303 Usable where a "count" or "size" is requested. Gives the value of
|
|
304 the element which is at line number 'line' in the description (count
|
|
305 starts at zero) and adds delta to it.
|
|
306 */
|
|
307
|
|
308 enum lrecord_description_type {
|
|
309 XD_LISP_OBJECT_ARRAY,
|
|
310 XD_LISP_OBJECT,
|
|
311 XD_LO_RESET_NIL,
|
|
312 XD_LO_LINK,
|
|
313 XD_OPAQUE_PTR,
|
|
314 XD_STRUCT_PTR,
|
|
315 XD_OPAQUE_DATA_PTR,
|
|
316 XD_C_STRING,
|
|
317 XD_DOC_STRING,
|
|
318 XD_INT_RESET,
|
|
319 XD_SIZE_T,
|
|
320 XD_INT,
|
|
321 XD_LONG,
|
|
322 XD_BYTECOUNT,
|
|
323 XD_END,
|
|
324 XD_SPECIFIER_END
|
|
325 };
|
|
326
|
|
327 struct lrecord_description {
|
|
328 enum lrecord_description_type type;
|
|
329 int offset;
|
|
330 EMACS_INT data1;
|
|
331 const struct struct_description *data2;
|
|
332 };
|
|
333
|
|
334 struct struct_description {
|
|
335 size_t size;
|
|
336 const struct lrecord_description *description;
|
|
337 };
|
|
338
|
|
339 #define XD_INDIRECT(val, delta) (-1-((val)|(delta<<8)))
|
|
340
|
|
341 #define XD_IS_INDIRECT(code) (code<0)
|
|
342 #define XD_INDIRECT_VAL(code) ((-1-code) & 255)
|
|
343 #define XD_INDIRECT_DELTA(code) (((-1-code)>>8) & 255)
|
|
344
|
|
345 #define XD_DYNARR_DESC(base_type, sub_desc) \
|
|
346 { XD_STRUCT_PTR, offsetof (base_type, base), XD_INDIRECT(1, 0), sub_desc }, \
|
|
347 { XD_INT, offsetof (base_type, cur) }, \
|
|
348 { XD_INT_RESET, offsetof (base_type, max), XD_INDIRECT(1, 0) }
|
|
349
|
0
|
350 /* Declaring the following structures as const puts them in the
|
|
351 text (read-only) segment, which makes debugging inconvenient
|
|
352 because this segment is not mapped when processing a core-
|
|
353 dump file */
|
|
354
|
|
355 #ifdef DEBUG_XEMACS
|
|
356 #define CONST_IF_NOT_DEBUG
|
|
357 #else
|
398
|
358 #define CONST_IF_NOT_DEBUG const
|
0
|
359 #endif
|
|
360
|
|
361 /* DEFINE_LRECORD_IMPLEMENTATION is for objects with constant size.
|
|
362 DEFINE_LRECORD_SEQUENCE_IMPLEMENTATION is for objects whose size varies.
|
|
363 */
|
|
364
|
|
365 #if defined (ERROR_CHECK_TYPECHECK)
|
|
366 # define DECLARE_ERROR_CHECK_TYPECHECK(c_name, structtype)
|
|
367 #else
|
|
368 # define DECLARE_ERROR_CHECK_TYPECHECK(c_name, structtype)
|
|
369 #endif
|
|
370
|
398
|
371 #define DEFINE_BASIC_LRECORD_IMPLEMENTATION(name,c_name,marker,printer,nuker,equal,hash,desc,structtype) \
|
|
372 DEFINE_BASIC_LRECORD_IMPLEMENTATION_WITH_PROPS(name,c_name,marker,printer,nuker,equal,hash,desc,0,0,0,0,structtype)
|
0
|
373
|
398
|
374 #define DEFINE_BASIC_LRECORD_IMPLEMENTATION_WITH_PROPS(name,c_name,marker,printer,nuker,equal,hash,desc,getprop,putprop,remprop,plist,structtype) \
|
|
375 MAKE_LRECORD_IMPLEMENTATION(name,c_name,marker,printer,nuker,equal,hash,desc,getprop,putprop,remprop,plist,sizeof(structtype),0,1,structtype)
|
0
|
376
|
398
|
377 #define DEFINE_LRECORD_IMPLEMENTATION(name,c_name,marker,printer,nuker,equal,hash,desc,structtype) \
|
|
378 DEFINE_LRECORD_IMPLEMENTATION_WITH_PROPS(name,c_name,marker,printer,nuker,equal,hash,desc,0,0,0,0,structtype)
|
0
|
379
|
398
|
380 #define DEFINE_LRECORD_IMPLEMENTATION_WITH_PROPS(name,c_name,marker,printer,nuker,equal,hash,desc,getprop,putprop,remprop,plist,structtype) \
|
|
381 MAKE_LRECORD_IMPLEMENTATION(name,c_name,marker,printer,nuker,equal,hash,desc,getprop,putprop,remprop,plist,sizeof (structtype),0,0,structtype)
|
|
382
|
|
383 #define DEFINE_LRECORD_SEQUENCE_IMPLEMENTATION(name,c_name,marker,printer,nuker,equal,hash,desc,sizer,structtype) \
|
|
384 DEFINE_LRECORD_SEQUENCE_IMPLEMENTATION_WITH_PROPS(name,c_name,marker,printer,nuker,equal,hash,desc,0,0,0,0,sizer,structtype)
|
0
|
385
|
398
|
386 #define DEFINE_BASIC_LRECORD_SEQUENCE_IMPLEMENTATION(name,c_name,marker,printer,nuker,equal,hash,desc,sizer,structtype) \
|
|
387 MAKE_LRECORD_IMPLEMENTATION(name,c_name,marker,printer,nuker,equal,hash,desc,0,0,0,0,0,sizer,1,structtype)
|
272
|
388
|
398
|
389 #define DEFINE_LRECORD_SEQUENCE_IMPLEMENTATION_WITH_PROPS(name,c_name,marker,printer,nuker,equal,hash,desc,getprop,putprop,remprop,plist,sizer,structtype) \
|
|
390 MAKE_LRECORD_IMPLEMENTATION(name,c_name,marker,printer,nuker,equal,hash,desc,getprop,putprop,remprop,plist,0,sizer,0,structtype) \
|
272
|
391
|
398
|
392 #define MAKE_LRECORD_IMPLEMENTATION(name,c_name,marker,printer,nuker,equal,hash,desc,getprop,putprop,remprop,plist,size,sizer,basic_p,structtype) \
|
0
|
393 DECLARE_ERROR_CHECK_TYPECHECK(c_name, structtype) \
|
|
394 static int lrecord_##c_name##_lrecord_type_index; \
|
398
|
395 CONST_IF_NOT_DEBUG struct lrecord_implementation lrecord_##c_name = \
|
|
396 { name, marker, printer, nuker, equal, hash, desc, \
|
|
397 getprop, putprop, remprop, plist, size, sizer, \
|
|
398 &(lrecord_##c_name##_lrecord_type_index), basic_p } \
|
0
|
399
|
398
|
400 #define LRECORDP(a) (XTYPE (a) == Lisp_Type_Record)
|
0
|
401 #define XRECORD_LHEADER(a) ((struct lrecord_header *) XPNTR (a))
|
211
|
402
|
398
|
403 #define RECORD_TYPEP(x, ty) \
|
211
|
404 (LRECORDP (x) && \
|
|
405 lrecord_implementations_table[XRECORD_LHEADER (x)->type] == (ty))
|
0
|
406
|
|
407 /* NOTE: the DECLARE_LRECORD() must come before the associated
|
|
408 DEFINE_LRECORD_*() or you will get compile errors.
|
|
409
|
|
410 Furthermore, you always need to put the DECLARE_LRECORD() in a header
|
|
411 file, and make sure the header file is included in inline.c, even
|
|
412 if the type is private to a particular file. Otherwise, you will
|
|
413 get undefined references for the error_check_foo() inline function
|
|
414 under GCC. */
|
|
415
|
|
416 #ifdef ERROR_CHECK_TYPECHECK
|
|
417
|
2
|
418 # define DECLARE_LRECORD(c_name, structtype) \
|
|
419 extern CONST_IF_NOT_DEBUG struct lrecord_implementation \
|
398
|
420 lrecord_##c_name; \
|
380
|
421 INLINE structtype *error_check_##c_name (Lisp_Object obj); \
|
2
|
422 INLINE structtype * \
|
380
|
423 error_check_##c_name (Lisp_Object obj) \
|
2
|
424 { \
|
398
|
425 assert (RECORD_TYPEP (obj, &lrecord_##c_name)); \
|
380
|
426 return (structtype *) XPNTR (obj); \
|
2
|
427 } \
|
0
|
428 extern Lisp_Object Q##c_name##p
|
|
429
|
2
|
430 # define DECLARE_NONRECORD(c_name, type_enum, structtype) \
|
380
|
431 INLINE structtype *error_check_##c_name (Lisp_Object obj); \
|
2
|
432 INLINE structtype * \
|
380
|
433 error_check_##c_name (Lisp_Object obj) \
|
2
|
434 { \
|
398
|
435 assert (XTYPE (obj) == type_enum); \
|
380
|
436 return (structtype *) XPNTR (obj); \
|
2
|
437 } \
|
0
|
438 extern Lisp_Object Q##c_name##p
|
|
439
|
|
440 # define XRECORD(x, c_name, structtype) error_check_##c_name (x)
|
|
441 # define XNONRECORD(x, c_name, type_enum, structtype) error_check_##c_name (x)
|
|
442
|
2
|
443 # define XSETRECORD(var, p, c_name) do \
|
|
444 { \
|
185
|
445 XSETOBJ (var, Lisp_Type_Record, p); \
|
398
|
446 assert (RECORD_TYPEP (var, &lrecord_##c_name)); \
|
0
|
447 } while (0)
|
|
448
|
|
449 #else /* not ERROR_CHECK_TYPECHECK */
|
|
450
|
2
|
451 # define DECLARE_LRECORD(c_name, structtype) \
|
|
452 extern Lisp_Object Q##c_name##p; \
|
|
453 extern CONST_IF_NOT_DEBUG struct lrecord_implementation \
|
398
|
454 lrecord_##c_name
|
2
|
455 # define DECLARE_NONRECORD(c_name, type_enum, structtype) \
|
0
|
456 extern Lisp_Object Q##c_name##p
|
|
457 # define XRECORD(x, c_name, structtype) ((structtype *) XPNTR (x))
|
2
|
458 # define XNONRECORD(x, c_name, type_enum, structtype) \
|
0
|
459 ((structtype *) XPNTR (x))
|
185
|
460 # define XSETRECORD(var, p, c_name) XSETOBJ (var, Lisp_Type_Record, p)
|
0
|
461
|
|
462 #endif /* not ERROR_CHECK_TYPECHECK */
|
|
463
|
398
|
464 #define RECORDP(x, c_name) RECORD_TYPEP (x, &lrecord_##c_name)
|
0
|
465
|
|
466 /* Note: we now have two different kinds of type-checking macros.
|
|
467 The "old" kind has now been renamed CONCHECK_foo. The reason for
|
|
468 this is that the CONCHECK_foo macros signal a continuable error,
|
185
|
469 allowing the user (through debug-on-error) to substitute a different
|
0
|
470 value and return from the signal, which causes the lvalue argument
|
|
471 to get changed. Quite a lot of code would crash if that happened,
|
|
472 because it did things like
|
|
473
|
|
474 foo = XCAR (list);
|
|
475 CHECK_STRING (foo);
|
|
476
|
|
477 and later on did XSTRING (XCAR (list)), assuming that the type
|
|
478 is correct (when it might be wrong, if the user substituted a
|
|
479 correct value in the debugger).
|
|
480
|
|
481 To get around this, I made all the CHECK_foo macros signal a
|
|
482 non-continuable error. Places where a continuable error is OK
|
|
483 (generally only when called directly on the argument of a Lisp
|
|
484 primitive) should be changed to use CONCHECK().
|
|
485
|
|
486 FSF Emacs does not have this problem because RMS took the cheesy
|
|
487 way out and disabled returning from a signal entirely. */
|
|
488
|
185
|
489 #define CONCHECK_RECORD(x, c_name) do { \
|
398
|
490 if (!RECORD_TYPEP (x, &lrecord_##c_name)) \
|
185
|
491 x = wrong_type_argument (Q##c_name##p, x); \
|
|
492 } while (0)
|
|
493 #define CONCHECK_NONRECORD(x, lisp_enum, predicate) do {\
|
|
494 if (XTYPE (x) != lisp_enum) \
|
|
495 x = wrong_type_argument (predicate, x); \
|
|
496 } while (0)
|
|
497 #define CHECK_RECORD(x, c_name) do { \
|
398
|
498 if (!RECORD_TYPEP (x, &lrecord_##c_name)) \
|
185
|
499 dead_wrong_type_argument (Q##c_name##p, x); \
|
|
500 } while (0)
|
|
501 #define CHECK_NONRECORD(x, lisp_enum, predicate) do { \
|
|
502 if (XTYPE (x) != lisp_enum) \
|
|
503 dead_wrong_type_argument (predicate, x); \
|
|
504 } while (0)
|
0
|
505
|
398
|
506 void *alloc_lcrecord (size_t size, const struct lrecord_implementation *);
|
0
|
507
|
185
|
508 #define alloc_lcrecord_type(type, lrecord_implementation) \
|
|
509 ((type *) alloc_lcrecord (sizeof (type), lrecord_implementation))
|
|
510
|
0
|
511 /* Copy the data from one lcrecord structure into another, but don't
|
|
512 overwrite the header information. */
|
|
513
|
2
|
514 #define copy_lcrecord(dst, src) \
|
398
|
515 memcpy ((char *) (dst) + sizeof (struct lcrecord_header), \
|
|
516 (char *) (src) + sizeof (struct lcrecord_header), \
|
|
517 sizeof (*(dst)) - sizeof (struct lcrecord_header))
|
0
|
518
|
2
|
519 #define zero_lcrecord(lcr) \
|
398
|
520 memset ((char *) (lcr) + sizeof (struct lcrecord_header), 0, \
|
|
521 sizeof (*(lcr)) - sizeof (struct lcrecord_header))
|
0
|
522
|
398
|
523 #endif /* INCLUDED_lrecord_h_ */
|