0
|
1 /* Storage allocation and gc for XEmacs Lisp interpreter.
|
272
|
2 Copyright (C) 1985-1998 Free Software Foundation, Inc.
|
0
|
3 Copyright (C) 1995 Sun Microsystems, Inc.
|
|
4 Copyright (C) 1995, 1996 Ben Wing.
|
|
5
|
|
6 This file is part of XEmacs.
|
|
7
|
|
8 XEmacs is free software; you can redistribute it and/or modify it
|
|
9 under the terms of the GNU General Public License as published by the
|
|
10 Free Software Foundation; either version 2, or (at your option) any
|
|
11 later version.
|
|
12
|
|
13 XEmacs is distributed in the hope that it will be useful, but WITHOUT
|
|
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
16 for more details.
|
|
17
|
|
18 You should have received a copy of the GNU General Public License
|
|
19 along with XEmacs; see the file COPYING. If not, write to
|
|
20 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
21 Boston, MA 02111-1307, USA. */
|
|
22
|
|
23 /* Synched up with: FSF 19.28, Mule 2.0. Substantially different from
|
|
24 FSF. */
|
|
25
|
|
26 /* Authorship:
|
|
27
|
|
28 FSF: Original version; a long time ago.
|
|
29 Mly: Significantly rewritten to use new 3-bit tags and
|
|
30 nicely abstracted object definitions, for 19.8.
|
|
31 JWZ: Improved code to keep track of purespace usage and
|
|
32 issue nice purespace and GC stats.
|
|
33 Ben Wing: Cleaned up frob-block lrecord code, added error-checking
|
|
34 and various changes for Mule, for 19.12.
|
|
35 Added bit vectors for 19.13.
|
|
36 Added lcrecord lists for 19.14.
|
255
|
37 slb: Lots of work on the purification and dump time code.
|
|
38 Synched Doug Lea malloc support from Emacs 20.2.
|
398
|
39 og: Killed the purespace. Portable dumper.
|
0
|
40 */
|
|
41
|
|
42 #include <config.h>
|
|
43 #include "lisp.h"
|
|
44
|
|
45 #include "backtrace.h"
|
|
46 #include "buffer.h"
|
|
47 #include "bytecode.h"
|
70
|
48 #include "chartab.h"
|
0
|
49 #include "device.h"
|
|
50 #include "elhash.h"
|
|
51 #include "events.h"
|
|
52 #include "extents.h"
|
|
53 #include "frame.h"
|
|
54 #include "glyphs.h"
|
380
|
55 #include "opaque.h"
|
0
|
56 #include "redisplay.h"
|
|
57 #include "specifier.h"
|
272
|
58 #include "sysfile.h"
|
0
|
59 #include "window.h"
|
398
|
60 #include "console-stream.h"
|
375
|
61
|
255
|
62 #ifdef DOUG_LEA_MALLOC
|
|
63 #include <malloc.h>
|
|
64 #endif
|
|
65
|
398
|
66 #ifdef HAVE_MMAP
|
|
67 #include <unistd.h>
|
|
68 #include <sys/mman.h>
|
|
69 #endif
|
|
70
|
|
71 #ifdef PDUMP
|
|
72 typedef struct
|
|
73 {
|
|
74 const struct lrecord_description *desc;
|
|
75 int count;
|
|
76 } pdump_reloc_table;
|
|
77
|
|
78 static char *pdump_rt_list = 0;
|
|
79 #endif
|
|
80
|
272
|
81 EXFUN (Fgarbage_collect, 0);
|
|
82
|
255
|
83 #if 0 /* this is _way_ too slow to be part of the standard debug options */
|
|
84 #if defined(DEBUG_XEMACS) && defined(MULE)
|
|
85 #define VERIFY_STRING_CHARS_INTEGRITY
|
|
86 #endif
|
|
87 #endif
|
0
|
88
|
|
89 /* Define this to use malloc/free with no freelist for all datatypes,
|
|
90 the hope being that some debugging tools may help detect
|
|
91 freed memory references */
|
177
|
92 #ifdef USE_DEBUG_MALLOC /* Taking the above comment at face value -slb */
|
|
93 #include <dmalloc.h>
|
|
94 #define ALLOC_NO_POOLS
|
|
95 #endif
|
0
|
96
|
|
97 #ifdef DEBUG_XEMACS
|
380
|
98 static int debug_allocation;
|
|
99 static int debug_allocation_backtrace_length;
|
0
|
100 #endif
|
|
101
|
|
102 /* Number of bytes of consing done since the last gc */
|
|
103 EMACS_INT consing_since_gc;
|
|
104 #define INCREMENT_CONS_COUNTER_1(size) (consing_since_gc += (size))
|
|
105
|
|
106 #define debug_allocation_backtrace() \
|
|
107 do { \
|
|
108 if (debug_allocation_backtrace_length > 0) \
|
|
109 debug_short_backtrace (debug_allocation_backtrace_length); \
|
|
110 } while (0)
|
|
111
|
|
112 #ifdef DEBUG_XEMACS
|
|
113 #define INCREMENT_CONS_COUNTER(foosize, type) \
|
|
114 do { \
|
|
115 if (debug_allocation) \
|
|
116 { \
|
|
117 stderr_out ("allocating %s (size %ld)\n", type, (long)foosize); \
|
|
118 debug_allocation_backtrace (); \
|
|
119 } \
|
|
120 INCREMENT_CONS_COUNTER_1 (foosize); \
|
|
121 } while (0)
|
|
122 #define NOSEEUM_INCREMENT_CONS_COUNTER(foosize, type) \
|
|
123 do { \
|
|
124 if (debug_allocation > 1) \
|
|
125 { \
|
|
126 stderr_out ("allocating noseeum %s (size %ld)\n", type, (long)foosize); \
|
|
127 debug_allocation_backtrace (); \
|
|
128 } \
|
|
129 INCREMENT_CONS_COUNTER_1 (foosize); \
|
|
130 } while (0)
|
|
131 #else
|
|
132 #define INCREMENT_CONS_COUNTER(size, type) INCREMENT_CONS_COUNTER_1 (size)
|
|
133 #define NOSEEUM_INCREMENT_CONS_COUNTER(size, type) \
|
|
134 INCREMENT_CONS_COUNTER_1 (size)
|
|
135 #endif
|
|
136
|
380
|
137 #define DECREMENT_CONS_COUNTER(size) do { \
|
|
138 consing_since_gc -= (size); \
|
|
139 if (consing_since_gc < 0) \
|
|
140 consing_since_gc = 0; \
|
|
141 } while (0)
|
0
|
142
|
|
143 /* Number of bytes of consing since gc before another gc should be done. */
|
|
144 EMACS_INT gc_cons_threshold;
|
|
145
|
|
146 /* Nonzero during gc */
|
|
147 int gc_in_progress;
|
|
148
|
|
149 /* Number of times GC has happened at this level or below.
|
|
150 * Level 0 is most volatile, contrary to usual convention.
|
|
151 * (Of course, there's only one level at present) */
|
|
152 EMACS_INT gc_generation_number[1];
|
|
153
|
|
154 /* This is just for use by the printer, to allow things to print uniquely */
|
|
155 static int lrecord_uid_counter;
|
|
156
|
|
157 /* Nonzero when calling certain hooks or doing other things where
|
|
158 a GC would be bad */
|
|
159 int gc_currently_forbidden;
|
|
160
|
|
161 /* Hooks. */
|
|
162 Lisp_Object Vpre_gc_hook, Qpre_gc_hook;
|
|
163 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
|
|
164
|
|
165 /* "Garbage collecting" */
|
|
166 Lisp_Object Vgc_message;
|
|
167 Lisp_Object Vgc_pointer_glyph;
|
398
|
168 static const char gc_default_message[] = "Garbage collecting";
|
0
|
169 Lisp_Object Qgarbage_collecting;
|
|
170
|
|
171 #ifndef VIRT_ADDR_VARIES
|
|
172 extern
|
|
173 #endif /* VIRT_ADDR_VARIES */
|
|
174 EMACS_INT malloc_sbrk_used;
|
|
175
|
|
176 #ifndef VIRT_ADDR_VARIES
|
|
177 extern
|
|
178 #endif /* VIRT_ADDR_VARIES */
|
|
179 EMACS_INT malloc_sbrk_unused;
|
|
180
|
398
|
181 /* Non-zero means we're in the process of doing the dump */
|
0
|
182 int purify_flag;
|
|
183
|
|
184 #ifdef ERROR_CHECK_TYPECHECK
|
|
185
|
|
186 Error_behavior ERROR_ME, ERROR_ME_NOT, ERROR_ME_WARN;
|
|
187
|
|
188 #endif
|
|
189
|
|
190 int
|
398
|
191 c_readonly (Lisp_Object obj)
|
0
|
192 {
|
398
|
193 return POINTER_TYPE_P (XTYPE (obj)) && C_READONLY (obj);
|
0
|
194 }
|
|
195
|
398
|
196 int
|
|
197 lisp_readonly (Lisp_Object obj)
|
0
|
198 {
|
398
|
199 return POINTER_TYPE_P (XTYPE (obj)) && LISP_READONLY (obj);
|
183
|
200 }
|
0
|
201
|
|
202
|
|
203 /* Maximum amount of C stack to save when a GC happens. */
|
|
204
|
|
205 #ifndef MAX_SAVE_STACK
|
380
|
206 #define MAX_SAVE_STACK 0 /* 16000 */
|
0
|
207 #endif
|
|
208
|
|
209 /* Non-zero means ignore malloc warnings. Set during initialization. */
|
|
210 int ignore_malloc_warnings;
|
|
211
|
|
212
|
|
213 static void *breathing_space;
|
|
214
|
|
215 void
|
|
216 release_breathing_space (void)
|
|
217 {
|
183
|
218 if (breathing_space)
|
0
|
219 {
|
|
220 void *tmp = breathing_space;
|
|
221 breathing_space = 0;
|
|
222 xfree (tmp);
|
|
223 }
|
|
224 }
|
|
225
|
|
226 /* malloc calls this if it finds we are near exhausting storage */
|
|
227 void
|
398
|
228 malloc_warning (const char *str)
|
0
|
229 {
|
|
230 if (ignore_malloc_warnings)
|
|
231 return;
|
|
232
|
|
233 warn_when_safe
|
|
234 (Qmemory, Qcritical,
|
|
235 "%s\n"
|
|
236 "Killing some buffers may delay running out of memory.\n"
|
|
237 "However, certainly by the time you receive the 95%% warning,\n"
|
|
238 "you should clean up, kill this Emacs, and start a new one.",
|
|
239 str);
|
|
240 }
|
|
241
|
|
242 /* Called if malloc returns zero */
|
|
243 DOESNT_RETURN
|
|
244 memory_full (void)
|
|
245 {
|
|
246 /* Force a GC next time eval is called.
|
|
247 It's better to loop garbage-collecting (we might reclaim enough
|
|
248 to win) than to loop beeping and barfing "Memory exhausted"
|
|
249 */
|
|
250 consing_since_gc = gc_cons_threshold + 1;
|
|
251 release_breathing_space ();
|
|
252
|
278
|
253 /* Flush some histories which might conceivably contain garbalogical
|
|
254 inhibitors. */
|
0
|
255 if (!NILP (Fboundp (Qvalues)))
|
|
256 Fset (Qvalues, Qnil);
|
|
257 Vcommand_history = Qnil;
|
|
258
|
|
259 error ("Memory exhausted");
|
|
260 }
|
|
261
|
|
262 /* like malloc and realloc but check for no memory left, and block input. */
|
|
263
|
177
|
264 #undef xmalloc
|
0
|
265 void *
|
185
|
266 xmalloc (size_t size)
|
0
|
267 {
|
386
|
268 void *val = malloc (size);
|
0
|
269
|
|
270 if (!val && (size != 0)) memory_full ();
|
|
271 return val;
|
|
272 }
|
|
273
|
392
|
274 #undef xcalloc
|
380
|
275 static void *
|
|
276 xcalloc (size_t nelem, size_t elsize)
|
|
277 {
|
386
|
278 void *val = calloc (nelem, elsize);
|
380
|
279
|
|
280 if (!val && (nelem != 0)) memory_full ();
|
|
281 return val;
|
|
282 }
|
|
283
|
0
|
284 void *
|
185
|
285 xmalloc_and_zero (size_t size)
|
0
|
286 {
|
380
|
287 return xcalloc (size, sizeof (char));
|
0
|
288 }
|
|
289
|
177
|
290 #undef xrealloc
|
0
|
291 void *
|
185
|
292 xrealloc (void *block, size_t size)
|
0
|
293 {
|
|
294 /* We must call malloc explicitly when BLOCK is 0, since some
|
|
295 reallocs don't do this. */
|
386
|
296 void *val = block ? realloc (block, size) : malloc (size);
|
0
|
297
|
|
298 if (!val && (size != 0)) memory_full ();
|
|
299 return val;
|
|
300 }
|
|
301
|
|
302 void
|
|
303 #ifdef ERROR_CHECK_MALLOC
|
|
304 xfree_1 (void *block)
|
|
305 #else
|
|
306 xfree (void *block)
|
|
307 #endif
|
|
308 {
|
|
309 #ifdef ERROR_CHECK_MALLOC
|
|
310 /* Unbelievably, calling free() on 0xDEADBEEF doesn't cause an
|
|
311 error until much later on for many system mallocs, such as
|
|
312 the one that comes with Solaris 2.3. FMH!! */
|
|
313 assert (block != (void *) 0xDEADBEEF);
|
|
314 assert (block);
|
183
|
315 #endif /* ERROR_CHECK_MALLOC */
|
0
|
316 free (block);
|
|
317 }
|
|
318
|
272
|
319 #ifdef ERROR_CHECK_GC
|
|
320
|
|
321 #if SIZEOF_INT == 4
|
|
322 typedef unsigned int four_byte_t;
|
|
323 #elif SIZEOF_LONG == 4
|
|
324 typedef unsigned long four_byte_t;
|
|
325 #elif SIZEOF_SHORT == 4
|
|
326 typedef unsigned short four_byte_t;
|
0
|
327 #else
|
|
328 What kind of strange-ass system are we running on?
|
|
329 #endif
|
|
330
|
|
331 static void
|
272
|
332 deadbeef_memory (void *ptr, size_t size)
|
0
|
333 {
|
272
|
334 four_byte_t *ptr4 = (four_byte_t *) ptr;
|
|
335 size_t beefs = size >> 2;
|
|
336
|
|
337 /* In practice, size will always be a multiple of four. */
|
|
338 while (beefs--)
|
|
339 (*ptr4++) = 0xDEADBEEF;
|
0
|
340 }
|
|
341
|
183
|
342 #else /* !ERROR_CHECK_GC */
|
|
343
|
0
|
344
|
|
345 #define deadbeef_memory(ptr, size)
|
|
346
|
183
|
347 #endif /* !ERROR_CHECK_GC */
|
0
|
348
|
177
|
349 #undef xstrdup
|
0
|
350 char *
|
398
|
351 xstrdup (const char *str)
|
0
|
352 {
|
|
353 int len = strlen (str) + 1; /* for stupid terminating 0 */
|
|
354
|
185
|
355 void *val = xmalloc (len);
|
0
|
356 if (val == 0) return 0;
|
398
|
357 return (char *) memcpy (val, str, len);
|
0
|
358 }
|
|
359
|
|
360 #ifdef NEED_STRDUP
|
|
361 char *
|
398
|
362 strdup (const char *s)
|
0
|
363 {
|
|
364 return xstrdup (s);
|
|
365 }
|
|
366 #endif /* NEED_STRDUP */
|
|
367
|
|
368
|
|
369 static void *
|
272
|
370 allocate_lisp_storage (size_t size)
|
0
|
371 {
|
398
|
372 return xmalloc (size);
|
0
|
373 }
|
|
374
|
|
375
|
398
|
376 /* lcrecords are chained together through their "next" field.
|
|
377 After doing the mark phase, GC will walk this linked list
|
|
378 and free any lcrecord which hasn't been marked. */
|
0
|
379 static struct lcrecord_header *all_lcrecords;
|
|
380
|
|
381 void *
|
398
|
382 alloc_lcrecord (size_t size, const struct lrecord_implementation *implementation)
|
0
|
383 {
|
|
384 struct lcrecord_header *lcheader;
|
|
385
|
398
|
386 #ifdef ERROR_CHECK_TYPECHECK
|
0
|
387 if (implementation->static_size == 0)
|
380
|
388 assert (implementation->size_in_bytes_method);
|
|
389 else
|
|
390 assert (implementation->static_size == size);
|
398
|
391
|
|
392 assert (! implementation->basic_p);
|
|
393
|
|
394 if (implementation->hash == NULL)
|
|
395 assert (implementation->equal == NULL);
|
380
|
396 #endif
|
0
|
397
|
185
|
398 lcheader = (struct lcrecord_header *) allocate_lisp_storage (size);
|
380
|
399 set_lheader_implementation (&(lcheader->lheader), implementation);
|
0
|
400 lcheader->next = all_lcrecords;
|
|
401 #if 1 /* mly prefers to see small ID numbers */
|
|
402 lcheader->uid = lrecord_uid_counter++;
|
|
403 #else /* jwz prefers to see real addrs */
|
|
404 lcheader->uid = (int) &lcheader;
|
|
405 #endif
|
|
406 lcheader->free = 0;
|
|
407 all_lcrecords = lcheader;
|
|
408 INCREMENT_CONS_COUNTER (size, implementation->name);
|
173
|
409 return lcheader;
|
0
|
410 }
|
|
411
|
|
412 #if 0 /* Presently unused */
|
|
413 /* Very, very poor man's EGC?
|
|
414 * This may be slow and thrash pages all over the place.
|
|
415 * Only call it if you really feel you must (and if the
|
|
416 * lrecord was fairly recently allocated).
|
|
417 * Otherwise, just let the GC do its job -- that's what it's there for
|
|
418 */
|
|
419 void
|
|
420 free_lcrecord (struct lcrecord_header *lcrecord)
|
|
421 {
|
|
422 if (all_lcrecords == lcrecord)
|
|
423 {
|
|
424 all_lcrecords = lcrecord->next;
|
|
425 }
|
|
426 else
|
|
427 {
|
|
428 struct lrecord_header *header = all_lcrecords;
|
|
429 for (;;)
|
|
430 {
|
|
431 struct lrecord_header *next = header->next;
|
|
432 if (next == lcrecord)
|
|
433 {
|
|
434 header->next = lrecord->next;
|
|
435 break;
|
|
436 }
|
|
437 else if (next == 0)
|
|
438 abort ();
|
|
439 else
|
|
440 header = next;
|
|
441 }
|
|
442 }
|
|
443 if (lrecord->implementation->finalizer)
|
380
|
444 lrecord->implementation->finalizer (lrecord, 0);
|
0
|
445 xfree (lrecord);
|
|
446 return;
|
|
447 }
|
|
448 #endif /* Unused */
|
|
449
|
|
450
|
|
451 static void
|
|
452 disksave_object_finalization_1 (void)
|
|
453 {
|
|
454 struct lcrecord_header *header;
|
|
455
|
|
456 for (header = all_lcrecords; header; header = header->next)
|
|
457 {
|
211
|
458 if (LHEADER_IMPLEMENTATION(&header->lheader)->finalizer &&
|
|
459 !header->free)
|
|
460 ((LHEADER_IMPLEMENTATION(&header->lheader)->finalizer)
|
|
461 (header, 1));
|
0
|
462 }
|
|
463 }
|
183
|
464
|
0
|
465 /* Semi-kludge -- lrecord_symbol_value_forward objects get stuck
|
398
|
466 in const space and you get SEGV's if you attempt to mark them.
|
0
|
467 This sits in lheader->implementation->marker. */
|
|
468
|
|
469 Lisp_Object
|
398
|
470 this_one_is_unmarkable (Lisp_Object obj)
|
0
|
471 {
|
|
472 abort ();
|
|
473 return Qnil;
|
|
474 }
|
|
475
|
|
476
|
380
|
477 /************************************************************************/
|
|
478 /* Debugger support */
|
|
479 /************************************************************************/
|
396
|
480 /* Give gdb/dbx enough information to decode Lisp Objects. We make
|
|
481 sure certain symbols are always defined, so gdb doesn't complain
|
398
|
482 about expressions in src/.gdbinit. See src/.gdbinit or src/.dbxrc
|
|
483 to see how this is used. */
|
|
484
|
396
|
485 EMACS_UINT dbg_valmask = ((1UL << VALBITS) - 1) << GCBITS;
|
|
486 EMACS_UINT dbg_typemask = (1UL << GCTYPEBITS) - 1;
|
380
|
487
|
|
488 #ifdef USE_UNION_TYPE
|
396
|
489 unsigned char dbg_USE_UNION_TYPE = 1;
|
380
|
490 #else
|
396
|
491 unsigned char dbg_USE_UNION_TYPE = 0;
|
380
|
492 #endif
|
|
493
|
398
|
494 unsigned char Lisp_Type_Int = 100;
|
396
|
495 unsigned char Lisp_Type_Cons = 101;
|
|
496 unsigned char Lisp_Type_String = 102;
|
|
497 unsigned char Lisp_Type_Vector = 103;
|
|
498 unsigned char Lisp_Type_Symbol = 104;
|
|
499
|
272
|
500 #ifndef MULE
|
396
|
501 unsigned char lrecord_char_table_entry;
|
|
502 unsigned char lrecord_charset;
|
|
503 #ifndef FILE_CODING
|
|
504 unsigned char lrecord_coding_system;
|
337
|
505 #endif
|
272
|
506 #endif
|
396
|
507
|
398
|
508 #if !((defined HAVE_X_WINDOWS) && \
|
|
509 (defined (HAVE_MENUBARS) || \
|
|
510 defined (HAVE_SCROLLBARS) || \
|
|
511 defined (HAVE_DIALOGS) || \
|
|
512 defined (HAVE_TOOLBARS) || \
|
|
513 defined (HAVE_WIDGETS)))
|
|
514 unsigned char lrecord_popup_data;
|
|
515 #endif
|
|
516
|
396
|
517 #ifndef HAVE_TOOLBARS
|
|
518 unsigned char lrecord_toolbar_button;
|
272
|
519 #endif
|
396
|
520
|
|
521 #ifndef TOOLTALK
|
|
522 unsigned char lrecord_tooltalk_message;
|
|
523 unsigned char lrecord_tooltalk_pattern;
|
371
|
524 #endif
|
396
|
525
|
|
526 #ifndef HAVE_DATABASE
|
|
527 unsigned char lrecord_database;
|
|
528 #endif
|
|
529
|
|
530 unsigned char dbg_valbits = VALBITS;
|
|
531 unsigned char dbg_gctypebits = GCTYPEBITS;
|
|
532
|
|
533 /* Macros turned into functions for ease of debugging.
|
380
|
534 Debuggers don't know about macros! */
|
|
535 int dbg_eq (Lisp_Object obj1, Lisp_Object obj2);
|
|
536 int
|
|
537 dbg_eq (Lisp_Object obj1, Lisp_Object obj2)
|
|
538 {
|
|
539 return EQ (obj1, obj2);
|
|
540 }
|
|
541
|
272
|
542
|
380
|
543 /************************************************************************/
|
|
544 /* Fixed-size type macros */
|
|
545 /************************************************************************/
|
0
|
546
|
|
547 /* For fixed-size types that are commonly used, we malloc() large blocks
|
|
548 of memory at a time and subdivide them into chunks of the correct
|
|
549 size for an object of that type. This is more efficient than
|
|
550 malloc()ing each object separately because we save on malloc() time
|
|
551 and overhead due to the fewer number of malloc()ed blocks, and
|
|
552 also because we don't need any extra pointers within each object
|
|
553 to keep them threaded together for GC purposes. For less common
|
|
554 (and frequently large-size) types, we use lcrecords, which are
|
|
555 malloc()ed individually and chained together through a pointer
|
|
556 in the lcrecord header. lcrecords do not need to be fixed-size
|
|
557 (i.e. two objects of the same type need not have the same size;
|
|
558 however, the size of a particular object cannot vary dynamically).
|
|
559 It is also much easier to create a new lcrecord type because no
|
|
560 additional code needs to be added to alloc.c. Finally, lcrecords
|
|
561 may be more efficient when there are only a small number of them.
|
|
562
|
|
563 The types that are stored in these large blocks (or "frob blocks")
|
|
564 are cons, float, compiled-function, symbol, marker, extent, event,
|
|
565 and string.
|
|
566
|
|
567 Note that strings are special in that they are actually stored in
|
|
568 two parts: a structure containing information about the string, and
|
|
569 the actual data associated with the string. The former structure
|
|
570 (a struct Lisp_String) is a fixed-size structure and is managed the
|
|
571 same way as all the other such types. This structure contains a
|
|
572 pointer to the actual string data, which is stored in structures of
|
|
573 type struct string_chars_block. Each string_chars_block consists
|
|
574 of a pointer to a struct Lisp_String, followed by the data for that
|
398
|
575 string, followed by another pointer to a Lisp_String, followed by
|
|
576 the data for that string, etc. At GC time, the data in these
|
|
577 blocks is compacted by searching sequentially through all the
|
0
|
578 blocks and compressing out any holes created by unmarked strings.
|
|
579 Strings that are more than a certain size (bigger than the size of
|
|
580 a string_chars_block, although something like half as big might
|
|
581 make more sense) are malloc()ed separately and not stored in
|
|
582 string_chars_blocks. Furthermore, no one string stretches across
|
|
583 two string_chars_blocks.
|
|
584
|
|
585 Vectors are each malloc()ed separately, similar to lcrecords.
|
183
|
586
|
0
|
587 In the following discussion, we use conses, but it applies equally
|
|
588 well to the other fixed-size types.
|
|
589
|
|
590 We store cons cells inside of cons_blocks, allocating a new
|
|
591 cons_block with malloc() whenever necessary. Cons cells reclaimed
|
|
592 by GC are put on a free list to be reallocated before allocating
|
|
593 any new cons cells from the latest cons_block. Each cons_block is
|
|
594 just under 2^n - MALLOC_OVERHEAD bytes long, since malloc (at least
|
|
595 the versions in malloc.c and gmalloc.c) really allocates in units
|
|
596 of powers of two and uses 4 bytes for its own overhead.
|
|
597
|
|
598 What GC actually does is to search through all the cons_blocks,
|
|
599 from the most recently allocated to the oldest, and put all
|
|
600 cons cells that are not marked (whether or not they're already
|
|
601 free) on a cons_free_list. The cons_free_list is a stack, and
|
|
602 so the cons cells in the oldest-allocated cons_block end up
|
|
603 at the head of the stack and are the first to be reallocated.
|
|
604 If any cons_block is entirely free, it is freed with free()
|
|
605 and its cons cells removed from the cons_free_list. Because
|
|
606 the cons_free_list ends up basically in memory order, we have
|
|
607 a high locality of reference (assuming a reasonable turnover
|
|
608 of allocating and freeing) and have a reasonable probability
|
|
609 of entirely freeing up cons_blocks that have been more recently
|
|
610 allocated. This stage is called the "sweep stage" of GC, and
|
|
611 is executed after the "mark stage", which involves starting
|
|
612 from all places that are known to point to in-use Lisp objects
|
|
613 (e.g. the obarray, where are all symbols are stored; the
|
|
614 current catches and condition-cases; the backtrace list of
|
|
615 currently executing functions; the gcpro list; etc.) and
|
|
616 recursively marking all objects that are accessible.
|
|
617
|
|
618 At the beginning of the sweep stage, the conses in the cons
|
|
619 blocks are in one of three states: in use and marked, in use
|
|
620 but not marked, and not in use (already freed). Any conses
|
|
621 that are marked have been marked in the mark stage just
|
|
622 executed, because as part of the sweep stage we unmark any
|
|
623 marked objects. The way we tell whether or not a cons cell
|
|
624 is in use is through the FREE_STRUCT_P macro. This basically
|
|
625 looks at the first 4 bytes (or however many bytes a pointer
|
|
626 fits in) to see if all the bits in those bytes are 1. The
|
|
627 resulting value (0xFFFFFFFF) is not a valid pointer and is
|
|
628 not a valid Lisp_Object. All current fixed-size types have
|
|
629 a pointer or Lisp_Object as their first element with the
|
|
630 exception of strings; they have a size value, which can
|
|
631 never be less than zero, and so 0xFFFFFFFF is invalid for
|
|
632 strings as well. Now assuming that a cons cell is in use,
|
|
633 the way we tell whether or not it is marked is to look at
|
|
634 the mark bit of its car (each Lisp_Object has one bit
|
|
635 reserved as a mark bit, in case it's needed). Note that
|
|
636 different types of objects use different fields to indicate
|
|
637 whether the object is marked, but the principle is the same.
|
|
638
|
|
639 Conses on the free_cons_list are threaded through a pointer
|
|
640 stored in the bytes directly after the bytes that are set
|
|
641 to 0xFFFFFFFF (we cannot overwrite these because the cons
|
|
642 is still in a cons_block and needs to remain marked as
|
|
643 not in use for the next time that GC happens). This
|
|
644 implies that all fixed-size types must be at least big
|
|
645 enough to store two pointers, which is indeed the case
|
|
646 for all current fixed-size types.
|
|
647
|
|
648 Some types of objects need additional "finalization" done
|
|
649 when an object is converted from in use to not in use;
|
|
650 this is the purpose of the ADDITIONAL_FREE_type macro.
|
|
651 For example, markers need to be removed from the chain
|
|
652 of markers that is kept in each buffer. This is because
|
|
653 markers in a buffer automatically disappear if the marker
|
|
654 is no longer referenced anywhere (the same does not
|
|
655 apply to extents, however).
|
|
656
|
|
657 WARNING: Things are in an extremely bizarre state when
|
|
658 the ADDITIONAL_FREE_type macros are called, so beware!
|
|
659
|
|
660 When ERROR_CHECK_GC is defined, we do things differently
|
|
661 so as to maximize our chances of catching places where
|
|
662 there is insufficient GCPROing. The thing we want to
|
|
663 avoid is having an object that we're using but didn't
|
|
664 GCPRO get freed by GC and then reallocated while we're
|
|
665 in the process of using it -- this will result in something
|
|
666 seemingly unrelated getting trashed, and is extremely
|
|
667 difficult to track down. If the object gets freed but
|
|
668 not reallocated, we can usually catch this because we
|
|
669 set all bytes of a freed object to 0xDEADBEEF. (The
|
|
670 first four bytes, however, are 0xFFFFFFFF, and the next
|
|
671 four are a pointer used to chain freed objects together;
|
|
672 we play some tricks with this pointer to make it more
|
|
673 bogus, so crashes are more likely to occur right away.)
|
|
674
|
|
675 We want freed objects to stay free as long as possible,
|
|
676 so instead of doing what we do above, we maintain the
|
|
677 free objects in a first-in first-out queue. We also
|
|
678 don't recompute the free list each GC, unlike above;
|
|
679 this ensures that the queue ordering is preserved.
|
|
680 [This means that we are likely to have worse locality
|
|
681 of reference, and that we can never free a frob block
|
|
682 once it's allocated. (Even if we know that all cells
|
|
683 in it are free, there's no easy way to remove all those
|
|
684 cells from the free list because the objects on the
|
|
685 free list are unlikely to be in memory order.)]
|
|
686 Furthermore, we never take objects off the free list
|
|
687 unless there's a large number (usually 1000, but
|
|
688 varies depending on type) of them already on the list.
|
|
689 This way, we ensure that an object that gets freed will
|
|
690 remain free for the next 1000 (or whatever) times that
|
398
|
691 an object of that type is allocated. */
|
0
|
692
|
|
693 #ifndef MALLOC_OVERHEAD
|
|
694 #ifdef GNU_MALLOC
|
|
695 #define MALLOC_OVERHEAD 0
|
|
696 #elif defined (rcheck)
|
|
697 #define MALLOC_OVERHEAD 20
|
|
698 #else
|
|
699 #define MALLOC_OVERHEAD 8
|
|
700 #endif
|
183
|
701 #endif /* MALLOC_OVERHEAD */
|
0
|
702
|
255
|
703 #if !defined(HAVE_MMAP) || defined(DOUG_LEA_MALLOC)
|
|
704 /* If we released our reserve (due to running out of memory),
|
|
705 and we have a fair amount free once again,
|
|
706 try to set aside another reserve in case we run out once more.
|
|
707
|
|
708 This is called when a relocatable block is freed in ralloc.c. */
|
272
|
709 void refill_memory_reserve (void);
|
255
|
710 void
|
|
711 refill_memory_reserve ()
|
|
712 {
|
|
713 if (breathing_space == 0)
|
|
714 breathing_space = (char *) malloc (4096 - MALLOC_OVERHEAD);
|
|
715 }
|
|
716 #endif
|
|
717
|
0
|
718 #ifdef ALLOC_NO_POOLS
|
|
719 # define TYPE_ALLOC_SIZE(type, structtype) 1
|
|
720 #else
|
|
721 # define TYPE_ALLOC_SIZE(type, structtype) \
|
|
722 ((2048 - MALLOC_OVERHEAD - sizeof (struct type##_block *)) \
|
|
723 / sizeof (structtype))
|
183
|
724 #endif /* ALLOC_NO_POOLS */
|
0
|
725
|
380
|
726 #define DECLARE_FIXED_TYPE_ALLOC(type, structtype) \
|
|
727 \
|
|
728 struct type##_block \
|
|
729 { \
|
|
730 struct type##_block *prev; \
|
|
731 structtype block[TYPE_ALLOC_SIZE (type, structtype)]; \
|
|
732 }; \
|
|
733 \
|
|
734 static struct type##_block *current_##type##_block; \
|
|
735 static int current_##type##_block_index; \
|
|
736 \
|
|
737 static structtype *type##_free_list; \
|
|
738 static structtype *type##_free_list_tail; \
|
|
739 \
|
|
740 static void \
|
|
741 init_##type##_alloc (void) \
|
|
742 { \
|
|
743 current_##type##_block = 0; \
|
|
744 current_##type##_block_index = \
|
|
745 countof (current_##type##_block->block); \
|
|
746 type##_free_list = 0; \
|
|
747 type##_free_list_tail = 0; \
|
|
748 } \
|
|
749 \
|
|
750 static int gc_count_num_##type##_in_use; \
|
|
751 static int gc_count_num_##type##_freelist
|
|
752
|
|
753 #define ALLOCATE_FIXED_TYPE_FROM_BLOCK(type, result) do { \
|
|
754 if (current_##type##_block_index \
|
|
755 == countof (current_##type##_block->block)) \
|
0
|
756 { \
|
380
|
757 struct type##_block *AFTFB_new = (struct type##_block *) \
|
|
758 allocate_lisp_storage (sizeof (struct type##_block)); \
|
|
759 AFTFB_new->prev = current_##type##_block; \
|
|
760 current_##type##_block = AFTFB_new; \
|
0
|
761 current_##type##_block_index = 0; \
|
|
762 } \
|
380
|
763 (result) = \
|
|
764 &(current_##type##_block->block[current_##type##_block_index++]); \
|
|
765 } while (0)
|
0
|
766
|
|
767 /* Allocate an instance of a type that is stored in blocks.
|
|
768 TYPE is the "name" of the type, STRUCTTYPE is the corresponding
|
|
769 structure type. */
|
|
770
|
|
771 #ifdef ERROR_CHECK_GC
|
|
772
|
|
773 /* Note: if you get crashes in this function, suspect incorrect calls
|
|
774 to free_cons() and friends. This happened once because the cons
|
|
775 cell was not GC-protected and was getting collected before
|
|
776 free_cons() was called. */
|
|
777
|
|
778 #define ALLOCATE_FIXED_TYPE_1(type, structtype, result) \
|
|
779 do \
|
|
780 { \
|
|
781 if (gc_count_num_##type##_freelist > \
|
|
782 MINIMUM_ALLOWED_FIXED_TYPE_CELLS_##type) \
|
|
783 { \
|
|
784 result = type##_free_list; \
|
|
785 /* Before actually using the chain pointer, we complement all its \
|
|
786 bits; see FREE_FIXED_TYPE(). */ \
|
|
787 type##_free_list = \
|
|
788 (structtype *) ~(unsigned long) \
|
|
789 (* (structtype **) ((char *) result + sizeof (void *))); \
|
|
790 gc_count_num_##type##_freelist--; \
|
|
791 } \
|
|
792 else \
|
|
793 ALLOCATE_FIXED_TYPE_FROM_BLOCK (type, result); \
|
|
794 MARK_STRUCT_AS_NOT_FREE (result); \
|
|
795 } while (0)
|
|
796
|
183
|
797 #else /* !ERROR_CHECK_GC */
|
0
|
798
|
|
799 #define ALLOCATE_FIXED_TYPE_1(type, structtype, result) \
|
|
800 do \
|
|
801 { \
|
|
802 if (type##_free_list) \
|
|
803 { \
|
|
804 result = type##_free_list; \
|
|
805 type##_free_list = \
|
|
806 * (structtype **) ((char *) result + sizeof (void *)); \
|
|
807 } \
|
|
808 else \
|
|
809 ALLOCATE_FIXED_TYPE_FROM_BLOCK (type, result); \
|
|
810 MARK_STRUCT_AS_NOT_FREE (result); \
|
|
811 } while (0)
|
|
812
|
183
|
813 #endif /* !ERROR_CHECK_GC */
|
0
|
814
|
|
815 #define ALLOCATE_FIXED_TYPE(type, structtype, result) \
|
|
816 do \
|
|
817 { \
|
|
818 ALLOCATE_FIXED_TYPE_1 (type, structtype, result); \
|
|
819 INCREMENT_CONS_COUNTER (sizeof (structtype), #type); \
|
|
820 } while (0)
|
|
821
|
|
822 #define NOSEEUM_ALLOCATE_FIXED_TYPE(type, structtype, result) \
|
|
823 do \
|
|
824 { \
|
|
825 ALLOCATE_FIXED_TYPE_1 (type, structtype, result); \
|
|
826 NOSEEUM_INCREMENT_CONS_COUNTER (sizeof (structtype), #type); \
|
|
827 } while (0)
|
|
828
|
|
829 /* INVALID_POINTER_VALUE should be a value that is invalid as a pointer
|
|
830 to a Lisp object and invalid as an actual Lisp_Object value. We have
|
|
831 to make sure that this value cannot be an integer in Lisp_Object form.
|
|
832 0xFFFFFFFF could be so on a 64-bit system, so we extend it to 64 bits.
|
|
833 On a 32-bit system, the type bits will be non-zero, making the value
|
|
834 be a pointer, and the pointer will be misaligned.
|
|
835
|
|
836 Even if Emacs is run on some weirdo system that allows and allocates
|
|
837 byte-aligned pointers, this pointer is at the very top of the address
|
|
838 space and so it's almost inconceivable that it could ever be valid. */
|
183
|
839
|
371
|
840 #if INTBITS == 32
|
|
841 # define INVALID_POINTER_VALUE 0xFFFFFFFF
|
|
842 #elif INTBITS == 48
|
|
843 # define INVALID_POINTER_VALUE 0xFFFFFFFFFFFF
|
|
844 #elif INTBITS == 64
|
|
845 # define INVALID_POINTER_VALUE 0xFFFFFFFFFFFFFFFF
|
0
|
846 #else
|
|
847 You have some weird system and need to supply a reasonable value here.
|
|
848 #endif
|
|
849
|
|
850 #define FREE_STRUCT_P(ptr) \
|
371
|
851 (* (void **) ptr == (void *) INVALID_POINTER_VALUE)
|
|
852 #define MARK_STRUCT_AS_FREE(ptr) \
|
|
853 (* (void **) ptr = (void *) INVALID_POINTER_VALUE)
|
|
854 #define MARK_STRUCT_AS_NOT_FREE(ptr) \
|
|
855 (* (void **) ptr = 0)
|
0
|
856
|
|
857 #ifdef ERROR_CHECK_GC
|
|
858
|
|
859 #define PUT_FIXED_TYPE_ON_FREE_LIST(type, structtype, ptr) \
|
|
860 do { if (type##_free_list_tail) \
|
|
861 { \
|
|
862 /* When we store the chain pointer, we complement all \
|
|
863 its bits; this should significantly increase its \
|
|
864 bogosity in case someone tries to use the value, and \
|
|
865 should make us dump faster if someone stores something \
|
|
866 over the pointer because when it gets un-complemented in \
|
|
867 ALLOCATED_FIXED_TYPE(), the resulting pointer will be \
|
|
868 extremely bogus. */ \
|
|
869 * (structtype **) \
|
|
870 ((char *) type##_free_list_tail + sizeof (void *)) = \
|
|
871 (structtype *) ~(unsigned long) ptr; \
|
|
872 } \
|
|
873 else \
|
|
874 type##_free_list = ptr; \
|
|
875 type##_free_list_tail = ptr; \
|
|
876 } while (0)
|
|
877
|
183
|
878 #else /* !ERROR_CHECK_GC */
|
0
|
879
|
|
880 #define PUT_FIXED_TYPE_ON_FREE_LIST(type, structtype, ptr) \
|
380
|
881 do { * (structtype **) ((char *) (ptr) + sizeof (void *)) = \
|
0
|
882 type##_free_list; \
|
380
|
883 type##_free_list = (ptr); \
|
0
|
884 } while (0)
|
|
885
|
183
|
886 #endif /* !ERROR_CHECK_GC */
|
0
|
887
|
|
888 /* TYPE and STRUCTTYPE are the same as in ALLOCATE_FIXED_TYPE(). */
|
|
889
|
380
|
890 #define FREE_FIXED_TYPE(type, structtype, ptr) do { \
|
|
891 structtype *FFT_ptr = (ptr); \
|
|
892 ADDITIONAL_FREE_##type (FFT_ptr); \
|
|
893 deadbeef_memory (FFT_ptr, sizeof (structtype)); \
|
|
894 PUT_FIXED_TYPE_ON_FREE_LIST (type, structtype, FFT_ptr); \
|
|
895 MARK_STRUCT_AS_FREE (FFT_ptr); \
|
|
896 } while (0)
|
0
|
897
|
|
898 /* Like FREE_FIXED_TYPE() but used when we are explicitly
|
|
899 freeing a structure through free_cons(), free_marker(), etc.
|
|
900 rather than through the normal process of sweeping.
|
|
901 We attempt to undo the changes made to the allocation counters
|
|
902 as a result of this structure being allocated. This is not
|
|
903 completely necessary but helps keep things saner: e.g. this way,
|
|
904 repeatedly allocating and freeing a cons will not result in
|
|
905 the consing-since-gc counter advancing, which would cause a GC
|
|
906 and somewhat defeat the purpose of explicitly freeing. */
|
|
907
|
|
908 #define FREE_FIXED_TYPE_WHEN_NOT_IN_GC(type, structtype, ptr) \
|
|
909 do { FREE_FIXED_TYPE (type, structtype, ptr); \
|
|
910 DECREMENT_CONS_COUNTER (sizeof (structtype)); \
|
|
911 gc_count_num_##type##_freelist++; \
|
|
912 } while (0)
|
183
|
913
|
0
|
914
|
|
915
|
380
|
916 /************************************************************************/
|
|
917 /* Cons allocation */
|
|
918 /************************************************************************/
|
0
|
919
|
398
|
920 DECLARE_FIXED_TYPE_ALLOC (cons, Lisp_Cons);
|
0
|
921 /* conses are used and freed so often that we set this really high */
|
|
922 /* #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_cons 20000 */
|
|
923 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_cons 2000
|
|
924
|
207
|
925 static Lisp_Object
|
398
|
926 mark_cons (Lisp_Object obj)
|
207
|
927 {
|
398
|
928 if (NILP (XCDR (obj)))
|
207
|
929 return XCAR (obj);
|
272
|
930
|
398
|
931 mark_object (XCAR (obj));
|
207
|
932 return XCDR (obj);
|
|
933 }
|
|
934
|
|
935 static int
|
|
936 cons_equal (Lisp_Object ob1, Lisp_Object ob2, int depth)
|
|
937 {
|
398
|
938 depth++;
|
|
939 while (internal_equal (XCAR (ob1), XCAR (ob2), depth))
|
207
|
940 {
|
272
|
941 ob1 = XCDR (ob1);
|
|
942 ob2 = XCDR (ob2);
|
207
|
943 if (! CONSP (ob1) || ! CONSP (ob2))
|
398
|
944 return internal_equal (ob1, ob2, depth);
|
207
|
945 }
|
|
946 return 0;
|
|
947 }
|
243
|
948
|
398
|
949 static const struct lrecord_description cons_description[] = {
|
|
950 { XD_LISP_OBJECT, offsetof (Lisp_Cons, car) },
|
|
951 { XD_LISP_OBJECT, offsetof (Lisp_Cons, cdr) },
|
|
952 { XD_END }
|
|
953 };
|
|
954
|
243
|
955 DEFINE_BASIC_LRECORD_IMPLEMENTATION ("cons", cons,
|
|
956 mark_cons, print_cons, 0,
|
|
957 cons_equal,
|
|
958 /*
|
|
959 * No `hash' method needed.
|
|
960 * internal_hash knows how to
|
|
961 * handle conses.
|
|
962 */
|
|
963 0,
|
398
|
964 cons_description,
|
|
965 Lisp_Cons);
|
207
|
966
|
20
|
967 DEFUN ("cons", Fcons, 2, 2, 0, /*
|
0
|
968 Create a new cons, give it CAR and CDR as components, and return it.
|
20
|
969 */
|
|
970 (car, cdr))
|
0
|
971 {
|
|
972 /* This cannot GC. */
|
272
|
973 Lisp_Object val;
|
398
|
974 Lisp_Cons *c;
|
|
975
|
|
976 ALLOCATE_FIXED_TYPE (cons, Lisp_Cons, c);
|
|
977 set_lheader_implementation (&(c->lheader), &lrecord_cons);
|
0
|
978 XSETCONS (val, c);
|
207
|
979 c->car = car;
|
|
980 c->cdr = cdr;
|
0
|
981 return val;
|
|
982 }
|
|
983
|
|
984 /* This is identical to Fcons() but it used for conses that we're
|
|
985 going to free later, and is useful when trying to track down
|
|
986 "real" consing. */
|
|
987 Lisp_Object
|
|
988 noseeum_cons (Lisp_Object car, Lisp_Object cdr)
|
|
989 {
|
272
|
990 Lisp_Object val;
|
398
|
991 Lisp_Cons *c;
|
|
992
|
|
993 NOSEEUM_ALLOCATE_FIXED_TYPE (cons, Lisp_Cons, c);
|
|
994 set_lheader_implementation (&(c->lheader), &lrecord_cons);
|
0
|
995 XSETCONS (val, c);
|
|
996 XCAR (val) = car;
|
|
997 XCDR (val) = cdr;
|
|
998 return val;
|
|
999 }
|
|
1000
|
20
|
1001 DEFUN ("list", Flist, 0, MANY, 0, /*
|
0
|
1002 Return a newly created list with specified arguments as elements.
|
|
1003 Any number of arguments, even zero arguments, are allowed.
|
20
|
1004 */
|
|
1005 (int nargs, Lisp_Object *args))
|
0
|
1006 {
|
165
|
1007 Lisp_Object val = Qnil;
|
|
1008 Lisp_Object *argp = args + nargs;
|
|
1009
|
380
|
1010 while (argp > args)
|
165
|
1011 val = Fcons (*--argp, val);
|
0
|
1012 return val;
|
|
1013 }
|
|
1014
|
|
1015 Lisp_Object
|
|
1016 list1 (Lisp_Object obj0)
|
|
1017 {
|
|
1018 /* This cannot GC. */
|
173
|
1019 return Fcons (obj0, Qnil);
|
0
|
1020 }
|
|
1021
|
|
1022 Lisp_Object
|
|
1023 list2 (Lisp_Object obj0, Lisp_Object obj1)
|
|
1024 {
|
|
1025 /* This cannot GC. */
|
272
|
1026 return Fcons (obj0, Fcons (obj1, Qnil));
|
0
|
1027 }
|
|
1028
|
|
1029 Lisp_Object
|
|
1030 list3 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2)
|
|
1031 {
|
|
1032 /* This cannot GC. */
|
272
|
1033 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Qnil)));
|
0
|
1034 }
|
|
1035
|
272
|
1036 Lisp_Object
|
0
|
1037 cons3 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2)
|
|
1038 {
|
|
1039 /* This cannot GC. */
|
|
1040 return Fcons (obj0, Fcons (obj1, obj2));
|
|
1041 }
|
|
1042
|
|
1043 Lisp_Object
|
272
|
1044 acons (Lisp_Object key, Lisp_Object value, Lisp_Object alist)
|
|
1045 {
|
|
1046 return Fcons (Fcons (key, value), alist);
|
|
1047 }
|
|
1048
|
|
1049 Lisp_Object
|
0
|
1050 list4 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, Lisp_Object obj3)
|
|
1051 {
|
|
1052 /* This cannot GC. */
|
272
|
1053 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Fcons (obj3, Qnil))));
|
0
|
1054 }
|
|
1055
|
|
1056 Lisp_Object
|
|
1057 list5 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, Lisp_Object obj3,
|
|
1058 Lisp_Object obj4)
|
|
1059 {
|
|
1060 /* This cannot GC. */
|
272
|
1061 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Fcons (obj3, Fcons (obj4, Qnil)))));
|
0
|
1062 }
|
|
1063
|
|
1064 Lisp_Object
|
|
1065 list6 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, Lisp_Object obj3,
|
|
1066 Lisp_Object obj4, Lisp_Object obj5)
|
|
1067 {
|
|
1068 /* This cannot GC. */
|
272
|
1069 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Fcons (obj3, Fcons (obj4, Fcons (obj5, Qnil))))));
|
0
|
1070 }
|
|
1071
|
20
|
1072 DEFUN ("make-list", Fmake_list, 2, 2, 0, /*
|
272
|
1073 Return a new list of length LENGTH, with each element being INIT.
|
20
|
1074 */
|
|
1075 (length, init))
|
0
|
1076 {
|
|
1077 CHECK_NATNUM (length);
|
272
|
1078
|
|
1079 {
|
|
1080 Lisp_Object val = Qnil;
|
398
|
1081 size_t size = XINT (length);
|
|
1082
|
|
1083 while (size--)
|
272
|
1084 val = Fcons (init, val);
|
|
1085 return val;
|
|
1086 }
|
0
|
1087 }
|
|
1088
|
|
1089
|
380
|
1090 /************************************************************************/
|
|
1091 /* Float allocation */
|
|
1092 /************************************************************************/
|
0
|
1093
|
|
1094 #ifdef LISP_FLOAT_TYPE
|
|
1095
|
398
|
1096 DECLARE_FIXED_TYPE_ALLOC (float, Lisp_Float);
|
0
|
1097 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_float 1000
|
|
1098
|
|
1099 Lisp_Object
|
|
1100 make_float (double float_value)
|
|
1101 {
|
|
1102 Lisp_Object val;
|
398
|
1103 Lisp_Float *f;
|
|
1104
|
|
1105 ALLOCATE_FIXED_TYPE (float, Lisp_Float, f);
|
|
1106
|
|
1107 /* Avoid dump-time `uninitialized memory read' purify warnings. */
|
|
1108 if (sizeof (struct lrecord_header) + sizeof (double) != sizeof (*f))
|
|
1109 xzero (*f);
|
|
1110
|
|
1111 set_lheader_implementation (&(f->lheader), &lrecord_float);
|
0
|
1112 float_data (f) = float_value;
|
|
1113 XSETFLOAT (val, f);
|
173
|
1114 return val;
|
0
|
1115 }
|
|
1116
|
|
1117 #endif /* LISP_FLOAT_TYPE */
|
|
1118
|
|
1119
|
380
|
1120 /************************************************************************/
|
|
1121 /* Vector allocation */
|
|
1122 /************************************************************************/
|
0
|
1123
|
207
|
1124 static Lisp_Object
|
398
|
1125 mark_vector (Lisp_Object obj)
|
207
|
1126 {
|
380
|
1127 Lisp_Vector *ptr = XVECTOR (obj);
|
207
|
1128 int len = vector_length (ptr);
|
|
1129 int i;
|
|
1130
|
|
1131 for (i = 0; i < len - 1; i++)
|
398
|
1132 mark_object (ptr->contents[i]);
|
207
|
1133 return (len > 0) ? ptr->contents[len - 1] : Qnil;
|
|
1134 }
|
|
1135
|
272
|
1136 static size_t
|
398
|
1137 size_vector (const void *lheader)
|
207
|
1138 {
|
398
|
1139 return offsetof (Lisp_Vector, contents[((Lisp_Vector *) lheader)->size]);
|
207
|
1140 }
|
|
1141
|
|
1142 static int
|
380
|
1143 vector_equal (Lisp_Object obj1, Lisp_Object obj2, int depth)
|
207
|
1144 {
|
380
|
1145 int len = XVECTOR_LENGTH (obj1);
|
|
1146 if (len != XVECTOR_LENGTH (obj2))
|
207
|
1147 return 0;
|
382
|
1148
|
|
1149 {
|
|
1150 Lisp_Object *ptr1 = XVECTOR_DATA (obj1);
|
|
1151 Lisp_Object *ptr2 = XVECTOR_DATA (obj2);
|
|
1152 while (len--)
|
|
1153 if (!internal_equal (*ptr1++, *ptr2++, depth + 1))
|
207
|
1154 return 0;
|
382
|
1155 }
|
207
|
1156 return 1;
|
|
1157 }
|
|
1158
|
398
|
1159 static hashcode_t
|
|
1160 vector_hash (Lisp_Object obj, int depth)
|
|
1161 {
|
|
1162 return HASH2 (XVECTOR_LENGTH (obj),
|
|
1163 internal_array_hash (XVECTOR_DATA (obj),
|
|
1164 XVECTOR_LENGTH (obj),
|
|
1165 depth + 1));
|
|
1166 }
|
|
1167
|
|
1168 static const struct lrecord_description vector_description[] = {
|
|
1169 { XD_LONG, offsetof (Lisp_Vector, size) },
|
|
1170 { XD_LISP_OBJECT_ARRAY, offsetof (Lisp_Vector, contents), XD_INDIRECT(0, 0) },
|
|
1171 { XD_END }
|
|
1172 };
|
|
1173
|
243
|
1174 DEFINE_LRECORD_SEQUENCE_IMPLEMENTATION("vector", vector,
|
|
1175 mark_vector, print_vector, 0,
|
|
1176 vector_equal,
|
398
|
1177 vector_hash,
|
|
1178 vector_description,
|
380
|
1179 size_vector, Lisp_Vector);
|
243
|
1180
|
207
|
1181 /* #### should allocate `small' vectors from a frob-block */
|
380
|
1182 static Lisp_Vector *
|
272
|
1183 make_vector_internal (size_t sizei)
|
207
|
1184 {
|
380
|
1185 /* no vector_next */
|
398
|
1186 size_t sizem = offsetof (Lisp_Vector, contents[sizei]);
|
|
1187 Lisp_Vector *p = (Lisp_Vector *) alloc_lcrecord (sizem, &lrecord_vector);
|
207
|
1188
|
|
1189 p->size = sizei;
|
|
1190 return p;
|
|
1191 }
|
|
1192
|
0
|
1193 Lisp_Object
|
382
|
1194 make_vector (size_t length, Lisp_Object init)
|
0
|
1195 {
|
382
|
1196 Lisp_Vector *vecp = make_vector_internal (length);
|
|
1197 Lisp_Object *p = vector_data (vecp);
|
|
1198
|
|
1199 while (length--)
|
|
1200 *p++ = init;
|
|
1201
|
0
|
1202 {
|
382
|
1203 Lisp_Object vector;
|
|
1204 XSETVECTOR (vector, vecp);
|
173
|
1205 return vector;
|
0
|
1206 }
|
|
1207 }
|
|
1208
|
20
|
1209 DEFUN ("make-vector", Fmake_vector, 2, 2, 0, /*
|
272
|
1210 Return a new vector of length LENGTH, with each element being INIT.
|
0
|
1211 See also the function `vector'.
|
20
|
1212 */
|
|
1213 (length, init))
|
0
|
1214 {
|
382
|
1215 CONCHECK_NATNUM (length);
|
173
|
1216 return make_vector (XINT (length), init);
|
0
|
1217 }
|
|
1218
|
20
|
1219 DEFUN ("vector", Fvector, 0, MANY, 0, /*
|
0
|
1220 Return a newly created vector with specified arguments as elements.
|
|
1221 Any number of arguments, even zero arguments, are allowed.
|
20
|
1222 */
|
|
1223 (int nargs, Lisp_Object *args))
|
0
|
1224 {
|
382
|
1225 Lisp_Vector *vecp = make_vector_internal (nargs);
|
|
1226 Lisp_Object *p = vector_data (vecp);
|
|
1227
|
|
1228 while (nargs--)
|
|
1229 *p++ = *args++;
|
|
1230
|
|
1231 {
|
|
1232 Lisp_Object vector;
|
|
1233 XSETVECTOR (vector, vecp);
|
|
1234 return vector;
|
|
1235 }
|
0
|
1236 }
|
|
1237
|
|
1238 Lisp_Object
|
|
1239 vector1 (Lisp_Object obj0)
|
|
1240 {
|
|
1241 return Fvector (1, &obj0);
|
|
1242 }
|
|
1243
|
|
1244 Lisp_Object
|
|
1245 vector2 (Lisp_Object obj0, Lisp_Object obj1)
|
|
1246 {
|
|
1247 Lisp_Object args[2];
|
|
1248 args[0] = obj0;
|
|
1249 args[1] = obj1;
|
|
1250 return Fvector (2, args);
|
|
1251 }
|
|
1252
|
|
1253 Lisp_Object
|
|
1254 vector3 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2)
|
|
1255 {
|
|
1256 Lisp_Object args[3];
|
|
1257 args[0] = obj0;
|
|
1258 args[1] = obj1;
|
|
1259 args[2] = obj2;
|
|
1260 return Fvector (3, args);
|
|
1261 }
|
|
1262
|
272
|
1263 #if 0 /* currently unused */
|
|
1264
|
0
|
1265 Lisp_Object
|
|
1266 vector4 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2,
|
|
1267 Lisp_Object obj3)
|
|
1268 {
|
|
1269 Lisp_Object args[4];
|
|
1270 args[0] = obj0;
|
|
1271 args[1] = obj1;
|
|
1272 args[2] = obj2;
|
|
1273 args[3] = obj3;
|
|
1274 return Fvector (4, args);
|
|
1275 }
|
|
1276
|
|
1277 Lisp_Object
|
|
1278 vector5 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2,
|
|
1279 Lisp_Object obj3, Lisp_Object obj4)
|
|
1280 {
|
|
1281 Lisp_Object args[5];
|
|
1282 args[0] = obj0;
|
|
1283 args[1] = obj1;
|
|
1284 args[2] = obj2;
|
|
1285 args[3] = obj3;
|
|
1286 args[4] = obj4;
|
|
1287 return Fvector (5, args);
|
|
1288 }
|
|
1289
|
|
1290 Lisp_Object
|
|
1291 vector6 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2,
|
|
1292 Lisp_Object obj3, Lisp_Object obj4, Lisp_Object obj5)
|
|
1293 {
|
|
1294 Lisp_Object args[6];
|
|
1295 args[0] = obj0;
|
|
1296 args[1] = obj1;
|
|
1297 args[2] = obj2;
|
|
1298 args[3] = obj3;
|
|
1299 args[4] = obj4;
|
|
1300 args[5] = obj5;
|
|
1301 return Fvector (6, args);
|
|
1302 }
|
|
1303
|
|
1304 Lisp_Object
|
|
1305 vector7 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2,
|
|
1306 Lisp_Object obj3, Lisp_Object obj4, Lisp_Object obj5,
|
|
1307 Lisp_Object obj6)
|
|
1308 {
|
|
1309 Lisp_Object args[7];
|
|
1310 args[0] = obj0;
|
|
1311 args[1] = obj1;
|
|
1312 args[2] = obj2;
|
|
1313 args[3] = obj3;
|
|
1314 args[4] = obj4;
|
|
1315 args[5] = obj5;
|
|
1316 args[6] = obj6;
|
|
1317 return Fvector (7, args);
|
|
1318 }
|
|
1319
|
|
1320 Lisp_Object
|
|
1321 vector8 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2,
|
|
1322 Lisp_Object obj3, Lisp_Object obj4, Lisp_Object obj5,
|
|
1323 Lisp_Object obj6, Lisp_Object obj7)
|
|
1324 {
|
|
1325 Lisp_Object args[8];
|
|
1326 args[0] = obj0;
|
|
1327 args[1] = obj1;
|
|
1328 args[2] = obj2;
|
|
1329 args[3] = obj3;
|
|
1330 args[4] = obj4;
|
|
1331 args[5] = obj5;
|
|
1332 args[6] = obj6;
|
|
1333 args[7] = obj7;
|
|
1334 return Fvector (8, args);
|
|
1335 }
|
272
|
1336 #endif /* unused */
|
0
|
1337
|
380
|
1338 /************************************************************************/
|
|
1339 /* Bit Vector allocation */
|
|
1340 /************************************************************************/
|
0
|
1341
|
|
1342 static Lisp_Object all_bit_vectors;
|
|
1343
|
|
1344 /* #### should allocate `small' bit vectors from a frob-block */
|
398
|
1345 static Lisp_Bit_Vector *
|
272
|
1346 make_bit_vector_internal (size_t sizei)
|
0
|
1347 {
|
382
|
1348 size_t num_longs = BIT_VECTOR_LONG_STORAGE (sizei);
|
398
|
1349 size_t sizem = offsetof (Lisp_Bit_Vector, bits[num_longs]);
|
380
|
1350 Lisp_Bit_Vector *p = (Lisp_Bit_Vector *) allocate_lisp_storage (sizem);
|
398
|
1351 set_lheader_implementation (&(p->lheader), &lrecord_bit_vector);
|
0
|
1352
|
|
1353 INCREMENT_CONS_COUNTER (sizem, "bit-vector");
|
|
1354
|
|
1355 bit_vector_length (p) = sizei;
|
380
|
1356 bit_vector_next (p) = all_bit_vectors;
|
0
|
1357 /* make sure the extra bits in the last long are 0; the calling
|
|
1358 functions might not set them. */
|
382
|
1359 p->bits[num_longs - 1] = 0;
|
0
|
1360 XSETBIT_VECTOR (all_bit_vectors, p);
|
173
|
1361 return p;
|
0
|
1362 }
|
|
1363
|
|
1364 Lisp_Object
|
382
|
1365 make_bit_vector (size_t length, Lisp_Object init)
|
0
|
1366 {
|
398
|
1367 Lisp_Bit_Vector *p = make_bit_vector_internal (length);
|
382
|
1368 size_t num_longs = BIT_VECTOR_LONG_STORAGE (length);
|
0
|
1369
|
|
1370 CHECK_BIT (init);
|
|
1371
|
|
1372 if (ZEROP (init))
|
|
1373 memset (p->bits, 0, num_longs * sizeof (long));
|
|
1374 else
|
|
1375 {
|
382
|
1376 size_t bits_in_last = length & (LONGBITS_POWER_OF_2 - 1);
|
0
|
1377 memset (p->bits, ~0, num_longs * sizeof (long));
|
|
1378 /* But we have to make sure that the unused bits in the
|
382
|
1379 last long are 0, so that equal/hash is easy. */
|
0
|
1380 if (bits_in_last)
|
|
1381 p->bits[num_longs - 1] &= (1 << bits_in_last) - 1;
|
|
1382 }
|
|
1383
|
382
|
1384 {
|
|
1385 Lisp_Object bit_vector;
|
|
1386 XSETBIT_VECTOR (bit_vector, p);
|
|
1387 return bit_vector;
|
|
1388 }
|
0
|
1389 }
|
|
1390
|
|
1391 Lisp_Object
|
382
|
1392 make_bit_vector_from_byte_vector (unsigned char *bytevec, size_t length)
|
0
|
1393 {
|
272
|
1394 int i;
|
382
|
1395 Lisp_Bit_Vector *p = make_bit_vector_internal (length);
|
0
|
1396
|
|
1397 for (i = 0; i < length; i++)
|
|
1398 set_bit_vector_bit (p, i, bytevec[i]);
|
|
1399
|
382
|
1400 {
|
|
1401 Lisp_Object bit_vector;
|
|
1402 XSETBIT_VECTOR (bit_vector, p);
|
|
1403 return bit_vector;
|
|
1404 }
|
0
|
1405 }
|
|
1406
|
20
|
1407 DEFUN ("make-bit-vector", Fmake_bit_vector, 2, 2, 0, /*
|
272
|
1408 Return a new bit vector of length LENGTH. with each bit being INIT.
|
0
|
1409 Each element is set to INIT. See also the function `bit-vector'.
|
20
|
1410 */
|
|
1411 (length, init))
|
0
|
1412 {
|
272
|
1413 CONCHECK_NATNUM (length);
|
0
|
1414
|
173
|
1415 return make_bit_vector (XINT (length), init);
|
0
|
1416 }
|
|
1417
|
20
|
1418 DEFUN ("bit-vector", Fbit_vector, 0, MANY, 0, /*
|
0
|
1419 Return a newly created bit vector with specified arguments as elements.
|
|
1420 Any number of arguments, even zero arguments, are allowed.
|
20
|
1421 */
|
|
1422 (int nargs, Lisp_Object *args))
|
0
|
1423 {
|
382
|
1424 int i;
|
|
1425 Lisp_Bit_Vector *p = make_bit_vector_internal (nargs);
|
|
1426
|
|
1427 for (i = 0; i < nargs; i++)
|
|
1428 {
|
|
1429 CHECK_BIT (args[i]);
|
|
1430 set_bit_vector_bit (p, i, !ZEROP (args[i]));
|
|
1431 }
|
|
1432
|
|
1433 {
|
|
1434 Lisp_Object bit_vector;
|
|
1435 XSETBIT_VECTOR (bit_vector, p);
|
|
1436 return bit_vector;
|
|
1437 }
|
0
|
1438 }
|
|
1439
|
|
1440
|
380
|
1441 /************************************************************************/
|
|
1442 /* Compiled-function allocation */
|
|
1443 /************************************************************************/
|
|
1444
|
|
1445 DECLARE_FIXED_TYPE_ALLOC (compiled_function, Lisp_Compiled_Function);
|
0
|
1446 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_compiled_function 1000
|
|
1447
|
|
1448 static Lisp_Object
|
398
|
1449 make_compiled_function (void)
|
0
|
1450 {
|
380
|
1451 Lisp_Compiled_Function *f;
|
|
1452 Lisp_Object fun;
|
398
|
1453
|
|
1454 ALLOCATE_FIXED_TYPE (compiled_function, Lisp_Compiled_Function, f);
|
|
1455 set_lheader_implementation (&(f->lheader), &lrecord_compiled_function);
|
|
1456
|
380
|
1457 f->stack_depth = 0;
|
|
1458 f->specpdl_depth = 0;
|
|
1459 f->flags.documentationp = 0;
|
|
1460 f->flags.interactivep = 0;
|
|
1461 f->flags.domainp = 0; /* I18N3 */
|
|
1462 f->instructions = Qzero;
|
|
1463 f->constants = Qzero;
|
|
1464 f->arglist = Qnil;
|
|
1465 f->doc_and_interactive = Qnil;
|
0
|
1466 #ifdef COMPILED_FUNCTION_ANNOTATION_HACK
|
380
|
1467 f->annotated = Qnil;
|
0
|
1468 #endif
|
380
|
1469 XSETCOMPILED_FUNCTION (fun, f);
|
|
1470 return fun;
|
0
|
1471 }
|
|
1472
|
20
|
1473 DEFUN ("make-byte-code", Fmake_byte_code, 4, MANY, 0, /*
|
272
|
1474 Return a new compiled-function object.
|
380
|
1475 Usage: (arglist instructions constants stack-depth
|
|
1476 &optional doc-string interactive)
|
0
|
1477 Note that, unlike all other emacs-lisp functions, calling this with five
|
|
1478 arguments is NOT the same as calling it with six arguments, the last of
|
|
1479 which is nil. If the INTERACTIVE arg is specified as nil, then that means
|
|
1480 that this function was defined with `(interactive)'. If the arg is not
|
|
1481 specified, then that means the function is not interactive.
|
|
1482 This is terrible behavior which is retained for compatibility with old
|
380
|
1483 `.elc' files which expect these semantics.
|
20
|
1484 */
|
|
1485 (int nargs, Lisp_Object *args))
|
0
|
1486 {
|
380
|
1487 /* In a non-insane world this function would have this arglist...
|
|
1488 (arglist instructions constants stack_depth &optional doc_string interactive)
|
0
|
1489 */
|
398
|
1490 Lisp_Object fun = make_compiled_function ();
|
380
|
1491 Lisp_Compiled_Function *f = XCOMPILED_FUNCTION (fun);
|
|
1492
|
0
|
1493 Lisp_Object arglist = args[0];
|
|
1494 Lisp_Object instructions = args[1];
|
|
1495 Lisp_Object constants = args[2];
|
380
|
1496 Lisp_Object stack_depth = args[3];
|
272
|
1497 Lisp_Object doc_string = (nargs > 4) ? args[4] : Qnil;
|
|
1498 Lisp_Object interactive = (nargs > 5) ? args[5] : Qunbound;
|
380
|
1499
|
|
1500 if (nargs < 4 || nargs > 6)
|
183
|
1501 return Fsignal (Qwrong_number_of_arguments,
|
0
|
1502 list2 (intern ("make-byte-code"), make_int (nargs)));
|
|
1503
|
380
|
1504 /* Check for valid formal parameter list now, to allow us to use
|
|
1505 SPECBIND_FAST_UNSAFE() later in funcall_compiled_function(). */
|
|
1506 {
|
|
1507 Lisp_Object symbol, tail;
|
|
1508 EXTERNAL_LIST_LOOP_3 (symbol, arglist, tail)
|
|
1509 {
|
|
1510 CHECK_SYMBOL (symbol);
|
|
1511 if (EQ (symbol, Qt) ||
|
|
1512 EQ (symbol, Qnil) ||
|
|
1513 SYMBOL_IS_KEYWORD (symbol))
|
|
1514 signal_simple_error_2
|
|
1515 ("Invalid constant symbol in formal parameter list",
|
|
1516 symbol, arglist);
|
|
1517 }
|
|
1518 }
|
|
1519 f->arglist = arglist;
|
|
1520
|
|
1521 /* `instructions' is a string or a cons (string . int) for a
|
0
|
1522 lazy-loaded function. */
|
|
1523 if (CONSP (instructions))
|
|
1524 {
|
|
1525 CHECK_STRING (XCAR (instructions));
|
|
1526 CHECK_INT (XCDR (instructions));
|
|
1527 }
|
|
1528 else
|
|
1529 {
|
|
1530 CHECK_STRING (instructions);
|
380
|
1531 }
|
|
1532 f->instructions = instructions;
|
|
1533
|
|
1534 if (!NILP (constants))
|
|
1535 CHECK_VECTOR (constants);
|
|
1536 f->constants = constants;
|
|
1537
|
|
1538 CHECK_NATNUM (stack_depth);
|
398
|
1539 f->stack_depth = XINT (stack_depth);
|
380
|
1540
|
|
1541 #ifdef COMPILED_FUNCTION_ANNOTATION_HACK
|
|
1542 if (!NILP (Vcurrent_compiled_function_annotation))
|
398
|
1543 f->annotated = Fcopy (Vcurrent_compiled_function_annotation);
|
380
|
1544 else if (!NILP (Vload_file_name_internal_the_purecopy))
|
|
1545 f->annotated = Vload_file_name_internal_the_purecopy;
|
|
1546 else if (!NILP (Vload_file_name_internal))
|
|
1547 {
|
|
1548 struct gcpro gcpro1;
|
|
1549 GCPRO1 (fun); /* don't let fun get reaped */
|
|
1550 Vload_file_name_internal_the_purecopy =
|
398
|
1551 Ffile_name_nondirectory (Vload_file_name_internal);
|
380
|
1552 f->annotated = Vload_file_name_internal_the_purecopy;
|
|
1553 UNGCPRO;
|
0
|
1554 }
|
380
|
1555 #endif /* COMPILED_FUNCTION_ANNOTATION_HACK */
|
|
1556
|
|
1557 /* doc_string may be nil, string, int, or a cons (string . int).
|
|
1558 interactive may be list or string (or unbound). */
|
|
1559 f->doc_and_interactive = Qunbound;
|
|
1560 #ifdef I18N3
|
|
1561 if ((f->flags.domainp = !NILP (Vfile_domain)) != 0)
|
|
1562 f->doc_and_interactive = Vfile_domain;
|
|
1563 #endif
|
|
1564 if ((f->flags.interactivep = !UNBOUNDP (interactive)) != 0)
|
|
1565 {
|
|
1566 f->doc_and_interactive
|
|
1567 = (UNBOUNDP (f->doc_and_interactive) ? interactive :
|
398
|
1568 Fcons (interactive, f->doc_and_interactive));
|
380
|
1569 }
|
|
1570 if ((f->flags.documentationp = !NILP (doc_string)) != 0)
|
|
1571 {
|
|
1572 f->doc_and_interactive
|
|
1573 = (UNBOUNDP (f->doc_and_interactive) ? doc_string :
|
398
|
1574 Fcons (doc_string, f->doc_and_interactive));
|
380
|
1575 }
|
|
1576 if (UNBOUNDP (f->doc_and_interactive))
|
|
1577 f->doc_and_interactive = Qnil;
|
0
|
1578
|
380
|
1579 return fun;
|
0
|
1580 }
|
|
1581
|
|
1582
|
380
|
1583 /************************************************************************/
|
|
1584 /* Symbol allocation */
|
|
1585 /************************************************************************/
|
0
|
1586
|
398
|
1587 DECLARE_FIXED_TYPE_ALLOC (symbol, Lisp_Symbol);
|
0
|
1588 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_symbol 1000
|
|
1589
|
20
|
1590 DEFUN ("make-symbol", Fmake_symbol, 1, 1, 0, /*
|
0
|
1591 Return a newly allocated uninterned symbol whose name is NAME.
|
|
1592 Its value and function definition are void, and its property list is nil.
|
20
|
1593 */
|
380
|
1594 (name))
|
0
|
1595 {
|
|
1596 Lisp_Object val;
|
398
|
1597 Lisp_Symbol *p;
|
0
|
1598
|
380
|
1599 CHECK_STRING (name);
|
0
|
1600
|
398
|
1601 ALLOCATE_FIXED_TYPE (symbol, Lisp_Symbol, p);
|
|
1602 set_lheader_implementation (&(p->lheader), &lrecord_symbol);
|
380
|
1603 p->name = XSTRING (name);
|
|
1604 p->plist = Qnil;
|
|
1605 p->value = Qunbound;
|
0
|
1606 p->function = Qunbound;
|
371
|
1607 symbol_next (p) = 0;
|
0
|
1608 XSETSYMBOL (val, p);
|
|
1609 return val;
|
|
1610 }
|
|
1611
|
|
1612
|
380
|
1613 /************************************************************************/
|
|
1614 /* Extent allocation */
|
|
1615 /************************************************************************/
|
0
|
1616
|
|
1617 DECLARE_FIXED_TYPE_ALLOC (extent, struct extent);
|
|
1618 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_extent 1000
|
|
1619
|
|
1620 struct extent *
|
|
1621 allocate_extent (void)
|
|
1622 {
|
|
1623 struct extent *e;
|
|
1624
|
|
1625 ALLOCATE_FIXED_TYPE (extent, struct extent, e);
|
398
|
1626 set_lheader_implementation (&(e->lheader), &lrecord_extent);
|
0
|
1627 extent_object (e) = Qnil;
|
|
1628 set_extent_start (e, -1);
|
|
1629 set_extent_end (e, -1);
|
|
1630 e->plist = Qnil;
|
|
1631
|
272
|
1632 xzero (e->flags);
|
0
|
1633
|
|
1634 extent_face (e) = Qnil;
|
|
1635 e->flags.end_open = 1; /* default is for endpoints to behave like markers */
|
|
1636 e->flags.detachable = 1;
|
|
1637
|
173
|
1638 return e;
|
0
|
1639 }
|
|
1640
|
|
1641
|
380
|
1642 /************************************************************************/
|
|
1643 /* Event allocation */
|
|
1644 /************************************************************************/
|
0
|
1645
|
398
|
1646 DECLARE_FIXED_TYPE_ALLOC (event, Lisp_Event);
|
0
|
1647 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_event 1000
|
|
1648
|
|
1649 Lisp_Object
|
|
1650 allocate_event (void)
|
|
1651 {
|
|
1652 Lisp_Object val;
|
398
|
1653 Lisp_Event *e;
|
|
1654
|
|
1655 ALLOCATE_FIXED_TYPE (event, Lisp_Event, e);
|
|
1656 set_lheader_implementation (&(e->lheader), &lrecord_event);
|
0
|
1657
|
|
1658 XSETEVENT (val, e);
|
|
1659 return val;
|
|
1660 }
|
183
|
1661
|
0
|
1662
|
380
|
1663 /************************************************************************/
|
|
1664 /* Marker allocation */
|
|
1665 /************************************************************************/
|
0
|
1666
|
398
|
1667 DECLARE_FIXED_TYPE_ALLOC (marker, Lisp_Marker);
|
0
|
1668 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_marker 1000
|
|
1669
|
20
|
1670 DEFUN ("make-marker", Fmake_marker, 0, 0, 0, /*
|
272
|
1671 Return a new marker which does not point at any place.
|
20
|
1672 */
|
|
1673 ())
|
0
|
1674 {
|
|
1675 Lisp_Object val;
|
398
|
1676 Lisp_Marker *p;
|
|
1677
|
|
1678 ALLOCATE_FIXED_TYPE (marker, Lisp_Marker, p);
|
|
1679 set_lheader_implementation (&(p->lheader), &lrecord_marker);
|
0
|
1680 p->buffer = 0;
|
|
1681 p->memind = 0;
|
|
1682 marker_next (p) = 0;
|
|
1683 marker_prev (p) = 0;
|
|
1684 p->insertion_type = 0;
|
|
1685 XSETMARKER (val, p);
|
|
1686 return val;
|
|
1687 }
|
|
1688
|
|
1689 Lisp_Object
|
|
1690 noseeum_make_marker (void)
|
|
1691 {
|
|
1692 Lisp_Object val;
|
398
|
1693 Lisp_Marker *p;
|
|
1694
|
|
1695 NOSEEUM_ALLOCATE_FIXED_TYPE (marker, Lisp_Marker, p);
|
|
1696 set_lheader_implementation (&(p->lheader), &lrecord_marker);
|
0
|
1697 p->buffer = 0;
|
|
1698 p->memind = 0;
|
|
1699 marker_next (p) = 0;
|
|
1700 marker_prev (p) = 0;
|
|
1701 p->insertion_type = 0;
|
|
1702 XSETMARKER (val, p);
|
|
1703 return val;
|
|
1704 }
|
|
1705
|
|
1706
|
380
|
1707 /************************************************************************/
|
|
1708 /* String allocation */
|
|
1709 /************************************************************************/
|
0
|
1710
|
183
|
1711 /* The data for "short" strings generally resides inside of structs of type
|
|
1712 string_chars_block. The Lisp_String structure is allocated just like any
|
0
|
1713 other Lisp object (except for vectors), and these are freelisted when
|
|
1714 they get garbage collected. The data for short strings get compacted,
|
183
|
1715 but the data for large strings do not.
|
0
|
1716
|
|
1717 Previously Lisp_String structures were relocated, but this caused a lot
|
|
1718 of bus-errors because the C code didn't include enough GCPRO's for
|
|
1719 strings (since EVERY REFERENCE to a short string needed to be GCPRO'd so
|
|
1720 that the reference would get relocated).
|
|
1721
|
|
1722 This new method makes things somewhat bigger, but it is MUCH safer. */
|
|
1723
|
398
|
1724 DECLARE_FIXED_TYPE_ALLOC (string, Lisp_String);
|
0
|
1725 /* strings are used and freed quite often */
|
|
1726 /* #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_string 10000 */
|
|
1727 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_string 1000
|
|
1728
|
207
|
1729 static Lisp_Object
|
398
|
1730 mark_string (Lisp_Object obj)
|
207
|
1731 {
|
398
|
1732 Lisp_String *ptr = XSTRING (obj);
|
|
1733
|
|
1734 if (CONSP (ptr->plist) && EXTENT_INFOP (XCAR (ptr->plist)))
|
207
|
1735 flush_cached_extent_info (XCAR (ptr->plist));
|
|
1736 return ptr->plist;
|
|
1737 }
|
|
1738
|
|
1739 static int
|
380
|
1740 string_equal (Lisp_Object obj1, Lisp_Object obj2, int depth)
|
207
|
1741 {
|
272
|
1742 Bytecount len;
|
380
|
1743 return (((len = XSTRING_LENGTH (obj1)) == XSTRING_LENGTH (obj2)) &&
|
|
1744 !memcmp (XSTRING_DATA (obj1), XSTRING_DATA (obj2), len));
|
207
|
1745 }
|
243
|
1746
|
398
|
1747 static const struct lrecord_description string_description[] = {
|
|
1748 { XD_BYTECOUNT, offsetof (Lisp_String, size) },
|
|
1749 { XD_OPAQUE_DATA_PTR, offsetof (Lisp_String, data), XD_INDIRECT(0, 1) },
|
|
1750 { XD_LISP_OBJECT, offsetof (Lisp_String, plist) },
|
|
1751 { XD_END }
|
|
1752 };
|
|
1753
|
|
1754 /* We store the string's extent info as the first element of the string's
|
|
1755 property list; and the string's MODIFF as the first or second element
|
|
1756 of the string's property list (depending on whether the extent info
|
|
1757 is present), but only if the string has been modified. This is ugly
|
|
1758 but it reduces the memory allocated for the string in the vast
|
|
1759 majority of cases, where the string is never modified and has no
|
|
1760 extent info.
|
|
1761
|
|
1762 #### This means you can't use an int as a key in a string's plist. */
|
|
1763
|
|
1764 static Lisp_Object *
|
|
1765 string_plist_ptr (Lisp_Object string)
|
|
1766 {
|
|
1767 Lisp_Object *ptr = &XSTRING (string)->plist;
|
|
1768
|
|
1769 if (CONSP (*ptr) && EXTENT_INFOP (XCAR (*ptr)))
|
|
1770 ptr = &XCDR (*ptr);
|
|
1771 if (CONSP (*ptr) && INTP (XCAR (*ptr)))
|
|
1772 ptr = &XCDR (*ptr);
|
|
1773 return ptr;
|
|
1774 }
|
|
1775
|
|
1776 static Lisp_Object
|
|
1777 string_getprop (Lisp_Object string, Lisp_Object property)
|
|
1778 {
|
|
1779 return external_plist_get (string_plist_ptr (string), property, 0, ERROR_ME);
|
|
1780 }
|
|
1781
|
|
1782 static int
|
|
1783 string_putprop (Lisp_Object string, Lisp_Object property, Lisp_Object value)
|
|
1784 {
|
|
1785 external_plist_put (string_plist_ptr (string), property, value, 0, ERROR_ME);
|
|
1786 return 1;
|
|
1787 }
|
|
1788
|
|
1789 static int
|
|
1790 string_remprop (Lisp_Object string, Lisp_Object property)
|
|
1791 {
|
|
1792 return external_remprop (string_plist_ptr (string), property, 0, ERROR_ME);
|
|
1793 }
|
|
1794
|
|
1795 static Lisp_Object
|
|
1796 string_plist (Lisp_Object string)
|
|
1797 {
|
|
1798 return *string_plist_ptr (string);
|
|
1799 }
|
|
1800
|
|
1801 /* No `finalize', or `hash' methods.
|
|
1802 internal_hash() already knows how to hash strings and finalization
|
|
1803 is done with the ADDITIONAL_FREE_string macro, which is the
|
|
1804 standard way to do finalization when using
|
|
1805 SWEEP_FIXED_TYPE_BLOCK(). */
|
|
1806 DEFINE_BASIC_LRECORD_IMPLEMENTATION_WITH_PROPS ("string", string,
|
|
1807 mark_string, print_string,
|
|
1808 0, string_equal, 0,
|
|
1809 string_description,
|
|
1810 string_getprop,
|
|
1811 string_putprop,
|
|
1812 string_remprop,
|
|
1813 string_plist,
|
|
1814 Lisp_String);
|
207
|
1815
|
0
|
1816 /* String blocks contain this many useful bytes. */
|
272
|
1817 #define STRING_CHARS_BLOCK_SIZE \
|
|
1818 ((Bytecount) (8192 - MALLOC_OVERHEAD - \
|
|
1819 ((2 * sizeof (struct string_chars_block *)) \
|
|
1820 + sizeof (EMACS_INT))))
|
0
|
1821 /* Block header for small strings. */
|
|
1822 struct string_chars_block
|
|
1823 {
|
|
1824 EMACS_INT pos;
|
|
1825 struct string_chars_block *next;
|
|
1826 struct string_chars_block *prev;
|
|
1827 /* Contents of string_chars_block->string_chars are interleaved
|
|
1828 string_chars structures (see below) and the actual string data */
|
|
1829 unsigned char string_chars[STRING_CHARS_BLOCK_SIZE];
|
|
1830 };
|
|
1831
|
398
|
1832 static struct string_chars_block *first_string_chars_block;
|
|
1833 static struct string_chars_block *current_string_chars_block;
|
0
|
1834
|
|
1835 /* If SIZE is the length of a string, this returns how many bytes
|
|
1836 * the string occupies in string_chars_block->string_chars
|
|
1837 * (including alignment padding).
|
|
1838 */
|
398
|
1839 #define STRING_FULLSIZE(size) \
|
|
1840 ALIGN_SIZE (((size) + 1 + sizeof (Lisp_String *)),\
|
|
1841 ALIGNOF (Lisp_String *))
|
0
|
1842
|
|
1843 #define BIG_STRING_FULLSIZE_P(fullsize) ((fullsize) >= STRING_CHARS_BLOCK_SIZE)
|
|
1844 #define BIG_STRING_SIZE_P(size) (BIG_STRING_FULLSIZE_P (STRING_FULLSIZE(size)))
|
|
1845
|
|
1846 struct string_chars
|
|
1847 {
|
398
|
1848 Lisp_String *string;
|
0
|
1849 unsigned char chars[1];
|
|
1850 };
|
|
1851
|
|
1852 struct unused_string_chars
|
|
1853 {
|
398
|
1854 Lisp_String *string;
|
0
|
1855 EMACS_INT fullsize;
|
|
1856 };
|
|
1857
|
|
1858 static void
|
|
1859 init_string_chars_alloc (void)
|
|
1860 {
|
185
|
1861 first_string_chars_block = xnew (struct string_chars_block);
|
0
|
1862 first_string_chars_block->prev = 0;
|
|
1863 first_string_chars_block->next = 0;
|
|
1864 first_string_chars_block->pos = 0;
|
|
1865 current_string_chars_block = first_string_chars_block;
|
|
1866 }
|
|
1867
|
|
1868 static struct string_chars *
|
398
|
1869 allocate_string_chars_struct (Lisp_String *string_it_goes_with,
|
0
|
1870 EMACS_INT fullsize)
|
|
1871 {
|
|
1872 struct string_chars *s_chars;
|
|
1873
|
398
|
1874 if (fullsize <=
|
|
1875 (countof (current_string_chars_block->string_chars)
|
|
1876 - current_string_chars_block->pos))
|
0
|
1877 {
|
|
1878 /* This string can fit in the current string chars block */
|
|
1879 s_chars = (struct string_chars *)
|
|
1880 (current_string_chars_block->string_chars
|
|
1881 + current_string_chars_block->pos);
|
|
1882 current_string_chars_block->pos += fullsize;
|
|
1883 }
|
|
1884 else
|
|
1885 {
|
|
1886 /* Make a new current string chars block */
|
382
|
1887 struct string_chars_block *new_scb = xnew (struct string_chars_block);
|
|
1888
|
|
1889 current_string_chars_block->next = new_scb;
|
|
1890 new_scb->prev = current_string_chars_block;
|
|
1891 new_scb->next = 0;
|
|
1892 current_string_chars_block = new_scb;
|
|
1893 new_scb->pos = fullsize;
|
0
|
1894 s_chars = (struct string_chars *)
|
|
1895 current_string_chars_block->string_chars;
|
|
1896 }
|
|
1897
|
|
1898 s_chars->string = string_it_goes_with;
|
|
1899
|
|
1900 INCREMENT_CONS_COUNTER (fullsize, "string chars");
|
|
1901
|
|
1902 return s_chars;
|
|
1903 }
|
|
1904
|
|
1905 Lisp_Object
|
|
1906 make_uninit_string (Bytecount length)
|
|
1907 {
|
398
|
1908 Lisp_String *s;
|
0
|
1909 EMACS_INT fullsize = STRING_FULLSIZE (length);
|
|
1910 Lisp_Object val;
|
|
1911
|
398
|
1912 assert (length >= 0 && fullsize > 0);
|
0
|
1913
|
|
1914 /* Allocate the string header */
|
398
|
1915 ALLOCATE_FIXED_TYPE (string, Lisp_String, s);
|
|
1916 set_lheader_implementation (&(s->lheader), &lrecord_string);
|
|
1917
|
|
1918 set_string_data (s, BIG_STRING_FULLSIZE_P (fullsize)
|
|
1919 ? xnew_array (Bufbyte, length + 1)
|
|
1920 : allocate_string_chars_struct (s, fullsize)->chars);
|
|
1921
|
0
|
1922 set_string_length (s, length);
|
|
1923 s->plist = Qnil;
|
183
|
1924
|
0
|
1925 set_string_byte (s, length, 0);
|
|
1926
|
|
1927 XSETSTRING (val, s);
|
173
|
1928 return val;
|
0
|
1929 }
|
|
1930
|
|
1931 #ifdef VERIFY_STRING_CHARS_INTEGRITY
|
|
1932 static void verify_string_chars_integrity (void);
|
|
1933 #endif
|
183
|
1934
|
0
|
1935 /* Resize the string S so that DELTA bytes can be inserted starting
|
|
1936 at POS. If DELTA < 0, it means deletion starting at POS. If
|
|
1937 POS < 0, resize the string but don't copy any characters. Use
|
|
1938 this if you're planning on completely overwriting the string.
|
|
1939 */
|
|
1940
|
|
1941 void
|
398
|
1942 resize_string (Lisp_String *s, Bytecount pos, Bytecount delta)
|
0
|
1943 {
|
398
|
1944 Bytecount oldfullsize, newfullsize;
|
0
|
1945 #ifdef VERIFY_STRING_CHARS_INTEGRITY
|
|
1946 verify_string_chars_integrity ();
|
|
1947 #endif
|
|
1948
|
|
1949 #ifdef ERROR_CHECK_BUFPOS
|
|
1950 if (pos >= 0)
|
|
1951 {
|
|
1952 assert (pos <= string_length (s));
|
|
1953 if (delta < 0)
|
|
1954 assert (pos + (-delta) <= string_length (s));
|
|
1955 }
|
|
1956 else
|
|
1957 {
|
|
1958 if (delta < 0)
|
|
1959 assert ((-delta) <= string_length (s));
|
|
1960 }
|
183
|
1961 #endif /* ERROR_CHECK_BUFPOS */
|
0
|
1962
|
|
1963 if (delta == 0)
|
|
1964 /* simplest case: no size change. */
|
|
1965 return;
|
398
|
1966
|
|
1967 if (pos >= 0 && delta < 0)
|
|
1968 /* If DELTA < 0, the functions below will delete the characters
|
|
1969 before POS. We want to delete characters *after* POS, however,
|
|
1970 so convert this to the appropriate form. */
|
|
1971 pos += -delta;
|
|
1972
|
|
1973 oldfullsize = STRING_FULLSIZE (string_length (s));
|
|
1974 newfullsize = STRING_FULLSIZE (string_length (s) + delta);
|
|
1975
|
|
1976 if (BIG_STRING_FULLSIZE_P (oldfullsize))
|
0
|
1977 {
|
398
|
1978 if (BIG_STRING_FULLSIZE_P (newfullsize))
|
0
|
1979 {
|
398
|
1980 /* Both strings are big. We can just realloc().
|
|
1981 But careful! If the string is shrinking, we have to
|
|
1982 memmove() _before_ realloc(), and if growing, we have to
|
|
1983 memmove() _after_ realloc() - otherwise the access is
|
|
1984 illegal, and we might crash. */
|
|
1985 Bytecount len = string_length (s) + 1 - pos;
|
|
1986
|
|
1987 if (delta < 0 && pos >= 0)
|
|
1988 memmove (string_data (s) + pos + delta, string_data (s) + pos, len);
|
|
1989 set_string_data (s, (Bufbyte *) xrealloc (string_data (s),
|
|
1990 string_length (s) + delta + 1));
|
|
1991 if (delta > 0 && pos >= 0)
|
|
1992 memmove (string_data (s) + pos + delta, string_data (s) + pos, len);
|
|
1993 }
|
|
1994 else /* String has been demoted from BIG_STRING. */
|
|
1995 {
|
|
1996 Bufbyte *new_data =
|
|
1997 allocate_string_chars_struct (s, newfullsize)->chars;
|
|
1998 Bufbyte *old_data = string_data (s);
|
|
1999
|
0
|
2000 if (pos >= 0)
|
|
2001 {
|
398
|
2002 memcpy (new_data, old_data, pos);
|
|
2003 memcpy (new_data + pos + delta, old_data + pos,
|
|
2004 string_length (s) + 1 - pos);
|
0
|
2005 }
|
398
|
2006 set_string_data (s, new_data);
|
|
2007 xfree (old_data);
|
0
|
2008 }
|
398
|
2009 }
|
|
2010 else /* old string is small */
|
|
2011 {
|
|
2012 if (oldfullsize == newfullsize)
|
0
|
2013 {
|
398
|
2014 /* special case; size change but the necessary
|
|
2015 allocation size won't change (up or down; code
|
|
2016 somewhere depends on there not being any unused
|
|
2017 allocation space, modulo any alignment
|
|
2018 constraints). */
|
0
|
2019 if (pos >= 0)
|
|
2020 {
|
183
|
2021 Bufbyte *addroff = pos + string_data (s);
|
0
|
2022
|
|
2023 memmove (addroff + delta, addroff,
|
|
2024 /* +1 due to zero-termination. */
|
|
2025 string_length (s) + 1 - pos);
|
|
2026 }
|
|
2027 }
|
|
2028 else
|
|
2029 {
|
398
|
2030 Bufbyte *old_data = string_data (s);
|
|
2031 Bufbyte *new_data =
|
|
2032 BIG_STRING_FULLSIZE_P (newfullsize)
|
|
2033 ? xnew_array (Bufbyte, string_length (s) + delta + 1)
|
|
2034 : allocate_string_chars_struct (s, newfullsize)->chars;
|
|
2035
|
0
|
2036 if (pos >= 0)
|
|
2037 {
|
398
|
2038 memcpy (new_data, old_data, pos);
|
|
2039 memcpy (new_data + pos + delta, old_data + pos,
|
0
|
2040 string_length (s) + 1 - pos);
|
|
2041 }
|
398
|
2042 set_string_data (s, new_data);
|
|
2043
|
|
2044 {
|
|
2045 /* We need to mark this chunk of the string_chars_block
|
|
2046 as unused so that compact_string_chars() doesn't
|
|
2047 freak. */
|
|
2048 struct string_chars *old_s_chars = (struct string_chars *)
|
|
2049 ((char *) old_data - offsetof (struct string_chars, chars));
|
|
2050 /* Sanity check to make sure we aren't hosed by strange
|
|
2051 alignment/padding. */
|
|
2052 assert (old_s_chars->string == s);
|
|
2053 MARK_STRUCT_AS_FREE (old_s_chars);
|
|
2054 ((struct unused_string_chars *) old_s_chars)->fullsize =
|
|
2055 oldfullsize;
|
|
2056 }
|
0
|
2057 }
|
398
|
2058 }
|
|
2059
|
|
2060 set_string_length (s, string_length (s) + delta);
|
|
2061 /* If pos < 0, the string won't be zero-terminated.
|
|
2062 Terminate now just to make sure. */
|
|
2063 string_data (s)[string_length (s)] = '\0';
|
|
2064
|
|
2065 if (pos >= 0)
|
|
2066 {
|
|
2067 Lisp_Object string;
|
|
2068
|
|
2069 XSETSTRING (string, s);
|
|
2070 /* We also have to adjust all of the extent indices after the
|
|
2071 place we did the change. We say "pos - 1" because
|
|
2072 adjust_extents() is exclusive of the starting position
|
|
2073 passed to it. */
|
|
2074 adjust_extents (string, pos - 1, string_length (s),
|
|
2075 delta);
|
0
|
2076 }
|
|
2077
|
|
2078 #ifdef VERIFY_STRING_CHARS_INTEGRITY
|
|
2079 verify_string_chars_integrity ();
|
|
2080 #endif
|
|
2081 }
|
|
2082
|
70
|
2083 #ifdef MULE
|
|
2084
|
|
2085 void
|
398
|
2086 set_string_char (Lisp_String *s, Charcount i, Emchar c)
|
70
|
2087 {
|
|
2088 Bufbyte newstr[MAX_EMCHAR_LEN];
|
|
2089 Bytecount bytoff = charcount_to_bytecount (string_data (s), i);
|
382
|
2090 Bytecount oldlen = charcount_to_bytecount (string_data (s) + bytoff, 1);
|
|
2091 Bytecount newlen = set_charptr_emchar (newstr, c);
|
70
|
2092
|
|
2093 if (oldlen != newlen)
|
|
2094 resize_string (s, bytoff, newlen - oldlen);
|
185
|
2095 /* Remember, string_data (s) might have changed so we can't cache it. */
|
70
|
2096 memcpy (string_data (s) + bytoff, newstr, newlen);
|
|
2097 }
|
|
2098
|
|
2099 #endif /* MULE */
|
|
2100
|
20
|
2101 DEFUN ("make-string", Fmake_string, 2, 2, 0, /*
|
272
|
2102 Return a new string of length LENGTH, with each character being INIT.
|
0
|
2103 LENGTH must be an integer and INIT must be a character.
|
20
|
2104 */
|
|
2105 (length, init))
|
0
|
2106 {
|
|
2107 CHECK_NATNUM (length);
|
|
2108 CHECK_CHAR_COERCE_INT (init);
|
|
2109 {
|
380
|
2110 Bufbyte init_str[MAX_EMCHAR_LEN];
|
|
2111 int len = set_charptr_emchar (init_str, XCHAR (init));
|
|
2112 Lisp_Object val = make_uninit_string (len * XINT (length));
|
|
2113
|
0
|
2114 if (len == 1)
|
|
2115 /* Optimize the single-byte case */
|
14
|
2116 memset (XSTRING_DATA (val), XCHAR (init), XSTRING_LENGTH (val));
|
0
|
2117 else
|
|
2118 {
|
398
|
2119 size_t i;
|
14
|
2120 Bufbyte *ptr = XSTRING_DATA (val);
|
0
|
2121
|
380
|
2122 for (i = XINT (length); i; i--)
|
|
2123 {
|
|
2124 Bufbyte *init_ptr = init_str;
|
|
2125 switch (len)
|
|
2126 {
|
|
2127 case 4: *ptr++ = *init_ptr++;
|
|
2128 case 3: *ptr++ = *init_ptr++;
|
|
2129 case 2: *ptr++ = *init_ptr++;
|
|
2130 case 1: *ptr++ = *init_ptr++;
|
|
2131 }
|
|
2132 }
|
0
|
2133 }
|
380
|
2134 return val;
|
0
|
2135 }
|
|
2136 }
|
|
2137
|
278
|
2138 DEFUN ("string", Fstring, 0, MANY, 0, /*
|
|
2139 Concatenate all the argument characters and make the result a string.
|
|
2140 */
|
|
2141 (int nargs, Lisp_Object *args))
|
|
2142 {
|
|
2143 Bufbyte *storage = alloca_array (Bufbyte, nargs * MAX_EMCHAR_LEN);
|
|
2144 Bufbyte *p = storage;
|
|
2145
|
|
2146 for (; nargs; nargs--, args++)
|
|
2147 {
|
|
2148 Lisp_Object lisp_char = *args;
|
|
2149 CHECK_CHAR_COERCE_INT (lisp_char);
|
|
2150 p += set_charptr_emchar (p, XCHAR (lisp_char));
|
|
2151 }
|
|
2152 return make_string (storage, p - storage);
|
|
2153 }
|
|
2154
|
398
|
2155
|
0
|
2156 /* Take some raw memory, which MUST already be in internal format,
|
272
|
2157 and package it up into a Lisp string. */
|
0
|
2158 Lisp_Object
|
398
|
2159 make_string (const Bufbyte *contents, Bytecount length)
|
0
|
2160 {
|
|
2161 Lisp_Object val;
|
70
|
2162
|
|
2163 /* Make sure we find out about bad make_string's when they happen */
|
|
2164 #if defined (ERROR_CHECK_BUFPOS) && defined (MULE)
|
|
2165 bytecount_to_charcount (contents, length); /* Just for the assertions */
|
|
2166 #endif
|
183
|
2167
|
0
|
2168 val = make_uninit_string (length);
|
14
|
2169 memcpy (XSTRING_DATA (val), contents, length);
|
173
|
2170 return val;
|
0
|
2171 }
|
|
2172
|
|
2173 /* Take some raw memory, encoded in some external data format,
|
|
2174 and convert it into a Lisp string. */
|
|
2175 Lisp_Object
|
398
|
2176 make_ext_string (const Extbyte *contents, EMACS_INT length,
|
|
2177 Lisp_Object coding_system)
|
0
|
2178 {
|
398
|
2179 Lisp_Object string;
|
|
2180 TO_INTERNAL_FORMAT (DATA, (contents, length),
|
|
2181 LISP_STRING, string,
|
|
2182 coding_system);
|
|
2183 return string;
|
|
2184 }
|
|
2185
|
|
2186 Lisp_Object
|
|
2187 build_string (const char *str)
|
|
2188 {
|
|
2189 /* Some strlen's crash and burn if passed null. */
|
|
2190 return make_string ((const Bufbyte *) str, (str ? strlen(str) : 0));
|
|
2191 }
|
|
2192
|
|
2193 Lisp_Object
|
|
2194 build_ext_string (const char *str, Lisp_Object coding_system)
|
|
2195 {
|
|
2196 /* Some strlen's crash and burn if passed null. */
|
|
2197 return make_ext_string ((const Extbyte *) str, (str ? strlen(str) : 0),
|
|
2198 coding_system);
|
0
|
2199 }
|
|
2200
|
|
2201 Lisp_Object
|
398
|
2202 build_translated_string (const char *str)
|
0
|
2203 {
|
398
|
2204 return build_string (GETTEXT (str));
|
0
|
2205 }
|
|
2206
|
|
2207 Lisp_Object
|
398
|
2208 make_string_nocopy (const Bufbyte *contents, Bytecount length)
|
0
|
2209 {
|
398
|
2210 Lisp_String *s;
|
|
2211 Lisp_Object val;
|
|
2212
|
|
2213 /* Make sure we find out about bad make_string_nocopy's when they happen */
|
|
2214 #if defined (ERROR_CHECK_BUFPOS) && defined (MULE)
|
|
2215 bytecount_to_charcount (contents, length); /* Just for the assertions */
|
|
2216 #endif
|
|
2217
|
|
2218 /* Allocate the string header */
|
|
2219 ALLOCATE_FIXED_TYPE (string, Lisp_String, s);
|
|
2220 set_lheader_implementation (&(s->lheader), &lrecord_string);
|
|
2221 SET_C_READONLY_RECORD_HEADER (&s->lheader);
|
|
2222 s->plist = Qnil;
|
|
2223 set_string_data (s, (Bufbyte *)contents);
|
|
2224 set_string_length (s, length);
|
|
2225
|
|
2226 XSETSTRING (val, s);
|
|
2227 return val;
|
0
|
2228 }
|
|
2229
|
|
2230
|
|
2231 /************************************************************************/
|
|
2232 /* lcrecord lists */
|
|
2233 /************************************************************************/
|
|
2234
|
|
2235 /* Lcrecord lists are used to manage the allocation of particular
|
|
2236 sorts of lcrecords, to avoid calling alloc_lcrecord() (and thus
|
|
2237 malloc() and garbage-collection junk) as much as possible.
|
|
2238 It is similar to the Blocktype class.
|
|
2239
|
|
2240 It works like this:
|
|
2241
|
|
2242 1) Create an lcrecord-list object using make_lcrecord_list().
|
398
|
2243 This is often done at initialization. Remember to staticpro_nodump
|
0
|
2244 this object! The arguments to make_lcrecord_list() are the
|
|
2245 same as would be passed to alloc_lcrecord().
|
|
2246 2) Instead of calling alloc_lcrecord(), call allocate_managed_lcrecord()
|
|
2247 and pass the lcrecord-list earlier created.
|
|
2248 3) When done with the lcrecord, call free_managed_lcrecord().
|
|
2249 The standard freeing caveats apply: ** make sure there are no
|
|
2250 pointers to the object anywhere! **
|
|
2251 4) Calling free_managed_lcrecord() is just like kissing the
|
|
2252 lcrecord goodbye as if it were garbage-collected. This means:
|
|
2253 -- the contents of the freed lcrecord are undefined, and the
|
|
2254 contents of something produced by allocate_managed_lcrecord()
|
|
2255 are undefined, just like for alloc_lcrecord().
|
|
2256 -- the mark method for the lcrecord's type will *NEVER* be called
|
|
2257 on freed lcrecords.
|
|
2258 -- the finalize method for the lcrecord's type will be called
|
|
2259 at the time that free_managed_lcrecord() is called.
|
|
2260
|
|
2261 */
|
|
2262
|
|
2263 static Lisp_Object
|
398
|
2264 mark_lcrecord_list (Lisp_Object obj)
|
0
|
2265 {
|
|
2266 struct lcrecord_list *list = XLCRECORD_LIST (obj);
|
|
2267 Lisp_Object chain = list->free;
|
|
2268
|
|
2269 while (!NILP (chain))
|
|
2270 {
|
|
2271 struct lrecord_header *lheader = XRECORD_LHEADER (chain);
|
|
2272 struct free_lcrecord_header *free_header =
|
|
2273 (struct free_lcrecord_header *) lheader;
|
14
|
2274
|
|
2275 #ifdef ERROR_CHECK_GC
|
398
|
2276 const struct lrecord_implementation *implementation
|
211
|
2277 = LHEADER_IMPLEMENTATION(lheader);
|
80
|
2278
|
0
|
2279 /* There should be no other pointers to the free list. */
|
|
2280 assert (!MARKED_RECORD_HEADER_P (lheader));
|
|
2281 /* Only lcrecords should be here. */
|
|
2282 assert (!implementation->basic_p);
|
|
2283 /* Only free lcrecords should be here. */
|
|
2284 assert (free_header->lcheader.free);
|
|
2285 /* The type of the lcrecord must be right. */
|
|
2286 assert (implementation == list->implementation);
|
|
2287 /* So must the size. */
|
|
2288 assert (implementation->static_size == 0
|
|
2289 || implementation->static_size == list->size);
|
14
|
2290 #endif /* ERROR_CHECK_GC */
|
80
|
2291
|
0
|
2292 MARK_RECORD_HEADER (lheader);
|
|
2293 chain = free_header->chain;
|
|
2294 }
|
183
|
2295
|
0
|
2296 return Qnil;
|
|
2297 }
|
|
2298
|
243
|
2299 DEFINE_LRECORD_IMPLEMENTATION ("lcrecord-list", lcrecord_list,
|
|
2300 mark_lcrecord_list, internal_object_printer,
|
398
|
2301 0, 0, 0, 0, struct lcrecord_list);
|
0
|
2302 Lisp_Object
|
272
|
2303 make_lcrecord_list (size_t size,
|
398
|
2304 const struct lrecord_implementation *implementation)
|
0
|
2305 {
|
185
|
2306 struct lcrecord_list *p = alloc_lcrecord_type (struct lcrecord_list,
|
398
|
2307 &lrecord_lcrecord_list);
|
272
|
2308 Lisp_Object val;
|
0
|
2309
|
|
2310 p->implementation = implementation;
|
|
2311 p->size = size;
|
|
2312 p->free = Qnil;
|
|
2313 XSETLCRECORD_LIST (val, p);
|
|
2314 return val;
|
|
2315 }
|
|
2316
|
|
2317 Lisp_Object
|
|
2318 allocate_managed_lcrecord (Lisp_Object lcrecord_list)
|
|
2319 {
|
|
2320 struct lcrecord_list *list = XLCRECORD_LIST (lcrecord_list);
|
|
2321 if (!NILP (list->free))
|
|
2322 {
|
|
2323 Lisp_Object val = list->free;
|
|
2324 struct free_lcrecord_header *free_header =
|
|
2325 (struct free_lcrecord_header *) XPNTR (val);
|
|
2326
|
|
2327 #ifdef ERROR_CHECK_GC
|
|
2328 struct lrecord_header *lheader =
|
|
2329 (struct lrecord_header *) free_header;
|
398
|
2330 const struct lrecord_implementation *implementation
|
211
|
2331 = LHEADER_IMPLEMENTATION (lheader);
|
0
|
2332
|
|
2333 /* There should be no other pointers to the free list. */
|
|
2334 assert (!MARKED_RECORD_HEADER_P (lheader));
|
|
2335 /* Only lcrecords should be here. */
|
|
2336 assert (!implementation->basic_p);
|
|
2337 /* Only free lcrecords should be here. */
|
|
2338 assert (free_header->lcheader.free);
|
|
2339 /* The type of the lcrecord must be right. */
|
|
2340 assert (implementation == list->implementation);
|
|
2341 /* So must the size. */
|
|
2342 assert (implementation->static_size == 0
|
|
2343 || implementation->static_size == list->size);
|
183
|
2344 #endif /* ERROR_CHECK_GC */
|
0
|
2345 list->free = free_header->chain;
|
|
2346 free_header->lcheader.free = 0;
|
|
2347 return val;
|
|
2348 }
|
|
2349 else
|
|
2350 {
|
272
|
2351 Lisp_Object val;
|
185
|
2352
|
|
2353 XSETOBJ (val, Lisp_Type_Record,
|
0
|
2354 alloc_lcrecord (list->size, list->implementation));
|
185
|
2355 return val;
|
0
|
2356 }
|
|
2357 }
|
|
2358
|
|
2359 void
|
|
2360 free_managed_lcrecord (Lisp_Object lcrecord_list, Lisp_Object lcrecord)
|
|
2361 {
|
|
2362 struct lcrecord_list *list = XLCRECORD_LIST (lcrecord_list);
|
|
2363 struct free_lcrecord_header *free_header =
|
|
2364 (struct free_lcrecord_header *) XPNTR (lcrecord);
|
|
2365 struct lrecord_header *lheader =
|
|
2366 (struct lrecord_header *) free_header;
|
398
|
2367 const struct lrecord_implementation *implementation
|
211
|
2368 = LHEADER_IMPLEMENTATION (lheader);
|
0
|
2369
|
|
2370 #ifdef ERROR_CHECK_GC
|
|
2371 /* Make sure the size is correct. This will catch, for example,
|
|
2372 putting a window configuration on the wrong free list. */
|
|
2373 if (implementation->size_in_bytes_method)
|
380
|
2374 assert (implementation->size_in_bytes_method (lheader) == list->size);
|
0
|
2375 else
|
|
2376 assert (implementation->static_size == list->size);
|
183
|
2377 #endif /* ERROR_CHECK_GC */
|
0
|
2378
|
|
2379 if (implementation->finalizer)
|
380
|
2380 implementation->finalizer (lheader, 0);
|
0
|
2381 free_header->chain = list->free;
|
|
2382 free_header->lcheader.free = 1;
|
|
2383 list->free = lcrecord;
|
|
2384 }
|
|
2385
|
|
2386
|
|
2387
|
|
2388
|
20
|
2389 DEFUN ("purecopy", Fpurecopy, 1, 1, 0, /*
|
398
|
2390 Kept for compatibility, returns its argument.
|
|
2391 Old:
|
0
|
2392 Make a copy of OBJECT in pure storage.
|
|
2393 Recursively copies contents of vectors and cons cells.
|
|
2394 Does not copy symbols.
|
20
|
2395 */
|
|
2396 (obj))
|
0
|
2397 {
|
398
|
2398 return obj;
|
102
|
2399 }
|
|
2400
|
0
|
2401
|
|
2402
|
380
|
2403 /************************************************************************/
|
|
2404 /* Garbage Collection */
|
|
2405 /************************************************************************/
|
|
2406
|
|
2407 /* This will be used more extensively In The Future */
|
|
2408 static int last_lrecord_type_index_assigned;
|
|
2409
|
398
|
2410 const struct lrecord_implementation *lrecord_implementations_table[128];
|
380
|
2411 #define max_lrecord_type (countof (lrecord_implementations_table) - 1)
|
0
|
2412
|
|
2413 struct gcpro *gcprolist;
|
|
2414
|
|
2415 /* 415 used Mly 29-Jun-93 */
|
261
|
2416 /* 1327 used slb 28-Feb-98 */
|
398
|
2417 /* 1328 used og 03-Oct-99 (moving slowly, heh?) */
|
263
|
2418 #ifdef HAVE_SHLIB
|
|
2419 #define NSTATICS 4000
|
|
2420 #else
|
|
2421 #define NSTATICS 2000
|
|
2422 #endif
|
0
|
2423 /* Not "static" because of linker lossage on some systems */
|
|
2424 Lisp_Object *staticvec[NSTATICS]
|
|
2425 /* Force it into data space! */
|
|
2426 = {0};
|
|
2427 static int staticidx;
|
|
2428
|
|
2429 /* Put an entry in staticvec, pointing at the variable whose address is given
|
|
2430 */
|
|
2431 void
|
|
2432 staticpro (Lisp_Object *varaddress)
|
|
2433 {
|
|
2434 if (staticidx >= countof (staticvec))
|
263
|
2435 /* #### This is now a dubious abort() since this routine may be called */
|
|
2436 /* by Lisp attempting to load a DLL. */
|
0
|
2437 abort ();
|
|
2438 staticvec[staticidx++] = varaddress;
|
|
2439 }
|
|
2440
|
398
|
2441 /* Not "static" because of linker lossage on some systems */
|
|
2442 Lisp_Object *staticvec_nodump[200]
|
|
2443 /* Force it into data space! */
|
|
2444 = {0};
|
|
2445 static int staticidx_nodump;
|
|
2446
|
|
2447 /* Put an entry in staticvec_nodump, pointing at the variable whose address is given
|
|
2448 */
|
|
2449 void
|
|
2450 staticpro_nodump (Lisp_Object *varaddress)
|
|
2451 {
|
|
2452 if (staticidx_nodump >= countof (staticvec_nodump))
|
|
2453 /* #### This is now a dubious abort() since this routine may be called */
|
|
2454 /* by Lisp attempting to load a DLL. */
|
|
2455 abort ();
|
|
2456 staticvec_nodump[staticidx_nodump++] = varaddress;
|
|
2457 }
|
|
2458
|
|
2459 /* Not "static" because of linker lossage on some systems */
|
|
2460 struct
|
|
2461 {
|
|
2462 void *data;
|
|
2463 const struct struct_description *desc;
|
|
2464 } dumpstructvec[200];
|
|
2465
|
|
2466 static int dumpstructidx;
|
|
2467
|
|
2468 /* Put an entry in dumpstructvec, pointing at the variable whose address is given
|
|
2469 */
|
|
2470 void
|
|
2471 dumpstruct (void *varaddress, const struct struct_description *desc)
|
|
2472 {
|
|
2473 if (dumpstructidx >= countof (dumpstructvec))
|
|
2474 abort ();
|
|
2475 dumpstructvec[dumpstructidx].data = varaddress;
|
|
2476 dumpstructvec[dumpstructidx].desc = desc;
|
|
2477 dumpstructidx++;
|
|
2478 }
|
|
2479
|
|
2480 /* Not "static" because of linker lossage on some systems */
|
|
2481 struct dumpopaque_info
|
|
2482 {
|
|
2483 void *data;
|
|
2484 size_t size;
|
|
2485 } dumpopaquevec[200];
|
|
2486
|
|
2487 static int dumpopaqueidx;
|
|
2488
|
|
2489 /* Put an entry in dumpopaquevec, pointing at the variable whose address is given
|
|
2490 */
|
|
2491 void
|
|
2492 dumpopaque (void *varaddress, size_t size)
|
|
2493 {
|
|
2494 if (dumpopaqueidx >= countof (dumpopaquevec))
|
|
2495 abort ();
|
|
2496 dumpopaquevec[dumpopaqueidx].data = varaddress;
|
|
2497 dumpopaquevec[dumpopaqueidx].size = size;
|
|
2498 dumpopaqueidx++;
|
|
2499 }
|
|
2500
|
|
2501 Lisp_Object *pdump_wirevec[50];
|
|
2502 static int pdump_wireidx;
|
|
2503
|
|
2504 /* Put an entry in pdump_wirevec, pointing at the variable whose address is given
|
|
2505 */
|
|
2506 void
|
|
2507 pdump_wire (Lisp_Object *varaddress)
|
|
2508 {
|
|
2509 if (pdump_wireidx >= countof (pdump_wirevec))
|
|
2510 abort ();
|
|
2511 pdump_wirevec[pdump_wireidx++] = varaddress;
|
|
2512 }
|
|
2513
|
|
2514
|
|
2515 Lisp_Object *pdump_wirevec_list[50];
|
|
2516 static int pdump_wireidx_list;
|
|
2517
|
|
2518 /* Put an entry in pdump_wirevec_list, pointing at the variable whose address is given
|
|
2519 */
|
|
2520 void
|
|
2521 pdump_wire_list (Lisp_Object *varaddress)
|
|
2522 {
|
|
2523 if (pdump_wireidx_list >= countof (pdump_wirevec_list))
|
|
2524 abort ();
|
|
2525 pdump_wirevec_list[pdump_wireidx_list++] = varaddress;
|
|
2526 }
|
|
2527
|
0
|
2528
|
|
2529 /* Mark reference to a Lisp_Object. If the object referred to has not been
|
|
2530 seen yet, recursively mark all the references contained in it. */
|
183
|
2531
|
398
|
2532 void
|
0
|
2533 mark_object (Lisp_Object obj)
|
|
2534 {
|
|
2535 tail_recurse:
|
|
2536
|
380
|
2537 #ifdef ERROR_CHECK_GC
|
398
|
2538 assert (! (EQ (obj, Qnull_pointer)));
|
380
|
2539 #endif
|
|
2540 /* Checks we used to perform */
|
|
2541 /* if (EQ (obj, Qnull_pointer)) return; */
|
|
2542 /* if (!POINTER_TYPE_P (XGCTYPE (obj))) return; */
|
|
2543 /* if (PURIFIED (XPNTR (obj))) return; */
|
|
2544
|
398
|
2545 if (XTYPE (obj) == Lisp_Type_Record)
|
0
|
2546 {
|
398
|
2547 struct lrecord_header *lheader = XRECORD_LHEADER (obj);
|
|
2548 #if defined (ERROR_CHECK_GC)
|
|
2549 assert (lheader->type <= last_lrecord_type_index_assigned);
|
0
|
2550 #endif
|
398
|
2551 if (C_READONLY_RECORD_HEADER_P (lheader))
|
|
2552 return;
|
|
2553
|
|
2554 if (! MARKED_RECORD_HEADER_P (lheader) &&
|
|
2555 ! UNMARKABLE_RECORD_HEADER_P (lheader))
|
|
2556 {
|
|
2557 const struct lrecord_implementation *implementation =
|
|
2558 LHEADER_IMPLEMENTATION (lheader);
|
|
2559 MARK_RECORD_HEADER (lheader);
|
|
2560 #ifdef ERROR_CHECK_GC
|
|
2561 if (!implementation->basic_p)
|
|
2562 assert (! ((struct lcrecord_header *) lheader)->free);
|
|
2563 #endif
|
|
2564 if (implementation->marker)
|
0
|
2565 {
|
398
|
2566 obj = implementation->marker (obj);
|
|
2567 if (!NILP (obj)) goto tail_recurse;
|
0
|
2568 }
|
398
|
2569 }
|
0
|
2570 }
|
|
2571 }
|
|
2572
|
|
2573 /* mark all of the conses in a list and mark the final cdr; but
|
|
2574 DO NOT mark the cars.
|
|
2575
|
|
2576 Use only for internal lists! There should never be other pointers
|
|
2577 to the cons cells, because if so, the cars will remain unmarked
|
|
2578 even when they maybe should be marked. */
|
|
2579 void
|
|
2580 mark_conses_in_list (Lisp_Object obj)
|
|
2581 {
|
|
2582 Lisp_Object rest;
|
|
2583
|
|
2584 for (rest = obj; CONSP (rest); rest = XCDR (rest))
|
|
2585 {
|
|
2586 if (CONS_MARKED_P (XCONS (rest)))
|
|
2587 return;
|
|
2588 MARK_CONS (XCONS (rest));
|
|
2589 }
|
|
2590
|
|
2591 mark_object (rest);
|
|
2592 }
|
|
2593
|
|
2594
|
|
2595 /* Find all structures not marked, and free them. */
|
|
2596
|
|
2597 static int gc_count_num_bit_vector_used, gc_count_bit_vector_total_size;
|
|
2598 static int gc_count_bit_vector_storage;
|
|
2599 static int gc_count_num_short_string_in_use;
|
|
2600 static int gc_count_string_total_size;
|
|
2601 static int gc_count_short_string_total_size;
|
|
2602
|
|
2603 /* static int gc_count_total_records_used, gc_count_records_total_size; */
|
|
2604
|
|
2605
|
211
|
2606 int
|
398
|
2607 lrecord_type_index (const struct lrecord_implementation *implementation)
|
0
|
2608 {
|
|
2609 int type_index = *(implementation->lrecord_type_index);
|
272
|
2610 /* Have to do this circuitous validation test because of problems
|
0
|
2611 dumping out initialized variables (ie can't set xxx_type_index to -1
|
|
2612 because that would make xxx_type_index read-only in a dumped emacs. */
|
|
2613 if (type_index < 0 || type_index > max_lrecord_type
|
|
2614 || lrecord_implementations_table[type_index] != implementation)
|
|
2615 {
|
386
|
2616 assert (last_lrecord_type_index_assigned < max_lrecord_type);
|
0
|
2617 type_index = ++last_lrecord_type_index_assigned;
|
|
2618 lrecord_implementations_table[type_index] = implementation;
|
|
2619 *(implementation->lrecord_type_index) = type_index;
|
|
2620 }
|
173
|
2621 return type_index;
|
0
|
2622 }
|
|
2623
|
|
2624 /* stats on lcrecords in use - kinda kludgy */
|
|
2625
|
|
2626 static struct
|
|
2627 {
|
|
2628 int instances_in_use;
|
|
2629 int bytes_in_use;
|
|
2630 int instances_freed;
|
|
2631 int bytes_freed;
|
|
2632 int instances_on_free_list;
|
|
2633 } lcrecord_stats [countof (lrecord_implementations_table)];
|
|
2634
|
|
2635 static void
|
398
|
2636 tick_lcrecord_stats (const struct lrecord_header *h, int free_p)
|
0
|
2637 {
|
398
|
2638 const struct lrecord_implementation *implementation =
|
211
|
2639 LHEADER_IMPLEMENTATION (h);
|
0
|
2640 int type_index = lrecord_type_index (implementation);
|
|
2641
|
|
2642 if (((struct lcrecord_header *) h)->free)
|
|
2643 {
|
|
2644 assert (!free_p);
|
|
2645 lcrecord_stats[type_index].instances_on_free_list++;
|
|
2646 }
|
|
2647 else
|
|
2648 {
|
272
|
2649 size_t sz = (implementation->size_in_bytes_method
|
380
|
2650 ? implementation->size_in_bytes_method (h)
|
272
|
2651 : implementation->static_size);
|
0
|
2652
|
|
2653 if (free_p)
|
|
2654 {
|
|
2655 lcrecord_stats[type_index].instances_freed++;
|
|
2656 lcrecord_stats[type_index].bytes_freed += sz;
|
|
2657 }
|
|
2658 else
|
|
2659 {
|
|
2660 lcrecord_stats[type_index].instances_in_use++;
|
|
2661 lcrecord_stats[type_index].bytes_in_use += sz;
|
|
2662 }
|
|
2663 }
|
|
2664 }
|
|
2665
|
|
2666
|
|
2667 /* Free all unmarked records */
|
|
2668 static void
|
|
2669 sweep_lcrecords_1 (struct lcrecord_header **prev, int *used)
|
|
2670 {
|
|
2671 struct lcrecord_header *header;
|
|
2672 int num_used = 0;
|
|
2673 /* int total_size = 0; */
|
386
|
2674
|
|
2675 xzero (lcrecord_stats); /* Reset all statistics to 0. */
|
0
|
2676
|
|
2677 /* First go through and call all the finalize methods.
|
|
2678 Then go through and free the objects. There used to
|
|
2679 be only one loop here, with the call to the finalizer
|
|
2680 occurring directly before the xfree() below. That
|
|
2681 is marginally faster but much less safe -- if the
|
|
2682 finalize method for an object needs to reference any
|
|
2683 other objects contained within it (and many do),
|
|
2684 we could easily be screwed by having already freed that
|
|
2685 other object. */
|
|
2686
|
|
2687 for (header = *prev; header; header = header->next)
|
|
2688 {
|
|
2689 struct lrecord_header *h = &(header->lheader);
|
398
|
2690 if (!C_READONLY_RECORD_HEADER_P(h)
|
|
2691 && !MARKED_RECORD_HEADER_P (h)
|
|
2692 && ! (header->free))
|
0
|
2693 {
|
211
|
2694 if (LHEADER_IMPLEMENTATION (h)->finalizer)
|
380
|
2695 LHEADER_IMPLEMENTATION (h)->finalizer (h, 0);
|
0
|
2696 }
|
|
2697 }
|
|
2698
|
|
2699 for (header = *prev; header; )
|
|
2700 {
|
|
2701 struct lrecord_header *h = &(header->lheader);
|
398
|
2702 if (C_READONLY_RECORD_HEADER_P(h) || MARKED_RECORD_HEADER_P (h))
|
0
|
2703 {
|
398
|
2704 if (MARKED_RECORD_HEADER_P (h))
|
|
2705 UNMARK_RECORD_HEADER (h);
|
0
|
2706 num_used++;
|
380
|
2707 /* total_size += n->implementation->size_in_bytes (h);*/
|
398
|
2708 /* #### May modify header->next on a C_READONLY lcrecord */
|
0
|
2709 prev = &(header->next);
|
|
2710 header = *prev;
|
|
2711 tick_lcrecord_stats (h, 0);
|
|
2712 }
|
|
2713 else
|
|
2714 {
|
|
2715 struct lcrecord_header *next = header->next;
|
|
2716 *prev = next;
|
|
2717 tick_lcrecord_stats (h, 1);
|
|
2718 /* used to call finalizer right here. */
|
|
2719 xfree (header);
|
|
2720 header = next;
|
|
2721 }
|
|
2722 }
|
|
2723 *used = num_used;
|
|
2724 /* *total = total_size; */
|
|
2725 }
|
|
2726
|
207
|
2727
|
0
|
2728 static void
|
183
|
2729 sweep_bit_vectors_1 (Lisp_Object *prev,
|
0
|
2730 int *used, int *total, int *storage)
|
|
2731 {
|
|
2732 Lisp_Object bit_vector;
|
|
2733 int num_used = 0;
|
|
2734 int total_size = 0;
|
|
2735 int total_storage = 0;
|
|
2736
|
|
2737 /* BIT_VECTORP fails because the objects are marked, which changes
|
|
2738 their implementation */
|
|
2739 for (bit_vector = *prev; !EQ (bit_vector, Qzero); )
|
|
2740 {
|
380
|
2741 Lisp_Bit_Vector *v = XBIT_VECTOR (bit_vector);
|
0
|
2742 int len = v->size;
|
398
|
2743 if (C_READONLY_RECORD_HEADER_P(&(v->lheader)) || MARKED_RECORD_P (bit_vector))
|
0
|
2744 {
|
398
|
2745 if (MARKED_RECORD_P (bit_vector))
|
|
2746 UNMARK_RECORD_HEADER (&(v->lheader));
|
0
|
2747 total_size += len;
|
380
|
2748 total_storage +=
|
382
|
2749 MALLOC_OVERHEAD +
|
398
|
2750 offsetof (Lisp_Bit_Vector, bits[BIT_VECTOR_LONG_STORAGE (len)]);
|
0
|
2751 num_used++;
|
398
|
2752 /* #### May modify next on a C_READONLY bitvector */
|
0
|
2753 prev = &(bit_vector_next (v));
|
|
2754 bit_vector = *prev;
|
|
2755 }
|
|
2756 else
|
|
2757 {
|
|
2758 Lisp_Object next = bit_vector_next (v);
|
|
2759 *prev = next;
|
|
2760 xfree (v);
|
|
2761 bit_vector = next;
|
|
2762 }
|
|
2763 }
|
|
2764 *used = num_used;
|
|
2765 *total = total_size;
|
|
2766 *storage = total_storage;
|
|
2767 }
|
|
2768
|
|
2769 /* And the Lord said: Thou shalt use the `c-backslash-region' command
|
|
2770 to make macros prettier. */
|
|
2771
|
|
2772 #ifdef ERROR_CHECK_GC
|
|
2773
|
|
2774 #define SWEEP_FIXED_TYPE_BLOCK(typename, obj_type) \
|
|
2775 do { \
|
380
|
2776 struct typename##_block *SFTB_current; \
|
|
2777 struct typename##_block **SFTB_prev; \
|
|
2778 int SFTB_limit; \
|
0
|
2779 int num_free = 0, num_used = 0; \
|
|
2780 \
|
380
|
2781 for (SFTB_prev = ¤t_##typename##_block, \
|
|
2782 SFTB_current = current_##typename##_block, \
|
|
2783 SFTB_limit = current_##typename##_block_index; \
|
|
2784 SFTB_current; \
|
0
|
2785 ) \
|
|
2786 { \
|
380
|
2787 int SFTB_iii; \
|
0
|
2788 \
|
380
|
2789 for (SFTB_iii = 0; SFTB_iii < SFTB_limit; SFTB_iii++) \
|
0
|
2790 { \
|
380
|
2791 obj_type *SFTB_victim = &(SFTB_current->block[SFTB_iii]); \
|
0
|
2792 \
|
380
|
2793 if (FREE_STRUCT_P (SFTB_victim)) \
|
0
|
2794 { \
|
|
2795 num_free++; \
|
|
2796 } \
|
398
|
2797 else if (C_READONLY_RECORD_HEADER_P (&SFTB_victim->lheader)) \
|
|
2798 { \
|
|
2799 num_used++; \
|
|
2800 } \
|
|
2801 else if (!MARKED_RECORD_HEADER_P (&SFTB_victim->lheader)) \
|
0
|
2802 { \
|
|
2803 num_free++; \
|
380
|
2804 FREE_FIXED_TYPE (typename, obj_type, SFTB_victim); \
|
0
|
2805 } \
|
|
2806 else \
|
|
2807 { \
|
|
2808 num_used++; \
|
380
|
2809 UNMARK_##typename (SFTB_victim); \
|
0
|
2810 } \
|
|
2811 } \
|
380
|
2812 SFTB_prev = &(SFTB_current->prev); \
|
|
2813 SFTB_current = SFTB_current->prev; \
|
|
2814 SFTB_limit = countof (current_##typename##_block->block); \
|
0
|
2815 } \
|
|
2816 \
|
|
2817 gc_count_num_##typename##_in_use = num_used; \
|
|
2818 gc_count_num_##typename##_freelist = num_free; \
|
|
2819 } while (0)
|
|
2820
|
183
|
2821 #else /* !ERROR_CHECK_GC */
|
0
|
2822
|
380
|
2823 #define SWEEP_FIXED_TYPE_BLOCK(typename, obj_type) \
|
|
2824 do { \
|
|
2825 struct typename##_block *SFTB_current; \
|
|
2826 struct typename##_block **SFTB_prev; \
|
|
2827 int SFTB_limit; \
|
|
2828 int num_free = 0, num_used = 0; \
|
|
2829 \
|
|
2830 typename##_free_list = 0; \
|
|
2831 \
|
|
2832 for (SFTB_prev = ¤t_##typename##_block, \
|
|
2833 SFTB_current = current_##typename##_block, \
|
|
2834 SFTB_limit = current_##typename##_block_index; \
|
|
2835 SFTB_current; \
|
|
2836 ) \
|
|
2837 { \
|
|
2838 int SFTB_iii; \
|
|
2839 int SFTB_empty = 1; \
|
|
2840 obj_type *SFTB_old_free_list = typename##_free_list; \
|
|
2841 \
|
|
2842 for (SFTB_iii = 0; SFTB_iii < SFTB_limit; SFTB_iii++) \
|
|
2843 { \
|
|
2844 obj_type *SFTB_victim = &(SFTB_current->block[SFTB_iii]); \
|
|
2845 \
|
|
2846 if (FREE_STRUCT_P (SFTB_victim)) \
|
|
2847 { \
|
|
2848 num_free++; \
|
|
2849 PUT_FIXED_TYPE_ON_FREE_LIST (typename, obj_type, SFTB_victim); \
|
|
2850 } \
|
398
|
2851 else if (C_READONLY_RECORD_HEADER_P (&SFTB_victim->lheader)) \
|
|
2852 { \
|
|
2853 SFTB_empty = 0; \
|
|
2854 num_used++; \
|
|
2855 } \
|
|
2856 else if (!MARKED_RECORD_HEADER_P (&SFTB_victim->lheader)) \
|
380
|
2857 { \
|
|
2858 num_free++; \
|
|
2859 FREE_FIXED_TYPE (typename, obj_type, SFTB_victim); \
|
|
2860 } \
|
|
2861 else \
|
|
2862 { \
|
|
2863 SFTB_empty = 0; \
|
|
2864 num_used++; \
|
|
2865 UNMARK_##typename (SFTB_victim); \
|
|
2866 } \
|
|
2867 } \
|
|
2868 if (!SFTB_empty) \
|
|
2869 { \
|
|
2870 SFTB_prev = &(SFTB_current->prev); \
|
|
2871 SFTB_current = SFTB_current->prev; \
|
|
2872 } \
|
|
2873 else if (SFTB_current == current_##typename##_block \
|
|
2874 && !SFTB_current->prev) \
|
|
2875 { \
|
|
2876 /* No real point in freeing sole allocation block */ \
|
|
2877 break; \
|
|
2878 } \
|
|
2879 else \
|
|
2880 { \
|
|
2881 struct typename##_block *SFTB_victim_block = SFTB_current; \
|
|
2882 if (SFTB_victim_block == current_##typename##_block) \
|
|
2883 current_##typename##_block_index \
|
|
2884 = countof (current_##typename##_block->block); \
|
|
2885 SFTB_current = SFTB_current->prev; \
|
|
2886 { \
|
|
2887 *SFTB_prev = SFTB_current; \
|
|
2888 xfree (SFTB_victim_block); \
|
|
2889 /* Restore free list to what it was before victim was swept */ \
|
|
2890 typename##_free_list = SFTB_old_free_list; \
|
|
2891 num_free -= SFTB_limit; \
|
|
2892 } \
|
|
2893 } \
|
|
2894 SFTB_limit = countof (current_##typename##_block->block); \
|
|
2895 } \
|
|
2896 \
|
|
2897 gc_count_num_##typename##_in_use = num_used; \
|
|
2898 gc_count_num_##typename##_freelist = num_free; \
|
0
|
2899 } while (0)
|
|
2900
|
183
|
2901 #endif /* !ERROR_CHECK_GC */
|
0
|
2902
|
|
2903
|
|
2904
|
|
2905
|
|
2906 static void
|
|
2907 sweep_conses (void)
|
|
2908 {
|
398
|
2909 #define UNMARK_cons(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
0
|
2910 #define ADDITIONAL_FREE_cons(ptr)
|
|
2911
|
398
|
2912 SWEEP_FIXED_TYPE_BLOCK (cons, Lisp_Cons);
|
0
|
2913 }
|
|
2914
|
|
2915 /* Explicitly free a cons cell. */
|
|
2916 void
|
398
|
2917 free_cons (Lisp_Cons *ptr)
|
0
|
2918 {
|
|
2919 #ifdef ERROR_CHECK_GC
|
|
2920 /* If the CAR is not an int, then it will be a pointer, which will
|
|
2921 always be four-byte aligned. If this cons cell has already been
|
|
2922 placed on the free list, however, its car will probably contain
|
|
2923 a chain pointer to the next cons on the list, which has cleverly
|
|
2924 had all its 0's and 1's inverted. This allows for a quick
|
|
2925 check to make sure we're not freeing something already freed. */
|
|
2926 if (POINTER_TYPE_P (XTYPE (ptr->car)))
|
|
2927 ASSERT_VALID_POINTER (XPNTR (ptr->car));
|
183
|
2928 #endif /* ERROR_CHECK_GC */
|
|
2929
|
0
|
2930 #ifndef ALLOC_NO_POOLS
|
398
|
2931 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (cons, Lisp_Cons, ptr);
|
0
|
2932 #endif /* ALLOC_NO_POOLS */
|
|
2933 }
|
|
2934
|
|
2935 /* explicitly free a list. You **must make sure** that you have
|
|
2936 created all the cons cells that make up this list and that there
|
|
2937 are no pointers to any of these cons cells anywhere else. If there
|
|
2938 are, you will lose. */
|
|
2939
|
|
2940 void
|
|
2941 free_list (Lisp_Object list)
|
|
2942 {
|
|
2943 Lisp_Object rest, next;
|
|
2944
|
|
2945 for (rest = list; !NILP (rest); rest = next)
|
|
2946 {
|
|
2947 next = XCDR (rest);
|
|
2948 free_cons (XCONS (rest));
|
|
2949 }
|
|
2950 }
|
|
2951
|
|
2952 /* explicitly free an alist. You **must make sure** that you have
|
|
2953 created all the cons cells that make up this alist and that there
|
|
2954 are no pointers to any of these cons cells anywhere else. If there
|
|
2955 are, you will lose. */
|
|
2956
|
|
2957 void
|
|
2958 free_alist (Lisp_Object alist)
|
|
2959 {
|
|
2960 Lisp_Object rest, next;
|
|
2961
|
|
2962 for (rest = alist; !NILP (rest); rest = next)
|
|
2963 {
|
|
2964 next = XCDR (rest);
|
|
2965 free_cons (XCONS (XCAR (rest)));
|
|
2966 free_cons (XCONS (rest));
|
|
2967 }
|
|
2968 }
|
|
2969
|
|
2970 static void
|
|
2971 sweep_compiled_functions (void)
|
|
2972 {
|
|
2973 #define UNMARK_compiled_function(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
2974 #define ADDITIONAL_FREE_compiled_function(ptr)
|
|
2975
|
380
|
2976 SWEEP_FIXED_TYPE_BLOCK (compiled_function, Lisp_Compiled_Function);
|
0
|
2977 }
|
|
2978
|
|
2979
|
|
2980 #ifdef LISP_FLOAT_TYPE
|
|
2981 static void
|
|
2982 sweep_floats (void)
|
|
2983 {
|
|
2984 #define UNMARK_float(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
2985 #define ADDITIONAL_FREE_float(ptr)
|
|
2986
|
398
|
2987 SWEEP_FIXED_TYPE_BLOCK (float, Lisp_Float);
|
0
|
2988 }
|
|
2989 #endif /* LISP_FLOAT_TYPE */
|
|
2990
|
|
2991 static void
|
|
2992 sweep_symbols (void)
|
|
2993 {
|
398
|
2994 #define UNMARK_symbol(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
0
|
2995 #define ADDITIONAL_FREE_symbol(ptr)
|
|
2996
|
398
|
2997 SWEEP_FIXED_TYPE_BLOCK (symbol, Lisp_Symbol);
|
0
|
2998 }
|
|
2999
|
|
3000 static void
|
|
3001 sweep_extents (void)
|
|
3002 {
|
|
3003 #define UNMARK_extent(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
3004 #define ADDITIONAL_FREE_extent(ptr)
|
|
3005
|
|
3006 SWEEP_FIXED_TYPE_BLOCK (extent, struct extent);
|
|
3007 }
|
|
3008
|
|
3009 static void
|
|
3010 sweep_events (void)
|
|
3011 {
|
|
3012 #define UNMARK_event(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
3013 #define ADDITIONAL_FREE_event(ptr)
|
|
3014
|
398
|
3015 SWEEP_FIXED_TYPE_BLOCK (event, Lisp_Event);
|
0
|
3016 }
|
|
3017
|
|
3018 static void
|
|
3019 sweep_markers (void)
|
|
3020 {
|
|
3021 #define UNMARK_marker(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
3022 #define ADDITIONAL_FREE_marker(ptr) \
|
|
3023 do { Lisp_Object tem; \
|
|
3024 XSETMARKER (tem, ptr); \
|
|
3025 unchain_marker (tem); \
|
|
3026 } while (0)
|
|
3027
|
398
|
3028 SWEEP_FIXED_TYPE_BLOCK (marker, Lisp_Marker);
|
0
|
3029 }
|
|
3030
|
|
3031 /* Explicitly free a marker. */
|
|
3032 void
|
398
|
3033 free_marker (Lisp_Marker *ptr)
|
0
|
3034 {
|
|
3035 #ifdef ERROR_CHECK_GC
|
|
3036 /* Perhaps this will catch freeing an already-freed marker. */
|
|
3037 Lisp_Object temmy;
|
|
3038 XSETMARKER (temmy, ptr);
|
398
|
3039 assert (MARKERP (temmy));
|
183
|
3040 #endif /* ERROR_CHECK_GC */
|
|
3041
|
0
|
3042 #ifndef ALLOC_NO_POOLS
|
398
|
3043 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (marker, Lisp_Marker, ptr);
|
0
|
3044 #endif /* ALLOC_NO_POOLS */
|
|
3045 }
|
|
3046
|
70
|
3047
|
|
3048 #if defined (MULE) && defined (VERIFY_STRING_CHARS_INTEGRITY)
|
|
3049
|
|
3050 static void
|
|
3051 verify_string_chars_integrity (void)
|
|
3052 {
|
|
3053 struct string_chars_block *sb;
|
|
3054
|
|
3055 /* Scan each existing string block sequentially, string by string. */
|
|
3056 for (sb = first_string_chars_block; sb; sb = sb->next)
|
|
3057 {
|
|
3058 int pos = 0;
|
|
3059 /* POS is the index of the next string in the block. */
|
|
3060 while (pos < sb->pos)
|
|
3061 {
|
183
|
3062 struct string_chars *s_chars =
|
70
|
3063 (struct string_chars *) &(sb->string_chars[pos]);
|
398
|
3064 Lisp_String *string;
|
70
|
3065 int size;
|
|
3066 int fullsize;
|
|
3067
|
|
3068 /* If the string_chars struct is marked as free (i.e. the STRING
|
|
3069 pointer is 0xFFFFFFFF) then this is an unused chunk of string
|
|
3070 storage. (See below.) */
|
|
3071
|
|
3072 if (FREE_STRUCT_P (s_chars))
|
|
3073 {
|
|
3074 fullsize = ((struct unused_string_chars *) s_chars)->fullsize;
|
|
3075 pos += fullsize;
|
|
3076 continue;
|
|
3077 }
|
|
3078
|
|
3079 string = s_chars->string;
|
|
3080 /* Must be 32-bit aligned. */
|
|
3081 assert ((((int) string) & 3) == 0);
|
|
3082
|
|
3083 size = string_length (string);
|
|
3084 fullsize = STRING_FULLSIZE (size);
|
|
3085
|
|
3086 assert (!BIG_STRING_FULLSIZE_P (fullsize));
|
|
3087 assert (string_data (string) == s_chars->chars);
|
|
3088 pos += fullsize;
|
|
3089 }
|
|
3090 assert (pos == sb->pos);
|
|
3091 }
|
|
3092 }
|
|
3093
|
|
3094 #endif /* MULE && ERROR_CHECK_GC */
|
|
3095
|
0
|
3096 /* Compactify string chars, relocating the reference to each --
|
|
3097 free any empty string_chars_block we see. */
|
|
3098 static void
|
|
3099 compact_string_chars (void)
|
|
3100 {
|
|
3101 struct string_chars_block *to_sb = first_string_chars_block;
|
|
3102 int to_pos = 0;
|
|
3103 struct string_chars_block *from_sb;
|
|
3104
|
|
3105 /* Scan each existing string block sequentially, string by string. */
|
|
3106 for (from_sb = first_string_chars_block; from_sb; from_sb = from_sb->next)
|
|
3107 {
|
|
3108 int from_pos = 0;
|
|
3109 /* FROM_POS is the index of the next string in the block. */
|
|
3110 while (from_pos < from_sb->pos)
|
|
3111 {
|
183
|
3112 struct string_chars *from_s_chars =
|
0
|
3113 (struct string_chars *) &(from_sb->string_chars[from_pos]);
|
|
3114 struct string_chars *to_s_chars;
|
398
|
3115 Lisp_String *string;
|
0
|
3116 int size;
|
|
3117 int fullsize;
|
|
3118
|
|
3119 /* If the string_chars struct is marked as free (i.e. the STRING
|
|
3120 pointer is 0xFFFFFFFF) then this is an unused chunk of string
|
|
3121 storage. This happens under Mule when a string's size changes
|
|
3122 in such a way that its fullsize changes. (Strings can change
|
|
3123 size because a different-length character can be substituted
|
|
3124 for another character.) In this case, after the bogus string
|
|
3125 pointer is the "fullsize" of this entry, i.e. how many bytes
|
|
3126 to skip. */
|
|
3127
|
|
3128 if (FREE_STRUCT_P (from_s_chars))
|
|
3129 {
|
|
3130 fullsize = ((struct unused_string_chars *) from_s_chars)->fullsize;
|
|
3131 from_pos += fullsize;
|
|
3132 continue;
|
|
3133 }
|
|
3134
|
|
3135 string = from_s_chars->string;
|
|
3136 assert (!(FREE_STRUCT_P (string)));
|
|
3137
|
|
3138 size = string_length (string);
|
|
3139 fullsize = STRING_FULLSIZE (size);
|
|
3140
|
|
3141 if (BIG_STRING_FULLSIZE_P (fullsize))
|
|
3142 abort ();
|
|
3143
|
|
3144 /* Just skip it if it isn't marked. */
|
207
|
3145 if (! MARKED_RECORD_HEADER_P (&(string->lheader)))
|
0
|
3146 {
|
|
3147 from_pos += fullsize;
|
|
3148 continue;
|
|
3149 }
|
|
3150
|
|
3151 /* If it won't fit in what's left of TO_SB, close TO_SB out
|
|
3152 and go on to the next string_chars_block. We know that TO_SB
|
|
3153 cannot advance past FROM_SB here since FROM_SB is large enough
|
|
3154 to currently contain this string. */
|
|
3155 if ((to_pos + fullsize) > countof (to_sb->string_chars))
|
|
3156 {
|
|
3157 to_sb->pos = to_pos;
|
|
3158 to_sb = to_sb->next;
|
|
3159 to_pos = 0;
|
|
3160 }
|
183
|
3161
|
0
|
3162 /* Compute new address of this string
|
|
3163 and update TO_POS for the space being used. */
|
|
3164 to_s_chars = (struct string_chars *) &(to_sb->string_chars[to_pos]);
|
|
3165
|
|
3166 /* Copy the string_chars to the new place. */
|
|
3167 if (from_s_chars != to_s_chars)
|
|
3168 memmove (to_s_chars, from_s_chars, fullsize);
|
|
3169
|
|
3170 /* Relocate FROM_S_CHARS's reference */
|
|
3171 set_string_data (string, &(to_s_chars->chars[0]));
|
183
|
3172
|
0
|
3173 from_pos += fullsize;
|
|
3174 to_pos += fullsize;
|
|
3175 }
|
|
3176 }
|
|
3177
|
183
|
3178 /* Set current to the last string chars block still used and
|
0
|
3179 free any that follow. */
|
|
3180 {
|
|
3181 struct string_chars_block *victim;
|
|
3182
|
|
3183 for (victim = to_sb->next; victim; )
|
|
3184 {
|
|
3185 struct string_chars_block *next = victim->next;
|
|
3186 xfree (victim);
|
|
3187 victim = next;
|
|
3188 }
|
|
3189
|
|
3190 current_string_chars_block = to_sb;
|
|
3191 current_string_chars_block->pos = to_pos;
|
|
3192 current_string_chars_block->next = 0;
|
|
3193 }
|
|
3194 }
|
|
3195
|
|
3196 #if 1 /* Hack to debug missing purecopy's */
|
|
3197 static int debug_string_purity;
|
|
3198
|
|
3199 static void
|
398
|
3200 debug_string_purity_print (Lisp_String *p)
|
0
|
3201 {
|
|
3202 Charcount i;
|
|
3203 Charcount s = string_char_length (p);
|
|
3204 putc ('\"', stderr);
|
|
3205 for (i = 0; i < s; i++)
|
|
3206 {
|
|
3207 Emchar ch = string_char (p, i);
|
|
3208 if (ch < 32 || ch >= 126)
|
|
3209 stderr_out ("\\%03o", ch);
|
|
3210 else if (ch == '\\' || ch == '\"')
|
|
3211 stderr_out ("\\%c", ch);
|
|
3212 else
|
|
3213 stderr_out ("%c", ch);
|
|
3214 }
|
|
3215 stderr_out ("\"\n");
|
|
3216 }
|
183
|
3217 #endif /* 1 */
|
0
|
3218
|
|
3219
|
|
3220 static void
|
|
3221 sweep_strings (void)
|
|
3222 {
|
|
3223 int num_small_used = 0, num_small_bytes = 0, num_bytes = 0;
|
|
3224 int debug = debug_string_purity;
|
|
3225
|
398
|
3226 #define UNMARK_string(ptr) do { \
|
|
3227 Lisp_String *p = (ptr); \
|
|
3228 size_t size = string_length (p); \
|
|
3229 UNMARK_RECORD_HEADER (&(p->lheader)); \
|
|
3230 num_bytes += size; \
|
|
3231 if (!BIG_STRING_SIZE_P (size)) \
|
|
3232 { num_small_bytes += size; \
|
|
3233 num_small_used++; \
|
|
3234 } \
|
|
3235 if (debug) \
|
|
3236 debug_string_purity_print (p); \
|
|
3237 } while (0)
|
|
3238 #define ADDITIONAL_FREE_string(ptr) do { \
|
|
3239 size_t size = string_length (ptr); \
|
|
3240 if (BIG_STRING_SIZE_P (size)) \
|
|
3241 xfree (ptr->data); \
|
|
3242 } while (0)
|
|
3243
|
|
3244 SWEEP_FIXED_TYPE_BLOCK (string, Lisp_String);
|
0
|
3245
|
|
3246 gc_count_num_short_string_in_use = num_small_used;
|
|
3247 gc_count_string_total_size = num_bytes;
|
|
3248 gc_count_short_string_total_size = num_small_bytes;
|
|
3249 }
|
|
3250
|
|
3251
|
|
3252 /* I hate duplicating all this crap! */
|
398
|
3253 int
|
0
|
3254 marked_p (Lisp_Object obj)
|
|
3255 {
|
380
|
3256 #ifdef ERROR_CHECK_GC
|
398
|
3257 assert (! (EQ (obj, Qnull_pointer)));
|
380
|
3258 #endif
|
|
3259 /* Checks we used to perform. */
|
|
3260 /* if (EQ (obj, Qnull_pointer)) return 1; */
|
|
3261 /* if (!POINTER_TYPE_P (XGCTYPE (obj))) return 1; */
|
|
3262 /* if (PURIFIED (XPNTR (obj))) return 1; */
|
|
3263
|
398
|
3264 if (XTYPE (obj) == Lisp_Type_Record)
|
0
|
3265 {
|
398
|
3266 struct lrecord_header *lheader = XRECORD_LHEADER (obj);
|
|
3267 #if defined (ERROR_CHECK_GC)
|
|
3268 assert (lheader->type <= last_lrecord_type_index_assigned);
|
380
|
3269 #endif
|
398
|
3270 return C_READONLY_RECORD_HEADER_P (lheader) || MARKED_RECORD_HEADER_P (lheader);
|
0
|
3271 }
|
398
|
3272 return 1;
|
0
|
3273 }
|
|
3274
|
|
3275 static void
|
|
3276 gc_sweep (void)
|
|
3277 {
|
|
3278 /* Free all unmarked records. Do this at the very beginning,
|
|
3279 before anything else, so that the finalize methods can safely
|
|
3280 examine items in the objects. sweep_lcrecords_1() makes
|
|
3281 sure to call all the finalize methods *before* freeing anything,
|
|
3282 to complete the safety. */
|
|
3283 {
|
|
3284 int ignored;
|
|
3285 sweep_lcrecords_1 (&all_lcrecords, &ignored);
|
|
3286 }
|
|
3287
|
|
3288 compact_string_chars ();
|
|
3289
|
|
3290 /* Finalize methods below (called through the ADDITIONAL_FREE_foo
|
|
3291 macros) must be *extremely* careful to make sure they're not
|
|
3292 referencing freed objects. The only two existing finalize
|
|
3293 methods (for strings and markers) pass muster -- the string
|
|
3294 finalizer doesn't look at anything but its own specially-
|
|
3295 created block, and the marker finalizer only looks at live
|
|
3296 buffers (which will never be freed) and at the markers before
|
|
3297 and after it in the chain (which, by induction, will never be
|
|
3298 freed because if so, they would have already removed themselves
|
|
3299 from the chain). */
|
|
3300
|
|
3301 /* Put all unmarked strings on free list, free'ing the string chars
|
|
3302 of large unmarked strings */
|
|
3303 sweep_strings ();
|
|
3304
|
|
3305 /* Put all unmarked conses on free list */
|
|
3306 sweep_conses ();
|
|
3307
|
|
3308 /* Free all unmarked bit vectors */
|
|
3309 sweep_bit_vectors_1 (&all_bit_vectors,
|
|
3310 &gc_count_num_bit_vector_used,
|
|
3311 &gc_count_bit_vector_total_size,
|
|
3312 &gc_count_bit_vector_storage);
|
|
3313
|
|
3314 /* Free all unmarked compiled-function objects */
|
|
3315 sweep_compiled_functions ();
|
|
3316
|
|
3317 #ifdef LISP_FLOAT_TYPE
|
|
3318 /* Put all unmarked floats on free list */
|
|
3319 sweep_floats ();
|
|
3320 #endif
|
|
3321
|
|
3322 /* Put all unmarked symbols on free list */
|
|
3323 sweep_symbols ();
|
|
3324
|
|
3325 /* Put all unmarked extents on free list */
|
|
3326 sweep_extents ();
|
|
3327
|
|
3328 /* Put all unmarked markers on free list.
|
|
3329 Dechain each one first from the buffer into which it points. */
|
|
3330 sweep_markers ();
|
|
3331
|
|
3332 sweep_events ();
|
|
3333
|
398
|
3334 #ifdef PDUMP
|
|
3335 /* Unmark all dumped objects */
|
|
3336 {
|
|
3337 int i;
|
|
3338 char *p = pdump_rt_list;
|
|
3339 if (p)
|
|
3340 for (;;)
|
|
3341 {
|
|
3342 pdump_reloc_table *rt = (pdump_reloc_table *)p;
|
|
3343 p += sizeof (pdump_reloc_table);
|
|
3344 if (rt->desc)
|
|
3345 {
|
|
3346 for (i=0; i<rt->count; i++)
|
|
3347 {
|
|
3348 UNMARK_RECORD_HEADER ((struct lrecord_header *)(*(EMACS_INT *)p));
|
|
3349 p += sizeof (EMACS_INT);
|
|
3350 }
|
|
3351 } else
|
|
3352 break;
|
|
3353 }
|
|
3354 }
|
|
3355 #endif
|
0
|
3356 }
|
|
3357
|
|
3358 /* Clearing for disksave. */
|
|
3359
|
|
3360 void
|
|
3361 disksave_object_finalization (void)
|
|
3362 {
|
|
3363 /* It's important that certain information from the environment not get
|
|
3364 dumped with the executable (pathnames, environment variables, etc.).
|
380
|
3365 To make it easier to tell when this has happened with strings(1) we
|
0
|
3366 clear some known-to-be-garbage blocks of memory, so that leftover
|
|
3367 results of old evaluation don't look like potential problems.
|
|
3368 But first we set some notable variables to nil and do one more GC,
|
|
3369 to turn those strings into garbage.
|
398
|
3370 */
|
0
|
3371
|
|
3372 /* Yeah, this list is pretty ad-hoc... */
|
|
3373 Vprocess_environment = Qnil;
|
|
3374 Vexec_directory = Qnil;
|
|
3375 Vdata_directory = Qnil;
|
110
|
3376 Vsite_directory = Qnil;
|
0
|
3377 Vdoc_directory = Qnil;
|
|
3378 Vconfigure_info_directory = Qnil;
|
|
3379 Vexec_path = Qnil;
|
|
3380 Vload_path = Qnil;
|
|
3381 /* Vdump_load_path = Qnil; */
|
396
|
3382 /* Release hash tables for locate_file */
|
398
|
3383 Flocate_file_clear_hashing (Qt);
|
288
|
3384 uncache_home_directory();
|
|
3385
|
233
|
3386 #if defined(LOADHIST) && !(defined(LOADHIST_DUMPED) || \
|
|
3387 defined(LOADHIST_BUILTIN))
|
0
|
3388 Vload_history = Qnil;
|
233
|
3389 #endif
|
0
|
3390 Vshell_file_name = Qnil;
|
|
3391
|
|
3392 garbage_collect_1 ();
|
|
3393
|
|
3394 /* Run the disksave finalization methods of all live objects. */
|
|
3395 disksave_object_finalization_1 ();
|
|
3396
|
|
3397 /* Zero out the uninitialized (really, unused) part of the containers
|
|
3398 for the live strings. */
|
|
3399 {
|
|
3400 struct string_chars_block *scb;
|
|
3401 for (scb = first_string_chars_block; scb; scb = scb->next)
|
249
|
3402 {
|
|
3403 int count = sizeof (scb->string_chars) - scb->pos;
|
|
3404
|
|
3405 assert (count >= 0 && count < STRING_CHARS_BLOCK_SIZE);
|
398
|
3406 if (count != 0)
|
|
3407 {
|
|
3408 /* from the block's fill ptr to the end */
|
|
3409 memset ((scb->string_chars + scb->pos), 0, count);
|
|
3410 }
|
249
|
3411 }
|
0
|
3412 }
|
|
3413
|
|
3414 /* There, that ought to be enough... */
|
|
3415
|
|
3416 }
|
|
3417
|
|
3418
|
|
3419 Lisp_Object
|
|
3420 restore_gc_inhibit (Lisp_Object val)
|
|
3421 {
|
|
3422 gc_currently_forbidden = XINT (val);
|
|
3423 return val;
|
|
3424 }
|
|
3425
|
|
3426 /* Maybe we want to use this when doing a "panic" gc after memory_full()? */
|
|
3427 static int gc_hooks_inhibited;
|
|
3428
|
|
3429
|
|
3430 void
|
|
3431 garbage_collect_1 (void)
|
|
3432 {
|
380
|
3433 #if MAX_SAVE_STACK > 0
|
0
|
3434 char stack_top_variable;
|
|
3435 extern char *stack_bottom;
|
380
|
3436 #endif
|
261
|
3437 struct frame *f;
|
272
|
3438 int speccount;
|
|
3439 int cursor_changed;
|
|
3440 Lisp_Object pre_gc_cursor;
|
0
|
3441 struct gcpro gcpro1;
|
|
3442
|
272
|
3443 if (gc_in_progress
|
|
3444 || gc_currently_forbidden
|
|
3445 || in_display
|
|
3446 || preparing_for_armageddon)
|
0
|
3447 return;
|
|
3448
|
380
|
3449 /* We used to call selected_frame() here.
|
|
3450
|
|
3451 The following functions cannot be called inside GC
|
|
3452 so we move to after the above tests. */
|
|
3453 {
|
|
3454 Lisp_Object frame;
|
|
3455 Lisp_Object device = Fselected_device (Qnil);
|
|
3456 if (NILP (device)) /* Could happen during startup, eg. if always_gc */
|
|
3457 return;
|
|
3458 frame = DEVICE_SELECTED_FRAME (XDEVICE (device));
|
|
3459 if (NILP (frame))
|
|
3460 signal_simple_error ("No frames exist on device", device);
|
|
3461 f = XFRAME (frame);
|
|
3462 }
|
|
3463
|
272
|
3464 pre_gc_cursor = Qnil;
|
|
3465 cursor_changed = 0;
|
0
|
3466
|
163
|
3467 GCPRO1 (pre_gc_cursor);
|
0
|
3468
|
|
3469 /* Very important to prevent GC during any of the following
|
|
3470 stuff that might run Lisp code; otherwise, we'll likely
|
|
3471 have infinite GC recursion. */
|
272
|
3472 speccount = specpdl_depth ();
|
0
|
3473 record_unwind_protect (restore_gc_inhibit,
|
|
3474 make_int (gc_currently_forbidden));
|
|
3475 gc_currently_forbidden = 1;
|
|
3476
|
|
3477 if (!gc_hooks_inhibited)
|
|
3478 run_hook_trapping_errors ("Error in pre-gc-hook", Qpre_gc_hook);
|
|
3479
|
|
3480 /* Now show the GC cursor/message. */
|
|
3481 if (!noninteractive)
|
|
3482 {
|
163
|
3483 if (FRAME_WIN_P (f))
|
0
|
3484 {
|
163
|
3485 Lisp_Object frame = make_frame (f);
|
|
3486 Lisp_Object cursor = glyph_image_instance (Vgc_pointer_glyph,
|
|
3487 FRAME_SELECTED_WINDOW (f),
|
|
3488 ERROR_ME_NOT, 1);
|
|
3489 pre_gc_cursor = f->pointer;
|
|
3490 if (POINTER_IMAGE_INSTANCEP (cursor)
|
|
3491 /* don't change if we don't know how to change back. */
|
|
3492 && POINTER_IMAGE_INSTANCEP (pre_gc_cursor))
|
0
|
3493 {
|
163
|
3494 cursor_changed = 1;
|
|
3495 Fset_frame_pointer (frame, cursor);
|
0
|
3496 }
|
|
3497 }
|
163
|
3498
|
|
3499 /* Don't print messages to the stream device. */
|
|
3500 if (!cursor_changed && !FRAME_STREAM_P (f))
|
|
3501 {
|
|
3502 char *msg = (STRINGP (Vgc_message)
|
|
3503 ? GETTEXT ((char *) XSTRING_DATA (Vgc_message))
|
|
3504 : 0);
|
|
3505 Lisp_Object args[2], whole_msg;
|
|
3506 args[0] = build_string (msg ? msg :
|
398
|
3507 GETTEXT ((const char *) gc_default_message));
|
163
|
3508 args[1] = build_string ("...");
|
|
3509 whole_msg = Fconcat (2, args);
|
|
3510 echo_area_message (f, (Bufbyte *) 0, whole_msg, 0, -1,
|
|
3511 Qgarbage_collecting);
|
|
3512 }
|
0
|
3513 }
|
|
3514
|
|
3515 /***** Now we actually start the garbage collection. */
|
|
3516
|
|
3517 gc_in_progress = 1;
|
|
3518
|
|
3519 gc_generation_number[0]++;
|
|
3520
|
|
3521 #if MAX_SAVE_STACK > 0
|
|
3522
|
|
3523 /* Save a copy of the contents of the stack, for debugging. */
|
|
3524 if (!purify_flag)
|
|
3525 {
|
272
|
3526 /* Static buffer in which we save a copy of the C stack at each GC. */
|
|
3527 static char *stack_copy;
|
|
3528 static size_t stack_copy_size;
|
|
3529
|
|
3530 ptrdiff_t stack_diff = &stack_top_variable - stack_bottom;
|
|
3531 size_t stack_size = (stack_diff > 0 ? stack_diff : -stack_diff);
|
|
3532 if (stack_size < MAX_SAVE_STACK)
|
0
|
3533 {
|
272
|
3534 if (stack_copy_size < stack_size)
|
0
|
3535 {
|
272
|
3536 stack_copy = (char *) xrealloc (stack_copy, stack_size);
|
|
3537 stack_copy_size = stack_size;
|
0
|
3538 }
|
272
|
3539
|
|
3540 memcpy (stack_copy,
|
|
3541 stack_diff > 0 ? stack_bottom : &stack_top_variable,
|
|
3542 stack_size);
|
0
|
3543 }
|
|
3544 }
|
|
3545 #endif /* MAX_SAVE_STACK > 0 */
|
|
3546
|
|
3547 /* Do some totally ad-hoc resource clearing. */
|
|
3548 /* #### generalize this? */
|
|
3549 clear_event_resource ();
|
|
3550 cleanup_specifiers ();
|
|
3551
|
|
3552 /* Mark all the special slots that serve as the roots of accessibility. */
|
396
|
3553
|
|
3554 { /* staticpro() */
|
|
3555 int i;
|
0
|
3556 for (i = 0; i < staticidx; i++)
|
396
|
3557 mark_object (*(staticvec[i]));
|
398
|
3558 for (i = 0; i < staticidx_nodump; i++)
|
|
3559 mark_object (*(staticvec_nodump[i]));
|
396
|
3560 }
|
|
3561
|
|
3562 { /* GCPRO() */
|
|
3563 struct gcpro *tail;
|
|
3564 int i;
|
0
|
3565 for (tail = gcprolist; tail; tail = tail->next)
|
396
|
3566 for (i = 0; i < tail->nvars; i++)
|
|
3567 mark_object (tail->var[i]);
|
|
3568 }
|
|
3569
|
|
3570 { /* specbind() */
|
|
3571 struct specbinding *bind;
|
0
|
3572 for (bind = specpdl; bind != specpdl_ptr; bind++)
|
|
3573 {
|
|
3574 mark_object (bind->symbol);
|
|
3575 mark_object (bind->old_value);
|
|
3576 }
|
396
|
3577 }
|
|
3578
|
|
3579 {
|
|
3580 struct catchtag *catch;
|
0
|
3581 for (catch = catchlist; catch; catch = catch->next)
|
|
3582 {
|
|
3583 mark_object (catch->tag);
|
|
3584 mark_object (catch->val);
|
|
3585 }
|
396
|
3586 }
|
|
3587
|
|
3588 {
|
|
3589 struct backtrace *backlist;
|
0
|
3590 for (backlist = backtrace_list; backlist; backlist = backlist->next)
|
|
3591 {
|
|
3592 int nargs = backlist->nargs;
|
396
|
3593 int i;
|
0
|
3594
|
|
3595 mark_object (*backlist->function);
|
|
3596 if (nargs == UNEVALLED || nargs == MANY)
|
|
3597 mark_object (backlist->args[0]);
|
|
3598 else
|
|
3599 for (i = 0; i < nargs; i++)
|
|
3600 mark_object (backlist->args[i]);
|
|
3601 }
|
|
3602 }
|
|
3603
|
398
|
3604 mark_redisplay ();
|
|
3605 mark_profiling_info ();
|
396
|
3606
|
0
|
3607 /* OK, now do the after-mark stuff. This is for things that
|
380
|
3608 are only marked when something else is marked (e.g. weak hash tables).
|
0
|
3609 There may be complex dependencies between such objects -- e.g.
|
380
|
3610 a weak hash table might be unmarked, but after processing a later
|
|
3611 weak hash table, the former one might get marked. So we have to
|
0
|
3612 iterate until nothing more gets marked. */
|
380
|
3613
|
398
|
3614 while (finish_marking_weak_hash_tables () > 0 ||
|
|
3615 finish_marking_weak_lists () > 0)
|
380
|
3616 ;
|
0
|
3617
|
|
3618 /* And prune (this needs to be called after everything else has been
|
|
3619 marked and before we do any sweeping). */
|
|
3620 /* #### this is somewhat ad-hoc and should probably be an object
|
|
3621 method */
|
398
|
3622 prune_weak_hash_tables ();
|
|
3623 prune_weak_lists ();
|
|
3624 prune_specifiers ();
|
|
3625 prune_syntax_tables ();
|
0
|
3626
|
|
3627 gc_sweep ();
|
|
3628
|
|
3629 consing_since_gc = 0;
|
|
3630 #ifndef DEBUG_XEMACS
|
|
3631 /* Allow you to set it really fucking low if you really want ... */
|
|
3632 if (gc_cons_threshold < 10000)
|
|
3633 gc_cons_threshold = 10000;
|
|
3634 #endif
|
|
3635
|
|
3636 gc_in_progress = 0;
|
|
3637
|
|
3638 /******* End of garbage collection ********/
|
|
3639
|
|
3640 run_hook_trapping_errors ("Error in post-gc-hook", Qpost_gc_hook);
|
|
3641
|
|
3642 /* Now remove the GC cursor/message */
|
|
3643 if (!noninteractive)
|
|
3644 {
|
163
|
3645 if (cursor_changed)
|
|
3646 Fset_frame_pointer (make_frame (f), pre_gc_cursor);
|
|
3647 else if (!FRAME_STREAM_P (f))
|
0
|
3648 {
|
|
3649 char *msg = (STRINGP (Vgc_message)
|
14
|
3650 ? GETTEXT ((char *) XSTRING_DATA (Vgc_message))
|
0
|
3651 : 0);
|
|
3652
|
|
3653 /* Show "...done" only if the echo area would otherwise be empty. */
|
183
|
3654 if (NILP (clear_echo_area (selected_frame (),
|
0
|
3655 Qgarbage_collecting, 0)))
|
|
3656 {
|
|
3657 Lisp_Object args[2], whole_msg;
|
|
3658 args[0] = build_string (msg ? msg :
|
398
|
3659 GETTEXT ((const char *)
|
0
|
3660 gc_default_message));
|
|
3661 args[1] = build_string ("... done");
|
|
3662 whole_msg = Fconcat (2, args);
|
|
3663 echo_area_message (selected_frame (), (Bufbyte *) 0,
|
|
3664 whole_msg, 0, -1,
|
|
3665 Qgarbage_collecting);
|
|
3666 }
|
|
3667 }
|
|
3668 }
|
|
3669
|
|
3670 /* now stop inhibiting GC */
|
|
3671 unbind_to (speccount, Qnil);
|
|
3672
|
|
3673 if (!breathing_space)
|
|
3674 {
|
272
|
3675 breathing_space = malloc (4096 - MALLOC_OVERHEAD);
|
0
|
3676 }
|
|
3677
|
|
3678 UNGCPRO;
|
|
3679 return;
|
|
3680 }
|
|
3681
|
|
3682 /* Debugging aids. */
|
|
3683
|
|
3684 static Lisp_Object
|
398
|
3685 gc_plist_hack (const char *name, int value, Lisp_Object tail)
|
0
|
3686 {
|
|
3687 /* C doesn't have local functions (or closures, or GC, or readable syntax,
|
|
3688 or portable numeric datatypes, or bit-vectors, or characters, or
|
|
3689 arrays, or exceptions, or ...) */
|
173
|
3690 return cons3 (intern (name), make_int (value), tail);
|
0
|
3691 }
|
|
3692
|
380
|
3693 #define HACK_O_MATIC(type, name, pl) do { \
|
|
3694 int s = 0; \
|
|
3695 struct type##_block *x = current_##type##_block; \
|
|
3696 while (x) { s += sizeof (*x) + MALLOC_OVERHEAD; x = x->prev; } \
|
|
3697 (pl) = gc_plist_hack ((name), s, (pl)); \
|
|
3698 } while (0)
|
0
|
3699
|
20
|
3700 DEFUN ("garbage-collect", Fgarbage_collect, 0, 0, "", /*
|
0
|
3701 Reclaim storage for Lisp objects no longer needed.
|
272
|
3702 Return info on amount of space in use:
|
0
|
3703 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
|
|
3704 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
|
183
|
3705 PLIST)
|
0
|
3706 where `PLIST' is a list of alternating keyword/value pairs providing
|
|
3707 more detailed information.
|
|
3708 Garbage collection happens automatically if you cons more than
|
|
3709 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
|
20
|
3710 */
|
|
3711 ())
|
0
|
3712 {
|
|
3713 Lisp_Object pl = Qnil;
|
|
3714 int i;
|
243
|
3715 int gc_count_vector_total_size = 0;
|
104
|
3716
|
0
|
3717 garbage_collect_1 ();
|
|
3718
|
398
|
3719 for (i = 0; i <= last_lrecord_type_index_assigned; i++)
|
0
|
3720 {
|
183
|
3721 if (lcrecord_stats[i].bytes_in_use != 0
|
0
|
3722 || lcrecord_stats[i].bytes_freed != 0
|
|
3723 || lcrecord_stats[i].instances_on_free_list != 0)
|
|
3724 {
|
|
3725 char buf [255];
|
398
|
3726 const char *name = lrecord_implementations_table[i]->name;
|
0
|
3727 int len = strlen (name);
|
207
|
3728 /* save this for the FSFmacs-compatible part of the summary */
|
398
|
3729 if (i == *lrecord_vector.lrecord_type_index)
|
207
|
3730 gc_count_vector_total_size =
|
|
3731 lcrecord_stats[i].bytes_in_use + lcrecord_stats[i].bytes_freed;
|
398
|
3732
|
0
|
3733 sprintf (buf, "%s-storage", name);
|
|
3734 pl = gc_plist_hack (buf, lcrecord_stats[i].bytes_in_use, pl);
|
|
3735 /* Okay, simple pluralization check for `symbol-value-varalias' */
|
|
3736 if (name[len-1] == 's')
|
|
3737 sprintf (buf, "%ses-freed", name);
|
|
3738 else
|
|
3739 sprintf (buf, "%ss-freed", name);
|
|
3740 if (lcrecord_stats[i].instances_freed != 0)
|
|
3741 pl = gc_plist_hack (buf, lcrecord_stats[i].instances_freed, pl);
|
|
3742 if (name[len-1] == 's')
|
|
3743 sprintf (buf, "%ses-on-free-list", name);
|
|
3744 else
|
|
3745 sprintf (buf, "%ss-on-free-list", name);
|
|
3746 if (lcrecord_stats[i].instances_on_free_list != 0)
|
|
3747 pl = gc_plist_hack (buf, lcrecord_stats[i].instances_on_free_list,
|
|
3748 pl);
|
|
3749 if (name[len-1] == 's')
|
|
3750 sprintf (buf, "%ses-used", name);
|
|
3751 else
|
|
3752 sprintf (buf, "%ss-used", name);
|
|
3753 pl = gc_plist_hack (buf, lcrecord_stats[i].instances_in_use, pl);
|
|
3754 }
|
|
3755 }
|
|
3756
|
|
3757 HACK_O_MATIC (extent, "extent-storage", pl);
|
|
3758 pl = gc_plist_hack ("extents-free", gc_count_num_extent_freelist, pl);
|
|
3759 pl = gc_plist_hack ("extents-used", gc_count_num_extent_in_use, pl);
|
|
3760 HACK_O_MATIC (event, "event-storage", pl);
|
|
3761 pl = gc_plist_hack ("events-free", gc_count_num_event_freelist, pl);
|
|
3762 pl = gc_plist_hack ("events-used", gc_count_num_event_in_use, pl);
|
|
3763 HACK_O_MATIC (marker, "marker-storage", pl);
|
|
3764 pl = gc_plist_hack ("markers-free", gc_count_num_marker_freelist, pl);
|
|
3765 pl = gc_plist_hack ("markers-used", gc_count_num_marker_in_use, pl);
|
|
3766 #ifdef LISP_FLOAT_TYPE
|
|
3767 HACK_O_MATIC (float, "float-storage", pl);
|
|
3768 pl = gc_plist_hack ("floats-free", gc_count_num_float_freelist, pl);
|
|
3769 pl = gc_plist_hack ("floats-used", gc_count_num_float_in_use, pl);
|
|
3770 #endif /* LISP_FLOAT_TYPE */
|
|
3771 HACK_O_MATIC (string, "string-header-storage", pl);
|
183
|
3772 pl = gc_plist_hack ("long-strings-total-length",
|
0
|
3773 gc_count_string_total_size
|
|
3774 - gc_count_short_string_total_size, pl);
|
|
3775 HACK_O_MATIC (string_chars, "short-string-storage", pl);
|
|
3776 pl = gc_plist_hack ("short-strings-total-length",
|
|
3777 gc_count_short_string_total_size, pl);
|
|
3778 pl = gc_plist_hack ("strings-free", gc_count_num_string_freelist, pl);
|
183
|
3779 pl = gc_plist_hack ("long-strings-used",
|
0
|
3780 gc_count_num_string_in_use
|
|
3781 - gc_count_num_short_string_in_use, pl);
|
183
|
3782 pl = gc_plist_hack ("short-strings-used",
|
0
|
3783 gc_count_num_short_string_in_use, pl);
|
|
3784
|
|
3785 HACK_O_MATIC (compiled_function, "compiled-function-storage", pl);
|
|
3786 pl = gc_plist_hack ("compiled-functions-free",
|
|
3787 gc_count_num_compiled_function_freelist, pl);
|
|
3788 pl = gc_plist_hack ("compiled-functions-used",
|
|
3789 gc_count_num_compiled_function_in_use, pl);
|
|
3790
|
|
3791 pl = gc_plist_hack ("bit-vector-storage", gc_count_bit_vector_storage, pl);
|
183
|
3792 pl = gc_plist_hack ("bit-vectors-total-length",
|
0
|
3793 gc_count_bit_vector_total_size, pl);
|
|
3794 pl = gc_plist_hack ("bit-vectors-used", gc_count_num_bit_vector_used, pl);
|
|
3795
|
|
3796 HACK_O_MATIC (symbol, "symbol-storage", pl);
|
|
3797 pl = gc_plist_hack ("symbols-free", gc_count_num_symbol_freelist, pl);
|
|
3798 pl = gc_plist_hack ("symbols-used", gc_count_num_symbol_in_use, pl);
|
|
3799
|
|
3800 HACK_O_MATIC (cons, "cons-storage", pl);
|
|
3801 pl = gc_plist_hack ("conses-free", gc_count_num_cons_freelist, pl);
|
|
3802 pl = gc_plist_hack ("conses-used", gc_count_num_cons_in_use, pl);
|
|
3803
|
|
3804 /* The things we do for backwards-compatibility */
|
272
|
3805 return
|
|
3806 list6 (Fcons (make_int (gc_count_num_cons_in_use),
|
|
3807 make_int (gc_count_num_cons_freelist)),
|
|
3808 Fcons (make_int (gc_count_num_symbol_in_use),
|
|
3809 make_int (gc_count_num_symbol_freelist)),
|
|
3810 Fcons (make_int (gc_count_num_marker_in_use),
|
|
3811 make_int (gc_count_num_marker_freelist)),
|
|
3812 make_int (gc_count_string_total_size),
|
|
3813 make_int (gc_count_vector_total_size),
|
|
3814 pl);
|
0
|
3815 }
|
|
3816 #undef HACK_O_MATIC
|
|
3817
|
20
|
3818 DEFUN ("consing-since-gc", Fconsing_since_gc, 0, 0, "", /*
|
0
|
3819 Return the number of bytes consed since the last garbage collection.
|
|
3820 \"Consed\" is a misnomer in that this actually counts allocation
|
|
3821 of all different kinds of objects, not just conses.
|
|
3822
|
|
3823 If this value exceeds `gc-cons-threshold', a garbage collection happens.
|
20
|
3824 */
|
|
3825 ())
|
0
|
3826 {
|
173
|
3827 return make_int (consing_since_gc);
|
0
|
3828 }
|
183
|
3829
|
398
|
3830 #if 0
|
20
|
3831 DEFUN ("memory-limit", Fmemory_limit, 0, 0, "", /*
|
0
|
3832 Return the address of the last byte Emacs has allocated, divided by 1024.
|
|
3833 This may be helpful in debugging Emacs's memory usage.
|
|
3834 The value is divided by 1024 to make sure it will fit in a lisp integer.
|
20
|
3835 */
|
|
3836 ())
|
0
|
3837 {
|
173
|
3838 return make_int ((EMACS_INT) sbrk (0) / 1024);
|
0
|
3839 }
|
398
|
3840 #endif
|
0
|
3841
|
|
3842
|
|
3843 int
|
|
3844 object_dead_p (Lisp_Object obj)
|
|
3845 {
|
173
|
3846 return ((BUFFERP (obj) && !BUFFER_LIVE_P (XBUFFER (obj))) ||
|
|
3847 (FRAMEP (obj) && !FRAME_LIVE_P (XFRAME (obj))) ||
|
|
3848 (WINDOWP (obj) && !WINDOW_LIVE_P (XWINDOW (obj))) ||
|
|
3849 (DEVICEP (obj) && !DEVICE_LIVE_P (XDEVICE (obj))) ||
|
0
|
3850 (CONSOLEP (obj) && !CONSOLE_LIVE_P (XCONSOLE (obj))) ||
|
173
|
3851 (EVENTP (obj) && !EVENT_LIVE_P (XEVENT (obj))) ||
|
|
3852 (EXTENTP (obj) && !EXTENT_LIVE_P (XEXTENT (obj))));
|
0
|
3853 }
|
|
3854
|
|
3855 #ifdef MEMORY_USAGE_STATS
|
|
3856
|
|
3857 /* Attempt to determine the actual amount of space that is used for
|
|
3858 the block allocated starting at PTR, supposedly of size "CLAIMED_SIZE".
|
|
3859
|
|
3860 It seems that the following holds:
|
|
3861
|
|
3862 1. When using the old allocator (malloc.c):
|
|
3863
|
|
3864 -- blocks are always allocated in chunks of powers of two. For
|
|
3865 each block, there is an overhead of 8 bytes if rcheck is not
|
|
3866 defined, 20 bytes if it is defined. In other words, a
|
|
3867 one-byte allocation needs 8 bytes of overhead for a total of
|
|
3868 9 bytes, and needs to have 16 bytes of memory chunked out for
|
|
3869 it.
|
|
3870
|
|
3871 2. When using the new allocator (gmalloc.c):
|
|
3872
|
|
3873 -- blocks are always allocated in chunks of powers of two up
|
|
3874 to 4096 bytes. Larger blocks are allocated in chunks of
|
|
3875 an integral multiple of 4096 bytes. The minimum block
|
|
3876 size is 2*sizeof (void *), or 16 bytes if SUNOS_LOCALTIME_BUG
|
|
3877 is defined. There is no per-block overhead, but there
|
|
3878 is an overhead of 3*sizeof (size_t) for each 4096 bytes
|
|
3879 allocated.
|
|
3880
|
|
3881 3. When using the system malloc, anything goes, but they are
|
|
3882 generally slower and more space-efficient than the GNU
|
|
3883 allocators. One possibly reasonable assumption to make
|
|
3884 for want of better data is that sizeof (void *), or maybe
|
|
3885 2 * sizeof (void *), is required as overhead and that
|
|
3886 blocks are allocated in the minimum required size except
|
|
3887 that some minimum block size is imposed (e.g. 16 bytes). */
|
|
3888
|
272
|
3889 size_t
|
|
3890 malloced_storage_size (void *ptr, size_t claimed_size,
|
0
|
3891 struct overhead_stats *stats)
|
|
3892 {
|
272
|
3893 size_t orig_claimed_size = claimed_size;
|
0
|
3894
|
|
3895 #ifdef GNU_MALLOC
|
|
3896
|
|
3897 if (claimed_size < 2 * sizeof (void *))
|
|
3898 claimed_size = 2 * sizeof (void *);
|
|
3899 # ifdef SUNOS_LOCALTIME_BUG
|
|
3900 if (claimed_size < 16)
|
|
3901 claimed_size = 16;
|
|
3902 # endif
|
|
3903 if (claimed_size < 4096)
|
|
3904 {
|
|
3905 int log = 1;
|
|
3906
|
|
3907 /* compute the log base two, more or less, then use it to compute
|
|
3908 the block size needed. */
|
|
3909 claimed_size--;
|
|
3910 /* It's big, it's heavy, it's wood! */
|
|
3911 while ((claimed_size /= 2) != 0)
|
|
3912 ++log;
|
|
3913 claimed_size = 1;
|
|
3914 /* It's better than bad, it's good! */
|
|
3915 while (log > 0)
|
|
3916 {
|
|
3917 claimed_size *= 2;
|
|
3918 log--;
|
|
3919 }
|
|
3920 /* We have to come up with some average about the amount of
|
|
3921 blocks used. */
|
272
|
3922 if ((size_t) (rand () & 4095) < claimed_size)
|
0
|
3923 claimed_size += 3 * sizeof (void *);
|
|
3924 }
|
|
3925 else
|
|
3926 {
|
|
3927 claimed_size += 4095;
|
|
3928 claimed_size &= ~4095;
|
|
3929 claimed_size += (claimed_size / 4096) * 3 * sizeof (size_t);
|
|
3930 }
|
|
3931
|
|
3932 #elif defined (SYSTEM_MALLOC)
|
|
3933
|
|
3934 if (claimed_size < 16)
|
|
3935 claimed_size = 16;
|
|
3936 claimed_size += 2 * sizeof (void *);
|
|
3937
|
|
3938 #else /* old GNU allocator */
|
|
3939
|
|
3940 # ifdef rcheck /* #### may not be defined here */
|
|
3941 claimed_size += 20;
|
|
3942 # else
|
|
3943 claimed_size += 8;
|
|
3944 # endif
|
|
3945 {
|
|
3946 int log = 1;
|
|
3947
|
|
3948 /* compute the log base two, more or less, then use it to compute
|
|
3949 the block size needed. */
|
|
3950 claimed_size--;
|
|
3951 /* It's big, it's heavy, it's wood! */
|
|
3952 while ((claimed_size /= 2) != 0)
|
|
3953 ++log;
|
|
3954 claimed_size = 1;
|
|
3955 /* It's better than bad, it's good! */
|
|
3956 while (log > 0)
|
|
3957 {
|
|
3958 claimed_size *= 2;
|
|
3959 log--;
|
|
3960 }
|
|
3961 }
|
|
3962
|
|
3963 #endif /* old GNU allocator */
|
|
3964
|
|
3965 if (stats)
|
|
3966 {
|
|
3967 stats->was_requested += orig_claimed_size;
|
|
3968 stats->malloc_overhead += claimed_size - orig_claimed_size;
|
|
3969 }
|
|
3970 return claimed_size;
|
|
3971 }
|
|
3972
|
272
|
3973 size_t
|
|
3974 fixed_type_block_overhead (size_t size)
|
0
|
3975 {
|
272
|
3976 size_t per_block = TYPE_ALLOC_SIZE (cons, unsigned char);
|
|
3977 size_t overhead = 0;
|
|
3978 size_t storage_size = malloced_storage_size (0, per_block, 0);
|
0
|
3979 while (size >= per_block)
|
|
3980 {
|
|
3981 size -= per_block;
|
|
3982 overhead += sizeof (void *) + per_block - storage_size;
|
|
3983 }
|
|
3984 if (rand () % per_block < size)
|
|
3985 overhead += sizeof (void *) + per_block - storage_size;
|
|
3986 return overhead;
|
|
3987 }
|
|
3988
|
|
3989 #endif /* MEMORY_USAGE_STATS */
|
|
3990
|
|
3991
|
|
3992 /* Initialization */
|
|
3993 void
|
398
|
3994 reinit_alloc_once_early (void)
|
0
|
3995 {
|
|
3996 gc_generation_number[0] = 0;
|
|
3997 breathing_space = 0;
|
|
3998 XSETINT (all_bit_vectors, 0); /* Qzero may not be set yet. */
|
|
3999 XSETINT (Vgc_message, 0);
|
|
4000 all_lcrecords = 0;
|
|
4001 ignore_malloc_warnings = 1;
|
255
|
4002 #ifdef DOUG_LEA_MALLOC
|
|
4003 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
|
|
4004 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
|
261
|
4005 #if 0 /* Moved to emacs.c */
|
|
4006 mallopt (M_MMAP_MAX, 64); /* max. number of mmap'ed areas */
|
|
4007 #endif
|
255
|
4008 #endif
|
0
|
4009 init_string_alloc ();
|
|
4010 init_string_chars_alloc ();
|
|
4011 init_cons_alloc ();
|
|
4012 init_symbol_alloc ();
|
|
4013 init_compiled_function_alloc ();
|
|
4014 #ifdef LISP_FLOAT_TYPE
|
|
4015 init_float_alloc ();
|
|
4016 #endif /* LISP_FLOAT_TYPE */
|
|
4017 init_marker_alloc ();
|
|
4018 init_extent_alloc ();
|
|
4019 init_event_alloc ();
|
278
|
4020
|
0
|
4021 ignore_malloc_warnings = 0;
|
398
|
4022
|
|
4023 staticidx_nodump = 0;
|
|
4024 dumpstructidx = 0;
|
|
4025 pdump_wireidx = 0;
|
|
4026
|
0
|
4027 consing_since_gc = 0;
|
|
4028 #if 1
|
|
4029 gc_cons_threshold = 500000; /* XEmacs change */
|
|
4030 #else
|
|
4031 gc_cons_threshold = 15000; /* debugging */
|
|
4032 #endif
|
|
4033 #ifdef VIRT_ADDR_VARIES
|
|
4034 malloc_sbrk_unused = 1<<22; /* A large number */
|
|
4035 malloc_sbrk_used = 100000; /* as reasonable as any number */
|
|
4036 #endif /* VIRT_ADDR_VARIES */
|
|
4037 lrecord_uid_counter = 259;
|
|
4038 debug_string_purity = 0;
|
|
4039 gcprolist = 0;
|
|
4040
|
|
4041 gc_currently_forbidden = 0;
|
|
4042 gc_hooks_inhibited = 0;
|
|
4043
|
|
4044 #ifdef ERROR_CHECK_TYPECHECK
|
|
4045 ERROR_ME.really_unlikely_name_to_have_accidentally_in_a_non_errb_structure =
|
|
4046 666;
|
|
4047 ERROR_ME_NOT.
|
|
4048 really_unlikely_name_to_have_accidentally_in_a_non_errb_structure = 42;
|
|
4049 ERROR_ME_WARN.
|
|
4050 really_unlikely_name_to_have_accidentally_in_a_non_errb_structure =
|
|
4051 3333632;
|
183
|
4052 #endif /* ERROR_CHECK_TYPECHECK */
|
0
|
4053 }
|
|
4054
|
|
4055 void
|
398
|
4056 init_alloc_once_early (void)
|
|
4057 {
|
|
4058 int iii;
|
|
4059
|
|
4060 reinit_alloc_once_early ();
|
|
4061
|
|
4062 last_lrecord_type_index_assigned = -1;
|
|
4063 for (iii = 0; iii < countof (lrecord_implementations_table); iii++)
|
|
4064 {
|
|
4065 lrecord_implementations_table[iii] = 0;
|
|
4066 }
|
|
4067
|
|
4068 /*
|
|
4069 * All the staticly
|
|
4070 * defined subr lrecords were initialized with lheader->type == 0.
|
|
4071 * See subr_lheader_initializer in lisp.h. Force type index 0 to be
|
|
4072 * assigned to lrecord_subr so that those predefined indexes match
|
|
4073 * reality.
|
|
4074 */
|
|
4075 lrecord_type_index (&lrecord_subr);
|
|
4076 assert (*(lrecord_subr.lrecord_type_index) == 0);
|
|
4077 /*
|
|
4078 * The same is true for symbol_value_forward objects, except the
|
|
4079 * type is 1.
|
|
4080 */
|
|
4081 lrecord_type_index (&lrecord_symbol_value_forward);
|
|
4082 assert (*(lrecord_symbol_value_forward.lrecord_type_index) == 1);
|
|
4083
|
|
4084 staticidx = 0;
|
|
4085 }
|
|
4086
|
|
4087 int pure_bytes_used = 0;
|
|
4088
|
|
4089 void
|
0
|
4090 reinit_alloc (void)
|
|
4091 {
|
|
4092 gcprolist = 0;
|
|
4093 }
|
|
4094
|
|
4095 void
|
|
4096 syms_of_alloc (void)
|
|
4097 {
|
|
4098 defsymbol (&Qpre_gc_hook, "pre-gc-hook");
|
|
4099 defsymbol (&Qpost_gc_hook, "post-gc-hook");
|
|
4100 defsymbol (&Qgarbage_collecting, "garbage-collecting");
|
|
4101
|
20
|
4102 DEFSUBR (Fcons);
|
|
4103 DEFSUBR (Flist);
|
|
4104 DEFSUBR (Fvector);
|
|
4105 DEFSUBR (Fbit_vector);
|
|
4106 DEFSUBR (Fmake_byte_code);
|
|
4107 DEFSUBR (Fmake_list);
|
|
4108 DEFSUBR (Fmake_vector);
|
|
4109 DEFSUBR (Fmake_bit_vector);
|
|
4110 DEFSUBR (Fmake_string);
|
278
|
4111 DEFSUBR (Fstring);
|
20
|
4112 DEFSUBR (Fmake_symbol);
|
|
4113 DEFSUBR (Fmake_marker);
|
|
4114 DEFSUBR (Fpurecopy);
|
|
4115 DEFSUBR (Fgarbage_collect);
|
398
|
4116 #if 0
|
20
|
4117 DEFSUBR (Fmemory_limit);
|
398
|
4118 #endif
|
20
|
4119 DEFSUBR (Fconsing_since_gc);
|
0
|
4120 }
|
|
4121
|
|
4122 void
|
|
4123 vars_of_alloc (void)
|
|
4124 {
|
|
4125 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold /*
|
|
4126 *Number of bytes of consing between garbage collections.
|
|
4127 \"Consing\" is a misnomer in that this actually counts allocation
|
|
4128 of all different kinds of objects, not just conses.
|
|
4129 Garbage collection can happen automatically once this many bytes have been
|
|
4130 allocated since the last garbage collection. All data types count.
|
|
4131
|
|
4132 Garbage collection happens automatically when `eval' or `funcall' are
|
|
4133 called. (Note that `funcall' is called implicitly as part of evaluation.)
|
|
4134 By binding this temporarily to a large number, you can effectively
|
|
4135 prevent garbage collection during a part of the program.
|
|
4136
|
|
4137 See also `consing-since-gc'.
|
|
4138 */ );
|
|
4139
|
272
|
4140 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used /*
|
0
|
4141 Number of bytes of sharable Lisp data allocated so far.
|
|
4142 */ );
|
|
4143
|
|
4144 #if 0
|
|
4145 DEFVAR_INT ("data-bytes-used", &malloc_sbrk_used /*
|
|
4146 Number of bytes of unshared memory allocated in this session.
|
|
4147 */ );
|
|
4148
|
|
4149 DEFVAR_INT ("data-bytes-free", &malloc_sbrk_unused /*
|
|
4150 Number of bytes of unshared memory remaining available in this session.
|
|
4151 */ );
|
|
4152 #endif
|
|
4153
|
|
4154 #ifdef DEBUG_XEMACS
|
|
4155 DEFVAR_INT ("debug-allocation", &debug_allocation /*
|
|
4156 If non-zero, print out information to stderr about all objects allocated.
|
|
4157 See also `debug-allocation-backtrace-length'.
|
|
4158 */ );
|
|
4159 debug_allocation = 0;
|
|
4160
|
|
4161 DEFVAR_INT ("debug-allocation-backtrace-length",
|
|
4162 &debug_allocation_backtrace_length /*
|
|
4163 Length (in stack frames) of short backtrace printed out by `debug-allocation'.
|
|
4164 */ );
|
|
4165 debug_allocation_backtrace_length = 2;
|
|
4166 #endif
|
|
4167
|
|
4168 DEFVAR_BOOL ("purify-flag", &purify_flag /*
|
|
4169 Non-nil means loading Lisp code in order to dump an executable.
|
398
|
4170 This means that certain objects should be allocated in readonly space.
|
0
|
4171 */ );
|
|
4172
|
|
4173 DEFVAR_LISP ("pre-gc-hook", &Vpre_gc_hook /*
|
|
4174 Function or functions to be run just before each garbage collection.
|
|
4175 Interrupts, garbage collection, and errors are inhibited while this hook
|
|
4176 runs, so be extremely careful in what you add here. In particular, avoid
|
|
4177 consing, and do not interact with the user.
|
|
4178 */ );
|
|
4179 Vpre_gc_hook = Qnil;
|
|
4180
|
|
4181 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook /*
|
|
4182 Function or functions to be run just after each garbage collection.
|
|
4183 Interrupts, garbage collection, and errors are inhibited while this hook
|
|
4184 runs, so be extremely careful in what you add here. In particular, avoid
|
|
4185 consing, and do not interact with the user.
|
|
4186 */ );
|
|
4187 Vpost_gc_hook = Qnil;
|
|
4188
|
|
4189 DEFVAR_LISP ("gc-message", &Vgc_message /*
|
|
4190 String to print to indicate that a garbage collection is in progress.
|
|
4191 This is printed in the echo area. If the selected frame is on a
|
|
4192 window system and `gc-pointer-glyph' specifies a value (i.e. a pointer
|
|
4193 image instance) in the domain of the selected frame, the mouse pointer
|
|
4194 will change instead of this message being printed.
|
|
4195 */ );
|
398
|
4196 Vgc_message = build_string (gc_default_message);
|
0
|
4197
|
|
4198 DEFVAR_LISP ("gc-pointer-glyph", &Vgc_pointer_glyph /*
|
|
4199 Pointer glyph used to indicate that a garbage collection is in progress.
|
|
4200 If the selected window is on a window system and this glyph specifies a
|
|
4201 value (i.e. a pointer image instance) in the domain of the selected
|
|
4202 window, the pointer will be changed as specified during garbage collection.
|
|
4203 Otherwise, a message will be printed in the echo area, as controlled
|
|
4204 by `gc-message'.
|
|
4205 */ );
|
|
4206 }
|
|
4207
|
|
4208 void
|
|
4209 complex_vars_of_alloc (void)
|
|
4210 {
|
|
4211 Vgc_pointer_glyph = Fmake_glyph_internal (Qpointer);
|
|
4212 }
|
398
|
4213
|
|
4214
|
|
4215 #ifdef PDUMP
|
|
4216
|
|
4217 /* The structure of the file
|
|
4218 *
|
|
4219 * 0 - header
|
|
4220 * 256 - dumped objects
|
|
4221 * stab_offset - nb_staticpro*(Lisp_Object *) from staticvec
|
|
4222 * - nb_staticpro*(relocated Lisp_Object) pointed to by staticpro
|
|
4223 * - nb_structdmp*pair(void *, adr) for pointers to structures
|
|
4224 * - lrecord_implementations_table[]
|
|
4225 * - relocation table
|
|
4226 * - wired variable address/value couples with the count preceding the list
|
|
4227 */
|
|
4228 typedef struct
|
|
4229 {
|
|
4230 char signature[8];
|
|
4231 EMACS_UINT stab_offset;
|
|
4232 EMACS_UINT reloc_address;
|
|
4233 int nb_staticpro;
|
|
4234 int nb_structdmp;
|
|
4235 int nb_opaquedmp;
|
|
4236 int last_type;
|
|
4237 } dump_header;
|
|
4238
|
|
4239 char *pdump_start, *pdump_end;
|
|
4240
|
|
4241 static const unsigned char align_table[256] =
|
|
4242 {
|
|
4243 8, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
|
|
4244 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
|
|
4245 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
|
|
4246 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
|
|
4247 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
|
|
4248 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
|
|
4249 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
|
|
4250 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
|
|
4251 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
|
|
4252 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
|
|
4253 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
|
|
4254 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
|
|
4255 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
|
|
4256 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
|
|
4257 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
|
|
4258 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
|
|
4259 };
|
|
4260
|
|
4261 typedef struct pdump_entry_list_elmt
|
|
4262 {
|
|
4263 struct pdump_entry_list_elmt *next;
|
|
4264 const void *obj;
|
|
4265 size_t size;
|
|
4266 int count;
|
|
4267 int is_lrecord;
|
|
4268 EMACS_INT save_offset;
|
|
4269 } pdump_entry_list_elmt;
|
|
4270
|
|
4271 typedef struct
|
|
4272 {
|
|
4273 pdump_entry_list_elmt *first;
|
|
4274 int align;
|
|
4275 int count;
|
|
4276 } pdump_entry_list;
|
|
4277
|
|
4278 typedef struct pdump_struct_list_elmt
|
|
4279 {
|
|
4280 pdump_entry_list list;
|
|
4281 const struct struct_description *sdesc;
|
|
4282 } pdump_struct_list_elmt;
|
|
4283
|
|
4284 typedef struct
|
|
4285 {
|
|
4286 pdump_struct_list_elmt *list;
|
|
4287 int count;
|
|
4288 int size;
|
|
4289 } pdump_struct_list;
|
|
4290
|
|
4291 static pdump_entry_list pdump_object_table[256];
|
|
4292 static pdump_entry_list pdump_opaque_data_list;
|
|
4293 static pdump_struct_list pdump_struct_table;
|
|
4294 static pdump_entry_list_elmt *pdump_qnil;
|
|
4295
|
|
4296 static int pdump_alert_undump_object[256];
|
|
4297
|
|
4298 static unsigned long cur_offset;
|
|
4299 static size_t max_size;
|
|
4300 static int pdump_fd;
|
|
4301 static void *pdump_buf;
|
|
4302
|
|
4303 #define PDUMP_HASHSIZE 200001
|
|
4304
|
|
4305 static pdump_entry_list_elmt **pdump_hash;
|
|
4306
|
|
4307 /* Since most pointers are eight bytes aligned, the >>3 allows for a better hash */
|
|
4308 static int
|
|
4309 pdump_make_hash (const void *obj)
|
|
4310 {
|
|
4311 return ((unsigned long)(obj)>>3) % PDUMP_HASHSIZE;
|
|
4312 }
|
|
4313
|
|
4314 static pdump_entry_list_elmt *
|
|
4315 pdump_get_entry (const void *obj)
|
|
4316 {
|
|
4317 int pos = pdump_make_hash (obj);
|
|
4318 pdump_entry_list_elmt *e;
|
|
4319
|
|
4320 assert (obj != 0);
|
|
4321
|
|
4322 while ((e = pdump_hash[pos]) != 0)
|
|
4323 {
|
|
4324 if (e->obj == obj)
|
|
4325 return e;
|
|
4326
|
|
4327 pos++;
|
|
4328 if (pos == PDUMP_HASHSIZE)
|
|
4329 pos = 0;
|
|
4330 }
|
|
4331 return 0;
|
|
4332 }
|
|
4333
|
|
4334 static void
|
|
4335 pdump_add_entry (pdump_entry_list *list, const void *obj, size_t size, int count, int is_lrecord)
|
|
4336 {
|
|
4337 pdump_entry_list_elmt *e;
|
|
4338 int align;
|
|
4339 int pos = pdump_make_hash (obj);
|
|
4340
|
|
4341 while ((e = pdump_hash[pos]) != 0)
|
|
4342 {
|
|
4343 if (e->obj == obj)
|
|
4344 return;
|
|
4345
|
|
4346 pos++;
|
|
4347 if (pos == PDUMP_HASHSIZE)
|
|
4348 pos = 0;
|
|
4349 }
|
|
4350
|
|
4351 e = xnew (pdump_entry_list_elmt);
|
|
4352
|
|
4353 e->next = list->first;
|
|
4354 e->obj = obj;
|
|
4355 e->size = size;
|
|
4356 e->count = count;
|
|
4357 e->is_lrecord = is_lrecord;
|
|
4358 list->first = e;
|
|
4359
|
|
4360 list->count += count;
|
|
4361 pdump_hash[pos] = e;
|
|
4362
|
|
4363 align = align_table[size & 255];
|
|
4364 if (align < 2 && is_lrecord)
|
|
4365 align = 2;
|
|
4366
|
|
4367 if (align < list->align)
|
|
4368 list->align = align;
|
|
4369 }
|
|
4370
|
|
4371 static pdump_entry_list *
|
|
4372 pdump_get_entry_list (const struct struct_description *sdesc)
|
|
4373 {
|
|
4374 int i;
|
|
4375 for (i=0; i<pdump_struct_table.count; i++)
|
|
4376 if (pdump_struct_table.list[i].sdesc == sdesc)
|
|
4377 return &pdump_struct_table.list[i].list;
|
|
4378
|
|
4379 if (pdump_struct_table.size <= pdump_struct_table.count)
|
|
4380 {
|
|
4381 if (pdump_struct_table.size == -1)
|
|
4382 pdump_struct_table.size = 10;
|
|
4383 else
|
|
4384 pdump_struct_table.size = pdump_struct_table.size * 2;
|
|
4385 pdump_struct_table.list = (pdump_struct_list_elmt *)
|
|
4386 xrealloc (pdump_struct_table.list,
|
|
4387 pdump_struct_table.size * sizeof (pdump_struct_list_elmt));
|
|
4388 }
|
|
4389 pdump_struct_table.list[pdump_struct_table.count].list.first = 0;
|
|
4390 pdump_struct_table.list[pdump_struct_table.count].list.align = 8;
|
|
4391 pdump_struct_table.list[pdump_struct_table.count].list.count = 0;
|
|
4392 pdump_struct_table.list[pdump_struct_table.count].sdesc = sdesc;
|
|
4393
|
|
4394 return &pdump_struct_table.list[pdump_struct_table.count++].list;
|
|
4395 }
|
|
4396
|
|
4397 static struct
|
|
4398 {
|
|
4399 struct lrecord_header *obj;
|
|
4400 int position;
|
|
4401 int offset;
|
|
4402 } backtrace[65536];
|
|
4403
|
|
4404 static int depth;
|
|
4405
|
|
4406 static void pdump_backtrace (void)
|
|
4407 {
|
|
4408 int i;
|
|
4409 fprintf (stderr, "pdump backtrace :\n");
|
|
4410 for (i=0;i<depth;i++)
|
|
4411 {
|
|
4412 if (!backtrace[i].obj)
|
|
4413 fprintf (stderr, " - ind. (%d, %d)\n", backtrace[i].position, backtrace[i].offset);
|
|
4414 else
|
|
4415 {
|
|
4416 fprintf (stderr, " - %s (%d, %d)\n",
|
|
4417 LHEADER_IMPLEMENTATION (backtrace[i].obj)->name,
|
|
4418 backtrace[i].position,
|
|
4419 backtrace[i].offset);
|
|
4420 }
|
|
4421 }
|
|
4422 }
|
|
4423
|
|
4424 static void pdump_register_object (Lisp_Object obj);
|
|
4425 static void pdump_register_struct (const void *data, const struct struct_description *sdesc, int count);
|
|
4426
|
|
4427 static EMACS_INT
|
|
4428 pdump_get_indirect_count (EMACS_INT code, const struct lrecord_description *idesc, const void *idata)
|
|
4429 {
|
|
4430 EMACS_INT count;
|
|
4431 const void *irdata;
|
|
4432
|
|
4433 int line = XD_INDIRECT_VAL (code);
|
|
4434 int delta = XD_INDIRECT_DELTA (code);
|
|
4435
|
|
4436 irdata = ((char *)idata) + idesc[line].offset;
|
|
4437 switch (idesc[line].type)
|
|
4438 {
|
|
4439 case XD_SIZE_T:
|
|
4440 count = *(size_t *)irdata;
|
|
4441 break;
|
|
4442 case XD_INT:
|
|
4443 count = *(int *)irdata;
|
|
4444 break;
|
|
4445 case XD_LONG:
|
|
4446 count = *(long *)irdata;
|
|
4447 break;
|
|
4448 case XD_BYTECOUNT:
|
|
4449 count = *(Bytecount *)irdata;
|
|
4450 break;
|
|
4451 default:
|
|
4452 fprintf (stderr, "Unsupported count type : %d (line = %d, code=%ld)\n", idesc[line].type, line, (long)code);
|
|
4453 pdump_backtrace ();
|
|
4454 abort ();
|
|
4455 }
|
|
4456 count += delta;
|
|
4457 return count;
|
|
4458 }
|
|
4459
|
|
4460 static void
|
|
4461 pdump_register_sub (const void *data, const struct lrecord_description *desc, int me)
|
|
4462 {
|
|
4463 int pos;
|
|
4464
|
|
4465 restart:
|
|
4466 for (pos = 0; desc[pos].type != XD_END; pos++)
|
|
4467 {
|
|
4468 const void *rdata = (const char *)data + desc[pos].offset;
|
|
4469
|
|
4470 backtrace[me].position = pos;
|
|
4471 backtrace[me].offset = desc[pos].offset;
|
|
4472
|
|
4473 switch (desc[pos].type)
|
|
4474 {
|
|
4475 case XD_SPECIFIER_END:
|
|
4476 pos = 0;
|
|
4477 desc = ((const Lisp_Specifier *)data)->methods->extra_description;
|
|
4478 goto restart;
|
|
4479 case XD_SIZE_T:
|
|
4480 case XD_INT:
|
|
4481 case XD_LONG:
|
|
4482 case XD_BYTECOUNT:
|
|
4483 case XD_LO_RESET_NIL:
|
|
4484 case XD_INT_RESET:
|
|
4485 case XD_LO_LINK:
|
|
4486 break;
|
|
4487 case XD_OPAQUE_DATA_PTR:
|
|
4488 {
|
|
4489 EMACS_INT count = desc[pos].data1;
|
|
4490 if (XD_IS_INDIRECT (count))
|
|
4491 count = pdump_get_indirect_count (count, desc, data);
|
|
4492
|
|
4493 pdump_add_entry (&pdump_opaque_data_list,
|
|
4494 *(void **)rdata,
|
|
4495 count,
|
|
4496 1,
|
|
4497 0);
|
|
4498 break;
|
|
4499 }
|
|
4500 case XD_C_STRING:
|
|
4501 {
|
|
4502 const char *str = *(const char **)rdata;
|
|
4503 if (str)
|
|
4504 pdump_add_entry (&pdump_opaque_data_list, str, strlen (str)+1, 1, 0);
|
|
4505 break;
|
|
4506 }
|
|
4507 case XD_DOC_STRING:
|
|
4508 {
|
|
4509 const char *str = *(const char **)rdata;
|
|
4510 if ((EMACS_INT)str > 0)
|
|
4511 pdump_add_entry (&pdump_opaque_data_list, str, strlen (str)+1, 1, 0);
|
|
4512 break;
|
|
4513 }
|
|
4514 case XD_LISP_OBJECT:
|
|
4515 {
|
|
4516 const Lisp_Object *pobj = (const Lisp_Object *)rdata;
|
|
4517
|
|
4518 assert (desc[pos].data1 == 0);
|
|
4519
|
|
4520 backtrace[me].offset = (const char *)pobj - (const char *)data;
|
|
4521 pdump_register_object (*pobj);
|
|
4522 break;
|
|
4523 }
|
|
4524 case XD_LISP_OBJECT_ARRAY:
|
|
4525 {
|
|
4526 int i;
|
|
4527 EMACS_INT count = desc[pos].data1;
|
|
4528 if (XD_IS_INDIRECT (count))
|
|
4529 count = pdump_get_indirect_count (count, desc, data);
|
|
4530
|
|
4531 for (i = 0; i < count; i++)
|
|
4532 {
|
|
4533 const Lisp_Object *pobj = ((const Lisp_Object *)rdata) + i;
|
|
4534 Lisp_Object dobj = *pobj;
|
|
4535
|
|
4536 backtrace[me].offset = (const char *)pobj - (const char *)data;
|
|
4537 pdump_register_object (dobj);
|
|
4538 }
|
|
4539 break;
|
|
4540 }
|
|
4541 case XD_STRUCT_PTR:
|
|
4542 {
|
|
4543 EMACS_INT count = desc[pos].data1;
|
|
4544 const struct struct_description *sdesc = desc[pos].data2;
|
|
4545 const char *dobj = *(const char **)rdata;
|
|
4546 if (dobj)
|
|
4547 {
|
|
4548 if (XD_IS_INDIRECT (count))
|
|
4549 count = pdump_get_indirect_count (count, desc, data);
|
|
4550
|
|
4551 pdump_register_struct (dobj, sdesc, count);
|
|
4552 }
|
|
4553 break;
|
|
4554 }
|
|
4555 default:
|
|
4556 fprintf (stderr, "Unsupported dump type : %d\n", desc[pos].type);
|
|
4557 pdump_backtrace ();
|
|
4558 abort ();
|
|
4559 };
|
|
4560 }
|
|
4561 }
|
|
4562
|
|
4563 static void
|
|
4564 pdump_register_object (Lisp_Object obj)
|
|
4565 {
|
|
4566 struct lrecord_header *objh;
|
|
4567
|
|
4568 if (!POINTER_TYPE_P (XTYPE (obj)))
|
|
4569 return;
|
|
4570
|
|
4571 objh = XRECORD_LHEADER (obj);
|
|
4572 if (!objh)
|
|
4573 return;
|
|
4574
|
|
4575 if (pdump_get_entry (objh))
|
|
4576 return;
|
|
4577
|
|
4578 if (LHEADER_IMPLEMENTATION (objh)->description)
|
|
4579 {
|
|
4580 int me = depth++;
|
|
4581 if (me>65536)
|
|
4582 {
|
|
4583 fprintf (stderr, "Backtrace overflow, loop ?\n");
|
|
4584 abort ();
|
|
4585 }
|
|
4586 backtrace[me].obj = objh;
|
|
4587 backtrace[me].position = 0;
|
|
4588 backtrace[me].offset = 0;
|
|
4589
|
|
4590 pdump_add_entry (pdump_object_table + objh->type,
|
|
4591 objh,
|
|
4592 LHEADER_IMPLEMENTATION (objh)->static_size ?
|
|
4593 LHEADER_IMPLEMENTATION (objh)->static_size :
|
|
4594 LHEADER_IMPLEMENTATION (objh)->size_in_bytes_method (objh),
|
|
4595 1,
|
|
4596 1);
|
|
4597 pdump_register_sub (objh,
|
|
4598 LHEADER_IMPLEMENTATION (objh)->description,
|
|
4599 me);
|
|
4600 --depth;
|
|
4601 }
|
|
4602 else
|
|
4603 {
|
|
4604 pdump_alert_undump_object[objh->type]++;
|
|
4605 fprintf (stderr, "Undumpable object type : %s\n", LHEADER_IMPLEMENTATION (objh)->name);
|
|
4606 pdump_backtrace ();
|
|
4607 }
|
|
4608 }
|
|
4609
|
|
4610 static void
|
|
4611 pdump_register_struct (const void *data, const struct struct_description *sdesc, int count)
|
|
4612 {
|
|
4613 if (data && !pdump_get_entry (data))
|
|
4614 {
|
|
4615 int me = depth++;
|
|
4616 int i;
|
|
4617 if (me>65536)
|
|
4618 {
|
|
4619 fprintf (stderr, "Backtrace overflow, loop ?\n");
|
|
4620 abort ();
|
|
4621 }
|
|
4622 backtrace[me].obj = 0;
|
|
4623 backtrace[me].position = 0;
|
|
4624 backtrace[me].offset = 0;
|
|
4625
|
|
4626 pdump_add_entry (pdump_get_entry_list (sdesc),
|
|
4627 data,
|
|
4628 sdesc->size,
|
|
4629 count,
|
|
4630 0);
|
|
4631 for (i=0; i<count; i++)
|
|
4632 {
|
|
4633 pdump_register_sub (((char *)data) + sdesc->size*i,
|
|
4634 sdesc->description,
|
|
4635 me);
|
|
4636 }
|
|
4637 --depth;
|
|
4638 }
|
|
4639 }
|
|
4640
|
|
4641 static void
|
|
4642 pdump_dump_data (pdump_entry_list_elmt *elmt, const struct lrecord_description *desc)
|
|
4643 {
|
|
4644 size_t size = elmt->size;
|
|
4645 int count = elmt->count;
|
|
4646 if (desc)
|
|
4647 {
|
|
4648 int pos, i;
|
|
4649 memcpy (pdump_buf, elmt->obj, size*count);
|
|
4650
|
|
4651 for (i=0; i<count; i++)
|
|
4652 {
|
|
4653 char *cur = ((char *)pdump_buf) + i*size;
|
|
4654 restart:
|
|
4655 for (pos = 0; desc[pos].type != XD_END; pos++)
|
|
4656 {
|
|
4657 void *rdata = cur + desc[pos].offset;
|
|
4658 switch (desc[pos].type)
|
|
4659 {
|
|
4660 case XD_SPECIFIER_END:
|
|
4661 desc = ((const Lisp_Specifier *)(elmt->obj))->methods->extra_description;
|
|
4662 goto restart;
|
|
4663 case XD_SIZE_T:
|
|
4664 case XD_INT:
|
|
4665 case XD_LONG:
|
|
4666 case XD_BYTECOUNT:
|
|
4667 break;
|
|
4668 case XD_LO_RESET_NIL:
|
|
4669 {
|
|
4670 EMACS_INT count = desc[pos].data1;
|
|
4671 int i;
|
|
4672 if (XD_IS_INDIRECT (count))
|
|
4673 count = pdump_get_indirect_count (count, desc, elmt->obj);
|
|
4674 for (i=0; i<count; i++)
|
|
4675 ((EMACS_INT *)rdata)[i] = pdump_qnil->save_offset;
|
|
4676 break;
|
|
4677 }
|
|
4678 case XD_INT_RESET:
|
|
4679 {
|
|
4680 EMACS_INT val = desc[pos].data1;
|
|
4681 if (XD_IS_INDIRECT (val))
|
|
4682 val = pdump_get_indirect_count (val, desc, elmt->obj);
|
|
4683 *(int *)rdata = val;
|
|
4684 break;
|
|
4685 }
|
|
4686 case XD_OPAQUE_DATA_PTR:
|
|
4687 case XD_C_STRING:
|
|
4688 case XD_STRUCT_PTR:
|
|
4689 {
|
|
4690 void *ptr = *(void **)rdata;
|
|
4691 if (ptr)
|
|
4692 *(EMACS_INT *)rdata = pdump_get_entry (ptr)->save_offset;
|
|
4693 break;
|
|
4694 }
|
|
4695 case XD_LO_LINK:
|
|
4696 {
|
|
4697 Lisp_Object obj = *(Lisp_Object *)rdata;
|
|
4698 pdump_entry_list_elmt *elmt1;
|
|
4699 for (;;)
|
|
4700 {
|
|
4701 elmt1 = pdump_get_entry (XRECORD_LHEADER (obj));
|
|
4702 if (elmt1)
|
|
4703 break;
|
|
4704 obj = *(Lisp_Object *)(desc[pos].offset + (char *)(XRECORD_LHEADER (obj)));
|
|
4705 }
|
|
4706 *(EMACS_INT *)rdata = elmt1->save_offset;
|
|
4707 break;
|
|
4708 }
|
|
4709 case XD_LISP_OBJECT:
|
|
4710 {
|
|
4711 Lisp_Object *pobj = (Lisp_Object *) rdata;
|
|
4712
|
|
4713 assert (desc[pos].data1 == 0);
|
|
4714
|
|
4715 if (POINTER_TYPE_P (XTYPE (*pobj)) && XRECORD_LHEADER (*pobj))
|
|
4716 *(EMACS_INT *)pobj =
|
|
4717 pdump_get_entry (XRECORD_LHEADER (*pobj))->save_offset;
|
|
4718 break;
|
|
4719 }
|
|
4720 case XD_LISP_OBJECT_ARRAY:
|
|
4721 {
|
|
4722 EMACS_INT count = desc[pos].data1;
|
|
4723 int i;
|
|
4724 if (XD_IS_INDIRECT (count))
|
|
4725 count = pdump_get_indirect_count (count, desc, elmt->obj);
|
|
4726
|
|
4727 for (i=0; i<count; i++)
|
|
4728 {
|
|
4729 Lisp_Object *pobj = ((Lisp_Object *)rdata) + i;
|
|
4730 if (POINTER_TYPE_P (XTYPE (*pobj)) && XRECORD_LHEADER (*pobj))
|
|
4731 *(EMACS_INT *)pobj =
|
|
4732 pdump_get_entry (XRECORD_LHEADER (*pobj))->save_offset;
|
|
4733 }
|
|
4734 break;
|
|
4735 }
|
|
4736 case XD_DOC_STRING:
|
|
4737 {
|
|
4738 EMACS_INT str = *(EMACS_INT *)rdata;
|
|
4739 if (str > 0)
|
|
4740 *(EMACS_INT *)rdata = pdump_get_entry ((void *)str)->save_offset;
|
|
4741 break;
|
|
4742 }
|
|
4743 default:
|
|
4744 fprintf (stderr, "Unsupported dump type : %d\n", desc[pos].type);
|
|
4745 abort ();
|
|
4746 };
|
|
4747 }
|
|
4748 }
|
|
4749 }
|
|
4750 write (pdump_fd, desc ? pdump_buf : elmt->obj, size*count);
|
|
4751 if (elmt->is_lrecord && ((size*count) & 3))
|
|
4752 write (pdump_fd, "\0\0\0", 4-((size*count) & 3));
|
|
4753 }
|
|
4754
|
|
4755 static void
|
|
4756 pdump_reloc_one (void *data, EMACS_INT delta, const struct lrecord_description *desc)
|
|
4757 {
|
|
4758 int pos;
|
|
4759
|
|
4760 restart:
|
|
4761 for (pos = 0; desc[pos].type != XD_END; pos++)
|
|
4762 {
|
|
4763 void *rdata = (char *)data + desc[pos].offset;
|
|
4764 switch (desc[pos].type)
|
|
4765 {
|
|
4766 case XD_SPECIFIER_END:
|
|
4767 pos = 0;
|
|
4768 desc = ((const Lisp_Specifier *)data)->methods->extra_description;
|
|
4769 goto restart;
|
|
4770 case XD_SIZE_T:
|
|
4771 case XD_INT:
|
|
4772 case XD_LONG:
|
|
4773 case XD_BYTECOUNT:
|
|
4774 case XD_INT_RESET:
|
|
4775 break;
|
|
4776 case XD_OPAQUE_DATA_PTR:
|
|
4777 case XD_C_STRING:
|
|
4778 case XD_STRUCT_PTR:
|
|
4779 case XD_LO_LINK:
|
|
4780 {
|
|
4781 EMACS_INT ptr = *(EMACS_INT *)rdata;
|
|
4782 if (ptr)
|
|
4783 *(EMACS_INT *)rdata = ptr+delta;
|
|
4784 break;
|
|
4785 }
|
|
4786 case XD_LISP_OBJECT:
|
|
4787 {
|
|
4788 Lisp_Object *pobj = (Lisp_Object *) rdata;
|
|
4789
|
|
4790 assert (desc[pos].data1 == 0);
|
|
4791
|
|
4792 if (POINTER_TYPE_P (XTYPE (*pobj))
|
|
4793 && ! EQ (*pobj, Qnull_pointer))
|
|
4794 XSETOBJ (*pobj, XTYPE (*pobj), (char *) XPNTR (*pobj) + delta);
|
|
4795
|
|
4796 break;
|
|
4797 }
|
|
4798 case XD_LISP_OBJECT_ARRAY:
|
|
4799 case XD_LO_RESET_NIL:
|
|
4800 {
|
|
4801 EMACS_INT count = desc[pos].data1;
|
|
4802 int i;
|
|
4803 if (XD_IS_INDIRECT (count))
|
|
4804 count = pdump_get_indirect_count (count, desc, data);
|
|
4805
|
|
4806 for (i=0; i<count; i++)
|
|
4807 {
|
|
4808 Lisp_Object *pobj = (Lisp_Object *) rdata + i;
|
|
4809
|
|
4810 if (POINTER_TYPE_P (XTYPE (*pobj))
|
|
4811 && ! EQ (*pobj, Qnull_pointer))
|
|
4812 XSETOBJ (*pobj, XTYPE (*pobj), (char *) XPNTR (*pobj) + delta);
|
|
4813 }
|
|
4814 break;
|
|
4815 }
|
|
4816 case XD_DOC_STRING:
|
|
4817 {
|
|
4818 EMACS_INT str = *(EMACS_INT *)rdata;
|
|
4819 if (str > 0)
|
|
4820 *(EMACS_INT *)rdata = str + delta;
|
|
4821 break;
|
|
4822 }
|
|
4823 default:
|
|
4824 fprintf (stderr, "Unsupported dump type : %d\n", desc[pos].type);
|
|
4825 abort ();
|
|
4826 };
|
|
4827 }
|
|
4828 }
|
|
4829
|
|
4830 static void
|
|
4831 pdump_allocate_offset (pdump_entry_list_elmt *elmt, const struct lrecord_description *desc)
|
|
4832 {
|
|
4833 size_t size = (elmt->is_lrecord ? (elmt->size + 3) & ~3 : elmt->size)*elmt->count;
|
|
4834 elmt->save_offset = cur_offset;
|
|
4835 if (size>max_size)
|
|
4836 max_size = size;
|
|
4837 cur_offset += size;
|
|
4838 }
|
|
4839
|
|
4840 static void
|
|
4841 pdump_scan_by_alignment (void (*f)(pdump_entry_list_elmt *, const struct lrecord_description *))
|
|
4842 {
|
|
4843 int align, i;
|
|
4844 const struct lrecord_description *idesc;
|
|
4845 pdump_entry_list_elmt *elmt;
|
|
4846 for (align=8; align>=0; align--)
|
|
4847 {
|
|
4848 for (i=0; i<=last_lrecord_type_index_assigned; i++)
|
|
4849 if (pdump_object_table[i].align == align)
|
|
4850 {
|
|
4851 elmt = pdump_object_table[i].first;
|
|
4852 if (!elmt)
|
|
4853 continue;
|
|
4854 idesc = lrecord_implementations_table[i]->description;
|
|
4855 while (elmt)
|
|
4856 {
|
|
4857 f (elmt, idesc);
|
|
4858 elmt = elmt->next;
|
|
4859 }
|
|
4860 }
|
|
4861
|
|
4862 for (i=0; i<pdump_struct_table.count; i++)
|
|
4863 if (pdump_struct_table.list[i].list.align == align)
|
|
4864 {
|
|
4865 elmt = pdump_struct_table.list[i].list.first;
|
|
4866 idesc = pdump_struct_table.list[i].sdesc->description;
|
|
4867 while (elmt)
|
|
4868 {
|
|
4869 f (elmt, idesc);
|
|
4870 elmt = elmt->next;
|
|
4871 }
|
|
4872 }
|
|
4873
|
|
4874 elmt = pdump_opaque_data_list.first;
|
|
4875 while (elmt)
|
|
4876 {
|
|
4877 if (align_table[elmt->size & 255] == align)
|
|
4878 f (elmt, 0);
|
|
4879 elmt = elmt->next;
|
|
4880 }
|
|
4881 }
|
|
4882 }
|
|
4883
|
|
4884 static void
|
|
4885 pdump_dump_staticvec (void)
|
|
4886 {
|
|
4887 EMACS_INT *reloc = xnew_array (EMACS_INT, staticidx);
|
|
4888 int i;
|
|
4889 write (pdump_fd, staticvec, staticidx*sizeof (Lisp_Object *));
|
|
4890
|
|
4891 for (i=0; i<staticidx; i++)
|
|
4892 {
|
|
4893 Lisp_Object obj = *staticvec[i];
|
|
4894 if (POINTER_TYPE_P (XTYPE (obj)))
|
|
4895 reloc[i] = pdump_get_entry (XRECORD_LHEADER (obj))->save_offset;
|
|
4896 else
|
|
4897 reloc[i] = *(EMACS_INT *)(staticvec[i]);
|
|
4898 }
|
|
4899 write (pdump_fd, reloc, staticidx*sizeof (Lisp_Object));
|
|
4900 free (reloc);
|
|
4901 }
|
|
4902
|
|
4903 static void
|
|
4904 pdump_dump_structvec (void)
|
|
4905 {
|
|
4906 int i;
|
|
4907 for (i=0; i<dumpstructidx; i++)
|
|
4908 {
|
|
4909 EMACS_INT adr;
|
|
4910 write (pdump_fd, &(dumpstructvec[i].data), sizeof (void *));
|
|
4911 adr = pdump_get_entry (*(void **)(dumpstructvec[i].data))->save_offset;
|
|
4912 write (pdump_fd, &adr, sizeof (adr));
|
|
4913 }
|
|
4914 }
|
|
4915
|
|
4916 static void
|
|
4917 pdump_dump_opaquevec (void)
|
|
4918 {
|
|
4919 int i;
|
|
4920 for (i=0; i<dumpopaqueidx; i++)
|
|
4921 {
|
|
4922 write (pdump_fd, &(dumpopaquevec[i]), sizeof (dumpopaquevec[i]));
|
|
4923 write (pdump_fd, dumpopaquevec[i].data, dumpopaquevec[i].size);
|
|
4924 }
|
|
4925 }
|
|
4926
|
|
4927 static void
|
|
4928 pdump_dump_itable (void)
|
|
4929 {
|
|
4930 write (pdump_fd, lrecord_implementations_table, sizeof (lrecord_implementations_table));
|
|
4931 }
|
|
4932
|
|
4933 static void
|
|
4934 pdump_dump_rtables (void)
|
|
4935 {
|
|
4936 int i, j;
|
|
4937 pdump_entry_list_elmt *elmt;
|
|
4938 pdump_reloc_table rt;
|
|
4939
|
|
4940 for (i=0; i<=last_lrecord_type_index_assigned; i++)
|
|
4941 {
|
|
4942 elmt = pdump_object_table[i].first;
|
|
4943 if (!elmt)
|
|
4944 continue;
|
|
4945 rt.desc = lrecord_implementations_table[i]->description;
|
|
4946 rt.count = pdump_object_table[i].count;
|
|
4947 write (pdump_fd, &rt, sizeof (rt));
|
|
4948 while (elmt)
|
|
4949 {
|
|
4950 EMACS_INT rdata = pdump_get_entry (elmt->obj)->save_offset;
|
|
4951 write (pdump_fd, &rdata, sizeof (rdata));
|
|
4952 elmt = elmt->next;
|
|
4953 }
|
|
4954 }
|
|
4955
|
|
4956 rt.desc = 0;
|
|
4957 rt.count = 0;
|
|
4958 write (pdump_fd, &rt, sizeof (rt));
|
|
4959
|
|
4960 for (i=0; i<pdump_struct_table.count; i++)
|
|
4961 {
|
|
4962 elmt = pdump_struct_table.list[i].list.first;
|
|
4963 rt.desc = pdump_struct_table.list[i].sdesc->description;
|
|
4964 rt.count = pdump_struct_table.list[i].list.count;
|
|
4965 write (pdump_fd, &rt, sizeof (rt));
|
|
4966 while (elmt)
|
|
4967 {
|
|
4968 EMACS_INT rdata = pdump_get_entry (elmt->obj)->save_offset;
|
|
4969 for (j=0; j<elmt->count; j++)
|
|
4970 {
|
|
4971 write (pdump_fd, &rdata, sizeof (rdata));
|
|
4972 rdata += elmt->size;
|
|
4973 }
|
|
4974 elmt = elmt->next;
|
|
4975 }
|
|
4976 }
|
|
4977 rt.desc = 0;
|
|
4978 rt.count = 0;
|
|
4979 write (pdump_fd, &rt, sizeof (rt));
|
|
4980 }
|
|
4981
|
|
4982 static void
|
|
4983 pdump_dump_wired (void)
|
|
4984 {
|
|
4985 EMACS_INT count = pdump_wireidx + pdump_wireidx_list;
|
|
4986 int i;
|
|
4987
|
|
4988 write (pdump_fd, &count, sizeof (count));
|
|
4989
|
|
4990 for (i=0; i<pdump_wireidx; i++)
|
|
4991 {
|
|
4992 EMACS_INT obj = pdump_get_entry (XRECORD_LHEADER (*(pdump_wirevec[i])))->save_offset;
|
|
4993 write (pdump_fd, &pdump_wirevec[i], sizeof (pdump_wirevec[i]));
|
|
4994 write (pdump_fd, &obj, sizeof (obj));
|
|
4995 }
|
|
4996
|
|
4997 for (i=0; i<pdump_wireidx_list; i++)
|
|
4998 {
|
|
4999 Lisp_Object obj = *(pdump_wirevec_list[i]);
|
|
5000 pdump_entry_list_elmt *elmt;
|
|
5001 EMACS_INT res;
|
|
5002
|
|
5003 for (;;)
|
|
5004 {
|
|
5005 const struct lrecord_description *desc;
|
|
5006 int pos;
|
|
5007 elmt = pdump_get_entry (XRECORD_LHEADER (obj));
|
|
5008 if (elmt)
|
|
5009 break;
|
|
5010 desc = XRECORD_LHEADER_IMPLEMENTATION (obj)->description;
|
|
5011 for (pos = 0; desc[pos].type != XD_LO_LINK; pos++)
|
|
5012 if (desc[pos].type == XD_END)
|
|
5013 abort ();
|
|
5014
|
|
5015 obj = *(Lisp_Object *)(desc[pos].offset + (char *)(XRECORD_LHEADER (obj)));
|
|
5016 }
|
|
5017 res = elmt->save_offset;
|
|
5018
|
|
5019 write (pdump_fd, &pdump_wirevec_list[i], sizeof (pdump_wirevec_list[i]));
|
|
5020 write (pdump_fd, &res, sizeof (res));
|
|
5021 }
|
|
5022 }
|
|
5023
|
|
5024 void
|
|
5025 pdump (void)
|
|
5026 {
|
|
5027 int i;
|
|
5028 Lisp_Object t_console, t_device, t_frame;
|
|
5029 int none;
|
|
5030 dump_header hd;
|
|
5031
|
|
5032 /* These appear in a DEFVAR_LISP, which does a staticpro() */
|
|
5033 t_console = Vterminal_console;
|
|
5034 t_frame = Vterminal_frame;
|
|
5035 t_device = Vterminal_device;
|
|
5036
|
|
5037 Vterminal_console = Qnil;
|
|
5038 Vterminal_frame = Qnil;
|
|
5039 Vterminal_device = Qnil;
|
|
5040
|
|
5041 pdump_hash = xnew_array_and_zero (pdump_entry_list_elmt *, PDUMP_HASHSIZE);
|
|
5042
|
|
5043 for (i=0; i<=last_lrecord_type_index_assigned; i++)
|
|
5044 {
|
|
5045 pdump_object_table[i].first = 0;
|
|
5046 pdump_object_table[i].align = 8;
|
|
5047 pdump_object_table[i].count = 0;
|
|
5048 pdump_alert_undump_object[i] = 0;
|
|
5049 }
|
|
5050 pdump_struct_table.count = 0;
|
|
5051 pdump_struct_table.size = -1;
|
|
5052
|
|
5053 pdump_opaque_data_list.first = 0;
|
|
5054 pdump_opaque_data_list.align = 8;
|
|
5055 pdump_opaque_data_list.count = 0;
|
|
5056 depth = 0;
|
|
5057
|
|
5058 for (i=0; i<staticidx; i++)
|
|
5059 pdump_register_object (*staticvec[i]);
|
|
5060 for (i=0; i<pdump_wireidx; i++)
|
|
5061 pdump_register_object (*pdump_wirevec[i]);
|
|
5062
|
|
5063 none = 1;
|
|
5064 for (i=0; i<=last_lrecord_type_index_assigned; i++)
|
|
5065 if (pdump_alert_undump_object[i])
|
|
5066 {
|
|
5067 if (none)
|
|
5068 printf ("Undumpable types list :\n");
|
|
5069 none = 0;
|
|
5070 printf (" - %s (%d)\n", lrecord_implementations_table[i]->name, pdump_alert_undump_object[i]);
|
|
5071 }
|
|
5072 if (!none)
|
|
5073 return;
|
|
5074
|
|
5075 for (i=0; i<dumpstructidx; i++)
|
|
5076 pdump_register_struct (*(void **)(dumpstructvec[i].data), dumpstructvec[i].desc, 1);
|
|
5077
|
|
5078 memcpy (hd.signature, "XEmacsDP", 8);
|
|
5079 hd.reloc_address = 0;
|
|
5080 hd.nb_staticpro = staticidx;
|
|
5081 hd.nb_structdmp = dumpstructidx;
|
|
5082 hd.nb_opaquedmp = dumpopaqueidx;
|
|
5083 hd.last_type = last_lrecord_type_index_assigned;
|
|
5084
|
|
5085 cur_offset = 256;
|
|
5086 max_size = 0;
|
|
5087
|
|
5088 pdump_scan_by_alignment (pdump_allocate_offset);
|
|
5089 pdump_qnil = pdump_get_entry (XRECORD_LHEADER (Qnil));
|
|
5090
|
|
5091 pdump_buf = xmalloc (max_size);
|
|
5092 /* Avoid use of the `open' macro. We want the real function. */
|
|
5093 #undef open
|
|
5094 pdump_fd = open ("xemacs.dmp",
|
|
5095 O_WRONLY | O_CREAT | O_TRUNC | OPEN_BINARY, 0666);
|
|
5096 hd.stab_offset = (cur_offset + 3) & ~3;
|
|
5097
|
|
5098 write (pdump_fd, &hd, sizeof (hd));
|
|
5099 lseek (pdump_fd, 256, SEEK_SET);
|
|
5100
|
|
5101 pdump_scan_by_alignment (pdump_dump_data);
|
|
5102
|
|
5103 lseek (pdump_fd, hd.stab_offset, SEEK_SET);
|
|
5104
|
|
5105 pdump_dump_staticvec ();
|
|
5106 pdump_dump_structvec ();
|
|
5107 pdump_dump_opaquevec ();
|
|
5108 pdump_dump_itable ();
|
|
5109 pdump_dump_rtables ();
|
|
5110 pdump_dump_wired ();
|
|
5111
|
|
5112 close (pdump_fd);
|
|
5113 free (pdump_buf);
|
|
5114
|
|
5115 free (pdump_hash);
|
|
5116
|
|
5117 Vterminal_console = t_console;
|
|
5118 Vterminal_frame = t_frame;
|
|
5119 Vterminal_device = t_device;
|
|
5120 }
|
|
5121
|
|
5122 int
|
|
5123 pdump_load (void)
|
|
5124 {
|
|
5125 size_t length;
|
|
5126 int i;
|
|
5127 char *p;
|
|
5128 EMACS_INT delta;
|
|
5129 EMACS_INT count;
|
|
5130
|
|
5131 #define PDUMP_READ(p, type) (p = (char*) (((type *) p) + 1), *((type *) p - 1))
|
|
5132
|
|
5133 pdump_start = pdump_end = 0;
|
|
5134
|
|
5135 pdump_fd = open ("xemacs.dmp", O_RDONLY | OPEN_BINARY);
|
|
5136 if (pdump_fd<0)
|
|
5137 return 0;
|
|
5138
|
|
5139 length = lseek (pdump_fd, 0, SEEK_END);
|
|
5140 lseek (pdump_fd, 0, SEEK_SET);
|
|
5141
|
|
5142 #ifdef HAVE_MMAP
|
|
5143 pdump_start = (char *) mmap (0, length, PROT_READ|PROT_WRITE, MAP_PRIVATE, pdump_fd, 0);
|
|
5144 if (pdump_start == MAP_FAILED)
|
|
5145 pdump_start = 0;
|
|
5146 #endif
|
|
5147
|
|
5148 if (!pdump_start)
|
|
5149 {
|
|
5150 pdump_start = (char *)((((unsigned long)(xmalloc(length+255))) + 255) & ~255);
|
|
5151 read (pdump_fd, pdump_start, length);
|
|
5152 }
|
|
5153
|
|
5154 close (pdump_fd);
|
|
5155
|
|
5156 pdump_end = pdump_start + length;
|
|
5157
|
|
5158 staticidx = ((dump_header *)(pdump_start))->nb_staticpro;
|
|
5159 last_lrecord_type_index_assigned = ((dump_header *)pdump_start)->last_type;
|
|
5160 delta = ((EMACS_INT)pdump_start) - ((dump_header *)pdump_start)->reloc_address;
|
|
5161 p = pdump_start + ((dump_header *)pdump_start)->stab_offset;
|
|
5162
|
|
5163 /* Put back the staticvec in place */
|
|
5164 memcpy (staticvec, p, staticidx*sizeof (Lisp_Object *));
|
|
5165 p += staticidx*sizeof (Lisp_Object *);
|
|
5166 for (i=0; i<staticidx; i++)
|
|
5167 {
|
|
5168 Lisp_Object obj = PDUMP_READ (p, Lisp_Object);
|
|
5169 if (POINTER_TYPE_P (XTYPE (obj)))
|
|
5170 XSETOBJ (obj, XTYPE (obj), (char *) XPNTR (obj) + delta);
|
|
5171 *staticvec[i] = obj;
|
|
5172 }
|
|
5173
|
|
5174 /* Put back the dumpstructs */
|
|
5175 for (i=0; i<((dump_header *)pdump_start)->nb_structdmp; i++)
|
|
5176 {
|
|
5177 void **adr = PDUMP_READ (p, void **);
|
|
5178 *adr = (void *) (PDUMP_READ (p, char *) + delta);
|
|
5179 }
|
|
5180
|
|
5181 /* Put back the opaques */
|
|
5182 for (i=0; i<((dump_header *)pdump_start)->nb_opaquedmp; i++)
|
|
5183 {
|
|
5184 struct dumpopaque_info di = PDUMP_READ (p, struct dumpopaque_info);
|
|
5185 memcpy (di.data, p, di.size);
|
|
5186 p += di.size;
|
|
5187 }
|
|
5188
|
|
5189 /* Put back the lrecord_implementations_table */
|
|
5190 memcpy (lrecord_implementations_table, p, sizeof (lrecord_implementations_table));
|
|
5191 p += sizeof (lrecord_implementations_table);
|
|
5192
|
|
5193 /* Give back their numbers to the lrecord implementations */
|
|
5194 for (i = 0; i < countof (lrecord_implementations_table); i++)
|
|
5195 if (lrecord_implementations_table[i])
|
|
5196 {
|
|
5197 *(lrecord_implementations_table[i]->lrecord_type_index) = i;
|
|
5198 last_lrecord_type_index_assigned = i;
|
|
5199 }
|
|
5200
|
|
5201 /* Do the relocations */
|
|
5202 pdump_rt_list = p;
|
|
5203 count = 2;
|
|
5204 for (;;)
|
|
5205 {
|
|
5206 pdump_reloc_table rt = PDUMP_READ (p, pdump_reloc_table);
|
|
5207 if (rt.desc)
|
|
5208 {
|
|
5209 for (i=0; i < rt.count; i++)
|
|
5210 {
|
|
5211 char *adr = delta + *(char **)p;
|
|
5212 *(char **)p = adr;
|
|
5213 pdump_reloc_one (adr, delta, rt.desc);
|
|
5214 p += sizeof (char *);
|
|
5215 }
|
|
5216 } else
|
|
5217 if (!(--count))
|
|
5218 break;
|
|
5219 }
|
|
5220
|
|
5221 /* Put the pdump_wire variables in place */
|
|
5222 count = PDUMP_READ (p, EMACS_INT);
|
|
5223
|
|
5224 for (i=0; i<count; i++)
|
|
5225 {
|
|
5226 Lisp_Object *var = PDUMP_READ (p, Lisp_Object *);
|
|
5227 Lisp_Object obj = PDUMP_READ (p, Lisp_Object);
|
|
5228
|
|
5229 if (POINTER_TYPE_P (XTYPE (obj)))
|
|
5230 XSETOBJ (obj, XTYPE (obj), (char *) XPNTR (obj) + delta);
|
|
5231
|
|
5232 *var = obj;
|
|
5233 }
|
|
5234
|
|
5235 /* Final cleanups */
|
|
5236 /* reorganize hash tables */
|
|
5237 p = pdump_rt_list;
|
|
5238 for (;;)
|
|
5239 {
|
|
5240 pdump_reloc_table rt = PDUMP_READ (p, pdump_reloc_table);
|
|
5241 if (!rt.desc)
|
|
5242 break;
|
|
5243 if (rt.desc == hash_table_description)
|
|
5244 {
|
|
5245 for (i=0; i < rt.count; i++)
|
|
5246 pdump_reorganize_hash_table (PDUMP_READ (p, Lisp_Object));
|
|
5247 break;
|
|
5248 } else
|
|
5249 p += sizeof (Lisp_Object) * rt.count;
|
|
5250 }
|
|
5251
|
|
5252 /* Put back noninteractive1 to its real value */
|
|
5253 noninteractive1 = noninteractive;
|
|
5254
|
|
5255 return 1;
|
|
5256 }
|
|
5257
|
|
5258 #endif /* PDUMP */
|