428
|
1 /* Extended regular expression matching and search library,
|
|
2 version 0.12, extended for XEmacs.
|
|
3 (Implements POSIX draft P10003.2/D11.2, except for
|
|
4 internationalization features.)
|
|
5
|
|
6 Copyright (C) 1993, 1994, 1995 Free Software Foundation, Inc.
|
|
7 Copyright (C) 1995 Sun Microsystems, Inc.
|
1333
|
8 Copyright (C) 1995, 2001, 2002, 2003 Ben Wing.
|
428
|
9
|
|
10 This program is free software; you can redistribute it and/or modify
|
|
11 it under the terms of the GNU General Public License as published by
|
|
12 the Free Software Foundation; either version 2, or (at your option)
|
|
13 any later version.
|
|
14
|
|
15 This program is distributed in the hope that it will be useful,
|
|
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
18 GNU General Public License for more details.
|
|
19
|
|
20 You should have received a copy of the GNU General Public License
|
|
21 along with this program; see the file COPYING. If not, write to
|
|
22 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
23 Boston, MA 02111-1307, USA. */
|
|
24
|
|
25 /* Synched up with: FSF 19.29. */
|
|
26
|
|
27 #ifdef HAVE_CONFIG_H
|
|
28 #include <config.h>
|
|
29 #endif
|
|
30
|
|
31 #ifndef _GNU_SOURCE
|
|
32 #define _GNU_SOURCE 1
|
|
33 #endif
|
|
34
|
|
35 /* We assume non-Mule if emacs isn't defined. */
|
|
36 #ifndef emacs
|
|
37 #undef MULE
|
|
38 #endif
|
|
39
|
771
|
40 /* XEmacs addition */
|
|
41 #ifdef REL_ALLOC
|
|
42 #define REGEX_REL_ALLOC /* may be undefined below */
|
|
43 #endif
|
|
44
|
428
|
45 /* XEmacs: define this to add in a speedup for patterns anchored at
|
|
46 the beginning of a line. Keep the ifdefs so that it's easier to
|
|
47 tell where/why this code has diverged from v19. */
|
|
48 #define REGEX_BEGLINE_CHECK
|
|
49
|
|
50 /* XEmacs: the current mmap-based ralloc handles small blocks very
|
|
51 poorly, so we disable it here. */
|
|
52
|
771
|
53 #if defined (HAVE_MMAP) || defined (DOUG_LEA_MALLOC)
|
|
54 # undef REGEX_REL_ALLOC
|
428
|
55 #endif
|
|
56
|
|
57 /* The `emacs' switch turns on certain matching commands
|
|
58 that make sense only in Emacs. */
|
|
59 #ifdef emacs
|
|
60
|
|
61 #include "lisp.h"
|
|
62 #include "buffer.h"
|
|
63 #include "syntax.h"
|
|
64
|
|
65 #if (defined (DEBUG_XEMACS) && !defined (DEBUG))
|
|
66 #define DEBUG
|
|
67 #endif
|
|
68
|
867
|
69 #define RE_TRANSLATE_1(ch) TRT_TABLE_OF (translate, (Ichar) ch)
|
446
|
70 #define TRANSLATE_P(tr) (!NILP (tr))
|
428
|
71
|
826
|
72 /* Converts the pointer to the char to BEG-based offset from the start. */
|
|
73 #define PTR_TO_OFFSET(d) (MATCHING_IN_FIRST_STRING \
|
|
74 ? (d) - string1 : (d) - (string2 - size1))
|
|
75
|
428
|
76 #else /* not emacs */
|
|
77
|
2367
|
78 #include <stdlib.h>
|
|
79 #include <sys/types.h>
|
|
80 #include <stddef.h> /* needed for ptrdiff_t under Solaris */
|
|
81 #include <string.h>
|
|
82
|
2286
|
83 #include "compiler.h" /* Get compiler-specific definitions like UNUSED */
|
|
84
|
2500
|
85 #define ABORT abort
|
|
86
|
428
|
87 /* If we are not linking with Emacs proper,
|
|
88 we can't use the relocating allocator
|
|
89 even if config.h says that we can. */
|
771
|
90 #undef REGEX_REL_ALLOC
|
428
|
91
|
544
|
92 /* defined in lisp.h */
|
|
93 #ifdef REGEX_MALLOC
|
|
94 #ifndef DECLARE_NOTHING
|
|
95 #define DECLARE_NOTHING struct nosuchstruct
|
|
96 #endif
|
|
97 #endif
|
|
98
|
867
|
99 #define itext_ichar(str) ((Ichar) (str)[0])
|
|
100 #define itext_ichar_fmt(str, fmt, object) ((Ichar) (str)[0])
|
|
101 #define itext_ichar_ascii_fmt(str, fmt, object) ((Ichar) (str)[0])
|
428
|
102
|
|
103 #if (LONGBITS > INTBITS)
|
|
104 # define EMACS_INT long
|
|
105 #else
|
|
106 # define EMACS_INT int
|
|
107 #endif
|
|
108
|
867
|
109 typedef int Ichar;
|
|
110
|
|
111 #define INC_IBYTEPTR(p) ((p)++)
|
|
112 #define INC_IBYTEPTR_FMT(p, fmt) ((p)++)
|
|
113 #define DEC_IBYTEPTR(p) ((p)--)
|
|
114 #define DEC_IBYTEPTR_FMT(p, fmt) ((p)--)
|
|
115 #define itext_ichar_len(ptr) 1
|
|
116 #define itext_ichar_len_fmt(ptr, fmt) 1
|
428
|
117
|
|
118 /* Define the syntax stuff for \<, \>, etc. */
|
|
119
|
|
120 /* This must be nonzero for the wordchar and notwordchar pattern
|
|
121 commands in re_match_2. */
|
|
122 #ifndef Sword
|
|
123 #define Sword 1
|
|
124 #endif
|
|
125
|
|
126 #ifdef SYNTAX_TABLE
|
|
127
|
|
128 extern char *re_syntax_table;
|
|
129
|
|
130 #else /* not SYNTAX_TABLE */
|
|
131
|
|
132 /* How many characters in the character set. */
|
|
133 #define CHAR_SET_SIZE 256
|
|
134
|
|
135 static char re_syntax_table[CHAR_SET_SIZE];
|
|
136
|
|
137 static void
|
|
138 init_syntax_once (void)
|
|
139 {
|
|
140 static int done = 0;
|
|
141
|
|
142 if (!done)
|
|
143 {
|
442
|
144 const char *word_syntax_chars =
|
428
|
145 "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789_";
|
|
146
|
|
147 memset (re_syntax_table, 0, sizeof (re_syntax_table));
|
|
148
|
|
149 while (*word_syntax_chars)
|
647
|
150 re_syntax_table[(unsigned int) (*word_syntax_chars++)] = Sword;
|
428
|
151
|
|
152 done = 1;
|
|
153 }
|
|
154 }
|
|
155
|
446
|
156 #endif /* SYNTAX_TABLE */
|
428
|
157
|
826
|
158 #define SYNTAX(ignored, c) re_syntax_table[c]
|
460
|
159 #undef SYNTAX_FROM_CACHE
|
826
|
160 #define SYNTAX_FROM_CACHE SYNTAX
|
|
161
|
|
162 #define RE_TRANSLATE_1(c) translate[(unsigned char) (c)]
|
446
|
163 #define TRANSLATE_P(tr) tr
|
|
164
|
|
165 #endif /* emacs */
|
428
|
166
|
2201
|
167 /* This is for other GNU distributions with internationalized messages. */
|
|
168 #if defined (I18N3) && (defined (HAVE_LIBINTL_H) || defined (_LIBC))
|
|
169 # include <libintl.h>
|
|
170 #else
|
|
171 # define gettext(msgid) (msgid)
|
|
172 #endif
|
|
173
|
428
|
174 /* Under XEmacs, this is needed because we don't define it elsewhere. */
|
|
175 #ifdef SWITCH_ENUM_BUG
|
|
176 #define SWITCH_ENUM_CAST(x) ((int)(x))
|
|
177 #else
|
|
178 #define SWITCH_ENUM_CAST(x) (x)
|
|
179 #endif
|
|
180
|
|
181
|
|
182 /* Get the interface, including the syntax bits. */
|
|
183 #include "regex.h"
|
|
184
|
|
185 /* isalpha etc. are used for the character classes. */
|
|
186 #include <ctype.h>
|
|
187
|
|
188 /* Jim Meyering writes:
|
|
189
|
|
190 "... Some ctype macros are valid only for character codes that
|
|
191 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
|
|
192 using /bin/cc or gcc but without giving an ansi option). So, all
|
|
193 ctype uses should be through macros like ISPRINT... If
|
|
194 STDC_HEADERS is defined, then autoconf has verified that the ctype
|
|
195 macros don't need to be guarded with references to isascii. ...
|
|
196 Defining isascii to 1 should let any compiler worth its salt
|
|
197 eliminate the && through constant folding." */
|
|
198
|
|
199 #if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII))
|
|
200 #define ISASCII_1(c) 1
|
|
201 #else
|
|
202 #define ISASCII_1(c) isascii(c)
|
|
203 #endif
|
|
204
|
|
205 #ifdef MULE
|
|
206 /* The IS*() macros can be passed any character, including an extended
|
|
207 one. We need to make sure there are no crashes, which would occur
|
|
208 otherwise due to out-of-bounds array references. */
|
|
209 #define ISASCII(c) (((EMACS_UINT) (c)) < 0x100 && ISASCII_1 (c))
|
|
210 #else
|
|
211 #define ISASCII(c) ISASCII_1 (c)
|
|
212 #endif /* MULE */
|
|
213
|
|
214 #ifdef isblank
|
|
215 #define ISBLANK(c) (ISASCII (c) && isblank (c))
|
|
216 #else
|
|
217 #define ISBLANK(c) ((c) == ' ' || (c) == '\t')
|
|
218 #endif
|
|
219 #ifdef isgraph
|
|
220 #define ISGRAPH(c) (ISASCII (c) && isgraph (c))
|
|
221 #else
|
|
222 #define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
|
|
223 #endif
|
|
224
|
|
225 #define ISPRINT(c) (ISASCII (c) && isprint (c))
|
|
226 #define ISDIGIT(c) (ISASCII (c) && isdigit (c))
|
|
227 #define ISALNUM(c) (ISASCII (c) && isalnum (c))
|
|
228 #define ISALPHA(c) (ISASCII (c) && isalpha (c))
|
|
229 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
|
|
230 #define ISLOWER(c) (ISASCII (c) && islower (c))
|
|
231 #define ISPUNCT(c) (ISASCII (c) && ispunct (c))
|
|
232 #define ISSPACE(c) (ISASCII (c) && isspace (c))
|
|
233 #define ISUPPER(c) (ISASCII (c) && isupper (c))
|
|
234 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
|
|
235
|
|
236 #ifndef NULL
|
|
237 #define NULL (void *)0
|
|
238 #endif
|
|
239
|
|
240 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
|
|
241 since ours (we hope) works properly with all combinations of
|
|
242 machines, compilers, `char' and `unsigned char' argument types.
|
|
243 (Per Bothner suggested the basic approach.) */
|
|
244 #undef SIGN_EXTEND_CHAR
|
|
245 #if __STDC__
|
|
246 #define SIGN_EXTEND_CHAR(c) ((signed char) (c))
|
|
247 #else /* not __STDC__ */
|
|
248 /* As in Harbison and Steele. */
|
|
249 #define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
|
|
250 #endif
|
|
251
|
|
252 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
|
|
253 use `alloca' instead of `malloc'. This is because using malloc in
|
|
254 re_search* or re_match* could cause memory leaks when C-g is used in
|
|
255 Emacs; also, malloc is slower and causes storage fragmentation. On
|
|
256 the other hand, malloc is more portable, and easier to debug.
|
|
257
|
|
258 Because we sometimes use alloca, some routines have to be macros,
|
|
259 not functions -- `alloca'-allocated space disappears at the end of the
|
|
260 function it is called in. */
|
|
261
|
1333
|
262 #ifndef emacs
|
|
263 #define ALLOCA alloca
|
|
264 #define xmalloc malloc
|
|
265 #define xrealloc realloc
|
1726
|
266 #define xfree(x,type) free (x)
|
1333
|
267 #endif
|
|
268
|
|
269 #ifdef emacs
|
|
270 #define ALLOCA_GARBAGE_COLLECT() \
|
|
271 do \
|
|
272 { \
|
|
273 if (need_to_check_c_alloca) \
|
|
274 xemacs_c_alloca (0); \
|
|
275 } while (0)
|
|
276 #elif defined (C_ALLOCA)
|
|
277 #define ALLOCA_GARBAGE_COLLECT() alloca (0)
|
|
278 #else
|
|
279 #define ALLOCA_GARBAGE_COLLECT()
|
|
280 #endif
|
|
281
|
|
282 #ifndef emacs
|
|
283 /* So we can use just it to conditionalize on */
|
|
284 #undef ERROR_CHECK_MALLOC
|
|
285 #endif
|
|
286
|
|
287 #ifdef ERROR_CHECK_MALLOC
|
|
288 /* When REL_ALLOC, malloc() is problematic because it could potentially
|
|
289 cause all rel-alloc()ed data -- including buffer text -- to be relocated.
|
|
290 We deal with this by checking for such relocation whenever we have
|
|
291 executed a statement that may call malloc() -- or alloca(), which may
|
|
292 end up calling malloc() in some circumstances -- and recomputing all
|
|
293 of our string pointers in re_match_2_internal() and re_search_2().
|
|
294 However, if malloc() or alloca() happens and we don't know about it,
|
|
295 we could still be screwed. So we set up a system where we indicate all
|
|
296 places where we are prepared for malloc() or alloca(), and in any
|
|
297 other circumstances, calls to those functions (from anywhere inside of
|
2500
|
298 XEmacs!) will ABORT(). We do this even when REL_ALLOC is not defined
|
1333
|
299 so that we catch these problems sooner, since many developers and beta
|
|
300 testers will not be running with REL_ALLOC. */
|
|
301 int regex_malloc_disallowed;
|
|
302 #define BEGIN_REGEX_MALLOC_OK() regex_malloc_disallowed = 0
|
|
303 #define END_REGEX_MALLOC_OK() regex_malloc_disallowed = 1
|
|
304 #define UNBIND_REGEX_MALLOC_CHECK() unbind_to (depth)
|
|
305 #else
|
|
306 #define BEGIN_REGEX_MALLOC_OK()
|
|
307 #define END_REGEX_MALLOC_OK()
|
|
308 #define UNBIND_REGEX_MALLOC_CHECK()
|
|
309 #endif
|
|
310
|
|
311
|
428
|
312 #ifdef REGEX_MALLOC
|
|
313
|
1333
|
314 #define REGEX_ALLOCATE xmalloc
|
|
315 #define REGEX_REALLOCATE(source, osize, nsize) xrealloc (source, nsize)
|
|
316 #define REGEX_FREE xfree
|
428
|
317
|
|
318 #else /* not REGEX_MALLOC */
|
|
319
|
|
320 /* Emacs already defines alloca, sometimes. */
|
|
321 #ifndef alloca
|
|
322
|
|
323 /* Make alloca work the best possible way. */
|
|
324 #ifdef __GNUC__
|
|
325 #define alloca __builtin_alloca
|
771
|
326 #elif defined (__DECC) /* XEmacs: added next 3 lines, similar to config.h.in */
|
|
327 #include <alloca.h>
|
|
328 #pragma intrinsic(alloca)
|
428
|
329 #else /* not __GNUC__ */
|
|
330 #if HAVE_ALLOCA_H
|
|
331 #include <alloca.h>
|
|
332 #else /* not __GNUC__ or HAVE_ALLOCA_H */
|
|
333 #ifndef _AIX /* Already did AIX, up at the top. */
|
444
|
334 void *alloca ();
|
428
|
335 #endif /* not _AIX */
|
446
|
336 #endif /* HAVE_ALLOCA_H */
|
|
337 #endif /* __GNUC__ */
|
428
|
338
|
|
339 #endif /* not alloca */
|
|
340
|
1333
|
341 #define REGEX_ALLOCATE ALLOCA
|
428
|
342
|
2367
|
343 /* !!#### Needs review */
|
428
|
344 /* Assumes a `char *destination' variable. */
|
|
345 #define REGEX_REALLOCATE(source, osize, nsize) \
|
1333
|
346 (destination = (char *) ALLOCA (nsize), \
|
428
|
347 memmove (destination, source, osize), \
|
|
348 destination)
|
|
349
|
1726
|
350 /* No need to do anything to free, after alloca.
|
|
351 Do nothing! But inhibit gcc warning. */
|
|
352 #define REGEX_FREE(arg,type) ((void)0)
|
428
|
353
|
446
|
354 #endif /* REGEX_MALLOC */
|
428
|
355
|
|
356 /* Define how to allocate the failure stack. */
|
|
357
|
771
|
358 #ifdef REGEX_REL_ALLOC
|
428
|
359 #define REGEX_ALLOCATE_STACK(size) \
|
1346
|
360 r_alloc ((unsigned char **) &failure_stack_ptr, (size))
|
428
|
361 #define REGEX_REALLOCATE_STACK(source, osize, nsize) \
|
1346
|
362 r_re_alloc ((unsigned char **) &failure_stack_ptr, (nsize))
|
428
|
363 #define REGEX_FREE_STACK(ptr) \
|
1346
|
364 r_alloc_free ((unsigned char **) &failure_stack_ptr)
|
428
|
365
|
771
|
366 #else /* not REGEX_REL_ALLOC */
|
428
|
367
|
|
368 #ifdef REGEX_MALLOC
|
|
369
|
1333
|
370 #define REGEX_ALLOCATE_STACK xmalloc
|
|
371 #define REGEX_REALLOCATE_STACK(source, osize, nsize) xrealloc (source, nsize)
|
1726
|
372 #define REGEX_FREE_STACK(arg) xfree (arg, fail_stack_elt_t *)
|
428
|
373
|
|
374 #else /* not REGEX_MALLOC */
|
|
375
|
1333
|
376 #define REGEX_ALLOCATE_STACK ALLOCA
|
428
|
377
|
|
378 #define REGEX_REALLOCATE_STACK(source, osize, nsize) \
|
|
379 REGEX_REALLOCATE (source, osize, nsize)
|
|
380 /* No need to explicitly free anything. */
|
|
381 #define REGEX_FREE_STACK(arg)
|
|
382
|
446
|
383 #endif /* REGEX_MALLOC */
|
771
|
384 #endif /* REGEX_REL_ALLOC */
|
428
|
385
|
|
386
|
|
387 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
|
|
388 `string1' or just past its end. This works if PTR is NULL, which is
|
|
389 a good thing. */
|
|
390 #define FIRST_STRING_P(ptr) \
|
|
391 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
|
|
392
|
|
393 /* (Re)Allocate N items of type T using malloc, or fail. */
|
1333
|
394 #define TALLOC(n, t) ((t *) xmalloc ((n) * sizeof (t)))
|
|
395 #define RETALLOC(addr, n, t) ((addr) = (t *) xrealloc (addr, (n) * sizeof (t)))
|
428
|
396 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
|
|
397
|
|
398 #define BYTEWIDTH 8 /* In bits. */
|
|
399
|
434
|
400 #define STREQ(s1, s2) (strcmp (s1, s2) == 0)
|
428
|
401
|
|
402 #undef MAX
|
|
403 #undef MIN
|
|
404 #define MAX(a, b) ((a) > (b) ? (a) : (b))
|
|
405 #define MIN(a, b) ((a) < (b) ? (a) : (b))
|
|
406
|
446
|
407 /* Type of source-pattern and string chars. */
|
|
408 typedef const unsigned char re_char;
|
|
409
|
460
|
410 typedef char re_bool;
|
428
|
411 #define false 0
|
|
412 #define true 1
|
|
413
|
|
414
|
1346
|
415 #ifdef emacs
|
|
416
|
|
417 #ifdef MULE
|
|
418
|
|
419 Lisp_Object Vthe_lisp_rangetab;
|
|
420
|
|
421 void
|
|
422 vars_of_regex (void)
|
|
423 {
|
2421
|
424 Vthe_lisp_rangetab = Fmake_range_table (Qstart_closed_end_closed);
|
1346
|
425 staticpro (&Vthe_lisp_rangetab);
|
|
426 }
|
|
427
|
|
428 #else /* not MULE */
|
|
429
|
|
430 void
|
|
431 vars_of_regex (void)
|
|
432 {
|
|
433 }
|
|
434
|
|
435 #endif /* MULE */
|
|
436
|
|
437 /* Convert an offset from the start of the logical text string formed by
|
|
438 concatenating the two strings together into a character position in the
|
|
439 Lisp buffer or string that the text represents. Knows that
|
|
440 when handling buffer text, the "string" we're passed in is always
|
|
441 BEGV - ZV. */
|
|
442
|
|
443 static Charxpos
|
|
444 offset_to_charxpos (Lisp_Object lispobj, int off)
|
|
445 {
|
|
446 if (STRINGP (lispobj))
|
|
447 return string_index_byte_to_char (lispobj, off);
|
|
448 else if (BUFFERP (lispobj))
|
|
449 return bytebpos_to_charbpos (XBUFFER (lispobj),
|
|
450 off + BYTE_BUF_BEGV (XBUFFER (lispobj)));
|
|
451 else
|
|
452 return 0;
|
|
453 }
|
|
454
|
|
455 #ifdef REL_ALLOC
|
|
456
|
|
457 /* STRING1 is the value of STRING1 given to re_match_2(). LISPOBJ is
|
|
458 the Lisp object (if any) from which the string is taken. If LISPOBJ
|
|
459 is a buffer, return a relocation offset to be added to all pointers to
|
|
460 string data so that they will be accurate again, after an allocation or
|
|
461 reallocation that potentially relocated the buffer data.
|
|
462 */
|
|
463 static Bytecount
|
|
464 offset_post_relocation (Lisp_Object lispobj, Ibyte *orig_buftext)
|
|
465 {
|
|
466 if (!BUFFERP (lispobj))
|
|
467 return 0;
|
|
468 return (BYTE_BUF_BYTE_ADDRESS (XBUFFER (lispobj),
|
|
469 BYTE_BUF_BEGV (XBUFFER (lispobj))) -
|
|
470 orig_buftext);
|
|
471 }
|
|
472
|
|
473 #endif /* REL_ALLOC */
|
|
474
|
|
475 #ifdef ERROR_CHECK_MALLOC
|
|
476
|
|
477 /* NOTE that this can run malloc() so you need to adjust afterwards. */
|
|
478
|
|
479 static int
|
|
480 bind_regex_malloc_disallowed (int value)
|
|
481 {
|
|
482 /* Tricky, because the act of binding can run malloc(). */
|
|
483 int old_regex_malloc_disallowed = regex_malloc_disallowed;
|
|
484 int depth;
|
|
485 regex_malloc_disallowed = 0;
|
|
486 depth = record_unwind_protect_restoring_int (®ex_malloc_disallowed,
|
|
487 old_regex_malloc_disallowed);
|
|
488 regex_malloc_disallowed = value;
|
|
489 return depth;
|
|
490 }
|
|
491
|
|
492 #endif /* ERROR_CHECK_MALLOC */
|
|
493
|
|
494 #endif /* emacs */
|
|
495
|
|
496
|
428
|
497 /* These are the command codes that appear in compiled regular
|
|
498 expressions. Some opcodes are followed by argument bytes. A
|
|
499 command code can specify any interpretation whatsoever for its
|
|
500 arguments. Zero bytes may appear in the compiled regular expression. */
|
|
501
|
|
502 typedef enum
|
|
503 {
|
|
504 no_op = 0,
|
|
505
|
|
506 /* Succeed right away--no more backtracking. */
|
|
507 succeed,
|
|
508
|
|
509 /* Followed by one byte giving n, then by n literal bytes. */
|
|
510 exactn,
|
|
511
|
|
512 /* Matches any (more or less) character. */
|
|
513 anychar,
|
|
514
|
|
515 /* Matches any one char belonging to specified set. First
|
|
516 following byte is number of bitmap bytes. Then come bytes
|
|
517 for a bitmap saying which chars are in. Bits in each byte
|
|
518 are ordered low-bit-first. A character is in the set if its
|
|
519 bit is 1. A character too large to have a bit in the map is
|
|
520 automatically not in the set. */
|
|
521 charset,
|
|
522
|
|
523 /* Same parameters as charset, but match any character that is
|
|
524 not one of those specified. */
|
|
525 charset_not,
|
|
526
|
|
527 /* Start remembering the text that is matched, for storing in a
|
|
528 register. Followed by one byte with the register number, in
|
502
|
529 the range 1 to the pattern buffer's re_ngroups
|
428
|
530 field. Then followed by one byte with the number of groups
|
|
531 inner to this one. (This last has to be part of the
|
|
532 start_memory only because we need it in the on_failure_jump
|
|
533 of re_match_2.) */
|
|
534 start_memory,
|
|
535
|
|
536 /* Stop remembering the text that is matched and store it in a
|
|
537 memory register. Followed by one byte with the register
|
502
|
538 number, in the range 1 to `re_ngroups' in the
|
428
|
539 pattern buffer, and one byte with the number of inner groups,
|
|
540 just like `start_memory'. (We need the number of inner
|
|
541 groups here because we don't have any easy way of finding the
|
|
542 corresponding start_memory when we're at a stop_memory.) */
|
|
543 stop_memory,
|
|
544
|
|
545 /* Match a duplicate of something remembered. Followed by one
|
|
546 byte containing the register number. */
|
|
547 duplicate,
|
|
548
|
|
549 /* Fail unless at beginning of line. */
|
|
550 begline,
|
|
551
|
|
552 /* Fail unless at end of line. */
|
|
553 endline,
|
|
554
|
|
555 /* Succeeds if at beginning of buffer (if emacs) or at beginning
|
|
556 of string to be matched (if not). */
|
|
557 begbuf,
|
|
558
|
|
559 /* Analogously, for end of buffer/string. */
|
|
560 endbuf,
|
|
561
|
|
562 /* Followed by two byte relative address to which to jump. */
|
|
563 jump,
|
|
564
|
|
565 /* Same as jump, but marks the end of an alternative. */
|
|
566 jump_past_alt,
|
|
567
|
|
568 /* Followed by two-byte relative address of place to resume at
|
|
569 in case of failure. */
|
|
570 on_failure_jump,
|
|
571
|
|
572 /* Like on_failure_jump, but pushes a placeholder instead of the
|
|
573 current string position when executed. */
|
|
574 on_failure_keep_string_jump,
|
|
575
|
|
576 /* Throw away latest failure point and then jump to following
|
|
577 two-byte relative address. */
|
|
578 pop_failure_jump,
|
|
579
|
|
580 /* Change to pop_failure_jump if know won't have to backtrack to
|
|
581 match; otherwise change to jump. This is used to jump
|
|
582 back to the beginning of a repeat. If what follows this jump
|
|
583 clearly won't match what the repeat does, such that we can be
|
|
584 sure that there is no use backtracking out of repetitions
|
|
585 already matched, then we change it to a pop_failure_jump.
|
|
586 Followed by two-byte address. */
|
|
587 maybe_pop_jump,
|
|
588
|
|
589 /* Jump to following two-byte address, and push a dummy failure
|
|
590 point. This failure point will be thrown away if an attempt
|
|
591 is made to use it for a failure. A `+' construct makes this
|
|
592 before the first repeat. Also used as an intermediary kind
|
|
593 of jump when compiling an alternative. */
|
|
594 dummy_failure_jump,
|
|
595
|
|
596 /* Push a dummy failure point and continue. Used at the end of
|
|
597 alternatives. */
|
|
598 push_dummy_failure,
|
|
599
|
|
600 /* Followed by two-byte relative address and two-byte number n.
|
|
601 After matching N times, jump to the address upon failure. */
|
|
602 succeed_n,
|
|
603
|
|
604 /* Followed by two-byte relative address, and two-byte number n.
|
|
605 Jump to the address N times, then fail. */
|
|
606 jump_n,
|
|
607
|
|
608 /* Set the following two-byte relative address to the
|
|
609 subsequent two-byte number. The address *includes* the two
|
|
610 bytes of number. */
|
|
611 set_number_at,
|
|
612
|
|
613 wordchar, /* Matches any word-constituent character. */
|
|
614 notwordchar, /* Matches any char that is not a word-constituent. */
|
|
615
|
|
616 wordbeg, /* Succeeds if at word beginning. */
|
|
617 wordend, /* Succeeds if at word end. */
|
|
618
|
|
619 wordbound, /* Succeeds if at a word boundary. */
|
|
620 notwordbound /* Succeeds if not at a word boundary. */
|
|
621
|
|
622 #ifdef emacs
|
|
623 ,before_dot, /* Succeeds if before point. */
|
|
624 at_dot, /* Succeeds if at point. */
|
|
625 after_dot, /* Succeeds if after point. */
|
|
626
|
|
627 /* Matches any character whose syntax is specified. Followed by
|
|
628 a byte which contains a syntax code, e.g., Sword. */
|
|
629 syntaxspec,
|
|
630
|
|
631 /* Matches any character whose syntax is not that specified. */
|
|
632 notsyntaxspec
|
|
633
|
|
634 #endif /* emacs */
|
|
635
|
|
636 #ifdef MULE
|
|
637 /* need extra stuff to be able to properly work with XEmacs/Mule
|
|
638 characters (which may take up more than one byte) */
|
|
639
|
|
640 ,charset_mule, /* Matches any character belonging to specified set.
|
|
641 The set is stored in "unified range-table
|
|
642 format"; see rangetab.c. Unlike the `charset'
|
|
643 opcode, this can handle arbitrary characters. */
|
|
644
|
|
645 charset_mule_not /* Same parameters as charset_mule, but match any
|
|
646 character that is not one of those specified. */
|
|
647
|
|
648 /* 97/2/17 jhod: The following two were merged back in from the Mule
|
|
649 2.3 code to enable some language specific processing */
|
|
650 ,categoryspec, /* Matches entries in the character category tables */
|
|
651 notcategoryspec /* The opposite of the above */
|
|
652 #endif /* MULE */
|
|
653
|
|
654 } re_opcode_t;
|
|
655
|
|
656 /* Common operations on the compiled pattern. */
|
|
657
|
|
658 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
|
|
659
|
|
660 #define STORE_NUMBER(destination, number) \
|
|
661 do { \
|
|
662 (destination)[0] = (number) & 0377; \
|
|
663 (destination)[1] = (number) >> 8; \
|
|
664 } while (0)
|
|
665
|
|
666 /* Same as STORE_NUMBER, except increment DESTINATION to
|
|
667 the byte after where the number is stored. Therefore, DESTINATION
|
|
668 must be an lvalue. */
|
|
669
|
|
670 #define STORE_NUMBER_AND_INCR(destination, number) \
|
|
671 do { \
|
|
672 STORE_NUMBER (destination, number); \
|
|
673 (destination) += 2; \
|
|
674 } while (0)
|
|
675
|
|
676 /* Put into DESTINATION a number stored in two contiguous bytes starting
|
|
677 at SOURCE. */
|
|
678
|
|
679 #define EXTRACT_NUMBER(destination, source) \
|
|
680 do { \
|
|
681 (destination) = *(source) & 0377; \
|
|
682 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
|
|
683 } while (0)
|
|
684
|
|
685 #ifdef DEBUG
|
|
686 static void
|
446
|
687 extract_number (int *dest, re_char *source)
|
428
|
688 {
|
|
689 int temp = SIGN_EXTEND_CHAR (*(source + 1));
|
|
690 *dest = *source & 0377;
|
|
691 *dest += temp << 8;
|
|
692 }
|
|
693
|
|
694 #ifndef EXTRACT_MACROS /* To debug the macros. */
|
|
695 #undef EXTRACT_NUMBER
|
|
696 #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
|
|
697 #endif /* not EXTRACT_MACROS */
|
|
698
|
|
699 #endif /* DEBUG */
|
|
700
|
|
701 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
|
|
702 SOURCE must be an lvalue. */
|
|
703
|
|
704 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
|
|
705 do { \
|
|
706 EXTRACT_NUMBER (destination, source); \
|
|
707 (source) += 2; \
|
|
708 } while (0)
|
|
709
|
|
710 #ifdef DEBUG
|
|
711 static void
|
|
712 extract_number_and_incr (int *destination, unsigned char **source)
|
|
713 {
|
|
714 extract_number (destination, *source);
|
|
715 *source += 2;
|
|
716 }
|
|
717
|
|
718 #ifndef EXTRACT_MACROS
|
|
719 #undef EXTRACT_NUMBER_AND_INCR
|
|
720 #define EXTRACT_NUMBER_AND_INCR(dest, src) \
|
|
721 extract_number_and_incr (&dest, &src)
|
|
722 #endif /* not EXTRACT_MACROS */
|
|
723
|
|
724 #endif /* DEBUG */
|
|
725
|
|
726 /* If DEBUG is defined, Regex prints many voluminous messages about what
|
|
727 it is doing (if the variable `debug' is nonzero). If linked with the
|
|
728 main program in `iregex.c', you can enter patterns and strings
|
|
729 interactively. And if linked with the main program in `main.c' and
|
|
730 the other test files, you can run the already-written tests. */
|
|
731
|
|
732 #if defined (DEBUG)
|
|
733
|
|
734 /* We use standard I/O for debugging. */
|
|
735 #include <stdio.h>
|
|
736
|
|
737 #ifndef emacs
|
|
738 /* XEmacs provides its own version of assert() */
|
|
739 /* It is useful to test things that ``must'' be true when debugging. */
|
|
740 #include <assert.h>
|
|
741 #endif
|
|
742
|
|
743 static int debug = 0;
|
|
744
|
|
745 #define DEBUG_STATEMENT(e) e
|
|
746 #define DEBUG_PRINT1(x) if (debug) printf (x)
|
|
747 #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
|
|
748 #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
|
|
749 #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
|
|
750 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
|
|
751 if (debug) print_partial_compiled_pattern (s, e)
|
|
752 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
|
|
753 if (debug) print_double_string (w, s1, sz1, s2, sz2)
|
|
754
|
|
755
|
|
756 /* Print the fastmap in human-readable form. */
|
|
757
|
|
758 static void
|
|
759 print_fastmap (char *fastmap)
|
|
760 {
|
647
|
761 int was_a_range = 0;
|
|
762 int i = 0;
|
428
|
763
|
|
764 while (i < (1 << BYTEWIDTH))
|
|
765 {
|
|
766 if (fastmap[i++])
|
|
767 {
|
|
768 was_a_range = 0;
|
|
769 putchar (i - 1);
|
|
770 while (i < (1 << BYTEWIDTH) && fastmap[i])
|
|
771 {
|
|
772 was_a_range = 1;
|
|
773 i++;
|
|
774 }
|
|
775 if (was_a_range)
|
|
776 {
|
|
777 putchar ('-');
|
|
778 putchar (i - 1);
|
|
779 }
|
|
780 }
|
|
781 }
|
|
782 putchar ('\n');
|
|
783 }
|
|
784
|
|
785
|
|
786 /* Print a compiled pattern string in human-readable form, starting at
|
|
787 the START pointer into it and ending just before the pointer END. */
|
|
788
|
|
789 static void
|
446
|
790 print_partial_compiled_pattern (re_char *start, re_char *end)
|
428
|
791 {
|
|
792 int mcnt, mcnt2;
|
446
|
793 unsigned char *p = (unsigned char *) start;
|
|
794 re_char *pend = end;
|
428
|
795
|
|
796 if (start == NULL)
|
|
797 {
|
|
798 puts ("(null)");
|
|
799 return;
|
|
800 }
|
|
801
|
|
802 /* Loop over pattern commands. */
|
|
803 while (p < pend)
|
|
804 {
|
|
805 printf ("%ld:\t", (long)(p - start));
|
|
806
|
|
807 switch ((re_opcode_t) *p++)
|
|
808 {
|
|
809 case no_op:
|
|
810 printf ("/no_op");
|
|
811 break;
|
|
812
|
|
813 case exactn:
|
|
814 mcnt = *p++;
|
|
815 printf ("/exactn/%d", mcnt);
|
|
816 do
|
|
817 {
|
|
818 putchar ('/');
|
|
819 putchar (*p++);
|
|
820 }
|
|
821 while (--mcnt);
|
|
822 break;
|
|
823
|
|
824 case start_memory:
|
|
825 mcnt = *p++;
|
|
826 printf ("/start_memory/%d/%d", mcnt, *p++);
|
|
827 break;
|
|
828
|
|
829 case stop_memory:
|
|
830 mcnt = *p++;
|
|
831 printf ("/stop_memory/%d/%d", mcnt, *p++);
|
|
832 break;
|
|
833
|
|
834 case duplicate:
|
|
835 printf ("/duplicate/%d", *p++);
|
|
836 break;
|
|
837
|
|
838 case anychar:
|
|
839 printf ("/anychar");
|
|
840 break;
|
|
841
|
|
842 case charset:
|
|
843 case charset_not:
|
|
844 {
|
|
845 REGISTER int c, last = -100;
|
|
846 REGISTER int in_range = 0;
|
|
847
|
|
848 printf ("/charset [%s",
|
|
849 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
|
|
850
|
|
851 assert (p + *p < pend);
|
|
852
|
|
853 for (c = 0; c < 256; c++)
|
|
854 if (((unsigned char) (c / 8) < *p)
|
|
855 && (p[1 + (c/8)] & (1 << (c % 8))))
|
|
856 {
|
|
857 /* Are we starting a range? */
|
|
858 if (last + 1 == c && ! in_range)
|
|
859 {
|
|
860 putchar ('-');
|
|
861 in_range = 1;
|
|
862 }
|
|
863 /* Have we broken a range? */
|
|
864 else if (last + 1 != c && in_range)
|
|
865 {
|
|
866 putchar (last);
|
|
867 in_range = 0;
|
|
868 }
|
|
869
|
|
870 if (! in_range)
|
|
871 putchar (c);
|
|
872
|
|
873 last = c;
|
|
874 }
|
|
875
|
|
876 if (in_range)
|
|
877 putchar (last);
|
|
878
|
|
879 putchar (']');
|
|
880
|
|
881 p += 1 + *p;
|
|
882 }
|
|
883 break;
|
|
884
|
|
885 #ifdef MULE
|
|
886 case charset_mule:
|
|
887 case charset_mule_not:
|
|
888 {
|
|
889 int nentries, i;
|
|
890
|
|
891 printf ("/charset_mule [%s",
|
|
892 (re_opcode_t) *(p - 1) == charset_mule_not ? "^" : "");
|
|
893 nentries = unified_range_table_nentries (p);
|
|
894 for (i = 0; i < nentries; i++)
|
|
895 {
|
|
896 EMACS_INT first, last;
|
|
897 Lisp_Object dummy_val;
|
|
898
|
|
899 unified_range_table_get_range (p, i, &first, &last,
|
|
900 &dummy_val);
|
|
901 if (first < 0x100)
|
|
902 putchar (first);
|
|
903 else
|
|
904 printf ("(0x%lx)", (long)first);
|
|
905 if (first != last)
|
|
906 {
|
|
907 putchar ('-');
|
|
908 if (last < 0x100)
|
|
909 putchar (last);
|
|
910 else
|
|
911 printf ("(0x%lx)", (long)last);
|
|
912 }
|
|
913 }
|
|
914 putchar (']');
|
|
915 p += unified_range_table_bytes_used (p);
|
|
916 }
|
|
917 break;
|
|
918 #endif
|
|
919
|
|
920 case begline:
|
|
921 printf ("/begline");
|
|
922 break;
|
|
923
|
|
924 case endline:
|
|
925 printf ("/endline");
|
|
926 break;
|
|
927
|
|
928 case on_failure_jump:
|
|
929 extract_number_and_incr (&mcnt, &p);
|
|
930 printf ("/on_failure_jump to %ld", (long)(p + mcnt - start));
|
|
931 break;
|
|
932
|
|
933 case on_failure_keep_string_jump:
|
|
934 extract_number_and_incr (&mcnt, &p);
|
|
935 printf ("/on_failure_keep_string_jump to %ld", (long)(p + mcnt - start));
|
|
936 break;
|
|
937
|
|
938 case dummy_failure_jump:
|
|
939 extract_number_and_incr (&mcnt, &p);
|
|
940 printf ("/dummy_failure_jump to %ld", (long)(p + mcnt - start));
|
|
941 break;
|
|
942
|
|
943 case push_dummy_failure:
|
|
944 printf ("/push_dummy_failure");
|
|
945 break;
|
|
946
|
|
947 case maybe_pop_jump:
|
|
948 extract_number_and_incr (&mcnt, &p);
|
|
949 printf ("/maybe_pop_jump to %ld", (long)(p + mcnt - start));
|
|
950 break;
|
|
951
|
|
952 case pop_failure_jump:
|
|
953 extract_number_and_incr (&mcnt, &p);
|
|
954 printf ("/pop_failure_jump to %ld", (long)(p + mcnt - start));
|
|
955 break;
|
|
956
|
|
957 case jump_past_alt:
|
|
958 extract_number_and_incr (&mcnt, &p);
|
|
959 printf ("/jump_past_alt to %ld", (long)(p + mcnt - start));
|
|
960 break;
|
|
961
|
|
962 case jump:
|
|
963 extract_number_and_incr (&mcnt, &p);
|
|
964 printf ("/jump to %ld", (long)(p + mcnt - start));
|
|
965 break;
|
|
966
|
|
967 case succeed_n:
|
|
968 extract_number_and_incr (&mcnt, &p);
|
|
969 extract_number_and_incr (&mcnt2, &p);
|
|
970 printf ("/succeed_n to %ld, %d times", (long)(p + mcnt - start), mcnt2);
|
|
971 break;
|
|
972
|
|
973 case jump_n:
|
|
974 extract_number_and_incr (&mcnt, &p);
|
|
975 extract_number_and_incr (&mcnt2, &p);
|
|
976 printf ("/jump_n to %ld, %d times", (long)(p + mcnt - start), mcnt2);
|
|
977 break;
|
|
978
|
|
979 case set_number_at:
|
|
980 extract_number_and_incr (&mcnt, &p);
|
|
981 extract_number_and_incr (&mcnt2, &p);
|
|
982 printf ("/set_number_at location %ld to %d", (long)(p + mcnt - start), mcnt2);
|
|
983 break;
|
|
984
|
|
985 case wordbound:
|
|
986 printf ("/wordbound");
|
|
987 break;
|
|
988
|
|
989 case notwordbound:
|
|
990 printf ("/notwordbound");
|
|
991 break;
|
|
992
|
|
993 case wordbeg:
|
|
994 printf ("/wordbeg");
|
|
995 break;
|
|
996
|
|
997 case wordend:
|
|
998 printf ("/wordend");
|
|
999
|
|
1000 #ifdef emacs
|
|
1001 case before_dot:
|
|
1002 printf ("/before_dot");
|
|
1003 break;
|
|
1004
|
|
1005 case at_dot:
|
|
1006 printf ("/at_dot");
|
|
1007 break;
|
|
1008
|
|
1009 case after_dot:
|
|
1010 printf ("/after_dot");
|
|
1011 break;
|
|
1012
|
|
1013 case syntaxspec:
|
|
1014 printf ("/syntaxspec");
|
|
1015 mcnt = *p++;
|
|
1016 printf ("/%d", mcnt);
|
|
1017 break;
|
|
1018
|
|
1019 case notsyntaxspec:
|
|
1020 printf ("/notsyntaxspec");
|
|
1021 mcnt = *p++;
|
|
1022 printf ("/%d", mcnt);
|
|
1023 break;
|
|
1024
|
|
1025 #ifdef MULE
|
|
1026 /* 97/2/17 jhod Mule category patch */
|
|
1027 case categoryspec:
|
|
1028 printf ("/categoryspec");
|
|
1029 mcnt = *p++;
|
|
1030 printf ("/%d", mcnt);
|
|
1031 break;
|
|
1032
|
|
1033 case notcategoryspec:
|
|
1034 printf ("/notcategoryspec");
|
|
1035 mcnt = *p++;
|
|
1036 printf ("/%d", mcnt);
|
|
1037 break;
|
|
1038 /* end of category patch */
|
|
1039 #endif /* MULE */
|
|
1040 #endif /* emacs */
|
|
1041
|
|
1042 case wordchar:
|
|
1043 printf ("/wordchar");
|
|
1044 break;
|
|
1045
|
|
1046 case notwordchar:
|
|
1047 printf ("/notwordchar");
|
|
1048 break;
|
|
1049
|
|
1050 case begbuf:
|
|
1051 printf ("/begbuf");
|
|
1052 break;
|
|
1053
|
|
1054 case endbuf:
|
|
1055 printf ("/endbuf");
|
|
1056 break;
|
|
1057
|
|
1058 default:
|
|
1059 printf ("?%d", *(p-1));
|
|
1060 }
|
|
1061
|
|
1062 putchar ('\n');
|
|
1063 }
|
|
1064
|
|
1065 printf ("%ld:\tend of pattern.\n", (long)(p - start));
|
|
1066 }
|
|
1067
|
|
1068
|
|
1069 static void
|
|
1070 print_compiled_pattern (struct re_pattern_buffer *bufp)
|
|
1071 {
|
446
|
1072 re_char *buffer = bufp->buffer;
|
428
|
1073
|
|
1074 print_partial_compiled_pattern (buffer, buffer + bufp->used);
|
|
1075 printf ("%ld bytes used/%ld bytes allocated.\n", bufp->used,
|
|
1076 bufp->allocated);
|
|
1077
|
|
1078 if (bufp->fastmap_accurate && bufp->fastmap)
|
|
1079 {
|
|
1080 printf ("fastmap: ");
|
|
1081 print_fastmap (bufp->fastmap);
|
|
1082 }
|
|
1083
|
|
1084 printf ("re_nsub: %ld\t", (long)bufp->re_nsub);
|
502
|
1085 printf ("re_ngroups: %ld\t", (long)bufp->re_ngroups);
|
428
|
1086 printf ("regs_alloc: %d\t", bufp->regs_allocated);
|
|
1087 printf ("can_be_null: %d\t", bufp->can_be_null);
|
|
1088 printf ("newline_anchor: %d\n", bufp->newline_anchor);
|
|
1089 printf ("no_sub: %d\t", bufp->no_sub);
|
|
1090 printf ("not_bol: %d\t", bufp->not_bol);
|
|
1091 printf ("not_eol: %d\t", bufp->not_eol);
|
|
1092 printf ("syntax: %d\n", bufp->syntax);
|
|
1093 /* Perhaps we should print the translate table? */
|
|
1094 /* and maybe the category table? */
|
502
|
1095
|
|
1096 if (bufp->external_to_internal_register)
|
|
1097 {
|
|
1098 int i;
|
|
1099
|
|
1100 printf ("external_to_internal_register:\n");
|
|
1101 for (i = 0; i <= bufp->re_nsub; i++)
|
|
1102 {
|
|
1103 if (i > 0)
|
|
1104 printf (", ");
|
|
1105 printf ("%d -> %d", i, bufp->external_to_internal_register[i]);
|
|
1106 }
|
|
1107 printf ("\n");
|
|
1108 }
|
428
|
1109 }
|
|
1110
|
|
1111
|
|
1112 static void
|
446
|
1113 print_double_string (re_char *where, re_char *string1, int size1,
|
|
1114 re_char *string2, int size2)
|
428
|
1115 {
|
|
1116 if (where == NULL)
|
|
1117 printf ("(null)");
|
|
1118 else
|
|
1119 {
|
647
|
1120 int this_char;
|
428
|
1121
|
|
1122 if (FIRST_STRING_P (where))
|
|
1123 {
|
|
1124 for (this_char = where - string1; this_char < size1; this_char++)
|
|
1125 putchar (string1[this_char]);
|
|
1126
|
|
1127 where = string2;
|
|
1128 }
|
|
1129
|
|
1130 for (this_char = where - string2; this_char < size2; this_char++)
|
|
1131 putchar (string2[this_char]);
|
|
1132 }
|
|
1133 }
|
|
1134
|
|
1135 #else /* not DEBUG */
|
|
1136
|
771
|
1137 #ifndef emacs
|
428
|
1138 #undef assert
|
771
|
1139 #define assert(e) ((void) (1))
|
|
1140 #endif
|
428
|
1141
|
|
1142 #define DEBUG_STATEMENT(e)
|
|
1143 #define DEBUG_PRINT1(x)
|
|
1144 #define DEBUG_PRINT2(x1, x2)
|
|
1145 #define DEBUG_PRINT3(x1, x2, x3)
|
|
1146 #define DEBUG_PRINT4(x1, x2, x3, x4)
|
|
1147 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
|
|
1148 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
|
|
1149
|
446
|
1150 #endif /* DEBUG */
|
428
|
1151
|
|
1152 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
|
|
1153 also be assigned to arbitrarily: each pattern buffer stores its own
|
|
1154 syntax, so it can be changed between regex compilations. */
|
|
1155 /* This has no initializer because initialized variables in Emacs
|
|
1156 become read-only after dumping. */
|
|
1157 reg_syntax_t re_syntax_options;
|
|
1158
|
|
1159
|
|
1160 /* Specify the precise syntax of regexps for compilation. This provides
|
|
1161 for compatibility for various utilities which historically have
|
|
1162 different, incompatible syntaxes.
|
|
1163
|
|
1164 The argument SYNTAX is a bit mask comprised of the various bits
|
|
1165 defined in regex.h. We return the old syntax. */
|
|
1166
|
|
1167 reg_syntax_t
|
|
1168 re_set_syntax (reg_syntax_t syntax)
|
|
1169 {
|
|
1170 reg_syntax_t ret = re_syntax_options;
|
|
1171
|
|
1172 re_syntax_options = syntax;
|
|
1173 return ret;
|
|
1174 }
|
|
1175
|
|
1176 /* This table gives an error message for each of the error codes listed
|
|
1177 in regex.h. Obviously the order here has to be same as there.
|
|
1178 POSIX doesn't require that we do anything for REG_NOERROR,
|
|
1179 but why not be nice? */
|
|
1180
|
442
|
1181 static const char *re_error_msgid[] =
|
428
|
1182 {
|
|
1183 "Success", /* REG_NOERROR */
|
|
1184 "No match", /* REG_NOMATCH */
|
|
1185 "Invalid regular expression", /* REG_BADPAT */
|
|
1186 "Invalid collation character", /* REG_ECOLLATE */
|
|
1187 "Invalid character class name", /* REG_ECTYPE */
|
|
1188 "Trailing backslash", /* REG_EESCAPE */
|
|
1189 "Invalid back reference", /* REG_ESUBREG */
|
|
1190 "Unmatched [ or [^", /* REG_EBRACK */
|
|
1191 "Unmatched ( or \\(", /* REG_EPAREN */
|
|
1192 "Unmatched \\{", /* REG_EBRACE */
|
|
1193 "Invalid content of \\{\\}", /* REG_BADBR */
|
|
1194 "Invalid range end", /* REG_ERANGE */
|
|
1195 "Memory exhausted", /* REG_ESPACE */
|
|
1196 "Invalid preceding regular expression", /* REG_BADRPT */
|
|
1197 "Premature end of regular expression", /* REG_EEND */
|
|
1198 "Regular expression too big", /* REG_ESIZE */
|
|
1199 "Unmatched ) or \\)", /* REG_ERPAREN */
|
|
1200 #ifdef emacs
|
|
1201 "Invalid syntax designator", /* REG_ESYNTAX */
|
|
1202 #endif
|
|
1203 #ifdef MULE
|
|
1204 "Ranges may not span charsets", /* REG_ERANGESPAN */
|
|
1205 "Invalid category designator", /* REG_ECATEGORY */
|
|
1206 #endif
|
|
1207 };
|
|
1208
|
|
1209 /* Avoiding alloca during matching, to placate r_alloc. */
|
|
1210
|
1333
|
1211 /* About these various flags:
|
|
1212
|
|
1213 MATCH_MAY_ALLOCATE indicates that it's OK to do allocation in the
|
|
1214 searching and matching functions. In this case, we use local variables
|
|
1215 to hold the values allocated. If not, we use *global* variables, which
|
|
1216 are pre-allocated. NOTE: XEmacs ***MUST*** run with MATCH_MAY_ALLOCATE,
|
|
1217 because the regexp routines may get called reentrantly as a result of
|
|
1218 QUIT processing (e.g. under Windows: re_match -> QUIT -> quit_p -> drain
|
|
1219 events -> process WM_INITMENU -> call filter -> re_match; see stack
|
|
1220 trace in signal.c), so we cannot have any global variables (unless we do
|
|
1221 lots of trickiness including some unwind-protects, which isn't worth it
|
|
1222 at this point).
|
|
1223
|
|
1224 REL_ALLOC means that the relocating allocator is in use, for buffers
|
|
1225 and such. REGEX_REL_ALLOC means that we use rel-alloc to manage the
|
|
1226 fail stack, which may grow quite large. REGEX_MALLOC means we use
|
|
1227 malloc() in place of alloca() to allocate the fail stack -- only
|
|
1228 applicable if REGEX_REL_ALLOC is not defined.
|
|
1229 */
|
|
1230
|
428
|
1231 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
|
|
1232 searching and matching functions should not call alloca. On some
|
|
1233 systems, alloca is implemented in terms of malloc, and if we're
|
|
1234 using the relocating allocator routines, then malloc could cause a
|
|
1235 relocation, which might (if the strings being searched are in the
|
|
1236 ralloc heap) shift the data out from underneath the regexp
|
771
|
1237 routines. [To clarify: The purpose of rel-alloc is to allow data to
|
|
1238 be moved in memory from one place to another so that all data
|
|
1239 blocks can be consolidated together and excess memory released back
|
|
1240 to the operating system. This requires that all the blocks that
|
|
1241 are managed by rel-alloc go at the very end of the program's heap,
|
|
1242 after all regularly malloc()ed data. malloc(), however, is used to
|
|
1243 owning the end of the heap, so that when more memory is needed, it
|
|
1244 just expands the heap using sbrk(). This is reconciled by using a
|
|
1245 malloc() (such as malloc.c, gmalloc.c, or recent versions of
|
|
1246 malloc() in libc) where the sbrk() call can be replaced with a
|
|
1247 user-specified call -- in this case, to rel-alloc's r_alloc_sbrk()
|
|
1248 routine. This routine calls the real sbrk(), but then shifts all
|
|
1249 the rel-alloc-managed blocks forward to the end of the heap again,
|
|
1250 so that malloc() gets the memory it needs in the location it needs
|
|
1251 it at. The regex routines may well have pointers to buffer data as
|
|
1252 their arguments, and buffers are managed by rel-alloc if rel-alloc
|
|
1253 has been enabled, so calling malloc() may potentially screw things
|
|
1254 up badly if it runs out of space and asks for more from the OS.]
|
|
1255
|
|
1256 [[Here's another reason to avoid allocation: Emacs processes input
|
|
1257 from X in a signal handler; processing X input may call malloc; if
|
|
1258 input arrives while a matching routine is calling malloc, then
|
|
1259 we're scrod. But Emacs can't just block input while calling
|
|
1260 matching routines; then we don't notice interrupts when they come
|
|
1261 in. So, Emacs blocks input around all regexp calls except the
|
|
1262 matching calls, which it leaves unprotected, in the faith that they
|
1333
|
1263 will not malloc.]] This previous paragraph is irrelevant under XEmacs,
|
|
1264 as we *do not* do anything so stupid as process input from within a
|
|
1265 signal handler.
|
|
1266
|
|
1267 However, the regexp routines may get called reentrantly as a result of
|
|
1268 QUIT processing (e.g. under Windows: re_match -> QUIT -> quit_p -> drain
|
|
1269 events -> process WM_INITMENU -> call filter -> re_match; see stack
|
|
1270 trace in signal.c), so we cannot have any global variables (unless we do
|
|
1271 lots of trickiness including some unwind-protects, which isn't worth it
|
|
1272 at this point). Hence we MUST have MATCH_MAY_ALLOCATE defined.
|
|
1273
|
|
1274 Also, the first paragraph does not make complete sense to me -- what
|
|
1275 about the use of rel-alloc to handle the fail stacks? Shouldn't these
|
|
1276 reallocations potentially cause buffer data to be relocated as well? I
|
826
|
1277 must be missing something, though -- perhaps the writer above is
|
|
1278 assuming that the failure stack(s) will always be allocated after the
|
|
1279 buffer data, and thus reallocating them with rel-alloc won't move buffer
|
1333
|
1280 data. (In fact, a cursory glance at the code in ralloc.c seems to
|
|
1281 confirm this.) --ben */
|
428
|
1282
|
|
1283 /* Normally, this is fine. */
|
|
1284 #define MATCH_MAY_ALLOCATE
|
|
1285
|
|
1286 /* When using GNU C, we are not REALLY using the C alloca, no matter
|
|
1287 what config.h may say. So don't take precautions for it. */
|
|
1288 #ifdef __GNUC__
|
|
1289 #undef C_ALLOCA
|
|
1290 #endif
|
|
1291
|
|
1292 /* The match routines may not allocate if (1) they would do it with malloc
|
|
1293 and (2) it's not safe for them to use malloc.
|
|
1294 Note that if REL_ALLOC is defined, matching would not use malloc for the
|
|
1295 failure stack, but we would still use it for the register vectors;
|
|
1296 so REL_ALLOC should not affect this. */
|
771
|
1297
|
1333
|
1298 /* XEmacs can handle REL_ALLOC and malloc() OK */
|
|
1299 #if !defined (emacs) && (defined (C_ALLOCA) || defined (REGEX_MALLOC)) && defined (REL_ALLOC)
|
428
|
1300 #undef MATCH_MAY_ALLOCATE
|
|
1301 #endif
|
|
1302
|
1333
|
1303 #if !defined (MATCH_MAY_ALLOCATE) && defined (emacs)
|
771
|
1304 #error regex must be handle reentrancy; MATCH_MAY_ALLOCATE must be defined
|
|
1305 #endif
|
|
1306
|
428
|
1307
|
|
1308 /* Failure stack declarations and macros; both re_compile_fastmap and
|
|
1309 re_match_2 use a failure stack. These have to be macros because of
|
|
1310 REGEX_ALLOCATE_STACK. */
|
|
1311
|
|
1312
|
|
1313 /* Number of failure points for which to initially allocate space
|
|
1314 when matching. If this number is exceeded, we allocate more
|
|
1315 space, so it is not a hard limit. */
|
|
1316 #ifndef INIT_FAILURE_ALLOC
|
3300
|
1317 #define INIT_FAILURE_ALLOC 20
|
428
|
1318 #endif
|
|
1319
|
|
1320 /* Roughly the maximum number of failure points on the stack. Would be
|
|
1321 exactly that if always used MAX_FAILURE_SPACE each time we failed.
|
|
1322 This is a variable only so users of regex can assign to it; we never
|
|
1323 change it ourselves. */
|
|
1324 #if defined (MATCH_MAY_ALLOCATE)
|
|
1325 /* 4400 was enough to cause a crash on Alpha OSF/1,
|
|
1326 whose default stack limit is 2mb. */
|
3300
|
1327 int re_max_failures = 40000;
|
428
|
1328 #else
|
3300
|
1329 int re_max_failures = 4000;
|
428
|
1330 #endif
|
|
1331
|
|
1332 union fail_stack_elt
|
|
1333 {
|
446
|
1334 re_char *pointer;
|
428
|
1335 int integer;
|
|
1336 };
|
|
1337
|
|
1338 typedef union fail_stack_elt fail_stack_elt_t;
|
|
1339
|
|
1340 typedef struct
|
|
1341 {
|
|
1342 fail_stack_elt_t *stack;
|
665
|
1343 Elemcount size;
|
|
1344 Elemcount avail; /* Offset of next open position. */
|
428
|
1345 } fail_stack_type;
|
|
1346
|
|
1347 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
|
|
1348 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
|
|
1349 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
|
|
1350
|
|
1351
|
|
1352 /* Define macros to initialize and free the failure stack.
|
|
1353 Do `return -2' if the alloc fails. */
|
|
1354
|
|
1355 #ifdef MATCH_MAY_ALLOCATE
|
1333
|
1356 #define INIT_FAIL_STACK() \
|
|
1357 do { \
|
|
1358 fail_stack.stack = (fail_stack_elt_t *) \
|
|
1359 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * \
|
|
1360 sizeof (fail_stack_elt_t)); \
|
|
1361 \
|
|
1362 if (fail_stack.stack == NULL) \
|
|
1363 { \
|
|
1364 UNBIND_REGEX_MALLOC_CHECK (); \
|
|
1365 return -2; \
|
|
1366 } \
|
|
1367 \
|
|
1368 fail_stack.size = INIT_FAILURE_ALLOC; \
|
|
1369 fail_stack.avail = 0; \
|
428
|
1370 } while (0)
|
|
1371
|
|
1372 #define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
|
|
1373 #else
|
|
1374 #define INIT_FAIL_STACK() \
|
|
1375 do { \
|
|
1376 fail_stack.avail = 0; \
|
|
1377 } while (0)
|
|
1378
|
|
1379 #define RESET_FAIL_STACK()
|
|
1380 #endif
|
|
1381
|
|
1382
|
|
1383 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
|
|
1384
|
|
1385 Return 1 if succeeds, and 0 if either ran out of memory
|
|
1386 allocating space for it or it was already too large.
|
|
1387
|
|
1388 REGEX_REALLOCATE_STACK requires `destination' be declared. */
|
|
1389
|
|
1390 #define DOUBLE_FAIL_STACK(fail_stack) \
|
|
1391 ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \
|
|
1392 ? 0 \
|
|
1393 : ((fail_stack).stack = (fail_stack_elt_t *) \
|
|
1394 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
|
|
1395 (fail_stack).size * sizeof (fail_stack_elt_t), \
|
|
1396 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
|
|
1397 \
|
|
1398 (fail_stack).stack == NULL \
|
|
1399 ? 0 \
|
|
1400 : ((fail_stack).size <<= 1, \
|
|
1401 1)))
|
|
1402
|
1333
|
1403 #if !defined (emacs) || !defined (REL_ALLOC)
|
|
1404 #define RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS()
|
|
1405 #else
|
|
1406 /* Don't change NULL pointers */
|
|
1407 #define ADD_IF_NZ(val) if (val) val += rmdp_offset
|
1346
|
1408 #define RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS() \
|
|
1409 do \
|
|
1410 { \
|
|
1411 Bytecount rmdp_offset = offset_post_relocation (lispobj, orig_buftext); \
|
|
1412 \
|
|
1413 if (rmdp_offset) \
|
|
1414 { \
|
|
1415 int i; \
|
|
1416 \
|
|
1417 ADD_IF_NZ (string1); \
|
|
1418 ADD_IF_NZ (string2); \
|
|
1419 ADD_IF_NZ (d); \
|
|
1420 ADD_IF_NZ (dend); \
|
|
1421 ADD_IF_NZ (end1); \
|
|
1422 ADD_IF_NZ (end2); \
|
|
1423 ADD_IF_NZ (end_match_1); \
|
|
1424 ADD_IF_NZ (end_match_2); \
|
|
1425 \
|
|
1426 if (bufp->re_ngroups) \
|
|
1427 { \
|
|
1428 for (i = 0; i < num_regs; i++) \
|
|
1429 { \
|
|
1430 ADD_IF_NZ (regstart[i]); \
|
|
1431 ADD_IF_NZ (regend[i]); \
|
|
1432 ADD_IF_NZ (old_regstart[i]); \
|
|
1433 ADD_IF_NZ (old_regend[i]); \
|
|
1434 ADD_IF_NZ (best_regstart[i]); \
|
|
1435 ADD_IF_NZ (best_regend[i]); \
|
|
1436 ADD_IF_NZ (reg_dummy[i]); \
|
|
1437 } \
|
|
1438 } \
|
|
1439 \
|
|
1440 ADD_IF_NZ (match_end); \
|
|
1441 } \
|
1333
|
1442 } while (0)
|
|
1443 #endif /* !defined (emacs) || !defined (REL_ALLOC) */
|
|
1444
|
|
1445 #if !defined (emacs) || !defined (REL_ALLOC)
|
|
1446 #define RE_SEARCH_RELOCATE_MOVEABLE_DATA_POINTERS()
|
|
1447 #else
|
1346
|
1448 #define RE_SEARCH_RELOCATE_MOVEABLE_DATA_POINTERS() \
|
|
1449 do \
|
|
1450 { \
|
|
1451 Bytecount rmdp_offset = offset_post_relocation (lispobj, orig_buftext); \
|
|
1452 \
|
|
1453 if (rmdp_offset) \
|
|
1454 { \
|
|
1455 ADD_IF_NZ (str1); \
|
|
1456 ADD_IF_NZ (str2); \
|
|
1457 ADD_IF_NZ (string1); \
|
|
1458 ADD_IF_NZ (string2); \
|
|
1459 ADD_IF_NZ (d); \
|
|
1460 } \
|
1333
|
1461 } while (0)
|
|
1462
|
|
1463 #endif /* emacs */
|
428
|
1464
|
|
1465 /* Push pointer POINTER on FAIL_STACK.
|
|
1466 Return 1 if was able to do so and 0 if ran out of memory allocating
|
|
1467 space to do so. */
|
|
1468 #define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
|
|
1469 ((FAIL_STACK_FULL () \
|
|
1470 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
|
|
1471 ? 0 \
|
|
1472 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
|
|
1473 1))
|
|
1474
|
|
1475 /* Push a pointer value onto the failure stack.
|
|
1476 Assumes the variable `fail_stack'. Probably should only
|
|
1477 be called from within `PUSH_FAILURE_POINT'. */
|
|
1478 #define PUSH_FAILURE_POINTER(item) \
|
|
1479 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
|
|
1480
|
|
1481 /* This pushes an integer-valued item onto the failure stack.
|
|
1482 Assumes the variable `fail_stack'. Probably should only
|
|
1483 be called from within `PUSH_FAILURE_POINT'. */
|
|
1484 #define PUSH_FAILURE_INT(item) \
|
|
1485 fail_stack.stack[fail_stack.avail++].integer = (item)
|
|
1486
|
|
1487 /* Push a fail_stack_elt_t value onto the failure stack.
|
|
1488 Assumes the variable `fail_stack'. Probably should only
|
|
1489 be called from within `PUSH_FAILURE_POINT'. */
|
|
1490 #define PUSH_FAILURE_ELT(item) \
|
|
1491 fail_stack.stack[fail_stack.avail++] = (item)
|
|
1492
|
|
1493 /* These three POP... operations complement the three PUSH... operations.
|
|
1494 All assume that `fail_stack' is nonempty. */
|
|
1495 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
|
|
1496 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
|
|
1497 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
|
|
1498
|
|
1499 /* Used to omit pushing failure point id's when we're not debugging. */
|
|
1500 #ifdef DEBUG
|
|
1501 #define DEBUG_PUSH PUSH_FAILURE_INT
|
|
1502 #define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
|
|
1503 #else
|
|
1504 #define DEBUG_PUSH(item)
|
|
1505 #define DEBUG_POP(item_addr)
|
|
1506 #endif
|
|
1507
|
|
1508
|
|
1509 /* Push the information about the state we will need
|
|
1510 if we ever fail back to it.
|
|
1511
|
|
1512 Requires variables fail_stack, regstart, regend, reg_info, and
|
|
1513 num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be
|
|
1514 declared.
|
|
1515
|
|
1516 Does `return FAILURE_CODE' if runs out of memory. */
|
|
1517
|
771
|
1518 #if !defined (REGEX_MALLOC) && !defined (REGEX_REL_ALLOC)
|
456
|
1519 #define DECLARE_DESTINATION char *destination
|
428
|
1520 #else
|
456
|
1521 #define DECLARE_DESTINATION DECLARE_NOTHING
|
428
|
1522 #endif
|
|
1523
|
|
1524 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
|
456
|
1525 do { \
|
|
1526 DECLARE_DESTINATION; \
|
|
1527 /* Must be int, so when we don't save any registers, the arithmetic \
|
|
1528 of 0 + -1 isn't done as unsigned. */ \
|
|
1529 int this_reg; \
|
428
|
1530 \
|
456
|
1531 DEBUG_STATEMENT (failure_id++); \
|
|
1532 DEBUG_STATEMENT (nfailure_points_pushed++); \
|
647
|
1533 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%d:\n", failure_id); \
|
|
1534 DEBUG_PRINT2 (" Before push, next avail: %ld\n", \
|
|
1535 (long) (fail_stack).avail); \
|
|
1536 DEBUG_PRINT2 (" size: %ld\n", \
|
|
1537 (long) (fail_stack).size); \
|
456
|
1538 \
|
|
1539 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
|
|
1540 DEBUG_PRINT2 (" available: %ld\n", \
|
|
1541 (long) REMAINING_AVAIL_SLOTS); \
|
428
|
1542 \
|
456
|
1543 /* Ensure we have enough space allocated for what we will push. */ \
|
|
1544 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
|
|
1545 { \
|
1333
|
1546 BEGIN_REGEX_MALLOC_OK (); \
|
456
|
1547 if (!DOUBLE_FAIL_STACK (fail_stack)) \
|
1333
|
1548 { \
|
|
1549 END_REGEX_MALLOC_OK (); \
|
|
1550 UNBIND_REGEX_MALLOC_CHECK (); \
|
|
1551 return failure_code; \
|
|
1552 } \
|
|
1553 END_REGEX_MALLOC_OK (); \
|
647
|
1554 DEBUG_PRINT2 ("\n Doubled stack; size now: %ld\n", \
|
|
1555 (long) (fail_stack).size); \
|
456
|
1556 DEBUG_PRINT2 (" slots available: %ld\n", \
|
|
1557 (long) REMAINING_AVAIL_SLOTS); \
|
1333
|
1558 \
|
|
1559 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS (); \
|
456
|
1560 } \
|
428
|
1561 \
|
456
|
1562 /* Push the info, starting with the registers. */ \
|
|
1563 DEBUG_PRINT1 ("\n"); \
|
428
|
1564 \
|
456
|
1565 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
|
|
1566 this_reg++) \
|
|
1567 { \
|
|
1568 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
|
|
1569 DEBUG_STATEMENT (num_regs_pushed++); \
|
428
|
1570 \
|
456
|
1571 DEBUG_PRINT2 (" start: 0x%lx\n", (long) regstart[this_reg]); \
|
|
1572 PUSH_FAILURE_POINTER (regstart[this_reg]); \
|
|
1573 \
|
|
1574 DEBUG_PRINT2 (" end: 0x%lx\n", (long) regend[this_reg]); \
|
|
1575 PUSH_FAILURE_POINTER (regend[this_reg]); \
|
428
|
1576 \
|
456
|
1577 DEBUG_PRINT2 (" info: 0x%lx\n ", \
|
|
1578 * (long *) (®_info[this_reg])); \
|
|
1579 DEBUG_PRINT2 (" match_null=%d", \
|
|
1580 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
|
|
1581 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
|
|
1582 DEBUG_PRINT2 (" matched_something=%d", \
|
|
1583 MATCHED_SOMETHING (reg_info[this_reg])); \
|
|
1584 DEBUG_PRINT2 (" ever_matched_something=%d", \
|
|
1585 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
|
|
1586 DEBUG_PRINT1 ("\n"); \
|
|
1587 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
|
|
1588 } \
|
428
|
1589 \
|
456
|
1590 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg); \
|
|
1591 PUSH_FAILURE_INT (lowest_active_reg); \
|
428
|
1592 \
|
456
|
1593 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg); \
|
|
1594 PUSH_FAILURE_INT (highest_active_reg); \
|
428
|
1595 \
|
456
|
1596 DEBUG_PRINT2 (" Pushing pattern 0x%lx: \n", (long) pattern_place); \
|
|
1597 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
|
|
1598 PUSH_FAILURE_POINTER (pattern_place); \
|
428
|
1599 \
|
456
|
1600 DEBUG_PRINT2 (" Pushing string 0x%lx: `", (long) string_place); \
|
|
1601 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
|
|
1602 size2); \
|
|
1603 DEBUG_PRINT1 ("'\n"); \
|
|
1604 PUSH_FAILURE_POINTER (string_place); \
|
428
|
1605 \
|
456
|
1606 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
|
|
1607 DEBUG_PUSH (failure_id); \
|
|
1608 } while (0)
|
428
|
1609
|
|
1610 /* This is the number of items that are pushed and popped on the stack
|
|
1611 for each register. */
|
|
1612 #define NUM_REG_ITEMS 3
|
|
1613
|
|
1614 /* Individual items aside from the registers. */
|
|
1615 #ifdef DEBUG
|
|
1616 #define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
|
|
1617 #else
|
|
1618 #define NUM_NONREG_ITEMS 4
|
|
1619 #endif
|
|
1620
|
|
1621 /* We push at most this many items on the stack. */
|
|
1622 /* We used to use (num_regs - 1), which is the number of registers
|
|
1623 this regexp will save; but that was changed to 5
|
|
1624 to avoid stack overflow for a regexp with lots of parens. */
|
|
1625 #define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
|
|
1626
|
|
1627 /* We actually push this many items. */
|
|
1628 #define NUM_FAILURE_ITEMS \
|
|
1629 ((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS \
|
|
1630 + NUM_NONREG_ITEMS)
|
|
1631
|
|
1632 /* How many items can still be added to the stack without overflowing it. */
|
|
1633 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
|
|
1634
|
|
1635
|
|
1636 /* Pops what PUSH_FAIL_STACK pushes.
|
|
1637
|
|
1638 We restore into the parameters, all of which should be lvalues:
|
|
1639 STR -- the saved data position.
|
|
1640 PAT -- the saved pattern position.
|
|
1641 LOW_REG, HIGH_REG -- the highest and lowest active registers.
|
|
1642 REGSTART, REGEND -- arrays of string positions.
|
|
1643 REG_INFO -- array of information about each subexpression.
|
|
1644
|
|
1645 Also assumes the variables `fail_stack' and (if debugging), `bufp',
|
|
1646 `pend', `string1', `size1', `string2', and `size2'. */
|
|
1647
|
456
|
1648 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, \
|
|
1649 regstart, regend, reg_info) \
|
|
1650 do { \
|
428
|
1651 DEBUG_STATEMENT (fail_stack_elt_t ffailure_id;) \
|
|
1652 int this_reg; \
|
442
|
1653 const unsigned char *string_temp; \
|
428
|
1654 \
|
|
1655 assert (!FAIL_STACK_EMPTY ()); \
|
|
1656 \
|
|
1657 /* Remove failure points and point to how many regs pushed. */ \
|
|
1658 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
|
647
|
1659 DEBUG_PRINT2 (" Before pop, next avail: %ld\n", \
|
|
1660 (long) fail_stack.avail); \
|
|
1661 DEBUG_PRINT2 (" size: %ld\n", \
|
|
1662 (long) fail_stack.size); \
|
428
|
1663 \
|
|
1664 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
|
|
1665 \
|
|
1666 DEBUG_POP (&ffailure_id.integer); \
|
647
|
1667 DEBUG_PRINT2 (" Popping failure id: %d\n", \
|
|
1668 * (int *) &ffailure_id); \
|
428
|
1669 \
|
|
1670 /* If the saved string location is NULL, it came from an \
|
|
1671 on_failure_keep_string_jump opcode, and we want to throw away the \
|
|
1672 saved NULL, thus retaining our current position in the string. */ \
|
|
1673 string_temp = POP_FAILURE_POINTER (); \
|
|
1674 if (string_temp != NULL) \
|
446
|
1675 str = string_temp; \
|
428
|
1676 \
|
|
1677 DEBUG_PRINT2 (" Popping string 0x%lx: `", (long) str); \
|
|
1678 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
|
|
1679 DEBUG_PRINT1 ("'\n"); \
|
|
1680 \
|
|
1681 pat = (unsigned char *) POP_FAILURE_POINTER (); \
|
|
1682 DEBUG_PRINT2 (" Popping pattern 0x%lx: ", (long) pat); \
|
|
1683 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
|
|
1684 \
|
|
1685 /* Restore register info. */ \
|
647
|
1686 high_reg = POP_FAILURE_INT (); \
|
428
|
1687 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
|
|
1688 \
|
647
|
1689 low_reg = POP_FAILURE_INT (); \
|
428
|
1690 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
|
|
1691 \
|
|
1692 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
|
|
1693 { \
|
|
1694 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
|
|
1695 \
|
|
1696 reg_info[this_reg].word = POP_FAILURE_ELT (); \
|
|
1697 DEBUG_PRINT2 (" info: 0x%lx\n", \
|
|
1698 * (long *) ®_info[this_reg]); \
|
|
1699 \
|
446
|
1700 regend[this_reg] = POP_FAILURE_POINTER (); \
|
428
|
1701 DEBUG_PRINT2 (" end: 0x%lx\n", (long) regend[this_reg]); \
|
|
1702 \
|
446
|
1703 regstart[this_reg] = POP_FAILURE_POINTER (); \
|
428
|
1704 DEBUG_PRINT2 (" start: 0x%lx\n", (long) regstart[this_reg]); \
|
|
1705 } \
|
|
1706 \
|
|
1707 set_regs_matched_done = 0; \
|
|
1708 DEBUG_STATEMENT (nfailure_points_popped++); \
|
456
|
1709 } while (0) /* POP_FAILURE_POINT */
|
428
|
1710
|
|
1711
|
|
1712
|
|
1713 /* Structure for per-register (a.k.a. per-group) information.
|
|
1714 Other register information, such as the
|
|
1715 starting and ending positions (which are addresses), and the list of
|
|
1716 inner groups (which is a bits list) are maintained in separate
|
|
1717 variables.
|
|
1718
|
|
1719 We are making a (strictly speaking) nonportable assumption here: that
|
|
1720 the compiler will pack our bit fields into something that fits into
|
|
1721 the type of `word', i.e., is something that fits into one item on the
|
|
1722 failure stack. */
|
|
1723
|
|
1724 typedef union
|
|
1725 {
|
|
1726 fail_stack_elt_t word;
|
|
1727 struct
|
|
1728 {
|
|
1729 /* This field is one if this group can match the empty string,
|
|
1730 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
|
|
1731 #define MATCH_NULL_UNSET_VALUE 3
|
647
|
1732 unsigned int match_null_string_p : 2;
|
|
1733 unsigned int is_active : 1;
|
|
1734 unsigned int matched_something : 1;
|
|
1735 unsigned int ever_matched_something : 1;
|
428
|
1736 } bits;
|
|
1737 } register_info_type;
|
|
1738
|
|
1739 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
|
|
1740 #define IS_ACTIVE(R) ((R).bits.is_active)
|
|
1741 #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
|
|
1742 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
|
|
1743
|
|
1744
|
|
1745 /* Call this when have matched a real character; it sets `matched' flags
|
|
1746 for the subexpressions which we are currently inside. Also records
|
|
1747 that those subexprs have matched. */
|
|
1748 #define SET_REGS_MATCHED() \
|
|
1749 do \
|
|
1750 { \
|
|
1751 if (!set_regs_matched_done) \
|
|
1752 { \
|
647
|
1753 int r; \
|
428
|
1754 set_regs_matched_done = 1; \
|
|
1755 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
|
|
1756 { \
|
|
1757 MATCHED_SOMETHING (reg_info[r]) \
|
|
1758 = EVER_MATCHED_SOMETHING (reg_info[r]) \
|
|
1759 = 1; \
|
|
1760 } \
|
|
1761 } \
|
|
1762 } \
|
|
1763 while (0)
|
|
1764
|
|
1765 /* Registers are set to a sentinel when they haven't yet matched. */
|
446
|
1766 static unsigned char reg_unset_dummy;
|
428
|
1767 #define REG_UNSET_VALUE (®_unset_dummy)
|
|
1768 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
|
|
1769
|
|
1770 /* Subroutine declarations and macros for regex_compile. */
|
|
1771
|
|
1772 /* Fetch the next character in the uncompiled pattern---translating it
|
826
|
1773 if necessary. */
|
428
|
1774 #define PATFETCH(c) \
|
446
|
1775 do { \
|
|
1776 PATFETCH_RAW (c); \
|
826
|
1777 c = RE_TRANSLATE (c); \
|
428
|
1778 } while (0)
|
|
1779
|
|
1780 /* Fetch the next character in the uncompiled pattern, with no
|
|
1781 translation. */
|
|
1782 #define PATFETCH_RAW(c) \
|
|
1783 do {if (p == pend) return REG_EEND; \
|
|
1784 assert (p < pend); \
|
867
|
1785 c = itext_ichar (p); \
|
|
1786 INC_IBYTEPTR (p); \
|
428
|
1787 } while (0)
|
|
1788
|
|
1789 /* Go backwards one character in the pattern. */
|
867
|
1790 #define PATUNFETCH DEC_IBYTEPTR (p)
|
428
|
1791
|
|
1792 /* If `translate' is non-null, return translate[D], else just D. We
|
|
1793 cast the subscript to translate because some data is declared as
|
|
1794 `char *', to avoid warnings when a string constant is passed. But
|
|
1795 when we use a character as a subscript we must make it unsigned. */
|
826
|
1796 #define RE_TRANSLATE(d) \
|
|
1797 (TRANSLATE_P (translate) ? RE_TRANSLATE_1 (d) : (d))
|
428
|
1798
|
|
1799 /* Macros for outputting the compiled pattern into `buffer'. */
|
|
1800
|
|
1801 /* If the buffer isn't allocated when it comes in, use this. */
|
|
1802 #define INIT_BUF_SIZE 32
|
|
1803
|
|
1804 /* Make sure we have at least N more bytes of space in buffer. */
|
|
1805 #define GET_BUFFER_SPACE(n) \
|
647
|
1806 while (buf_end - bufp->buffer + (n) > (ptrdiff_t) bufp->allocated) \
|
428
|
1807 EXTEND_BUFFER ()
|
|
1808
|
|
1809 /* Make sure we have one more byte of buffer space and then add C to it. */
|
|
1810 #define BUF_PUSH(c) \
|
|
1811 do { \
|
|
1812 GET_BUFFER_SPACE (1); \
|
446
|
1813 *buf_end++ = (unsigned char) (c); \
|
428
|
1814 } while (0)
|
|
1815
|
|
1816
|
|
1817 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
|
|
1818 #define BUF_PUSH_2(c1, c2) \
|
|
1819 do { \
|
|
1820 GET_BUFFER_SPACE (2); \
|
446
|
1821 *buf_end++ = (unsigned char) (c1); \
|
|
1822 *buf_end++ = (unsigned char) (c2); \
|
428
|
1823 } while (0)
|
|
1824
|
|
1825
|
|
1826 /* As with BUF_PUSH_2, except for three bytes. */
|
|
1827 #define BUF_PUSH_3(c1, c2, c3) \
|
|
1828 do { \
|
|
1829 GET_BUFFER_SPACE (3); \
|
446
|
1830 *buf_end++ = (unsigned char) (c1); \
|
|
1831 *buf_end++ = (unsigned char) (c2); \
|
|
1832 *buf_end++ = (unsigned char) (c3); \
|
428
|
1833 } while (0)
|
|
1834
|
|
1835
|
|
1836 /* Store a jump with opcode OP at LOC to location TO. We store a
|
|
1837 relative address offset by the three bytes the jump itself occupies. */
|
|
1838 #define STORE_JUMP(op, loc, to) \
|
|
1839 store_op1 (op, loc, (to) - (loc) - 3)
|
|
1840
|
|
1841 /* Likewise, for a two-argument jump. */
|
|
1842 #define STORE_JUMP2(op, loc, to, arg) \
|
|
1843 store_op2 (op, loc, (to) - (loc) - 3, arg)
|
|
1844
|
446
|
1845 /* Like `STORE_JUMP', but for inserting. Assume `buf_end' is the
|
|
1846 buffer end. */
|
428
|
1847 #define INSERT_JUMP(op, loc, to) \
|
446
|
1848 insert_op1 (op, loc, (to) - (loc) - 3, buf_end)
|
|
1849
|
|
1850 /* Like `STORE_JUMP2', but for inserting. Assume `buf_end' is the
|
|
1851 buffer end. */
|
428
|
1852 #define INSERT_JUMP2(op, loc, to, arg) \
|
446
|
1853 insert_op2 (op, loc, (to) - (loc) - 3, arg, buf_end)
|
428
|
1854
|
|
1855
|
|
1856 /* This is not an arbitrary limit: the arguments which represent offsets
|
|
1857 into the pattern are two bytes long. So if 2^16 bytes turns out to
|
|
1858 be too small, many things would have to change. */
|
|
1859 #define MAX_BUF_SIZE (1L << 16)
|
|
1860
|
|
1861
|
|
1862 /* Extend the buffer by twice its current size via realloc and
|
|
1863 reset the pointers that pointed into the old block to point to the
|
|
1864 correct places in the new one. If extending the buffer results in it
|
|
1865 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
|
1333
|
1866 #define EXTEND_BUFFER() \
|
|
1867 do { \
|
|
1868 re_char *old_buffer = bufp->buffer; \
|
|
1869 if (bufp->allocated == MAX_BUF_SIZE) \
|
|
1870 return REG_ESIZE; \
|
|
1871 bufp->allocated <<= 1; \
|
|
1872 if (bufp->allocated > MAX_BUF_SIZE) \
|
|
1873 bufp->allocated = MAX_BUF_SIZE; \
|
|
1874 bufp->buffer = \
|
|
1875 (unsigned char *) xrealloc (bufp->buffer, bufp->allocated); \
|
|
1876 if (bufp->buffer == NULL) \
|
|
1877 return REG_ESPACE; \
|
|
1878 /* If the buffer moved, move all the pointers into it. */ \
|
|
1879 if (old_buffer != bufp->buffer) \
|
|
1880 { \
|
|
1881 buf_end = (buf_end - old_buffer) + bufp->buffer; \
|
|
1882 begalt = (begalt - old_buffer) + bufp->buffer; \
|
|
1883 if (fixup_alt_jump) \
|
|
1884 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer; \
|
|
1885 if (laststart) \
|
|
1886 laststart = (laststart - old_buffer) + bufp->buffer; \
|
|
1887 if (pending_exact) \
|
|
1888 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
|
|
1889 } \
|
428
|
1890 } while (0)
|
|
1891
|
|
1892
|
|
1893 /* Since we have one byte reserved for the register number argument to
|
|
1894 {start,stop}_memory, the maximum number of groups we can report
|
|
1895 things about is what fits in that byte. */
|
|
1896 #define MAX_REGNUM 255
|
|
1897
|
|
1898 /* But patterns can have more than `MAX_REGNUM' registers. We just
|
502
|
1899 ignore the excess.
|
|
1900 #### not true! groups past this will fail in lots of ways, if we
|
|
1901 ever have to backtrack.
|
|
1902 */
|
647
|
1903 typedef int regnum_t;
|
428
|
1904
|
502
|
1905 #define INIT_REG_TRANSLATE_SIZE 5
|
428
|
1906
|
|
1907 /* Macros for the compile stack. */
|
|
1908
|
|
1909 /* Since offsets can go either forwards or backwards, this type needs to
|
|
1910 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
|
|
1911 typedef int pattern_offset_t;
|
|
1912
|
|
1913 typedef struct
|
|
1914 {
|
|
1915 pattern_offset_t begalt_offset;
|
|
1916 pattern_offset_t fixup_alt_jump;
|
|
1917 pattern_offset_t inner_group_offset;
|
|
1918 pattern_offset_t laststart_offset;
|
|
1919 regnum_t regnum;
|
|
1920 } compile_stack_elt_t;
|
|
1921
|
|
1922
|
|
1923 typedef struct
|
|
1924 {
|
|
1925 compile_stack_elt_t *stack;
|
647
|
1926 int size;
|
|
1927 int avail; /* Offset of next open position. */
|
428
|
1928 } compile_stack_type;
|
|
1929
|
|
1930
|
|
1931 #define INIT_COMPILE_STACK_SIZE 32
|
|
1932
|
|
1933 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
|
|
1934 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
|
|
1935
|
|
1936 /* The next available element. */
|
|
1937 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
|
|
1938
|
|
1939
|
|
1940 /* Set the bit for character C in a bit vector. */
|
|
1941 #define SET_LIST_BIT(c) \
|
446
|
1942 (buf_end[((unsigned char) (c)) / BYTEWIDTH] \
|
428
|
1943 |= 1 << (((unsigned char) c) % BYTEWIDTH))
|
|
1944
|
|
1945 #ifdef MULE
|
|
1946
|
|
1947 /* Set the "bit" for character C in a range table. */
|
|
1948 #define SET_RANGETAB_BIT(c) put_range_table (rtab, c, c, Qt)
|
|
1949
|
|
1950 /* Set the "bit" for character c in the appropriate table. */
|
|
1951 #define SET_EITHER_BIT(c) \
|
|
1952 do { \
|
|
1953 if (has_extended_chars) \
|
|
1954 SET_RANGETAB_BIT (c); \
|
|
1955 else \
|
|
1956 SET_LIST_BIT (c); \
|
|
1957 } while (0)
|
|
1958
|
|
1959 #else /* not MULE */
|
|
1960
|
|
1961 #define SET_EITHER_BIT(c) SET_LIST_BIT (c)
|
|
1962
|
|
1963 #endif
|
|
1964
|
|
1965
|
|
1966 /* Get the next unsigned number in the uncompiled pattern. */
|
|
1967 #define GET_UNSIGNED_NUMBER(num) \
|
|
1968 { if (p != pend) \
|
|
1969 { \
|
|
1970 PATFETCH (c); \
|
|
1971 while (ISDIGIT (c)) \
|
|
1972 { \
|
|
1973 if (num < 0) \
|
|
1974 num = 0; \
|
|
1975 num = num * 10 + c - '0'; \
|
|
1976 if (p == pend) \
|
|
1977 break; \
|
|
1978 PATFETCH (c); \
|
|
1979 } \
|
|
1980 } \
|
|
1981 }
|
|
1982
|
|
1983 #define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
|
|
1984
|
|
1985 #define IS_CHAR_CLASS(string) \
|
|
1986 (STREQ (string, "alpha") || STREQ (string, "upper") \
|
|
1987 || STREQ (string, "lower") || STREQ (string, "digit") \
|
|
1988 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
|
|
1989 || STREQ (string, "space") || STREQ (string, "print") \
|
|
1990 || STREQ (string, "punct") || STREQ (string, "graph") \
|
|
1991 || STREQ (string, "cntrl") || STREQ (string, "blank"))
|
|
1992
|
|
1993 static void store_op1 (re_opcode_t op, unsigned char *loc, int arg);
|
|
1994 static void store_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2);
|
|
1995 static void insert_op1 (re_opcode_t op, unsigned char *loc, int arg,
|
|
1996 unsigned char *end);
|
|
1997 static void insert_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2,
|
|
1998 unsigned char *end);
|
460
|
1999 static re_bool at_begline_loc_p (re_char *pattern, re_char *p,
|
428
|
2000 reg_syntax_t syntax);
|
460
|
2001 static re_bool at_endline_loc_p (re_char *p, re_char *pend, int syntax);
|
|
2002 static re_bool group_in_compile_stack (compile_stack_type compile_stack,
|
428
|
2003 regnum_t regnum);
|
446
|
2004 static reg_errcode_t compile_range (re_char **p_ptr, re_char *pend,
|
|
2005 RE_TRANSLATE_TYPE translate,
|
|
2006 reg_syntax_t syntax,
|
428
|
2007 unsigned char *b);
|
|
2008 #ifdef MULE
|
446
|
2009 static reg_errcode_t compile_extended_range (re_char **p_ptr,
|
|
2010 re_char *pend,
|
|
2011 RE_TRANSLATE_TYPE translate,
|
428
|
2012 reg_syntax_t syntax,
|
|
2013 Lisp_Object rtab);
|
|
2014 #endif /* MULE */
|
460
|
2015 static re_bool group_match_null_string_p (unsigned char **p,
|
428
|
2016 unsigned char *end,
|
|
2017 register_info_type *reg_info);
|
460
|
2018 static re_bool alt_match_null_string_p (unsigned char *p, unsigned char *end,
|
428
|
2019 register_info_type *reg_info);
|
460
|
2020 static re_bool common_op_match_null_string_p (unsigned char **p,
|
428
|
2021 unsigned char *end,
|
|
2022 register_info_type *reg_info);
|
826
|
2023 static int bcmp_translate (re_char *s1, re_char *s2,
|
|
2024 REGISTER int len, RE_TRANSLATE_TYPE translate
|
|
2025 #ifdef emacs
|
|
2026 , Internal_Format fmt, Lisp_Object lispobj
|
|
2027 #endif
|
|
2028 );
|
428
|
2029 static int re_match_2_internal (struct re_pattern_buffer *bufp,
|
446
|
2030 re_char *string1, int size1,
|
|
2031 re_char *string2, int size2, int pos,
|
826
|
2032 struct re_registers *regs, int stop
|
|
2033 RE_LISP_CONTEXT_ARGS_DECL);
|
428
|
2034
|
|
2035 #ifndef MATCH_MAY_ALLOCATE
|
|
2036
|
|
2037 /* If we cannot allocate large objects within re_match_2_internal,
|
|
2038 we make the fail stack and register vectors global.
|
|
2039 The fail stack, we grow to the maximum size when a regexp
|
|
2040 is compiled.
|
|
2041 The register vectors, we adjust in size each time we
|
|
2042 compile a regexp, according to the number of registers it needs. */
|
|
2043
|
|
2044 static fail_stack_type fail_stack;
|
|
2045
|
|
2046 /* Size with which the following vectors are currently allocated.
|
|
2047 That is so we can make them bigger as needed,
|
|
2048 but never make them smaller. */
|
|
2049 static int regs_allocated_size;
|
|
2050
|
446
|
2051 static re_char ** regstart, ** regend;
|
|
2052 static re_char ** old_regstart, ** old_regend;
|
|
2053 static re_char **best_regstart, **best_regend;
|
428
|
2054 static register_info_type *reg_info;
|
446
|
2055 static re_char **reg_dummy;
|
428
|
2056 static register_info_type *reg_info_dummy;
|
|
2057
|
|
2058 /* Make the register vectors big enough for NUM_REGS registers,
|
|
2059 but don't make them smaller. */
|
|
2060
|
|
2061 static
|
|
2062 regex_grow_registers (int num_regs)
|
|
2063 {
|
|
2064 if (num_regs > regs_allocated_size)
|
|
2065 {
|
551
|
2066 RETALLOC (regstart, num_regs, re_char *);
|
|
2067 RETALLOC (regend, num_regs, re_char *);
|
|
2068 RETALLOC (old_regstart, num_regs, re_char *);
|
|
2069 RETALLOC (old_regend, num_regs, re_char *);
|
|
2070 RETALLOC (best_regstart, num_regs, re_char *);
|
|
2071 RETALLOC (best_regend, num_regs, re_char *);
|
|
2072 RETALLOC (reg_info, num_regs, register_info_type);
|
|
2073 RETALLOC (reg_dummy, num_regs, re_char *);
|
|
2074 RETALLOC (reg_info_dummy, num_regs, register_info_type);
|
428
|
2075
|
|
2076 regs_allocated_size = num_regs;
|
|
2077 }
|
|
2078 }
|
|
2079
|
|
2080 #endif /* not MATCH_MAY_ALLOCATE */
|
|
2081
|
|
2082 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
|
|
2083 Returns one of error codes defined in `regex.h', or zero for success.
|
|
2084
|
|
2085 Assumes the `allocated' (and perhaps `buffer') and `translate'
|
|
2086 fields are set in BUFP on entry.
|
|
2087
|
|
2088 If it succeeds, results are put in BUFP (if it returns an error, the
|
|
2089 contents of BUFP are undefined):
|
|
2090 `buffer' is the compiled pattern;
|
|
2091 `syntax' is set to SYNTAX;
|
|
2092 `used' is set to the length of the compiled pattern;
|
|
2093 `fastmap_accurate' is zero;
|
502
|
2094 `re_ngroups' is the number of groups/subexpressions (including shy
|
|
2095 groups) in PATTERN;
|
|
2096 `re_nsub' is the number of non-shy groups in PATTERN;
|
428
|
2097 `not_bol' and `not_eol' are zero;
|
|
2098
|
|
2099 The `fastmap' and `newline_anchor' fields are neither
|
|
2100 examined nor set. */
|
|
2101
|
|
2102 /* Return, freeing storage we allocated. */
|
1726
|
2103 #define FREE_STACK_RETURN(value) \
|
|
2104 do \
|
|
2105 { \
|
|
2106 xfree (compile_stack.stack, compile_stack_elt_t *); \
|
|
2107 return value; \
|
1333
|
2108 } while (0)
|
428
|
2109
|
|
2110 static reg_errcode_t
|
446
|
2111 regex_compile (re_char *pattern, int size, reg_syntax_t syntax,
|
428
|
2112 struct re_pattern_buffer *bufp)
|
|
2113 {
|
|
2114 /* We fetch characters from PATTERN here. We declare these as int
|
|
2115 (or possibly long) so that chars above 127 can be used as
|
|
2116 array indices. The macros that fetch a character from the pattern
|
|
2117 make sure to coerce to unsigned char before assigning, so we won't
|
|
2118 get bitten by negative numbers here. */
|
|
2119 /* XEmacs change: used to be unsigned char. */
|
|
2120 REGISTER EMACS_INT c, c1;
|
|
2121
|
|
2122 /* A random temporary spot in PATTERN. */
|
446
|
2123 re_char *p1;
|
428
|
2124
|
|
2125 /* Points to the end of the buffer, where we should append. */
|
446
|
2126 REGISTER unsigned char *buf_end;
|
428
|
2127
|
|
2128 /* Keeps track of unclosed groups. */
|
|
2129 compile_stack_type compile_stack;
|
|
2130
|
|
2131 /* Points to the current (ending) position in the pattern. */
|
446
|
2132 re_char *p = pattern;
|
|
2133 re_char *pend = pattern + size;
|
428
|
2134
|
|
2135 /* How to translate the characters in the pattern. */
|
446
|
2136 RE_TRANSLATE_TYPE translate = bufp->translate;
|
428
|
2137
|
|
2138 /* Address of the count-byte of the most recently inserted `exactn'
|
|
2139 command. This makes it possible to tell if a new exact-match
|
|
2140 character can be added to that command or if the character requires
|
|
2141 a new `exactn' command. */
|
|
2142 unsigned char *pending_exact = 0;
|
|
2143
|
|
2144 /* Address of start of the most recently finished expression.
|
|
2145 This tells, e.g., postfix * where to find the start of its
|
|
2146 operand. Reset at the beginning of groups and alternatives. */
|
|
2147 unsigned char *laststart = 0;
|
|
2148
|
|
2149 /* Address of beginning of regexp, or inside of last group. */
|
|
2150 unsigned char *begalt;
|
|
2151
|
|
2152 /* Place in the uncompiled pattern (i.e., the {) to
|
|
2153 which to go back if the interval is invalid. */
|
446
|
2154 re_char *beg_interval;
|
428
|
2155
|
|
2156 /* Address of the place where a forward jump should go to the end of
|
|
2157 the containing expression. Each alternative of an `or' -- except the
|
|
2158 last -- ends with a forward jump of this sort. */
|
|
2159 unsigned char *fixup_alt_jump = 0;
|
|
2160
|
|
2161 /* Counts open-groups as they are encountered. Remembered for the
|
|
2162 matching close-group on the compile stack, so the same register
|
|
2163 number is put in the stop_memory as the start_memory. */
|
|
2164 regnum_t regnum = 0;
|
|
2165
|
|
2166 #ifdef DEBUG
|
|
2167 DEBUG_PRINT1 ("\nCompiling pattern: ");
|
|
2168 if (debug)
|
|
2169 {
|
647
|
2170 int debug_count;
|
428
|
2171
|
|
2172 for (debug_count = 0; debug_count < size; debug_count++)
|
|
2173 putchar (pattern[debug_count]);
|
|
2174 putchar ('\n');
|
|
2175 }
|
|
2176 #endif /* DEBUG */
|
|
2177
|
|
2178 /* Initialize the compile stack. */
|
|
2179 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
|
|
2180 if (compile_stack.stack == NULL)
|
|
2181 return REG_ESPACE;
|
|
2182
|
|
2183 compile_stack.size = INIT_COMPILE_STACK_SIZE;
|
|
2184 compile_stack.avail = 0;
|
|
2185
|
|
2186 /* Initialize the pattern buffer. */
|
|
2187 bufp->syntax = syntax;
|
|
2188 bufp->fastmap_accurate = 0;
|
|
2189 bufp->not_bol = bufp->not_eol = 0;
|
|
2190
|
|
2191 /* Set `used' to zero, so that if we return an error, the pattern
|
|
2192 printer (for debugging) will think there's no pattern. We reset it
|
|
2193 at the end. */
|
|
2194 bufp->used = 0;
|
|
2195
|
|
2196 /* Always count groups, whether or not bufp->no_sub is set. */
|
|
2197 bufp->re_nsub = 0;
|
502
|
2198 bufp->re_ngroups = 0;
|
|
2199
|
|
2200 bufp->warned_about_incompatible_back_references = 0;
|
|
2201
|
|
2202 if (bufp->external_to_internal_register == 0)
|
|
2203 {
|
|
2204 bufp->external_to_internal_register_size = INIT_REG_TRANSLATE_SIZE;
|
|
2205 RETALLOC (bufp->external_to_internal_register,
|
|
2206 bufp->external_to_internal_register_size,
|
|
2207 int);
|
|
2208 }
|
|
2209
|
|
2210 {
|
|
2211 int i;
|
|
2212
|
|
2213 bufp->external_to_internal_register[0] = 0;
|
|
2214 for (i = 1; i < bufp->external_to_internal_register_size; i++)
|
|
2215 bufp->external_to_internal_register[i] = (int) 0xDEADBEEF;
|
|
2216 }
|
428
|
2217
|
|
2218 #if !defined (emacs) && !defined (SYNTAX_TABLE)
|
|
2219 /* Initialize the syntax table. */
|
|
2220 init_syntax_once ();
|
|
2221 #endif
|
|
2222
|
|
2223 if (bufp->allocated == 0)
|
|
2224 {
|
|
2225 if (bufp->buffer)
|
|
2226 { /* If zero allocated, but buffer is non-null, try to realloc
|
|
2227 enough space. This loses if buffer's address is bogus, but
|
|
2228 that is the user's responsibility. */
|
|
2229 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
|
|
2230 }
|
|
2231 else
|
|
2232 { /* Caller did not allocate a buffer. Do it for them. */
|
|
2233 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
|
|
2234 }
|
|
2235 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
|
|
2236
|
|
2237 bufp->allocated = INIT_BUF_SIZE;
|
|
2238 }
|
|
2239
|
446
|
2240 begalt = buf_end = bufp->buffer;
|
428
|
2241
|
|
2242 /* Loop through the uncompiled pattern until we're at the end. */
|
|
2243 while (p != pend)
|
|
2244 {
|
|
2245 PATFETCH (c);
|
|
2246
|
|
2247 switch (c)
|
|
2248 {
|
|
2249 case '^':
|
|
2250 {
|
|
2251 if ( /* If at start of pattern, it's an operator. */
|
|
2252 p == pattern + 1
|
|
2253 /* If context independent, it's an operator. */
|
|
2254 || syntax & RE_CONTEXT_INDEP_ANCHORS
|
|
2255 /* Otherwise, depends on what's come before. */
|
|
2256 || at_begline_loc_p (pattern, p, syntax))
|
|
2257 BUF_PUSH (begline);
|
|
2258 else
|
|
2259 goto normal_char;
|
|
2260 }
|
|
2261 break;
|
|
2262
|
|
2263
|
|
2264 case '$':
|
|
2265 {
|
|
2266 if ( /* If at end of pattern, it's an operator. */
|
|
2267 p == pend
|
|
2268 /* If context independent, it's an operator. */
|
|
2269 || syntax & RE_CONTEXT_INDEP_ANCHORS
|
|
2270 /* Otherwise, depends on what's next. */
|
|
2271 || at_endline_loc_p (p, pend, syntax))
|
|
2272 BUF_PUSH (endline);
|
|
2273 else
|
|
2274 goto normal_char;
|
|
2275 }
|
|
2276 break;
|
|
2277
|
|
2278
|
|
2279 case '+':
|
|
2280 case '?':
|
|
2281 if ((syntax & RE_BK_PLUS_QM)
|
|
2282 || (syntax & RE_LIMITED_OPS))
|
|
2283 goto normal_char;
|
|
2284 handle_plus:
|
|
2285 case '*':
|
|
2286 /* If there is no previous pattern... */
|
|
2287 if (!laststart)
|
|
2288 {
|
|
2289 if (syntax & RE_CONTEXT_INVALID_OPS)
|
|
2290 FREE_STACK_RETURN (REG_BADRPT);
|
|
2291 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
|
|
2292 goto normal_char;
|
|
2293 }
|
|
2294
|
|
2295 {
|
|
2296 /* true means zero/many matches are allowed. */
|
460
|
2297 re_bool zero_times_ok = c != '+';
|
|
2298 re_bool many_times_ok = c != '?';
|
428
|
2299
|
|
2300 /* true means match shortest string possible. */
|
460
|
2301 re_bool minimal = false;
|
428
|
2302
|
|
2303 /* If there is a sequence of repetition chars, collapse it
|
|
2304 down to just one (the right one). We can't combine
|
|
2305 interval operators with these because of, e.g., `a{2}*',
|
|
2306 which should only match an even number of `a's. */
|
|
2307 while (p != pend)
|
|
2308 {
|
|
2309 PATFETCH (c);
|
|
2310
|
|
2311 if (c == '*' || (!(syntax & RE_BK_PLUS_QM)
|
|
2312 && (c == '+' || c == '?')))
|
|
2313 ;
|
|
2314
|
|
2315 else if (syntax & RE_BK_PLUS_QM && c == '\\')
|
|
2316 {
|
|
2317 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
|
|
2318
|
|
2319 PATFETCH (c1);
|
|
2320 if (!(c1 == '+' || c1 == '?'))
|
|
2321 {
|
|
2322 PATUNFETCH;
|
|
2323 PATUNFETCH;
|
|
2324 break;
|
|
2325 }
|
|
2326
|
|
2327 c = c1;
|
|
2328 }
|
|
2329 else
|
|
2330 {
|
|
2331 PATUNFETCH;
|
|
2332 break;
|
|
2333 }
|
|
2334
|
|
2335 /* If we get here, we found another repeat character. */
|
|
2336 if (!(syntax & RE_NO_MINIMAL_MATCHING))
|
|
2337 {
|
440
|
2338 /* "*?" and "+?" and "??" are okay (and mean match
|
|
2339 minimally), but other sequences (such as "*??" and
|
|
2340 "+++") are rejected (reserved for future use). */
|
428
|
2341 if (minimal || c != '?')
|
|
2342 FREE_STACK_RETURN (REG_BADRPT);
|
|
2343 minimal = true;
|
|
2344 }
|
|
2345 else
|
|
2346 {
|
|
2347 zero_times_ok |= c != '+';
|
|
2348 many_times_ok |= c != '?';
|
|
2349 }
|
|
2350 }
|
|
2351
|
|
2352 /* Star, etc. applied to an empty pattern is equivalent
|
|
2353 to an empty pattern. */
|
|
2354 if (!laststart)
|
|
2355 break;
|
|
2356
|
|
2357 /* Now we know whether zero matches is allowed
|
|
2358 and whether two or more matches is allowed
|
|
2359 and whether we want minimal or maximal matching. */
|
|
2360 if (minimal)
|
|
2361 {
|
|
2362 if (!many_times_ok)
|
|
2363 {
|
|
2364 /* "a??" becomes:
|
|
2365 0: /on_failure_jump to 6
|
|
2366 3: /jump to 9
|
|
2367 6: /exactn/1/A
|
|
2368 9: end of pattern.
|
|
2369 */
|
|
2370 GET_BUFFER_SPACE (6);
|
446
|
2371 INSERT_JUMP (jump, laststart, buf_end + 3);
|
|
2372 buf_end += 3;
|
428
|
2373 INSERT_JUMP (on_failure_jump, laststart, laststart + 6);
|
446
|
2374 buf_end += 3;
|
428
|
2375 }
|
|
2376 else if (zero_times_ok)
|
|
2377 {
|
|
2378 /* "a*?" becomes:
|
|
2379 0: /jump to 6
|
|
2380 3: /exactn/1/A
|
|
2381 6: /on_failure_jump to 3
|
|
2382 9: end of pattern.
|
|
2383 */
|
|
2384 GET_BUFFER_SPACE (6);
|
446
|
2385 INSERT_JUMP (jump, laststart, buf_end + 3);
|
|
2386 buf_end += 3;
|
|
2387 STORE_JUMP (on_failure_jump, buf_end, laststart + 3);
|
|
2388 buf_end += 3;
|
428
|
2389 }
|
|
2390 else
|
|
2391 {
|
|
2392 /* "a+?" becomes:
|
|
2393 0: /exactn/1/A
|
|
2394 3: /on_failure_jump to 0
|
|
2395 6: end of pattern.
|
|
2396 */
|
|
2397 GET_BUFFER_SPACE (3);
|
446
|
2398 STORE_JUMP (on_failure_jump, buf_end, laststart);
|
|
2399 buf_end += 3;
|
428
|
2400 }
|
|
2401 }
|
|
2402 else
|
|
2403 {
|
|
2404 /* Are we optimizing this jump? */
|
460
|
2405 re_bool keep_string_p = false;
|
428
|
2406
|
|
2407 if (many_times_ok)
|
446
|
2408 { /* More than one repetition is allowed, so put in
|
|
2409 at the end a backward relative jump from
|
|
2410 `buf_end' to before the next jump we're going
|
|
2411 to put in below (which jumps from laststart to
|
|
2412 after this jump).
|
428
|
2413
|
|
2414 But if we are at the `*' in the exact sequence `.*\n',
|
|
2415 insert an unconditional jump backwards to the .,
|
|
2416 instead of the beginning of the loop. This way we only
|
|
2417 push a failure point once, instead of every time
|
|
2418 through the loop. */
|
|
2419 assert (p - 1 > pattern);
|
|
2420
|
|
2421 /* Allocate the space for the jump. */
|
|
2422 GET_BUFFER_SPACE (3);
|
|
2423
|
|
2424 /* We know we are not at the first character of the
|
|
2425 pattern, because laststart was nonzero. And we've
|
|
2426 already incremented `p', by the way, to be the
|
|
2427 character after the `*'. Do we have to do something
|
|
2428 analogous here for null bytes, because of
|
|
2429 RE_DOT_NOT_NULL? */
|
446
|
2430 if (*(p - 2) == '.'
|
428
|
2431 && zero_times_ok
|
446
|
2432 && p < pend && *p == '\n'
|
428
|
2433 && !(syntax & RE_DOT_NEWLINE))
|
|
2434 { /* We have .*\n. */
|
446
|
2435 STORE_JUMP (jump, buf_end, laststart);
|
428
|
2436 keep_string_p = true;
|
|
2437 }
|
|
2438 else
|
|
2439 /* Anything else. */
|
446
|
2440 STORE_JUMP (maybe_pop_jump, buf_end, laststart - 3);
|
428
|
2441
|
|
2442 /* We've added more stuff to the buffer. */
|
446
|
2443 buf_end += 3;
|
428
|
2444 }
|
|
2445
|
446
|
2446 /* On failure, jump from laststart to buf_end + 3,
|
|
2447 which will be the end of the buffer after this jump
|
|
2448 is inserted. */
|
428
|
2449 GET_BUFFER_SPACE (3);
|
|
2450 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
|
|
2451 : on_failure_jump,
|
446
|
2452 laststart, buf_end + 3);
|
|
2453 buf_end += 3;
|
428
|
2454
|
|
2455 if (!zero_times_ok)
|
|
2456 {
|
|
2457 /* At least one repetition is required, so insert a
|
|
2458 `dummy_failure_jump' before the initial
|
|
2459 `on_failure_jump' instruction of the loop. This
|
|
2460 effects a skip over that instruction the first time
|
|
2461 we hit that loop. */
|
|
2462 GET_BUFFER_SPACE (3);
|
|
2463 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
|
446
|
2464 buf_end += 3;
|
428
|
2465 }
|
|
2466 }
|
|
2467 pending_exact = 0;
|
|
2468 }
|
|
2469 break;
|
|
2470
|
|
2471
|
|
2472 case '.':
|
446
|
2473 laststart = buf_end;
|
428
|
2474 BUF_PUSH (anychar);
|
|
2475 break;
|
|
2476
|
|
2477
|
|
2478 case '[':
|
|
2479 {
|
|
2480 /* XEmacs change: this whole section */
|
460
|
2481 re_bool had_char_class = false;
|
428
|
2482 #ifdef MULE
|
460
|
2483 re_bool has_extended_chars = false;
|
428
|
2484 REGISTER Lisp_Object rtab = Qnil;
|
|
2485 #endif
|
|
2486
|
|
2487 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
|
|
2488
|
|
2489 /* Ensure that we have enough space to push a charset: the
|
|
2490 opcode, the length count, and the bitset; 34 bytes in all. */
|
|
2491 GET_BUFFER_SPACE (34);
|
|
2492
|
446
|
2493 laststart = buf_end;
|
428
|
2494
|
|
2495 /* We test `*p == '^' twice, instead of using an if
|
|
2496 statement, so we only need one BUF_PUSH. */
|
|
2497 BUF_PUSH (*p == '^' ? charset_not : charset);
|
|
2498 if (*p == '^')
|
|
2499 p++;
|
|
2500
|
|
2501 /* Remember the first position in the bracket expression. */
|
|
2502 p1 = p;
|
|
2503
|
|
2504 /* Push the number of bytes in the bitmap. */
|
|
2505 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
|
|
2506
|
|
2507 /* Clear the whole map. */
|
446
|
2508 memset (buf_end, 0, (1 << BYTEWIDTH) / BYTEWIDTH);
|
428
|
2509
|
|
2510 /* charset_not matches newline according to a syntax bit. */
|
446
|
2511 if ((re_opcode_t) buf_end[-2] == charset_not
|
428
|
2512 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
|
|
2513 SET_LIST_BIT ('\n');
|
|
2514
|
|
2515 #ifdef MULE
|
|
2516 start_over_with_extended:
|
|
2517 if (has_extended_chars)
|
|
2518 {
|
|
2519 /* There are extended chars here, which means we need to start
|
|
2520 over and shift to unified range-table format. */
|
446
|
2521 if (buf_end[-2] == charset)
|
|
2522 buf_end[-2] = charset_mule;
|
428
|
2523 else
|
446
|
2524 buf_end[-2] = charset_mule_not;
|
|
2525 buf_end--;
|
428
|
2526 p = p1; /* go back to the beginning of the charset, after
|
|
2527 a possible ^. */
|
|
2528 rtab = Vthe_lisp_rangetab;
|
|
2529 Fclear_range_table (rtab);
|
|
2530
|
|
2531 /* charset_not matches newline according to a syntax bit. */
|
446
|
2532 if ((re_opcode_t) buf_end[-1] == charset_mule_not
|
428
|
2533 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
|
|
2534 SET_EITHER_BIT ('\n');
|
|
2535 }
|
|
2536 #endif /* MULE */
|
|
2537
|
|
2538 /* Read in characters and ranges, setting map bits. */
|
|
2539 for (;;)
|
|
2540 {
|
|
2541 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
|
|
2542
|
446
|
2543 PATFETCH (c);
|
428
|
2544
|
|
2545 #ifdef MULE
|
|
2546 if (c >= 0x80 && !has_extended_chars)
|
|
2547 {
|
|
2548 has_extended_chars = 1;
|
|
2549 /* Frumble-bumble, we've found some extended chars.
|
|
2550 Need to start over, process everything using
|
|
2551 the general extended-char mechanism, and need
|
|
2552 to use charset_mule and charset_mule_not instead
|
|
2553 of charset and charset_not. */
|
|
2554 goto start_over_with_extended;
|
|
2555 }
|
|
2556 #endif /* MULE */
|
|
2557 /* \ might escape characters inside [...] and [^...]. */
|
|
2558 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
|
|
2559 {
|
|
2560 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
|
|
2561
|
446
|
2562 PATFETCH (c1);
|
428
|
2563 #ifdef MULE
|
|
2564 if (c1 >= 0x80 && !has_extended_chars)
|
|
2565 {
|
|
2566 has_extended_chars = 1;
|
|
2567 goto start_over_with_extended;
|
|
2568 }
|
|
2569 #endif /* MULE */
|
|
2570 SET_EITHER_BIT (c1);
|
|
2571 continue;
|
|
2572 }
|
|
2573
|
|
2574 /* Could be the end of the bracket expression. If it's
|
|
2575 not (i.e., when the bracket expression is `[]' so
|
|
2576 far), the ']' character bit gets set way below. */
|
|
2577 if (c == ']' && p != p1 + 1)
|
|
2578 break;
|
|
2579
|
|
2580 /* Look ahead to see if it's a range when the last thing
|
|
2581 was a character class. */
|
|
2582 if (had_char_class && c == '-' && *p != ']')
|
|
2583 FREE_STACK_RETURN (REG_ERANGE);
|
|
2584
|
|
2585 /* Look ahead to see if it's a range when the last thing
|
|
2586 was a character: if this is a hyphen not at the
|
|
2587 beginning or the end of a list, then it's the range
|
|
2588 operator. */
|
|
2589 if (c == '-'
|
|
2590 && !(p - 2 >= pattern && p[-2] == '[')
|
446
|
2591 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
|
428
|
2592 && *p != ']')
|
|
2593 {
|
|
2594 reg_errcode_t ret;
|
|
2595
|
|
2596 #ifdef MULE
|
|
2597 if (* (unsigned char *) p >= 0x80 && !has_extended_chars)
|
|
2598 {
|
|
2599 has_extended_chars = 1;
|
|
2600 goto start_over_with_extended;
|
|
2601 }
|
|
2602 if (has_extended_chars)
|
|
2603 ret = compile_extended_range (&p, pend, translate,
|
|
2604 syntax, rtab);
|
|
2605 else
|
|
2606 #endif /* MULE */
|
446
|
2607 ret = compile_range (&p, pend, translate, syntax, buf_end);
|
428
|
2608 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
|
|
2609 }
|
|
2610
|
|
2611 else if (p[0] == '-' && p[1] != ']')
|
|
2612 { /* This handles ranges made up of characters only. */
|
|
2613 reg_errcode_t ret;
|
|
2614
|
|
2615 /* Move past the `-'. */
|
|
2616 PATFETCH (c1);
|
|
2617
|
|
2618 #ifdef MULE
|
|
2619 if (* (unsigned char *) p >= 0x80 && !has_extended_chars)
|
|
2620 {
|
|
2621 has_extended_chars = 1;
|
|
2622 goto start_over_with_extended;
|
|
2623 }
|
|
2624 if (has_extended_chars)
|
|
2625 ret = compile_extended_range (&p, pend, translate,
|
|
2626 syntax, rtab);
|
|
2627 else
|
|
2628 #endif /* MULE */
|
446
|
2629 ret = compile_range (&p, pend, translate, syntax, buf_end);
|
428
|
2630 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
|
|
2631 }
|
|
2632
|
|
2633 /* See if we're at the beginning of a possible character
|
|
2634 class. */
|
|
2635
|
|
2636 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
|
|
2637 { /* Leave room for the null. */
|
|
2638 char str[CHAR_CLASS_MAX_LENGTH + 1];
|
|
2639
|
|
2640 PATFETCH (c);
|
|
2641 c1 = 0;
|
|
2642
|
|
2643 /* If pattern is `[[:'. */
|
|
2644 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
|
|
2645
|
|
2646 for (;;)
|
|
2647 {
|
446
|
2648 /* #### This code is unused.
|
|
2649 Correctness is not checked after TRT
|
|
2650 table change. */
|
428
|
2651 PATFETCH (c);
|
|
2652 if (c == ':' || c == ']' || p == pend
|
|
2653 || c1 == CHAR_CLASS_MAX_LENGTH)
|
|
2654 break;
|
442
|
2655 str[c1++] = (char) c;
|
428
|
2656 }
|
|
2657 str[c1] = '\0';
|
|
2658
|
446
|
2659 /* If isn't a word bracketed by `[:' and `:]':
|
428
|
2660 undo the ending character, the letters, and leave
|
|
2661 the leading `:' and `[' (but set bits for them). */
|
|
2662 if (c == ':' && *p == ']')
|
|
2663 {
|
|
2664 int ch;
|
460
|
2665 re_bool is_alnum = STREQ (str, "alnum");
|
|
2666 re_bool is_alpha = STREQ (str, "alpha");
|
|
2667 re_bool is_blank = STREQ (str, "blank");
|
|
2668 re_bool is_cntrl = STREQ (str, "cntrl");
|
|
2669 re_bool is_digit = STREQ (str, "digit");
|
|
2670 re_bool is_graph = STREQ (str, "graph");
|
|
2671 re_bool is_lower = STREQ (str, "lower");
|
|
2672 re_bool is_print = STREQ (str, "print");
|
|
2673 re_bool is_punct = STREQ (str, "punct");
|
|
2674 re_bool is_space = STREQ (str, "space");
|
|
2675 re_bool is_upper = STREQ (str, "upper");
|
|
2676 re_bool is_xdigit = STREQ (str, "xdigit");
|
428
|
2677
|
|
2678 if (!IS_CHAR_CLASS (str))
|
|
2679 FREE_STACK_RETURN (REG_ECTYPE);
|
|
2680
|
|
2681 /* Throw away the ] at the end of the character
|
|
2682 class. */
|
|
2683 PATFETCH (c);
|
|
2684
|
|
2685 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
|
|
2686
|
|
2687 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
|
|
2688 {
|
|
2689 /* This was split into 3 if's to
|
|
2690 avoid an arbitrary limit in some compiler. */
|
|
2691 if ( (is_alnum && ISALNUM (ch))
|
|
2692 || (is_alpha && ISALPHA (ch))
|
|
2693 || (is_blank && ISBLANK (ch))
|
|
2694 || (is_cntrl && ISCNTRL (ch)))
|
|
2695 SET_EITHER_BIT (ch);
|
|
2696 if ( (is_digit && ISDIGIT (ch))
|
|
2697 || (is_graph && ISGRAPH (ch))
|
|
2698 || (is_lower && ISLOWER (ch))
|
|
2699 || (is_print && ISPRINT (ch)))
|
|
2700 SET_EITHER_BIT (ch);
|
|
2701 if ( (is_punct && ISPUNCT (ch))
|
|
2702 || (is_space && ISSPACE (ch))
|
|
2703 || (is_upper && ISUPPER (ch))
|
|
2704 || (is_xdigit && ISXDIGIT (ch)))
|
|
2705 SET_EITHER_BIT (ch);
|
|
2706 }
|
|
2707 had_char_class = true;
|
|
2708 }
|
|
2709 else
|
|
2710 {
|
|
2711 c1++;
|
|
2712 while (c1--)
|
|
2713 PATUNFETCH;
|
|
2714 SET_EITHER_BIT ('[');
|
|
2715 SET_EITHER_BIT (':');
|
|
2716 had_char_class = false;
|
|
2717 }
|
|
2718 }
|
|
2719 else
|
|
2720 {
|
|
2721 had_char_class = false;
|
|
2722 SET_EITHER_BIT (c);
|
|
2723 }
|
|
2724 }
|
|
2725
|
|
2726 #ifdef MULE
|
|
2727 if (has_extended_chars)
|
|
2728 {
|
|
2729 /* We have a range table, not a bit vector. */
|
|
2730 int bytes_needed =
|
|
2731 unified_range_table_bytes_needed (rtab);
|
|
2732 GET_BUFFER_SPACE (bytes_needed);
|
446
|
2733 unified_range_table_copy_data (rtab, buf_end);
|
|
2734 buf_end += unified_range_table_bytes_used (buf_end);
|
428
|
2735 break;
|
|
2736 }
|
|
2737 #endif /* MULE */
|
|
2738 /* Discard any (non)matching list bytes that are all 0 at the
|
|
2739 end of the map. Decrease the map-length byte too. */
|
446
|
2740 while ((int) buf_end[-1] > 0 && buf_end[buf_end[-1] - 1] == 0)
|
|
2741 buf_end[-1]--;
|
|
2742 buf_end += buf_end[-1];
|
428
|
2743 }
|
|
2744 break;
|
|
2745
|
|
2746
|
|
2747 case '(':
|
|
2748 if (syntax & RE_NO_BK_PARENS)
|
|
2749 goto handle_open;
|
|
2750 else
|
|
2751 goto normal_char;
|
|
2752
|
|
2753
|
|
2754 case ')':
|
|
2755 if (syntax & RE_NO_BK_PARENS)
|
|
2756 goto handle_close;
|
|
2757 else
|
|
2758 goto normal_char;
|
|
2759
|
|
2760
|
|
2761 case '\n':
|
|
2762 if (syntax & RE_NEWLINE_ALT)
|
|
2763 goto handle_alt;
|
|
2764 else
|
|
2765 goto normal_char;
|
|
2766
|
|
2767
|
|
2768 case '|':
|
|
2769 if (syntax & RE_NO_BK_VBAR)
|
|
2770 goto handle_alt;
|
|
2771 else
|
|
2772 goto normal_char;
|
|
2773
|
|
2774
|
|
2775 case '{':
|
|
2776 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
|
|
2777 goto handle_interval;
|
|
2778 else
|
|
2779 goto normal_char;
|
|
2780
|
|
2781
|
|
2782 case '\\':
|
|
2783 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
|
|
2784
|
|
2785 /* Do not translate the character after the \, so that we can
|
|
2786 distinguish, e.g., \B from \b, even if we normally would
|
|
2787 translate, e.g., B to b. */
|
|
2788 PATFETCH_RAW (c);
|
|
2789
|
|
2790 switch (c)
|
|
2791 {
|
|
2792 case '(':
|
|
2793 if (syntax & RE_NO_BK_PARENS)
|
|
2794 goto normal_backslash;
|
|
2795
|
|
2796 handle_open:
|
|
2797 {
|
|
2798 regnum_t r;
|
502
|
2799 int shy = 0;
|
428
|
2800
|
|
2801 if (!(syntax & RE_NO_SHY_GROUPS)
|
|
2802 && p != pend
|
446
|
2803 && *p == '?')
|
428
|
2804 {
|
|
2805 p++;
|
446
|
2806 PATFETCH (c);
|
428
|
2807 switch (c)
|
|
2808 {
|
|
2809 case ':': /* shy groups */
|
502
|
2810 shy = 1;
|
428
|
2811 break;
|
|
2812
|
|
2813 /* All others are reserved for future constructs. */
|
|
2814 default:
|
|
2815 FREE_STACK_RETURN (REG_BADPAT);
|
|
2816 }
|
|
2817 }
|
502
|
2818
|
|
2819 r = ++regnum;
|
|
2820 bufp->re_ngroups++;
|
|
2821 if (!shy)
|
|
2822 {
|
|
2823 bufp->re_nsub++;
|
|
2824 while (bufp->external_to_internal_register_size <=
|
|
2825 bufp->re_nsub)
|
|
2826 {
|
|
2827 int i;
|
|
2828 int old_size =
|
|
2829 bufp->external_to_internal_register_size;
|
|
2830 bufp->external_to_internal_register_size += 5;
|
|
2831 RETALLOC (bufp->external_to_internal_register,
|
|
2832 bufp->external_to_internal_register_size,
|
|
2833 int);
|
|
2834 /* debugging */
|
|
2835 for (i = old_size;
|
|
2836 i < bufp->external_to_internal_register_size; i++)
|
|
2837 bufp->external_to_internal_register[i] =
|
|
2838 (int) 0xDEADBEEF;
|
|
2839 }
|
|
2840
|
|
2841 bufp->external_to_internal_register[bufp->re_nsub] =
|
|
2842 bufp->re_ngroups;
|
|
2843 }
|
428
|
2844
|
|
2845 if (COMPILE_STACK_FULL)
|
|
2846 {
|
|
2847 RETALLOC (compile_stack.stack, compile_stack.size << 1,
|
|
2848 compile_stack_elt_t);
|
|
2849 if (compile_stack.stack == NULL) return REG_ESPACE;
|
|
2850
|
|
2851 compile_stack.size <<= 1;
|
|
2852 }
|
|
2853
|
|
2854 /* These are the values to restore when we hit end of this
|
|
2855 group. They are all relative offsets, so that if the
|
|
2856 whole pattern moves because of realloc, they will still
|
|
2857 be valid. */
|
|
2858 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
|
|
2859 COMPILE_STACK_TOP.fixup_alt_jump
|
|
2860 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
|
446
|
2861 COMPILE_STACK_TOP.laststart_offset = buf_end - bufp->buffer;
|
428
|
2862 COMPILE_STACK_TOP.regnum = r;
|
|
2863
|
|
2864 /* We will eventually replace the 0 with the number of
|
|
2865 groups inner to this one. But do not push a
|
|
2866 start_memory for groups beyond the last one we can
|
502
|
2867 represent in the compiled pattern.
|
|
2868 #### bad bad bad. this will fail in lots of ways, if we
|
|
2869 ever have to backtrack for these groups.
|
|
2870 */
|
428
|
2871 if (r <= MAX_REGNUM)
|
|
2872 {
|
|
2873 COMPILE_STACK_TOP.inner_group_offset
|
446
|
2874 = buf_end - bufp->buffer + 2;
|
428
|
2875 BUF_PUSH_3 (start_memory, r, 0);
|
|
2876 }
|
|
2877
|
|
2878 compile_stack.avail++;
|
|
2879
|
|
2880 fixup_alt_jump = 0;
|
|
2881 laststart = 0;
|
446
|
2882 begalt = buf_end;
|
428
|
2883 /* If we've reached MAX_REGNUM groups, then this open
|
|
2884 won't actually generate any code, so we'll have to
|
|
2885 clear pending_exact explicitly. */
|
|
2886 pending_exact = 0;
|
|
2887 }
|
|
2888 break;
|
|
2889
|
|
2890
|
|
2891 case ')':
|
|
2892 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
|
|
2893
|
|
2894 if (COMPILE_STACK_EMPTY) {
|
|
2895 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
|
|
2896 goto normal_backslash;
|
|
2897 else
|
|
2898 FREE_STACK_RETURN (REG_ERPAREN);
|
|
2899 }
|
|
2900
|
|
2901 handle_close:
|
|
2902 if (fixup_alt_jump)
|
|
2903 { /* Push a dummy failure point at the end of the
|
|
2904 alternative for a possible future
|
|
2905 `pop_failure_jump' to pop. See comments at
|
|
2906 `push_dummy_failure' in `re_match_2'. */
|
|
2907 BUF_PUSH (push_dummy_failure);
|
|
2908
|
|
2909 /* We allocated space for this jump when we assigned
|
|
2910 to `fixup_alt_jump', in the `handle_alt' case below. */
|
446
|
2911 STORE_JUMP (jump_past_alt, fixup_alt_jump, buf_end - 1);
|
428
|
2912 }
|
|
2913
|
|
2914 /* See similar code for backslashed left paren above. */
|
|
2915 if (COMPILE_STACK_EMPTY) {
|
|
2916 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
|
|
2917 goto normal_char;
|
|
2918 else
|
|
2919 FREE_STACK_RETURN (REG_ERPAREN);
|
|
2920 }
|
|
2921
|
|
2922 /* Since we just checked for an empty stack above, this
|
|
2923 ``can't happen''. */
|
|
2924 assert (compile_stack.avail != 0);
|
|
2925 {
|
|
2926 /* We don't just want to restore into `regnum', because
|
|
2927 later groups should continue to be numbered higher,
|
|
2928 as in `(ab)c(de)' -- the second group is #2. */
|
|
2929 regnum_t this_group_regnum;
|
|
2930
|
|
2931 compile_stack.avail--;
|
|
2932 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
|
|
2933 fixup_alt_jump
|
|
2934 = COMPILE_STACK_TOP.fixup_alt_jump
|
|
2935 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
|
|
2936 : 0;
|
|
2937 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
|
|
2938 this_group_regnum = COMPILE_STACK_TOP.regnum;
|
|
2939 /* If we've reached MAX_REGNUM groups, then this open
|
|
2940 won't actually generate any code, so we'll have to
|
|
2941 clear pending_exact explicitly. */
|
|
2942 pending_exact = 0;
|
|
2943
|
|
2944 /* We're at the end of the group, so now we know how many
|
|
2945 groups were inside this one. */
|
|
2946 if (this_group_regnum <= MAX_REGNUM)
|
|
2947 {
|
|
2948 unsigned char *inner_group_loc
|
|
2949 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
|
|
2950
|
|
2951 *inner_group_loc = regnum - this_group_regnum;
|
|
2952 BUF_PUSH_3 (stop_memory, this_group_regnum,
|
|
2953 regnum - this_group_regnum);
|
|
2954 }
|
|
2955 }
|
|
2956 break;
|
|
2957
|
|
2958
|
|
2959 case '|': /* `\|'. */
|
|
2960 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
|
|
2961 goto normal_backslash;
|
|
2962 handle_alt:
|
|
2963 if (syntax & RE_LIMITED_OPS)
|
|
2964 goto normal_char;
|
|
2965
|
|
2966 /* Insert before the previous alternative a jump which
|
|
2967 jumps to this alternative if the former fails. */
|
|
2968 GET_BUFFER_SPACE (3);
|
446
|
2969 INSERT_JUMP (on_failure_jump, begalt, buf_end + 6);
|
428
|
2970 pending_exact = 0;
|
446
|
2971 buf_end += 3;
|
428
|
2972
|
|
2973 /* The alternative before this one has a jump after it
|
|
2974 which gets executed if it gets matched. Adjust that
|
|
2975 jump so it will jump to this alternative's analogous
|
|
2976 jump (put in below, which in turn will jump to the next
|
|
2977 (if any) alternative's such jump, etc.). The last such
|
|
2978 jump jumps to the correct final destination. A picture:
|
|
2979 _____ _____
|
|
2980 | | | |
|
|
2981 | v | v
|
|
2982 a | b | c
|
|
2983
|
|
2984 If we are at `b', then fixup_alt_jump right now points to a
|
|
2985 three-byte space after `a'. We'll put in the jump, set
|
|
2986 fixup_alt_jump to right after `b', and leave behind three
|
|
2987 bytes which we'll fill in when we get to after `c'. */
|
|
2988
|
|
2989 if (fixup_alt_jump)
|
446
|
2990 STORE_JUMP (jump_past_alt, fixup_alt_jump, buf_end);
|
428
|
2991
|
|
2992 /* Mark and leave space for a jump after this alternative,
|
|
2993 to be filled in later either by next alternative or
|
|
2994 when know we're at the end of a series of alternatives. */
|
446
|
2995 fixup_alt_jump = buf_end;
|
428
|
2996 GET_BUFFER_SPACE (3);
|
446
|
2997 buf_end += 3;
|
428
|
2998
|
|
2999 laststart = 0;
|
446
|
3000 begalt = buf_end;
|
428
|
3001 break;
|
|
3002
|
|
3003
|
|
3004 case '{':
|
|
3005 /* If \{ is a literal. */
|
|
3006 if (!(syntax & RE_INTERVALS)
|
|
3007 /* If we're at `\{' and it's not the open-interval
|
|
3008 operator. */
|
|
3009 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
|
|
3010 || (p - 2 == pattern && p == pend))
|
|
3011 goto normal_backslash;
|
|
3012
|
|
3013 handle_interval:
|
|
3014 {
|
|
3015 /* If got here, then the syntax allows intervals. */
|
|
3016
|
|
3017 /* At least (most) this many matches must be made. */
|
|
3018 int lower_bound = -1, upper_bound = -1;
|
|
3019
|
|
3020 beg_interval = p - 1;
|
|
3021
|
|
3022 if (p == pend)
|
|
3023 {
|
|
3024 if (syntax & RE_NO_BK_BRACES)
|
|
3025 goto unfetch_interval;
|
|
3026 else
|
|
3027 FREE_STACK_RETURN (REG_EBRACE);
|
|
3028 }
|
|
3029
|
|
3030 GET_UNSIGNED_NUMBER (lower_bound);
|
|
3031
|
|
3032 if (c == ',')
|
|
3033 {
|
|
3034 GET_UNSIGNED_NUMBER (upper_bound);
|
|
3035 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
|
|
3036 }
|
|
3037 else
|
|
3038 /* Interval such as `{1}' => match exactly once. */
|
|
3039 upper_bound = lower_bound;
|
|
3040
|
|
3041 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
|
|
3042 || lower_bound > upper_bound)
|
|
3043 {
|
|
3044 if (syntax & RE_NO_BK_BRACES)
|
|
3045 goto unfetch_interval;
|
|
3046 else
|
|
3047 FREE_STACK_RETURN (REG_BADBR);
|
|
3048 }
|
|
3049
|
|
3050 if (!(syntax & RE_NO_BK_BRACES))
|
|
3051 {
|
|
3052 if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
|
|
3053
|
|
3054 PATFETCH (c);
|
|
3055 }
|
|
3056
|
|
3057 if (c != '}')
|
|
3058 {
|
|
3059 if (syntax & RE_NO_BK_BRACES)
|
|
3060 goto unfetch_interval;
|
|
3061 else
|
|
3062 FREE_STACK_RETURN (REG_BADBR);
|
|
3063 }
|
|
3064
|
|
3065 /* We just parsed a valid interval. */
|
|
3066
|
|
3067 /* If it's invalid to have no preceding re. */
|
|
3068 if (!laststart)
|
|
3069 {
|
|
3070 if (syntax & RE_CONTEXT_INVALID_OPS)
|
|
3071 FREE_STACK_RETURN (REG_BADRPT);
|
|
3072 else if (syntax & RE_CONTEXT_INDEP_OPS)
|
446
|
3073 laststart = buf_end;
|
428
|
3074 else
|
|
3075 goto unfetch_interval;
|
|
3076 }
|
|
3077
|
|
3078 /* If the upper bound is zero, don't want to succeed at
|
|
3079 all; jump from `laststart' to `b + 3', which will be
|
|
3080 the end of the buffer after we insert the jump. */
|
|
3081 if (upper_bound == 0)
|
|
3082 {
|
|
3083 GET_BUFFER_SPACE (3);
|
446
|
3084 INSERT_JUMP (jump, laststart, buf_end + 3);
|
|
3085 buf_end += 3;
|
428
|
3086 }
|
|
3087
|
|
3088 /* Otherwise, we have a nontrivial interval. When
|
|
3089 we're all done, the pattern will look like:
|
|
3090 set_number_at <jump count> <upper bound>
|
|
3091 set_number_at <succeed_n count> <lower bound>
|
|
3092 succeed_n <after jump addr> <succeed_n count>
|
|
3093 <body of loop>
|
|
3094 jump_n <succeed_n addr> <jump count>
|
|
3095 (The upper bound and `jump_n' are omitted if
|
|
3096 `upper_bound' is 1, though.) */
|
|
3097 else
|
|
3098 { /* If the upper bound is > 1, we need to insert
|
|
3099 more at the end of the loop. */
|
647
|
3100 int nbytes = 10 + (upper_bound > 1) * 10;
|
428
|
3101
|
|
3102 GET_BUFFER_SPACE (nbytes);
|
|
3103
|
|
3104 /* Initialize lower bound of the `succeed_n', even
|
|
3105 though it will be set during matching by its
|
|
3106 attendant `set_number_at' (inserted next),
|
|
3107 because `re_compile_fastmap' needs to know.
|
|
3108 Jump to the `jump_n' we might insert below. */
|
|
3109 INSERT_JUMP2 (succeed_n, laststart,
|
446
|
3110 buf_end + 5 + (upper_bound > 1) * 5,
|
428
|
3111 lower_bound);
|
446
|
3112 buf_end += 5;
|
428
|
3113
|
|
3114 /* Code to initialize the lower bound. Insert
|
|
3115 before the `succeed_n'. The `5' is the last two
|
|
3116 bytes of this `set_number_at', plus 3 bytes of
|
|
3117 the following `succeed_n'. */
|
446
|
3118 insert_op2 (set_number_at, laststart, 5, lower_bound, buf_end);
|
|
3119 buf_end += 5;
|
428
|
3120
|
|
3121 if (upper_bound > 1)
|
|
3122 { /* More than one repetition is allowed, so
|
|
3123 append a backward jump to the `succeed_n'
|
|
3124 that starts this interval.
|
|
3125
|
|
3126 When we've reached this during matching,
|
|
3127 we'll have matched the interval once, so
|
|
3128 jump back only `upper_bound - 1' times. */
|
446
|
3129 STORE_JUMP2 (jump_n, buf_end, laststart + 5,
|
428
|
3130 upper_bound - 1);
|
446
|
3131 buf_end += 5;
|
428
|
3132
|
|
3133 /* The location we want to set is the second
|
|
3134 parameter of the `jump_n'; that is `b-2' as
|
|
3135 an absolute address. `laststart' will be
|
|
3136 the `set_number_at' we're about to insert;
|
|
3137 `laststart+3' the number to set, the source
|
|
3138 for the relative address. But we are
|
|
3139 inserting into the middle of the pattern --
|
|
3140 so everything is getting moved up by 5.
|
|
3141 Conclusion: (b - 2) - (laststart + 3) + 5,
|
|
3142 i.e., b - laststart.
|
|
3143
|
|
3144 We insert this at the beginning of the loop
|
|
3145 so that if we fail during matching, we'll
|
|
3146 reinitialize the bounds. */
|
446
|
3147 insert_op2 (set_number_at, laststart,
|
|
3148 buf_end - laststart,
|
|
3149 upper_bound - 1, buf_end);
|
|
3150 buf_end += 5;
|
428
|
3151 }
|
|
3152 }
|
|
3153 pending_exact = 0;
|
|
3154 beg_interval = NULL;
|
|
3155 }
|
|
3156 break;
|
|
3157
|
|
3158 unfetch_interval:
|
|
3159 /* If an invalid interval, match the characters as literals. */
|
|
3160 assert (beg_interval);
|
|
3161 p = beg_interval;
|
|
3162 beg_interval = NULL;
|
|
3163
|
|
3164 /* normal_char and normal_backslash need `c'. */
|
|
3165 PATFETCH (c);
|
|
3166
|
|
3167 if (!(syntax & RE_NO_BK_BRACES))
|
|
3168 {
|
|
3169 if (p > pattern && p[-1] == '\\')
|
|
3170 goto normal_backslash;
|
|
3171 }
|
|
3172 goto normal_char;
|
|
3173
|
|
3174 #ifdef emacs
|
|
3175 /* There is no way to specify the before_dot and after_dot
|
|
3176 operators. rms says this is ok. --karl */
|
|
3177 case '=':
|
|
3178 BUF_PUSH (at_dot);
|
|
3179 break;
|
|
3180
|
|
3181 case 's':
|
446
|
3182 laststart = buf_end;
|
428
|
3183 PATFETCH (c);
|
|
3184 /* XEmacs addition */
|
|
3185 if (c >= 0x80 || syntax_spec_code[c] == 0377)
|
|
3186 FREE_STACK_RETURN (REG_ESYNTAX);
|
|
3187 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
|
|
3188 break;
|
|
3189
|
|
3190 case 'S':
|
446
|
3191 laststart = buf_end;
|
428
|
3192 PATFETCH (c);
|
|
3193 /* XEmacs addition */
|
|
3194 if (c >= 0x80 || syntax_spec_code[c] == 0377)
|
|
3195 FREE_STACK_RETURN (REG_ESYNTAX);
|
|
3196 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
|
|
3197 break;
|
|
3198
|
|
3199 #ifdef MULE
|
|
3200 /* 97.2.17 jhod merged in to XEmacs from mule-2.3 */
|
|
3201 case 'c':
|
446
|
3202 laststart = buf_end;
|
428
|
3203 PATFETCH_RAW (c);
|
|
3204 if (c < 32 || c > 127)
|
|
3205 FREE_STACK_RETURN (REG_ECATEGORY);
|
|
3206 BUF_PUSH_2 (categoryspec, c);
|
|
3207 break;
|
|
3208
|
|
3209 case 'C':
|
446
|
3210 laststart = buf_end;
|
428
|
3211 PATFETCH_RAW (c);
|
|
3212 if (c < 32 || c > 127)
|
|
3213 FREE_STACK_RETURN (REG_ECATEGORY);
|
|
3214 BUF_PUSH_2 (notcategoryspec, c);
|
|
3215 break;
|
|
3216 /* end of category patch */
|
|
3217 #endif /* MULE */
|
|
3218 #endif /* emacs */
|
|
3219
|
|
3220
|
|
3221 case 'w':
|
446
|
3222 laststart = buf_end;
|
428
|
3223 BUF_PUSH (wordchar);
|
|
3224 break;
|
|
3225
|
|
3226
|
|
3227 case 'W':
|
446
|
3228 laststart = buf_end;
|
428
|
3229 BUF_PUSH (notwordchar);
|
|
3230 break;
|
|
3231
|
|
3232
|
|
3233 case '<':
|
|
3234 BUF_PUSH (wordbeg);
|
|
3235 break;
|
|
3236
|
|
3237 case '>':
|
|
3238 BUF_PUSH (wordend);
|
|
3239 break;
|
|
3240
|
|
3241 case 'b':
|
|
3242 BUF_PUSH (wordbound);
|
|
3243 break;
|
|
3244
|
|
3245 case 'B':
|
|
3246 BUF_PUSH (notwordbound);
|
|
3247 break;
|
|
3248
|
|
3249 case '`':
|
|
3250 BUF_PUSH (begbuf);
|
|
3251 break;
|
|
3252
|
|
3253 case '\'':
|
|
3254 BUF_PUSH (endbuf);
|
|
3255 break;
|
|
3256
|
|
3257 case '1': case '2': case '3': case '4': case '5':
|
|
3258 case '6': case '7': case '8': case '9':
|
446
|
3259 {
|
502
|
3260 regnum_t reg, regint;
|
|
3261 int may_need_to_unfetch = 0;
|
446
|
3262 if (syntax & RE_NO_BK_REFS)
|
|
3263 goto normal_char;
|
|
3264
|
502
|
3265 /* This only goes up to 99. It could be extended to work
|
|
3266 up to 255 (the maximum number of registers that can be
|
|
3267 handled by the current regexp engine, because it stores
|
|
3268 its register numbers in the compiled pattern as one byte,
|
|
3269 ugh). Doing that's a bit trickier, because you might
|
|
3270 have the case where \25 a back-ref but \255 is not, ... */
|
446
|
3271 reg = c - '0';
|
502
|
3272 if (p < pend)
|
|
3273 {
|
|
3274 PATFETCH (c);
|
|
3275 if (c >= '0' && c <= '9')
|
|
3276 {
|
|
3277 regnum_t new_reg = reg * 10 + c - '0';
|
|
3278 if (new_reg <= bufp->re_nsub)
|
|
3279 {
|
|
3280 reg = new_reg;
|
|
3281 may_need_to_unfetch = 1;
|
|
3282 }
|
|
3283 else
|
|
3284 PATUNFETCH;
|
|
3285 }
|
523
|
3286 else
|
|
3287 PATUNFETCH;
|
502
|
3288 }
|
|
3289
|
|
3290 if (reg > bufp->re_nsub)
|
446
|
3291 FREE_STACK_RETURN (REG_ESUBREG);
|
|
3292
|
502
|
3293 regint = bufp->external_to_internal_register[reg];
|
446
|
3294 /* Can't back reference to a subexpression if inside of it. */
|
502
|
3295 if (group_in_compile_stack (compile_stack, regint))
|
|
3296 {
|
|
3297 if (may_need_to_unfetch)
|
|
3298 PATUNFETCH;
|
|
3299 goto normal_char;
|
|
3300 }
|
|
3301
|
|
3302 #ifdef emacs
|
|
3303 if (reg > 9 &&
|
|
3304 bufp->warned_about_incompatible_back_references == 0)
|
|
3305 {
|
|
3306 bufp->warned_about_incompatible_back_references = 1;
|
|
3307 warn_when_safe (intern ("regex"), Qinfo,
|
|
3308 "Back reference \\%d now has new "
|
|
3309 "semantics in %s", reg, pattern);
|
|
3310 }
|
|
3311 #endif
|
446
|
3312
|
|
3313 laststart = buf_end;
|
502
|
3314 BUF_PUSH_2 (duplicate, regint);
|
446
|
3315 }
|
428
|
3316 break;
|
|
3317
|
|
3318
|
|
3319 case '+':
|
|
3320 case '?':
|
|
3321 if (syntax & RE_BK_PLUS_QM)
|
|
3322 goto handle_plus;
|
|
3323 else
|
|
3324 goto normal_backslash;
|
|
3325
|
|
3326 default:
|
|
3327 normal_backslash:
|
|
3328 /* You might think it would be useful for \ to mean
|
|
3329 not to translate; but if we don't translate it,
|
|
3330 it will never match anything. */
|
826
|
3331 c = RE_TRANSLATE (c);
|
428
|
3332 goto normal_char;
|
|
3333 }
|
|
3334 break;
|
|
3335
|
|
3336
|
|
3337 default:
|
|
3338 /* Expects the character in `c'. */
|
|
3339 /* `p' points to the location after where `c' came from. */
|
|
3340 normal_char:
|
|
3341 {
|
|
3342 /* XEmacs: modifications here for Mule. */
|
|
3343 /* `q' points to the beginning of the next char. */
|
446
|
3344 re_char *q = p;
|
428
|
3345
|
|
3346 /* If no exactn currently being built. */
|
|
3347 if (!pending_exact
|
|
3348
|
|
3349 /* If last exactn not at current position. */
|
446
|
3350 || pending_exact + *pending_exact + 1 != buf_end
|
428
|
3351
|
|
3352 /* We have only one byte following the exactn for the count. */
|
|
3353 || ((unsigned int) (*pending_exact + (q - p)) >=
|
|
3354 ((unsigned int) (1 << BYTEWIDTH) - 1))
|
|
3355
|
|
3356 /* If followed by a repetition operator. */
|
|
3357 || *q == '*' || *q == '^'
|
|
3358 || ((syntax & RE_BK_PLUS_QM)
|
|
3359 ? *q == '\\' && (q[1] == '+' || q[1] == '?')
|
|
3360 : (*q == '+' || *q == '?'))
|
|
3361 || ((syntax & RE_INTERVALS)
|
|
3362 && ((syntax & RE_NO_BK_BRACES)
|
|
3363 ? *q == '{'
|
|
3364 : (q[0] == '\\' && q[1] == '{'))))
|
|
3365 {
|
|
3366 /* Start building a new exactn. */
|
|
3367
|
446
|
3368 laststart = buf_end;
|
428
|
3369
|
|
3370 BUF_PUSH_2 (exactn, 0);
|
446
|
3371 pending_exact = buf_end - 1;
|
428
|
3372 }
|
|
3373
|
446
|
3374 #ifndef MULE
|
428
|
3375 BUF_PUSH (c);
|
|
3376 (*pending_exact)++;
|
446
|
3377 #else
|
|
3378 {
|
|
3379 Bytecount bt_count;
|
867
|
3380 Ibyte tmp_buf[MAX_ICHAR_LEN];
|
446
|
3381 int i;
|
|
3382
|
867
|
3383 bt_count = set_itext_ichar (tmp_buf, c);
|
446
|
3384
|
|
3385 for (i = 0; i < bt_count; i++)
|
|
3386 {
|
|
3387 BUF_PUSH (tmp_buf[i]);
|
|
3388 (*pending_exact)++;
|
|
3389 }
|
|
3390 }
|
|
3391 #endif
|
428
|
3392 break;
|
|
3393 }
|
|
3394 } /* switch (c) */
|
|
3395 } /* while p != pend */
|
|
3396
|
|
3397
|
|
3398 /* Through the pattern now. */
|
|
3399
|
|
3400 if (fixup_alt_jump)
|
446
|
3401 STORE_JUMP (jump_past_alt, fixup_alt_jump, buf_end);
|
428
|
3402
|
|
3403 if (!COMPILE_STACK_EMPTY)
|
|
3404 FREE_STACK_RETURN (REG_EPAREN);
|
|
3405
|
|
3406 /* If we don't want backtracking, force success
|
|
3407 the first time we reach the end of the compiled pattern. */
|
|
3408 if (syntax & RE_NO_POSIX_BACKTRACKING)
|
|
3409 BUF_PUSH (succeed);
|
|
3410
|
1726
|
3411 xfree (compile_stack.stack, compile_stack_elt_t *);
|
428
|
3412
|
|
3413 /* We have succeeded; set the length of the buffer. */
|
446
|
3414 bufp->used = buf_end - bufp->buffer;
|
428
|
3415
|
|
3416 #ifdef DEBUG
|
|
3417 if (debug)
|
|
3418 {
|
|
3419 DEBUG_PRINT1 ("\nCompiled pattern: \n");
|
|
3420 print_compiled_pattern (bufp);
|
|
3421 }
|
|
3422 #endif /* DEBUG */
|
|
3423
|
|
3424 #ifndef MATCH_MAY_ALLOCATE
|
|
3425 /* Initialize the failure stack to the largest possible stack. This
|
|
3426 isn't necessary unless we're trying to avoid calling alloca in
|
|
3427 the search and match routines. */
|
|
3428 {
|
502
|
3429 int num_regs = bufp->re_ngroups + 1;
|
428
|
3430
|
|
3431 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
|
|
3432 is strictly greater than re_max_failures, the largest possible stack
|
|
3433 is 2 * re_max_failures failure points. */
|
|
3434 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
|
|
3435 {
|
|
3436 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
|
|
3437
|
|
3438 if (! fail_stack.stack)
|
|
3439 fail_stack.stack
|
|
3440 = (fail_stack_elt_t *) xmalloc (fail_stack.size
|
|
3441 * sizeof (fail_stack_elt_t));
|
|
3442 else
|
|
3443 fail_stack.stack
|
|
3444 = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
|
|
3445 (fail_stack.size
|
|
3446 * sizeof (fail_stack_elt_t)));
|
|
3447 }
|
|
3448
|
|
3449 regex_grow_registers (num_regs);
|
|
3450 }
|
|
3451 #endif /* not MATCH_MAY_ALLOCATE */
|
|
3452
|
|
3453 return REG_NOERROR;
|
|
3454 } /* regex_compile */
|
|
3455
|
|
3456 /* Subroutines for `regex_compile'. */
|
|
3457
|
|
3458 /* Store OP at LOC followed by two-byte integer parameter ARG. */
|
|
3459
|
|
3460 static void
|
|
3461 store_op1 (re_opcode_t op, unsigned char *loc, int arg)
|
|
3462 {
|
|
3463 *loc = (unsigned char) op;
|
|
3464 STORE_NUMBER (loc + 1, arg);
|
|
3465 }
|
|
3466
|
|
3467
|
|
3468 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
|
|
3469
|
|
3470 static void
|
|
3471 store_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2)
|
|
3472 {
|
|
3473 *loc = (unsigned char) op;
|
|
3474 STORE_NUMBER (loc + 1, arg1);
|
|
3475 STORE_NUMBER (loc + 3, arg2);
|
|
3476 }
|
|
3477
|
|
3478
|
|
3479 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
|
|
3480 for OP followed by two-byte integer parameter ARG. */
|
|
3481
|
|
3482 static void
|
|
3483 insert_op1 (re_opcode_t op, unsigned char *loc, int arg, unsigned char *end)
|
|
3484 {
|
|
3485 REGISTER unsigned char *pfrom = end;
|
|
3486 REGISTER unsigned char *pto = end + 3;
|
|
3487
|
|
3488 while (pfrom != loc)
|
|
3489 *--pto = *--pfrom;
|
|
3490
|
|
3491 store_op1 (op, loc, arg);
|
|
3492 }
|
|
3493
|
|
3494
|
|
3495 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
|
|
3496
|
|
3497 static void
|
|
3498 insert_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2,
|
|
3499 unsigned char *end)
|
|
3500 {
|
|
3501 REGISTER unsigned char *pfrom = end;
|
|
3502 REGISTER unsigned char *pto = end + 5;
|
|
3503
|
|
3504 while (pfrom != loc)
|
|
3505 *--pto = *--pfrom;
|
|
3506
|
|
3507 store_op2 (op, loc, arg1, arg2);
|
|
3508 }
|
|
3509
|
|
3510
|
|
3511 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
|
|
3512 after an alternative or a begin-subexpression. We assume there is at
|
|
3513 least one character before the ^. */
|
|
3514
|
460
|
3515 static re_bool
|
446
|
3516 at_begline_loc_p (re_char *pattern, re_char *p, reg_syntax_t syntax)
|
428
|
3517 {
|
446
|
3518 re_char *prev = p - 2;
|
460
|
3519 re_bool prev_prev_backslash = prev > pattern && prev[-1] == '\\';
|
428
|
3520
|
|
3521 return
|
|
3522 /* After a subexpression? */
|
|
3523 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
|
|
3524 /* After an alternative? */
|
|
3525 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
|
|
3526 }
|
|
3527
|
|
3528
|
|
3529 /* The dual of at_begline_loc_p. This one is for $. We assume there is
|
|
3530 at least one character after the $, i.e., `P < PEND'. */
|
|
3531
|
460
|
3532 static re_bool
|
446
|
3533 at_endline_loc_p (re_char *p, re_char *pend, int syntax)
|
428
|
3534 {
|
446
|
3535 re_char *next = p;
|
460
|
3536 re_bool next_backslash = *next == '\\';
|
446
|
3537 re_char *next_next = p + 1 < pend ? p + 1 : 0;
|
428
|
3538
|
|
3539 return
|
|
3540 /* Before a subexpression? */
|
|
3541 (syntax & RE_NO_BK_PARENS ? *next == ')'
|
|
3542 : next_backslash && next_next && *next_next == ')')
|
|
3543 /* Before an alternative? */
|
|
3544 || (syntax & RE_NO_BK_VBAR ? *next == '|'
|
|
3545 : next_backslash && next_next && *next_next == '|');
|
|
3546 }
|
|
3547
|
|
3548
|
|
3549 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
|
|
3550 false if it's not. */
|
|
3551
|
460
|
3552 static re_bool
|
428
|
3553 group_in_compile_stack (compile_stack_type compile_stack, regnum_t regnum)
|
|
3554 {
|
|
3555 int this_element;
|
|
3556
|
|
3557 for (this_element = compile_stack.avail - 1;
|
|
3558 this_element >= 0;
|
|
3559 this_element--)
|
|
3560 if (compile_stack.stack[this_element].regnum == regnum)
|
|
3561 return true;
|
|
3562
|
|
3563 return false;
|
|
3564 }
|
|
3565
|
|
3566
|
|
3567 /* Read the ending character of a range (in a bracket expression) from the
|
|
3568 uncompiled pattern *P_PTR (which ends at PEND). We assume the
|
|
3569 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
|
|
3570 Then we set the translation of all bits between the starting and
|
|
3571 ending characters (inclusive) in the compiled pattern B.
|
|
3572
|
|
3573 Return an error code.
|
|
3574
|
|
3575 We use these short variable names so we can use the same macros as
|
826
|
3576 `regex_compile' itself.
|
|
3577
|
|
3578 Under Mule, this is only called when both chars of the range are
|
|
3579 ASCII. */
|
428
|
3580
|
|
3581 static reg_errcode_t
|
446
|
3582 compile_range (re_char **p_ptr, re_char *pend, RE_TRANSLATE_TYPE translate,
|
|
3583 reg_syntax_t syntax, unsigned char *buf_end)
|
428
|
3584 {
|
867
|
3585 Ichar this_char;
|
428
|
3586
|
446
|
3587 re_char *p = *p_ptr;
|
428
|
3588 int range_start, range_end;
|
|
3589
|
|
3590 if (p == pend)
|
|
3591 return REG_ERANGE;
|
|
3592
|
|
3593 /* Even though the pattern is a signed `char *', we need to fetch
|
|
3594 with unsigned char *'s; if the high bit of the pattern character
|
|
3595 is set, the range endpoints will be negative if we fetch using a
|
|
3596 signed char *.
|
|
3597
|
|
3598 We also want to fetch the endpoints without translating them; the
|
|
3599 appropriate translation is done in the bit-setting loop below. */
|
442
|
3600 /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *. */
|
|
3601 range_start = ((const unsigned char *) p)[-2];
|
|
3602 range_end = ((const unsigned char *) p)[0];
|
428
|
3603
|
|
3604 /* Have to increment the pointer into the pattern string, so the
|
|
3605 caller isn't still at the ending character. */
|
|
3606 (*p_ptr)++;
|
|
3607
|
|
3608 /* If the start is after the end, the range is empty. */
|
|
3609 if (range_start > range_end)
|
|
3610 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
|
|
3611
|
|
3612 /* Here we see why `this_char' has to be larger than an `unsigned
|
|
3613 char' -- the range is inclusive, so if `range_end' == 0xff
|
|
3614 (assuming 8-bit characters), we would otherwise go into an infinite
|
|
3615 loop, since all characters <= 0xff. */
|
|
3616 for (this_char = range_start; this_char <= range_end; this_char++)
|
|
3617 {
|
826
|
3618 SET_LIST_BIT (RE_TRANSLATE (this_char));
|
428
|
3619 }
|
|
3620
|
|
3621 return REG_NOERROR;
|
|
3622 }
|
|
3623
|
|
3624 #ifdef MULE
|
|
3625
|
|
3626 static reg_errcode_t
|
446
|
3627 compile_extended_range (re_char **p_ptr, re_char *pend,
|
|
3628 RE_TRANSLATE_TYPE translate,
|
428
|
3629 reg_syntax_t syntax, Lisp_Object rtab)
|
|
3630 {
|
867
|
3631 Ichar this_char, range_start, range_end;
|
|
3632 const Ibyte *p;
|
428
|
3633
|
|
3634 if (*p_ptr == pend)
|
|
3635 return REG_ERANGE;
|
|
3636
|
867
|
3637 p = (const Ibyte *) *p_ptr;
|
|
3638 range_end = itext_ichar (p);
|
428
|
3639 p--; /* back to '-' */
|
867
|
3640 DEC_IBYTEPTR (p); /* back to start of range */
|
428
|
3641 /* We also want to fetch the endpoints without translating them; the
|
|
3642 appropriate translation is done in the bit-setting loop below. */
|
867
|
3643 range_start = itext_ichar (p);
|
|
3644 INC_IBYTEPTR (*p_ptr);
|
428
|
3645
|
|
3646 /* If the start is after the end, the range is empty. */
|
|
3647 if (range_start > range_end)
|
|
3648 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
|
|
3649
|
|
3650 /* Can't have ranges spanning different charsets, except maybe for
|
|
3651 ranges entirely within the first 256 chars. */
|
|
3652
|
|
3653 if ((range_start >= 0x100 || range_end >= 0x100)
|
867
|
3654 && ichar_leading_byte (range_start) !=
|
|
3655 ichar_leading_byte (range_end))
|
428
|
3656 return REG_ERANGESPAN;
|
|
3657
|
826
|
3658 /* #### This might be way inefficient if the range encompasses 10,000
|
|
3659 chars or something. To be efficient, you'd have to do something like
|
|
3660 this:
|
428
|
3661
|
|
3662 range_table a;
|
|
3663 range_table b;
|
|
3664 map over translation table in [range_start, range_end] of
|
|
3665 (put the mapped range in a;
|
|
3666 put the translation in b)
|
|
3667 invert the range in a and truncate to [range_start, range_end]
|
|
3668 compute the union of a, b
|
|
3669 union the result into rtab
|
|
3670 */
|
826
|
3671 for (this_char = range_start; this_char <= range_end; this_char++)
|
428
|
3672 {
|
826
|
3673 SET_RANGETAB_BIT (RE_TRANSLATE (this_char));
|
428
|
3674 }
|
|
3675
|
|
3676 if (this_char <= range_end)
|
|
3677 put_range_table (rtab, this_char, range_end, Qt);
|
|
3678
|
|
3679 return REG_NOERROR;
|
|
3680 }
|
|
3681
|
|
3682 #endif /* MULE */
|
|
3683
|
|
3684 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
|
|
3685 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
|
|
3686 characters can start a string that matches the pattern. This fastmap
|
|
3687 is used by re_search to skip quickly over impossible starting points.
|
|
3688
|
|
3689 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
|
|
3690 area as BUFP->fastmap.
|
|
3691
|
|
3692 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
|
|
3693 the pattern buffer.
|
|
3694
|
|
3695 Returns 0 if we succeed, -2 if an internal error. */
|
|
3696
|
|
3697 int
|
826
|
3698 re_compile_fastmap (struct re_pattern_buffer *bufp
|
|
3699 RE_LISP_SHORT_CONTEXT_ARGS_DECL)
|
428
|
3700 {
|
|
3701 int j, k;
|
|
3702 #ifdef MATCH_MAY_ALLOCATE
|
|
3703 fail_stack_type fail_stack;
|
|
3704 #endif
|
456
|
3705 DECLARE_DESTINATION;
|
428
|
3706 /* We don't push any register information onto the failure stack. */
|
|
3707
|
826
|
3708 /* &&#### this should be changed for 8-bit-fixed, for efficiency. see
|
|
3709 comment marked with &&#### in re_search_2. */
|
|
3710
|
428
|
3711 REGISTER char *fastmap = bufp->fastmap;
|
|
3712 unsigned char *pattern = bufp->buffer;
|
647
|
3713 long size = bufp->used;
|
428
|
3714 unsigned char *p = pattern;
|
|
3715 REGISTER unsigned char *pend = pattern + size;
|
|
3716
|
771
|
3717 #ifdef REGEX_REL_ALLOC
|
428
|
3718 /* This holds the pointer to the failure stack, when
|
|
3719 it is allocated relocatably. */
|
|
3720 fail_stack_elt_t *failure_stack_ptr;
|
|
3721 #endif
|
|
3722
|
|
3723 /* Assume that each path through the pattern can be null until
|
|
3724 proven otherwise. We set this false at the bottom of switch
|
|
3725 statement, to which we get only if a particular path doesn't
|
|
3726 match the empty string. */
|
460
|
3727 re_bool path_can_be_null = true;
|
428
|
3728
|
|
3729 /* We aren't doing a `succeed_n' to begin with. */
|
460
|
3730 re_bool succeed_n_p = false;
|
428
|
3731
|
1333
|
3732 #ifdef ERROR_CHECK_MALLOC
|
|
3733 /* The pattern comes from string data, not buffer data. We don't access
|
|
3734 any buffer data, so we don't have to worry about malloc() (but the
|
|
3735 disallowed flag may have been set by a caller). */
|
|
3736 int depth = bind_regex_malloc_disallowed (0);
|
|
3737 #endif
|
|
3738
|
428
|
3739 assert (fastmap != NULL && p != NULL);
|
|
3740
|
|
3741 INIT_FAIL_STACK ();
|
|
3742 memset (fastmap, 0, 1 << BYTEWIDTH); /* Assume nothing's valid. */
|
|
3743 bufp->fastmap_accurate = 1; /* It will be when we're done. */
|
|
3744 bufp->can_be_null = 0;
|
|
3745
|
|
3746 while (1)
|
|
3747 {
|
|
3748 if (p == pend || *p == succeed)
|
|
3749 {
|
|
3750 /* We have reached the (effective) end of pattern. */
|
|
3751 if (!FAIL_STACK_EMPTY ())
|
|
3752 {
|
|
3753 bufp->can_be_null |= path_can_be_null;
|
|
3754
|
|
3755 /* Reset for next path. */
|
|
3756 path_can_be_null = true;
|
|
3757
|
446
|
3758 p = (unsigned char *) fail_stack.stack[--fail_stack.avail].pointer;
|
428
|
3759
|
|
3760 continue;
|
|
3761 }
|
|
3762 else
|
|
3763 break;
|
|
3764 }
|
|
3765
|
|
3766 /* We should never be about to go beyond the end of the pattern. */
|
|
3767 assert (p < pend);
|
|
3768
|
|
3769 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
|
|
3770 {
|
|
3771
|
|
3772 /* I guess the idea here is to simply not bother with a fastmap
|
|
3773 if a backreference is used, since it's too hard to figure out
|
|
3774 the fastmap for the corresponding group. Setting
|
|
3775 `can_be_null' stops `re_search_2' from using the fastmap, so
|
|
3776 that is all we do. */
|
|
3777 case duplicate:
|
|
3778 bufp->can_be_null = 1;
|
|
3779 goto done;
|
|
3780
|
|
3781
|
|
3782 /* Following are the cases which match a character. These end
|
|
3783 with `break'. */
|
|
3784
|
|
3785 case exactn:
|
|
3786 fastmap[p[1]] = 1;
|
|
3787 break;
|
|
3788
|
|
3789
|
|
3790 case charset:
|
|
3791 /* XEmacs: Under Mule, these bit vectors will
|
|
3792 only contain values for characters below 0x80. */
|
|
3793 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
|
|
3794 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
|
|
3795 fastmap[j] = 1;
|
|
3796 break;
|
|
3797
|
|
3798
|
|
3799 case charset_not:
|
|
3800 /* Chars beyond end of map must be allowed. */
|
|
3801 #ifdef MULE
|
|
3802 for (j = *p * BYTEWIDTH; j < 0x80; j++)
|
|
3803 fastmap[j] = 1;
|
|
3804 /* And all extended characters must be allowed, too. */
|
|
3805 for (j = 0x80; j < 0xA0; j++)
|
|
3806 fastmap[j] = 1;
|
446
|
3807 #else /* not MULE */
|
428
|
3808 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
|
|
3809 fastmap[j] = 1;
|
446
|
3810 #endif /* MULE */
|
428
|
3811
|
|
3812 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
|
|
3813 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
|
|
3814 fastmap[j] = 1;
|
|
3815 break;
|
|
3816
|
|
3817 #ifdef MULE
|
|
3818 case charset_mule:
|
|
3819 {
|
|
3820 int nentries;
|
|
3821 int i;
|
|
3822
|
|
3823 nentries = unified_range_table_nentries (p);
|
|
3824 for (i = 0; i < nentries; i++)
|
|
3825 {
|
|
3826 EMACS_INT first, last;
|
|
3827 Lisp_Object dummy_val;
|
|
3828 int jj;
|
867
|
3829 Ibyte strr[MAX_ICHAR_LEN];
|
428
|
3830
|
|
3831 unified_range_table_get_range (p, i, &first, &last,
|
|
3832 &dummy_val);
|
|
3833 for (jj = first; jj <= last && jj < 0x80; jj++)
|
|
3834 fastmap[jj] = 1;
|
|
3835 /* Ranges below 0x100 can span charsets, but there
|
|
3836 are only two (Control-1 and Latin-1), and
|
|
3837 either first or last has to be in them. */
|
867
|
3838 set_itext_ichar (strr, first);
|
428
|
3839 fastmap[*strr] = 1;
|
|
3840 if (last < 0x100)
|
|
3841 {
|
867
|
3842 set_itext_ichar (strr, last);
|
428
|
3843 fastmap[*strr] = 1;
|
|
3844 }
|
|
3845 }
|
|
3846 }
|
|
3847 break;
|
|
3848
|
|
3849 case charset_mule_not:
|
|
3850 {
|
|
3851 int nentries;
|
|
3852 int i;
|
|
3853
|
|
3854 nentries = unified_range_table_nentries (p);
|
|
3855 for (i = 0; i < nentries; i++)
|
|
3856 {
|
|
3857 EMACS_INT first, last;
|
|
3858 Lisp_Object dummy_val;
|
|
3859 int jj;
|
|
3860 int smallest_prev = 0;
|
|
3861
|
|
3862 unified_range_table_get_range (p, i, &first, &last,
|
|
3863 &dummy_val);
|
|
3864 for (jj = smallest_prev; jj < first && jj < 0x80; jj++)
|
|
3865 fastmap[jj] = 1;
|
|
3866 smallest_prev = last + 1;
|
|
3867 if (smallest_prev >= 0x80)
|
|
3868 break;
|
|
3869 }
|
|
3870 /* Calculating which leading bytes are actually allowed
|
|
3871 here is rather difficult, so we just punt and allow
|
|
3872 all of them. */
|
|
3873 for (i = 0x80; i < 0xA0; i++)
|
|
3874 fastmap[i] = 1;
|
|
3875 }
|
|
3876 break;
|
|
3877 #endif /* MULE */
|
|
3878
|
|
3879
|
|
3880 case anychar:
|
|
3881 {
|
|
3882 int fastmap_newline = fastmap['\n'];
|
|
3883
|
|
3884 /* `.' matches anything ... */
|
|
3885 #ifdef MULE
|
|
3886 /* "anything" only includes bytes that can be the
|
|
3887 first byte of a character. */
|
|
3888 for (j = 0; j < 0xA0; j++)
|
|
3889 fastmap[j] = 1;
|
|
3890 #else
|
|
3891 for (j = 0; j < (1 << BYTEWIDTH); j++)
|
|
3892 fastmap[j] = 1;
|
|
3893 #endif
|
|
3894
|
|
3895 /* ... except perhaps newline. */
|
|
3896 if (!(bufp->syntax & RE_DOT_NEWLINE))
|
|
3897 fastmap['\n'] = fastmap_newline;
|
|
3898
|
|
3899 /* Return if we have already set `can_be_null'; if we have,
|
|
3900 then the fastmap is irrelevant. Something's wrong here. */
|
|
3901 else if (bufp->can_be_null)
|
|
3902 goto done;
|
|
3903
|
|
3904 /* Otherwise, have to check alternative paths. */
|
|
3905 break;
|
|
3906 }
|
|
3907
|
826
|
3908 #ifndef emacs
|
|
3909 case wordchar:
|
|
3910 for (j = 0; j < (1 << BYTEWIDTH); j++)
|
|
3911 if (SYNTAX (ignored, j) == Sword)
|
|
3912 fastmap[j] = 1;
|
|
3913 break;
|
|
3914
|
|
3915 case notwordchar:
|
|
3916 for (j = 0; j < (1 << BYTEWIDTH); j++)
|
|
3917 if (SYNTAX (ignored, j) != Sword)
|
|
3918 fastmap[j] = 1;
|
|
3919 break;
|
|
3920 #else /* emacs */
|
|
3921 case wordchar:
|
|
3922 case notwordchar:
|
460
|
3923 case wordbound:
|
|
3924 case notwordbound:
|
|
3925 case wordbeg:
|
|
3926 case wordend:
|
|
3927 case notsyntaxspec:
|
|
3928 case syntaxspec:
|
|
3929 /* This match depends on text properties. These end with
|
|
3930 aborting optimizations. */
|
|
3931 bufp->can_be_null = 1;
|
|
3932 goto done;
|
826
|
3933 #if 0 /* all of the following code is unused now that the `syntax-table'
|
|
3934 property exists -- it's trickier to do this than just look in
|
|
3935 the buffer. &&#### but we could just use the syntax-cache stuff
|
|
3936 instead; why don't we? --ben */
|
|
3937 case wordchar:
|
|
3938 k = (int) Sword;
|
|
3939 goto matchsyntax;
|
|
3940
|
|
3941 case notwordchar:
|
|
3942 k = (int) Sword;
|
|
3943 goto matchnotsyntax;
|
|
3944
|
428
|
3945 case syntaxspec:
|
|
3946 k = *p++;
|
826
|
3947 matchsyntax:
|
428
|
3948 #ifdef MULE
|
|
3949 for (j = 0; j < 0x80; j++)
|
826
|
3950 if (SYNTAX
|
|
3951 (XCHAR_TABLE (BUFFER_MIRROR_SYNTAX_TABLE (lispbuf)), j) ==
|
428
|
3952 (enum syntaxcode) k)
|
|
3953 fastmap[j] = 1;
|
|
3954 for (j = 0x80; j < 0xA0; j++)
|
|
3955 {
|
826
|
3956 if (leading_byte_prefix_p ((unsigned char) j))
|
428
|
3957 /* too complicated to calculate this right */
|
|
3958 fastmap[j] = 1;
|
|
3959 else
|
|
3960 {
|
|
3961 int multi_p;
|
|
3962 Lisp_Object cset;
|
|
3963
|
826
|
3964 cset = charset_by_leading_byte (j);
|
428
|
3965 if (CHARSETP (cset))
|
|
3966 {
|
826
|
3967 if (charset_syntax (lispbuf, cset, &multi_p)
|
428
|
3968 == Sword || multi_p)
|
|
3969 fastmap[j] = 1;
|
|
3970 }
|
|
3971 }
|
|
3972 }
|
446
|
3973 #else /* not MULE */
|
428
|
3974 for (j = 0; j < (1 << BYTEWIDTH); j++)
|
826
|
3975 if (SYNTAX
|
|
3976 (XCHAR_TABLE (BUFFER_MIRROR_SYNTAX_TABLE (lispbuf)), j) ==
|
428
|
3977 (enum syntaxcode) k)
|
|
3978 fastmap[j] = 1;
|
446
|
3979 #endif /* MULE */
|
428
|
3980 break;
|
|
3981
|
|
3982
|
|
3983 case notsyntaxspec:
|
|
3984 k = *p++;
|
826
|
3985 matchnotsyntax:
|
428
|
3986 #ifdef MULE
|
|
3987 for (j = 0; j < 0x80; j++)
|
826
|
3988 if (SYNTAX
|
428
|
3989 (XCHAR_TABLE
|
826
|
3990 (BUFFER_MIRROR_SYNTAX_TABLE (lispbuf)), j) !=
|
428
|
3991 (enum syntaxcode) k)
|
|
3992 fastmap[j] = 1;
|
|
3993 for (j = 0x80; j < 0xA0; j++)
|
|
3994 {
|
826
|
3995 if (leading_byte_prefix_p ((unsigned char) j))
|
428
|
3996 /* too complicated to calculate this right */
|
|
3997 fastmap[j] = 1;
|
|
3998 else
|
|
3999 {
|
|
4000 int multi_p;
|
|
4001 Lisp_Object cset;
|
|
4002
|
826
|
4003 cset = charset_by_leading_byte (j);
|
428
|
4004 if (CHARSETP (cset))
|
|
4005 {
|
826
|
4006 if (charset_syntax (lispbuf, cset, &multi_p)
|
428
|
4007 != Sword || multi_p)
|
|
4008 fastmap[j] = 1;
|
|
4009 }
|
|
4010 }
|
|
4011 }
|
446
|
4012 #else /* not MULE */
|
428
|
4013 for (j = 0; j < (1 << BYTEWIDTH); j++)
|
826
|
4014 if (SYNTAX
|
428
|
4015 (XCHAR_TABLE
|
826
|
4016 (BUFFER_MIRROR_SYNTAX_TABLE (lispbuf)), j) !=
|
428
|
4017 (enum syntaxcode) k)
|
|
4018 fastmap[j] = 1;
|
446
|
4019 #endif /* MULE */
|
428
|
4020 break;
|
826
|
4021 #endif /* 0 */
|
428
|
4022
|
|
4023 #ifdef MULE
|
|
4024 /* 97/2/17 jhod category patch */
|
|
4025 case categoryspec:
|
|
4026 case notcategoryspec:
|
|
4027 bufp->can_be_null = 1;
|
1333
|
4028 UNBIND_REGEX_MALLOC_CHECK ();
|
428
|
4029 return 0;
|
|
4030 /* end if category patch */
|
|
4031 #endif /* MULE */
|
|
4032
|
|
4033 /* All cases after this match the empty string. These end with
|
|
4034 `continue'. */
|
|
4035 case before_dot:
|
|
4036 case at_dot:
|
|
4037 case after_dot:
|
|
4038 continue;
|
826
|
4039 #endif /* emacs */
|
428
|
4040
|
|
4041
|
|
4042 case no_op:
|
|
4043 case begline:
|
|
4044 case endline:
|
|
4045 case begbuf:
|
|
4046 case endbuf:
|
460
|
4047 #ifndef emacs
|
428
|
4048 case wordbound:
|
|
4049 case notwordbound:
|
|
4050 case wordbeg:
|
|
4051 case wordend:
|
460
|
4052 #endif
|
428
|
4053 case push_dummy_failure:
|
|
4054 continue;
|
|
4055
|
|
4056
|
|
4057 case jump_n:
|
|
4058 case pop_failure_jump:
|
|
4059 case maybe_pop_jump:
|
|
4060 case jump:
|
|
4061 case jump_past_alt:
|
|
4062 case dummy_failure_jump:
|
|
4063 EXTRACT_NUMBER_AND_INCR (j, p);
|
|
4064 p += j;
|
|
4065 if (j > 0)
|
|
4066 continue;
|
|
4067
|
|
4068 /* Jump backward implies we just went through the body of a
|
|
4069 loop and matched nothing. Opcode jumped to should be
|
|
4070 `on_failure_jump' or `succeed_n'. Just treat it like an
|
|
4071 ordinary jump. For a * loop, it has pushed its failure
|
|
4072 point already; if so, discard that as redundant. */
|
|
4073 if ((re_opcode_t) *p != on_failure_jump
|
|
4074 && (re_opcode_t) *p != succeed_n)
|
|
4075 continue;
|
|
4076
|
|
4077 p++;
|
|
4078 EXTRACT_NUMBER_AND_INCR (j, p);
|
|
4079 p += j;
|
|
4080
|
|
4081 /* If what's on the stack is where we are now, pop it. */
|
|
4082 if (!FAIL_STACK_EMPTY ()
|
|
4083 && fail_stack.stack[fail_stack.avail - 1].pointer == p)
|
|
4084 fail_stack.avail--;
|
|
4085
|
|
4086 continue;
|
|
4087
|
|
4088
|
|
4089 case on_failure_jump:
|
|
4090 case on_failure_keep_string_jump:
|
|
4091 handle_on_failure_jump:
|
|
4092 EXTRACT_NUMBER_AND_INCR (j, p);
|
|
4093
|
|
4094 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
|
|
4095 end of the pattern. We don't want to push such a point,
|
|
4096 since when we restore it above, entering the switch will
|
|
4097 increment `p' past the end of the pattern. We don't need
|
|
4098 to push such a point since we obviously won't find any more
|
|
4099 fastmap entries beyond `pend'. Such a pattern can match
|
|
4100 the null string, though. */
|
|
4101 if (p + j < pend)
|
|
4102 {
|
|
4103 if (!PUSH_PATTERN_OP (p + j, fail_stack))
|
|
4104 {
|
|
4105 RESET_FAIL_STACK ();
|
1333
|
4106 UNBIND_REGEX_MALLOC_CHECK ();
|
428
|
4107 return -2;
|
|
4108 }
|
|
4109 }
|
|
4110 else
|
|
4111 bufp->can_be_null = 1;
|
|
4112
|
|
4113 if (succeed_n_p)
|
|
4114 {
|
|
4115 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
|
|
4116 succeed_n_p = false;
|
|
4117 }
|
|
4118
|
|
4119 continue;
|
|
4120
|
|
4121
|
|
4122 case succeed_n:
|
|
4123 /* Get to the number of times to succeed. */
|
|
4124 p += 2;
|
|
4125
|
|
4126 /* Increment p past the n for when k != 0. */
|
|
4127 EXTRACT_NUMBER_AND_INCR (k, p);
|
|
4128 if (k == 0)
|
|
4129 {
|
|
4130 p -= 4;
|
|
4131 succeed_n_p = true; /* Spaghetti code alert. */
|
|
4132 goto handle_on_failure_jump;
|
|
4133 }
|
|
4134 continue;
|
|
4135
|
|
4136
|
|
4137 case set_number_at:
|
|
4138 p += 4;
|
|
4139 continue;
|
|
4140
|
|
4141
|
|
4142 case start_memory:
|
|
4143 case stop_memory:
|
|
4144 p += 2;
|
|
4145 continue;
|
|
4146
|
|
4147
|
|
4148 default:
|
2500
|
4149 ABORT (); /* We have listed all the cases. */
|
428
|
4150 } /* switch *p++ */
|
|
4151
|
|
4152 /* Getting here means we have found the possible starting
|
|
4153 characters for one path of the pattern -- and that the empty
|
|
4154 string does not match. We need not follow this path further.
|
|
4155 Instead, look at the next alternative (remembered on the
|
|
4156 stack), or quit if no more. The test at the top of the loop
|
|
4157 does these things. */
|
|
4158 path_can_be_null = false;
|
|
4159 p = pend;
|
|
4160 } /* while p */
|
|
4161
|
|
4162 /* Set `can_be_null' for the last path (also the first path, if the
|
|
4163 pattern is empty). */
|
|
4164 bufp->can_be_null |= path_can_be_null;
|
|
4165
|
|
4166 done:
|
|
4167 RESET_FAIL_STACK ();
|
1333
|
4168 UNBIND_REGEX_MALLOC_CHECK ();
|
428
|
4169 return 0;
|
|
4170 } /* re_compile_fastmap */
|
|
4171
|
|
4172 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
|
|
4173 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
|
|
4174 this memory for recording register information. STARTS and ENDS
|
|
4175 must be allocated using the malloc library routine, and must each
|
|
4176 be at least NUM_REGS * sizeof (regoff_t) bytes long.
|
|
4177
|
|
4178 If NUM_REGS == 0, then subsequent matches should allocate their own
|
|
4179 register data.
|
|
4180
|
|
4181 Unless this function is called, the first search or match using
|
|
4182 PATTERN_BUFFER will allocate its own register data, without
|
|
4183 freeing the old data. */
|
|
4184
|
|
4185 void
|
|
4186 re_set_registers (struct re_pattern_buffer *bufp, struct re_registers *regs,
|
647
|
4187 int num_regs, regoff_t *starts, regoff_t *ends)
|
428
|
4188 {
|
|
4189 if (num_regs)
|
|
4190 {
|
|
4191 bufp->regs_allocated = REGS_REALLOCATE;
|
|
4192 regs->num_regs = num_regs;
|
|
4193 regs->start = starts;
|
|
4194 regs->end = ends;
|
|
4195 }
|
|
4196 else
|
|
4197 {
|
|
4198 bufp->regs_allocated = REGS_UNALLOCATED;
|
|
4199 regs->num_regs = 0;
|
|
4200 regs->start = regs->end = (regoff_t *) 0;
|
|
4201 }
|
|
4202 }
|
|
4203
|
|
4204 /* Searching routines. */
|
|
4205
|
|
4206 /* Like re_search_2, below, but only one string is specified, and
|
|
4207 doesn't let you say where to stop matching. */
|
|
4208
|
|
4209 int
|
442
|
4210 re_search (struct re_pattern_buffer *bufp, const char *string, int size,
|
826
|
4211 int startpos, int range, struct re_registers *regs
|
|
4212 RE_LISP_CONTEXT_ARGS_DECL)
|
428
|
4213 {
|
|
4214 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
|
826
|
4215 regs, size RE_LISP_CONTEXT_ARGS);
|
428
|
4216 }
|
|
4217
|
|
4218 /* Using the compiled pattern in BUFP->buffer, first tries to match the
|
|
4219 virtual concatenation of STRING1 and STRING2, starting first at index
|
|
4220 STARTPOS, then at STARTPOS + 1, and so on.
|
|
4221
|
|
4222 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
|
|
4223
|
|
4224 RANGE is how far to scan while trying to match. RANGE = 0 means try
|
|
4225 only at STARTPOS; in general, the last start tried is STARTPOS +
|
|
4226 RANGE.
|
|
4227
|
826
|
4228 All sizes and positions refer to bytes (not chars); under Mule, the code
|
|
4229 knows about the format of the text and will only check at positions
|
|
4230 where a character starts.
|
|
4231
|
428
|
4232 With MULE, RANGE is a byte position, not a char position. The last
|
|
4233 start tried is the character starting <= STARTPOS + RANGE.
|
|
4234
|
|
4235 In REGS, return the indices of the virtual concatenation of STRING1
|
|
4236 and STRING2 that matched the entire BUFP->buffer and its contained
|
|
4237 subexpressions.
|
|
4238
|
|
4239 Do not consider matching one past the index STOP in the virtual
|
|
4240 concatenation of STRING1 and STRING2.
|
|
4241
|
|
4242 We return either the position in the strings at which the match was
|
|
4243 found, -1 if no match, or -2 if error (such as failure
|
|
4244 stack overflow). */
|
|
4245
|
|
4246 int
|
446
|
4247 re_search_2 (struct re_pattern_buffer *bufp, const char *str1,
|
|
4248 int size1, const char *str2, int size2, int startpos,
|
826
|
4249 int range, struct re_registers *regs, int stop
|
|
4250 RE_LISP_CONTEXT_ARGS_DECL)
|
428
|
4251 {
|
|
4252 int val;
|
446
|
4253 re_char *string1 = (re_char *) str1;
|
|
4254 re_char *string2 = (re_char *) str2;
|
428
|
4255 REGISTER char *fastmap = bufp->fastmap;
|
446
|
4256 REGISTER RE_TRANSLATE_TYPE translate = bufp->translate;
|
428
|
4257 int total_size = size1 + size2;
|
|
4258 int endpos = startpos + range;
|
|
4259 #ifdef REGEX_BEGLINE_CHECK
|
|
4260 int anchored_at_begline = 0;
|
|
4261 #endif
|
446
|
4262 re_char *d;
|
826
|
4263 #ifdef emacs
|
|
4264 Internal_Format fmt = buffer_or_other_internal_format (lispobj);
|
1346
|
4265 #ifdef REL_ALLOC
|
|
4266 Ibyte *orig_buftext =
|
|
4267 BUFFERP (lispobj) ?
|
|
4268 BYTE_BUF_BYTE_ADDRESS (XBUFFER (lispobj),
|
|
4269 BYTE_BUF_BEGV (XBUFFER (lispobj))) :
|
|
4270 0;
|
|
4271 #endif
|
1333
|
4272 #ifdef ERROR_CHECK_MALLOC
|
|
4273 int depth;
|
|
4274 #endif
|
826
|
4275 #endif /* emacs */
|
|
4276 #if 1
|
|
4277 int forward_search_p;
|
|
4278 #endif
|
428
|
4279
|
|
4280 /* Check for out-of-range STARTPOS. */
|
|
4281 if (startpos < 0 || startpos > total_size)
|
|
4282 return -1;
|
|
4283
|
|
4284 /* Fix up RANGE if it might eventually take us outside
|
|
4285 the virtual concatenation of STRING1 and STRING2. */
|
|
4286 if (endpos < 0)
|
|
4287 range = 0 - startpos;
|
|
4288 else if (endpos > total_size)
|
|
4289 range = total_size - startpos;
|
|
4290
|
826
|
4291 #if 1
|
|
4292 forward_search_p = range > 0;
|
|
4293 #endif
|
|
4294
|
428
|
4295 /* If the search isn't to be a backwards one, don't waste time in a
|
|
4296 search for a pattern that must be anchored. */
|
|
4297 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
|
|
4298 {
|
|
4299 if (startpos > 0)
|
|
4300 return -1;
|
|
4301 else
|
|
4302 {
|
442
|
4303 d = ((const unsigned char *)
|
428
|
4304 (startpos >= size1 ? string2 - size1 : string1) + startpos);
|
867
|
4305 range = itext_ichar_len_fmt (d, fmt);
|
428
|
4306 }
|
|
4307 }
|
|
4308
|
460
|
4309 #ifdef emacs
|
|
4310 /* In a forward search for something that starts with \=.
|
|
4311 don't keep searching past point. */
|
|
4312 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
|
|
4313 {
|
826
|
4314 if (!BUFFERP (lispobj))
|
|
4315 return -1;
|
|
4316 range = (BUF_PT (XBUFFER (lispobj)) - BUF_BEGV (XBUFFER (lispobj))
|
|
4317 - startpos);
|
460
|
4318 if (range < 0)
|
|
4319 return -1;
|
|
4320 }
|
|
4321 #endif /* emacs */
|
|
4322
|
1333
|
4323 #ifdef ERROR_CHECK_MALLOC
|
|
4324 /* Do this after the above return()s. */
|
|
4325 depth = bind_regex_malloc_disallowed (1);
|
|
4326 #endif
|
|
4327
|
428
|
4328 /* Update the fastmap now if not correct already. */
|
1333
|
4329 BEGIN_REGEX_MALLOC_OK ();
|
428
|
4330 if (fastmap && !bufp->fastmap_accurate)
|
826
|
4331 if (re_compile_fastmap (bufp RE_LISP_SHORT_CONTEXT_ARGS) == -2)
|
1333
|
4332 {
|
|
4333 END_REGEX_MALLOC_OK ();
|
|
4334 UNBIND_REGEX_MALLOC_CHECK ();
|
|
4335 return -2;
|
|
4336 }
|
|
4337
|
|
4338 END_REGEX_MALLOC_OK ();
|
|
4339 RE_SEARCH_RELOCATE_MOVEABLE_DATA_POINTERS ();
|
428
|
4340
|
|
4341 #ifdef REGEX_BEGLINE_CHECK
|
|
4342 {
|
647
|
4343 long i = 0;
|
428
|
4344
|
|
4345 while (i < bufp->used)
|
|
4346 {
|
|
4347 if (bufp->buffer[i] == start_memory ||
|
|
4348 bufp->buffer[i] == stop_memory)
|
|
4349 i += 2;
|
|
4350 else
|
|
4351 break;
|
|
4352 }
|
|
4353 anchored_at_begline = i < bufp->used && bufp->buffer[i] == begline;
|
|
4354 }
|
|
4355 #endif
|
|
4356
|
460
|
4357 #ifdef emacs
|
1333
|
4358 BEGIN_REGEX_MALLOC_OK ();
|
826
|
4359 scache = setup_syntax_cache (scache, lispobj, lispbuf,
|
|
4360 offset_to_charxpos (lispobj, startpos),
|
|
4361 1);
|
1333
|
4362 END_REGEX_MALLOC_OK ();
|
|
4363 RE_SEARCH_RELOCATE_MOVEABLE_DATA_POINTERS ();
|
460
|
4364 #endif
|
|
4365
|
428
|
4366 /* Loop through the string, looking for a place to start matching. */
|
|
4367 for (;;)
|
|
4368 {
|
|
4369 #ifdef REGEX_BEGLINE_CHECK
|
826
|
4370 /* If the regex is anchored at the beginning of a line (i.e. with a
|
|
4371 ^), then we can speed things up by skipping to the next
|
|
4372 beginning-of-line. However, to determine "beginning of line" we
|
|
4373 need to look at the previous char, so can't do this check if at
|
|
4374 beginning of either string. (Well, we could if at the beginning of
|
|
4375 the second string, but it would require additional code, and this
|
|
4376 is just an optimization.) */
|
|
4377 if (anchored_at_begline && startpos > 0 && startpos != size1)
|
428
|
4378 {
|
826
|
4379 if (range > 0)
|
|
4380 {
|
|
4381 /* whose stupid idea was it anyway to make this
|
|
4382 function take two strings to match?? */
|
|
4383 int lim = 0;
|
|
4384 re_char *orig_d;
|
|
4385 re_char *stop_d;
|
|
4386
|
|
4387 /* Compute limit as below in fastmap code, so we are guaranteed
|
|
4388 to remain within a single string. */
|
|
4389 if (startpos < size1 && startpos + range >= size1)
|
|
4390 lim = range - (size1 - startpos);
|
|
4391
|
|
4392 d = ((const unsigned char *)
|
|
4393 (startpos >= size1 ? string2 - size1 : string1) + startpos);
|
|
4394 orig_d = d;
|
|
4395 stop_d = d + range - lim;
|
|
4396
|
|
4397 /* We want to find the next location (including the current
|
|
4398 one) where the previous char is a newline, so back up one
|
|
4399 and search forward for a newline. */
|
867
|
4400 DEC_IBYTEPTR_FMT (d, fmt); /* Ok, since startpos != size1. */
|
826
|
4401
|
|
4402 /* Written out as an if-else to avoid testing `translate'
|
|
4403 inside the loop. */
|
|
4404 if (TRANSLATE_P (translate))
|
|
4405 while (d < stop_d &&
|
867
|
4406 RE_TRANSLATE_1 (itext_ichar_fmt (d, fmt, lispobj))
|
826
|
4407 != '\n')
|
867
|
4408 INC_IBYTEPTR_FMT (d, fmt);
|
826
|
4409 else
|
|
4410 while (d < stop_d &&
|
867
|
4411 itext_ichar_ascii_fmt (d, fmt, lispobj) != '\n')
|
|
4412 INC_IBYTEPTR_FMT (d, fmt);
|
826
|
4413
|
|
4414 /* If we were stopped by a newline, skip forward over it.
|
|
4415 Otherwise we will get in an infloop when our start position
|
|
4416 was at begline. */
|
|
4417 if (d < stop_d)
|
867
|
4418 INC_IBYTEPTR_FMT (d, fmt);
|
826
|
4419 range -= d - orig_d;
|
|
4420 startpos += d - orig_d;
|
|
4421 #if 1
|
|
4422 assert (!forward_search_p || range >= 0);
|
|
4423 #endif
|
|
4424 }
|
|
4425 else if (range < 0)
|
|
4426 {
|
|
4427 /* We're lazy, like in the fastmap code below */
|
867
|
4428 Ichar c;
|
826
|
4429
|
|
4430 d = ((const unsigned char *)
|
|
4431 (startpos >= size1 ? string2 - size1 : string1) + startpos);
|
867
|
4432 DEC_IBYTEPTR_FMT (d, fmt);
|
|
4433 c = itext_ichar_fmt (d, fmt, lispobj);
|
826
|
4434 c = RE_TRANSLATE (c);
|
|
4435 if (c != '\n')
|
|
4436 goto advance;
|
|
4437 }
|
428
|
4438 }
|
|
4439 #endif /* REGEX_BEGLINE_CHECK */
|
|
4440
|
|
4441 /* If a fastmap is supplied, skip quickly over characters that
|
|
4442 cannot be the start of a match. If the pattern can match the
|
|
4443 null string, however, we don't need to skip characters; we want
|
|
4444 the first null string. */
|
|
4445 if (fastmap && startpos < total_size && !bufp->can_be_null)
|
|
4446 {
|
826
|
4447 /* For the moment, fastmap always works as if buffer
|
|
4448 is in default format, so convert chars in the search strings
|
|
4449 into default format as we go along, if necessary.
|
|
4450
|
|
4451 &&#### fastmap needs rethinking for 8-bit-fixed so
|
|
4452 it's faster. We need it to reflect the raw
|
|
4453 8-bit-fixed values. That isn't so hard if we assume
|
|
4454 that the top 96 bytes represent a single 1-byte
|
|
4455 charset. For 16-bit/32-bit stuff it's probably not
|
|
4456 worth it to make the fastmap represent the raw, due to
|
|
4457 its nature -- we'd have to use the LSB for the
|
|
4458 fastmap, and that causes lots of problems with Mule
|
|
4459 chars, where it essentially wipes out the usefulness
|
|
4460 of the fastmap entirely. */
|
428
|
4461 if (range > 0) /* Searching forwards. */
|
|
4462 {
|
|
4463 int lim = 0;
|
|
4464 int irange = range;
|
|
4465
|
|
4466 if (startpos < size1 && startpos + range >= size1)
|
|
4467 lim = range - (size1 - startpos);
|
|
4468
|
442
|
4469 d = ((const unsigned char *)
|
428
|
4470 (startpos >= size1 ? string2 - size1 : string1) + startpos);
|
|
4471
|
|
4472 /* Written out as an if-else to avoid testing `translate'
|
|
4473 inside the loop. */
|
446
|
4474 if (TRANSLATE_P (translate))
|
826
|
4475 {
|
|
4476 while (range > lim)
|
|
4477 {
|
|
4478 re_char *old_d = d;
|
428
|
4479 #ifdef MULE
|
867
|
4480 Ibyte tempch[MAX_ICHAR_LEN];
|
|
4481 Ichar buf_ch =
|
|
4482 RE_TRANSLATE_1 (itext_ichar_fmt (d, fmt, lispobj));
|
|
4483 set_itext_ichar (tempch, buf_ch);
|
826
|
4484 if (fastmap[*tempch])
|
|
4485 break;
|
446
|
4486 #else
|
826
|
4487 if (fastmap[(unsigned char) RE_TRANSLATE_1 (*d)])
|
|
4488 break;
|
446
|
4489 #endif /* MULE */
|
867
|
4490 INC_IBYTEPTR_FMT (d, fmt);
|
826
|
4491 range -= (d - old_d);
|
|
4492 #if 1
|
1333
|
4493 assert (!forward_search_p || range >= 0);
|
826
|
4494 #endif
|
|
4495 }
|
|
4496 }
|
|
4497 #ifdef MULE
|
|
4498 else if (fmt != FORMAT_DEFAULT)
|
|
4499 {
|
|
4500 while (range > lim)
|
|
4501 {
|
|
4502 re_char *old_d = d;
|
867
|
4503 Ibyte tempch[MAX_ICHAR_LEN];
|
|
4504 Ichar buf_ch = itext_ichar_fmt (d, fmt, lispobj);
|
|
4505 set_itext_ichar (tempch, buf_ch);
|
826
|
4506 if (fastmap[*tempch])
|
|
4507 break;
|
867
|
4508 INC_IBYTEPTR_FMT (d, fmt);
|
826
|
4509 range -= (d - old_d);
|
|
4510 #if 1
|
1333
|
4511 assert (!forward_search_p || range >= 0);
|
826
|
4512 #endif
|
|
4513 }
|
|
4514 }
|
|
4515 #endif /* MULE */
|
428
|
4516 else
|
826
|
4517 {
|
|
4518 while (range > lim && !fastmap[*d])
|
|
4519 {
|
|
4520 re_char *old_d = d;
|
867
|
4521 INC_IBYTEPTR (d);
|
826
|
4522 range -= (d - old_d);
|
|
4523 #if 1
|
|
4524 assert (!forward_search_p || range >= 0);
|
|
4525 #endif
|
|
4526 }
|
|
4527 }
|
428
|
4528
|
|
4529 startpos += irange - range;
|
|
4530 }
|
|
4531 else /* Searching backwards. */
|
|
4532 {
|
826
|
4533 /* #### It's not clear why we don't just write a loop, like
|
|
4534 for the moving-forward case. Perhaps the writer got lazy,
|
|
4535 since backward searches aren't so common. */
|
|
4536 d = ((const unsigned char *)
|
|
4537 (startpos >= size1 ? string2 - size1 : string1) + startpos);
|
428
|
4538 #ifdef MULE
|
826
|
4539 {
|
867
|
4540 Ibyte tempch[MAX_ICHAR_LEN];
|
|
4541 Ichar buf_ch =
|
|
4542 RE_TRANSLATE (itext_ichar_fmt (d, fmt, lispobj));
|
|
4543 set_itext_ichar (tempch, buf_ch);
|
826
|
4544 if (!fastmap[*tempch])
|
|
4545 goto advance;
|
|
4546 }
|
428
|
4547 #else
|
826
|
4548 if (!fastmap[(unsigned char) RE_TRANSLATE (*d)])
|
446
|
4549 goto advance;
|
826
|
4550 #endif /* MULE */
|
428
|
4551 }
|
|
4552 }
|
|
4553
|
|
4554 /* If can't match the null string, and that's all we have left, fail. */
|
|
4555 if (range >= 0 && startpos == total_size && fastmap
|
|
4556 && !bufp->can_be_null)
|
1333
|
4557 {
|
|
4558 UNBIND_REGEX_MALLOC_CHECK ();
|
|
4559 return -1;
|
|
4560 }
|
428
|
4561
|
|
4562 #ifdef emacs /* XEmacs added, w/removal of immediate_quit */
|
|
4563 if (!no_quit_in_re_search)
|
1333
|
4564 {
|
|
4565 BEGIN_REGEX_MALLOC_OK ();
|
|
4566 QUIT;
|
|
4567 END_REGEX_MALLOC_OK ();
|
|
4568 RE_SEARCH_RELOCATE_MOVEABLE_DATA_POINTERS ();
|
|
4569 }
|
|
4570
|
428
|
4571 #endif
|
1333
|
4572 BEGIN_REGEX_MALLOC_OK ();
|
428
|
4573 val = re_match_2_internal (bufp, string1, size1, string2, size2,
|
826
|
4574 startpos, regs, stop
|
|
4575 RE_LISP_CONTEXT_ARGS);
|
428
|
4576 #ifndef REGEX_MALLOC
|
1333
|
4577 ALLOCA_GARBAGE_COLLECT ();
|
428
|
4578 #endif
|
1333
|
4579 END_REGEX_MALLOC_OK ();
|
|
4580 RE_SEARCH_RELOCATE_MOVEABLE_DATA_POINTERS ();
|
428
|
4581
|
|
4582 if (val >= 0)
|
1333
|
4583 {
|
|
4584 UNBIND_REGEX_MALLOC_CHECK ();
|
|
4585 return startpos;
|
|
4586 }
|
428
|
4587
|
|
4588 if (val == -2)
|
1333
|
4589 {
|
|
4590 UNBIND_REGEX_MALLOC_CHECK ();
|
|
4591 return -2;
|
|
4592 }
|
|
4593
|
|
4594 RE_SEARCH_RELOCATE_MOVEABLE_DATA_POINTERS ();
|
428
|
4595 advance:
|
|
4596 if (!range)
|
|
4597 break;
|
|
4598 else if (range > 0)
|
|
4599 {
|
826
|
4600 Bytecount d_size;
|
442
|
4601 d = ((const unsigned char *)
|
428
|
4602 (startpos >= size1 ? string2 - size1 : string1) + startpos);
|
867
|
4603 d_size = itext_ichar_len_fmt (d, fmt);
|
428
|
4604 range -= d_size;
|
826
|
4605 #if 1
|
|
4606 assert (!forward_search_p || range >= 0);
|
|
4607 #endif
|
428
|
4608 startpos += d_size;
|
|
4609 }
|
|
4610 else
|
|
4611 {
|
826
|
4612 Bytecount d_size;
|
428
|
4613 /* Note startpos > size1 not >=. If we are on the
|
|
4614 string1/string2 boundary, we want to backup into string1. */
|
442
|
4615 d = ((const unsigned char *)
|
428
|
4616 (startpos > size1 ? string2 - size1 : string1) + startpos);
|
867
|
4617 DEC_IBYTEPTR_FMT (d, fmt);
|
|
4618 d_size = itext_ichar_len_fmt (d, fmt);
|
428
|
4619 range += d_size;
|
826
|
4620 #if 1
|
|
4621 assert (!forward_search_p || range >= 0);
|
|
4622 #endif
|
428
|
4623 startpos -= d_size;
|
|
4624 }
|
|
4625 }
|
1333
|
4626 UNBIND_REGEX_MALLOC_CHECK ();
|
428
|
4627 return -1;
|
|
4628 } /* re_search_2 */
|
826
|
4629
|
428
|
4630
|
|
4631 /* Declarations and macros for re_match_2. */
|
|
4632
|
|
4633 /* This converts PTR, a pointer into one of the search strings `string1'
|
|
4634 and `string2' into an offset from the beginning of that string. */
|
|
4635 #define POINTER_TO_OFFSET(ptr) \
|
|
4636 (FIRST_STRING_P (ptr) \
|
|
4637 ? ((regoff_t) ((ptr) - string1)) \
|
|
4638 : ((regoff_t) ((ptr) - string2 + size1)))
|
|
4639
|
|
4640 /* Macros for dealing with the split strings in re_match_2. */
|
|
4641
|
|
4642 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
|
|
4643
|
|
4644 /* Call before fetching a character with *d. This switches over to
|
|
4645 string2 if necessary. */
|
826
|
4646 #define REGEX_PREFETCH() \
|
428
|
4647 while (d == dend) \
|
|
4648 { \
|
|
4649 /* End of string2 => fail. */ \
|
|
4650 if (dend == end_match_2) \
|
|
4651 goto fail; \
|
|
4652 /* End of string1 => advance to string2. */ \
|
|
4653 d = string2; \
|
|
4654 dend = end_match_2; \
|
|
4655 }
|
|
4656
|
|
4657
|
|
4658 /* Test if at very beginning or at very end of the virtual concatenation
|
|
4659 of `string1' and `string2'. If only one string, it's `string2'. */
|
|
4660 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
|
|
4661 #define AT_STRINGS_END(d) ((d) == end2)
|
|
4662
|
|
4663 /* XEmacs change:
|
|
4664 If the given position straddles the string gap, return the equivalent
|
|
4665 position that is before or after the gap, respectively; otherwise,
|
|
4666 return the same position. */
|
|
4667 #define POS_BEFORE_GAP_UNSAFE(d) ((d) == string2 ? end1 : (d))
|
|
4668 #define POS_AFTER_GAP_UNSAFE(d) ((d) == end1 ? string2 : (d))
|
|
4669
|
|
4670 /* Test if CH is a word-constituent character. (XEmacs change) */
|
826
|
4671 #define WORDCHAR_P(ch) \
|
|
4672 (SYNTAX (BUFFER_MIRROR_SYNTAX_TABLE (lispbuf), ch) == Sword)
|
428
|
4673
|
|
4674 /* Free everything we malloc. */
|
|
4675 #ifdef MATCH_MAY_ALLOCATE
|
1726
|
4676 #define FREE_VAR(var,type) if (var) REGEX_FREE (var, type); var = NULL
|
428
|
4677 #define FREE_VARIABLES() \
|
|
4678 do { \
|
1333
|
4679 UNBIND_REGEX_MALLOC_CHECK (); \
|
428
|
4680 REGEX_FREE_STACK (fail_stack.stack); \
|
1726
|
4681 FREE_VAR (regstart, re_char **); \
|
|
4682 FREE_VAR (regend, re_char **); \
|
|
4683 FREE_VAR (old_regstart, re_char **); \
|
|
4684 FREE_VAR (old_regend, re_char **); \
|
|
4685 FREE_VAR (best_regstart, re_char **); \
|
|
4686 FREE_VAR (best_regend, re_char **); \
|
|
4687 FREE_VAR (reg_info, register_info_type *); \
|
|
4688 FREE_VAR (reg_dummy, re_char **); \
|
|
4689 FREE_VAR (reg_info_dummy, register_info_type *); \
|
428
|
4690 } while (0)
|
446
|
4691 #else /* not MATCH_MAY_ALLOCATE */
|
1333
|
4692 #define FREE_VARIABLES() \
|
|
4693 do { \
|
|
4694 UNBIND_REGEX_MALLOC_CHECK (); \
|
|
4695 } while (0)
|
446
|
4696 #endif /* MATCH_MAY_ALLOCATE */
|
428
|
4697
|
|
4698 /* These values must meet several constraints. They must not be valid
|
|
4699 register values; since we have a limit of 255 registers (because
|
|
4700 we use only one byte in the pattern for the register number), we can
|
|
4701 use numbers larger than 255. They must differ by 1, because of
|
|
4702 NUM_FAILURE_ITEMS above. And the value for the lowest register must
|
|
4703 be larger than the value for the highest register, so we do not try
|
|
4704 to actually save any registers when none are active. */
|
|
4705 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
|
|
4706 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
|
|
4707
|
|
4708 /* Matching routines. */
|
|
4709
|
826
|
4710 #ifndef emacs /* XEmacs never uses this. */
|
428
|
4711 /* re_match is like re_match_2 except it takes only a single string. */
|
|
4712
|
|
4713 int
|
442
|
4714 re_match (struct re_pattern_buffer *bufp, const char *string, int size,
|
826
|
4715 int pos, struct re_registers *regs
|
|
4716 RE_LISP_CONTEXT_ARGS_DECL)
|
428
|
4717 {
|
446
|
4718 int result = re_match_2_internal (bufp, NULL, 0, (re_char *) string, size,
|
826
|
4719 pos, regs, size
|
|
4720 RE_LISP_CONTEXT_ARGS);
|
1333
|
4721 ALLOCA_GARBAGE_COLLECT ();
|
428
|
4722 return result;
|
|
4723 }
|
|
4724 #endif /* not emacs */
|
|
4725
|
|
4726 /* re_match_2 matches the compiled pattern in BUFP against the
|
|
4727 (virtual) concatenation of STRING1 and STRING2 (of length SIZE1 and
|
|
4728 SIZE2, respectively). We start matching at POS, and stop matching
|
|
4729 at STOP.
|
|
4730
|
|
4731 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
|
|
4732 store offsets for the substring each group matched in REGS. See the
|
|
4733 documentation for exactly how many groups we fill.
|
|
4734
|
|
4735 We return -1 if no match, -2 if an internal error (such as the
|
|
4736 failure stack overflowing). Otherwise, we return the length of the
|
|
4737 matched substring. */
|
|
4738
|
|
4739 int
|
442
|
4740 re_match_2 (struct re_pattern_buffer *bufp, const char *string1,
|
|
4741 int size1, const char *string2, int size2, int pos,
|
826
|
4742 struct re_registers *regs, int stop
|
|
4743 RE_LISP_CONTEXT_ARGS_DECL)
|
428
|
4744 {
|
460
|
4745 int result;
|
|
4746
|
|
4747 #ifdef emacs
|
826
|
4748 scache = setup_syntax_cache (scache, lispobj, lispbuf,
|
|
4749 offset_to_charxpos (lispobj, pos),
|
|
4750 1);
|
460
|
4751 #endif
|
|
4752
|
|
4753 result = re_match_2_internal (bufp, (re_char *) string1, size1,
|
|
4754 (re_char *) string2, size2,
|
826
|
4755 pos, regs, stop
|
|
4756 RE_LISP_CONTEXT_ARGS);
|
460
|
4757
|
1333
|
4758 ALLOCA_GARBAGE_COLLECT ();
|
428
|
4759 return result;
|
|
4760 }
|
|
4761
|
|
4762 /* This is a separate function so that we can force an alloca cleanup
|
|
4763 afterwards. */
|
|
4764 static int
|
446
|
4765 re_match_2_internal (struct re_pattern_buffer *bufp, re_char *string1,
|
|
4766 int size1, re_char *string2, int size2, int pos,
|
826
|
4767 struct re_registers *regs, int stop
|
2333
|
4768 RE_LISP_CONTEXT_ARGS_MULE_DECL)
|
428
|
4769 {
|
|
4770 /* General temporaries. */
|
|
4771 int mcnt;
|
|
4772 unsigned char *p1;
|
|
4773 int should_succeed; /* XEmacs change */
|
|
4774
|
|
4775 /* Just past the end of the corresponding string. */
|
446
|
4776 re_char *end1, *end2;
|
428
|
4777
|
|
4778 /* Pointers into string1 and string2, just past the last characters in
|
|
4779 each to consider matching. */
|
446
|
4780 re_char *end_match_1, *end_match_2;
|
428
|
4781
|
|
4782 /* Where we are in the data, and the end of the current string. */
|
446
|
4783 re_char *d, *dend;
|
428
|
4784
|
|
4785 /* Where we are in the pattern, and the end of the pattern. */
|
|
4786 unsigned char *p = bufp->buffer;
|
|
4787 REGISTER unsigned char *pend = p + bufp->used;
|
|
4788
|
|
4789 /* Mark the opcode just after a start_memory, so we can test for an
|
|
4790 empty subpattern when we get to the stop_memory. */
|
446
|
4791 re_char *just_past_start_mem = 0;
|
428
|
4792
|
|
4793 /* We use this to map every character in the string. */
|
446
|
4794 RE_TRANSLATE_TYPE translate = bufp->translate;
|
428
|
4795
|
|
4796 /* Failure point stack. Each place that can handle a failure further
|
|
4797 down the line pushes a failure point on this stack. It consists of
|
|
4798 restart, regend, and reg_info for all registers corresponding to
|
|
4799 the subexpressions we're currently inside, plus the number of such
|
|
4800 registers, and, finally, two char *'s. The first char * is where
|
|
4801 to resume scanning the pattern; the second one is where to resume
|
|
4802 scanning the strings. If the latter is zero, the failure point is
|
|
4803 a ``dummy''; if a failure happens and the failure point is a dummy,
|
|
4804 it gets discarded and the next one is tried. */
|
|
4805 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
|
|
4806 fail_stack_type fail_stack;
|
|
4807 #endif
|
|
4808 #ifdef DEBUG
|
647
|
4809 static int failure_id;
|
|
4810 int nfailure_points_pushed = 0, nfailure_points_popped = 0;
|
428
|
4811 #endif
|
|
4812
|
771
|
4813 #ifdef REGEX_REL_ALLOC
|
428
|
4814 /* This holds the pointer to the failure stack, when
|
|
4815 it is allocated relocatably. */
|
|
4816 fail_stack_elt_t *failure_stack_ptr;
|
|
4817 #endif
|
|
4818
|
|
4819 /* We fill all the registers internally, independent of what we
|
|
4820 return, for use in backreferences. The number here includes
|
|
4821 an element for register zero. */
|
647
|
4822 int num_regs = bufp->re_ngroups + 1;
|
428
|
4823
|
|
4824 /* The currently active registers. */
|
647
|
4825 int lowest_active_reg = NO_LOWEST_ACTIVE_REG;
|
|
4826 int highest_active_reg = NO_HIGHEST_ACTIVE_REG;
|
428
|
4827
|
|
4828 /* Information on the contents of registers. These are pointers into
|
|
4829 the input strings; they record just what was matched (on this
|
|
4830 attempt) by a subexpression part of the pattern, that is, the
|
|
4831 regnum-th regstart pointer points to where in the pattern we began
|
|
4832 matching and the regnum-th regend points to right after where we
|
|
4833 stopped matching the regnum-th subexpression. (The zeroth register
|
|
4834 keeps track of what the whole pattern matches.) */
|
|
4835 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
|
446
|
4836 re_char **regstart, **regend;
|
428
|
4837 #endif
|
|
4838
|
|
4839 /* If a group that's operated upon by a repetition operator fails to
|
|
4840 match anything, then the register for its start will need to be
|
|
4841 restored because it will have been set to wherever in the string we
|
|
4842 are when we last see its open-group operator. Similarly for a
|
|
4843 register's end. */
|
|
4844 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
|
446
|
4845 re_char **old_regstart, **old_regend;
|
428
|
4846 #endif
|
|
4847
|
|
4848 /* The is_active field of reg_info helps us keep track of which (possibly
|
|
4849 nested) subexpressions we are currently in. The matched_something
|
|
4850 field of reg_info[reg_num] helps us tell whether or not we have
|
|
4851 matched any of the pattern so far this time through the reg_num-th
|
|
4852 subexpression. These two fields get reset each time through any
|
|
4853 loop their register is in. */
|
|
4854 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
|
|
4855 register_info_type *reg_info;
|
|
4856 #endif
|
|
4857
|
|
4858 /* The following record the register info as found in the above
|
|
4859 variables when we find a match better than any we've seen before.
|
|
4860 This happens as we backtrack through the failure points, which in
|
|
4861 turn happens only if we have not yet matched the entire string. */
|
647
|
4862 int best_regs_set = false;
|
428
|
4863 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
|
446
|
4864 re_char **best_regstart, **best_regend;
|
428
|
4865 #endif
|
|
4866
|
|
4867 /* Logically, this is `best_regend[0]'. But we don't want to have to
|
|
4868 allocate space for that if we're not allocating space for anything
|
|
4869 else (see below). Also, we never need info about register 0 for
|
|
4870 any of the other register vectors, and it seems rather a kludge to
|
|
4871 treat `best_regend' differently than the rest. So we keep track of
|
|
4872 the end of the best match so far in a separate variable. We
|
|
4873 initialize this to NULL so that when we backtrack the first time
|
|
4874 and need to test it, it's not garbage. */
|
446
|
4875 re_char *match_end = NULL;
|
428
|
4876
|
|
4877 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
|
|
4878 int set_regs_matched_done = 0;
|
|
4879
|
|
4880 /* Used when we pop values we don't care about. */
|
|
4881 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
|
446
|
4882 re_char **reg_dummy;
|
428
|
4883 register_info_type *reg_info_dummy;
|
|
4884 #endif
|
|
4885
|
|
4886 #ifdef DEBUG
|
|
4887 /* Counts the total number of registers pushed. */
|
647
|
4888 int num_regs_pushed = 0;
|
428
|
4889 #endif
|
|
4890
|
|
4891 /* 1 if this match ends in the same string (string1 or string2)
|
|
4892 as the best previous match. */
|
460
|
4893 re_bool same_str_p;
|
428
|
4894
|
|
4895 /* 1 if this match is the best seen so far. */
|
460
|
4896 re_bool best_match_p;
|
428
|
4897
|
826
|
4898 #ifdef emacs
|
|
4899 Internal_Format fmt = buffer_or_other_internal_format (lispobj);
|
1346
|
4900 #ifdef REL_ALLOC
|
|
4901 Ibyte *orig_buftext =
|
|
4902 BUFFERP (lispobj) ?
|
|
4903 BYTE_BUF_BYTE_ADDRESS (XBUFFER (lispobj),
|
|
4904 BYTE_BUF_BEGV (XBUFFER (lispobj))) :
|
|
4905 0;
|
|
4906 #endif
|
|
4907
|
1333
|
4908 #ifdef ERROR_CHECK_MALLOC
|
|
4909 int depth = bind_regex_malloc_disallowed (1);
|
|
4910 #endif
|
826
|
4911 #endif /* emacs */
|
771
|
4912
|
428
|
4913 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
|
|
4914
|
1333
|
4915 BEGIN_REGEX_MALLOC_OK ();
|
428
|
4916 INIT_FAIL_STACK ();
|
1333
|
4917 END_REGEX_MALLOC_OK ();
|
428
|
4918
|
|
4919 #ifdef MATCH_MAY_ALLOCATE
|
|
4920 /* Do not bother to initialize all the register variables if there are
|
|
4921 no groups in the pattern, as it takes a fair amount of time. If
|
|
4922 there are groups, we include space for register 0 (the whole
|
|
4923 pattern), even though we never use it, since it simplifies the
|
|
4924 array indexing. We should fix this. */
|
502
|
4925 if (bufp->re_ngroups)
|
428
|
4926 {
|
1333
|
4927 BEGIN_REGEX_MALLOC_OK ();
|
446
|
4928 regstart = REGEX_TALLOC (num_regs, re_char *);
|
|
4929 regend = REGEX_TALLOC (num_regs, re_char *);
|
|
4930 old_regstart = REGEX_TALLOC (num_regs, re_char *);
|
|
4931 old_regend = REGEX_TALLOC (num_regs, re_char *);
|
|
4932 best_regstart = REGEX_TALLOC (num_regs, re_char *);
|
|
4933 best_regend = REGEX_TALLOC (num_regs, re_char *);
|
428
|
4934 reg_info = REGEX_TALLOC (num_regs, register_info_type);
|
446
|
4935 reg_dummy = REGEX_TALLOC (num_regs, re_char *);
|
428
|
4936 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
|
1333
|
4937 END_REGEX_MALLOC_OK ();
|
428
|
4938
|
|
4939 if (!(regstart && regend && old_regstart && old_regend && reg_info
|
|
4940 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
|
|
4941 {
|
|
4942 FREE_VARIABLES ();
|
|
4943 return -2;
|
|
4944 }
|
|
4945 }
|
|
4946 else
|
|
4947 {
|
|
4948 /* We must initialize all our variables to NULL, so that
|
|
4949 `FREE_VARIABLES' doesn't try to free them. */
|
|
4950 regstart = regend = old_regstart = old_regend = best_regstart
|
|
4951 = best_regend = reg_dummy = NULL;
|
|
4952 reg_info = reg_info_dummy = (register_info_type *) NULL;
|
|
4953 }
|
|
4954 #endif /* MATCH_MAY_ALLOCATE */
|
|
4955
|
1333
|
4956 #if defined (emacs) && defined (REL_ALLOC)
|
|
4957 {
|
|
4958 /* If the allocations above (or the call to setup_syntax_cache() in
|
|
4959 re_match_2) caused a rel-alloc relocation, then fix up the data
|
|
4960 pointers */
|
1346
|
4961 Bytecount offset = offset_post_relocation (lispobj, orig_buftext);
|
1333
|
4962 if (offset)
|
|
4963 {
|
|
4964 string1 += offset;
|
|
4965 string2 += offset;
|
|
4966 }
|
|
4967 }
|
|
4968 #endif /* defined (emacs) && defined (REL_ALLOC) */
|
|
4969
|
428
|
4970 /* The starting position is bogus. */
|
|
4971 if (pos < 0 || pos > size1 + size2)
|
|
4972 {
|
|
4973 FREE_VARIABLES ();
|
|
4974 return -1;
|
|
4975 }
|
|
4976
|
|
4977 /* Initialize subexpression text positions to -1 to mark ones that no
|
|
4978 start_memory/stop_memory has been seen for. Also initialize the
|
|
4979 register information struct. */
|
|
4980 for (mcnt = 1; mcnt < num_regs; mcnt++)
|
|
4981 {
|
|
4982 regstart[mcnt] = regend[mcnt]
|
|
4983 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
|
|
4984
|
|
4985 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
|
|
4986 IS_ACTIVE (reg_info[mcnt]) = 0;
|
|
4987 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
|
|
4988 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
|
|
4989 }
|
|
4990 /* We move `string1' into `string2' if the latter's empty -- but not if
|
|
4991 `string1' is null. */
|
|
4992 if (size2 == 0 && string1 != NULL)
|
|
4993 {
|
|
4994 string2 = string1;
|
|
4995 size2 = size1;
|
|
4996 string1 = 0;
|
|
4997 size1 = 0;
|
|
4998 }
|
|
4999 end1 = string1 + size1;
|
|
5000 end2 = string2 + size2;
|
|
5001
|
|
5002 /* Compute where to stop matching, within the two strings. */
|
|
5003 if (stop <= size1)
|
|
5004 {
|
|
5005 end_match_1 = string1 + stop;
|
|
5006 end_match_2 = string2;
|
|
5007 }
|
|
5008 else
|
|
5009 {
|
|
5010 end_match_1 = end1;
|
|
5011 end_match_2 = string2 + stop - size1;
|
|
5012 }
|
|
5013
|
|
5014 /* `p' scans through the pattern as `d' scans through the data.
|
|
5015 `dend' is the end of the input string that `d' points within. `d'
|
|
5016 is advanced into the following input string whenever necessary, but
|
|
5017 this happens before fetching; therefore, at the beginning of the
|
|
5018 loop, `d' can be pointing at the end of a string, but it cannot
|
|
5019 equal `string2'. */
|
|
5020 if (size1 > 0 && pos <= size1)
|
|
5021 {
|
|
5022 d = string1 + pos;
|
|
5023 dend = end_match_1;
|
|
5024 }
|
|
5025 else
|
|
5026 {
|
|
5027 d = string2 + pos - size1;
|
|
5028 dend = end_match_2;
|
|
5029 }
|
|
5030
|
446
|
5031 DEBUG_PRINT1 ("The compiled pattern is: \n");
|
428
|
5032 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
|
|
5033 DEBUG_PRINT1 ("The string to match is: `");
|
|
5034 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
|
|
5035 DEBUG_PRINT1 ("'\n");
|
|
5036
|
|
5037 /* This loops over pattern commands. It exits by returning from the
|
|
5038 function if the match is complete, or it drops through if the match
|
|
5039 fails at this starting point in the input data. */
|
|
5040 for (;;)
|
|
5041 {
|
|
5042 DEBUG_PRINT2 ("\n0x%lx: ", (long) p);
|
|
5043 #ifdef emacs /* XEmacs added, w/removal of immediate_quit */
|
|
5044 if (!no_quit_in_re_search)
|
1333
|
5045 {
|
|
5046 BEGIN_REGEX_MALLOC_OK ();
|
|
5047 QUIT;
|
|
5048 END_REGEX_MALLOC_OK ();
|
1346
|
5049 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS ();
|
1333
|
5050 }
|
428
|
5051 #endif
|
|
5052
|
|
5053 if (p == pend)
|
|
5054 { /* End of pattern means we might have succeeded. */
|
|
5055 DEBUG_PRINT1 ("end of pattern ... ");
|
|
5056
|
|
5057 /* If we haven't matched the entire string, and we want the
|
|
5058 longest match, try backtracking. */
|
|
5059 if (d != end_match_2)
|
|
5060 {
|
|
5061 same_str_p = (FIRST_STRING_P (match_end)
|
|
5062 == MATCHING_IN_FIRST_STRING);
|
|
5063
|
|
5064 /* AIX compiler got confused when this was combined
|
|
5065 with the previous declaration. */
|
|
5066 if (same_str_p)
|
|
5067 best_match_p = d > match_end;
|
|
5068 else
|
|
5069 best_match_p = !MATCHING_IN_FIRST_STRING;
|
|
5070
|
|
5071 DEBUG_PRINT1 ("backtracking.\n");
|
|
5072
|
|
5073 if (!FAIL_STACK_EMPTY ())
|
|
5074 { /* More failure points to try. */
|
|
5075
|
|
5076 /* If exceeds best match so far, save it. */
|
|
5077 if (!best_regs_set || best_match_p)
|
|
5078 {
|
|
5079 best_regs_set = true;
|
|
5080 match_end = d;
|
|
5081
|
|
5082 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
|
|
5083
|
|
5084 for (mcnt = 1; mcnt < num_regs; mcnt++)
|
|
5085 {
|
|
5086 best_regstart[mcnt] = regstart[mcnt];
|
|
5087 best_regend[mcnt] = regend[mcnt];
|
|
5088 }
|
|
5089 }
|
|
5090 goto fail;
|
|
5091 }
|
|
5092
|
|
5093 /* If no failure points, don't restore garbage. And if
|
|
5094 last match is real best match, don't restore second
|
|
5095 best one. */
|
|
5096 else if (best_regs_set && !best_match_p)
|
|
5097 {
|
|
5098 restore_best_regs:
|
|
5099 /* Restore best match. It may happen that `dend ==
|
|
5100 end_match_1' while the restored d is in string2.
|
|
5101 For example, the pattern `x.*y.*z' against the
|
|
5102 strings `x-' and `y-z-', if the two strings are
|
|
5103 not consecutive in memory. */
|
|
5104 DEBUG_PRINT1 ("Restoring best registers.\n");
|
|
5105
|
|
5106 d = match_end;
|
|
5107 dend = ((d >= string1 && d <= end1)
|
|
5108 ? end_match_1 : end_match_2);
|
|
5109
|
|
5110 for (mcnt = 1; mcnt < num_regs; mcnt++)
|
|
5111 {
|
|
5112 regstart[mcnt] = best_regstart[mcnt];
|
|
5113 regend[mcnt] = best_regend[mcnt];
|
|
5114 }
|
|
5115 }
|
|
5116 } /* d != end_match_2 */
|
|
5117
|
|
5118 succeed_label:
|
|
5119 DEBUG_PRINT1 ("Accepting match.\n");
|
|
5120
|
|
5121 /* If caller wants register contents data back, do it. */
|
1028
|
5122 {
|
|
5123 int num_nonshy_regs = bufp->re_nsub + 1;
|
|
5124 if (regs && !bufp->no_sub)
|
|
5125 {
|
|
5126 /* Have the register data arrays been allocated? */
|
|
5127 if (bufp->regs_allocated == REGS_UNALLOCATED)
|
|
5128 { /* No. So allocate them with malloc. We need one
|
|
5129 extra element beyond `num_regs' for the `-1' marker
|
|
5130 GNU code uses. */
|
|
5131 regs->num_regs = MAX (RE_NREGS, num_nonshy_regs + 1);
|
1333
|
5132 BEGIN_REGEX_MALLOC_OK ();
|
1028
|
5133 regs->start = TALLOC (regs->num_regs, regoff_t);
|
|
5134 regs->end = TALLOC (regs->num_regs, regoff_t);
|
1333
|
5135 END_REGEX_MALLOC_OK ();
|
|
5136 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS ();
|
1028
|
5137 if (regs->start == NULL || regs->end == NULL)
|
|
5138 {
|
|
5139 FREE_VARIABLES ();
|
|
5140 return -2;
|
|
5141 }
|
|
5142 bufp->regs_allocated = REGS_REALLOCATE;
|
|
5143 }
|
|
5144 else if (bufp->regs_allocated == REGS_REALLOCATE)
|
|
5145 { /* Yes. If we need more elements than were already
|
|
5146 allocated, reallocate them. If we need fewer, just
|
|
5147 leave it alone. */
|
|
5148 if (regs->num_regs < num_nonshy_regs + 1)
|
|
5149 {
|
|
5150 regs->num_regs = num_nonshy_regs + 1;
|
1333
|
5151 BEGIN_REGEX_MALLOC_OK ();
|
1028
|
5152 RETALLOC (regs->start, regs->num_regs, regoff_t);
|
|
5153 RETALLOC (regs->end, regs->num_regs, regoff_t);
|
1333
|
5154 END_REGEX_MALLOC_OK ();
|
|
5155 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS ();
|
1028
|
5156 if (regs->start == NULL || regs->end == NULL)
|
|
5157 {
|
|
5158 FREE_VARIABLES ();
|
|
5159 return -2;
|
|
5160 }
|
|
5161 }
|
|
5162 }
|
|
5163 else
|
|
5164 {
|
|
5165 /* The braces fend off a "empty body in an else-statement"
|
|
5166 warning under GCC when assert expands to nothing. */
|
|
5167 assert (bufp->regs_allocated == REGS_FIXED);
|
|
5168 }
|
|
5169
|
|
5170 /* Convert the pointer data in `regstart' and `regend' to
|
|
5171 indices. Register zero has to be set differently,
|
|
5172 since we haven't kept track of any info for it. */
|
|
5173 if (regs->num_regs > 0)
|
|
5174 {
|
|
5175 regs->start[0] = pos;
|
|
5176 regs->end[0] = (MATCHING_IN_FIRST_STRING
|
|
5177 ? ((regoff_t) (d - string1))
|
|
5178 : ((regoff_t) (d - string2 + size1)));
|
|
5179 }
|
|
5180
|
2639
|
5181 /* Map over the NUM_NONSHY_REGS non-shy internal registers.
|
|
5182 Copy each into the corresponding external register.
|
|
5183 MCNT indexes external registers. */
|
1028
|
5184 for (mcnt = 1; mcnt < MIN (num_nonshy_regs, regs->num_regs);
|
|
5185 mcnt++)
|
|
5186 {
|
|
5187 int internal_reg = bufp->external_to_internal_register[mcnt];
|
|
5188 if (REG_UNSET (regstart[internal_reg]) ||
|
|
5189 REG_UNSET (regend[internal_reg]))
|
|
5190 regs->start[mcnt] = regs->end[mcnt] = -1;
|
|
5191 else
|
|
5192 {
|
|
5193 regs->start[mcnt] =
|
|
5194 (regoff_t) POINTER_TO_OFFSET (regstart[internal_reg]);
|
|
5195 regs->end[mcnt] =
|
|
5196 (regoff_t) POINTER_TO_OFFSET (regend[internal_reg]);
|
|
5197 }
|
|
5198 }
|
|
5199 } /* regs && !bufp->no_sub */
|
|
5200
|
|
5201 /* If we have regs and the regs structure has more elements than
|
2639
|
5202 were in the pattern, set the extra elements starting with
|
|
5203 NUM_NONSHY_REGS to -1. If we (re)allocated the registers,
|
|
5204 this is the case, because we always allocate enough to have
|
|
5205 at least one -1 at the end.
|
1028
|
5206
|
|
5207 We do this even when no_sub is set because some applications
|
|
5208 (XEmacs) reuse register structures which may contain stale
|
|
5209 information, and permit attempts to access those registers.
|
|
5210
|
|
5211 It would be possible to require the caller to do this, but we'd
|
|
5212 have to change the API for this function to reflect that, and
|
1425
|
5213 audit all callers. Note: as of 2003-04-17 callers in XEmacs
|
|
5214 do clear the registers, but it's safer to leave this code in
|
|
5215 because of reallocation.
|
|
5216 */
|
1028
|
5217 if (regs && regs->num_regs > 0)
|
|
5218 for (mcnt = num_nonshy_regs; mcnt < regs->num_regs; mcnt++)
|
|
5219 regs->start[mcnt] = regs->end[mcnt] = -1;
|
|
5220 }
|
428
|
5221 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
|
|
5222 nfailure_points_pushed, nfailure_points_popped,
|
|
5223 nfailure_points_pushed - nfailure_points_popped);
|
|
5224 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
|
|
5225
|
|
5226 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
|
|
5227 ? string1
|
|
5228 : string2 - size1);
|
|
5229
|
|
5230 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
|
|
5231
|
|
5232 FREE_VARIABLES ();
|
|
5233 return mcnt;
|
|
5234 }
|
|
5235
|
|
5236 /* Otherwise match next pattern command. */
|
|
5237 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
|
|
5238 {
|
|
5239 /* Ignore these. Used to ignore the n of succeed_n's which
|
|
5240 currently have n == 0. */
|
|
5241 case no_op:
|
|
5242 DEBUG_PRINT1 ("EXECUTING no_op.\n");
|
|
5243 break;
|
|
5244
|
|
5245 case succeed:
|
|
5246 DEBUG_PRINT1 ("EXECUTING succeed.\n");
|
|
5247 goto succeed_label;
|
|
5248
|
826
|
5249 /* Match exactly a string of length n in the pattern. The
|
|
5250 following byte in the pattern defines n, and the n bytes after
|
|
5251 that make up the string to match. (Under Mule, this will be in
|
|
5252 the default internal format.) */
|
428
|
5253 case exactn:
|
|
5254 mcnt = *p++;
|
|
5255 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
|
|
5256
|
|
5257 /* This is written out as an if-else so we don't waste time
|
|
5258 testing `translate' inside the loop. */
|
446
|
5259 if (TRANSLATE_P (translate))
|
428
|
5260 {
|
|
5261 do
|
|
5262 {
|
446
|
5263 #ifdef MULE
|
|
5264 Bytecount pat_len;
|
|
5265
|
450
|
5266 REGEX_PREFETCH ();
|
867
|
5267 if (RE_TRANSLATE_1 (itext_ichar_fmt (d, fmt, lispobj))
|
|
5268 != itext_ichar (p))
|
428
|
5269 goto fail;
|
446
|
5270
|
867
|
5271 pat_len = itext_ichar_len (p);
|
446
|
5272 p += pat_len;
|
867
|
5273 INC_IBYTEPTR_FMT (d, fmt);
|
446
|
5274
|
|
5275 mcnt -= pat_len;
|
|
5276 #else /* not MULE */
|
450
|
5277 REGEX_PREFETCH ();
|
826
|
5278 if ((unsigned char) RE_TRANSLATE_1 (*d++) != *p++)
|
446
|
5279 goto fail;
|
|
5280 mcnt--;
|
|
5281 #endif
|
428
|
5282 }
|
446
|
5283 while (mcnt > 0);
|
428
|
5284 }
|
|
5285 else
|
|
5286 {
|
826
|
5287 #ifdef MULE
|
|
5288 /* If buffer format is default, then we can shortcut and just
|
|
5289 compare the text directly, byte by byte. Otherwise, we
|
|
5290 need to go character by character. */
|
|
5291 if (fmt != FORMAT_DEFAULT)
|
428
|
5292 {
|
826
|
5293 do
|
|
5294 {
|
|
5295 Bytecount pat_len;
|
|
5296
|
|
5297 REGEX_PREFETCH ();
|
867
|
5298 if (itext_ichar_fmt (d, fmt, lispobj) !=
|
|
5299 itext_ichar (p))
|
826
|
5300 goto fail;
|
|
5301
|
867
|
5302 pat_len = itext_ichar_len (p);
|
826
|
5303 p += pat_len;
|
867
|
5304 INC_IBYTEPTR_FMT (d, fmt);
|
826
|
5305
|
|
5306 mcnt -= pat_len;
|
|
5307 }
|
|
5308 while (mcnt > 0);
|
428
|
5309 }
|
826
|
5310 else
|
|
5311 #endif
|
|
5312 {
|
|
5313 do
|
|
5314 {
|
|
5315 REGEX_PREFETCH ();
|
|
5316 if (*d++ != *p++) goto fail;
|
|
5317 mcnt--;
|
|
5318 }
|
|
5319 while (mcnt > 0);
|
|
5320 }
|
428
|
5321 }
|
|
5322 SET_REGS_MATCHED ();
|
|
5323 break;
|
|
5324
|
|
5325
|
|
5326 /* Match any character except possibly a newline or a null. */
|
|
5327 case anychar:
|
|
5328 DEBUG_PRINT1 ("EXECUTING anychar.\n");
|
|
5329
|
450
|
5330 REGEX_PREFETCH ();
|
428
|
5331
|
826
|
5332 if ((!(bufp->syntax & RE_DOT_NEWLINE) &&
|
867
|
5333 RE_TRANSLATE (itext_ichar_fmt (d, fmt, lispobj)) == '\n')
|
826
|
5334 || (bufp->syntax & RE_DOT_NOT_NULL &&
|
867
|
5335 RE_TRANSLATE (itext_ichar_fmt (d, fmt, lispobj)) ==
|
826
|
5336 '\000'))
|
428
|
5337 goto fail;
|
|
5338
|
|
5339 SET_REGS_MATCHED ();
|
|
5340 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
|
867
|
5341 INC_IBYTEPTR_FMT (d, fmt); /* XEmacs change */
|
428
|
5342 break;
|
|
5343
|
|
5344
|
|
5345 case charset:
|
|
5346 case charset_not:
|
|
5347 {
|
1414
|
5348 REGISTER Ichar c;
|
460
|
5349 re_bool not_p = (re_opcode_t) *(p - 1) == charset_not;
|
458
|
5350
|
|
5351 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not_p ? "_not" : "");
|
428
|
5352
|
450
|
5353 REGEX_PREFETCH ();
|
867
|
5354 c = itext_ichar_fmt (d, fmt, lispobj);
|
826
|
5355 c = RE_TRANSLATE (c); /* The character to match. */
|
428
|
5356
|
647
|
5357 /* Cast to `unsigned int' instead of `unsigned char' in case the
|
428
|
5358 bit list is a full 32 bytes long. */
|
1414
|
5359 if ((unsigned int)c < (unsigned int) (*p * BYTEWIDTH)
|
428
|
5360 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
|
458
|
5361 not_p = !not_p;
|
428
|
5362
|
|
5363 p += 1 + *p;
|
|
5364
|
458
|
5365 if (!not_p) goto fail;
|
428
|
5366
|
|
5367 SET_REGS_MATCHED ();
|
867
|
5368 INC_IBYTEPTR_FMT (d, fmt); /* XEmacs change */
|
428
|
5369 break;
|
|
5370 }
|
|
5371
|
|
5372 #ifdef MULE
|
|
5373 case charset_mule:
|
|
5374 case charset_mule_not:
|
|
5375 {
|
867
|
5376 REGISTER Ichar c;
|
460
|
5377 re_bool not_p = (re_opcode_t) *(p - 1) == charset_mule_not;
|
458
|
5378
|
|
5379 DEBUG_PRINT2 ("EXECUTING charset_mule%s.\n", not_p ? "_not" : "");
|
428
|
5380
|
450
|
5381 REGEX_PREFETCH ();
|
867
|
5382 c = itext_ichar_fmt (d, fmt, lispobj);
|
826
|
5383 c = RE_TRANSLATE (c); /* The character to match. */
|
428
|
5384
|
|
5385 if (EQ (Qt, unified_range_table_lookup (p, c, Qnil)))
|
458
|
5386 not_p = !not_p;
|
428
|
5387
|
|
5388 p += unified_range_table_bytes_used (p);
|
|
5389
|
458
|
5390 if (!not_p) goto fail;
|
428
|
5391
|
|
5392 SET_REGS_MATCHED ();
|
867
|
5393 INC_IBYTEPTR_FMT (d, fmt);
|
428
|
5394 break;
|
|
5395 }
|
|
5396 #endif /* MULE */
|
|
5397
|
|
5398
|
|
5399 /* The beginning of a group is represented by start_memory.
|
|
5400 The arguments are the register number in the next byte, and the
|
|
5401 number of groups inner to this one in the next. The text
|
|
5402 matched within the group is recorded (in the internal
|
|
5403 registers data structure) under the register number. */
|
|
5404 case start_memory:
|
|
5405 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
|
|
5406
|
|
5407 /* Find out if this group can match the empty string. */
|
|
5408 p1 = p; /* To send to group_match_null_string_p. */
|
|
5409
|
|
5410 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
|
2639
|
5411 REG_MATCH_NULL_STRING_P (reg_info[*p])
|
|
5412 = group_match_null_string_p (&p1, pend, reg_info);
|
|
5413
|
|
5414 DEBUG_PRINT2 (" group CAN%s match null string\n",
|
|
5415 REG_MATCH_NULL_STRING_P (reg_info[*p]) ? "NOT" : "");
|
428
|
5416
|
|
5417 /* Save the position in the string where we were the last time
|
|
5418 we were at this open-group operator in case the group is
|
|
5419 operated upon by a repetition operator, e.g., with `(a*)*b'
|
|
5420 against `ab'; then we want to ignore where we are now in
|
|
5421 the string in case this attempt to match fails. */
|
|
5422 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
|
|
5423 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
|
|
5424 : regstart[*p];
|
|
5425 DEBUG_PRINT2 (" old_regstart: %d\n",
|
|
5426 POINTER_TO_OFFSET (old_regstart[*p]));
|
|
5427
|
|
5428 regstart[*p] = d;
|
|
5429 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
|
|
5430
|
|
5431 IS_ACTIVE (reg_info[*p]) = 1;
|
|
5432 MATCHED_SOMETHING (reg_info[*p]) = 0;
|
|
5433
|
|
5434 /* Clear this whenever we change the register activity status. */
|
|
5435 set_regs_matched_done = 0;
|
|
5436
|
|
5437 /* This is the new highest active register. */
|
|
5438 highest_active_reg = *p;
|
|
5439
|
|
5440 /* If nothing was active before, this is the new lowest active
|
|
5441 register. */
|
|
5442 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
|
|
5443 lowest_active_reg = *p;
|
|
5444
|
|
5445 /* Move past the register number and inner group count. */
|
|
5446 p += 2;
|
|
5447 just_past_start_mem = p;
|
|
5448
|
|
5449 break;
|
|
5450
|
|
5451
|
|
5452 /* The stop_memory opcode represents the end of a group. Its
|
|
5453 arguments are the same as start_memory's: the register
|
|
5454 number, and the number of inner groups. */
|
|
5455 case stop_memory:
|
|
5456 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
|
|
5457
|
|
5458 /* We need to save the string position the last time we were at
|
|
5459 this close-group operator in case the group is operated
|
|
5460 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
|
|
5461 against `aba'; then we want to ignore where we are now in
|
|
5462 the string in case this attempt to match fails. */
|
|
5463 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
|
|
5464 ? REG_UNSET (regend[*p]) ? d : regend[*p]
|
|
5465 : regend[*p];
|
|
5466 DEBUG_PRINT2 (" old_regend: %d\n",
|
|
5467 POINTER_TO_OFFSET (old_regend[*p]));
|
|
5468
|
|
5469 regend[*p] = d;
|
|
5470 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
|
|
5471
|
|
5472 /* This register isn't active anymore. */
|
|
5473 IS_ACTIVE (reg_info[*p]) = 0;
|
|
5474
|
|
5475 /* Clear this whenever we change the register activity status. */
|
|
5476 set_regs_matched_done = 0;
|
|
5477
|
|
5478 /* If this was the only register active, nothing is active
|
|
5479 anymore. */
|
|
5480 if (lowest_active_reg == highest_active_reg)
|
|
5481 {
|
|
5482 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
|
|
5483 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
|
|
5484 }
|
|
5485 else
|
|
5486 { /* We must scan for the new highest active register, since
|
|
5487 it isn't necessarily one less than now: consider
|
|
5488 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
|
|
5489 new highest active register is 1. */
|
|
5490 unsigned char r = *p - 1;
|
|
5491 while (r > 0 && !IS_ACTIVE (reg_info[r]))
|
|
5492 r--;
|
|
5493
|
|
5494 /* If we end up at register zero, that means that we saved
|
|
5495 the registers as the result of an `on_failure_jump', not
|
|
5496 a `start_memory', and we jumped to past the innermost
|
|
5497 `stop_memory'. For example, in ((.)*) we save
|
|
5498 registers 1 and 2 as a result of the *, but when we pop
|
|
5499 back to the second ), we are at the stop_memory 1.
|
|
5500 Thus, nothing is active. */
|
|
5501 if (r == 0)
|
|
5502 {
|
|
5503 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
|
|
5504 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
|
|
5505 }
|
|
5506 else
|
|
5507 {
|
|
5508 highest_active_reg = r;
|
|
5509
|
|
5510 /* 98/9/21 jhod: We've also gotta set lowest_active_reg, don't we? */
|
|
5511 r = 1;
|
|
5512 while (r < highest_active_reg && !IS_ACTIVE(reg_info[r]))
|
|
5513 r++;
|
|
5514 lowest_active_reg = r;
|
|
5515 }
|
|
5516 }
|
|
5517
|
|
5518 /* If just failed to match something this time around with a
|
|
5519 group that's operated on by a repetition operator, try to
|
|
5520 force exit from the ``loop'', and restore the register
|
|
5521 information for this group that we had before trying this
|
|
5522 last match. */
|
|
5523 if ((!MATCHED_SOMETHING (reg_info[*p])
|
|
5524 || just_past_start_mem == p - 1)
|
|
5525 && (p + 2) < pend)
|
|
5526 {
|
460
|
5527 re_bool is_a_jump_n = false;
|
428
|
5528
|
|
5529 p1 = p + 2;
|
|
5530 mcnt = 0;
|
|
5531 switch ((re_opcode_t) *p1++)
|
|
5532 {
|
|
5533 case jump_n:
|
|
5534 is_a_jump_n = true;
|
|
5535 case pop_failure_jump:
|
|
5536 case maybe_pop_jump:
|
|
5537 case jump:
|
|
5538 case dummy_failure_jump:
|
|
5539 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
|
|
5540 if (is_a_jump_n)
|
|
5541 p1 += 2;
|
|
5542 break;
|
|
5543
|
|
5544 default:
|
|
5545 /* do nothing */ ;
|
|
5546 }
|
|
5547 p1 += mcnt;
|
|
5548
|
|
5549 /* If the next operation is a jump backwards in the pattern
|
|
5550 to an on_failure_jump right before the start_memory
|
|
5551 corresponding to this stop_memory, exit from the loop
|
|
5552 by forcing a failure after pushing on the stack the
|
|
5553 on_failure_jump's jump in the pattern, and d. */
|
|
5554 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
|
|
5555 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
|
|
5556 {
|
|
5557 /* If this group ever matched anything, then restore
|
|
5558 what its registers were before trying this last
|
|
5559 failed match, e.g., with `(a*)*b' against `ab' for
|
|
5560 regstart[1], and, e.g., with `((a*)*(b*)*)*'
|
|
5561 against `aba' for regend[3].
|
|
5562
|
|
5563 Also restore the registers for inner groups for,
|
|
5564 e.g., `((a*)(b*))*' against `aba' (register 3 would
|
|
5565 otherwise get trashed). */
|
|
5566
|
|
5567 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
|
|
5568 {
|
647
|
5569 int r;
|
428
|
5570
|
|
5571 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
|
|
5572
|
|
5573 /* Restore this and inner groups' (if any) registers. */
|
|
5574 for (r = *p; r < *p + *(p + 1); r++)
|
|
5575 {
|
|
5576 regstart[r] = old_regstart[r];
|
|
5577
|
|
5578 /* xx why this test? */
|
|
5579 if (old_regend[r] >= regstart[r])
|
|
5580 regend[r] = old_regend[r];
|
|
5581 }
|
|
5582 }
|
|
5583 p1++;
|
|
5584 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
|
|
5585 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
|
|
5586
|
|
5587 goto fail;
|
|
5588 }
|
|
5589 }
|
|
5590
|
|
5591 /* Move past the register number and the inner group count. */
|
|
5592 p += 2;
|
|
5593 break;
|
|
5594
|
|
5595
|
|
5596 /* \<digit> has been turned into a `duplicate' command which is
|
502
|
5597 followed by the numeric value of <digit> as the register number.
|
|
5598 (Already passed through external-to-internal-register mapping,
|
|
5599 so it refers to the actual group number, not the non-shy-only
|
|
5600 numbering used in the external world.) */
|
428
|
5601 case duplicate:
|
|
5602 {
|
446
|
5603 REGISTER re_char *d2, *dend2;
|
502
|
5604 /* Get which register to match against. */
|
|
5605 int regno = *p++;
|
428
|
5606 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
|
|
5607
|
|
5608 /* Can't back reference a group which we've never matched. */
|
|
5609 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
|
|
5610 goto fail;
|
|
5611
|
|
5612 /* Where in input to try to start matching. */
|
|
5613 d2 = regstart[regno];
|
|
5614
|
|
5615 /* Where to stop matching; if both the place to start and
|
|
5616 the place to stop matching are in the same string, then
|
|
5617 set to the place to stop, otherwise, for now have to use
|
|
5618 the end of the first string. */
|
|
5619
|
|
5620 dend2 = ((FIRST_STRING_P (regstart[regno])
|
|
5621 == FIRST_STRING_P (regend[regno]))
|
|
5622 ? regend[regno] : end_match_1);
|
|
5623 for (;;)
|
|
5624 {
|
|
5625 /* If necessary, advance to next segment in register
|
|
5626 contents. */
|
|
5627 while (d2 == dend2)
|
|
5628 {
|
|
5629 if (dend2 == end_match_2) break;
|
|
5630 if (dend2 == regend[regno]) break;
|
|
5631
|
|
5632 /* End of string1 => advance to string2. */
|
|
5633 d2 = string2;
|
|
5634 dend2 = regend[regno];
|
|
5635 }
|
|
5636 /* At end of register contents => success */
|
|
5637 if (d2 == dend2) break;
|
|
5638
|
|
5639 /* If necessary, advance to next segment in data. */
|
450
|
5640 REGEX_PREFETCH ();
|
428
|
5641
|
|
5642 /* How many characters left in this segment to match. */
|
|
5643 mcnt = dend - d;
|
|
5644
|
|
5645 /* Want how many consecutive characters we can match in
|
|
5646 one shot, so, if necessary, adjust the count. */
|
|
5647 if (mcnt > dend2 - d2)
|
|
5648 mcnt = dend2 - d2;
|
|
5649
|
|
5650 /* Compare that many; failure if mismatch, else move
|
|
5651 past them. */
|
446
|
5652 if (TRANSLATE_P (translate)
|
826
|
5653 ? bcmp_translate (d, d2, mcnt, translate
|
|
5654 #ifdef emacs
|
|
5655 , fmt, lispobj
|
|
5656 #endif
|
|
5657 )
|
428
|
5658 : memcmp (d, d2, mcnt))
|
|
5659 goto fail;
|
|
5660 d += mcnt, d2 += mcnt;
|
|
5661
|
|
5662 /* Do this because we've match some characters. */
|
|
5663 SET_REGS_MATCHED ();
|
|
5664 }
|
|
5665 }
|
|
5666 break;
|
|
5667
|
|
5668
|
|
5669 /* begline matches the empty string at the beginning of the string
|
|
5670 (unless `not_bol' is set in `bufp'), and, if
|
|
5671 `newline_anchor' is set, after newlines. */
|
|
5672 case begline:
|
|
5673 DEBUG_PRINT1 ("EXECUTING begline.\n");
|
|
5674
|
|
5675 if (AT_STRINGS_BEG (d))
|
|
5676 {
|
|
5677 if (!bufp->not_bol) break;
|
|
5678 }
|
826
|
5679 else
|
|
5680 {
|
|
5681 re_char *d2 = d;
|
867
|
5682 DEC_IBYTEPTR (d2);
|
|
5683 if (itext_ichar_ascii_fmt (d2, fmt, lispobj) == '\n' &&
|
826
|
5684 bufp->newline_anchor)
|
|
5685 break;
|
|
5686 }
|
428
|
5687 /* In all other cases, we fail. */
|
|
5688 goto fail;
|
|
5689
|
|
5690
|
|
5691 /* endline is the dual of begline. */
|
|
5692 case endline:
|
|
5693 DEBUG_PRINT1 ("EXECUTING endline.\n");
|
|
5694
|
|
5695 if (AT_STRINGS_END (d))
|
|
5696 {
|
|
5697 if (!bufp->not_eol) break;
|
|
5698 }
|
|
5699
|
|
5700 /* We have to ``prefetch'' the next character. */
|
826
|
5701 else if ((d == end1 ?
|
867
|
5702 itext_ichar_ascii_fmt (string2, fmt, lispobj) :
|
|
5703 itext_ichar_ascii_fmt (d, fmt, lispobj)) == '\n'
|
428
|
5704 && bufp->newline_anchor)
|
|
5705 {
|
|
5706 break;
|
|
5707 }
|
|
5708 goto fail;
|
|
5709
|
|
5710
|
|
5711 /* Match at the very beginning of the data. */
|
|
5712 case begbuf:
|
|
5713 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
|
|
5714 if (AT_STRINGS_BEG (d))
|
|
5715 break;
|
|
5716 goto fail;
|
|
5717
|
|
5718
|
|
5719 /* Match at the very end of the data. */
|
|
5720 case endbuf:
|
|
5721 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
|
|
5722 if (AT_STRINGS_END (d))
|
|
5723 break;
|
|
5724 goto fail;
|
|
5725
|
|
5726
|
|
5727 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
|
|
5728 pushes NULL as the value for the string on the stack. Then
|
|
5729 `pop_failure_point' will keep the current value for the
|
|
5730 string, instead of restoring it. To see why, consider
|
|
5731 matching `foo\nbar' against `.*\n'. The .* matches the foo;
|
|
5732 then the . fails against the \n. But the next thing we want
|
|
5733 to do is match the \n against the \n; if we restored the
|
|
5734 string value, we would be back at the foo.
|
|
5735
|
|
5736 Because this is used only in specific cases, we don't need to
|
|
5737 check all the things that `on_failure_jump' does, to make
|
|
5738 sure the right things get saved on the stack. Hence we don't
|
|
5739 share its code. The only reason to push anything on the
|
|
5740 stack at all is that otherwise we would have to change
|
|
5741 `anychar's code to do something besides goto fail in this
|
|
5742 case; that seems worse than this. */
|
|
5743 case on_failure_keep_string_jump:
|
|
5744 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
|
|
5745
|
|
5746 EXTRACT_NUMBER_AND_INCR (mcnt, p);
|
|
5747 DEBUG_PRINT3 (" %d (to 0x%lx):\n", mcnt, (long) (p + mcnt));
|
|
5748
|
446
|
5749 PUSH_FAILURE_POINT (p + mcnt, (unsigned char *) 0, -2);
|
428
|
5750 break;
|
|
5751
|
|
5752
|
|
5753 /* Uses of on_failure_jump:
|
|
5754
|
|
5755 Each alternative starts with an on_failure_jump that points
|
|
5756 to the beginning of the next alternative. Each alternative
|
|
5757 except the last ends with a jump that in effect jumps past
|
|
5758 the rest of the alternatives. (They really jump to the
|
|
5759 ending jump of the following alternative, because tensioning
|
|
5760 these jumps is a hassle.)
|
|
5761
|
|
5762 Repeats start with an on_failure_jump that points past both
|
|
5763 the repetition text and either the following jump or
|
|
5764 pop_failure_jump back to this on_failure_jump. */
|
|
5765 case on_failure_jump:
|
|
5766 on_failure:
|
|
5767 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
|
|
5768
|
|
5769 EXTRACT_NUMBER_AND_INCR (mcnt, p);
|
|
5770 DEBUG_PRINT3 (" %d (to 0x%lx)", mcnt, (long) (p + mcnt));
|
|
5771
|
|
5772 /* If this on_failure_jump comes right before a group (i.e.,
|
|
5773 the original * applied to a group), save the information
|
|
5774 for that group and all inner ones, so that if we fail back
|
|
5775 to this point, the group's information will be correct.
|
|
5776 For example, in \(a*\)*\1, we need the preceding group,
|
|
5777 and in \(\(a*\)b*\)\2, we need the inner group. */
|
|
5778
|
|
5779 /* We can't use `p' to check ahead because we push
|
|
5780 a failure point to `p + mcnt' after we do this. */
|
|
5781 p1 = p;
|
|
5782
|
|
5783 /* We need to skip no_op's before we look for the
|
|
5784 start_memory in case this on_failure_jump is happening as
|
|
5785 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
|
|
5786 against aba. */
|
|
5787 while (p1 < pend && (re_opcode_t) *p1 == no_op)
|
|
5788 p1++;
|
|
5789
|
|
5790 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
|
|
5791 {
|
|
5792 /* We have a new highest active register now. This will
|
|
5793 get reset at the start_memory we are about to get to,
|
|
5794 but we will have saved all the registers relevant to
|
|
5795 this repetition op, as described above. */
|
|
5796 highest_active_reg = *(p1 + 1) + *(p1 + 2);
|
|
5797 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
|
|
5798 lowest_active_reg = *(p1 + 1);
|
|
5799 }
|
|
5800
|
|
5801 DEBUG_PRINT1 (":\n");
|
|
5802 PUSH_FAILURE_POINT (p + mcnt, d, -2);
|
|
5803 break;
|
|
5804
|
|
5805
|
|
5806 /* A smart repeat ends with `maybe_pop_jump'.
|
|
5807 We change it to either `pop_failure_jump' or `jump'. */
|
|
5808 case maybe_pop_jump:
|
|
5809 EXTRACT_NUMBER_AND_INCR (mcnt, p);
|
|
5810 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
|
|
5811 {
|
|
5812 REGISTER unsigned char *p2 = p;
|
|
5813
|
|
5814 /* Compare the beginning of the repeat with what in the
|
|
5815 pattern follows its end. If we can establish that there
|
|
5816 is nothing that they would both match, i.e., that we
|
|
5817 would have to backtrack because of (as in, e.g., `a*a')
|
|
5818 then we can change to pop_failure_jump, because we'll
|
|
5819 never have to backtrack.
|
|
5820
|
|
5821 This is not true in the case of alternatives: in
|
|
5822 `(a|ab)*' we do need to backtrack to the `ab' alternative
|
|
5823 (e.g., if the string was `ab'). But instead of trying to
|
|
5824 detect that here, the alternative has put on a dummy
|
|
5825 failure point which is what we will end up popping. */
|
|
5826
|
|
5827 /* Skip over open/close-group commands.
|
|
5828 If what follows this loop is a ...+ construct,
|
|
5829 look at what begins its body, since we will have to
|
|
5830 match at least one of that. */
|
|
5831 while (1)
|
|
5832 {
|
|
5833 if (p2 + 2 < pend
|
|
5834 && ((re_opcode_t) *p2 == stop_memory
|
|
5835 || (re_opcode_t) *p2 == start_memory))
|
|
5836 p2 += 3;
|
|
5837 else if (p2 + 6 < pend
|
|
5838 && (re_opcode_t) *p2 == dummy_failure_jump)
|
|
5839 p2 += 6;
|
|
5840 else
|
|
5841 break;
|
|
5842 }
|
|
5843
|
|
5844 p1 = p + mcnt;
|
|
5845 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
|
|
5846 to the `maybe_finalize_jump' of this case. Examine what
|
|
5847 follows. */
|
|
5848
|
|
5849 /* If we're at the end of the pattern, we can change. */
|
|
5850 if (p2 == pend)
|
|
5851 {
|
|
5852 /* Consider what happens when matching ":\(.*\)"
|
|
5853 against ":/". I don't really understand this code
|
|
5854 yet. */
|
|
5855 p[-3] = (unsigned char) pop_failure_jump;
|
|
5856 DEBUG_PRINT1
|
|
5857 (" End of pattern: change to `pop_failure_jump'.\n");
|
|
5858 }
|
|
5859
|
|
5860 else if ((re_opcode_t) *p2 == exactn
|
|
5861 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
|
|
5862 {
|
|
5863 REGISTER unsigned char c
|
|
5864 = *p2 == (unsigned char) endline ? '\n' : p2[2];
|
|
5865
|
|
5866 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
|
|
5867 {
|
|
5868 p[-3] = (unsigned char) pop_failure_jump;
|
|
5869 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
|
|
5870 c, p1[5]);
|
|
5871 }
|
|
5872
|
|
5873 else if ((re_opcode_t) p1[3] == charset
|
|
5874 || (re_opcode_t) p1[3] == charset_not)
|
|
5875 {
|
458
|
5876 int not_p = (re_opcode_t) p1[3] == charset_not;
|
428
|
5877
|
|
5878 if (c < (unsigned char) (p1[4] * BYTEWIDTH)
|
|
5879 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
|
458
|
5880 not_p = !not_p;
|
|
5881
|
|
5882 /* `not_p' is equal to 1 if c would match, which means
|
428
|
5883 that we can't change to pop_failure_jump. */
|
458
|
5884 if (!not_p)
|
428
|
5885 {
|
|
5886 p[-3] = (unsigned char) pop_failure_jump;
|
|
5887 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
|
|
5888 }
|
|
5889 }
|
|
5890 }
|
|
5891 else if ((re_opcode_t) *p2 == charset)
|
|
5892 {
|
|
5893 #ifdef DEBUG
|
|
5894 REGISTER unsigned char c
|
|
5895 = *p2 == (unsigned char) endline ? '\n' : p2[2];
|
|
5896 #endif
|
|
5897
|
|
5898 if ((re_opcode_t) p1[3] == exactn
|
|
5899 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
|
|
5900 && (p2[2 + p1[5] / BYTEWIDTH]
|
|
5901 & (1 << (p1[5] % BYTEWIDTH)))))
|
|
5902 {
|
|
5903 p[-3] = (unsigned char) pop_failure_jump;
|
|
5904 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
|
|
5905 c, p1[5]);
|
|
5906 }
|
|
5907
|
|
5908 else if ((re_opcode_t) p1[3] == charset_not)
|
|
5909 {
|
|
5910 int idx;
|
|
5911 /* We win if the charset_not inside the loop
|
|
5912 lists every character listed in the charset after. */
|
|
5913 for (idx = 0; idx < (int) p2[1]; idx++)
|
|
5914 if (! (p2[2 + idx] == 0
|
|
5915 || (idx < (int) p1[4]
|
|
5916 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
|
|
5917 break;
|
|
5918
|
|
5919 if (idx == p2[1])
|
|
5920 {
|
|
5921 p[-3] = (unsigned char) pop_failure_jump;
|
|
5922 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
|
|
5923 }
|
|
5924 }
|
|
5925 else if ((re_opcode_t) p1[3] == charset)
|
|
5926 {
|
|
5927 int idx;
|
|
5928 /* We win if the charset inside the loop
|
|
5929 has no overlap with the one after the loop. */
|
|
5930 for (idx = 0;
|
|
5931 idx < (int) p2[1] && idx < (int) p1[4];
|
|
5932 idx++)
|
|
5933 if ((p2[2 + idx] & p1[5 + idx]) != 0)
|
|
5934 break;
|
|
5935
|
|
5936 if (idx == p2[1] || idx == p1[4])
|
|
5937 {
|
|
5938 p[-3] = (unsigned char) pop_failure_jump;
|
|
5939 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
|
|
5940 }
|
|
5941 }
|
|
5942 }
|
|
5943 }
|
|
5944 p -= 2; /* Point at relative address again. */
|
|
5945 if ((re_opcode_t) p[-1] != pop_failure_jump)
|
|
5946 {
|
|
5947 p[-1] = (unsigned char) jump;
|
|
5948 DEBUG_PRINT1 (" Match => jump.\n");
|
|
5949 goto unconditional_jump;
|
|
5950 }
|
|
5951 /* Note fall through. */
|
|
5952
|
|
5953
|
|
5954 /* The end of a simple repeat has a pop_failure_jump back to
|
|
5955 its matching on_failure_jump, where the latter will push a
|
|
5956 failure point. The pop_failure_jump takes off failure
|
|
5957 points put on by this pop_failure_jump's matching
|
|
5958 on_failure_jump; we got through the pattern to here from the
|
|
5959 matching on_failure_jump, so didn't fail. */
|
|
5960 case pop_failure_jump:
|
|
5961 {
|
|
5962 /* We need to pass separate storage for the lowest and
|
|
5963 highest registers, even though we don't care about the
|
|
5964 actual values. Otherwise, we will restore only one
|
|
5965 register from the stack, since lowest will == highest in
|
|
5966 `pop_failure_point'. */
|
647
|
5967 int dummy_low_reg, dummy_high_reg;
|
428
|
5968 unsigned char *pdummy;
|
446
|
5969 re_char *sdummy = NULL;
|
428
|
5970
|
|
5971 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
|
|
5972 POP_FAILURE_POINT (sdummy, pdummy,
|
|
5973 dummy_low_reg, dummy_high_reg,
|
|
5974 reg_dummy, reg_dummy, reg_info_dummy);
|
|
5975 }
|
|
5976 /* Note fall through. */
|
|
5977
|
|
5978
|
|
5979 /* Unconditionally jump (without popping any failure points). */
|
|
5980 case jump:
|
|
5981 unconditional_jump:
|
|
5982 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
|
|
5983 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
|
|
5984 p += mcnt; /* Do the jump. */
|
|
5985 DEBUG_PRINT2 ("(to 0x%lx).\n", (long) p);
|
|
5986 break;
|
|
5987
|
|
5988
|
|
5989 /* We need this opcode so we can detect where alternatives end
|
|
5990 in `group_match_null_string_p' et al. */
|
|
5991 case jump_past_alt:
|
|
5992 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
|
|
5993 goto unconditional_jump;
|
|
5994
|
|
5995
|
|
5996 /* Normally, the on_failure_jump pushes a failure point, which
|
|
5997 then gets popped at pop_failure_jump. We will end up at
|
|
5998 pop_failure_jump, also, and with a pattern of, say, `a+', we
|
|
5999 are skipping over the on_failure_jump, so we have to push
|
|
6000 something meaningless for pop_failure_jump to pop. */
|
|
6001 case dummy_failure_jump:
|
|
6002 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
|
|
6003 /* It doesn't matter what we push for the string here. What
|
|
6004 the code at `fail' tests is the value for the pattern. */
|
446
|
6005 PUSH_FAILURE_POINT ((unsigned char *) 0, (unsigned char *) 0, -2);
|
428
|
6006 goto unconditional_jump;
|
|
6007
|
|
6008
|
|
6009 /* At the end of an alternative, we need to push a dummy failure
|
|
6010 point in case we are followed by a `pop_failure_jump', because
|
|
6011 we don't want the failure point for the alternative to be
|
|
6012 popped. For example, matching `(a|ab)*' against `aab'
|
|
6013 requires that we match the `ab' alternative. */
|
|
6014 case push_dummy_failure:
|
|
6015 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
|
|
6016 /* See comments just above at `dummy_failure_jump' about the
|
|
6017 two zeroes. */
|
446
|
6018 PUSH_FAILURE_POINT ((unsigned char *) 0, (unsigned char *) 0, -2);
|
428
|
6019 break;
|
|
6020
|
|
6021 /* Have to succeed matching what follows at least n times.
|
|
6022 After that, handle like `on_failure_jump'. */
|
|
6023 case succeed_n:
|
|
6024 EXTRACT_NUMBER (mcnt, p + 2);
|
|
6025 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
|
|
6026
|
|
6027 assert (mcnt >= 0);
|
|
6028 /* Originally, this is how many times we HAVE to succeed. */
|
|
6029 if (mcnt > 0)
|
|
6030 {
|
|
6031 mcnt--;
|
|
6032 p += 2;
|
|
6033 STORE_NUMBER_AND_INCR (p, mcnt);
|
|
6034 DEBUG_PRINT3 (" Setting 0x%lx to %d.\n", (long) p, mcnt);
|
|
6035 }
|
|
6036 else if (mcnt == 0)
|
|
6037 {
|
|
6038 DEBUG_PRINT2 (" Setting two bytes from 0x%lx to no_op.\n",
|
|
6039 (long) (p+2));
|
|
6040 p[2] = (unsigned char) no_op;
|
|
6041 p[3] = (unsigned char) no_op;
|
|
6042 goto on_failure;
|
|
6043 }
|
|
6044 break;
|
|
6045
|
|
6046 case jump_n:
|
|
6047 EXTRACT_NUMBER (mcnt, p + 2);
|
|
6048 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
|
|
6049
|
|
6050 /* Originally, this is how many times we CAN jump. */
|
|
6051 if (mcnt)
|
|
6052 {
|
|
6053 mcnt--;
|
|
6054 STORE_NUMBER (p + 2, mcnt);
|
|
6055 goto unconditional_jump;
|
|
6056 }
|
|
6057 /* If don't have to jump any more, skip over the rest of command. */
|
|
6058 else
|
|
6059 p += 4;
|
|
6060 break;
|
|
6061
|
|
6062 case set_number_at:
|
|
6063 {
|
|
6064 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
|
|
6065
|
|
6066 EXTRACT_NUMBER_AND_INCR (mcnt, p);
|
|
6067 p1 = p + mcnt;
|
|
6068 EXTRACT_NUMBER_AND_INCR (mcnt, p);
|
|
6069 DEBUG_PRINT3 (" Setting 0x%lx to %d.\n", (long) p1, mcnt);
|
|
6070 STORE_NUMBER (p1, mcnt);
|
|
6071 break;
|
|
6072 }
|
|
6073
|
|
6074 case wordbound:
|
|
6075 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
|
|
6076 should_succeed = 1;
|
|
6077 matchwordbound:
|
|
6078 {
|
|
6079 /* XEmacs change */
|
1377
|
6080 /* Straightforward and (I hope) correct implementation.
|
|
6081 Probably should be optimized by arranging to compute
|
1497
|
6082 charpos only once. */
|
1377
|
6083 /* emch1 is the character before d, syn1 is the syntax of
|
|
6084 emch1, emch2 is the character at d, and syn2 is the
|
|
6085 syntax of emch2. */
|
|
6086 Ichar emch1, emch2;
|
1468
|
6087 int syn1 = 0,
|
|
6088 syn2 = 0;
|
1377
|
6089 re_char *d_before, *d_after;
|
|
6090 int result,
|
|
6091 at_beg = AT_STRINGS_BEG (d),
|
|
6092 at_end = AT_STRINGS_END (d);
|
|
6093 #ifdef emacs
|
1497
|
6094 Charxpos charpos;
|
1377
|
6095 #endif
|
|
6096
|
|
6097 if (at_beg && at_end)
|
|
6098 {
|
|
6099 result = 0;
|
|
6100 }
|
428
|
6101 else
|
|
6102 {
|
1377
|
6103 if (!at_beg)
|
|
6104 {
|
|
6105 d_before = POS_BEFORE_GAP_UNSAFE (d);
|
|
6106 DEC_IBYTEPTR_FMT (d_before, fmt);
|
|
6107 emch1 = itext_ichar_fmt (d_before, fmt, lispobj);
|
460
|
6108 #ifdef emacs
|
1497
|
6109 charpos = offset_to_charxpos (lispobj,
|
|
6110 PTR_TO_OFFSET (d)) - 1;
|
1377
|
6111 BEGIN_REGEX_MALLOC_OK ();
|
1497
|
6112 UPDATE_SYNTAX_CACHE (scache, charpos);
|
460
|
6113 #endif
|
1377
|
6114 syn1 = SYNTAX_FROM_CACHE (scache, emch1);
|
|
6115 END_REGEX_MALLOC_OK ();
|
|
6116 }
|
|
6117 if (!at_end)
|
|
6118 {
|
|
6119 d_after = POS_AFTER_GAP_UNSAFE (d);
|
|
6120 emch2 = itext_ichar_fmt (d_after, fmt, lispobj);
|
460
|
6121 #ifdef emacs
|
1497
|
6122 charpos = offset_to_charxpos (lispobj, PTR_TO_OFFSET (d));
|
1377
|
6123 BEGIN_REGEX_MALLOC_OK ();
|
1497
|
6124 UPDATE_SYNTAX_CACHE_FORWARD (scache, charpos);
|
460
|
6125 #endif
|
1377
|
6126 syn2 = SYNTAX_FROM_CACHE (scache, emch2);
|
|
6127 END_REGEX_MALLOC_OK ();
|
|
6128 }
|
1333
|
6129 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS ();
|
1377
|
6130
|
|
6131 if (at_beg)
|
|
6132 result = (syn2 == Sword);
|
|
6133 else if (at_end)
|
|
6134 result = (syn1 == Sword);
|
|
6135 else
|
|
6136 result = ((syn1 == Sword) != (syn2 == Sword));
|
428
|
6137 }
|
1377
|
6138
|
428
|
6139 if (result == should_succeed)
|
|
6140 break;
|
|
6141 goto fail;
|
|
6142 }
|
|
6143
|
|
6144 case notwordbound:
|
|
6145 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
|
|
6146 should_succeed = 0;
|
|
6147 goto matchwordbound;
|
|
6148
|
|
6149 case wordbeg:
|
|
6150 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
|
460
|
6151 if (AT_STRINGS_END (d))
|
|
6152 goto fail;
|
428
|
6153 {
|
|
6154 /* XEmacs: this originally read:
|
|
6155
|
|
6156 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
|
|
6157 break;
|
|
6158
|
|
6159 */
|
460
|
6160 re_char *dtmp = POS_AFTER_GAP_UNSAFE (d);
|
867
|
6161 Ichar emch = itext_ichar_fmt (dtmp, fmt, lispobj);
|
1333
|
6162 int tempres;
|
1347
|
6163 #ifdef emacs
|
|
6164 Charxpos charpos = offset_to_charxpos (lispobj, PTR_TO_OFFSET (d));
|
|
6165 #endif
|
1333
|
6166 BEGIN_REGEX_MALLOC_OK ();
|
460
|
6167 #ifdef emacs
|
826
|
6168 UPDATE_SYNTAX_CACHE (scache, charpos);
|
460
|
6169 #endif
|
1333
|
6170 tempres = (SYNTAX_FROM_CACHE (scache, emch) != Sword);
|
|
6171 END_REGEX_MALLOC_OK ();
|
|
6172 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS ();
|
|
6173 if (tempres)
|
428
|
6174 goto fail;
|
|
6175 if (AT_STRINGS_BEG (d))
|
|
6176 break;
|
460
|
6177 dtmp = POS_BEFORE_GAP_UNSAFE (d);
|
867
|
6178 DEC_IBYTEPTR_FMT (dtmp, fmt);
|
|
6179 emch = itext_ichar_fmt (dtmp, fmt, lispobj);
|
1333
|
6180 BEGIN_REGEX_MALLOC_OK ();
|
460
|
6181 #ifdef emacs
|
826
|
6182 UPDATE_SYNTAX_CACHE_BACKWARD (scache, charpos - 1);
|
460
|
6183 #endif
|
1333
|
6184 tempres = (SYNTAX_FROM_CACHE (scache, emch) != Sword);
|
|
6185 END_REGEX_MALLOC_OK ();
|
|
6186 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS ();
|
|
6187 if (tempres)
|
428
|
6188 break;
|
|
6189 goto fail;
|
|
6190 }
|
|
6191
|
|
6192 case wordend:
|
|
6193 DEBUG_PRINT1 ("EXECUTING wordend.\n");
|
460
|
6194 if (AT_STRINGS_BEG (d))
|
|
6195 goto fail;
|
428
|
6196 {
|
|
6197 /* XEmacs: this originally read:
|
|
6198
|
|
6199 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
|
|
6200 && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
|
|
6201 break;
|
|
6202
|
|
6203 The or condition is incorrect (reversed).
|
|
6204 */
|
460
|
6205 re_char *dtmp;
|
867
|
6206 Ichar emch;
|
1333
|
6207 int tempres;
|
460
|
6208 #ifdef emacs
|
826
|
6209 Charxpos charpos = offset_to_charxpos (lispobj, PTR_TO_OFFSET (d));
|
1347
|
6210 BEGIN_REGEX_MALLOC_OK ();
|
826
|
6211 UPDATE_SYNTAX_CACHE (scache, charpos);
|
1333
|
6212 END_REGEX_MALLOC_OK ();
|
|
6213 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS ();
|
1347
|
6214 #endif
|
460
|
6215 dtmp = POS_BEFORE_GAP_UNSAFE (d);
|
867
|
6216 DEC_IBYTEPTR_FMT (dtmp, fmt);
|
|
6217 emch = itext_ichar_fmt (dtmp, fmt, lispobj);
|
1333
|
6218 BEGIN_REGEX_MALLOC_OK ();
|
|
6219 tempres = (SYNTAX_FROM_CACHE (scache, emch) != Sword);
|
|
6220 END_REGEX_MALLOC_OK ();
|
|
6221 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS ();
|
|
6222 if (tempres)
|
428
|
6223 goto fail;
|
|
6224 if (AT_STRINGS_END (d))
|
|
6225 break;
|
460
|
6226 dtmp = POS_AFTER_GAP_UNSAFE (d);
|
867
|
6227 emch = itext_ichar_fmt (dtmp, fmt, lispobj);
|
1333
|
6228 BEGIN_REGEX_MALLOC_OK ();
|
460
|
6229 #ifdef emacs
|
826
|
6230 UPDATE_SYNTAX_CACHE_FORWARD (scache, charpos + 1);
|
460
|
6231 #endif
|
1333
|
6232 tempres = (SYNTAX_FROM_CACHE (scache, emch) != Sword);
|
|
6233 END_REGEX_MALLOC_OK ();
|
|
6234 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS ();
|
|
6235 if (tempres)
|
428
|
6236 break;
|
|
6237 goto fail;
|
|
6238 }
|
|
6239
|
|
6240 #ifdef emacs
|
|
6241 case before_dot:
|
|
6242 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
|
826
|
6243 if (!BUFFERP (lispobj)
|
|
6244 || (BUF_PTR_BYTE_POS (XBUFFER (lispobj), (unsigned char *) d)
|
|
6245 >= BUF_PT (XBUFFER (lispobj))))
|
428
|
6246 goto fail;
|
|
6247 break;
|
|
6248
|
|
6249 case at_dot:
|
|
6250 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
|
826
|
6251 if (!BUFFERP (lispobj)
|
|
6252 || (BUF_PTR_BYTE_POS (XBUFFER (lispobj), (unsigned char *) d)
|
|
6253 != BUF_PT (XBUFFER (lispobj))))
|
428
|
6254 goto fail;
|
|
6255 break;
|
|
6256
|
|
6257 case after_dot:
|
|
6258 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
|
826
|
6259 if (!BUFFERP (lispobj)
|
|
6260 || (BUF_PTR_BYTE_POS (XBUFFER (lispobj), (unsigned char *) d)
|
|
6261 <= BUF_PT (XBUFFER (lispobj))))
|
428
|
6262 goto fail;
|
|
6263 break;
|
|
6264
|
|
6265 case syntaxspec:
|
|
6266 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
|
|
6267 mcnt = *p++;
|
|
6268 goto matchsyntax;
|
|
6269
|
|
6270 case wordchar:
|
|
6271 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
|
|
6272 mcnt = (int) Sword;
|
|
6273 matchsyntax:
|
|
6274 should_succeed = 1;
|
|
6275 matchornotsyntax:
|
|
6276 {
|
|
6277 int matches;
|
867
|
6278 Ichar emch;
|
428
|
6279
|
450
|
6280 REGEX_PREFETCH ();
|
1333
|
6281 BEGIN_REGEX_MALLOC_OK ();
|
826
|
6282 UPDATE_SYNTAX_CACHE
|
|
6283 (scache, offset_to_charxpos (lispobj, PTR_TO_OFFSET (d)));
|
1333
|
6284 END_REGEX_MALLOC_OK ();
|
|
6285 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS ();
|
826
|
6286
|
867
|
6287 emch = itext_ichar_fmt (d, fmt, lispobj);
|
1333
|
6288 BEGIN_REGEX_MALLOC_OK ();
|
826
|
6289 matches = (SYNTAX_FROM_CACHE (scache, emch) ==
|
|
6290 (enum syntaxcode) mcnt);
|
1333
|
6291 END_REGEX_MALLOC_OK ();
|
|
6292 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS ();
|
867
|
6293 INC_IBYTEPTR_FMT (d, fmt);
|
428
|
6294 if (matches != should_succeed)
|
|
6295 goto fail;
|
|
6296 SET_REGS_MATCHED ();
|
|
6297 }
|
|
6298 break;
|
|
6299
|
|
6300 case notsyntaxspec:
|
|
6301 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
|
|
6302 mcnt = *p++;
|
|
6303 goto matchnotsyntax;
|
|
6304
|
|
6305 case notwordchar:
|
|
6306 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
|
|
6307 mcnt = (int) Sword;
|
|
6308 matchnotsyntax:
|
|
6309 should_succeed = 0;
|
|
6310 goto matchornotsyntax;
|
|
6311
|
|
6312 #ifdef MULE
|
|
6313 /* 97/2/17 jhod Mule category code patch */
|
|
6314 case categoryspec:
|
|
6315 should_succeed = 1;
|
|
6316 matchornotcategory:
|
|
6317 {
|
867
|
6318 Ichar emch;
|
428
|
6319
|
|
6320 mcnt = *p++;
|
450
|
6321 REGEX_PREFETCH ();
|
867
|
6322 emch = itext_ichar_fmt (d, fmt, lispobj);
|
|
6323 INC_IBYTEPTR_FMT (d, fmt);
|
826
|
6324 if (check_category_char (emch, BUFFER_CATEGORY_TABLE (lispbuf),
|
|
6325 mcnt, should_succeed))
|
428
|
6326 goto fail;
|
|
6327 SET_REGS_MATCHED ();
|
|
6328 }
|
|
6329 break;
|
|
6330
|
|
6331 case notcategoryspec:
|
|
6332 should_succeed = 0;
|
|
6333 goto matchornotcategory;
|
|
6334 /* end of category patch */
|
|
6335 #endif /* MULE */
|
|
6336 #else /* not emacs */
|
|
6337 case wordchar:
|
|
6338 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
|
450
|
6339 REGEX_PREFETCH ();
|
826
|
6340 if (!WORDCHAR_P ((int) (*d)))
|
428
|
6341 goto fail;
|
|
6342 SET_REGS_MATCHED ();
|
|
6343 d++;
|
|
6344 break;
|
|
6345
|
|
6346 case notwordchar:
|
|
6347 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
|
450
|
6348 REGEX_PREFETCH ();
|
826
|
6349 if (!WORDCHAR_P ((int) (*d)))
|
428
|
6350 goto fail;
|
|
6351 SET_REGS_MATCHED ();
|
|
6352 d++;
|
|
6353 break;
|
446
|
6354 #endif /* emacs */
|
428
|
6355
|
|
6356 default:
|
2500
|
6357 ABORT ();
|
428
|
6358 }
|
|
6359 continue; /* Successfully executed one pattern command; keep going. */
|
|
6360
|
|
6361
|
|
6362 /* We goto here if a matching operation fails. */
|
|
6363 fail:
|
|
6364 if (!FAIL_STACK_EMPTY ())
|
|
6365 { /* A restart point is known. Restore to that state. */
|
|
6366 DEBUG_PRINT1 ("\nFAIL:\n");
|
|
6367 POP_FAILURE_POINT (d, p,
|
|
6368 lowest_active_reg, highest_active_reg,
|
|
6369 regstart, regend, reg_info);
|
|
6370
|
|
6371 /* If this failure point is a dummy, try the next one. */
|
|
6372 if (!p)
|
|
6373 goto fail;
|
|
6374
|
|
6375 /* If we failed to the end of the pattern, don't examine *p. */
|
|
6376 assert (p <= pend);
|
|
6377 if (p < pend)
|
|
6378 {
|
460
|
6379 re_bool is_a_jump_n = false;
|
428
|
6380
|
|
6381 /* If failed to a backwards jump that's part of a repetition
|
|
6382 loop, need to pop this failure point and use the next one. */
|
|
6383 switch ((re_opcode_t) *p)
|
|
6384 {
|
|
6385 case jump_n:
|
|
6386 is_a_jump_n = true;
|
|
6387 case maybe_pop_jump:
|
|
6388 case pop_failure_jump:
|
|
6389 case jump:
|
|
6390 p1 = p + 1;
|
|
6391 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
|
|
6392 p1 += mcnt;
|
|
6393
|
|
6394 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
|
|
6395 || (!is_a_jump_n
|
|
6396 && (re_opcode_t) *p1 == on_failure_jump))
|
|
6397 goto fail;
|
|
6398 break;
|
|
6399 default:
|
|
6400 /* do nothing */ ;
|
|
6401 }
|
|
6402 }
|
|
6403
|
|
6404 if (d >= string1 && d <= end1)
|
|
6405 dend = end_match_1;
|
|
6406 }
|
|
6407 else
|
|
6408 break; /* Matching at this starting point really fails. */
|
|
6409 } /* for (;;) */
|
|
6410
|
|
6411 if (best_regs_set)
|
|
6412 goto restore_best_regs;
|
|
6413
|
|
6414 FREE_VARIABLES ();
|
|
6415
|
|
6416 return -1; /* Failure to match. */
|
1333
|
6417 } /* re_match_2_internal */
|
428
|
6418
|
|
6419 /* Subroutine definitions for re_match_2. */
|
|
6420
|
|
6421
|
|
6422 /* We are passed P pointing to a register number after a start_memory.
|
|
6423
|
|
6424 Return true if the pattern up to the corresponding stop_memory can
|
|
6425 match the empty string, and false otherwise.
|
|
6426
|
|
6427 If we find the matching stop_memory, sets P to point to one past its number.
|
|
6428 Otherwise, sets P to an undefined byte less than or equal to END.
|
|
6429
|
|
6430 We don't handle duplicates properly (yet). */
|
|
6431
|
460
|
6432 static re_bool
|
428
|
6433 group_match_null_string_p (unsigned char **p, unsigned char *end,
|
|
6434 register_info_type *reg_info)
|
|
6435 {
|
|
6436 int mcnt;
|
|
6437 /* Point to after the args to the start_memory. */
|
|
6438 unsigned char *p1 = *p + 2;
|
|
6439
|
|
6440 while (p1 < end)
|
|
6441 {
|
|
6442 /* Skip over opcodes that can match nothing, and return true or
|
|
6443 false, as appropriate, when we get to one that can't, or to the
|
|
6444 matching stop_memory. */
|
|
6445
|
|
6446 switch ((re_opcode_t) *p1)
|
|
6447 {
|
|
6448 /* Could be either a loop or a series of alternatives. */
|
|
6449 case on_failure_jump:
|
|
6450 p1++;
|
|
6451 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
|
|
6452
|
|
6453 /* If the next operation is not a jump backwards in the
|
|
6454 pattern. */
|
|
6455
|
|
6456 if (mcnt >= 0)
|
|
6457 {
|
|
6458 /* Go through the on_failure_jumps of the alternatives,
|
|
6459 seeing if any of the alternatives cannot match nothing.
|
|
6460 The last alternative starts with only a jump,
|
|
6461 whereas the rest start with on_failure_jump and end
|
|
6462 with a jump, e.g., here is the pattern for `a|b|c':
|
|
6463
|
|
6464 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
|
|
6465 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
|
|
6466 /exactn/1/c
|
|
6467
|
|
6468 So, we have to first go through the first (n-1)
|
|
6469 alternatives and then deal with the last one separately. */
|
|
6470
|
|
6471
|
|
6472 /* Deal with the first (n-1) alternatives, which start
|
|
6473 with an on_failure_jump (see above) that jumps to right
|
|
6474 past a jump_past_alt. */
|
|
6475
|
|
6476 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
|
|
6477 {
|
|
6478 /* `mcnt' holds how many bytes long the alternative
|
|
6479 is, including the ending `jump_past_alt' and
|
|
6480 its number. */
|
|
6481
|
|
6482 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
|
|
6483 reg_info))
|
|
6484 return false;
|
|
6485
|
|
6486 /* Move to right after this alternative, including the
|
|
6487 jump_past_alt. */
|
|
6488 p1 += mcnt;
|
|
6489
|
|
6490 /* Break if it's the beginning of an n-th alternative
|
|
6491 that doesn't begin with an on_failure_jump. */
|
|
6492 if ((re_opcode_t) *p1 != on_failure_jump)
|
|
6493 break;
|
|
6494
|
|
6495 /* Still have to check that it's not an n-th
|
|
6496 alternative that starts with an on_failure_jump. */
|
|
6497 p1++;
|
|
6498 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
|
|
6499 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
|
|
6500 {
|
|
6501 /* Get to the beginning of the n-th alternative. */
|
|
6502 p1 -= 3;
|
|
6503 break;
|
|
6504 }
|
|
6505 }
|
|
6506
|
|
6507 /* Deal with the last alternative: go back and get number
|
|
6508 of the `jump_past_alt' just before it. `mcnt' contains
|
|
6509 the length of the alternative. */
|
|
6510 EXTRACT_NUMBER (mcnt, p1 - 2);
|
|
6511
|
|
6512 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
|
|
6513 return false;
|
|
6514
|
|
6515 p1 += mcnt; /* Get past the n-th alternative. */
|
|
6516 } /* if mcnt > 0 */
|
|
6517 break;
|
|
6518
|
|
6519
|
|
6520 case stop_memory:
|
|
6521 assert (p1[1] == **p);
|
|
6522 *p = p1 + 2;
|
|
6523 return true;
|
|
6524
|
|
6525
|
|
6526 default:
|
|
6527 if (!common_op_match_null_string_p (&p1, end, reg_info))
|
|
6528 return false;
|
|
6529 }
|
|
6530 } /* while p1 < end */
|
|
6531
|
|
6532 return false;
|
|
6533 } /* group_match_null_string_p */
|
|
6534
|
|
6535
|
|
6536 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
|
|
6537 It expects P to be the first byte of a single alternative and END one
|
|
6538 byte past the last. The alternative can contain groups. */
|
|
6539
|
460
|
6540 static re_bool
|
428
|
6541 alt_match_null_string_p (unsigned char *p, unsigned char *end,
|
|
6542 register_info_type *reg_info)
|
|
6543 {
|
|
6544 int mcnt;
|
|
6545 unsigned char *p1 = p;
|
|
6546
|
|
6547 while (p1 < end)
|
|
6548 {
|
|
6549 /* Skip over opcodes that can match nothing, and break when we get
|
|
6550 to one that can't. */
|
|
6551
|
|
6552 switch ((re_opcode_t) *p1)
|
|
6553 {
|
|
6554 /* It's a loop. */
|
|
6555 case on_failure_jump:
|
|
6556 p1++;
|
|
6557 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
|
|
6558 p1 += mcnt;
|
|
6559 break;
|
|
6560
|
|
6561 default:
|
|
6562 if (!common_op_match_null_string_p (&p1, end, reg_info))
|
|
6563 return false;
|
|
6564 }
|
|
6565 } /* while p1 < end */
|
|
6566
|
|
6567 return true;
|
|
6568 } /* alt_match_null_string_p */
|
|
6569
|
|
6570
|
|
6571 /* Deals with the ops common to group_match_null_string_p and
|
|
6572 alt_match_null_string_p.
|
|
6573
|
|
6574 Sets P to one after the op and its arguments, if any. */
|
|
6575
|
460
|
6576 static re_bool
|
428
|
6577 common_op_match_null_string_p (unsigned char **p, unsigned char *end,
|
|
6578 register_info_type *reg_info)
|
|
6579 {
|
|
6580 int mcnt;
|
460
|
6581 re_bool ret;
|
428
|
6582 int reg_no;
|
|
6583 unsigned char *p1 = *p;
|
|
6584
|
|
6585 switch ((re_opcode_t) *p1++)
|
|
6586 {
|
|
6587 case no_op:
|
|
6588 case begline:
|
|
6589 case endline:
|
|
6590 case begbuf:
|
|
6591 case endbuf:
|
|
6592 case wordbeg:
|
|
6593 case wordend:
|
|
6594 case wordbound:
|
|
6595 case notwordbound:
|
|
6596 #ifdef emacs
|
|
6597 case before_dot:
|
|
6598 case at_dot:
|
|
6599 case after_dot:
|
|
6600 #endif
|
|
6601 break;
|
|
6602
|
|
6603 case start_memory:
|
|
6604 reg_no = *p1;
|
|
6605 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
|
|
6606 ret = group_match_null_string_p (&p1, end, reg_info);
|
|
6607
|
|
6608 /* Have to set this here in case we're checking a group which
|
|
6609 contains a group and a back reference to it. */
|
|
6610
|
|
6611 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
|
|
6612 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
|
|
6613
|
|
6614 if (!ret)
|
|
6615 return false;
|
|
6616 break;
|
|
6617
|
|
6618 /* If this is an optimized succeed_n for zero times, make the jump. */
|
|
6619 case jump:
|
|
6620 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
|
|
6621 if (mcnt >= 0)
|
|
6622 p1 += mcnt;
|
|
6623 else
|
|
6624 return false;
|
|
6625 break;
|
|
6626
|
|
6627 case succeed_n:
|
|
6628 /* Get to the number of times to succeed. */
|
|
6629 p1 += 2;
|
|
6630 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
|
|
6631
|
|
6632 if (mcnt == 0)
|
|
6633 {
|
|
6634 p1 -= 4;
|
|
6635 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
|
|
6636 p1 += mcnt;
|
|
6637 }
|
|
6638 else
|
|
6639 return false;
|
|
6640 break;
|
|
6641
|
|
6642 case duplicate:
|
|
6643 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
|
|
6644 return false;
|
|
6645 break;
|
|
6646
|
|
6647 case set_number_at:
|
|
6648 p1 += 4;
|
|
6649
|
|
6650 default:
|
|
6651 /* All other opcodes mean we cannot match the empty string. */
|
|
6652 return false;
|
|
6653 }
|
|
6654
|
|
6655 *p = p1;
|
|
6656 return true;
|
|
6657 } /* common_op_match_null_string_p */
|
|
6658
|
|
6659
|
|
6660 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
|
|
6661 bytes; nonzero otherwise. */
|
|
6662
|
|
6663 static int
|
446
|
6664 bcmp_translate (re_char *s1, re_char *s2,
|
826
|
6665 REGISTER int len, RE_TRANSLATE_TYPE translate
|
|
6666 #ifdef emacs
|
2333
|
6667 , Internal_Format USED_IF_MULE (fmt),
|
|
6668 Lisp_Object USED_IF_MULE (lispobj)
|
826
|
6669 #endif
|
|
6670 )
|
428
|
6671 {
|
826
|
6672 REGISTER re_char *p1 = s1, *p2 = s2;
|
446
|
6673 #ifdef MULE
|
826
|
6674 re_char *p1_end = s1 + len;
|
|
6675 re_char *p2_end = s2 + len;
|
446
|
6676
|
|
6677 while (p1 != p1_end && p2 != p2_end)
|
|
6678 {
|
867
|
6679 Ichar p1_ch, p2_ch;
|
|
6680
|
|
6681 p1_ch = itext_ichar_fmt (p1, fmt, lispobj);
|
|
6682 p2_ch = itext_ichar_fmt (p2, fmt, lispobj);
|
826
|
6683
|
|
6684 if (RE_TRANSLATE_1 (p1_ch)
|
|
6685 != RE_TRANSLATE_1 (p2_ch))
|
446
|
6686 return 1;
|
867
|
6687 INC_IBYTEPTR_FMT (p1, fmt);
|
|
6688 INC_IBYTEPTR_FMT (p2, fmt);
|
446
|
6689 }
|
|
6690 #else /* not MULE */
|
428
|
6691 while (len)
|
|
6692 {
|
826
|
6693 if (RE_TRANSLATE_1 (*p1++) != RE_TRANSLATE_1 (*p2++)) return 1;
|
428
|
6694 len--;
|
|
6695 }
|
446
|
6696 #endif /* MULE */
|
428
|
6697 return 0;
|
|
6698 }
|
|
6699
|
|
6700 /* Entry points for GNU code. */
|
|
6701
|
|
6702 /* re_compile_pattern is the GNU regular expression compiler: it
|
|
6703 compiles PATTERN (of length SIZE) and puts the result in BUFP.
|
|
6704 Returns 0 if the pattern was valid, otherwise an error string.
|
|
6705
|
|
6706 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
|
|
6707 are set in BUFP on entry.
|
|
6708
|
|
6709 We call regex_compile to do the actual compilation. */
|
|
6710
|
442
|
6711 const char *
|
|
6712 re_compile_pattern (const char *pattern, int length,
|
428
|
6713 struct re_pattern_buffer *bufp)
|
|
6714 {
|
|
6715 reg_errcode_t ret;
|
|
6716
|
|
6717 /* GNU code is written to assume at least RE_NREGS registers will be set
|
|
6718 (and at least one extra will be -1). */
|
|
6719 bufp->regs_allocated = REGS_UNALLOCATED;
|
|
6720
|
|
6721 /* And GNU code determines whether or not to get register information
|
|
6722 by passing null for the REGS argument to re_match, etc., not by
|
|
6723 setting no_sub. */
|
|
6724 bufp->no_sub = 0;
|
|
6725
|
|
6726 /* Match anchors at newline. */
|
|
6727 bufp->newline_anchor = 1;
|
|
6728
|
826
|
6729 ret = regex_compile ((unsigned char *) pattern, length, re_syntax_options,
|
|
6730 bufp);
|
428
|
6731
|
|
6732 if (!ret)
|
|
6733 return NULL;
|
|
6734 return gettext (re_error_msgid[(int) ret]);
|
|
6735 }
|
|
6736
|
|
6737 /* Entry points compatible with 4.2 BSD regex library. We don't define
|
|
6738 them unless specifically requested. */
|
|
6739
|
|
6740 #ifdef _REGEX_RE_COMP
|
|
6741
|
|
6742 /* BSD has one and only one pattern buffer. */
|
|
6743 static struct re_pattern_buffer re_comp_buf;
|
|
6744
|
|
6745 char *
|
442
|
6746 re_comp (const char *s)
|
428
|
6747 {
|
|
6748 reg_errcode_t ret;
|
|
6749
|
|
6750 if (!s)
|
|
6751 {
|
|
6752 if (!re_comp_buf.buffer)
|
|
6753 return gettext ("No previous regular expression");
|
|
6754 return 0;
|
|
6755 }
|
|
6756
|
|
6757 if (!re_comp_buf.buffer)
|
|
6758 {
|
1333
|
6759 re_comp_buf.buffer = (unsigned char *) xmalloc (200);
|
428
|
6760 if (re_comp_buf.buffer == NULL)
|
|
6761 return gettext (re_error_msgid[(int) REG_ESPACE]);
|
|
6762 re_comp_buf.allocated = 200;
|
|
6763
|
1333
|
6764 re_comp_buf.fastmap = (char *) xmalloc (1 << BYTEWIDTH);
|
428
|
6765 if (re_comp_buf.fastmap == NULL)
|
|
6766 return gettext (re_error_msgid[(int) REG_ESPACE]);
|
|
6767 }
|
|
6768
|
|
6769 /* Since `re_exec' always passes NULL for the `regs' argument, we
|
|
6770 don't need to initialize the pattern buffer fields which affect it. */
|
|
6771
|
|
6772 /* Match anchors at newlines. */
|
|
6773 re_comp_buf.newline_anchor = 1;
|
|
6774
|
826
|
6775 ret = regex_compile ((unsigned char *)s, strlen (s), re_syntax_options,
|
|
6776 &re_comp_buf);
|
428
|
6777
|
|
6778 if (!ret)
|
|
6779 return NULL;
|
|
6780
|
442
|
6781 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
|
428
|
6782 return (char *) gettext (re_error_msgid[(int) ret]);
|
|
6783 }
|
|
6784
|
|
6785
|
|
6786 int
|
442
|
6787 re_exec (const char *s)
|
428
|
6788 {
|
442
|
6789 const int len = strlen (s);
|
428
|
6790 return
|
|
6791 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
|
|
6792 }
|
|
6793 #endif /* _REGEX_RE_COMP */
|
|
6794
|
|
6795 /* POSIX.2 functions. Don't define these for Emacs. */
|
|
6796
|
|
6797 #ifndef emacs
|
|
6798
|
|
6799 /* regcomp takes a regular expression as a string and compiles it.
|
|
6800
|
|
6801 PREG is a regex_t *. We do not expect any fields to be initialized,
|
|
6802 since POSIX says we shouldn't. Thus, we set
|
|
6803
|
|
6804 `buffer' to the compiled pattern;
|
|
6805 `used' to the length of the compiled pattern;
|
|
6806 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
|
|
6807 REG_EXTENDED bit in CFLAGS is set; otherwise, to
|
|
6808 RE_SYNTAX_POSIX_BASIC;
|
|
6809 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
|
|
6810 `fastmap' and `fastmap_accurate' to zero;
|
|
6811 `re_nsub' to the number of subexpressions in PATTERN.
|
502
|
6812 (non-shy of course. POSIX probably doesn't know about
|
|
6813 shy ones, and in any case they should be invisible.)
|
428
|
6814
|
|
6815 PATTERN is the address of the pattern string.
|
|
6816
|
|
6817 CFLAGS is a series of bits which affect compilation.
|
|
6818
|
|
6819 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
|
|
6820 use POSIX basic syntax.
|
|
6821
|
|
6822 If REG_NEWLINE is set, then . and [^...] don't match newline.
|
|
6823 Also, regexec will try a match beginning after every newline.
|
|
6824
|
|
6825 If REG_ICASE is set, then we considers upper- and lowercase
|
|
6826 versions of letters to be equivalent when matching.
|
|
6827
|
|
6828 If REG_NOSUB is set, then when PREG is passed to regexec, that
|
|
6829 routine will report only success or failure, and nothing about the
|
|
6830 registers.
|
|
6831
|
|
6832 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
|
|
6833 the return codes and their meanings.) */
|
|
6834
|
|
6835 int
|
442
|
6836 regcomp (regex_t *preg, const char *pattern, int cflags)
|
428
|
6837 {
|
|
6838 reg_errcode_t ret;
|
647
|
6839 unsigned int syntax
|
428
|
6840 = (cflags & REG_EXTENDED) ?
|
|
6841 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
|
|
6842
|
|
6843 /* regex_compile will allocate the space for the compiled pattern. */
|
|
6844 preg->buffer = 0;
|
|
6845 preg->allocated = 0;
|
|
6846 preg->used = 0;
|
|
6847
|
|
6848 /* Don't bother to use a fastmap when searching. This simplifies the
|
|
6849 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
|
|
6850 characters after newlines into the fastmap. This way, we just try
|
|
6851 every character. */
|
|
6852 preg->fastmap = 0;
|
|
6853
|
|
6854 if (cflags & REG_ICASE)
|
|
6855 {
|
647
|
6856 int i;
|
428
|
6857
|
1333
|
6858 preg->translate = (char *) xmalloc (CHAR_SET_SIZE);
|
428
|
6859 if (preg->translate == NULL)
|
|
6860 return (int) REG_ESPACE;
|
|
6861
|
|
6862 /* Map uppercase characters to corresponding lowercase ones. */
|
|
6863 for (i = 0; i < CHAR_SET_SIZE; i++)
|
|
6864 preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
|
|
6865 }
|
|
6866 else
|
|
6867 preg->translate = NULL;
|
|
6868
|
|
6869 /* If REG_NEWLINE is set, newlines are treated differently. */
|
|
6870 if (cflags & REG_NEWLINE)
|
|
6871 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
|
|
6872 syntax &= ~RE_DOT_NEWLINE;
|
|
6873 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
|
|
6874 /* It also changes the matching behavior. */
|
|
6875 preg->newline_anchor = 1;
|
|
6876 }
|
|
6877 else
|
|
6878 preg->newline_anchor = 0;
|
|
6879
|
|
6880 preg->no_sub = !!(cflags & REG_NOSUB);
|
|
6881
|
|
6882 /* POSIX says a null character in the pattern terminates it, so we
|
|
6883 can use strlen here in compiling the pattern. */
|
446
|
6884 ret = regex_compile ((unsigned char *) pattern, strlen (pattern), syntax, preg);
|
428
|
6885
|
|
6886 /* POSIX doesn't distinguish between an unmatched open-group and an
|
|
6887 unmatched close-group: both are REG_EPAREN. */
|
|
6888 if (ret == REG_ERPAREN) ret = REG_EPAREN;
|
|
6889
|
|
6890 return (int) ret;
|
|
6891 }
|
|
6892
|
|
6893
|
|
6894 /* regexec searches for a given pattern, specified by PREG, in the
|
|
6895 string STRING.
|
|
6896
|
|
6897 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
|
|
6898 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
|
|
6899 least NMATCH elements, and we set them to the offsets of the
|
|
6900 corresponding matched substrings.
|
|
6901
|
|
6902 EFLAGS specifies `execution flags' which affect matching: if
|
|
6903 REG_NOTBOL is set, then ^ does not match at the beginning of the
|
|
6904 string; if REG_NOTEOL is set, then $ does not match at the end.
|
|
6905
|
|
6906 We return 0 if we find a match and REG_NOMATCH if not. */
|
|
6907
|
|
6908 int
|
442
|
6909 regexec (const regex_t *preg, const char *string, size_t nmatch,
|
428
|
6910 regmatch_t pmatch[], int eflags)
|
|
6911 {
|
|
6912 int ret;
|
|
6913 struct re_registers regs;
|
|
6914 regex_t private_preg;
|
|
6915 int len = strlen (string);
|
460
|
6916 re_bool want_reg_info = !preg->no_sub && nmatch > 0;
|
428
|
6917
|
|
6918 private_preg = *preg;
|
|
6919
|
|
6920 private_preg.not_bol = !!(eflags & REG_NOTBOL);
|
|
6921 private_preg.not_eol = !!(eflags & REG_NOTEOL);
|
|
6922
|
|
6923 /* The user has told us exactly how many registers to return
|
|
6924 information about, via `nmatch'. We have to pass that on to the
|
|
6925 matching routines. */
|
|
6926 private_preg.regs_allocated = REGS_FIXED;
|
|
6927
|
|
6928 if (want_reg_info)
|
|
6929 {
|
647
|
6930 regs.num_regs = (int) nmatch;
|
|
6931 regs.start = TALLOC ((int) nmatch, regoff_t);
|
|
6932 regs.end = TALLOC ((int) nmatch, regoff_t);
|
428
|
6933 if (regs.start == NULL || regs.end == NULL)
|
|
6934 return (int) REG_NOMATCH;
|
|
6935 }
|
|
6936
|
|
6937 /* Perform the searching operation. */
|
|
6938 ret = re_search (&private_preg, string, len,
|
|
6939 /* start: */ 0, /* range: */ len,
|
|
6940 want_reg_info ? ®s : (struct re_registers *) 0);
|
|
6941
|
|
6942 /* Copy the register information to the POSIX structure. */
|
|
6943 if (want_reg_info)
|
|
6944 {
|
|
6945 if (ret >= 0)
|
|
6946 {
|
647
|
6947 int r;
|
|
6948
|
|
6949 for (r = 0; r < (int) nmatch; r++)
|
428
|
6950 {
|
|
6951 pmatch[r].rm_so = regs.start[r];
|
|
6952 pmatch[r].rm_eo = regs.end[r];
|
|
6953 }
|
|
6954 }
|
|
6955
|
|
6956 /* If we needed the temporary register info, free the space now. */
|
1726
|
6957 xfree (regs.start, regoff_t *);
|
|
6958 xfree (regs.end, regoff_t *);
|
428
|
6959 }
|
|
6960
|
|
6961 /* We want zero return to mean success, unlike `re_search'. */
|
|
6962 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
|
|
6963 }
|
|
6964
|
|
6965
|
|
6966 /* Returns a message corresponding to an error code, ERRCODE, returned
|
|
6967 from either regcomp or regexec. We don't use PREG here. */
|
|
6968
|
|
6969 size_t
|
2286
|
6970 regerror (int errcode, const regex_t *UNUSED (preg), char *errbuf,
|
647
|
6971 size_t errbuf_size)
|
428
|
6972 {
|
442
|
6973 const char *msg;
|
665
|
6974 Bytecount msg_size;
|
428
|
6975
|
|
6976 if (errcode < 0
|
647
|
6977 || errcode >= (int) (sizeof (re_error_msgid) /
|
|
6978 sizeof (re_error_msgid[0])))
|
428
|
6979 /* Only error codes returned by the rest of the code should be passed
|
|
6980 to this routine. If we are given anything else, or if other regex
|
|
6981 code generates an invalid error code, then the program has a bug.
|
|
6982 Dump core so we can fix it. */
|
2500
|
6983 ABORT ();
|
428
|
6984
|
|
6985 msg = gettext (re_error_msgid[errcode]);
|
|
6986
|
|
6987 msg_size = strlen (msg) + 1; /* Includes the null. */
|
|
6988
|
|
6989 if (errbuf_size != 0)
|
|
6990 {
|
665
|
6991 if (msg_size > (Bytecount) errbuf_size)
|
428
|
6992 {
|
|
6993 strncpy (errbuf, msg, errbuf_size - 1);
|
|
6994 errbuf[errbuf_size - 1] = 0;
|
|
6995 }
|
|
6996 else
|
|
6997 strcpy (errbuf, msg);
|
|
6998 }
|
|
6999
|
647
|
7000 return (size_t) msg_size;
|
428
|
7001 }
|
|
7002
|
|
7003
|
|
7004 /* Free dynamically allocated space used by PREG. */
|
|
7005
|
|
7006 void
|
|
7007 regfree (regex_t *preg)
|
|
7008 {
|
|
7009 if (preg->buffer != NULL)
|
1726
|
7010 xfree (preg->buffer, unsigned char *);
|
428
|
7011 preg->buffer = NULL;
|
|
7012
|
|
7013 preg->allocated = 0;
|
|
7014 preg->used = 0;
|
|
7015
|
|
7016 if (preg->fastmap != NULL)
|
1726
|
7017 xfree (preg->fastmap, char *);
|
428
|
7018 preg->fastmap = NULL;
|
|
7019 preg->fastmap_accurate = 0;
|
|
7020
|
|
7021 if (preg->translate != NULL)
|
1726
|
7022 xfree (preg->translate, RE_TRANSLATE_TYPE);
|
428
|
7023 preg->translate = NULL;
|
|
7024 }
|
|
7025
|
|
7026 #endif /* not emacs */
|
|
7027
|