Mercurial > hg > xemacs-beta
annotate src/regex.c @ 5534:68db75473fc6
Merge.
author | Mats Lidell <mats.lidell@cag.se> |
---|---|
date | Sun, 07 Aug 2011 23:22:59 +0200 |
parents | 308d34e9f07d |
children | 3f4a234f4672 |
rev | line source |
---|---|
428 | 1 /* Extended regular expression matching and search library, |
2 version 0.12, extended for XEmacs. | |
3 (Implements POSIX draft P10003.2/D11.2, except for | |
4 internationalization features.) | |
5 | |
6 Copyright (C) 1993, 1994, 1995 Free Software Foundation, Inc. | |
7 Copyright (C) 1995 Sun Microsystems, Inc. | |
5041 | 8 Copyright (C) 1995, 2001, 2002, 2003, 2010 Ben Wing. |
428 | 9 |
5402
308d34e9f07d
Changed bulk of GPLv2 or later files identified by script
Mats Lidell <matsl@xemacs.org>
parents:
5041
diff
changeset
|
10 This file is part of XEmacs. |
308d34e9f07d
Changed bulk of GPLv2 or later files identified by script
Mats Lidell <matsl@xemacs.org>
parents:
5041
diff
changeset
|
11 |
308d34e9f07d
Changed bulk of GPLv2 or later files identified by script
Mats Lidell <matsl@xemacs.org>
parents:
5041
diff
changeset
|
12 XEmacs is free software: you can redistribute it and/or modify it |
308d34e9f07d
Changed bulk of GPLv2 or later files identified by script
Mats Lidell <matsl@xemacs.org>
parents:
5041
diff
changeset
|
13 under the terms of the GNU General Public License as published by the |
308d34e9f07d
Changed bulk of GPLv2 or later files identified by script
Mats Lidell <matsl@xemacs.org>
parents:
5041
diff
changeset
|
14 Free Software Foundation, either version 3 of the License, or (at your |
308d34e9f07d
Changed bulk of GPLv2 or later files identified by script
Mats Lidell <matsl@xemacs.org>
parents:
5041
diff
changeset
|
15 option) any later version. |
308d34e9f07d
Changed bulk of GPLv2 or later files identified by script
Mats Lidell <matsl@xemacs.org>
parents:
5041
diff
changeset
|
16 |
308d34e9f07d
Changed bulk of GPLv2 or later files identified by script
Mats Lidell <matsl@xemacs.org>
parents:
5041
diff
changeset
|
17 XEmacs is distributed in the hope that it will be useful, but WITHOUT |
308d34e9f07d
Changed bulk of GPLv2 or later files identified by script
Mats Lidell <matsl@xemacs.org>
parents:
5041
diff
changeset
|
18 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
308d34e9f07d
Changed bulk of GPLv2 or later files identified by script
Mats Lidell <matsl@xemacs.org>
parents:
5041
diff
changeset
|
19 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
308d34e9f07d
Changed bulk of GPLv2 or later files identified by script
Mats Lidell <matsl@xemacs.org>
parents:
5041
diff
changeset
|
20 for more details. |
308d34e9f07d
Changed bulk of GPLv2 or later files identified by script
Mats Lidell <matsl@xemacs.org>
parents:
5041
diff
changeset
|
21 |
428 | 22 You should have received a copy of the GNU General Public License |
5402
308d34e9f07d
Changed bulk of GPLv2 or later files identified by script
Mats Lidell <matsl@xemacs.org>
parents:
5041
diff
changeset
|
23 along with XEmacs. If not, see <http://www.gnu.org/licenses/>. */ |
428 | 24 /* Synched up with: FSF 19.29. */ |
25 | |
26 #ifdef HAVE_CONFIG_H | |
27 #include <config.h> | |
28 #endif | |
29 | |
30 #ifndef _GNU_SOURCE | |
31 #define _GNU_SOURCE 1 | |
32 #endif | |
33 | |
34 /* We assume non-Mule if emacs isn't defined. */ | |
35 #ifndef emacs | |
36 #undef MULE | |
37 #endif | |
38 | |
771 | 39 /* XEmacs addition */ |
40 #ifdef REL_ALLOC | |
41 #define REGEX_REL_ALLOC /* may be undefined below */ | |
42 #endif | |
43 | |
428 | 44 /* XEmacs: define this to add in a speedup for patterns anchored at |
45 the beginning of a line. Keep the ifdefs so that it's easier to | |
46 tell where/why this code has diverged from v19. */ | |
47 #define REGEX_BEGLINE_CHECK | |
48 | |
49 /* XEmacs: the current mmap-based ralloc handles small blocks very | |
50 poorly, so we disable it here. */ | |
51 | |
771 | 52 #if defined (HAVE_MMAP) || defined (DOUG_LEA_MALLOC) |
53 # undef REGEX_REL_ALLOC | |
428 | 54 #endif |
55 | |
56 /* The `emacs' switch turns on certain matching commands | |
57 that make sense only in Emacs. */ | |
58 #ifdef emacs | |
59 | |
60 #include "lisp.h" | |
61 #include "buffer.h" | |
62 #include "syntax.h" | |
63 | |
64 #if (defined (DEBUG_XEMACS) && !defined (DEBUG)) | |
65 #define DEBUG | |
66 #endif | |
67 | |
867 | 68 #define RE_TRANSLATE_1(ch) TRT_TABLE_OF (translate, (Ichar) ch) |
446 | 69 #define TRANSLATE_P(tr) (!NILP (tr)) |
428 | 70 |
826 | 71 /* Converts the pointer to the char to BEG-based offset from the start. */ |
72 #define PTR_TO_OFFSET(d) (MATCHING_IN_FIRST_STRING \ | |
73 ? (d) - string1 : (d) - (string2 - size1)) | |
74 | |
428 | 75 #else /* not emacs */ |
76 | |
2367 | 77 #include <stdlib.h> |
78 #include <sys/types.h> | |
79 #include <stddef.h> /* needed for ptrdiff_t under Solaris */ | |
80 #include <string.h> | |
81 | |
2286 | 82 #include "compiler.h" /* Get compiler-specific definitions like UNUSED */ |
83 | |
2500 | 84 #define ABORT abort |
85 | |
428 | 86 /* If we are not linking with Emacs proper, |
87 we can't use the relocating allocator | |
88 even if config.h says that we can. */ | |
771 | 89 #undef REGEX_REL_ALLOC |
428 | 90 |
544 | 91 /* defined in lisp.h */ |
92 #ifdef REGEX_MALLOC | |
93 #ifndef DECLARE_NOTHING | |
94 #define DECLARE_NOTHING struct nosuchstruct | |
95 #endif | |
96 #endif | |
97 | |
867 | 98 #define itext_ichar(str) ((Ichar) (str)[0]) |
99 #define itext_ichar_fmt(str, fmt, object) ((Ichar) (str)[0]) | |
100 #define itext_ichar_ascii_fmt(str, fmt, object) ((Ichar) (str)[0]) | |
428 | 101 |
102 #if (LONGBITS > INTBITS) | |
103 # define EMACS_INT long | |
104 #else | |
105 # define EMACS_INT int | |
106 #endif | |
107 | |
867 | 108 typedef int Ichar; |
109 | |
110 #define INC_IBYTEPTR(p) ((p)++) | |
111 #define INC_IBYTEPTR_FMT(p, fmt) ((p)++) | |
112 #define DEC_IBYTEPTR(p) ((p)--) | |
113 #define DEC_IBYTEPTR_FMT(p, fmt) ((p)--) | |
4750
b5f21bb36684
Fix crash in regex.c (closes issue630).
Stephen J. Turnbull <stephen@xemacs.org>
parents:
4527
diff
changeset
|
114 #define MAX_ICHAR_LEN 1 |
867 | 115 #define itext_ichar_len(ptr) 1 |
116 #define itext_ichar_len_fmt(ptr, fmt) 1 | |
428 | 117 |
118 /* Define the syntax stuff for \<, \>, etc. */ | |
119 | |
120 /* This must be nonzero for the wordchar and notwordchar pattern | |
121 commands in re_match_2. */ | |
122 #ifndef Sword | |
123 #define Sword 1 | |
124 #endif | |
125 | |
126 #ifdef SYNTAX_TABLE | |
127 | |
128 extern char *re_syntax_table; | |
129 | |
130 #else /* not SYNTAX_TABLE */ | |
131 | |
132 /* How many characters in the character set. */ | |
133 #define CHAR_SET_SIZE 256 | |
134 | |
135 static char re_syntax_table[CHAR_SET_SIZE]; | |
136 | |
137 static void | |
138 init_syntax_once (void) | |
139 { | |
140 static int done = 0; | |
141 | |
142 if (!done) | |
143 { | |
442 | 144 const char *word_syntax_chars = |
428 | 145 "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789_"; |
146 | |
147 memset (re_syntax_table, 0, sizeof (re_syntax_table)); | |
148 | |
149 while (*word_syntax_chars) | |
647 | 150 re_syntax_table[(unsigned int) (*word_syntax_chars++)] = Sword; |
428 | 151 |
152 done = 1; | |
153 } | |
154 } | |
155 | |
446 | 156 #endif /* SYNTAX_TABLE */ |
428 | 157 |
826 | 158 #define SYNTAX(ignored, c) re_syntax_table[c] |
460 | 159 #undef SYNTAX_FROM_CACHE |
826 | 160 #define SYNTAX_FROM_CACHE SYNTAX |
161 | |
162 #define RE_TRANSLATE_1(c) translate[(unsigned char) (c)] | |
446 | 163 #define TRANSLATE_P(tr) tr |
164 | |
165 #endif /* emacs */ | |
428 | 166 |
2201 | 167 /* This is for other GNU distributions with internationalized messages. */ |
168 #if defined (I18N3) && (defined (HAVE_LIBINTL_H) || defined (_LIBC)) | |
169 # include <libintl.h> | |
170 #else | |
171 # define gettext(msgid) (msgid) | |
172 #endif | |
173 | |
428 | 174 |
175 /* Get the interface, including the syntax bits. */ | |
176 #include "regex.h" | |
177 | |
178 /* isalpha etc. are used for the character classes. */ | |
179 #include <ctype.h> | |
180 | |
181 /* Jim Meyering writes: | |
182 | |
183 "... Some ctype macros are valid only for character codes that | |
184 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when | |
185 using /bin/cc or gcc but without giving an ansi option). So, all | |
186 ctype uses should be through macros like ISPRINT... If | |
187 STDC_HEADERS is defined, then autoconf has verified that the ctype | |
188 macros don't need to be guarded with references to isascii. ... | |
189 Defining isascii to 1 should let any compiler worth its salt | |
190 eliminate the && through constant folding." */ | |
191 | |
192 #if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII)) | |
193 #define ISASCII_1(c) 1 | |
194 #else | |
195 #define ISASCII_1(c) isascii(c) | |
196 #endif | |
197 | |
198 #ifdef MULE | |
199 /* The IS*() macros can be passed any character, including an extended | |
200 one. We need to make sure there are no crashes, which would occur | |
201 otherwise due to out-of-bounds array references. */ | |
202 #define ISASCII(c) (((EMACS_UINT) (c)) < 0x100 && ISASCII_1 (c)) | |
203 #else | |
204 #define ISASCII(c) ISASCII_1 (c) | |
205 #endif /* MULE */ | |
206 | |
207 #ifdef isblank | |
208 #define ISBLANK(c) (ISASCII (c) && isblank (c)) | |
209 #else | |
210 #define ISBLANK(c) ((c) == ' ' || (c) == '\t') | |
211 #endif | |
212 #ifdef isgraph | |
213 #define ISGRAPH(c) (ISASCII (c) && isgraph (c)) | |
214 #else | |
215 #define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c)) | |
216 #endif | |
217 | |
218 #define ISPRINT(c) (ISASCII (c) && isprint (c)) | |
219 #define ISDIGIT(c) (ISASCII (c) && isdigit (c)) | |
220 #define ISALNUM(c) (ISASCII (c) && isalnum (c)) | |
221 #define ISALPHA(c) (ISASCII (c) && isalpha (c)) | |
222 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c)) | |
223 #define ISLOWER(c) (ISASCII (c) && islower (c)) | |
224 #define ISPUNCT(c) (ISASCII (c) && ispunct (c)) | |
225 #define ISSPACE(c) (ISASCII (c) && isspace (c)) | |
226 #define ISUPPER(c) (ISASCII (c) && isupper (c)) | |
227 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c)) | |
228 | |
229 #ifndef NULL | |
230 #define NULL (void *)0 | |
231 #endif | |
232 | |
233 /* We remove any previous definition of `SIGN_EXTEND_CHAR', | |
234 since ours (we hope) works properly with all combinations of | |
235 machines, compilers, `char' and `unsigned char' argument types. | |
236 (Per Bothner suggested the basic approach.) */ | |
237 #undef SIGN_EXTEND_CHAR | |
238 #if __STDC__ | |
239 #define SIGN_EXTEND_CHAR(c) ((signed char) (c)) | |
240 #else /* not __STDC__ */ | |
241 /* As in Harbison and Steele. */ | |
242 #define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128) | |
243 #endif | |
244 | |
245 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we | |
246 use `alloca' instead of `malloc'. This is because using malloc in | |
247 re_search* or re_match* could cause memory leaks when C-g is used in | |
248 Emacs; also, malloc is slower and causes storage fragmentation. On | |
249 the other hand, malloc is more portable, and easier to debug. | |
250 | |
251 Because we sometimes use alloca, some routines have to be macros, | |
252 not functions -- `alloca'-allocated space disappears at the end of the | |
253 function it is called in. */ | |
254 | |
1333 | 255 #ifndef emacs |
256 #define ALLOCA alloca | |
257 #define xmalloc malloc | |
258 #define xrealloc realloc | |
4976
16112448d484
Rename xfree(FOO, TYPE) -> xfree(FOO)
Ben Wing <ben@xemacs.org>
parents:
4832
diff
changeset
|
259 #define xfree free |
1333 | 260 #endif |
261 | |
262 #ifdef emacs | |
263 #define ALLOCA_GARBAGE_COLLECT() \ | |
264 do \ | |
265 { \ | |
266 if (need_to_check_c_alloca) \ | |
267 xemacs_c_alloca (0); \ | |
268 } while (0) | |
269 #elif defined (C_ALLOCA) | |
270 #define ALLOCA_GARBAGE_COLLECT() alloca (0) | |
271 #else | |
272 #define ALLOCA_GARBAGE_COLLECT() | |
273 #endif | |
274 | |
275 #ifndef emacs | |
276 /* So we can use just it to conditionalize on */ | |
277 #undef ERROR_CHECK_MALLOC | |
278 #endif | |
279 | |
280 #ifdef ERROR_CHECK_MALLOC | |
281 /* When REL_ALLOC, malloc() is problematic because it could potentially | |
282 cause all rel-alloc()ed data -- including buffer text -- to be relocated. | |
283 We deal with this by checking for such relocation whenever we have | |
284 executed a statement that may call malloc() -- or alloca(), which may | |
285 end up calling malloc() in some circumstances -- and recomputing all | |
286 of our string pointers in re_match_2_internal() and re_search_2(). | |
287 However, if malloc() or alloca() happens and we don't know about it, | |
288 we could still be screwed. So we set up a system where we indicate all | |
289 places where we are prepared for malloc() or alloca(), and in any | |
290 other circumstances, calls to those functions (from anywhere inside of | |
2500 | 291 XEmacs!) will ABORT(). We do this even when REL_ALLOC is not defined |
1333 | 292 so that we catch these problems sooner, since many developers and beta |
293 testers will not be running with REL_ALLOC. */ | |
294 int regex_malloc_disallowed; | |
295 #define BEGIN_REGEX_MALLOC_OK() regex_malloc_disallowed = 0 | |
296 #define END_REGEX_MALLOC_OK() regex_malloc_disallowed = 1 | |
297 #define UNBIND_REGEX_MALLOC_CHECK() unbind_to (depth) | |
298 #else | |
299 #define BEGIN_REGEX_MALLOC_OK() | |
300 #define END_REGEX_MALLOC_OK() | |
301 #define UNBIND_REGEX_MALLOC_CHECK() | |
302 #endif | |
303 | |
304 | |
428 | 305 #ifdef REGEX_MALLOC |
306 | |
1333 | 307 #define REGEX_ALLOCATE xmalloc |
308 #define REGEX_REALLOCATE(source, osize, nsize) xrealloc (source, nsize) | |
309 #define REGEX_FREE xfree | |
428 | 310 |
311 #else /* not REGEX_MALLOC */ | |
312 | |
313 /* Emacs already defines alloca, sometimes. */ | |
314 #ifndef alloca | |
315 | |
316 /* Make alloca work the best possible way. */ | |
317 #ifdef __GNUC__ | |
318 #define alloca __builtin_alloca | |
771 | 319 #elif defined (__DECC) /* XEmacs: added next 3 lines, similar to config.h.in */ |
320 #include <alloca.h> | |
321 #pragma intrinsic(alloca) | |
428 | 322 #else /* not __GNUC__ */ |
323 #if HAVE_ALLOCA_H | |
324 #include <alloca.h> | |
325 #else /* not __GNUC__ or HAVE_ALLOCA_H */ | |
326 #ifndef _AIX /* Already did AIX, up at the top. */ | |
444 | 327 void *alloca (); |
428 | 328 #endif /* not _AIX */ |
446 | 329 #endif /* HAVE_ALLOCA_H */ |
330 #endif /* __GNUC__ */ | |
428 | 331 |
332 #endif /* not alloca */ | |
333 | |
1333 | 334 #define REGEX_ALLOCATE ALLOCA |
428 | 335 |
2367 | 336 /* !!#### Needs review */ |
428 | 337 /* Assumes a `char *destination' variable. */ |
338 #define REGEX_REALLOCATE(source, osize, nsize) \ | |
1333 | 339 (destination = (char *) ALLOCA (nsize), \ |
428 | 340 memmove (destination, source, osize), \ |
341 destination) | |
342 | |
1726 | 343 /* No need to do anything to free, after alloca. |
344 Do nothing! But inhibit gcc warning. */ | |
345 #define REGEX_FREE(arg,type) ((void)0) | |
428 | 346 |
446 | 347 #endif /* REGEX_MALLOC */ |
428 | 348 |
349 /* Define how to allocate the failure stack. */ | |
350 | |
771 | 351 #ifdef REGEX_REL_ALLOC |
428 | 352 #define REGEX_ALLOCATE_STACK(size) \ |
1346 | 353 r_alloc ((unsigned char **) &failure_stack_ptr, (size)) |
428 | 354 #define REGEX_REALLOCATE_STACK(source, osize, nsize) \ |
1346 | 355 r_re_alloc ((unsigned char **) &failure_stack_ptr, (nsize)) |
428 | 356 #define REGEX_FREE_STACK(ptr) \ |
1346 | 357 r_alloc_free ((unsigned char **) &failure_stack_ptr) |
428 | 358 |
771 | 359 #else /* not REGEX_REL_ALLOC */ |
428 | 360 |
361 #ifdef REGEX_MALLOC | |
362 | |
1333 | 363 #define REGEX_ALLOCATE_STACK xmalloc |
364 #define REGEX_REALLOCATE_STACK(source, osize, nsize) xrealloc (source, nsize) | |
4976
16112448d484
Rename xfree(FOO, TYPE) -> xfree(FOO)
Ben Wing <ben@xemacs.org>
parents:
4832
diff
changeset
|
365 #define REGEX_FREE_STACK(arg) xfree (arg) |
428 | 366 |
367 #else /* not REGEX_MALLOC */ | |
368 | |
1333 | 369 #define REGEX_ALLOCATE_STACK ALLOCA |
428 | 370 |
371 #define REGEX_REALLOCATE_STACK(source, osize, nsize) \ | |
372 REGEX_REALLOCATE (source, osize, nsize) | |
373 /* No need to explicitly free anything. */ | |
374 #define REGEX_FREE_STACK(arg) | |
375 | |
446 | 376 #endif /* REGEX_MALLOC */ |
771 | 377 #endif /* REGEX_REL_ALLOC */ |
428 | 378 |
379 | |
380 /* True if `size1' is non-NULL and PTR is pointing anywhere inside | |
381 `string1' or just past its end. This works if PTR is NULL, which is | |
382 a good thing. */ | |
383 #define FIRST_STRING_P(ptr) \ | |
384 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1) | |
385 | |
386 /* (Re)Allocate N items of type T using malloc, or fail. */ | |
1333 | 387 #define TALLOC(n, t) ((t *) xmalloc ((n) * sizeof (t))) |
388 #define RETALLOC(addr, n, t) ((addr) = (t *) xrealloc (addr, (n) * sizeof (t))) | |
428 | 389 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t))) |
390 | |
391 #define BYTEWIDTH 8 /* In bits. */ | |
392 | |
434 | 393 #define STREQ(s1, s2) (strcmp (s1, s2) == 0) |
428 | 394 |
395 #undef MAX | |
396 #undef MIN | |
397 #define MAX(a, b) ((a) > (b) ? (a) : (b)) | |
398 #define MIN(a, b) ((a) < (b) ? (a) : (b)) | |
399 | |
446 | 400 /* Type of source-pattern and string chars. */ |
401 typedef const unsigned char re_char; | |
402 | |
460 | 403 typedef char re_bool; |
428 | 404 #define false 0 |
405 #define true 1 | |
406 | |
407 | |
1346 | 408 #ifdef emacs |
409 | |
410 #ifdef MULE | |
411 | |
412 Lisp_Object Vthe_lisp_rangetab; | |
413 | |
414 void | |
415 vars_of_regex (void) | |
416 { | |
2421 | 417 Vthe_lisp_rangetab = Fmake_range_table (Qstart_closed_end_closed); |
1346 | 418 staticpro (&Vthe_lisp_rangetab); |
419 } | |
420 | |
421 #else /* not MULE */ | |
422 | |
423 void | |
424 vars_of_regex (void) | |
425 { | |
426 } | |
427 | |
428 #endif /* MULE */ | |
429 | |
430 /* Convert an offset from the start of the logical text string formed by | |
431 concatenating the two strings together into a character position in the | |
432 Lisp buffer or string that the text represents. Knows that | |
433 when handling buffer text, the "string" we're passed in is always | |
434 BEGV - ZV. */ | |
435 | |
436 static Charxpos | |
437 offset_to_charxpos (Lisp_Object lispobj, int off) | |
438 { | |
439 if (STRINGP (lispobj)) | |
440 return string_index_byte_to_char (lispobj, off); | |
441 else if (BUFFERP (lispobj)) | |
442 return bytebpos_to_charbpos (XBUFFER (lispobj), | |
443 off + BYTE_BUF_BEGV (XBUFFER (lispobj))); | |
444 else | |
445 return 0; | |
446 } | |
447 | |
448 #ifdef REL_ALLOC | |
449 | |
450 /* STRING1 is the value of STRING1 given to re_match_2(). LISPOBJ is | |
451 the Lisp object (if any) from which the string is taken. If LISPOBJ | |
452 is a buffer, return a relocation offset to be added to all pointers to | |
453 string data so that they will be accurate again, after an allocation or | |
454 reallocation that potentially relocated the buffer data. | |
455 */ | |
456 static Bytecount | |
457 offset_post_relocation (Lisp_Object lispobj, Ibyte *orig_buftext) | |
458 { | |
459 if (!BUFFERP (lispobj)) | |
460 return 0; | |
461 return (BYTE_BUF_BYTE_ADDRESS (XBUFFER (lispobj), | |
462 BYTE_BUF_BEGV (XBUFFER (lispobj))) - | |
463 orig_buftext); | |
464 } | |
465 | |
466 #endif /* REL_ALLOC */ | |
467 | |
468 #ifdef ERROR_CHECK_MALLOC | |
469 | |
470 /* NOTE that this can run malloc() so you need to adjust afterwards. */ | |
471 | |
472 static int | |
473 bind_regex_malloc_disallowed (int value) | |
474 { | |
475 /* Tricky, because the act of binding can run malloc(). */ | |
476 int old_regex_malloc_disallowed = regex_malloc_disallowed; | |
477 int depth; | |
478 regex_malloc_disallowed = 0; | |
479 depth = record_unwind_protect_restoring_int (®ex_malloc_disallowed, | |
480 old_regex_malloc_disallowed); | |
481 regex_malloc_disallowed = value; | |
482 return depth; | |
483 } | |
484 | |
485 #endif /* ERROR_CHECK_MALLOC */ | |
486 | |
487 #endif /* emacs */ | |
488 | |
489 | |
428 | 490 /* These are the command codes that appear in compiled regular |
491 expressions. Some opcodes are followed by argument bytes. A | |
492 command code can specify any interpretation whatsoever for its | |
493 arguments. Zero bytes may appear in the compiled regular expression. */ | |
494 | |
495 typedef enum | |
496 { | |
497 no_op = 0, | |
498 | |
499 /* Succeed right away--no more backtracking. */ | |
500 succeed, | |
501 | |
502 /* Followed by one byte giving n, then by n literal bytes. */ | |
503 exactn, | |
504 | |
505 /* Matches any (more or less) character. */ | |
506 anychar, | |
507 | |
508 /* Matches any one char belonging to specified set. First | |
509 following byte is number of bitmap bytes. Then come bytes | |
510 for a bitmap saying which chars are in. Bits in each byte | |
511 are ordered low-bit-first. A character is in the set if its | |
512 bit is 1. A character too large to have a bit in the map is | |
513 automatically not in the set. */ | |
514 charset, | |
515 | |
516 /* Same parameters as charset, but match any character that is | |
517 not one of those specified. */ | |
518 charset_not, | |
519 | |
520 /* Start remembering the text that is matched, for storing in a | |
521 register. Followed by one byte with the register number, in | |
502 | 522 the range 1 to the pattern buffer's re_ngroups |
428 | 523 field. Then followed by one byte with the number of groups |
524 inner to this one. (This last has to be part of the | |
525 start_memory only because we need it in the on_failure_jump | |
526 of re_match_2.) */ | |
527 start_memory, | |
528 | |
529 /* Stop remembering the text that is matched and store it in a | |
530 memory register. Followed by one byte with the register | |
502 | 531 number, in the range 1 to `re_ngroups' in the |
428 | 532 pattern buffer, and one byte with the number of inner groups, |
533 just like `start_memory'. (We need the number of inner | |
534 groups here because we don't have any easy way of finding the | |
535 corresponding start_memory when we're at a stop_memory.) */ | |
536 stop_memory, | |
537 | |
538 /* Match a duplicate of something remembered. Followed by one | |
539 byte containing the register number. */ | |
540 duplicate, | |
541 | |
542 /* Fail unless at beginning of line. */ | |
543 begline, | |
544 | |
545 /* Fail unless at end of line. */ | |
546 endline, | |
547 | |
548 /* Succeeds if at beginning of buffer (if emacs) or at beginning | |
549 of string to be matched (if not). */ | |
550 begbuf, | |
551 | |
552 /* Analogously, for end of buffer/string. */ | |
553 endbuf, | |
554 | |
555 /* Followed by two byte relative address to which to jump. */ | |
556 jump, | |
557 | |
558 /* Same as jump, but marks the end of an alternative. */ | |
559 jump_past_alt, | |
560 | |
561 /* Followed by two-byte relative address of place to resume at | |
562 in case of failure. */ | |
563 on_failure_jump, | |
564 | |
565 /* Like on_failure_jump, but pushes a placeholder instead of the | |
566 current string position when executed. */ | |
567 on_failure_keep_string_jump, | |
568 | |
569 /* Throw away latest failure point and then jump to following | |
570 two-byte relative address. */ | |
571 pop_failure_jump, | |
572 | |
573 /* Change to pop_failure_jump if know won't have to backtrack to | |
574 match; otherwise change to jump. This is used to jump | |
575 back to the beginning of a repeat. If what follows this jump | |
576 clearly won't match what the repeat does, such that we can be | |
577 sure that there is no use backtracking out of repetitions | |
578 already matched, then we change it to a pop_failure_jump. | |
579 Followed by two-byte address. */ | |
580 maybe_pop_jump, | |
581 | |
582 /* Jump to following two-byte address, and push a dummy failure | |
583 point. This failure point will be thrown away if an attempt | |
584 is made to use it for a failure. A `+' construct makes this | |
585 before the first repeat. Also used as an intermediary kind | |
586 of jump when compiling an alternative. */ | |
587 dummy_failure_jump, | |
588 | |
589 /* Push a dummy failure point and continue. Used at the end of | |
590 alternatives. */ | |
591 push_dummy_failure, | |
592 | |
593 /* Followed by two-byte relative address and two-byte number n. | |
594 After matching N times, jump to the address upon failure. */ | |
595 succeed_n, | |
596 | |
597 /* Followed by two-byte relative address, and two-byte number n. | |
598 Jump to the address N times, then fail. */ | |
599 jump_n, | |
600 | |
601 /* Set the following two-byte relative address to the | |
602 subsequent two-byte number. The address *includes* the two | |
603 bytes of number. */ | |
604 set_number_at, | |
605 | |
606 wordchar, /* Matches any word-constituent character. */ | |
607 notwordchar, /* Matches any char that is not a word-constituent. */ | |
608 | |
609 wordbeg, /* Succeeds if at word beginning. */ | |
610 wordend, /* Succeeds if at word end. */ | |
611 | |
612 wordbound, /* Succeeds if at a word boundary. */ | |
613 notwordbound /* Succeeds if not at a word boundary. */ | |
614 | |
615 #ifdef emacs | |
616 ,before_dot, /* Succeeds if before point. */ | |
617 at_dot, /* Succeeds if at point. */ | |
618 after_dot, /* Succeeds if after point. */ | |
619 | |
620 /* Matches any character whose syntax is specified. Followed by | |
621 a byte which contains a syntax code, e.g., Sword. */ | |
622 syntaxspec, | |
623 | |
624 /* Matches any character whose syntax is not that specified. */ | |
625 notsyntaxspec | |
626 | |
627 #endif /* emacs */ | |
628 | |
629 #ifdef MULE | |
630 /* need extra stuff to be able to properly work with XEmacs/Mule | |
631 characters (which may take up more than one byte) */ | |
632 | |
633 ,charset_mule, /* Matches any character belonging to specified set. | |
634 The set is stored in "unified range-table | |
635 format"; see rangetab.c. Unlike the `charset' | |
636 opcode, this can handle arbitrary characters. */ | |
637 | |
638 charset_mule_not /* Same parameters as charset_mule, but match any | |
639 character that is not one of those specified. */ | |
640 | |
641 /* 97/2/17 jhod: The following two were merged back in from the Mule | |
642 2.3 code to enable some language specific processing */ | |
643 ,categoryspec, /* Matches entries in the character category tables */ | |
644 notcategoryspec /* The opposite of the above */ | |
645 #endif /* MULE */ | |
646 | |
647 } re_opcode_t; | |
648 | |
649 /* Common operations on the compiled pattern. */ | |
650 | |
651 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */ | |
652 | |
653 #define STORE_NUMBER(destination, number) \ | |
654 do { \ | |
655 (destination)[0] = (number) & 0377; \ | |
656 (destination)[1] = (number) >> 8; \ | |
657 } while (0) | |
658 | |
659 /* Same as STORE_NUMBER, except increment DESTINATION to | |
660 the byte after where the number is stored. Therefore, DESTINATION | |
661 must be an lvalue. */ | |
662 | |
663 #define STORE_NUMBER_AND_INCR(destination, number) \ | |
664 do { \ | |
665 STORE_NUMBER (destination, number); \ | |
666 (destination) += 2; \ | |
667 } while (0) | |
668 | |
669 /* Put into DESTINATION a number stored in two contiguous bytes starting | |
670 at SOURCE. */ | |
671 | |
672 #define EXTRACT_NUMBER(destination, source) \ | |
673 do { \ | |
674 (destination) = *(source) & 0377; \ | |
675 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \ | |
676 } while (0) | |
677 | |
678 #ifdef DEBUG | |
679 static void | |
446 | 680 extract_number (int *dest, re_char *source) |
428 | 681 { |
682 int temp = SIGN_EXTEND_CHAR (*(source + 1)); | |
683 *dest = *source & 0377; | |
684 *dest += temp << 8; | |
685 } | |
686 | |
687 #ifndef EXTRACT_MACROS /* To debug the macros. */ | |
688 #undef EXTRACT_NUMBER | |
689 #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src) | |
690 #endif /* not EXTRACT_MACROS */ | |
691 | |
692 #endif /* DEBUG */ | |
693 | |
694 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number. | |
695 SOURCE must be an lvalue. */ | |
696 | |
697 #define EXTRACT_NUMBER_AND_INCR(destination, source) \ | |
698 do { \ | |
699 EXTRACT_NUMBER (destination, source); \ | |
700 (source) += 2; \ | |
701 } while (0) | |
702 | |
703 #ifdef DEBUG | |
704 static void | |
705 extract_number_and_incr (int *destination, unsigned char **source) | |
706 { | |
707 extract_number (destination, *source); | |
708 *source += 2; | |
709 } | |
710 | |
711 #ifndef EXTRACT_MACROS | |
712 #undef EXTRACT_NUMBER_AND_INCR | |
713 #define EXTRACT_NUMBER_AND_INCR(dest, src) \ | |
714 extract_number_and_incr (&dest, &src) | |
715 #endif /* not EXTRACT_MACROS */ | |
716 | |
717 #endif /* DEBUG */ | |
718 | |
719 /* If DEBUG is defined, Regex prints many voluminous messages about what | |
720 it is doing (if the variable `debug' is nonzero). If linked with the | |
721 main program in `iregex.c', you can enter patterns and strings | |
722 interactively. And if linked with the main program in `main.c' and | |
723 the other test files, you can run the already-written tests. */ | |
724 | |
725 #if defined (DEBUG) | |
726 | |
727 /* We use standard I/O for debugging. */ | |
728 #include <stdio.h> | |
729 | |
730 #ifndef emacs | |
731 /* XEmacs provides its own version of assert() */ | |
732 /* It is useful to test things that ``must'' be true when debugging. */ | |
733 #include <assert.h> | |
734 #endif | |
735 | |
5041 | 736 extern int debug_regexps; |
428 | 737 |
738 #define DEBUG_STATEMENT(e) e | |
5041 | 739 |
740 #define DEBUG_PRINT1(x) if (debug_regexps) printf (x) | |
741 #define DEBUG_PRINT2(x1, x2) if (debug_regexps) printf (x1, x2) | |
742 #define DEBUG_PRINT3(x1, x2, x3) if (debug_regexps) printf (x1, x2, x3) | |
743 #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug_regexps) printf (x1, x2, x3, x4) | |
428 | 744 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \ |
5041 | 745 if (debug_regexps) print_partial_compiled_pattern (s, e) |
428 | 746 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \ |
5041 | 747 if (debug_regexps) print_double_string (w, s1, sz1, s2, sz2) |
748 | |
749 #define DEBUG_FAIL_PRINT1(x) \ | |
750 if (debug_regexps & RE_DEBUG_FAILURE_POINT) printf (x) | |
751 #define DEBUG_FAIL_PRINT2(x1, x2) \ | |
752 if (debug_regexps & RE_DEBUG_FAILURE_POINT) printf (x1, x2) | |
753 #define DEBUG_FAIL_PRINT3(x1, x2, x3) \ | |
754 if (debug_regexps & RE_DEBUG_FAILURE_POINT) printf (x1, x2, x3) | |
755 #define DEBUG_FAIL_PRINT4(x1, x2, x3, x4) \ | |
756 if (debug_regexps & RE_DEBUG_FAILURE_POINT) printf (x1, x2, x3, x4) | |
757 #define DEBUG_FAIL_PRINT_COMPILED_PATTERN(p, s, e) \ | |
758 if (debug_regexps & RE_DEBUG_FAILURE_POINT) \ | |
759 print_partial_compiled_pattern (s, e) | |
760 #define DEBUG_FAIL_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \ | |
761 if (debug_regexps & RE_DEBUG_FAILURE_POINT) \ | |
762 print_double_string (w, s1, sz1, s2, sz2) | |
763 | |
764 #define DEBUG_MATCH_PRINT1(x) \ | |
765 if (debug_regexps & RE_DEBUG_MATCHING) printf (x) | |
766 #define DEBUG_MATCH_PRINT2(x1, x2) \ | |
767 if (debug_regexps & RE_DEBUG_MATCHING) printf (x1, x2) | |
768 #define DEBUG_MATCH_PRINT3(x1, x2, x3) \ | |
769 if (debug_regexps & RE_DEBUG_MATCHING) printf (x1, x2, x3) | |
770 #define DEBUG_MATCH_PRINT4(x1, x2, x3, x4) \ | |
771 if (debug_regexps & RE_DEBUG_MATCHING) printf (x1, x2, x3, x4) | |
772 #define DEBUG_MATCH_PRINT_COMPILED_PATTERN(p, s, e) \ | |
773 if (debug_regexps & RE_DEBUG_MATCHING) \ | |
774 print_partial_compiled_pattern (s, e) | |
775 #define DEBUG_MATCH_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \ | |
776 if (debug_regexps & RE_DEBUG_MATCHING) \ | |
777 print_double_string (w, s1, sz1, s2, sz2) | |
428 | 778 |
779 | |
780 /* Print the fastmap in human-readable form. */ | |
781 | |
782 static void | |
783 print_fastmap (char *fastmap) | |
784 { | |
647 | 785 int was_a_range = 0; |
786 int i = 0; | |
428 | 787 |
788 while (i < (1 << BYTEWIDTH)) | |
789 { | |
790 if (fastmap[i++]) | |
791 { | |
792 was_a_range = 0; | |
793 putchar (i - 1); | |
794 while (i < (1 << BYTEWIDTH) && fastmap[i]) | |
795 { | |
796 was_a_range = 1; | |
797 i++; | |
798 } | |
799 if (was_a_range) | |
800 { | |
801 putchar ('-'); | |
802 putchar (i - 1); | |
803 } | |
804 } | |
805 } | |
806 putchar ('\n'); | |
807 } | |
808 | |
809 | |
810 /* Print a compiled pattern string in human-readable form, starting at | |
811 the START pointer into it and ending just before the pointer END. */ | |
812 | |
813 static void | |
446 | 814 print_partial_compiled_pattern (re_char *start, re_char *end) |
428 | 815 { |
816 int mcnt, mcnt2; | |
446 | 817 unsigned char *p = (unsigned char *) start; |
818 re_char *pend = end; | |
428 | 819 |
820 if (start == NULL) | |
821 { | |
822 puts ("(null)"); | |
823 return; | |
824 } | |
825 | |
826 /* Loop over pattern commands. */ | |
827 while (p < pend) | |
828 { | |
829 printf ("%ld:\t", (long)(p - start)); | |
830 | |
831 switch ((re_opcode_t) *p++) | |
832 { | |
833 case no_op: | |
834 printf ("/no_op"); | |
835 break; | |
836 | |
837 case exactn: | |
838 mcnt = *p++; | |
839 printf ("/exactn/%d", mcnt); | |
4750
b5f21bb36684
Fix crash in regex.c (closes issue630).
Stephen J. Turnbull <stephen@xemacs.org>
parents:
4527
diff
changeset
|
840 while (mcnt--) |
428 | 841 { |
4750
b5f21bb36684
Fix crash in regex.c (closes issue630).
Stephen J. Turnbull <stephen@xemacs.org>
parents:
4527
diff
changeset
|
842 putchar ('/'); |
428 | 843 putchar (*p++); |
844 } | |
845 break; | |
846 | |
847 case start_memory: | |
848 mcnt = *p++; | |
849 printf ("/start_memory/%d/%d", mcnt, *p++); | |
850 break; | |
851 | |
852 case stop_memory: | |
853 mcnt = *p++; | |
854 printf ("/stop_memory/%d/%d", mcnt, *p++); | |
855 break; | |
856 | |
857 case duplicate: | |
858 printf ("/duplicate/%d", *p++); | |
859 break; | |
860 | |
861 case anychar: | |
862 printf ("/anychar"); | |
863 break; | |
864 | |
865 case charset: | |
866 case charset_not: | |
867 { | |
868 REGISTER int c, last = -100; | |
869 REGISTER int in_range = 0; | |
870 | |
871 printf ("/charset [%s", | |
872 (re_opcode_t) *(p - 1) == charset_not ? "^" : ""); | |
873 | |
874 assert (p + *p < pend); | |
875 | |
876 for (c = 0; c < 256; c++) | |
877 if (((unsigned char) (c / 8) < *p) | |
878 && (p[1 + (c/8)] & (1 << (c % 8)))) | |
879 { | |
880 /* Are we starting a range? */ | |
881 if (last + 1 == c && ! in_range) | |
882 { | |
883 putchar ('-'); | |
884 in_range = 1; | |
885 } | |
886 /* Have we broken a range? */ | |
887 else if (last + 1 != c && in_range) | |
888 { | |
889 putchar (last); | |
890 in_range = 0; | |
891 } | |
892 | |
893 if (! in_range) | |
894 putchar (c); | |
895 | |
896 last = c; | |
897 } | |
898 | |
899 if (in_range) | |
900 putchar (last); | |
901 | |
902 putchar (']'); | |
903 | |
904 p += 1 + *p; | |
905 } | |
906 break; | |
907 | |
908 #ifdef MULE | |
909 case charset_mule: | |
910 case charset_mule_not: | |
911 { | |
912 int nentries, i; | |
913 | |
914 printf ("/charset_mule [%s", | |
915 (re_opcode_t) *(p - 1) == charset_mule_not ? "^" : ""); | |
916 nentries = unified_range_table_nentries (p); | |
917 for (i = 0; i < nentries; i++) | |
918 { | |
919 EMACS_INT first, last; | |
920 Lisp_Object dummy_val; | |
921 | |
922 unified_range_table_get_range (p, i, &first, &last, | |
923 &dummy_val); | |
924 if (first < 0x100) | |
925 putchar (first); | |
926 else | |
927 printf ("(0x%lx)", (long)first); | |
928 if (first != last) | |
929 { | |
930 putchar ('-'); | |
931 if (last < 0x100) | |
932 putchar (last); | |
933 else | |
934 printf ("(0x%lx)", (long)last); | |
935 } | |
936 } | |
937 putchar (']'); | |
938 p += unified_range_table_bytes_used (p); | |
939 } | |
940 break; | |
941 #endif | |
942 | |
943 case begline: | |
944 printf ("/begline"); | |
945 break; | |
946 | |
947 case endline: | |
948 printf ("/endline"); | |
949 break; | |
950 | |
951 case on_failure_jump: | |
952 extract_number_and_incr (&mcnt, &p); | |
953 printf ("/on_failure_jump to %ld", (long)(p + mcnt - start)); | |
954 break; | |
955 | |
956 case on_failure_keep_string_jump: | |
957 extract_number_and_incr (&mcnt, &p); | |
958 printf ("/on_failure_keep_string_jump to %ld", (long)(p + mcnt - start)); | |
959 break; | |
960 | |
961 case dummy_failure_jump: | |
962 extract_number_and_incr (&mcnt, &p); | |
963 printf ("/dummy_failure_jump to %ld", (long)(p + mcnt - start)); | |
964 break; | |
965 | |
966 case push_dummy_failure: | |
967 printf ("/push_dummy_failure"); | |
968 break; | |
969 | |
970 case maybe_pop_jump: | |
971 extract_number_and_incr (&mcnt, &p); | |
972 printf ("/maybe_pop_jump to %ld", (long)(p + mcnt - start)); | |
973 break; | |
974 | |
975 case pop_failure_jump: | |
976 extract_number_and_incr (&mcnt, &p); | |
977 printf ("/pop_failure_jump to %ld", (long)(p + mcnt - start)); | |
978 break; | |
979 | |
980 case jump_past_alt: | |
981 extract_number_and_incr (&mcnt, &p); | |
982 printf ("/jump_past_alt to %ld", (long)(p + mcnt - start)); | |
983 break; | |
984 | |
985 case jump: | |
986 extract_number_and_incr (&mcnt, &p); | |
987 printf ("/jump to %ld", (long)(p + mcnt - start)); | |
988 break; | |
989 | |
990 case succeed_n: | |
991 extract_number_and_incr (&mcnt, &p); | |
992 extract_number_and_incr (&mcnt2, &p); | |
993 printf ("/succeed_n to %ld, %d times", (long)(p + mcnt - start), mcnt2); | |
994 break; | |
995 | |
996 case jump_n: | |
997 extract_number_and_incr (&mcnt, &p); | |
998 extract_number_and_incr (&mcnt2, &p); | |
999 printf ("/jump_n to %ld, %d times", (long)(p + mcnt - start), mcnt2); | |
1000 break; | |
1001 | |
1002 case set_number_at: | |
1003 extract_number_and_incr (&mcnt, &p); | |
1004 extract_number_and_incr (&mcnt2, &p); | |
1005 printf ("/set_number_at location %ld to %d", (long)(p + mcnt - start), mcnt2); | |
1006 break; | |
1007 | |
1008 case wordbound: | |
1009 printf ("/wordbound"); | |
1010 break; | |
1011 | |
1012 case notwordbound: | |
1013 printf ("/notwordbound"); | |
1014 break; | |
1015 | |
1016 case wordbeg: | |
1017 printf ("/wordbeg"); | |
1018 break; | |
1019 | |
1020 case wordend: | |
1021 printf ("/wordend"); | |
1022 | |
1023 #ifdef emacs | |
1024 case before_dot: | |
1025 printf ("/before_dot"); | |
1026 break; | |
1027 | |
1028 case at_dot: | |
1029 printf ("/at_dot"); | |
1030 break; | |
1031 | |
1032 case after_dot: | |
1033 printf ("/after_dot"); | |
1034 break; | |
1035 | |
1036 case syntaxspec: | |
1037 printf ("/syntaxspec"); | |
1038 mcnt = *p++; | |
1039 printf ("/%d", mcnt); | |
1040 break; | |
1041 | |
1042 case notsyntaxspec: | |
1043 printf ("/notsyntaxspec"); | |
1044 mcnt = *p++; | |
1045 printf ("/%d", mcnt); | |
1046 break; | |
1047 | |
1048 #ifdef MULE | |
1049 /* 97/2/17 jhod Mule category patch */ | |
1050 case categoryspec: | |
1051 printf ("/categoryspec"); | |
1052 mcnt = *p++; | |
1053 printf ("/%d", mcnt); | |
1054 break; | |
1055 | |
1056 case notcategoryspec: | |
1057 printf ("/notcategoryspec"); | |
1058 mcnt = *p++; | |
1059 printf ("/%d", mcnt); | |
1060 break; | |
1061 /* end of category patch */ | |
1062 #endif /* MULE */ | |
1063 #endif /* emacs */ | |
1064 | |
1065 case wordchar: | |
1066 printf ("/wordchar"); | |
1067 break; | |
1068 | |
1069 case notwordchar: | |
1070 printf ("/notwordchar"); | |
1071 break; | |
1072 | |
1073 case begbuf: | |
1074 printf ("/begbuf"); | |
1075 break; | |
1076 | |
1077 case endbuf: | |
1078 printf ("/endbuf"); | |
1079 break; | |
1080 | |
1081 default: | |
1082 printf ("?%d", *(p-1)); | |
1083 } | |
1084 | |
1085 putchar ('\n'); | |
1086 } | |
1087 | |
1088 printf ("%ld:\tend of pattern.\n", (long)(p - start)); | |
1089 } | |
1090 | |
1091 | |
1092 static void | |
1093 print_compiled_pattern (struct re_pattern_buffer *bufp) | |
1094 { | |
446 | 1095 re_char *buffer = bufp->buffer; |
428 | 1096 |
1097 print_partial_compiled_pattern (buffer, buffer + bufp->used); | |
1098 printf ("%ld bytes used/%ld bytes allocated.\n", bufp->used, | |
1099 bufp->allocated); | |
1100 | |
1101 if (bufp->fastmap_accurate && bufp->fastmap) | |
1102 { | |
1103 printf ("fastmap: "); | |
1104 print_fastmap (bufp->fastmap); | |
1105 } | |
1106 | |
1107 printf ("re_nsub: %ld\t", (long)bufp->re_nsub); | |
502 | 1108 printf ("re_ngroups: %ld\t", (long)bufp->re_ngroups); |
428 | 1109 printf ("regs_alloc: %d\t", bufp->regs_allocated); |
1110 printf ("can_be_null: %d\t", bufp->can_be_null); | |
1111 printf ("newline_anchor: %d\n", bufp->newline_anchor); | |
1112 printf ("no_sub: %d\t", bufp->no_sub); | |
1113 printf ("not_bol: %d\t", bufp->not_bol); | |
1114 printf ("not_eol: %d\t", bufp->not_eol); | |
1115 printf ("syntax: %d\n", bufp->syntax); | |
1116 /* Perhaps we should print the translate table? */ | |
1117 /* and maybe the category table? */ | |
502 | 1118 |
1119 if (bufp->external_to_internal_register) | |
1120 { | |
1121 int i; | |
1122 | |
1123 printf ("external_to_internal_register:\n"); | |
1124 for (i = 0; i <= bufp->re_nsub; i++) | |
1125 { | |
1126 if (i > 0) | |
1127 printf (", "); | |
1128 printf ("%d -> %d", i, bufp->external_to_internal_register[i]); | |
1129 } | |
1130 printf ("\n"); | |
1131 } | |
428 | 1132 } |
1133 | |
1134 | |
1135 static void | |
446 | 1136 print_double_string (re_char *where, re_char *string1, int size1, |
1137 re_char *string2, int size2) | |
428 | 1138 { |
1139 if (where == NULL) | |
1140 printf ("(null)"); | |
1141 else | |
1142 { | |
647 | 1143 int this_char; |
428 | 1144 |
1145 if (FIRST_STRING_P (where)) | |
1146 { | |
1147 for (this_char = where - string1; this_char < size1; this_char++) | |
1148 putchar (string1[this_char]); | |
1149 | |
1150 where = string2; | |
1151 } | |
1152 | |
1153 for (this_char = where - string2; this_char < size2; this_char++) | |
1154 putchar (string2[this_char]); | |
1155 } | |
1156 } | |
1157 | |
1158 #else /* not DEBUG */ | |
1159 | |
771 | 1160 #ifndef emacs |
428 | 1161 #undef assert |
771 | 1162 #define assert(e) ((void) (1)) |
1163 #endif | |
428 | 1164 |
1165 #define DEBUG_STATEMENT(e) | |
5041 | 1166 |
428 | 1167 #define DEBUG_PRINT1(x) |
1168 #define DEBUG_PRINT2(x1, x2) | |
1169 #define DEBUG_PRINT3(x1, x2, x3) | |
1170 #define DEBUG_PRINT4(x1, x2, x3, x4) | |
1171 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) | |
1172 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) | |
1173 | |
5041 | 1174 #define DEBUG_FAIL_PRINT1(x) |
1175 #define DEBUG_FAIL_PRINT2(x1, x2) | |
1176 #define DEBUG_FAIL_PRINT3(x1, x2, x3) | |
1177 #define DEBUG_FAIL_PRINT4(x1, x2, x3, x4) | |
1178 #define DEBUG_FAIL_PRINT_COMPILED_PATTERN(p, s, e) | |
1179 #define DEBUG_FAIL_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) | |
1180 | |
1181 #define DEBUG_MATCH_PRINT1(x) | |
1182 #define DEBUG_MATCH_PRINT2(x1, x2) | |
1183 #define DEBUG_MATCH_PRINT3(x1, x2, x3) | |
1184 #define DEBUG_MATCH_PRINT4(x1, x2, x3, x4) | |
1185 #define DEBUG_MATCH_PRINT_COMPILED_PATTERN(p, s, e) | |
1186 #define DEBUG_MATCH_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) | |
1187 | |
446 | 1188 #endif /* DEBUG */ |
428 | 1189 |
1190 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can | |
1191 also be assigned to arbitrarily: each pattern buffer stores its own | |
1192 syntax, so it can be changed between regex compilations. */ | |
1193 /* This has no initializer because initialized variables in Emacs | |
1194 become read-only after dumping. */ | |
1195 reg_syntax_t re_syntax_options; | |
1196 | |
1197 | |
1198 /* Specify the precise syntax of regexps for compilation. This provides | |
1199 for compatibility for various utilities which historically have | |
1200 different, incompatible syntaxes. | |
1201 | |
1202 The argument SYNTAX is a bit mask comprised of the various bits | |
1203 defined in regex.h. We return the old syntax. */ | |
1204 | |
1205 reg_syntax_t | |
1206 re_set_syntax (reg_syntax_t syntax) | |
1207 { | |
1208 reg_syntax_t ret = re_syntax_options; | |
1209 | |
1210 re_syntax_options = syntax; | |
1211 return ret; | |
1212 } | |
1213 | |
1214 /* This table gives an error message for each of the error codes listed | |
1215 in regex.h. Obviously the order here has to be same as there. | |
1216 POSIX doesn't require that we do anything for REG_NOERROR, | |
1217 but why not be nice? */ | |
1218 | |
442 | 1219 static const char *re_error_msgid[] = |
428 | 1220 { |
1221 "Success", /* REG_NOERROR */ | |
1222 "No match", /* REG_NOMATCH */ | |
1223 "Invalid regular expression", /* REG_BADPAT */ | |
1224 "Invalid collation character", /* REG_ECOLLATE */ | |
1225 "Invalid character class name", /* REG_ECTYPE */ | |
1226 "Trailing backslash", /* REG_EESCAPE */ | |
1227 "Invalid back reference", /* REG_ESUBREG */ | |
1228 "Unmatched [ or [^", /* REG_EBRACK */ | |
1229 "Unmatched ( or \\(", /* REG_EPAREN */ | |
1230 "Unmatched \\{", /* REG_EBRACE */ | |
1231 "Invalid content of \\{\\}", /* REG_BADBR */ | |
1232 "Invalid range end", /* REG_ERANGE */ | |
1233 "Memory exhausted", /* REG_ESPACE */ | |
1234 "Invalid preceding regular expression", /* REG_BADRPT */ | |
1235 "Premature end of regular expression", /* REG_EEND */ | |
1236 "Regular expression too big", /* REG_ESIZE */ | |
1237 "Unmatched ) or \\)", /* REG_ERPAREN */ | |
1238 #ifdef emacs | |
1239 "Invalid syntax designator", /* REG_ESYNTAX */ | |
1240 #endif | |
1241 #ifdef MULE | |
1242 "Ranges may not span charsets", /* REG_ERANGESPAN */ | |
1243 "Invalid category designator", /* REG_ECATEGORY */ | |
1244 #endif | |
1245 }; | |
1246 | |
1247 /* Avoiding alloca during matching, to placate r_alloc. */ | |
1248 | |
1333 | 1249 /* About these various flags: |
1250 | |
1251 MATCH_MAY_ALLOCATE indicates that it's OK to do allocation in the | |
1252 searching and matching functions. In this case, we use local variables | |
1253 to hold the values allocated. If not, we use *global* variables, which | |
1254 are pre-allocated. NOTE: XEmacs ***MUST*** run with MATCH_MAY_ALLOCATE, | |
1255 because the regexp routines may get called reentrantly as a result of | |
1256 QUIT processing (e.g. under Windows: re_match -> QUIT -> quit_p -> drain | |
1257 events -> process WM_INITMENU -> call filter -> re_match; see stack | |
1258 trace in signal.c), so we cannot have any global variables (unless we do | |
1259 lots of trickiness including some unwind-protects, which isn't worth it | |
1260 at this point). | |
1261 | |
1262 REL_ALLOC means that the relocating allocator is in use, for buffers | |
1263 and such. REGEX_REL_ALLOC means that we use rel-alloc to manage the | |
1264 fail stack, which may grow quite large. REGEX_MALLOC means we use | |
1265 malloc() in place of alloca() to allocate the fail stack -- only | |
1266 applicable if REGEX_REL_ALLOC is not defined. | |
1267 */ | |
1268 | |
428 | 1269 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the |
1270 searching and matching functions should not call alloca. On some | |
1271 systems, alloca is implemented in terms of malloc, and if we're | |
1272 using the relocating allocator routines, then malloc could cause a | |
1273 relocation, which might (if the strings being searched are in the | |
1274 ralloc heap) shift the data out from underneath the regexp | |
771 | 1275 routines. [To clarify: The purpose of rel-alloc is to allow data to |
1276 be moved in memory from one place to another so that all data | |
1277 blocks can be consolidated together and excess memory released back | |
1278 to the operating system. This requires that all the blocks that | |
1279 are managed by rel-alloc go at the very end of the program's heap, | |
1280 after all regularly malloc()ed data. malloc(), however, is used to | |
1281 owning the end of the heap, so that when more memory is needed, it | |
1282 just expands the heap using sbrk(). This is reconciled by using a | |
1283 malloc() (such as malloc.c, gmalloc.c, or recent versions of | |
1284 malloc() in libc) where the sbrk() call can be replaced with a | |
1285 user-specified call -- in this case, to rel-alloc's r_alloc_sbrk() | |
1286 routine. This routine calls the real sbrk(), but then shifts all | |
1287 the rel-alloc-managed blocks forward to the end of the heap again, | |
1288 so that malloc() gets the memory it needs in the location it needs | |
1289 it at. The regex routines may well have pointers to buffer data as | |
1290 their arguments, and buffers are managed by rel-alloc if rel-alloc | |
1291 has been enabled, so calling malloc() may potentially screw things | |
1292 up badly if it runs out of space and asks for more from the OS.] | |
1293 | |
1294 [[Here's another reason to avoid allocation: Emacs processes input | |
1295 from X in a signal handler; processing X input may call malloc; if | |
1296 input arrives while a matching routine is calling malloc, then | |
1297 we're scrod. But Emacs can't just block input while calling | |
1298 matching routines; then we don't notice interrupts when they come | |
1299 in. So, Emacs blocks input around all regexp calls except the | |
1300 matching calls, which it leaves unprotected, in the faith that they | |
1333 | 1301 will not malloc.]] This previous paragraph is irrelevant under XEmacs, |
1302 as we *do not* do anything so stupid as process input from within a | |
1303 signal handler. | |
1304 | |
1305 However, the regexp routines may get called reentrantly as a result of | |
1306 QUIT processing (e.g. under Windows: re_match -> QUIT -> quit_p -> drain | |
1307 events -> process WM_INITMENU -> call filter -> re_match; see stack | |
1308 trace in signal.c), so we cannot have any global variables (unless we do | |
1309 lots of trickiness including some unwind-protects, which isn't worth it | |
1310 at this point). Hence we MUST have MATCH_MAY_ALLOCATE defined. | |
1311 | |
1312 Also, the first paragraph does not make complete sense to me -- what | |
1313 about the use of rel-alloc to handle the fail stacks? Shouldn't these | |
1314 reallocations potentially cause buffer data to be relocated as well? I | |
826 | 1315 must be missing something, though -- perhaps the writer above is |
1316 assuming that the failure stack(s) will always be allocated after the | |
1317 buffer data, and thus reallocating them with rel-alloc won't move buffer | |
1333 | 1318 data. (In fact, a cursory glance at the code in ralloc.c seems to |
1319 confirm this.) --ben */ | |
428 | 1320 |
1321 /* Normally, this is fine. */ | |
1322 #define MATCH_MAY_ALLOCATE | |
1323 | |
1324 /* When using GNU C, we are not REALLY using the C alloca, no matter | |
1325 what config.h may say. So don't take precautions for it. */ | |
1326 #ifdef __GNUC__ | |
1327 #undef C_ALLOCA | |
1328 #endif | |
1329 | |
1330 /* The match routines may not allocate if (1) they would do it with malloc | |
1331 and (2) it's not safe for them to use malloc. | |
1332 Note that if REL_ALLOC is defined, matching would not use malloc for the | |
1333 failure stack, but we would still use it for the register vectors; | |
1334 so REL_ALLOC should not affect this. */ | |
771 | 1335 |
1333 | 1336 /* XEmacs can handle REL_ALLOC and malloc() OK */ |
1337 #if !defined (emacs) && (defined (C_ALLOCA) || defined (REGEX_MALLOC)) && defined (REL_ALLOC) | |
428 | 1338 #undef MATCH_MAY_ALLOCATE |
1339 #endif | |
1340 | |
1333 | 1341 #if !defined (MATCH_MAY_ALLOCATE) && defined (emacs) |
771 | 1342 #error regex must be handle reentrancy; MATCH_MAY_ALLOCATE must be defined |
1343 #endif | |
1344 | |
428 | 1345 |
1346 /* Failure stack declarations and macros; both re_compile_fastmap and | |
1347 re_match_2 use a failure stack. These have to be macros because of | |
1348 REGEX_ALLOCATE_STACK. */ | |
1349 | |
1350 | |
1351 /* Number of failure points for which to initially allocate space | |
1352 when matching. If this number is exceeded, we allocate more | |
1353 space, so it is not a hard limit. */ | |
1354 #ifndef INIT_FAILURE_ALLOC | |
3300 | 1355 #define INIT_FAILURE_ALLOC 20 |
428 | 1356 #endif |
1357 | |
1358 /* Roughly the maximum number of failure points on the stack. Would be | |
1359 exactly that if always used MAX_FAILURE_SPACE each time we failed. | |
1360 This is a variable only so users of regex can assign to it; we never | |
1361 change it ourselves. */ | |
1362 #if defined (MATCH_MAY_ALLOCATE) | |
1363 /* 4400 was enough to cause a crash on Alpha OSF/1, | |
1364 whose default stack limit is 2mb. */ | |
3300 | 1365 int re_max_failures = 40000; |
428 | 1366 #else |
3300 | 1367 int re_max_failures = 4000; |
428 | 1368 #endif |
1369 | |
1370 union fail_stack_elt | |
1371 { | |
446 | 1372 re_char *pointer; |
428 | 1373 int integer; |
1374 }; | |
1375 | |
1376 typedef union fail_stack_elt fail_stack_elt_t; | |
1377 | |
1378 typedef struct | |
1379 { | |
1380 fail_stack_elt_t *stack; | |
665 | 1381 Elemcount size; |
1382 Elemcount avail; /* Offset of next open position. */ | |
428 | 1383 } fail_stack_type; |
1384 | |
1385 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0) | |
1386 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0) | |
1387 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size) | |
1388 | |
1389 | |
1390 /* Define macros to initialize and free the failure stack. | |
1391 Do `return -2' if the alloc fails. */ | |
1392 | |
1393 #ifdef MATCH_MAY_ALLOCATE | |
1333 | 1394 #define INIT_FAIL_STACK() \ |
1395 do { \ | |
1396 fail_stack.stack = (fail_stack_elt_t *) \ | |
1397 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * \ | |
1398 sizeof (fail_stack_elt_t)); \ | |
1399 \ | |
1400 if (fail_stack.stack == NULL) \ | |
1401 { \ | |
1402 UNBIND_REGEX_MALLOC_CHECK (); \ | |
1403 return -2; \ | |
1404 } \ | |
1405 \ | |
1406 fail_stack.size = INIT_FAILURE_ALLOC; \ | |
1407 fail_stack.avail = 0; \ | |
428 | 1408 } while (0) |
1409 | |
1410 #define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack) | |
1411 #else | |
1412 #define INIT_FAIL_STACK() \ | |
1413 do { \ | |
1414 fail_stack.avail = 0; \ | |
1415 } while (0) | |
1416 | |
1417 #define RESET_FAIL_STACK() | |
1418 #endif | |
1419 | |
1420 | |
1421 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items. | |
1422 | |
1423 Return 1 if succeeds, and 0 if either ran out of memory | |
1424 allocating space for it or it was already too large. | |
1425 | |
1426 REGEX_REALLOCATE_STACK requires `destination' be declared. */ | |
1427 | |
1428 #define DOUBLE_FAIL_STACK(fail_stack) \ | |
1429 ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \ | |
1430 ? 0 \ | |
1431 : ((fail_stack).stack = (fail_stack_elt_t *) \ | |
1432 REGEX_REALLOCATE_STACK ((fail_stack).stack, \ | |
1433 (fail_stack).size * sizeof (fail_stack_elt_t), \ | |
1434 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \ | |
1435 \ | |
1436 (fail_stack).stack == NULL \ | |
1437 ? 0 \ | |
1438 : ((fail_stack).size <<= 1, \ | |
1439 1))) | |
1440 | |
1333 | 1441 #if !defined (emacs) || !defined (REL_ALLOC) |
1442 #define RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS() | |
1443 #else | |
1444 /* Don't change NULL pointers */ | |
1445 #define ADD_IF_NZ(val) if (val) val += rmdp_offset | |
1346 | 1446 #define RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS() \ |
1447 do \ | |
1448 { \ | |
1449 Bytecount rmdp_offset = offset_post_relocation (lispobj, orig_buftext); \ | |
1450 \ | |
1451 if (rmdp_offset) \ | |
1452 { \ | |
1453 int i; \ | |
1454 \ | |
1455 ADD_IF_NZ (string1); \ | |
1456 ADD_IF_NZ (string2); \ | |
1457 ADD_IF_NZ (d); \ | |
1458 ADD_IF_NZ (dend); \ | |
1459 ADD_IF_NZ (end1); \ | |
1460 ADD_IF_NZ (end2); \ | |
1461 ADD_IF_NZ (end_match_1); \ | |
1462 ADD_IF_NZ (end_match_2); \ | |
1463 \ | |
1464 if (bufp->re_ngroups) \ | |
1465 { \ | |
1466 for (i = 0; i < num_regs; i++) \ | |
1467 { \ | |
1468 ADD_IF_NZ (regstart[i]); \ | |
1469 ADD_IF_NZ (regend[i]); \ | |
1470 ADD_IF_NZ (old_regstart[i]); \ | |
1471 ADD_IF_NZ (old_regend[i]); \ | |
1472 ADD_IF_NZ (best_regstart[i]); \ | |
1473 ADD_IF_NZ (best_regend[i]); \ | |
1474 ADD_IF_NZ (reg_dummy[i]); \ | |
1475 } \ | |
1476 } \ | |
1477 \ | |
1478 ADD_IF_NZ (match_end); \ | |
1479 } \ | |
1333 | 1480 } while (0) |
1481 #endif /* !defined (emacs) || !defined (REL_ALLOC) */ | |
1482 | |
1483 #if !defined (emacs) || !defined (REL_ALLOC) | |
1484 #define RE_SEARCH_RELOCATE_MOVEABLE_DATA_POINTERS() | |
1485 #else | |
1346 | 1486 #define RE_SEARCH_RELOCATE_MOVEABLE_DATA_POINTERS() \ |
1487 do \ | |
1488 { \ | |
1489 Bytecount rmdp_offset = offset_post_relocation (lispobj, orig_buftext); \ | |
1490 \ | |
1491 if (rmdp_offset) \ | |
1492 { \ | |
1493 ADD_IF_NZ (str1); \ | |
1494 ADD_IF_NZ (str2); \ | |
1495 ADD_IF_NZ (string1); \ | |
1496 ADD_IF_NZ (string2); \ | |
1497 ADD_IF_NZ (d); \ | |
1498 } \ | |
1333 | 1499 } while (0) |
1500 | |
1501 #endif /* emacs */ | |
428 | 1502 |
1503 /* Push pointer POINTER on FAIL_STACK. | |
1504 Return 1 if was able to do so and 0 if ran out of memory allocating | |
1505 space to do so. */ | |
1506 #define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \ | |
1507 ((FAIL_STACK_FULL () \ | |
1508 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \ | |
1509 ? 0 \ | |
1510 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \ | |
1511 1)) | |
1512 | |
1513 /* Push a pointer value onto the failure stack. | |
1514 Assumes the variable `fail_stack'. Probably should only | |
1515 be called from within `PUSH_FAILURE_POINT'. */ | |
1516 #define PUSH_FAILURE_POINTER(item) \ | |
1517 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item) | |
1518 | |
1519 /* This pushes an integer-valued item onto the failure stack. | |
1520 Assumes the variable `fail_stack'. Probably should only | |
1521 be called from within `PUSH_FAILURE_POINT'. */ | |
1522 #define PUSH_FAILURE_INT(item) \ | |
1523 fail_stack.stack[fail_stack.avail++].integer = (item) | |
1524 | |
1525 /* Push a fail_stack_elt_t value onto the failure stack. | |
1526 Assumes the variable `fail_stack'. Probably should only | |
1527 be called from within `PUSH_FAILURE_POINT'. */ | |
1528 #define PUSH_FAILURE_ELT(item) \ | |
1529 fail_stack.stack[fail_stack.avail++] = (item) | |
1530 | |
1531 /* These three POP... operations complement the three PUSH... operations. | |
1532 All assume that `fail_stack' is nonempty. */ | |
1533 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer | |
1534 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer | |
1535 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail] | |
1536 | |
1537 /* Used to omit pushing failure point id's when we're not debugging. */ | |
1538 #ifdef DEBUG | |
1539 #define DEBUG_PUSH PUSH_FAILURE_INT | |
1540 #define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT () | |
1541 #else | |
1542 #define DEBUG_PUSH(item) | |
1543 #define DEBUG_POP(item_addr) | |
1544 #endif | |
1545 | |
1546 | |
1547 /* Push the information about the state we will need | |
1548 if we ever fail back to it. | |
1549 | |
1550 Requires variables fail_stack, regstart, regend, reg_info, and | |
1551 num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be | |
1552 declared. | |
1553 | |
1554 Does `return FAILURE_CODE' if runs out of memory. */ | |
1555 | |
771 | 1556 #if !defined (REGEX_MALLOC) && !defined (REGEX_REL_ALLOC) |
456 | 1557 #define DECLARE_DESTINATION char *destination |
428 | 1558 #else |
456 | 1559 #define DECLARE_DESTINATION DECLARE_NOTHING |
428 | 1560 #endif |
1561 | |
1562 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \ | |
456 | 1563 do { \ |
1564 DECLARE_DESTINATION; \ | |
1565 /* Must be int, so when we don't save any registers, the arithmetic \ | |
1566 of 0 + -1 isn't done as unsigned. */ \ | |
1567 int this_reg; \ | |
428 | 1568 \ |
456 | 1569 DEBUG_STATEMENT (failure_id++); \ |
1570 DEBUG_STATEMENT (nfailure_points_pushed++); \ | |
5041 | 1571 DEBUG_FAIL_PRINT2 ("\nPUSH_FAILURE_POINT #%d:\n", failure_id); \ |
1572 DEBUG_FAIL_PRINT2 (" Before push, next avail: %ld\n", \ | |
647 | 1573 (long) (fail_stack).avail); \ |
5041 | 1574 DEBUG_FAIL_PRINT2 (" size: %ld\n", \ |
647 | 1575 (long) (fail_stack).size); \ |
456 | 1576 \ |
5041 | 1577 DEBUG_FAIL_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \ |
1578 DEBUG_FAIL_PRINT2 (" available: %ld\n", \ | |
456 | 1579 (long) REMAINING_AVAIL_SLOTS); \ |
428 | 1580 \ |
456 | 1581 /* Ensure we have enough space allocated for what we will push. */ \ |
1582 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \ | |
1583 { \ | |
1333 | 1584 BEGIN_REGEX_MALLOC_OK (); \ |
456 | 1585 if (!DOUBLE_FAIL_STACK (fail_stack)) \ |
1333 | 1586 { \ |
1587 END_REGEX_MALLOC_OK (); \ | |
1588 UNBIND_REGEX_MALLOC_CHECK (); \ | |
1589 return failure_code; \ | |
1590 } \ | |
1591 END_REGEX_MALLOC_OK (); \ | |
5041 | 1592 DEBUG_FAIL_PRINT2 ("\n Doubled stack; size now: %ld\n", \ |
647 | 1593 (long) (fail_stack).size); \ |
5041 | 1594 DEBUG_FAIL_PRINT2 (" slots available: %ld\n", \ |
456 | 1595 (long) REMAINING_AVAIL_SLOTS); \ |
1333 | 1596 \ |
1597 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS (); \ | |
456 | 1598 } \ |
428 | 1599 \ |
456 | 1600 /* Push the info, starting with the registers. */ \ |
5041 | 1601 DEBUG_FAIL_PRINT1 ("\n"); \ |
428 | 1602 \ |
456 | 1603 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \ |
1604 this_reg++) \ | |
1605 { \ | |
5041 | 1606 DEBUG_FAIL_PRINT2 (" Pushing reg: %d\n", this_reg); \ |
456 | 1607 DEBUG_STATEMENT (num_regs_pushed++); \ |
428 | 1608 \ |
5041 | 1609 DEBUG_FAIL_PRINT2 (" start: 0x%lx\n", (long) regstart[this_reg]); \ |
456 | 1610 PUSH_FAILURE_POINTER (regstart[this_reg]); \ |
1611 \ | |
5041 | 1612 DEBUG_FAIL_PRINT2 (" end: 0x%lx\n", (long) regend[this_reg]); \ |
456 | 1613 PUSH_FAILURE_POINTER (regend[this_reg]); \ |
428 | 1614 \ |
5041 | 1615 DEBUG_FAIL_PRINT2 (" info: 0x%lx\n ", \ |
456 | 1616 * (long *) (®_info[this_reg])); \ |
5041 | 1617 DEBUG_FAIL_PRINT2 (" match_null=%d", \ |
456 | 1618 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \ |
5041 | 1619 DEBUG_FAIL_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \ |
1620 DEBUG_FAIL_PRINT2 (" matched_something=%d", \ | |
456 | 1621 MATCHED_SOMETHING (reg_info[this_reg])); \ |
5041 | 1622 DEBUG_FAIL_PRINT2 (" ever_matched_something=%d", \ |
456 | 1623 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \ |
5041 | 1624 DEBUG_FAIL_PRINT1 ("\n"); \ |
456 | 1625 PUSH_FAILURE_ELT (reg_info[this_reg].word); \ |
1626 } \ | |
428 | 1627 \ |
5041 | 1628 DEBUG_FAIL_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg); \ |
456 | 1629 PUSH_FAILURE_INT (lowest_active_reg); \ |
428 | 1630 \ |
5041 | 1631 DEBUG_FAIL_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg); \ |
456 | 1632 PUSH_FAILURE_INT (highest_active_reg); \ |
428 | 1633 \ |
5041 | 1634 DEBUG_FAIL_PRINT2 (" Pushing pattern 0x%lx: \n", (long) pattern_place); \ |
1635 DEBUG_FAIL_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \ | |
456 | 1636 PUSH_FAILURE_POINTER (pattern_place); \ |
428 | 1637 \ |
5041 | 1638 DEBUG_FAIL_PRINT2 (" Pushing string 0x%lx: `", (long) string_place); \ |
1639 DEBUG_FAIL_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \ | |
456 | 1640 size2); \ |
5041 | 1641 DEBUG_FAIL_PRINT1 ("'\n"); \ |
456 | 1642 PUSH_FAILURE_POINTER (string_place); \ |
428 | 1643 \ |
5041 | 1644 DEBUG_FAIL_PRINT2 (" Pushing failure id: %u\n", failure_id); \ |
456 | 1645 DEBUG_PUSH (failure_id); \ |
1646 } while (0) | |
428 | 1647 |
1648 /* This is the number of items that are pushed and popped on the stack | |
1649 for each register. */ | |
1650 #define NUM_REG_ITEMS 3 | |
1651 | |
1652 /* Individual items aside from the registers. */ | |
1653 #ifdef DEBUG | |
1654 #define NUM_NONREG_ITEMS 5 /* Includes failure point id. */ | |
1655 #else | |
1656 #define NUM_NONREG_ITEMS 4 | |
1657 #endif | |
1658 | |
1659 /* We push at most this many items on the stack. */ | |
1660 /* We used to use (num_regs - 1), which is the number of registers | |
1661 this regexp will save; but that was changed to 5 | |
1662 to avoid stack overflow for a regexp with lots of parens. */ | |
1663 #define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS) | |
1664 | |
1665 /* We actually push this many items. */ | |
1666 #define NUM_FAILURE_ITEMS \ | |
1667 ((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS \ | |
1668 + NUM_NONREG_ITEMS) | |
1669 | |
1670 /* How many items can still be added to the stack without overflowing it. */ | |
1671 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail) | |
1672 | |
1673 | |
1674 /* Pops what PUSH_FAIL_STACK pushes. | |
1675 | |
1676 We restore into the parameters, all of which should be lvalues: | |
1677 STR -- the saved data position. | |
1678 PAT -- the saved pattern position. | |
1679 LOW_REG, HIGH_REG -- the highest and lowest active registers. | |
1680 REGSTART, REGEND -- arrays of string positions. | |
1681 REG_INFO -- array of information about each subexpression. | |
1682 | |
1683 Also assumes the variables `fail_stack' and (if debugging), `bufp', | |
1684 `pend', `string1', `size1', `string2', and `size2'. */ | |
1685 | |
456 | 1686 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, \ |
1687 regstart, regend, reg_info) \ | |
1688 do { \ | |
428 | 1689 DEBUG_STATEMENT (fail_stack_elt_t ffailure_id;) \ |
1690 int this_reg; \ | |
442 | 1691 const unsigned char *string_temp; \ |
428 | 1692 \ |
1693 assert (!FAIL_STACK_EMPTY ()); \ | |
1694 \ | |
1695 /* Remove failure points and point to how many regs pushed. */ \ | |
5041 | 1696 DEBUG_FAIL_PRINT1 ("POP_FAILURE_POINT:\n"); \ |
1697 DEBUG_FAIL_PRINT2 (" Before pop, next avail: %ld\n", \ | |
647 | 1698 (long) fail_stack.avail); \ |
5041 | 1699 DEBUG_FAIL_PRINT2 (" size: %ld\n", \ |
647 | 1700 (long) fail_stack.size); \ |
428 | 1701 \ |
1702 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \ | |
1703 \ | |
1704 DEBUG_POP (&ffailure_id.integer); \ | |
5041 | 1705 DEBUG_FAIL_PRINT2 (" Popping failure id: %d\n", \ |
647 | 1706 * (int *) &ffailure_id); \ |
428 | 1707 \ |
1708 /* If the saved string location is NULL, it came from an \ | |
1709 on_failure_keep_string_jump opcode, and we want to throw away the \ | |
1710 saved NULL, thus retaining our current position in the string. */ \ | |
1711 string_temp = POP_FAILURE_POINTER (); \ | |
1712 if (string_temp != NULL) \ | |
446 | 1713 str = string_temp; \ |
428 | 1714 \ |
5041 | 1715 DEBUG_FAIL_PRINT2 (" Popping string 0x%lx: `", (long) str); \ |
1716 DEBUG_FAIL_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \ | |
1717 DEBUG_FAIL_PRINT1 ("'\n"); \ | |
428 | 1718 \ |
1719 pat = (unsigned char *) POP_FAILURE_POINTER (); \ | |
5041 | 1720 DEBUG_FAIL_PRINT2 (" Popping pattern 0x%lx: ", (long) pat); \ |
1721 DEBUG_FAIL_PRINT_COMPILED_PATTERN (bufp, pat, pend); \ | |
428 | 1722 \ |
1723 /* Restore register info. */ \ | |
647 | 1724 high_reg = POP_FAILURE_INT (); \ |
5041 | 1725 DEBUG_FAIL_PRINT2 (" Popping high active reg: %d\n", high_reg); \ |
428 | 1726 \ |
647 | 1727 low_reg = POP_FAILURE_INT (); \ |
5041 | 1728 DEBUG_FAIL_PRINT2 (" Popping low active reg: %d\n", low_reg); \ |
428 | 1729 \ |
1730 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \ | |
1731 { \ | |
5041 | 1732 DEBUG_FAIL_PRINT2 (" Popping reg: %d\n", this_reg); \ |
428 | 1733 \ |
1734 reg_info[this_reg].word = POP_FAILURE_ELT (); \ | |
5041 | 1735 DEBUG_FAIL_PRINT2 (" info: 0x%lx\n", \ |
428 | 1736 * (long *) ®_info[this_reg]); \ |
1737 \ | |
446 | 1738 regend[this_reg] = POP_FAILURE_POINTER (); \ |
5041 | 1739 DEBUG_FAIL_PRINT2 (" end: 0x%lx\n", (long) regend[this_reg]); \ |
428 | 1740 \ |
446 | 1741 regstart[this_reg] = POP_FAILURE_POINTER (); \ |
5041 | 1742 DEBUG_FAIL_PRINT2 (" start: 0x%lx\n", (long) regstart[this_reg]); \ |
428 | 1743 } \ |
1744 \ | |
1745 set_regs_matched_done = 0; \ | |
1746 DEBUG_STATEMENT (nfailure_points_popped++); \ | |
456 | 1747 } while (0) /* POP_FAILURE_POINT */ |
428 | 1748 |
1749 | |
1750 | |
1751 /* Structure for per-register (a.k.a. per-group) information. | |
1752 Other register information, such as the | |
1753 starting and ending positions (which are addresses), and the list of | |
1754 inner groups (which is a bits list) are maintained in separate | |
1755 variables. | |
1756 | |
1757 We are making a (strictly speaking) nonportable assumption here: that | |
1758 the compiler will pack our bit fields into something that fits into | |
1759 the type of `word', i.e., is something that fits into one item on the | |
1760 failure stack. */ | |
1761 | |
1762 typedef union | |
1763 { | |
1764 fail_stack_elt_t word; | |
1765 struct | |
1766 { | |
1767 /* This field is one if this group can match the empty string, | |
1768 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */ | |
1769 #define MATCH_NULL_UNSET_VALUE 3 | |
647 | 1770 unsigned int match_null_string_p : 2; |
1771 unsigned int is_active : 1; | |
1772 unsigned int matched_something : 1; | |
1773 unsigned int ever_matched_something : 1; | |
428 | 1774 } bits; |
1775 } register_info_type; | |
1776 | |
1777 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p) | |
1778 #define IS_ACTIVE(R) ((R).bits.is_active) | |
1779 #define MATCHED_SOMETHING(R) ((R).bits.matched_something) | |
1780 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something) | |
1781 | |
1782 | |
1783 /* Call this when have matched a real character; it sets `matched' flags | |
1784 for the subexpressions which we are currently inside. Also records | |
1785 that those subexprs have matched. */ | |
1786 #define SET_REGS_MATCHED() \ | |
1787 do \ | |
1788 { \ | |
1789 if (!set_regs_matched_done) \ | |
1790 { \ | |
647 | 1791 int r; \ |
428 | 1792 set_regs_matched_done = 1; \ |
1793 for (r = lowest_active_reg; r <= highest_active_reg; r++) \ | |
1794 { \ | |
1795 MATCHED_SOMETHING (reg_info[r]) \ | |
1796 = EVER_MATCHED_SOMETHING (reg_info[r]) \ | |
1797 = 1; \ | |
1798 } \ | |
1799 } \ | |
1800 } \ | |
1801 while (0) | |
1802 | |
1803 /* Registers are set to a sentinel when they haven't yet matched. */ | |
446 | 1804 static unsigned char reg_unset_dummy; |
428 | 1805 #define REG_UNSET_VALUE (®_unset_dummy) |
1806 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE) | |
1807 | |
1808 /* Subroutine declarations and macros for regex_compile. */ | |
1809 | |
1810 /* Fetch the next character in the uncompiled pattern---translating it | |
826 | 1811 if necessary. */ |
428 | 1812 #define PATFETCH(c) \ |
446 | 1813 do { \ |
1814 PATFETCH_RAW (c); \ | |
826 | 1815 c = RE_TRANSLATE (c); \ |
428 | 1816 } while (0) |
1817 | |
1818 /* Fetch the next character in the uncompiled pattern, with no | |
1819 translation. */ | |
1820 #define PATFETCH_RAW(c) \ | |
1821 do {if (p == pend) return REG_EEND; \ | |
1822 assert (p < pend); \ | |
867 | 1823 c = itext_ichar (p); \ |
1824 INC_IBYTEPTR (p); \ | |
428 | 1825 } while (0) |
1826 | |
1827 /* Go backwards one character in the pattern. */ | |
867 | 1828 #define PATUNFETCH DEC_IBYTEPTR (p) |
428 | 1829 |
1830 /* If `translate' is non-null, return translate[D], else just D. We | |
1831 cast the subscript to translate because some data is declared as | |
1832 `char *', to avoid warnings when a string constant is passed. But | |
1833 when we use a character as a subscript we must make it unsigned. */ | |
826 | 1834 #define RE_TRANSLATE(d) \ |
1835 (TRANSLATE_P (translate) ? RE_TRANSLATE_1 (d) : (d)) | |
428 | 1836 |
1837 /* Macros for outputting the compiled pattern into `buffer'. */ | |
1838 | |
1839 /* If the buffer isn't allocated when it comes in, use this. */ | |
1840 #define INIT_BUF_SIZE 32 | |
1841 | |
1842 /* Make sure we have at least N more bytes of space in buffer. */ | |
1843 #define GET_BUFFER_SPACE(n) \ | |
647 | 1844 while (buf_end - bufp->buffer + (n) > (ptrdiff_t) bufp->allocated) \ |
428 | 1845 EXTEND_BUFFER () |
1846 | |
1847 /* Make sure we have one more byte of buffer space and then add C to it. */ | |
1848 #define BUF_PUSH(c) \ | |
1849 do { \ | |
1850 GET_BUFFER_SPACE (1); \ | |
446 | 1851 *buf_end++ = (unsigned char) (c); \ |
428 | 1852 } while (0) |
1853 | |
1854 | |
1855 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */ | |
1856 #define BUF_PUSH_2(c1, c2) \ | |
1857 do { \ | |
1858 GET_BUFFER_SPACE (2); \ | |
446 | 1859 *buf_end++ = (unsigned char) (c1); \ |
1860 *buf_end++ = (unsigned char) (c2); \ | |
428 | 1861 } while (0) |
1862 | |
1863 | |
1864 /* As with BUF_PUSH_2, except for three bytes. */ | |
1865 #define BUF_PUSH_3(c1, c2, c3) \ | |
1866 do { \ | |
1867 GET_BUFFER_SPACE (3); \ | |
446 | 1868 *buf_end++ = (unsigned char) (c1); \ |
1869 *buf_end++ = (unsigned char) (c2); \ | |
1870 *buf_end++ = (unsigned char) (c3); \ | |
428 | 1871 } while (0) |
1872 | |
1873 | |
1874 /* Store a jump with opcode OP at LOC to location TO. We store a | |
1875 relative address offset by the three bytes the jump itself occupies. */ | |
1876 #define STORE_JUMP(op, loc, to) \ | |
1877 store_op1 (op, loc, (to) - (loc) - 3) | |
1878 | |
1879 /* Likewise, for a two-argument jump. */ | |
1880 #define STORE_JUMP2(op, loc, to, arg) \ | |
1881 store_op2 (op, loc, (to) - (loc) - 3, arg) | |
1882 | |
446 | 1883 /* Like `STORE_JUMP', but for inserting. Assume `buf_end' is the |
1884 buffer end. */ | |
428 | 1885 #define INSERT_JUMP(op, loc, to) \ |
446 | 1886 insert_op1 (op, loc, (to) - (loc) - 3, buf_end) |
1887 | |
1888 /* Like `STORE_JUMP2', but for inserting. Assume `buf_end' is the | |
1889 buffer end. */ | |
428 | 1890 #define INSERT_JUMP2(op, loc, to, arg) \ |
446 | 1891 insert_op2 (op, loc, (to) - (loc) - 3, arg, buf_end) |
428 | 1892 |
1893 | |
1894 /* This is not an arbitrary limit: the arguments which represent offsets | |
1895 into the pattern are two bytes long. So if 2^16 bytes turns out to | |
1896 be too small, many things would have to change. */ | |
1897 #define MAX_BUF_SIZE (1L << 16) | |
1898 | |
1899 | |
1900 /* Extend the buffer by twice its current size via realloc and | |
1901 reset the pointers that pointed into the old block to point to the | |
1902 correct places in the new one. If extending the buffer results in it | |
1903 being larger than MAX_BUF_SIZE, then flag memory exhausted. */ | |
1333 | 1904 #define EXTEND_BUFFER() \ |
1905 do { \ | |
1906 re_char *old_buffer = bufp->buffer; \ | |
1907 if (bufp->allocated == MAX_BUF_SIZE) \ | |
1908 return REG_ESIZE; \ | |
1909 bufp->allocated <<= 1; \ | |
1910 if (bufp->allocated > MAX_BUF_SIZE) \ | |
1911 bufp->allocated = MAX_BUF_SIZE; \ | |
1912 bufp->buffer = \ | |
1913 (unsigned char *) xrealloc (bufp->buffer, bufp->allocated); \ | |
1914 if (bufp->buffer == NULL) \ | |
1915 return REG_ESPACE; \ | |
1916 /* If the buffer moved, move all the pointers into it. */ \ | |
1917 if (old_buffer != bufp->buffer) \ | |
1918 { \ | |
1919 buf_end = (buf_end - old_buffer) + bufp->buffer; \ | |
1920 begalt = (begalt - old_buffer) + bufp->buffer; \ | |
1921 if (fixup_alt_jump) \ | |
1922 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer; \ | |
1923 if (laststart) \ | |
1924 laststart = (laststart - old_buffer) + bufp->buffer; \ | |
1925 if (pending_exact) \ | |
1926 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \ | |
1927 } \ | |
428 | 1928 } while (0) |
1929 | |
1930 | |
1931 /* Since we have one byte reserved for the register number argument to | |
1932 {start,stop}_memory, the maximum number of groups we can report | |
1933 things about is what fits in that byte. */ | |
1934 #define MAX_REGNUM 255 | |
1935 | |
1936 /* But patterns can have more than `MAX_REGNUM' registers. We just | |
502 | 1937 ignore the excess. |
1938 #### not true! groups past this will fail in lots of ways, if we | |
1939 ever have to backtrack. | |
1940 */ | |
647 | 1941 typedef int regnum_t; |
428 | 1942 |
502 | 1943 #define INIT_REG_TRANSLATE_SIZE 5 |
428 | 1944 |
1945 /* Macros for the compile stack. */ | |
1946 | |
1947 /* Since offsets can go either forwards or backwards, this type needs to | |
1948 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */ | |
1949 typedef int pattern_offset_t; | |
1950 | |
1951 typedef struct | |
1952 { | |
1953 pattern_offset_t begalt_offset; | |
1954 pattern_offset_t fixup_alt_jump; | |
1955 pattern_offset_t inner_group_offset; | |
1956 pattern_offset_t laststart_offset; | |
1957 regnum_t regnum; | |
1958 } compile_stack_elt_t; | |
1959 | |
1960 | |
1961 typedef struct | |
1962 { | |
1963 compile_stack_elt_t *stack; | |
647 | 1964 int size; |
1965 int avail; /* Offset of next open position. */ | |
428 | 1966 } compile_stack_type; |
1967 | |
1968 | |
1969 #define INIT_COMPILE_STACK_SIZE 32 | |
1970 | |
1971 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0) | |
1972 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size) | |
1973 | |
1974 /* The next available element. */ | |
1975 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail]) | |
1976 | |
1977 | |
1978 /* Set the bit for character C in a bit vector. */ | |
1979 #define SET_LIST_BIT(c) \ | |
446 | 1980 (buf_end[((unsigned char) (c)) / BYTEWIDTH] \ |
428 | 1981 |= 1 << (((unsigned char) c) % BYTEWIDTH)) |
1982 | |
1983 #ifdef MULE | |
1984 | |
1985 /* Set the "bit" for character C in a range table. */ | |
1986 #define SET_RANGETAB_BIT(c) put_range_table (rtab, c, c, Qt) | |
1987 | |
1988 /* Set the "bit" for character c in the appropriate table. */ | |
1989 #define SET_EITHER_BIT(c) \ | |
1990 do { \ | |
1991 if (has_extended_chars) \ | |
1992 SET_RANGETAB_BIT (c); \ | |
1993 else \ | |
1994 SET_LIST_BIT (c); \ | |
1995 } while (0) | |
1996 | |
1997 #else /* not MULE */ | |
1998 | |
1999 #define SET_EITHER_BIT(c) SET_LIST_BIT (c) | |
2000 | |
2001 #endif | |
2002 | |
2003 | |
2004 /* Get the next unsigned number in the uncompiled pattern. */ | |
2005 #define GET_UNSIGNED_NUMBER(num) \ | |
2006 { if (p != pend) \ | |
2007 { \ | |
2008 PATFETCH (c); \ | |
2009 while (ISDIGIT (c)) \ | |
2010 { \ | |
2011 if (num < 0) \ | |
2012 num = 0; \ | |
2013 num = num * 10 + c - '0'; \ | |
2014 if (p == pend) \ | |
2015 break; \ | |
2016 PATFETCH (c); \ | |
2017 } \ | |
2018 } \ | |
2019 } | |
2020 | |
2021 #define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */ | |
2022 | |
2023 #define IS_CHAR_CLASS(string) \ | |
2024 (STREQ (string, "alpha") || STREQ (string, "upper") \ | |
2025 || STREQ (string, "lower") || STREQ (string, "digit") \ | |
2026 || STREQ (string, "alnum") || STREQ (string, "xdigit") \ | |
2027 || STREQ (string, "space") || STREQ (string, "print") \ | |
2028 || STREQ (string, "punct") || STREQ (string, "graph") \ | |
2029 || STREQ (string, "cntrl") || STREQ (string, "blank")) | |
2030 | |
2031 static void store_op1 (re_opcode_t op, unsigned char *loc, int arg); | |
2032 static void store_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2); | |
2033 static void insert_op1 (re_opcode_t op, unsigned char *loc, int arg, | |
2034 unsigned char *end); | |
2035 static void insert_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2, | |
2036 unsigned char *end); | |
460 | 2037 static re_bool at_begline_loc_p (re_char *pattern, re_char *p, |
428 | 2038 reg_syntax_t syntax); |
460 | 2039 static re_bool at_endline_loc_p (re_char *p, re_char *pend, int syntax); |
2040 static re_bool group_in_compile_stack (compile_stack_type compile_stack, | |
428 | 2041 regnum_t regnum); |
446 | 2042 static reg_errcode_t compile_range (re_char **p_ptr, re_char *pend, |
2043 RE_TRANSLATE_TYPE translate, | |
2044 reg_syntax_t syntax, | |
428 | 2045 unsigned char *b); |
2046 #ifdef MULE | |
446 | 2047 static reg_errcode_t compile_extended_range (re_char **p_ptr, |
2048 re_char *pend, | |
2049 RE_TRANSLATE_TYPE translate, | |
428 | 2050 reg_syntax_t syntax, |
2051 Lisp_Object rtab); | |
2052 #endif /* MULE */ | |
460 | 2053 static re_bool group_match_null_string_p (unsigned char **p, |
428 | 2054 unsigned char *end, |
2055 register_info_type *reg_info); | |
460 | 2056 static re_bool alt_match_null_string_p (unsigned char *p, unsigned char *end, |
428 | 2057 register_info_type *reg_info); |
460 | 2058 static re_bool common_op_match_null_string_p (unsigned char **p, |
428 | 2059 unsigned char *end, |
2060 register_info_type *reg_info); | |
826 | 2061 static int bcmp_translate (re_char *s1, re_char *s2, |
2062 REGISTER int len, RE_TRANSLATE_TYPE translate | |
2063 #ifdef emacs | |
2064 , Internal_Format fmt, Lisp_Object lispobj | |
2065 #endif | |
2066 ); | |
428 | 2067 static int re_match_2_internal (struct re_pattern_buffer *bufp, |
446 | 2068 re_char *string1, int size1, |
2069 re_char *string2, int size2, int pos, | |
826 | 2070 struct re_registers *regs, int stop |
2071 RE_LISP_CONTEXT_ARGS_DECL); | |
428 | 2072 |
2073 #ifndef MATCH_MAY_ALLOCATE | |
2074 | |
2075 /* If we cannot allocate large objects within re_match_2_internal, | |
2076 we make the fail stack and register vectors global. | |
2077 The fail stack, we grow to the maximum size when a regexp | |
2078 is compiled. | |
2079 The register vectors, we adjust in size each time we | |
2080 compile a regexp, according to the number of registers it needs. */ | |
2081 | |
2082 static fail_stack_type fail_stack; | |
2083 | |
2084 /* Size with which the following vectors are currently allocated. | |
2085 That is so we can make them bigger as needed, | |
2086 but never make them smaller. */ | |
2087 static int regs_allocated_size; | |
2088 | |
446 | 2089 static re_char ** regstart, ** regend; |
2090 static re_char ** old_regstart, ** old_regend; | |
2091 static re_char **best_regstart, **best_regend; | |
428 | 2092 static register_info_type *reg_info; |
446 | 2093 static re_char **reg_dummy; |
428 | 2094 static register_info_type *reg_info_dummy; |
2095 | |
2096 /* Make the register vectors big enough for NUM_REGS registers, | |
2097 but don't make them smaller. */ | |
2098 | |
2099 static | |
2100 regex_grow_registers (int num_regs) | |
2101 { | |
2102 if (num_regs > regs_allocated_size) | |
2103 { | |
551 | 2104 RETALLOC (regstart, num_regs, re_char *); |
2105 RETALLOC (regend, num_regs, re_char *); | |
2106 RETALLOC (old_regstart, num_regs, re_char *); | |
2107 RETALLOC (old_regend, num_regs, re_char *); | |
2108 RETALLOC (best_regstart, num_regs, re_char *); | |
2109 RETALLOC (best_regend, num_regs, re_char *); | |
2110 RETALLOC (reg_info, num_regs, register_info_type); | |
2111 RETALLOC (reg_dummy, num_regs, re_char *); | |
2112 RETALLOC (reg_info_dummy, num_regs, register_info_type); | |
428 | 2113 |
2114 regs_allocated_size = num_regs; | |
2115 } | |
2116 } | |
2117 | |
2118 #endif /* not MATCH_MAY_ALLOCATE */ | |
2119 | |
2120 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX. | |
2121 Returns one of error codes defined in `regex.h', or zero for success. | |
2122 | |
2123 Assumes the `allocated' (and perhaps `buffer') and `translate' | |
2124 fields are set in BUFP on entry. | |
2125 | |
2126 If it succeeds, results are put in BUFP (if it returns an error, the | |
2127 contents of BUFP are undefined): | |
2128 `buffer' is the compiled pattern; | |
2129 `syntax' is set to SYNTAX; | |
2130 `used' is set to the length of the compiled pattern; | |
2131 `fastmap_accurate' is zero; | |
502 | 2132 `re_ngroups' is the number of groups/subexpressions (including shy |
2133 groups) in PATTERN; | |
2134 `re_nsub' is the number of non-shy groups in PATTERN; | |
428 | 2135 `not_bol' and `not_eol' are zero; |
2136 | |
2137 The `fastmap' and `newline_anchor' fields are neither | |
2138 examined nor set. */ | |
2139 | |
2140 /* Return, freeing storage we allocated. */ | |
1726 | 2141 #define FREE_STACK_RETURN(value) \ |
2142 do \ | |
2143 { \ | |
4976
16112448d484
Rename xfree(FOO, TYPE) -> xfree(FOO)
Ben Wing <ben@xemacs.org>
parents:
4832
diff
changeset
|
2144 xfree (compile_stack.stack); \ |
1726 | 2145 return value; \ |
1333 | 2146 } while (0) |
428 | 2147 |
2148 static reg_errcode_t | |
446 | 2149 regex_compile (re_char *pattern, int size, reg_syntax_t syntax, |
428 | 2150 struct re_pattern_buffer *bufp) |
2151 { | |
2152 /* We fetch characters from PATTERN here. We declare these as int | |
2153 (or possibly long) so that chars above 127 can be used as | |
2154 array indices. The macros that fetch a character from the pattern | |
2155 make sure to coerce to unsigned char before assigning, so we won't | |
2156 get bitten by negative numbers here. */ | |
2157 /* XEmacs change: used to be unsigned char. */ | |
2158 REGISTER EMACS_INT c, c1; | |
2159 | |
2160 /* A random temporary spot in PATTERN. */ | |
446 | 2161 re_char *p1; |
428 | 2162 |
2163 /* Points to the end of the buffer, where we should append. */ | |
446 | 2164 REGISTER unsigned char *buf_end; |
428 | 2165 |
2166 /* Keeps track of unclosed groups. */ | |
2167 compile_stack_type compile_stack; | |
2168 | |
2169 /* Points to the current (ending) position in the pattern. */ | |
446 | 2170 re_char *p = pattern; |
2171 re_char *pend = pattern + size; | |
428 | 2172 |
2173 /* How to translate the characters in the pattern. */ | |
446 | 2174 RE_TRANSLATE_TYPE translate = bufp->translate; |
428 | 2175 |
2176 /* Address of the count-byte of the most recently inserted `exactn' | |
2177 command. This makes it possible to tell if a new exact-match | |
2178 character can be added to that command or if the character requires | |
2179 a new `exactn' command. */ | |
2180 unsigned char *pending_exact = 0; | |
2181 | |
2182 /* Address of start of the most recently finished expression. | |
2183 This tells, e.g., postfix * where to find the start of its | |
2184 operand. Reset at the beginning of groups and alternatives. */ | |
2185 unsigned char *laststart = 0; | |
2186 | |
2187 /* Address of beginning of regexp, or inside of last group. */ | |
2188 unsigned char *begalt; | |
2189 | |
2190 /* Place in the uncompiled pattern (i.e., the {) to | |
2191 which to go back if the interval is invalid. */ | |
446 | 2192 re_char *beg_interval; |
428 | 2193 |
2194 /* Address of the place where a forward jump should go to the end of | |
2195 the containing expression. Each alternative of an `or' -- except the | |
2196 last -- ends with a forward jump of this sort. */ | |
2197 unsigned char *fixup_alt_jump = 0; | |
2198 | |
2199 /* Counts open-groups as they are encountered. Remembered for the | |
2200 matching close-group on the compile stack, so the same register | |
2201 number is put in the stop_memory as the start_memory. */ | |
2202 regnum_t regnum = 0; | |
2203 | |
2204 #ifdef DEBUG | |
5041 | 2205 if (debug_regexps & RE_DEBUG_COMPILATION) |
428 | 2206 { |
647 | 2207 int debug_count; |
428 | 2208 |
5041 | 2209 DEBUG_PRINT1 ("\nCompiling pattern: "); |
428 | 2210 for (debug_count = 0; debug_count < size; debug_count++) |
2211 putchar (pattern[debug_count]); | |
2212 putchar ('\n'); | |
2213 } | |
2214 #endif /* DEBUG */ | |
2215 | |
2216 /* Initialize the compile stack. */ | |
2217 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t); | |
2218 if (compile_stack.stack == NULL) | |
2219 return REG_ESPACE; | |
2220 | |
2221 compile_stack.size = INIT_COMPILE_STACK_SIZE; | |
2222 compile_stack.avail = 0; | |
2223 | |
2224 /* Initialize the pattern buffer. */ | |
2225 bufp->syntax = syntax; | |
2226 bufp->fastmap_accurate = 0; | |
2227 bufp->not_bol = bufp->not_eol = 0; | |
2228 | |
2229 /* Set `used' to zero, so that if we return an error, the pattern | |
2230 printer (for debugging) will think there's no pattern. We reset it | |
2231 at the end. */ | |
2232 bufp->used = 0; | |
2233 | |
2234 /* Always count groups, whether or not bufp->no_sub is set. */ | |
2235 bufp->re_nsub = 0; | |
502 | 2236 bufp->re_ngroups = 0; |
2237 | |
2238 bufp->warned_about_incompatible_back_references = 0; | |
2239 | |
2240 if (bufp->external_to_internal_register == 0) | |
2241 { | |
2242 bufp->external_to_internal_register_size = INIT_REG_TRANSLATE_SIZE; | |
2243 RETALLOC (bufp->external_to_internal_register, | |
2244 bufp->external_to_internal_register_size, | |
2245 int); | |
2246 } | |
2247 | |
2248 { | |
2249 int i; | |
2250 | |
2251 bufp->external_to_internal_register[0] = 0; | |
2252 for (i = 1; i < bufp->external_to_internal_register_size; i++) | |
2253 bufp->external_to_internal_register[i] = (int) 0xDEADBEEF; | |
2254 } | |
428 | 2255 |
2256 #if !defined (emacs) && !defined (SYNTAX_TABLE) | |
2257 /* Initialize the syntax table. */ | |
2258 init_syntax_once (); | |
2259 #endif | |
2260 | |
2261 if (bufp->allocated == 0) | |
2262 { | |
2263 if (bufp->buffer) | |
2264 { /* If zero allocated, but buffer is non-null, try to realloc | |
2265 enough space. This loses if buffer's address is bogus, but | |
2266 that is the user's responsibility. */ | |
2267 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char); | |
2268 } | |
2269 else | |
2270 { /* Caller did not allocate a buffer. Do it for them. */ | |
2271 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char); | |
2272 } | |
2273 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE); | |
2274 | |
2275 bufp->allocated = INIT_BUF_SIZE; | |
2276 } | |
2277 | |
446 | 2278 begalt = buf_end = bufp->buffer; |
428 | 2279 |
2280 /* Loop through the uncompiled pattern until we're at the end. */ | |
2281 while (p != pend) | |
2282 { | |
2283 PATFETCH (c); | |
2284 | |
2285 switch (c) | |
2286 { | |
2287 case '^': | |
2288 { | |
2289 if ( /* If at start of pattern, it's an operator. */ | |
2290 p == pattern + 1 | |
2291 /* If context independent, it's an operator. */ | |
2292 || syntax & RE_CONTEXT_INDEP_ANCHORS | |
2293 /* Otherwise, depends on what's come before. */ | |
2294 || at_begline_loc_p (pattern, p, syntax)) | |
2295 BUF_PUSH (begline); | |
2296 else | |
2297 goto normal_char; | |
2298 } | |
2299 break; | |
2300 | |
2301 | |
2302 case '$': | |
2303 { | |
2304 if ( /* If at end of pattern, it's an operator. */ | |
2305 p == pend | |
2306 /* If context independent, it's an operator. */ | |
2307 || syntax & RE_CONTEXT_INDEP_ANCHORS | |
2308 /* Otherwise, depends on what's next. */ | |
2309 || at_endline_loc_p (p, pend, syntax)) | |
2310 BUF_PUSH (endline); | |
2311 else | |
2312 goto normal_char; | |
2313 } | |
2314 break; | |
2315 | |
2316 | |
2317 case '+': | |
2318 case '?': | |
2319 if ((syntax & RE_BK_PLUS_QM) | |
2320 || (syntax & RE_LIMITED_OPS)) | |
2321 goto normal_char; | |
2322 handle_plus: | |
2323 case '*': | |
2324 /* If there is no previous pattern... */ | |
2325 if (!laststart) | |
2326 { | |
2327 if (syntax & RE_CONTEXT_INVALID_OPS) | |
2328 FREE_STACK_RETURN (REG_BADRPT); | |
2329 else if (!(syntax & RE_CONTEXT_INDEP_OPS)) | |
2330 goto normal_char; | |
2331 } | |
2332 | |
2333 { | |
2334 /* true means zero/many matches are allowed. */ | |
460 | 2335 re_bool zero_times_ok = c != '+'; |
2336 re_bool many_times_ok = c != '?'; | |
428 | 2337 |
2338 /* true means match shortest string possible. */ | |
460 | 2339 re_bool minimal = false; |
428 | 2340 |
2341 /* If there is a sequence of repetition chars, collapse it | |
2342 down to just one (the right one). We can't combine | |
2343 interval operators with these because of, e.g., `a{2}*', | |
2344 which should only match an even number of `a's. */ | |
2345 while (p != pend) | |
2346 { | |
2347 PATFETCH (c); | |
2348 | |
2349 if (c == '*' || (!(syntax & RE_BK_PLUS_QM) | |
2350 && (c == '+' || c == '?'))) | |
2351 ; | |
2352 | |
2353 else if (syntax & RE_BK_PLUS_QM && c == '\\') | |
2354 { | |
2355 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE); | |
2356 | |
2357 PATFETCH (c1); | |
2358 if (!(c1 == '+' || c1 == '?')) | |
2359 { | |
2360 PATUNFETCH; | |
2361 PATUNFETCH; | |
2362 break; | |
2363 } | |
2364 | |
2365 c = c1; | |
2366 } | |
2367 else | |
2368 { | |
2369 PATUNFETCH; | |
2370 break; | |
2371 } | |
2372 | |
2373 /* If we get here, we found another repeat character. */ | |
2374 if (!(syntax & RE_NO_MINIMAL_MATCHING)) | |
2375 { | |
440 | 2376 /* "*?" and "+?" and "??" are okay (and mean match |
2377 minimally), but other sequences (such as "*??" and | |
2378 "+++") are rejected (reserved for future use). */ | |
428 | 2379 if (minimal || c != '?') |
2380 FREE_STACK_RETURN (REG_BADRPT); | |
2381 minimal = true; | |
2382 } | |
2383 else | |
2384 { | |
2385 zero_times_ok |= c != '+'; | |
2386 many_times_ok |= c != '?'; | |
2387 } | |
2388 } | |
2389 | |
2390 /* Star, etc. applied to an empty pattern is equivalent | |
2391 to an empty pattern. */ | |
2392 if (!laststart) | |
2393 break; | |
2394 | |
2395 /* Now we know whether zero matches is allowed | |
2396 and whether two or more matches is allowed | |
2397 and whether we want minimal or maximal matching. */ | |
2398 if (minimal) | |
2399 { | |
2400 if (!many_times_ok) | |
2401 { | |
2402 /* "a??" becomes: | |
2403 0: /on_failure_jump to 6 | |
2404 3: /jump to 9 | |
2405 6: /exactn/1/A | |
2406 9: end of pattern. | |
2407 */ | |
2408 GET_BUFFER_SPACE (6); | |
446 | 2409 INSERT_JUMP (jump, laststart, buf_end + 3); |
2410 buf_end += 3; | |
428 | 2411 INSERT_JUMP (on_failure_jump, laststart, laststart + 6); |
446 | 2412 buf_end += 3; |
428 | 2413 } |
2414 else if (zero_times_ok) | |
2415 { | |
2416 /* "a*?" becomes: | |
2417 0: /jump to 6 | |
2418 3: /exactn/1/A | |
2419 6: /on_failure_jump to 3 | |
2420 9: end of pattern. | |
2421 */ | |
2422 GET_BUFFER_SPACE (6); | |
446 | 2423 INSERT_JUMP (jump, laststart, buf_end + 3); |
2424 buf_end += 3; | |
2425 STORE_JUMP (on_failure_jump, buf_end, laststart + 3); | |
2426 buf_end += 3; | |
428 | 2427 } |
2428 else | |
2429 { | |
2430 /* "a+?" becomes: | |
2431 0: /exactn/1/A | |
2432 3: /on_failure_jump to 0 | |
2433 6: end of pattern. | |
2434 */ | |
2435 GET_BUFFER_SPACE (3); | |
446 | 2436 STORE_JUMP (on_failure_jump, buf_end, laststart); |
2437 buf_end += 3; | |
428 | 2438 } |
2439 } | |
2440 else | |
2441 { | |
2442 /* Are we optimizing this jump? */ | |
460 | 2443 re_bool keep_string_p = false; |
428 | 2444 |
2445 if (many_times_ok) | |
446 | 2446 { /* More than one repetition is allowed, so put in |
2447 at the end a backward relative jump from | |
2448 `buf_end' to before the next jump we're going | |
2449 to put in below (which jumps from laststart to | |
2450 after this jump). | |
428 | 2451 |
2452 But if we are at the `*' in the exact sequence `.*\n', | |
2453 insert an unconditional jump backwards to the ., | |
2454 instead of the beginning of the loop. This way we only | |
2455 push a failure point once, instead of every time | |
2456 through the loop. */ | |
2457 assert (p - 1 > pattern); | |
2458 | |
2459 /* Allocate the space for the jump. */ | |
2460 GET_BUFFER_SPACE (3); | |
2461 | |
2462 /* We know we are not at the first character of the | |
2463 pattern, because laststart was nonzero. And we've | |
2464 already incremented `p', by the way, to be the | |
2465 character after the `*'. Do we have to do something | |
2466 analogous here for null bytes, because of | |
2467 RE_DOT_NOT_NULL? */ | |
446 | 2468 if (*(p - 2) == '.' |
428 | 2469 && zero_times_ok |
446 | 2470 && p < pend && *p == '\n' |
428 | 2471 && !(syntax & RE_DOT_NEWLINE)) |
2472 { /* We have .*\n. */ | |
446 | 2473 STORE_JUMP (jump, buf_end, laststart); |
428 | 2474 keep_string_p = true; |
2475 } | |
2476 else | |
2477 /* Anything else. */ | |
446 | 2478 STORE_JUMP (maybe_pop_jump, buf_end, laststart - 3); |
428 | 2479 |
2480 /* We've added more stuff to the buffer. */ | |
446 | 2481 buf_end += 3; |
428 | 2482 } |
2483 | |
446 | 2484 /* On failure, jump from laststart to buf_end + 3, |
2485 which will be the end of the buffer after this jump | |
2486 is inserted. */ | |
428 | 2487 GET_BUFFER_SPACE (3); |
2488 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump | |
2489 : on_failure_jump, | |
446 | 2490 laststart, buf_end + 3); |
2491 buf_end += 3; | |
428 | 2492 |
2493 if (!zero_times_ok) | |
2494 { | |
2495 /* At least one repetition is required, so insert a | |
2496 `dummy_failure_jump' before the initial | |
2497 `on_failure_jump' instruction of the loop. This | |
2498 effects a skip over that instruction the first time | |
2499 we hit that loop. */ | |
2500 GET_BUFFER_SPACE (3); | |
2501 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6); | |
446 | 2502 buf_end += 3; |
428 | 2503 } |
2504 } | |
2505 pending_exact = 0; | |
2506 } | |
2507 break; | |
2508 | |
2509 | |
2510 case '.': | |
446 | 2511 laststart = buf_end; |
428 | 2512 BUF_PUSH (anychar); |
2513 break; | |
2514 | |
2515 | |
2516 case '[': | |
2517 { | |
2518 /* XEmacs change: this whole section */ | |
460 | 2519 re_bool had_char_class = false; |
428 | 2520 #ifdef MULE |
460 | 2521 re_bool has_extended_chars = false; |
428 | 2522 REGISTER Lisp_Object rtab = Qnil; |
2523 #endif | |
2524 | |
2525 if (p == pend) FREE_STACK_RETURN (REG_EBRACK); | |
2526 | |
2527 /* Ensure that we have enough space to push a charset: the | |
2528 opcode, the length count, and the bitset; 34 bytes in all. */ | |
2529 GET_BUFFER_SPACE (34); | |
2530 | |
446 | 2531 laststart = buf_end; |
428 | 2532 |
2533 /* We test `*p == '^' twice, instead of using an if | |
2534 statement, so we only need one BUF_PUSH. */ | |
2535 BUF_PUSH (*p == '^' ? charset_not : charset); | |
2536 if (*p == '^') | |
2537 p++; | |
2538 | |
2539 /* Remember the first position in the bracket expression. */ | |
2540 p1 = p; | |
2541 | |
2542 /* Push the number of bytes in the bitmap. */ | |
2543 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH); | |
2544 | |
2545 /* Clear the whole map. */ | |
446 | 2546 memset (buf_end, 0, (1 << BYTEWIDTH) / BYTEWIDTH); |
428 | 2547 |
2548 /* charset_not matches newline according to a syntax bit. */ | |
446 | 2549 if ((re_opcode_t) buf_end[-2] == charset_not |
428 | 2550 && (syntax & RE_HAT_LISTS_NOT_NEWLINE)) |
2551 SET_LIST_BIT ('\n'); | |
2552 | |
2553 #ifdef MULE | |
2554 start_over_with_extended: | |
2555 if (has_extended_chars) | |
2556 { | |
2557 /* There are extended chars here, which means we need to start | |
2558 over and shift to unified range-table format. */ | |
446 | 2559 if (buf_end[-2] == charset) |
2560 buf_end[-2] = charset_mule; | |
428 | 2561 else |
446 | 2562 buf_end[-2] = charset_mule_not; |
2563 buf_end--; | |
428 | 2564 p = p1; /* go back to the beginning of the charset, after |
2565 a possible ^. */ | |
2566 rtab = Vthe_lisp_rangetab; | |
2567 Fclear_range_table (rtab); | |
2568 | |
2569 /* charset_not matches newline according to a syntax bit. */ | |
446 | 2570 if ((re_opcode_t) buf_end[-1] == charset_mule_not |
428 | 2571 && (syntax & RE_HAT_LISTS_NOT_NEWLINE)) |
2572 SET_EITHER_BIT ('\n'); | |
2573 } | |
2574 #endif /* MULE */ | |
2575 | |
2576 /* Read in characters and ranges, setting map bits. */ | |
2577 for (;;) | |
2578 { | |
2579 if (p == pend) FREE_STACK_RETURN (REG_EBRACK); | |
2580 | |
446 | 2581 PATFETCH (c); |
428 | 2582 |
2583 #ifdef MULE | |
2584 if (c >= 0x80 && !has_extended_chars) | |
2585 { | |
2586 has_extended_chars = 1; | |
2587 /* Frumble-bumble, we've found some extended chars. | |
2588 Need to start over, process everything using | |
2589 the general extended-char mechanism, and need | |
2590 to use charset_mule and charset_mule_not instead | |
2591 of charset and charset_not. */ | |
2592 goto start_over_with_extended; | |
2593 } | |
2594 #endif /* MULE */ | |
2595 /* \ might escape characters inside [...] and [^...]. */ | |
2596 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\') | |
2597 { | |
2598 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE); | |
2599 | |
446 | 2600 PATFETCH (c1); |
428 | 2601 #ifdef MULE |
2602 if (c1 >= 0x80 && !has_extended_chars) | |
2603 { | |
2604 has_extended_chars = 1; | |
2605 goto start_over_with_extended; | |
2606 } | |
2607 #endif /* MULE */ | |
2608 SET_EITHER_BIT (c1); | |
2609 continue; | |
2610 } | |
2611 | |
2612 /* Could be the end of the bracket expression. If it's | |
2613 not (i.e., when the bracket expression is `[]' so | |
2614 far), the ']' character bit gets set way below. */ | |
2615 if (c == ']' && p != p1 + 1) | |
2616 break; | |
2617 | |
2618 /* Look ahead to see if it's a range when the last thing | |
2619 was a character class. */ | |
2620 if (had_char_class && c == '-' && *p != ']') | |
2621 FREE_STACK_RETURN (REG_ERANGE); | |
2622 | |
2623 /* Look ahead to see if it's a range when the last thing | |
2624 was a character: if this is a hyphen not at the | |
2625 beginning or the end of a list, then it's the range | |
2626 operator. */ | |
2627 if (c == '-' | |
2628 && !(p - 2 >= pattern && p[-2] == '[') | |
446 | 2629 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^') |
428 | 2630 && *p != ']') |
2631 { | |
2632 reg_errcode_t ret; | |
2633 | |
2634 #ifdef MULE | |
2635 if (* (unsigned char *) p >= 0x80 && !has_extended_chars) | |
2636 { | |
2637 has_extended_chars = 1; | |
2638 goto start_over_with_extended; | |
2639 } | |
2640 if (has_extended_chars) | |
2641 ret = compile_extended_range (&p, pend, translate, | |
2642 syntax, rtab); | |
2643 else | |
2644 #endif /* MULE */ | |
446 | 2645 ret = compile_range (&p, pend, translate, syntax, buf_end); |
428 | 2646 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret); |
2647 } | |
2648 | |
2649 else if (p[0] == '-' && p[1] != ']') | |
2650 { /* This handles ranges made up of characters only. */ | |
2651 reg_errcode_t ret; | |
2652 | |
2653 /* Move past the `-'. */ | |
2654 PATFETCH (c1); | |
2655 | |
2656 #ifdef MULE | |
2657 if (* (unsigned char *) p >= 0x80 && !has_extended_chars) | |
2658 { | |
2659 has_extended_chars = 1; | |
2660 goto start_over_with_extended; | |
2661 } | |
2662 if (has_extended_chars) | |
2663 ret = compile_extended_range (&p, pend, translate, | |
2664 syntax, rtab); | |
2665 else | |
2666 #endif /* MULE */ | |
446 | 2667 ret = compile_range (&p, pend, translate, syntax, buf_end); |
428 | 2668 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret); |
2669 } | |
2670 | |
2671 /* See if we're at the beginning of a possible character | |
2672 class. */ | |
2673 | |
2674 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':') | |
2675 { /* Leave room for the null. */ | |
2676 char str[CHAR_CLASS_MAX_LENGTH + 1]; | |
2677 | |
2678 PATFETCH (c); | |
2679 c1 = 0; | |
2680 | |
2681 /* If pattern is `[[:'. */ | |
2682 if (p == pend) FREE_STACK_RETURN (REG_EBRACK); | |
2683 | |
2684 for (;;) | |
2685 { | |
446 | 2686 /* #### This code is unused. |
2687 Correctness is not checked after TRT | |
2688 table change. */ | |
428 | 2689 PATFETCH (c); |
2690 if (c == ':' || c == ']' || p == pend | |
2691 || c1 == CHAR_CLASS_MAX_LENGTH) | |
2692 break; | |
442 | 2693 str[c1++] = (char) c; |
428 | 2694 } |
2695 str[c1] = '\0'; | |
2696 | |
446 | 2697 /* If isn't a word bracketed by `[:' and `:]': |
428 | 2698 undo the ending character, the letters, and leave |
2699 the leading `:' and `[' (but set bits for them). */ | |
2700 if (c == ':' && *p == ']') | |
2701 { | |
2702 int ch; | |
460 | 2703 re_bool is_alnum = STREQ (str, "alnum"); |
2704 re_bool is_alpha = STREQ (str, "alpha"); | |
2705 re_bool is_blank = STREQ (str, "blank"); | |
2706 re_bool is_cntrl = STREQ (str, "cntrl"); | |
2707 re_bool is_digit = STREQ (str, "digit"); | |
2708 re_bool is_graph = STREQ (str, "graph"); | |
2709 re_bool is_lower = STREQ (str, "lower"); | |
2710 re_bool is_print = STREQ (str, "print"); | |
2711 re_bool is_punct = STREQ (str, "punct"); | |
2712 re_bool is_space = STREQ (str, "space"); | |
2713 re_bool is_upper = STREQ (str, "upper"); | |
2714 re_bool is_xdigit = STREQ (str, "xdigit"); | |
428 | 2715 |
2716 if (!IS_CHAR_CLASS (str)) | |
2717 FREE_STACK_RETURN (REG_ECTYPE); | |
2718 | |
2719 /* Throw away the ] at the end of the character | |
2720 class. */ | |
2721 PATFETCH (c); | |
2722 | |
2723 if (p == pend) FREE_STACK_RETURN (REG_EBRACK); | |
2724 | |
2725 for (ch = 0; ch < 1 << BYTEWIDTH; ch++) | |
2726 { | |
2727 /* This was split into 3 if's to | |
2728 avoid an arbitrary limit in some compiler. */ | |
2729 if ( (is_alnum && ISALNUM (ch)) | |
2730 || (is_alpha && ISALPHA (ch)) | |
2731 || (is_blank && ISBLANK (ch)) | |
2732 || (is_cntrl && ISCNTRL (ch))) | |
2733 SET_EITHER_BIT (ch); | |
2734 if ( (is_digit && ISDIGIT (ch)) | |
2735 || (is_graph && ISGRAPH (ch)) | |
2736 || (is_lower && ISLOWER (ch)) | |
2737 || (is_print && ISPRINT (ch))) | |
2738 SET_EITHER_BIT (ch); | |
2739 if ( (is_punct && ISPUNCT (ch)) | |
2740 || (is_space && ISSPACE (ch)) | |
2741 || (is_upper && ISUPPER (ch)) | |
2742 || (is_xdigit && ISXDIGIT (ch))) | |
2743 SET_EITHER_BIT (ch); | |
2744 } | |
2745 had_char_class = true; | |
2746 } | |
2747 else | |
2748 { | |
2749 c1++; | |
2750 while (c1--) | |
2751 PATUNFETCH; | |
2752 SET_EITHER_BIT ('['); | |
2753 SET_EITHER_BIT (':'); | |
2754 had_char_class = false; | |
2755 } | |
2756 } | |
2757 else | |
2758 { | |
2759 had_char_class = false; | |
2760 SET_EITHER_BIT (c); | |
2761 } | |
2762 } | |
2763 | |
2764 #ifdef MULE | |
2765 if (has_extended_chars) | |
2766 { | |
2767 /* We have a range table, not a bit vector. */ | |
2768 int bytes_needed = | |
2769 unified_range_table_bytes_needed (rtab); | |
2770 GET_BUFFER_SPACE (bytes_needed); | |
446 | 2771 unified_range_table_copy_data (rtab, buf_end); |
2772 buf_end += unified_range_table_bytes_used (buf_end); | |
428 | 2773 break; |
2774 } | |
2775 #endif /* MULE */ | |
2776 /* Discard any (non)matching list bytes that are all 0 at the | |
2777 end of the map. Decrease the map-length byte too. */ | |
446 | 2778 while ((int) buf_end[-1] > 0 && buf_end[buf_end[-1] - 1] == 0) |
2779 buf_end[-1]--; | |
2780 buf_end += buf_end[-1]; | |
428 | 2781 } |
2782 break; | |
2783 | |
2784 | |
2785 case '(': | |
2786 if (syntax & RE_NO_BK_PARENS) | |
2787 goto handle_open; | |
2788 else | |
2789 goto normal_char; | |
2790 | |
2791 | |
2792 case ')': | |
2793 if (syntax & RE_NO_BK_PARENS) | |
2794 goto handle_close; | |
2795 else | |
2796 goto normal_char; | |
2797 | |
2798 | |
2799 case '\n': | |
2800 if (syntax & RE_NEWLINE_ALT) | |
2801 goto handle_alt; | |
2802 else | |
2803 goto normal_char; | |
2804 | |
2805 | |
2806 case '|': | |
2807 if (syntax & RE_NO_BK_VBAR) | |
2808 goto handle_alt; | |
2809 else | |
2810 goto normal_char; | |
2811 | |
2812 | |
2813 case '{': | |
2814 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES) | |
2815 goto handle_interval; | |
2816 else | |
2817 goto normal_char; | |
2818 | |
2819 | |
2820 case '\\': | |
2821 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE); | |
2822 | |
2823 /* Do not translate the character after the \, so that we can | |
2824 distinguish, e.g., \B from \b, even if we normally would | |
2825 translate, e.g., B to b. */ | |
2826 PATFETCH_RAW (c); | |
2827 | |
2828 switch (c) | |
2829 { | |
2830 case '(': | |
2831 if (syntax & RE_NO_BK_PARENS) | |
2832 goto normal_backslash; | |
2833 | |
2834 handle_open: | |
2835 { | |
2836 regnum_t r; | |
502 | 2837 int shy = 0; |
428 | 2838 |
2839 if (!(syntax & RE_NO_SHY_GROUPS) | |
2840 && p != pend | |
446 | 2841 && *p == '?') |
428 | 2842 { |
2843 p++; | |
446 | 2844 PATFETCH (c); |
428 | 2845 switch (c) |
2846 { | |
2847 case ':': /* shy groups */ | |
502 | 2848 shy = 1; |
428 | 2849 break; |
2850 | |
2851 /* All others are reserved for future constructs. */ | |
2852 default: | |
2853 FREE_STACK_RETURN (REG_BADPAT); | |
2854 } | |
2855 } | |
502 | 2856 |
2857 r = ++regnum; | |
2858 bufp->re_ngroups++; | |
2859 if (!shy) | |
2860 { | |
2861 bufp->re_nsub++; | |
2862 while (bufp->external_to_internal_register_size <= | |
2863 bufp->re_nsub) | |
2864 { | |
2865 int i; | |
2866 int old_size = | |
2867 bufp->external_to_internal_register_size; | |
2868 bufp->external_to_internal_register_size += 5; | |
2869 RETALLOC (bufp->external_to_internal_register, | |
2870 bufp->external_to_internal_register_size, | |
2871 int); | |
2872 /* debugging */ | |
2873 for (i = old_size; | |
2874 i < bufp->external_to_internal_register_size; i++) | |
2875 bufp->external_to_internal_register[i] = | |
2876 (int) 0xDEADBEEF; | |
2877 } | |
2878 | |
2879 bufp->external_to_internal_register[bufp->re_nsub] = | |
2880 bufp->re_ngroups; | |
2881 } | |
428 | 2882 |
2883 if (COMPILE_STACK_FULL) | |
2884 { | |
2885 RETALLOC (compile_stack.stack, compile_stack.size << 1, | |
2886 compile_stack_elt_t); | |
2887 if (compile_stack.stack == NULL) return REG_ESPACE; | |
2888 | |
2889 compile_stack.size <<= 1; | |
2890 } | |
2891 | |
2892 /* These are the values to restore when we hit end of this | |
2893 group. They are all relative offsets, so that if the | |
2894 whole pattern moves because of realloc, they will still | |
2895 be valid. */ | |
2896 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer; | |
2897 COMPILE_STACK_TOP.fixup_alt_jump | |
2898 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0; | |
446 | 2899 COMPILE_STACK_TOP.laststart_offset = buf_end - bufp->buffer; |
428 | 2900 COMPILE_STACK_TOP.regnum = r; |
2901 | |
2902 /* We will eventually replace the 0 with the number of | |
2903 groups inner to this one. But do not push a | |
2904 start_memory for groups beyond the last one we can | |
502 | 2905 represent in the compiled pattern. |
2906 #### bad bad bad. this will fail in lots of ways, if we | |
2907 ever have to backtrack for these groups. | |
2908 */ | |
428 | 2909 if (r <= MAX_REGNUM) |
2910 { | |
2911 COMPILE_STACK_TOP.inner_group_offset | |
446 | 2912 = buf_end - bufp->buffer + 2; |
428 | 2913 BUF_PUSH_3 (start_memory, r, 0); |
2914 } | |
2915 | |
2916 compile_stack.avail++; | |
2917 | |
2918 fixup_alt_jump = 0; | |
2919 laststart = 0; | |
446 | 2920 begalt = buf_end; |
428 | 2921 /* If we've reached MAX_REGNUM groups, then this open |
2922 won't actually generate any code, so we'll have to | |
2923 clear pending_exact explicitly. */ | |
2924 pending_exact = 0; | |
2925 } | |
2926 break; | |
2927 | |
2928 | |
2929 case ')': | |
2930 if (syntax & RE_NO_BK_PARENS) goto normal_backslash; | |
2931 | |
2932 if (COMPILE_STACK_EMPTY) { | |
2933 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD) | |
2934 goto normal_backslash; | |
2935 else | |
2936 FREE_STACK_RETURN (REG_ERPAREN); | |
2937 } | |
2938 | |
2939 handle_close: | |
2940 if (fixup_alt_jump) | |
2941 { /* Push a dummy failure point at the end of the | |
2942 alternative for a possible future | |
2943 `pop_failure_jump' to pop. See comments at | |
2944 `push_dummy_failure' in `re_match_2'. */ | |
2945 BUF_PUSH (push_dummy_failure); | |
2946 | |
2947 /* We allocated space for this jump when we assigned | |
2948 to `fixup_alt_jump', in the `handle_alt' case below. */ | |
446 | 2949 STORE_JUMP (jump_past_alt, fixup_alt_jump, buf_end - 1); |
428 | 2950 } |
2951 | |
2952 /* See similar code for backslashed left paren above. */ | |
2953 if (COMPILE_STACK_EMPTY) { | |
2954 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD) | |
2955 goto normal_char; | |
2956 else | |
2957 FREE_STACK_RETURN (REG_ERPAREN); | |
2958 } | |
2959 | |
2960 /* Since we just checked for an empty stack above, this | |
2961 ``can't happen''. */ | |
2962 assert (compile_stack.avail != 0); | |
2963 { | |
2964 /* We don't just want to restore into `regnum', because | |
2965 later groups should continue to be numbered higher, | |
2966 as in `(ab)c(de)' -- the second group is #2. */ | |
2967 regnum_t this_group_regnum; | |
2968 | |
2969 compile_stack.avail--; | |
2970 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset; | |
2971 fixup_alt_jump | |
2972 = COMPILE_STACK_TOP.fixup_alt_jump | |
2973 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1 | |
2974 : 0; | |
2975 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset; | |
2976 this_group_regnum = COMPILE_STACK_TOP.regnum; | |
2977 /* If we've reached MAX_REGNUM groups, then this open | |
2978 won't actually generate any code, so we'll have to | |
2979 clear pending_exact explicitly. */ | |
2980 pending_exact = 0; | |
2981 | |
2982 /* We're at the end of the group, so now we know how many | |
2983 groups were inside this one. */ | |
2984 if (this_group_regnum <= MAX_REGNUM) | |
2985 { | |
2986 unsigned char *inner_group_loc | |
2987 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset; | |
2988 | |
2989 *inner_group_loc = regnum - this_group_regnum; | |
2990 BUF_PUSH_3 (stop_memory, this_group_regnum, | |
2991 regnum - this_group_regnum); | |
2992 } | |
2993 } | |
2994 break; | |
2995 | |
2996 | |
2997 case '|': /* `\|'. */ | |
2998 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR) | |
2999 goto normal_backslash; | |
3000 handle_alt: | |
3001 if (syntax & RE_LIMITED_OPS) | |
3002 goto normal_char; | |
3003 | |
3004 /* Insert before the previous alternative a jump which | |
3005 jumps to this alternative if the former fails. */ | |
3006 GET_BUFFER_SPACE (3); | |
446 | 3007 INSERT_JUMP (on_failure_jump, begalt, buf_end + 6); |
428 | 3008 pending_exact = 0; |
446 | 3009 buf_end += 3; |
428 | 3010 |
3011 /* The alternative before this one has a jump after it | |
3012 which gets executed if it gets matched. Adjust that | |
3013 jump so it will jump to this alternative's analogous | |
3014 jump (put in below, which in turn will jump to the next | |
3015 (if any) alternative's such jump, etc.). The last such | |
3016 jump jumps to the correct final destination. A picture: | |
3017 _____ _____ | |
3018 | | | | | |
3019 | v | v | |
3020 a | b | c | |
3021 | |
3022 If we are at `b', then fixup_alt_jump right now points to a | |
3023 three-byte space after `a'. We'll put in the jump, set | |
3024 fixup_alt_jump to right after `b', and leave behind three | |
3025 bytes which we'll fill in when we get to after `c'. */ | |
3026 | |
3027 if (fixup_alt_jump) | |
446 | 3028 STORE_JUMP (jump_past_alt, fixup_alt_jump, buf_end); |
428 | 3029 |
3030 /* Mark and leave space for a jump after this alternative, | |
3031 to be filled in later either by next alternative or | |
3032 when know we're at the end of a series of alternatives. */ | |
446 | 3033 fixup_alt_jump = buf_end; |
428 | 3034 GET_BUFFER_SPACE (3); |
446 | 3035 buf_end += 3; |
428 | 3036 |
3037 laststart = 0; | |
446 | 3038 begalt = buf_end; |
428 | 3039 break; |
3040 | |
3041 | |
3042 case '{': | |
3043 /* If \{ is a literal. */ | |
3044 if (!(syntax & RE_INTERVALS) | |
3045 /* If we're at `\{' and it's not the open-interval | |
3046 operator. */ | |
3047 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES)) | |
3048 || (p - 2 == pattern && p == pend)) | |
3049 goto normal_backslash; | |
3050 | |
3051 handle_interval: | |
3052 { | |
3053 /* If got here, then the syntax allows intervals. */ | |
3054 | |
3055 /* At least (most) this many matches must be made. */ | |
3056 int lower_bound = -1, upper_bound = -1; | |
3057 | |
3058 beg_interval = p - 1; | |
3059 | |
3060 if (p == pend) | |
3061 { | |
3062 if (syntax & RE_NO_BK_BRACES) | |
3063 goto unfetch_interval; | |
3064 else | |
3065 FREE_STACK_RETURN (REG_EBRACE); | |
3066 } | |
3067 | |
3068 GET_UNSIGNED_NUMBER (lower_bound); | |
3069 | |
3070 if (c == ',') | |
3071 { | |
3072 GET_UNSIGNED_NUMBER (upper_bound); | |
3073 if (upper_bound < 0) upper_bound = RE_DUP_MAX; | |
3074 } | |
3075 else | |
3076 /* Interval such as `{1}' => match exactly once. */ | |
3077 upper_bound = lower_bound; | |
3078 | |
3079 if (lower_bound < 0 || upper_bound > RE_DUP_MAX | |
3080 || lower_bound > upper_bound) | |
3081 { | |
3082 if (syntax & RE_NO_BK_BRACES) | |
3083 goto unfetch_interval; | |
3084 else | |
3085 FREE_STACK_RETURN (REG_BADBR); | |
3086 } | |
3087 | |
3088 if (!(syntax & RE_NO_BK_BRACES)) | |
3089 { | |
3090 if (c != '\\') FREE_STACK_RETURN (REG_EBRACE); | |
3091 | |
3092 PATFETCH (c); | |
3093 } | |
3094 | |
3095 if (c != '}') | |
3096 { | |
3097 if (syntax & RE_NO_BK_BRACES) | |
3098 goto unfetch_interval; | |
3099 else | |
3100 FREE_STACK_RETURN (REG_BADBR); | |
3101 } | |
3102 | |
3103 /* We just parsed a valid interval. */ | |
3104 | |
3105 /* If it's invalid to have no preceding re. */ | |
3106 if (!laststart) | |
3107 { | |
3108 if (syntax & RE_CONTEXT_INVALID_OPS) | |
3109 FREE_STACK_RETURN (REG_BADRPT); | |
3110 else if (syntax & RE_CONTEXT_INDEP_OPS) | |
446 | 3111 laststart = buf_end; |
428 | 3112 else |
3113 goto unfetch_interval; | |
3114 } | |
3115 | |
3116 /* If the upper bound is zero, don't want to succeed at | |
3117 all; jump from `laststart' to `b + 3', which will be | |
3118 the end of the buffer after we insert the jump. */ | |
3119 if (upper_bound == 0) | |
3120 { | |
3121 GET_BUFFER_SPACE (3); | |
446 | 3122 INSERT_JUMP (jump, laststart, buf_end + 3); |
3123 buf_end += 3; | |
428 | 3124 } |
3125 | |
3126 /* Otherwise, we have a nontrivial interval. When | |
3127 we're all done, the pattern will look like: | |
3128 set_number_at <jump count> <upper bound> | |
3129 set_number_at <succeed_n count> <lower bound> | |
3130 succeed_n <after jump addr> <succeed_n count> | |
3131 <body of loop> | |
3132 jump_n <succeed_n addr> <jump count> | |
3133 (The upper bound and `jump_n' are omitted if | |
3134 `upper_bound' is 1, though.) */ | |
3135 else | |
3136 { /* If the upper bound is > 1, we need to insert | |
3137 more at the end of the loop. */ | |
647 | 3138 int nbytes = 10 + (upper_bound > 1) * 10; |
428 | 3139 |
3140 GET_BUFFER_SPACE (nbytes); | |
3141 | |
3142 /* Initialize lower bound of the `succeed_n', even | |
3143 though it will be set during matching by its | |
3144 attendant `set_number_at' (inserted next), | |
3145 because `re_compile_fastmap' needs to know. | |
3146 Jump to the `jump_n' we might insert below. */ | |
3147 INSERT_JUMP2 (succeed_n, laststart, | |
446 | 3148 buf_end + 5 + (upper_bound > 1) * 5, |
428 | 3149 lower_bound); |
446 | 3150 buf_end += 5; |
428 | 3151 |
3152 /* Code to initialize the lower bound. Insert | |
3153 before the `succeed_n'. The `5' is the last two | |
3154 bytes of this `set_number_at', plus 3 bytes of | |
3155 the following `succeed_n'. */ | |
446 | 3156 insert_op2 (set_number_at, laststart, 5, lower_bound, buf_end); |
3157 buf_end += 5; | |
428 | 3158 |
3159 if (upper_bound > 1) | |
3160 { /* More than one repetition is allowed, so | |
3161 append a backward jump to the `succeed_n' | |
3162 that starts this interval. | |
3163 | |
3164 When we've reached this during matching, | |
3165 we'll have matched the interval once, so | |
3166 jump back only `upper_bound - 1' times. */ | |
446 | 3167 STORE_JUMP2 (jump_n, buf_end, laststart + 5, |
428 | 3168 upper_bound - 1); |
446 | 3169 buf_end += 5; |
428 | 3170 |
3171 /* The location we want to set is the second | |
3172 parameter of the `jump_n'; that is `b-2' as | |
3173 an absolute address. `laststart' will be | |
3174 the `set_number_at' we're about to insert; | |
3175 `laststart+3' the number to set, the source | |
3176 for the relative address. But we are | |
3177 inserting into the middle of the pattern -- | |
3178 so everything is getting moved up by 5. | |
3179 Conclusion: (b - 2) - (laststart + 3) + 5, | |
3180 i.e., b - laststart. | |
3181 | |
3182 We insert this at the beginning of the loop | |
3183 so that if we fail during matching, we'll | |
3184 reinitialize the bounds. */ | |
446 | 3185 insert_op2 (set_number_at, laststart, |
3186 buf_end - laststart, | |
3187 upper_bound - 1, buf_end); | |
3188 buf_end += 5; | |
428 | 3189 } |
3190 } | |
3191 pending_exact = 0; | |
3192 beg_interval = NULL; | |
3193 } | |
3194 break; | |
3195 | |
3196 unfetch_interval: | |
3197 /* If an invalid interval, match the characters as literals. */ | |
3198 assert (beg_interval); | |
3199 p = beg_interval; | |
3200 beg_interval = NULL; | |
3201 | |
3202 /* normal_char and normal_backslash need `c'. */ | |
3203 PATFETCH (c); | |
3204 | |
3205 if (!(syntax & RE_NO_BK_BRACES)) | |
3206 { | |
3207 if (p > pattern && p[-1] == '\\') | |
3208 goto normal_backslash; | |
3209 } | |
3210 goto normal_char; | |
3211 | |
3212 #ifdef emacs | |
3213 /* There is no way to specify the before_dot and after_dot | |
3214 operators. rms says this is ok. --karl */ | |
3215 case '=': | |
3216 BUF_PUSH (at_dot); | |
3217 break; | |
3218 | |
3219 case 's': | |
446 | 3220 laststart = buf_end; |
428 | 3221 PATFETCH (c); |
3222 /* XEmacs addition */ | |
3223 if (c >= 0x80 || syntax_spec_code[c] == 0377) | |
3224 FREE_STACK_RETURN (REG_ESYNTAX); | |
3225 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]); | |
3226 break; | |
3227 | |
3228 case 'S': | |
446 | 3229 laststart = buf_end; |
428 | 3230 PATFETCH (c); |
3231 /* XEmacs addition */ | |
3232 if (c >= 0x80 || syntax_spec_code[c] == 0377) | |
3233 FREE_STACK_RETURN (REG_ESYNTAX); | |
3234 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]); | |
3235 break; | |
3236 | |
3237 #ifdef MULE | |
3238 /* 97.2.17 jhod merged in to XEmacs from mule-2.3 */ | |
3239 case 'c': | |
446 | 3240 laststart = buf_end; |
428 | 3241 PATFETCH_RAW (c); |
3242 if (c < 32 || c > 127) | |
3243 FREE_STACK_RETURN (REG_ECATEGORY); | |
3244 BUF_PUSH_2 (categoryspec, c); | |
3245 break; | |
3246 | |
3247 case 'C': | |
446 | 3248 laststart = buf_end; |
428 | 3249 PATFETCH_RAW (c); |
3250 if (c < 32 || c > 127) | |
3251 FREE_STACK_RETURN (REG_ECATEGORY); | |
3252 BUF_PUSH_2 (notcategoryspec, c); | |
3253 break; | |
3254 /* end of category patch */ | |
3255 #endif /* MULE */ | |
3256 #endif /* emacs */ | |
3257 | |
3258 | |
3259 case 'w': | |
446 | 3260 laststart = buf_end; |
428 | 3261 BUF_PUSH (wordchar); |
3262 break; | |
3263 | |
3264 | |
3265 case 'W': | |
446 | 3266 laststart = buf_end; |
428 | 3267 BUF_PUSH (notwordchar); |
3268 break; | |
3269 | |
3270 | |
3271 case '<': | |
3272 BUF_PUSH (wordbeg); | |
3273 break; | |
3274 | |
3275 case '>': | |
3276 BUF_PUSH (wordend); | |
3277 break; | |
3278 | |
3279 case 'b': | |
3280 BUF_PUSH (wordbound); | |
3281 break; | |
3282 | |
3283 case 'B': | |
3284 BUF_PUSH (notwordbound); | |
3285 break; | |
3286 | |
3287 case '`': | |
3288 BUF_PUSH (begbuf); | |
3289 break; | |
3290 | |
3291 case '\'': | |
3292 BUF_PUSH (endbuf); | |
3293 break; | |
3294 | |
3295 case '1': case '2': case '3': case '4': case '5': | |
3296 case '6': case '7': case '8': case '9': | |
446 | 3297 { |
502 | 3298 regnum_t reg, regint; |
3299 int may_need_to_unfetch = 0; | |
446 | 3300 if (syntax & RE_NO_BK_REFS) |
3301 goto normal_char; | |
3302 | |
502 | 3303 /* This only goes up to 99. It could be extended to work |
3304 up to 255 (the maximum number of registers that can be | |
3305 handled by the current regexp engine, because it stores | |
3306 its register numbers in the compiled pattern as one byte, | |
3307 ugh). Doing that's a bit trickier, because you might | |
3308 have the case where \25 a back-ref but \255 is not, ... */ | |
446 | 3309 reg = c - '0'; |
502 | 3310 if (p < pend) |
3311 { | |
3312 PATFETCH (c); | |
3313 if (c >= '0' && c <= '9') | |
3314 { | |
3315 regnum_t new_reg = reg * 10 + c - '0'; | |
3316 if (new_reg <= bufp->re_nsub) | |
3317 { | |
3318 reg = new_reg; | |
3319 may_need_to_unfetch = 1; | |
3320 } | |
3321 else | |
3322 PATUNFETCH; | |
3323 } | |
523 | 3324 else |
3325 PATUNFETCH; | |
502 | 3326 } |
3327 | |
3328 if (reg > bufp->re_nsub) | |
446 | 3329 FREE_STACK_RETURN (REG_ESUBREG); |
3330 | |
502 | 3331 regint = bufp->external_to_internal_register[reg]; |
446 | 3332 /* Can't back reference to a subexpression if inside of it. */ |
502 | 3333 if (group_in_compile_stack (compile_stack, regint)) |
3334 { | |
3335 if (may_need_to_unfetch) | |
3336 PATUNFETCH; | |
3337 goto normal_char; | |
3338 } | |
3339 | |
3340 #ifdef emacs | |
3341 if (reg > 9 && | |
3342 bufp->warned_about_incompatible_back_references == 0) | |
3343 { | |
3344 bufp->warned_about_incompatible_back_references = 1; | |
3345 warn_when_safe (intern ("regex"), Qinfo, | |
3346 "Back reference \\%d now has new " | |
3347 "semantics in %s", reg, pattern); | |
3348 } | |
3349 #endif | |
446 | 3350 |
3351 laststart = buf_end; | |
502 | 3352 BUF_PUSH_2 (duplicate, regint); |
446 | 3353 } |
428 | 3354 break; |
3355 | |
3356 | |
3357 case '+': | |
3358 case '?': | |
3359 if (syntax & RE_BK_PLUS_QM) | |
3360 goto handle_plus; | |
3361 else | |
3362 goto normal_backslash; | |
3363 | |
3364 default: | |
3365 normal_backslash: | |
3366 /* You might think it would be useful for \ to mean | |
3367 not to translate; but if we don't translate it, | |
3368 it will never match anything. */ | |
826 | 3369 c = RE_TRANSLATE (c); |
428 | 3370 goto normal_char; |
3371 } | |
3372 break; | |
3373 | |
3374 | |
3375 default: | |
3376 /* Expects the character in `c'. */ | |
3377 /* `p' points to the location after where `c' came from. */ | |
3378 normal_char: | |
3379 { | |
4750
b5f21bb36684
Fix crash in regex.c (closes issue630).
Stephen J. Turnbull <stephen@xemacs.org>
parents:
4527
diff
changeset
|
3380 /* The following conditional synced to GNU Emacs 22.1. */ |
428 | 3381 /* If no exactn currently being built. */ |
3382 if (!pending_exact | |
3383 | |
3384 /* If last exactn not at current position. */ | |
446 | 3385 || pending_exact + *pending_exact + 1 != buf_end |
428 | 3386 |
3387 /* We have only one byte following the exactn for the count. */ | |
4750
b5f21bb36684
Fix crash in regex.c (closes issue630).
Stephen J. Turnbull <stephen@xemacs.org>
parents:
4527
diff
changeset
|
3388 || *pending_exact >= (1 << BYTEWIDTH) - MAX_ICHAR_LEN |
b5f21bb36684
Fix crash in regex.c (closes issue630).
Stephen J. Turnbull <stephen@xemacs.org>
parents:
4527
diff
changeset
|
3389 |
b5f21bb36684
Fix crash in regex.c (closes issue630).
Stephen J. Turnbull <stephen@xemacs.org>
parents:
4527
diff
changeset
|
3390 /* If followed by a repetition operator. |
b5f21bb36684
Fix crash in regex.c (closes issue630).
Stephen J. Turnbull <stephen@xemacs.org>
parents:
4527
diff
changeset
|
3391 If the lookahead fails because of end of pattern, any |
b5f21bb36684
Fix crash in regex.c (closes issue630).
Stephen J. Turnbull <stephen@xemacs.org>
parents:
4527
diff
changeset
|
3392 trailing backslash will get caught later. */ |
b5f21bb36684
Fix crash in regex.c (closes issue630).
Stephen J. Turnbull <stephen@xemacs.org>
parents:
4527
diff
changeset
|
3393 || (p != pend && (*p == '*' || *p == '^')) |
428 | 3394 || ((syntax & RE_BK_PLUS_QM) |
4750
b5f21bb36684
Fix crash in regex.c (closes issue630).
Stephen J. Turnbull <stephen@xemacs.org>
parents:
4527
diff
changeset
|
3395 ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?') |
b5f21bb36684
Fix crash in regex.c (closes issue630).
Stephen J. Turnbull <stephen@xemacs.org>
parents:
4527
diff
changeset
|
3396 : p != pend && (*p == '+' || *p == '?')) |
428 | 3397 || ((syntax & RE_INTERVALS) |
3398 && ((syntax & RE_NO_BK_BRACES) | |
4750
b5f21bb36684
Fix crash in regex.c (closes issue630).
Stephen J. Turnbull <stephen@xemacs.org>
parents:
4527
diff
changeset
|
3399 ? p != pend && *p == '{' |
b5f21bb36684
Fix crash in regex.c (closes issue630).
Stephen J. Turnbull <stephen@xemacs.org>
parents:
4527
diff
changeset
|
3400 : p + 1 < pend && (p[0] == '\\' && p[1] == '{')))) |
428 | 3401 { |
3402 /* Start building a new exactn. */ | |
3403 | |
446 | 3404 laststart = buf_end; |
428 | 3405 |
3406 BUF_PUSH_2 (exactn, 0); | |
446 | 3407 pending_exact = buf_end - 1; |
428 | 3408 } |
3409 | |
446 | 3410 #ifndef MULE |
428 | 3411 BUF_PUSH (c); |
3412 (*pending_exact)++; | |
446 | 3413 #else |
3414 { | |
3415 Bytecount bt_count; | |
867 | 3416 Ibyte tmp_buf[MAX_ICHAR_LEN]; |
446 | 3417 int i; |
3418 | |
867 | 3419 bt_count = set_itext_ichar (tmp_buf, c); |
446 | 3420 |
3421 for (i = 0; i < bt_count; i++) | |
3422 { | |
3423 BUF_PUSH (tmp_buf[i]); | |
3424 (*pending_exact)++; | |
3425 } | |
3426 } | |
3427 #endif | |
428 | 3428 break; |
3429 } | |
3430 } /* switch (c) */ | |
3431 } /* while p != pend */ | |
3432 | |
3433 | |
3434 /* Through the pattern now. */ | |
3435 | |
3436 if (fixup_alt_jump) | |
446 | 3437 STORE_JUMP (jump_past_alt, fixup_alt_jump, buf_end); |
428 | 3438 |
3439 if (!COMPILE_STACK_EMPTY) | |
3440 FREE_STACK_RETURN (REG_EPAREN); | |
3441 | |
3442 /* If we don't want backtracking, force success | |
3443 the first time we reach the end of the compiled pattern. */ | |
3444 if (syntax & RE_NO_POSIX_BACKTRACKING) | |
3445 BUF_PUSH (succeed); | |
3446 | |
4976
16112448d484
Rename xfree(FOO, TYPE) -> xfree(FOO)
Ben Wing <ben@xemacs.org>
parents:
4832
diff
changeset
|
3447 xfree (compile_stack.stack); |
428 | 3448 |
3449 /* We have succeeded; set the length of the buffer. */ | |
446 | 3450 bufp->used = buf_end - bufp->buffer; |
428 | 3451 |
3452 #ifdef DEBUG | |
5041 | 3453 if (debug_regexps & RE_DEBUG_COMPILATION) |
428 | 3454 { |
3455 DEBUG_PRINT1 ("\nCompiled pattern: \n"); | |
3456 print_compiled_pattern (bufp); | |
3457 } | |
3458 #endif /* DEBUG */ | |
3459 | |
3460 #ifndef MATCH_MAY_ALLOCATE | |
3461 /* Initialize the failure stack to the largest possible stack. This | |
3462 isn't necessary unless we're trying to avoid calling alloca in | |
3463 the search and match routines. */ | |
3464 { | |
502 | 3465 int num_regs = bufp->re_ngroups + 1; |
428 | 3466 |
3467 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size | |
3468 is strictly greater than re_max_failures, the largest possible stack | |
3469 is 2 * re_max_failures failure points. */ | |
3470 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS)) | |
3471 { | |
3472 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS); | |
3473 | |
3474 if (! fail_stack.stack) | |
3475 fail_stack.stack | |
3476 = (fail_stack_elt_t *) xmalloc (fail_stack.size | |
3477 * sizeof (fail_stack_elt_t)); | |
3478 else | |
3479 fail_stack.stack | |
3480 = (fail_stack_elt_t *) xrealloc (fail_stack.stack, | |
3481 (fail_stack.size | |
3482 * sizeof (fail_stack_elt_t))); | |
3483 } | |
3484 | |
3485 regex_grow_registers (num_regs); | |
3486 } | |
3487 #endif /* not MATCH_MAY_ALLOCATE */ | |
3488 | |
3489 return REG_NOERROR; | |
3490 } /* regex_compile */ | |
3491 | |
3492 /* Subroutines for `regex_compile'. */ | |
3493 | |
3494 /* Store OP at LOC followed by two-byte integer parameter ARG. */ | |
3495 | |
3496 static void | |
3497 store_op1 (re_opcode_t op, unsigned char *loc, int arg) | |
3498 { | |
3499 *loc = (unsigned char) op; | |
3500 STORE_NUMBER (loc + 1, arg); | |
3501 } | |
3502 | |
3503 | |
3504 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */ | |
3505 | |
3506 static void | |
3507 store_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2) | |
3508 { | |
3509 *loc = (unsigned char) op; | |
3510 STORE_NUMBER (loc + 1, arg1); | |
3511 STORE_NUMBER (loc + 3, arg2); | |
3512 } | |
3513 | |
3514 | |
3515 /* Copy the bytes from LOC to END to open up three bytes of space at LOC | |
3516 for OP followed by two-byte integer parameter ARG. */ | |
3517 | |
3518 static void | |
3519 insert_op1 (re_opcode_t op, unsigned char *loc, int arg, unsigned char *end) | |
3520 { | |
3521 REGISTER unsigned char *pfrom = end; | |
3522 REGISTER unsigned char *pto = end + 3; | |
3523 | |
3524 while (pfrom != loc) | |
3525 *--pto = *--pfrom; | |
3526 | |
3527 store_op1 (op, loc, arg); | |
3528 } | |
3529 | |
3530 | |
3531 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */ | |
3532 | |
3533 static void | |
3534 insert_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2, | |
3535 unsigned char *end) | |
3536 { | |
3537 REGISTER unsigned char *pfrom = end; | |
3538 REGISTER unsigned char *pto = end + 5; | |
3539 | |
3540 while (pfrom != loc) | |
3541 *--pto = *--pfrom; | |
3542 | |
3543 store_op2 (op, loc, arg1, arg2); | |
3544 } | |
3545 | |
3546 | |
3547 /* P points to just after a ^ in PATTERN. Return true if that ^ comes | |
3548 after an alternative or a begin-subexpression. We assume there is at | |
3549 least one character before the ^. */ | |
3550 | |
460 | 3551 static re_bool |
446 | 3552 at_begline_loc_p (re_char *pattern, re_char *p, reg_syntax_t syntax) |
428 | 3553 { |
446 | 3554 re_char *prev = p - 2; |
460 | 3555 re_bool prev_prev_backslash = prev > pattern && prev[-1] == '\\'; |
428 | 3556 |
3557 return | |
3558 /* After a subexpression? */ | |
3559 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash)) | |
3560 /* After an alternative? */ | |
3561 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash)); | |
3562 } | |
3563 | |
3564 | |
3565 /* The dual of at_begline_loc_p. This one is for $. We assume there is | |
3566 at least one character after the $, i.e., `P < PEND'. */ | |
3567 | |
460 | 3568 static re_bool |
446 | 3569 at_endline_loc_p (re_char *p, re_char *pend, int syntax) |
428 | 3570 { |
446 | 3571 re_char *next = p; |
460 | 3572 re_bool next_backslash = *next == '\\'; |
446 | 3573 re_char *next_next = p + 1 < pend ? p + 1 : 0; |
428 | 3574 |
3575 return | |
3576 /* Before a subexpression? */ | |
3577 (syntax & RE_NO_BK_PARENS ? *next == ')' | |
3578 : next_backslash && next_next && *next_next == ')') | |
3579 /* Before an alternative? */ | |
3580 || (syntax & RE_NO_BK_VBAR ? *next == '|' | |
3581 : next_backslash && next_next && *next_next == '|'); | |
3582 } | |
3583 | |
3584 | |
3585 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and | |
3586 false if it's not. */ | |
3587 | |
460 | 3588 static re_bool |
428 | 3589 group_in_compile_stack (compile_stack_type compile_stack, regnum_t regnum) |
3590 { | |
3591 int this_element; | |
3592 | |
3593 for (this_element = compile_stack.avail - 1; | |
3594 this_element >= 0; | |
3595 this_element--) | |
3596 if (compile_stack.stack[this_element].regnum == regnum) | |
3597 return true; | |
3598 | |
3599 return false; | |
3600 } | |
3601 | |
3602 | |
3603 /* Read the ending character of a range (in a bracket expression) from the | |
3604 uncompiled pattern *P_PTR (which ends at PEND). We assume the | |
3605 starting character is in `P[-2]'. (`P[-1]' is the character `-'.) | |
3606 Then we set the translation of all bits between the starting and | |
3607 ending characters (inclusive) in the compiled pattern B. | |
3608 | |
3609 Return an error code. | |
3610 | |
3611 We use these short variable names so we can use the same macros as | |
826 | 3612 `regex_compile' itself. |
3613 | |
3614 Under Mule, this is only called when both chars of the range are | |
3615 ASCII. */ | |
428 | 3616 |
3617 static reg_errcode_t | |
446 | 3618 compile_range (re_char **p_ptr, re_char *pend, RE_TRANSLATE_TYPE translate, |
3619 reg_syntax_t syntax, unsigned char *buf_end) | |
428 | 3620 { |
867 | 3621 Ichar this_char; |
428 | 3622 |
446 | 3623 re_char *p = *p_ptr; |
428 | 3624 int range_start, range_end; |
3625 | |
3626 if (p == pend) | |
3627 return REG_ERANGE; | |
3628 | |
3629 /* Even though the pattern is a signed `char *', we need to fetch | |
3630 with unsigned char *'s; if the high bit of the pattern character | |
3631 is set, the range endpoints will be negative if we fetch using a | |
3632 signed char *. | |
3633 | |
3634 We also want to fetch the endpoints without translating them; the | |
3635 appropriate translation is done in the bit-setting loop below. */ | |
442 | 3636 /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *. */ |
3637 range_start = ((const unsigned char *) p)[-2]; | |
3638 range_end = ((const unsigned char *) p)[0]; | |
428 | 3639 |
3640 /* Have to increment the pointer into the pattern string, so the | |
3641 caller isn't still at the ending character. */ | |
3642 (*p_ptr)++; | |
3643 | |
3644 /* If the start is after the end, the range is empty. */ | |
3645 if (range_start > range_end) | |
3646 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR; | |
3647 | |
3648 /* Here we see why `this_char' has to be larger than an `unsigned | |
3649 char' -- the range is inclusive, so if `range_end' == 0xff | |
3650 (assuming 8-bit characters), we would otherwise go into an infinite | |
3651 loop, since all characters <= 0xff. */ | |
3652 for (this_char = range_start; this_char <= range_end; this_char++) | |
3653 { | |
826 | 3654 SET_LIST_BIT (RE_TRANSLATE (this_char)); |
428 | 3655 } |
3656 | |
3657 return REG_NOERROR; | |
3658 } | |
3659 | |
3660 #ifdef MULE | |
3661 | |
3662 static reg_errcode_t | |
446 | 3663 compile_extended_range (re_char **p_ptr, re_char *pend, |
3664 RE_TRANSLATE_TYPE translate, | |
428 | 3665 reg_syntax_t syntax, Lisp_Object rtab) |
3666 { | |
867 | 3667 Ichar this_char, range_start, range_end; |
3668 const Ibyte *p; | |
428 | 3669 |
3670 if (*p_ptr == pend) | |
3671 return REG_ERANGE; | |
3672 | |
867 | 3673 p = (const Ibyte *) *p_ptr; |
3674 range_end = itext_ichar (p); | |
428 | 3675 p--; /* back to '-' */ |
867 | 3676 DEC_IBYTEPTR (p); /* back to start of range */ |
428 | 3677 /* We also want to fetch the endpoints without translating them; the |
3678 appropriate translation is done in the bit-setting loop below. */ | |
867 | 3679 range_start = itext_ichar (p); |
3680 INC_IBYTEPTR (*p_ptr); | |
428 | 3681 |
3682 /* If the start is after the end, the range is empty. */ | |
3683 if (range_start > range_end) | |
3684 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR; | |
3685 | |
3686 /* Can't have ranges spanning different charsets, except maybe for | |
3687 ranges entirely within the first 256 chars. */ | |
3688 | |
3689 if ((range_start >= 0x100 || range_end >= 0x100) | |
867 | 3690 && ichar_leading_byte (range_start) != |
3691 ichar_leading_byte (range_end)) | |
428 | 3692 return REG_ERANGESPAN; |
3693 | |
826 | 3694 /* #### This might be way inefficient if the range encompasses 10,000 |
3695 chars or something. To be efficient, you'd have to do something like | |
3696 this: | |
428 | 3697 |
3698 range_table a; | |
3699 range_table b; | |
3700 map over translation table in [range_start, range_end] of | |
3701 (put the mapped range in a; | |
3702 put the translation in b) | |
3703 invert the range in a and truncate to [range_start, range_end] | |
3704 compute the union of a, b | |
3705 union the result into rtab | |
3706 */ | |
826 | 3707 for (this_char = range_start; this_char <= range_end; this_char++) |
428 | 3708 { |
826 | 3709 SET_RANGETAB_BIT (RE_TRANSLATE (this_char)); |
428 | 3710 } |
3711 | |
3712 if (this_char <= range_end) | |
3713 put_range_table (rtab, this_char, range_end, Qt); | |
3714 | |
3715 return REG_NOERROR; | |
3716 } | |
3717 | |
3718 #endif /* MULE */ | |
3719 | |
3720 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in | |
3721 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible | |
3722 characters can start a string that matches the pattern. This fastmap | |
3723 is used by re_search to skip quickly over impossible starting points. | |
3724 | |
3725 The caller must supply the address of a (1 << BYTEWIDTH)-byte data | |
3726 area as BUFP->fastmap. | |
3727 | |
3728 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in | |
3729 the pattern buffer. | |
3730 | |
3731 Returns 0 if we succeed, -2 if an internal error. */ | |
3732 | |
3733 int | |
826 | 3734 re_compile_fastmap (struct re_pattern_buffer *bufp |
3735 RE_LISP_SHORT_CONTEXT_ARGS_DECL) | |
428 | 3736 { |
3737 int j, k; | |
3738 #ifdef MATCH_MAY_ALLOCATE | |
3739 fail_stack_type fail_stack; | |
3740 #endif | |
456 | 3741 DECLARE_DESTINATION; |
428 | 3742 /* We don't push any register information onto the failure stack. */ |
3743 | |
826 | 3744 /* &&#### this should be changed for 8-bit-fixed, for efficiency. see |
3745 comment marked with &&#### in re_search_2. */ | |
3746 | |
428 | 3747 REGISTER char *fastmap = bufp->fastmap; |
3748 unsigned char *pattern = bufp->buffer; | |
647 | 3749 long size = bufp->used; |
428 | 3750 unsigned char *p = pattern; |
3751 REGISTER unsigned char *pend = pattern + size; | |
3752 | |
771 | 3753 #ifdef REGEX_REL_ALLOC |
428 | 3754 /* This holds the pointer to the failure stack, when |
3755 it is allocated relocatably. */ | |
3756 fail_stack_elt_t *failure_stack_ptr; | |
3757 #endif | |
3758 | |
3759 /* Assume that each path through the pattern can be null until | |
3760 proven otherwise. We set this false at the bottom of switch | |
3761 statement, to which we get only if a particular path doesn't | |
3762 match the empty string. */ | |
460 | 3763 re_bool path_can_be_null = true; |
428 | 3764 |
3765 /* We aren't doing a `succeed_n' to begin with. */ | |
460 | 3766 re_bool succeed_n_p = false; |
428 | 3767 |
1333 | 3768 #ifdef ERROR_CHECK_MALLOC |
3769 /* The pattern comes from string data, not buffer data. We don't access | |
3770 any buffer data, so we don't have to worry about malloc() (but the | |
3771 disallowed flag may have been set by a caller). */ | |
3772 int depth = bind_regex_malloc_disallowed (0); | |
3773 #endif | |
3774 | |
428 | 3775 assert (fastmap != NULL && p != NULL); |
3776 | |
3777 INIT_FAIL_STACK (); | |
3778 memset (fastmap, 0, 1 << BYTEWIDTH); /* Assume nothing's valid. */ | |
3779 bufp->fastmap_accurate = 1; /* It will be when we're done. */ | |
3780 bufp->can_be_null = 0; | |
3781 | |
3782 while (1) | |
3783 { | |
3784 if (p == pend || *p == succeed) | |
3785 { | |
3786 /* We have reached the (effective) end of pattern. */ | |
3787 if (!FAIL_STACK_EMPTY ()) | |
3788 { | |
3789 bufp->can_be_null |= path_can_be_null; | |
3790 | |
3791 /* Reset for next path. */ | |
3792 path_can_be_null = true; | |
3793 | |
446 | 3794 p = (unsigned char *) fail_stack.stack[--fail_stack.avail].pointer; |
428 | 3795 |
3796 continue; | |
3797 } | |
3798 else | |
3799 break; | |
3800 } | |
3801 | |
3802 /* We should never be about to go beyond the end of the pattern. */ | |
3803 assert (p < pend); | |
3804 | |
4759
aa5ed11f473b
Remove support for obsolete systems. See xemacs-patches message with ID
Jerry James <james@xemacs.org>
parents:
4750
diff
changeset
|
3805 switch ((re_opcode_t) *p++) |
428 | 3806 { |
3807 | |
3808 /* I guess the idea here is to simply not bother with a fastmap | |
3809 if a backreference is used, since it's too hard to figure out | |
3810 the fastmap for the corresponding group. Setting | |
3811 `can_be_null' stops `re_search_2' from using the fastmap, so | |
3812 that is all we do. */ | |
3813 case duplicate: | |
3814 bufp->can_be_null = 1; | |
3815 goto done; | |
3816 | |
3817 | |
3818 /* Following are the cases which match a character. These end | |
3819 with `break'. */ | |
3820 | |
3821 case exactn: | |
3822 fastmap[p[1]] = 1; | |
3823 break; | |
3824 | |
3825 | |
3826 case charset: | |
3827 /* XEmacs: Under Mule, these bit vectors will | |
3828 only contain values for characters below 0x80. */ | |
3829 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--) | |
3830 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) | |
3831 fastmap[j] = 1; | |
3832 break; | |
3833 | |
3834 | |
3835 case charset_not: | |
3836 /* Chars beyond end of map must be allowed. */ | |
3837 #ifdef MULE | |
3838 for (j = *p * BYTEWIDTH; j < 0x80; j++) | |
3839 fastmap[j] = 1; | |
3840 /* And all extended characters must be allowed, too. */ | |
3841 for (j = 0x80; j < 0xA0; j++) | |
3842 fastmap[j] = 1; | |
446 | 3843 #else /* not MULE */ |
428 | 3844 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++) |
3845 fastmap[j] = 1; | |
446 | 3846 #endif /* MULE */ |
428 | 3847 |
3848 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--) | |
3849 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))) | |
3850 fastmap[j] = 1; | |
3851 break; | |
3852 | |
3853 #ifdef MULE | |
3854 case charset_mule: | |
3855 { | |
3856 int nentries; | |
3857 int i; | |
3858 | |
3859 nentries = unified_range_table_nentries (p); | |
3860 for (i = 0; i < nentries; i++) | |
3861 { | |
3862 EMACS_INT first, last; | |
3863 Lisp_Object dummy_val; | |
3864 int jj; | |
867 | 3865 Ibyte strr[MAX_ICHAR_LEN]; |
428 | 3866 |
3867 unified_range_table_get_range (p, i, &first, &last, | |
3868 &dummy_val); | |
3869 for (jj = first; jj <= last && jj < 0x80; jj++) | |
3870 fastmap[jj] = 1; | |
3871 /* Ranges below 0x100 can span charsets, but there | |
3872 are only two (Control-1 and Latin-1), and | |
3873 either first or last has to be in them. */ | |
867 | 3874 set_itext_ichar (strr, first); |
428 | 3875 fastmap[*strr] = 1; |
3876 if (last < 0x100) | |
3877 { | |
867 | 3878 set_itext_ichar (strr, last); |
428 | 3879 fastmap[*strr] = 1; |
3880 } | |
3881 } | |
3882 } | |
3883 break; | |
3884 | |
3885 case charset_mule_not: | |
3886 { | |
3887 int nentries; | |
3888 int i; | |
4832
07fa38c30fdf
fix messed-up fastmap calculation in charset_mule_not
Ben Wing <ben@xemacs.org>
parents:
4759
diff
changeset
|
3889 int smallest_prev = 0; |
428 | 3890 |
3891 nentries = unified_range_table_nentries (p); | |
3892 for (i = 0; i < nentries; i++) | |
3893 { | |
3894 EMACS_INT first, last; | |
3895 Lisp_Object dummy_val; | |
3896 int jj; | |
3897 | |
3898 unified_range_table_get_range (p, i, &first, &last, | |
3899 &dummy_val); | |
3900 for (jj = smallest_prev; jj < first && jj < 0x80; jj++) | |
3901 fastmap[jj] = 1; | |
3902 smallest_prev = last + 1; | |
3903 if (smallest_prev >= 0x80) | |
3904 break; | |
3905 } | |
4832
07fa38c30fdf
fix messed-up fastmap calculation in charset_mule_not
Ben Wing <ben@xemacs.org>
parents:
4759
diff
changeset
|
3906 |
07fa38c30fdf
fix messed-up fastmap calculation in charset_mule_not
Ben Wing <ben@xemacs.org>
parents:
4759
diff
changeset
|
3907 /* Also set lead bytes after the end */ |
07fa38c30fdf
fix messed-up fastmap calculation in charset_mule_not
Ben Wing <ben@xemacs.org>
parents:
4759
diff
changeset
|
3908 for (i = smallest_prev; i < 0x80; i++) |
07fa38c30fdf
fix messed-up fastmap calculation in charset_mule_not
Ben Wing <ben@xemacs.org>
parents:
4759
diff
changeset
|
3909 fastmap[i] = 1; |
07fa38c30fdf
fix messed-up fastmap calculation in charset_mule_not
Ben Wing <ben@xemacs.org>
parents:
4759
diff
changeset
|
3910 |
428 | 3911 /* Calculating which leading bytes are actually allowed |
3912 here is rather difficult, so we just punt and allow | |
3913 all of them. */ | |
3914 for (i = 0x80; i < 0xA0; i++) | |
3915 fastmap[i] = 1; | |
3916 } | |
3917 break; | |
3918 #endif /* MULE */ | |
3919 | |
3920 | |
3921 case anychar: | |
3922 { | |
3923 int fastmap_newline = fastmap['\n']; | |
3924 | |
3925 /* `.' matches anything ... */ | |
3926 #ifdef MULE | |
3927 /* "anything" only includes bytes that can be the | |
3928 first byte of a character. */ | |
3929 for (j = 0; j < 0xA0; j++) | |
3930 fastmap[j] = 1; | |
3931 #else | |
3932 for (j = 0; j < (1 << BYTEWIDTH); j++) | |
3933 fastmap[j] = 1; | |
3934 #endif | |
3935 | |
3936 /* ... except perhaps newline. */ | |
3937 if (!(bufp->syntax & RE_DOT_NEWLINE)) | |
3938 fastmap['\n'] = fastmap_newline; | |
3939 | |
3940 /* Return if we have already set `can_be_null'; if we have, | |
3941 then the fastmap is irrelevant. Something's wrong here. */ | |
3942 else if (bufp->can_be_null) | |
3943 goto done; | |
3944 | |
3945 /* Otherwise, have to check alternative paths. */ | |
3946 break; | |
3947 } | |
3948 | |
826 | 3949 #ifndef emacs |
3950 case wordchar: | |
3951 for (j = 0; j < (1 << BYTEWIDTH); j++) | |
3952 if (SYNTAX (ignored, j) == Sword) | |
3953 fastmap[j] = 1; | |
3954 break; | |
3955 | |
3956 case notwordchar: | |
3957 for (j = 0; j < (1 << BYTEWIDTH); j++) | |
3958 if (SYNTAX (ignored, j) != Sword) | |
3959 fastmap[j] = 1; | |
3960 break; | |
3961 #else /* emacs */ | |
3962 case wordchar: | |
3963 case notwordchar: | |
460 | 3964 case wordbound: |
3965 case notwordbound: | |
3966 case wordbeg: | |
3967 case wordend: | |
3968 case notsyntaxspec: | |
3969 case syntaxspec: | |
3970 /* This match depends on text properties. These end with | |
3971 aborting optimizations. */ | |
3972 bufp->can_be_null = 1; | |
3973 goto done; | |
826 | 3974 #if 0 /* all of the following code is unused now that the `syntax-table' |
3975 property exists -- it's trickier to do this than just look in | |
3976 the buffer. &&#### but we could just use the syntax-cache stuff | |
3977 instead; why don't we? --ben */ | |
3978 case wordchar: | |
3979 k = (int) Sword; | |
3980 goto matchsyntax; | |
3981 | |
3982 case notwordchar: | |
3983 k = (int) Sword; | |
3984 goto matchnotsyntax; | |
3985 | |
428 | 3986 case syntaxspec: |
3987 k = *p++; | |
826 | 3988 matchsyntax: |
428 | 3989 #ifdef MULE |
3990 for (j = 0; j < 0x80; j++) | |
826 | 3991 if (SYNTAX |
3992 (XCHAR_TABLE (BUFFER_MIRROR_SYNTAX_TABLE (lispbuf)), j) == | |
428 | 3993 (enum syntaxcode) k) |
3994 fastmap[j] = 1; | |
3995 for (j = 0x80; j < 0xA0; j++) | |
3996 { | |
826 | 3997 if (leading_byte_prefix_p ((unsigned char) j)) |
428 | 3998 /* too complicated to calculate this right */ |
3999 fastmap[j] = 1; | |
4000 else | |
4001 { | |
4002 int multi_p; | |
4003 Lisp_Object cset; | |
4004 | |
826 | 4005 cset = charset_by_leading_byte (j); |
428 | 4006 if (CHARSETP (cset)) |
4007 { | |
826 | 4008 if (charset_syntax (lispbuf, cset, &multi_p) |
428 | 4009 == Sword || multi_p) |
4010 fastmap[j] = 1; | |
4011 } | |
4012 } | |
4013 } | |
446 | 4014 #else /* not MULE */ |
428 | 4015 for (j = 0; j < (1 << BYTEWIDTH); j++) |
826 | 4016 if (SYNTAX |
4017 (XCHAR_TABLE (BUFFER_MIRROR_SYNTAX_TABLE (lispbuf)), j) == | |
428 | 4018 (enum syntaxcode) k) |
4019 fastmap[j] = 1; | |
446 | 4020 #endif /* MULE */ |
428 | 4021 break; |
4022 | |
4023 | |
4024 case notsyntaxspec: | |
4025 k = *p++; | |
826 | 4026 matchnotsyntax: |
428 | 4027 #ifdef MULE |
4028 for (j = 0; j < 0x80; j++) | |
826 | 4029 if (SYNTAX |
428 | 4030 (XCHAR_TABLE |
826 | 4031 (BUFFER_MIRROR_SYNTAX_TABLE (lispbuf)), j) != |
428 | 4032 (enum syntaxcode) k) |
4033 fastmap[j] = 1; | |
4034 for (j = 0x80; j < 0xA0; j++) | |
4035 { | |
826 | 4036 if (leading_byte_prefix_p ((unsigned char) j)) |
428 | 4037 /* too complicated to calculate this right */ |
4038 fastmap[j] = 1; | |
4039 else | |
4040 { | |
4041 int multi_p; | |
4042 Lisp_Object cset; | |
4043 | |
826 | 4044 cset = charset_by_leading_byte (j); |
428 | 4045 if (CHARSETP (cset)) |
4046 { | |
826 | 4047 if (charset_syntax (lispbuf, cset, &multi_p) |
428 | 4048 != Sword || multi_p) |
4049 fastmap[j] = 1; | |
4050 } | |
4051 } | |
4052 } | |
446 | 4053 #else /* not MULE */ |
428 | 4054 for (j = 0; j < (1 << BYTEWIDTH); j++) |
826 | 4055 if (SYNTAX |
428 | 4056 (XCHAR_TABLE |
826 | 4057 (BUFFER_MIRROR_SYNTAX_TABLE (lispbuf)), j) != |
428 | 4058 (enum syntaxcode) k) |
4059 fastmap[j] = 1; | |
446 | 4060 #endif /* MULE */ |
428 | 4061 break; |
826 | 4062 #endif /* 0 */ |
428 | 4063 |
4064 #ifdef MULE | |
4065 /* 97/2/17 jhod category patch */ | |
4066 case categoryspec: | |
4067 case notcategoryspec: | |
4068 bufp->can_be_null = 1; | |
1333 | 4069 UNBIND_REGEX_MALLOC_CHECK (); |
428 | 4070 return 0; |
4071 /* end if category patch */ | |
4072 #endif /* MULE */ | |
4073 | |
4074 /* All cases after this match the empty string. These end with | |
4075 `continue'. */ | |
4076 case before_dot: | |
4077 case at_dot: | |
4078 case after_dot: | |
4079 continue; | |
826 | 4080 #endif /* emacs */ |
428 | 4081 |
4082 | |
4083 case no_op: | |
4084 case begline: | |
4085 case endline: | |
4086 case begbuf: | |
4087 case endbuf: | |
460 | 4088 #ifndef emacs |
428 | 4089 case wordbound: |
4090 case notwordbound: | |
4091 case wordbeg: | |
4092 case wordend: | |
460 | 4093 #endif |
428 | 4094 case push_dummy_failure: |
4095 continue; | |
4096 | |
4097 | |
4098 case jump_n: | |
4099 case pop_failure_jump: | |
4100 case maybe_pop_jump: | |
4101 case jump: | |
4102 case jump_past_alt: | |
4103 case dummy_failure_jump: | |
4104 EXTRACT_NUMBER_AND_INCR (j, p); | |
4105 p += j; | |
4106 if (j > 0) | |
4107 continue; | |
4108 | |
4109 /* Jump backward implies we just went through the body of a | |
4110 loop and matched nothing. Opcode jumped to should be | |
4111 `on_failure_jump' or `succeed_n'. Just treat it like an | |
4112 ordinary jump. For a * loop, it has pushed its failure | |
4113 point already; if so, discard that as redundant. */ | |
4114 if ((re_opcode_t) *p != on_failure_jump | |
4115 && (re_opcode_t) *p != succeed_n) | |
4116 continue; | |
4117 | |
4118 p++; | |
4119 EXTRACT_NUMBER_AND_INCR (j, p); | |
4120 p += j; | |
4121 | |
4122 /* If what's on the stack is where we are now, pop it. */ | |
4123 if (!FAIL_STACK_EMPTY () | |
4124 && fail_stack.stack[fail_stack.avail - 1].pointer == p) | |
4125 fail_stack.avail--; | |
4126 | |
4127 continue; | |
4128 | |
4129 | |
4130 case on_failure_jump: | |
4131 case on_failure_keep_string_jump: | |
4132 handle_on_failure_jump: | |
4133 EXTRACT_NUMBER_AND_INCR (j, p); | |
4134 | |
4135 /* For some patterns, e.g., `(a?)?', `p+j' here points to the | |
4136 end of the pattern. We don't want to push such a point, | |
4137 since when we restore it above, entering the switch will | |
4138 increment `p' past the end of the pattern. We don't need | |
4139 to push such a point since we obviously won't find any more | |
4140 fastmap entries beyond `pend'. Such a pattern can match | |
4141 the null string, though. */ | |
4142 if (p + j < pend) | |
4143 { | |
4144 if (!PUSH_PATTERN_OP (p + j, fail_stack)) | |
4145 { | |
4146 RESET_FAIL_STACK (); | |
1333 | 4147 UNBIND_REGEX_MALLOC_CHECK (); |
428 | 4148 return -2; |
4149 } | |
4150 } | |
4151 else | |
4152 bufp->can_be_null = 1; | |
4153 | |
4154 if (succeed_n_p) | |
4155 { | |
4156 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */ | |
4157 succeed_n_p = false; | |
4158 } | |
4159 | |
4160 continue; | |
4161 | |
4162 | |
4163 case succeed_n: | |
4164 /* Get to the number of times to succeed. */ | |
4165 p += 2; | |
4166 | |
4167 /* Increment p past the n for when k != 0. */ | |
4168 EXTRACT_NUMBER_AND_INCR (k, p); | |
4169 if (k == 0) | |
4170 { | |
4171 p -= 4; | |
4172 succeed_n_p = true; /* Spaghetti code alert. */ | |
4173 goto handle_on_failure_jump; | |
4174 } | |
4175 continue; | |
4176 | |
4177 | |
4178 case set_number_at: | |
4179 p += 4; | |
4180 continue; | |
4181 | |
4182 | |
4183 case start_memory: | |
4184 case stop_memory: | |
4185 p += 2; | |
4186 continue; | |
4187 | |
4188 | |
4189 default: | |
2500 | 4190 ABORT (); /* We have listed all the cases. */ |
428 | 4191 } /* switch *p++ */ |
4192 | |
4193 /* Getting here means we have found the possible starting | |
4194 characters for one path of the pattern -- and that the empty | |
4195 string does not match. We need not follow this path further. | |
4196 Instead, look at the next alternative (remembered on the | |
4197 stack), or quit if no more. The test at the top of the loop | |
4198 does these things. */ | |
4199 path_can_be_null = false; | |
4200 p = pend; | |
4201 } /* while p */ | |
4202 | |
4203 /* Set `can_be_null' for the last path (also the first path, if the | |
4204 pattern is empty). */ | |
4205 bufp->can_be_null |= path_can_be_null; | |
4206 | |
4207 done: | |
4208 RESET_FAIL_STACK (); | |
1333 | 4209 UNBIND_REGEX_MALLOC_CHECK (); |
428 | 4210 return 0; |
4211 } /* re_compile_fastmap */ | |
4212 | |
4213 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and | |
4214 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use | |
4215 this memory for recording register information. STARTS and ENDS | |
4216 must be allocated using the malloc library routine, and must each | |
4217 be at least NUM_REGS * sizeof (regoff_t) bytes long. | |
4218 | |
4219 If NUM_REGS == 0, then subsequent matches should allocate their own | |
4220 register data. | |
4221 | |
4222 Unless this function is called, the first search or match using | |
4223 PATTERN_BUFFER will allocate its own register data, without | |
4224 freeing the old data. */ | |
4225 | |
4226 void | |
4227 re_set_registers (struct re_pattern_buffer *bufp, struct re_registers *regs, | |
647 | 4228 int num_regs, regoff_t *starts, regoff_t *ends) |
428 | 4229 { |
4230 if (num_regs) | |
4231 { | |
4232 bufp->regs_allocated = REGS_REALLOCATE; | |
4233 regs->num_regs = num_regs; | |
4234 regs->start = starts; | |
4235 regs->end = ends; | |
4236 } | |
4237 else | |
4238 { | |
4239 bufp->regs_allocated = REGS_UNALLOCATED; | |
4240 regs->num_regs = 0; | |
4241 regs->start = regs->end = (regoff_t *) 0; | |
4242 } | |
4243 } | |
4244 | |
4245 /* Searching routines. */ | |
4246 | |
4247 /* Like re_search_2, below, but only one string is specified, and | |
4248 doesn't let you say where to stop matching. */ | |
4249 | |
4250 int | |
442 | 4251 re_search (struct re_pattern_buffer *bufp, const char *string, int size, |
826 | 4252 int startpos, int range, struct re_registers *regs |
4253 RE_LISP_CONTEXT_ARGS_DECL) | |
428 | 4254 { |
4255 return re_search_2 (bufp, NULL, 0, string, size, startpos, range, | |
826 | 4256 regs, size RE_LISP_CONTEXT_ARGS); |
428 | 4257 } |
4258 | |
4259 /* Using the compiled pattern in BUFP->buffer, first tries to match the | |
4260 virtual concatenation of STRING1 and STRING2, starting first at index | |
4261 STARTPOS, then at STARTPOS + 1, and so on. | |
4262 | |
4263 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively. | |
4264 | |
4265 RANGE is how far to scan while trying to match. RANGE = 0 means try | |
4266 only at STARTPOS; in general, the last start tried is STARTPOS + | |
4267 RANGE. | |
4268 | |
826 | 4269 All sizes and positions refer to bytes (not chars); under Mule, the code |
4270 knows about the format of the text and will only check at positions | |
4271 where a character starts. | |
4272 | |
428 | 4273 With MULE, RANGE is a byte position, not a char position. The last |
4274 start tried is the character starting <= STARTPOS + RANGE. | |
4275 | |
4276 In REGS, return the indices of the virtual concatenation of STRING1 | |
4277 and STRING2 that matched the entire BUFP->buffer and its contained | |
4278 subexpressions. | |
4279 | |
4280 Do not consider matching one past the index STOP in the virtual | |
4281 concatenation of STRING1 and STRING2. | |
4282 | |
4283 We return either the position in the strings at which the match was | |
4284 found, -1 if no match, or -2 if error (such as failure | |
4285 stack overflow). */ | |
4286 | |
4287 int | |
446 | 4288 re_search_2 (struct re_pattern_buffer *bufp, const char *str1, |
4289 int size1, const char *str2, int size2, int startpos, | |
826 | 4290 int range, struct re_registers *regs, int stop |
4291 RE_LISP_CONTEXT_ARGS_DECL) | |
428 | 4292 { |
4293 int val; | |
446 | 4294 re_char *string1 = (re_char *) str1; |
4295 re_char *string2 = (re_char *) str2; | |
428 | 4296 REGISTER char *fastmap = bufp->fastmap; |
446 | 4297 REGISTER RE_TRANSLATE_TYPE translate = bufp->translate; |
428 | 4298 int total_size = size1 + size2; |
4299 int endpos = startpos + range; | |
4300 #ifdef REGEX_BEGLINE_CHECK | |
4301 int anchored_at_begline = 0; | |
4302 #endif | |
446 | 4303 re_char *d; |
826 | 4304 #ifdef emacs |
4305 Internal_Format fmt = buffer_or_other_internal_format (lispobj); | |
1346 | 4306 #ifdef REL_ALLOC |
4307 Ibyte *orig_buftext = | |
4308 BUFFERP (lispobj) ? | |
4309 BYTE_BUF_BYTE_ADDRESS (XBUFFER (lispobj), | |
4310 BYTE_BUF_BEGV (XBUFFER (lispobj))) : | |
4311 0; | |
4312 #endif | |
1333 | 4313 #ifdef ERROR_CHECK_MALLOC |
4314 int depth; | |
4315 #endif | |
826 | 4316 #endif /* emacs */ |
4317 #if 1 | |
4318 int forward_search_p; | |
4319 #endif | |
428 | 4320 |
4321 /* Check for out-of-range STARTPOS. */ | |
4322 if (startpos < 0 || startpos > total_size) | |
4323 return -1; | |
4324 | |
4325 /* Fix up RANGE if it might eventually take us outside | |
4326 the virtual concatenation of STRING1 and STRING2. */ | |
4327 if (endpos < 0) | |
4328 range = 0 - startpos; | |
4329 else if (endpos > total_size) | |
4330 range = total_size - startpos; | |
4331 | |
826 | 4332 #if 1 |
4333 forward_search_p = range > 0; | |
4334 #endif | |
4335 | |
428 | 4336 /* If the search isn't to be a backwards one, don't waste time in a |
4337 search for a pattern that must be anchored. */ | |
4338 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0) | |
4339 { | |
4340 if (startpos > 0) | |
4341 return -1; | |
4342 else | |
4343 { | |
442 | 4344 d = ((const unsigned char *) |
428 | 4345 (startpos >= size1 ? string2 - size1 : string1) + startpos); |
867 | 4346 range = itext_ichar_len_fmt (d, fmt); |
428 | 4347 } |
4348 } | |
4349 | |
460 | 4350 #ifdef emacs |
4351 /* In a forward search for something that starts with \=. | |
4352 don't keep searching past point. */ | |
4353 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0) | |
4354 { | |
826 | 4355 if (!BUFFERP (lispobj)) |
4356 return -1; | |
4527
8418d1ad4944
Fix at_dot regex under Mule. <87hc6rv53v.fsf@uwakimon.sk.tsukuba.ac.jp>
Stephen J. Turnbull <stephen@xemacs.org>
parents:
3300
diff
changeset
|
4357 range = (BYTE_BUF_PT (XBUFFER (lispobj)) |
8418d1ad4944
Fix at_dot regex under Mule. <87hc6rv53v.fsf@uwakimon.sk.tsukuba.ac.jp>
Stephen J. Turnbull <stephen@xemacs.org>
parents:
3300
diff
changeset
|
4358 - BYTE_BUF_BEGV (XBUFFER (lispobj)) - startpos); |
460 | 4359 if (range < 0) |
4360 return -1; | |
4361 } | |
4362 #endif /* emacs */ | |
4363 | |
1333 | 4364 #ifdef ERROR_CHECK_MALLOC |
4365 /* Do this after the above return()s. */ | |
4366 depth = bind_regex_malloc_disallowed (1); | |
4367 #endif | |
4368 | |
428 | 4369 /* Update the fastmap now if not correct already. */ |
1333 | 4370 BEGIN_REGEX_MALLOC_OK (); |
428 | 4371 if (fastmap && !bufp->fastmap_accurate) |
826 | 4372 if (re_compile_fastmap (bufp RE_LISP_SHORT_CONTEXT_ARGS) == -2) |
1333 | 4373 { |
4374 END_REGEX_MALLOC_OK (); | |
4375 UNBIND_REGEX_MALLOC_CHECK (); | |
4376 return -2; | |
4377 } | |
4378 | |
4379 END_REGEX_MALLOC_OK (); | |
4380 RE_SEARCH_RELOCATE_MOVEABLE_DATA_POINTERS (); | |
428 | 4381 |
4382 #ifdef REGEX_BEGLINE_CHECK | |
4383 { | |
647 | 4384 long i = 0; |
428 | 4385 |
4386 while (i < bufp->used) | |
4387 { | |
4388 if (bufp->buffer[i] == start_memory || | |
4389 bufp->buffer[i] == stop_memory) | |
4390 i += 2; | |
4391 else | |
4392 break; | |
4393 } | |
4394 anchored_at_begline = i < bufp->used && bufp->buffer[i] == begline; | |
4395 } | |
4396 #endif | |
4397 | |
460 | 4398 #ifdef emacs |
1333 | 4399 BEGIN_REGEX_MALLOC_OK (); |
826 | 4400 scache = setup_syntax_cache (scache, lispobj, lispbuf, |
4401 offset_to_charxpos (lispobj, startpos), | |
4402 1); | |
1333 | 4403 END_REGEX_MALLOC_OK (); |
4404 RE_SEARCH_RELOCATE_MOVEABLE_DATA_POINTERS (); | |
460 | 4405 #endif |
4406 | |
428 | 4407 /* Loop through the string, looking for a place to start matching. */ |
4408 for (;;) | |
4409 { | |
4410 #ifdef REGEX_BEGLINE_CHECK | |
826 | 4411 /* If the regex is anchored at the beginning of a line (i.e. with a |
4412 ^), then we can speed things up by skipping to the next | |
4413 beginning-of-line. However, to determine "beginning of line" we | |
4414 need to look at the previous char, so can't do this check if at | |
4415 beginning of either string. (Well, we could if at the beginning of | |
4416 the second string, but it would require additional code, and this | |
4417 is just an optimization.) */ | |
4418 if (anchored_at_begline && startpos > 0 && startpos != size1) | |
428 | 4419 { |
826 | 4420 if (range > 0) |
4421 { | |
4422 /* whose stupid idea was it anyway to make this | |
4423 function take two strings to match?? */ | |
4424 int lim = 0; | |
4425 re_char *orig_d; | |
4426 re_char *stop_d; | |
4427 | |
4428 /* Compute limit as below in fastmap code, so we are guaranteed | |
4429 to remain within a single string. */ | |
4430 if (startpos < size1 && startpos + range >= size1) | |
4431 lim = range - (size1 - startpos); | |
4432 | |
4433 d = ((const unsigned char *) | |
4434 (startpos >= size1 ? string2 - size1 : string1) + startpos); | |
4435 orig_d = d; | |
4436 stop_d = d + range - lim; | |
4437 | |
4438 /* We want to find the next location (including the current | |
4439 one) where the previous char is a newline, so back up one | |
4440 and search forward for a newline. */ | |
867 | 4441 DEC_IBYTEPTR_FMT (d, fmt); /* Ok, since startpos != size1. */ |
826 | 4442 |
4443 /* Written out as an if-else to avoid testing `translate' | |
4444 inside the loop. */ | |
4445 if (TRANSLATE_P (translate)) | |
4446 while (d < stop_d && | |
867 | 4447 RE_TRANSLATE_1 (itext_ichar_fmt (d, fmt, lispobj)) |
826 | 4448 != '\n') |
867 | 4449 INC_IBYTEPTR_FMT (d, fmt); |
826 | 4450 else |
4451 while (d < stop_d && | |
867 | 4452 itext_ichar_ascii_fmt (d, fmt, lispobj) != '\n') |
4453 INC_IBYTEPTR_FMT (d, fmt); | |
826 | 4454 |
4455 /* If we were stopped by a newline, skip forward over it. | |
4456 Otherwise we will get in an infloop when our start position | |
4457 was at begline. */ | |
4458 if (d < stop_d) | |
867 | 4459 INC_IBYTEPTR_FMT (d, fmt); |
826 | 4460 range -= d - orig_d; |
4461 startpos += d - orig_d; | |
4462 #if 1 | |
4463 assert (!forward_search_p || range >= 0); | |
4464 #endif | |
4465 } | |
4466 else if (range < 0) | |
4467 { | |
4468 /* We're lazy, like in the fastmap code below */ | |
867 | 4469 Ichar c; |
826 | 4470 |
4471 d = ((const unsigned char *) | |
4472 (startpos >= size1 ? string2 - size1 : string1) + startpos); | |
867 | 4473 DEC_IBYTEPTR_FMT (d, fmt); |
4474 c = itext_ichar_fmt (d, fmt, lispobj); | |
826 | 4475 c = RE_TRANSLATE (c); |
4476 if (c != '\n') | |
4477 goto advance; | |
4478 } | |
428 | 4479 } |
4480 #endif /* REGEX_BEGLINE_CHECK */ | |
4481 | |
4482 /* If a fastmap is supplied, skip quickly over characters that | |
4483 cannot be the start of a match. If the pattern can match the | |
4484 null string, however, we don't need to skip characters; we want | |
4485 the first null string. */ | |
4486 if (fastmap && startpos < total_size && !bufp->can_be_null) | |
4487 { | |
826 | 4488 /* For the moment, fastmap always works as if buffer |
4489 is in default format, so convert chars in the search strings | |
4490 into default format as we go along, if necessary. | |
4491 | |
4492 &&#### fastmap needs rethinking for 8-bit-fixed so | |
4493 it's faster. We need it to reflect the raw | |
4494 8-bit-fixed values. That isn't so hard if we assume | |
4495 that the top 96 bytes represent a single 1-byte | |
4496 charset. For 16-bit/32-bit stuff it's probably not | |
4497 worth it to make the fastmap represent the raw, due to | |
4498 its nature -- we'd have to use the LSB for the | |
4499 fastmap, and that causes lots of problems with Mule | |
4500 chars, where it essentially wipes out the usefulness | |
4501 of the fastmap entirely. */ | |
428 | 4502 if (range > 0) /* Searching forwards. */ |
4503 { | |
4504 int lim = 0; | |
4505 int irange = range; | |
4506 | |
4507 if (startpos < size1 && startpos + range >= size1) | |
4508 lim = range - (size1 - startpos); | |
4509 | |
442 | 4510 d = ((const unsigned char *) |
428 | 4511 (startpos >= size1 ? string2 - size1 : string1) + startpos); |
4512 | |
4513 /* Written out as an if-else to avoid testing `translate' | |
4514 inside the loop. */ | |
446 | 4515 if (TRANSLATE_P (translate)) |
826 | 4516 { |
4517 while (range > lim) | |
4518 { | |
4519 re_char *old_d = d; | |
428 | 4520 #ifdef MULE |
867 | 4521 Ibyte tempch[MAX_ICHAR_LEN]; |
4522 Ichar buf_ch = | |
4523 RE_TRANSLATE_1 (itext_ichar_fmt (d, fmt, lispobj)); | |
4524 set_itext_ichar (tempch, buf_ch); | |
826 | 4525 if (fastmap[*tempch]) |
4526 break; | |
446 | 4527 #else |
826 | 4528 if (fastmap[(unsigned char) RE_TRANSLATE_1 (*d)]) |
4529 break; | |
446 | 4530 #endif /* MULE */ |
867 | 4531 INC_IBYTEPTR_FMT (d, fmt); |
826 | 4532 range -= (d - old_d); |
4533 #if 1 | |
1333 | 4534 assert (!forward_search_p || range >= 0); |
826 | 4535 #endif |
4536 } | |
4537 } | |
4538 #ifdef MULE | |
4539 else if (fmt != FORMAT_DEFAULT) | |
4540 { | |
4541 while (range > lim) | |
4542 { | |
4543 re_char *old_d = d; | |
867 | 4544 Ibyte tempch[MAX_ICHAR_LEN]; |
4545 Ichar buf_ch = itext_ichar_fmt (d, fmt, lispobj); | |
4546 set_itext_ichar (tempch, buf_ch); | |
826 | 4547 if (fastmap[*tempch]) |
4548 break; | |
867 | 4549 INC_IBYTEPTR_FMT (d, fmt); |
826 | 4550 range -= (d - old_d); |
4551 #if 1 | |
1333 | 4552 assert (!forward_search_p || range >= 0); |
826 | 4553 #endif |
4554 } | |
4555 } | |
4556 #endif /* MULE */ | |
428 | 4557 else |
826 | 4558 { |
4559 while (range > lim && !fastmap[*d]) | |
4560 { | |
4561 re_char *old_d = d; | |
867 | 4562 INC_IBYTEPTR (d); |
826 | 4563 range -= (d - old_d); |
4564 #if 1 | |
4565 assert (!forward_search_p || range >= 0); | |
4566 #endif | |
4567 } | |
4568 } | |
428 | 4569 |
4570 startpos += irange - range; | |
4571 } | |
4572 else /* Searching backwards. */ | |
4573 { | |
826 | 4574 /* #### It's not clear why we don't just write a loop, like |
4575 for the moving-forward case. Perhaps the writer got lazy, | |
4576 since backward searches aren't so common. */ | |
4577 d = ((const unsigned char *) | |
4578 (startpos >= size1 ? string2 - size1 : string1) + startpos); | |
428 | 4579 #ifdef MULE |
826 | 4580 { |
867 | 4581 Ibyte tempch[MAX_ICHAR_LEN]; |
4582 Ichar buf_ch = | |
4583 RE_TRANSLATE (itext_ichar_fmt (d, fmt, lispobj)); | |
4584 set_itext_ichar (tempch, buf_ch); | |
826 | 4585 if (!fastmap[*tempch]) |
4586 goto advance; | |
4587 } | |
428 | 4588 #else |
826 | 4589 if (!fastmap[(unsigned char) RE_TRANSLATE (*d)]) |
446 | 4590 goto advance; |
826 | 4591 #endif /* MULE */ |
428 | 4592 } |
4593 } | |
4594 | |
4595 /* If can't match the null string, and that's all we have left, fail. */ | |
4596 if (range >= 0 && startpos == total_size && fastmap | |
4597 && !bufp->can_be_null) | |
1333 | 4598 { |
4599 UNBIND_REGEX_MALLOC_CHECK (); | |
4600 return -1; | |
4601 } | |
428 | 4602 |
4603 #ifdef emacs /* XEmacs added, w/removal of immediate_quit */ | |
4604 if (!no_quit_in_re_search) | |
1333 | 4605 { |
4606 BEGIN_REGEX_MALLOC_OK (); | |
4607 QUIT; | |
4608 END_REGEX_MALLOC_OK (); | |
4609 RE_SEARCH_RELOCATE_MOVEABLE_DATA_POINTERS (); | |
4610 } | |
4611 | |
428 | 4612 #endif |
1333 | 4613 BEGIN_REGEX_MALLOC_OK (); |
428 | 4614 val = re_match_2_internal (bufp, string1, size1, string2, size2, |
826 | 4615 startpos, regs, stop |
4616 RE_LISP_CONTEXT_ARGS); | |
428 | 4617 #ifndef REGEX_MALLOC |
1333 | 4618 ALLOCA_GARBAGE_COLLECT (); |
428 | 4619 #endif |
1333 | 4620 END_REGEX_MALLOC_OK (); |
4621 RE_SEARCH_RELOCATE_MOVEABLE_DATA_POINTERS (); | |
428 | 4622 |
4623 if (val >= 0) | |
1333 | 4624 { |
4625 UNBIND_REGEX_MALLOC_CHECK (); | |
4626 return startpos; | |
4627 } | |
428 | 4628 |
4629 if (val == -2) | |
1333 | 4630 { |
4631 UNBIND_REGEX_MALLOC_CHECK (); | |
4632 return -2; | |
4633 } | |
4634 | |
4635 RE_SEARCH_RELOCATE_MOVEABLE_DATA_POINTERS (); | |
428 | 4636 advance: |
4637 if (!range) | |
4638 break; | |
4639 else if (range > 0) | |
4640 { | |
826 | 4641 Bytecount d_size; |
442 | 4642 d = ((const unsigned char *) |
428 | 4643 (startpos >= size1 ? string2 - size1 : string1) + startpos); |
867 | 4644 d_size = itext_ichar_len_fmt (d, fmt); |
428 | 4645 range -= d_size; |
826 | 4646 #if 1 |
4647 assert (!forward_search_p || range >= 0); | |
4648 #endif | |
428 | 4649 startpos += d_size; |
4650 } | |
4651 else | |
4652 { | |
826 | 4653 Bytecount d_size; |
428 | 4654 /* Note startpos > size1 not >=. If we are on the |
4655 string1/string2 boundary, we want to backup into string1. */ | |
442 | 4656 d = ((const unsigned char *) |
428 | 4657 (startpos > size1 ? string2 - size1 : string1) + startpos); |
867 | 4658 DEC_IBYTEPTR_FMT (d, fmt); |
4659 d_size = itext_ichar_len_fmt (d, fmt); | |
428 | 4660 range += d_size; |
826 | 4661 #if 1 |
4662 assert (!forward_search_p || range >= 0); | |
4663 #endif | |
428 | 4664 startpos -= d_size; |
4665 } | |
4666 } | |
1333 | 4667 UNBIND_REGEX_MALLOC_CHECK (); |
428 | 4668 return -1; |
4669 } /* re_search_2 */ | |
826 | 4670 |
428 | 4671 |
4672 /* Declarations and macros for re_match_2. */ | |
4673 | |
4674 /* This converts PTR, a pointer into one of the search strings `string1' | |
4675 and `string2' into an offset from the beginning of that string. */ | |
4676 #define POINTER_TO_OFFSET(ptr) \ | |
4677 (FIRST_STRING_P (ptr) \ | |
4678 ? ((regoff_t) ((ptr) - string1)) \ | |
4679 : ((regoff_t) ((ptr) - string2 + size1))) | |
4680 | |
4681 /* Macros for dealing with the split strings in re_match_2. */ | |
4682 | |
4683 #define MATCHING_IN_FIRST_STRING (dend == end_match_1) | |
4684 | |
4685 /* Call before fetching a character with *d. This switches over to | |
4686 string2 if necessary. */ | |
826 | 4687 #define REGEX_PREFETCH() \ |
428 | 4688 while (d == dend) \ |
4689 { \ | |
4690 /* End of string2 => fail. */ \ | |
4691 if (dend == end_match_2) \ | |
4692 goto fail; \ | |
4693 /* End of string1 => advance to string2. */ \ | |
4694 d = string2; \ | |
4695 dend = end_match_2; \ | |
4696 } | |
4697 | |
4698 | |
4699 /* Test if at very beginning or at very end of the virtual concatenation | |
4700 of `string1' and `string2'. If only one string, it's `string2'. */ | |
4701 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2) | |
4702 #define AT_STRINGS_END(d) ((d) == end2) | |
4703 | |
4704 /* XEmacs change: | |
4705 If the given position straddles the string gap, return the equivalent | |
4706 position that is before or after the gap, respectively; otherwise, | |
4707 return the same position. */ | |
4708 #define POS_BEFORE_GAP_UNSAFE(d) ((d) == string2 ? end1 : (d)) | |
4709 #define POS_AFTER_GAP_UNSAFE(d) ((d) == end1 ? string2 : (d)) | |
4710 | |
4711 /* Test if CH is a word-constituent character. (XEmacs change) */ | |
826 | 4712 #define WORDCHAR_P(ch) \ |
4713 (SYNTAX (BUFFER_MIRROR_SYNTAX_TABLE (lispbuf), ch) == Sword) | |
428 | 4714 |
4715 /* Free everything we malloc. */ | |
4716 #ifdef MATCH_MAY_ALLOCATE | |
1726 | 4717 #define FREE_VAR(var,type) if (var) REGEX_FREE (var, type); var = NULL |
428 | 4718 #define FREE_VARIABLES() \ |
4719 do { \ | |
1333 | 4720 UNBIND_REGEX_MALLOC_CHECK (); \ |
428 | 4721 REGEX_FREE_STACK (fail_stack.stack); \ |
1726 | 4722 FREE_VAR (regstart, re_char **); \ |
4723 FREE_VAR (regend, re_char **); \ | |
4724 FREE_VAR (old_regstart, re_char **); \ | |
4725 FREE_VAR (old_regend, re_char **); \ | |
4726 FREE_VAR (best_regstart, re_char **); \ | |
4727 FREE_VAR (best_regend, re_char **); \ | |
4728 FREE_VAR (reg_info, register_info_type *); \ | |
4729 FREE_VAR (reg_dummy, re_char **); \ | |
4730 FREE_VAR (reg_info_dummy, register_info_type *); \ | |
428 | 4731 } while (0) |
446 | 4732 #else /* not MATCH_MAY_ALLOCATE */ |
1333 | 4733 #define FREE_VARIABLES() \ |
4734 do { \ | |
4735 UNBIND_REGEX_MALLOC_CHECK (); \ | |
4736 } while (0) | |
446 | 4737 #endif /* MATCH_MAY_ALLOCATE */ |
428 | 4738 |
4739 /* These values must meet several constraints. They must not be valid | |
4740 register values; since we have a limit of 255 registers (because | |
4741 we use only one byte in the pattern for the register number), we can | |
4742 use numbers larger than 255. They must differ by 1, because of | |
4743 NUM_FAILURE_ITEMS above. And the value for the lowest register must | |
4744 be larger than the value for the highest register, so we do not try | |
4745 to actually save any registers when none are active. */ | |
4746 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH) | |
4747 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1) | |
4748 | |
4749 /* Matching routines. */ | |
4750 | |
826 | 4751 #ifndef emacs /* XEmacs never uses this. */ |
428 | 4752 /* re_match is like re_match_2 except it takes only a single string. */ |
4753 | |
4754 int | |
442 | 4755 re_match (struct re_pattern_buffer *bufp, const char *string, int size, |
826 | 4756 int pos, struct re_registers *regs |
4757 RE_LISP_CONTEXT_ARGS_DECL) | |
428 | 4758 { |
446 | 4759 int result = re_match_2_internal (bufp, NULL, 0, (re_char *) string, size, |
826 | 4760 pos, regs, size |
4761 RE_LISP_CONTEXT_ARGS); | |
1333 | 4762 ALLOCA_GARBAGE_COLLECT (); |
428 | 4763 return result; |
4764 } | |
4765 #endif /* not emacs */ | |
4766 | |
4767 /* re_match_2 matches the compiled pattern in BUFP against the | |
4768 (virtual) concatenation of STRING1 and STRING2 (of length SIZE1 and | |
4769 SIZE2, respectively). We start matching at POS, and stop matching | |
4770 at STOP. | |
4771 | |
4772 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we | |
4773 store offsets for the substring each group matched in REGS. See the | |
4774 documentation for exactly how many groups we fill. | |
4775 | |
4776 We return -1 if no match, -2 if an internal error (such as the | |
4777 failure stack overflowing). Otherwise, we return the length of the | |
4778 matched substring. */ | |
4779 | |
4780 int | |
442 | 4781 re_match_2 (struct re_pattern_buffer *bufp, const char *string1, |
4782 int size1, const char *string2, int size2, int pos, | |
826 | 4783 struct re_registers *regs, int stop |
4784 RE_LISP_CONTEXT_ARGS_DECL) | |
428 | 4785 { |
460 | 4786 int result; |
4787 | |
4788 #ifdef emacs | |
826 | 4789 scache = setup_syntax_cache (scache, lispobj, lispbuf, |
4790 offset_to_charxpos (lispobj, pos), | |
4791 1); | |
460 | 4792 #endif |
4793 | |
4794 result = re_match_2_internal (bufp, (re_char *) string1, size1, | |
4795 (re_char *) string2, size2, | |
826 | 4796 pos, regs, stop |
4797 RE_LISP_CONTEXT_ARGS); | |
460 | 4798 |
1333 | 4799 ALLOCA_GARBAGE_COLLECT (); |
428 | 4800 return result; |
4801 } | |
4802 | |
4803 /* This is a separate function so that we can force an alloca cleanup | |
4804 afterwards. */ | |
4805 static int | |
446 | 4806 re_match_2_internal (struct re_pattern_buffer *bufp, re_char *string1, |
4807 int size1, re_char *string2, int size2, int pos, | |
826 | 4808 struct re_registers *regs, int stop |
2333 | 4809 RE_LISP_CONTEXT_ARGS_MULE_DECL) |
428 | 4810 { |
4811 /* General temporaries. */ | |
4812 int mcnt; | |
4813 unsigned char *p1; | |
4814 int should_succeed; /* XEmacs change */ | |
4815 | |
4816 /* Just past the end of the corresponding string. */ | |
446 | 4817 re_char *end1, *end2; |
428 | 4818 |
4819 /* Pointers into string1 and string2, just past the last characters in | |
4820 each to consider matching. */ | |
446 | 4821 re_char *end_match_1, *end_match_2; |
428 | 4822 |
4823 /* Where we are in the data, and the end of the current string. */ | |
446 | 4824 re_char *d, *dend; |
428 | 4825 |
4826 /* Where we are in the pattern, and the end of the pattern. */ | |
4827 unsigned char *p = bufp->buffer; | |
4828 REGISTER unsigned char *pend = p + bufp->used; | |
4829 | |
4830 /* Mark the opcode just after a start_memory, so we can test for an | |
4831 empty subpattern when we get to the stop_memory. */ | |
446 | 4832 re_char *just_past_start_mem = 0; |
428 | 4833 |
4834 /* We use this to map every character in the string. */ | |
446 | 4835 RE_TRANSLATE_TYPE translate = bufp->translate; |
428 | 4836 |
4837 /* Failure point stack. Each place that can handle a failure further | |
4838 down the line pushes a failure point on this stack. It consists of | |
4839 restart, regend, and reg_info for all registers corresponding to | |
4840 the subexpressions we're currently inside, plus the number of such | |
4841 registers, and, finally, two char *'s. The first char * is where | |
4842 to resume scanning the pattern; the second one is where to resume | |
4843 scanning the strings. If the latter is zero, the failure point is | |
4844 a ``dummy''; if a failure happens and the failure point is a dummy, | |
4845 it gets discarded and the next one is tried. */ | |
4846 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */ | |
4847 fail_stack_type fail_stack; | |
4848 #endif | |
4849 #ifdef DEBUG | |
647 | 4850 static int failure_id; |
4851 int nfailure_points_pushed = 0, nfailure_points_popped = 0; | |
428 | 4852 #endif |
4853 | |
771 | 4854 #ifdef REGEX_REL_ALLOC |
428 | 4855 /* This holds the pointer to the failure stack, when |
4856 it is allocated relocatably. */ | |
4857 fail_stack_elt_t *failure_stack_ptr; | |
4858 #endif | |
4859 | |
4860 /* We fill all the registers internally, independent of what we | |
4861 return, for use in backreferences. The number here includes | |
4862 an element for register zero. */ | |
647 | 4863 int num_regs = bufp->re_ngroups + 1; |
428 | 4864 |
4865 /* The currently active registers. */ | |
647 | 4866 int lowest_active_reg = NO_LOWEST_ACTIVE_REG; |
4867 int highest_active_reg = NO_HIGHEST_ACTIVE_REG; | |
428 | 4868 |
4869 /* Information on the contents of registers. These are pointers into | |
4870 the input strings; they record just what was matched (on this | |
4871 attempt) by a subexpression part of the pattern, that is, the | |
4872 regnum-th regstart pointer points to where in the pattern we began | |
4873 matching and the regnum-th regend points to right after where we | |
4874 stopped matching the regnum-th subexpression. (The zeroth register | |
4875 keeps track of what the whole pattern matches.) */ | |
4876 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */ | |
446 | 4877 re_char **regstart, **regend; |
428 | 4878 #endif |
4879 | |
4880 /* If a group that's operated upon by a repetition operator fails to | |
4881 match anything, then the register for its start will need to be | |
4882 restored because it will have been set to wherever in the string we | |
4883 are when we last see its open-group operator. Similarly for a | |
4884 register's end. */ | |
4885 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */ | |
446 | 4886 re_char **old_regstart, **old_regend; |
428 | 4887 #endif |
4888 | |
4889 /* The is_active field of reg_info helps us keep track of which (possibly | |
4890 nested) subexpressions we are currently in. The matched_something | |
4891 field of reg_info[reg_num] helps us tell whether or not we have | |
4892 matched any of the pattern so far this time through the reg_num-th | |
4893 subexpression. These two fields get reset each time through any | |
4894 loop their register is in. */ | |
4895 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */ | |
4896 register_info_type *reg_info; | |
4897 #endif | |
4898 | |
4899 /* The following record the register info as found in the above | |
4900 variables when we find a match better than any we've seen before. | |
4901 This happens as we backtrack through the failure points, which in | |
4902 turn happens only if we have not yet matched the entire string. */ | |
647 | 4903 int best_regs_set = false; |
428 | 4904 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */ |
446 | 4905 re_char **best_regstart, **best_regend; |
428 | 4906 #endif |
4907 | |
4908 /* Logically, this is `best_regend[0]'. But we don't want to have to | |
4909 allocate space for that if we're not allocating space for anything | |
4910 else (see below). Also, we never need info about register 0 for | |
4911 any of the other register vectors, and it seems rather a kludge to | |
4912 treat `best_regend' differently than the rest. So we keep track of | |
4913 the end of the best match so far in a separate variable. We | |
4914 initialize this to NULL so that when we backtrack the first time | |
4915 and need to test it, it's not garbage. */ | |
446 | 4916 re_char *match_end = NULL; |
428 | 4917 |
4918 /* This helps SET_REGS_MATCHED avoid doing redundant work. */ | |
4919 int set_regs_matched_done = 0; | |
4920 | |
4921 /* Used when we pop values we don't care about. */ | |
4922 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */ | |
446 | 4923 re_char **reg_dummy; |
428 | 4924 register_info_type *reg_info_dummy; |
4925 #endif | |
4926 | |
4927 #ifdef DEBUG | |
4928 /* Counts the total number of registers pushed. */ | |
647 | 4929 int num_regs_pushed = 0; |
428 | 4930 #endif |
4931 | |
4932 /* 1 if this match ends in the same string (string1 or string2) | |
4933 as the best previous match. */ | |
460 | 4934 re_bool same_str_p; |
428 | 4935 |
4936 /* 1 if this match is the best seen so far. */ | |
460 | 4937 re_bool best_match_p; |
428 | 4938 |
826 | 4939 #ifdef emacs |
4940 Internal_Format fmt = buffer_or_other_internal_format (lispobj); | |
1346 | 4941 #ifdef REL_ALLOC |
4942 Ibyte *orig_buftext = | |
4943 BUFFERP (lispobj) ? | |
4944 BYTE_BUF_BYTE_ADDRESS (XBUFFER (lispobj), | |
4945 BYTE_BUF_BEGV (XBUFFER (lispobj))) : | |
4946 0; | |
4947 #endif | |
4948 | |
1333 | 4949 #ifdef ERROR_CHECK_MALLOC |
4950 int depth = bind_regex_malloc_disallowed (1); | |
4951 #endif | |
826 | 4952 #endif /* emacs */ |
771 | 4953 |
5041 | 4954 DEBUG_MATCH_PRINT1 ("\n\nEntering re_match_2.\n"); |
428 | 4955 |
1333 | 4956 BEGIN_REGEX_MALLOC_OK (); |
428 | 4957 INIT_FAIL_STACK (); |
1333 | 4958 END_REGEX_MALLOC_OK (); |
428 | 4959 |
4960 #ifdef MATCH_MAY_ALLOCATE | |
4961 /* Do not bother to initialize all the register variables if there are | |
4962 no groups in the pattern, as it takes a fair amount of time. If | |
4963 there are groups, we include space for register 0 (the whole | |
4964 pattern), even though we never use it, since it simplifies the | |
4965 array indexing. We should fix this. */ | |
502 | 4966 if (bufp->re_ngroups) |
428 | 4967 { |
1333 | 4968 BEGIN_REGEX_MALLOC_OK (); |
446 | 4969 regstart = REGEX_TALLOC (num_regs, re_char *); |
4970 regend = REGEX_TALLOC (num_regs, re_char *); | |
4971 old_regstart = REGEX_TALLOC (num_regs, re_char *); | |
4972 old_regend = REGEX_TALLOC (num_regs, re_char *); | |
4973 best_regstart = REGEX_TALLOC (num_regs, re_char *); | |
4974 best_regend = REGEX_TALLOC (num_regs, re_char *); | |
428 | 4975 reg_info = REGEX_TALLOC (num_regs, register_info_type); |
446 | 4976 reg_dummy = REGEX_TALLOC (num_regs, re_char *); |
428 | 4977 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type); |
1333 | 4978 END_REGEX_MALLOC_OK (); |
428 | 4979 |
4980 if (!(regstart && regend && old_regstart && old_regend && reg_info | |
4981 && best_regstart && best_regend && reg_dummy && reg_info_dummy)) | |
4982 { | |
4983 FREE_VARIABLES (); | |
4984 return -2; | |
4985 } | |
4986 } | |
4987 else | |
4988 { | |
4989 /* We must initialize all our variables to NULL, so that | |
4990 `FREE_VARIABLES' doesn't try to free them. */ | |
4991 regstart = regend = old_regstart = old_regend = best_regstart | |
4992 = best_regend = reg_dummy = NULL; | |
4993 reg_info = reg_info_dummy = (register_info_type *) NULL; | |
4994 } | |
4995 #endif /* MATCH_MAY_ALLOCATE */ | |
4996 | |
1333 | 4997 #if defined (emacs) && defined (REL_ALLOC) |
4998 { | |
4999 /* If the allocations above (or the call to setup_syntax_cache() in | |
5000 re_match_2) caused a rel-alloc relocation, then fix up the data | |
5001 pointers */ | |
1346 | 5002 Bytecount offset = offset_post_relocation (lispobj, orig_buftext); |
1333 | 5003 if (offset) |
5004 { | |
5005 string1 += offset; | |
5006 string2 += offset; | |
5007 } | |
5008 } | |
5009 #endif /* defined (emacs) && defined (REL_ALLOC) */ | |
5010 | |
428 | 5011 /* The starting position is bogus. */ |
5012 if (pos < 0 || pos > size1 + size2) | |
5013 { | |
5014 FREE_VARIABLES (); | |
5015 return -1; | |
5016 } | |
5017 | |
5018 /* Initialize subexpression text positions to -1 to mark ones that no | |
5019 start_memory/stop_memory has been seen for. Also initialize the | |
5020 register information struct. */ | |
5021 for (mcnt = 1; mcnt < num_regs; mcnt++) | |
5022 { | |
5023 regstart[mcnt] = regend[mcnt] | |
5024 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE; | |
5025 | |
5026 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE; | |
5027 IS_ACTIVE (reg_info[mcnt]) = 0; | |
5028 MATCHED_SOMETHING (reg_info[mcnt]) = 0; | |
5029 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0; | |
5030 } | |
5031 /* We move `string1' into `string2' if the latter's empty -- but not if | |
5032 `string1' is null. */ | |
5033 if (size2 == 0 && string1 != NULL) | |
5034 { | |
5035 string2 = string1; | |
5036 size2 = size1; | |
5037 string1 = 0; | |
5038 size1 = 0; | |
5039 } | |
5040 end1 = string1 + size1; | |
5041 end2 = string2 + size2; | |
5042 | |
5043 /* Compute where to stop matching, within the two strings. */ | |
5044 if (stop <= size1) | |
5045 { | |
5046 end_match_1 = string1 + stop; | |
5047 end_match_2 = string2; | |
5048 } | |
5049 else | |
5050 { | |
5051 end_match_1 = end1; | |
5052 end_match_2 = string2 + stop - size1; | |
5053 } | |
5054 | |
5055 /* `p' scans through the pattern as `d' scans through the data. | |
5056 `dend' is the end of the input string that `d' points within. `d' | |
5057 is advanced into the following input string whenever necessary, but | |
5058 this happens before fetching; therefore, at the beginning of the | |
5059 loop, `d' can be pointing at the end of a string, but it cannot | |
5060 equal `string2'. */ | |
5061 if (size1 > 0 && pos <= size1) | |
5062 { | |
5063 d = string1 + pos; | |
5064 dend = end_match_1; | |
5065 } | |
5066 else | |
5067 { | |
5068 d = string2 + pos - size1; | |
5069 dend = end_match_2; | |
5070 } | |
5071 | |
5041 | 5072 DEBUG_MATCH_PRINT1 ("The compiled pattern is: \n"); |
5073 DEBUG_MATCH_PRINT_COMPILED_PATTERN (bufp, p, pend); | |
5074 DEBUG_MATCH_PRINT1 ("The string to match is: `"); | |
5075 DEBUG_MATCH_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2); | |
5076 DEBUG_MATCH_PRINT1 ("'\n"); | |
428 | 5077 |
5078 /* This loops over pattern commands. It exits by returning from the | |
5079 function if the match is complete, or it drops through if the match | |
5080 fails at this starting point in the input data. */ | |
5081 for (;;) | |
5082 { | |
5041 | 5083 DEBUG_MATCH_PRINT2 ("\n0x%lx: ", (long) p); |
428 | 5084 #ifdef emacs /* XEmacs added, w/removal of immediate_quit */ |
5085 if (!no_quit_in_re_search) | |
1333 | 5086 { |
5087 BEGIN_REGEX_MALLOC_OK (); | |
5088 QUIT; | |
5089 END_REGEX_MALLOC_OK (); | |
1346 | 5090 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS (); |
1333 | 5091 } |
428 | 5092 #endif |
5093 | |
5094 if (p == pend) | |
5095 { /* End of pattern means we might have succeeded. */ | |
5041 | 5096 DEBUG_MATCH_PRINT1 ("end of pattern ... "); |
428 | 5097 |
5098 /* If we haven't matched the entire string, and we want the | |
5099 longest match, try backtracking. */ | |
5100 if (d != end_match_2) | |
5101 { | |
5102 same_str_p = (FIRST_STRING_P (match_end) | |
5103 == MATCHING_IN_FIRST_STRING); | |
5104 | |
5105 /* AIX compiler got confused when this was combined | |
5106 with the previous declaration. */ | |
5107 if (same_str_p) | |
5108 best_match_p = d > match_end; | |
5109 else | |
5110 best_match_p = !MATCHING_IN_FIRST_STRING; | |
5111 | |
5041 | 5112 DEBUG_MATCH_PRINT1 ("backtracking.\n"); |
428 | 5113 |
5114 if (!FAIL_STACK_EMPTY ()) | |
5115 { /* More failure points to try. */ | |
5116 | |
5117 /* If exceeds best match so far, save it. */ | |
5118 if (!best_regs_set || best_match_p) | |
5119 { | |
5120 best_regs_set = true; | |
5121 match_end = d; | |
5122 | |
5041 | 5123 DEBUG_MATCH_PRINT1 ("\nSAVING match as best so far.\n"); |
428 | 5124 |
5125 for (mcnt = 1; mcnt < num_regs; mcnt++) | |
5126 { | |
5127 best_regstart[mcnt] = regstart[mcnt]; | |
5128 best_regend[mcnt] = regend[mcnt]; | |
5129 } | |
5130 } | |
5131 goto fail; | |
5132 } | |
5133 | |
5134 /* If no failure points, don't restore garbage. And if | |
5135 last match is real best match, don't restore second | |
5136 best one. */ | |
5137 else if (best_regs_set && !best_match_p) | |
5138 { | |
5139 restore_best_regs: | |
5140 /* Restore best match. It may happen that `dend == | |
5141 end_match_1' while the restored d is in string2. | |
5142 For example, the pattern `x.*y.*z' against the | |
5143 strings `x-' and `y-z-', if the two strings are | |
5144 not consecutive in memory. */ | |
5041 | 5145 DEBUG_MATCH_PRINT1 ("Restoring best registers.\n"); |
428 | 5146 |
5147 d = match_end; | |
5148 dend = ((d >= string1 && d <= end1) | |
5149 ? end_match_1 : end_match_2); | |
5150 | |
5151 for (mcnt = 1; mcnt < num_regs; mcnt++) | |
5152 { | |
5153 regstart[mcnt] = best_regstart[mcnt]; | |
5154 regend[mcnt] = best_regend[mcnt]; | |
5155 } | |
5156 } | |
5157 } /* d != end_match_2 */ | |
5158 | |
5159 succeed_label: | |
5041 | 5160 DEBUG_MATCH_PRINT1 ("Accepting match.\n"); |
428 | 5161 |
5162 /* If caller wants register contents data back, do it. */ | |
1028 | 5163 { |
5164 int num_nonshy_regs = bufp->re_nsub + 1; | |
5165 if (regs && !bufp->no_sub) | |
5166 { | |
5167 /* Have the register data arrays been allocated? */ | |
5168 if (bufp->regs_allocated == REGS_UNALLOCATED) | |
5169 { /* No. So allocate them with malloc. We need one | |
5170 extra element beyond `num_regs' for the `-1' marker | |
5171 GNU code uses. */ | |
5172 regs->num_regs = MAX (RE_NREGS, num_nonshy_regs + 1); | |
1333 | 5173 BEGIN_REGEX_MALLOC_OK (); |
1028 | 5174 regs->start = TALLOC (regs->num_regs, regoff_t); |
5175 regs->end = TALLOC (regs->num_regs, regoff_t); | |
1333 | 5176 END_REGEX_MALLOC_OK (); |
5177 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS (); | |
1028 | 5178 if (regs->start == NULL || regs->end == NULL) |
5179 { | |
5180 FREE_VARIABLES (); | |
5181 return -2; | |
5182 } | |
5183 bufp->regs_allocated = REGS_REALLOCATE; | |
5184 } | |
5185 else if (bufp->regs_allocated == REGS_REALLOCATE) | |
5186 { /* Yes. If we need more elements than were already | |
5187 allocated, reallocate them. If we need fewer, just | |
5188 leave it alone. */ | |
5189 if (regs->num_regs < num_nonshy_regs + 1) | |
5190 { | |
5191 regs->num_regs = num_nonshy_regs + 1; | |
1333 | 5192 BEGIN_REGEX_MALLOC_OK (); |
1028 | 5193 RETALLOC (regs->start, regs->num_regs, regoff_t); |
5194 RETALLOC (regs->end, regs->num_regs, regoff_t); | |
1333 | 5195 END_REGEX_MALLOC_OK (); |
5196 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS (); | |
1028 | 5197 if (regs->start == NULL || regs->end == NULL) |
5198 { | |
5199 FREE_VARIABLES (); | |
5200 return -2; | |
5201 } | |
5202 } | |
5203 } | |
5204 else | |
5205 { | |
5206 /* The braces fend off a "empty body in an else-statement" | |
5207 warning under GCC when assert expands to nothing. */ | |
5208 assert (bufp->regs_allocated == REGS_FIXED); | |
5209 } | |
5210 | |
5211 /* Convert the pointer data in `regstart' and `regend' to | |
5212 indices. Register zero has to be set differently, | |
5213 since we haven't kept track of any info for it. */ | |
5214 if (regs->num_regs > 0) | |
5215 { | |
5216 regs->start[0] = pos; | |
5217 regs->end[0] = (MATCHING_IN_FIRST_STRING | |
5218 ? ((regoff_t) (d - string1)) | |
5219 : ((regoff_t) (d - string2 + size1))); | |
5220 } | |
5221 | |
2639 | 5222 /* Map over the NUM_NONSHY_REGS non-shy internal registers. |
5223 Copy each into the corresponding external register. | |
5224 MCNT indexes external registers. */ | |
1028 | 5225 for (mcnt = 1; mcnt < MIN (num_nonshy_regs, regs->num_regs); |
5226 mcnt++) | |
5227 { | |
5228 int internal_reg = bufp->external_to_internal_register[mcnt]; | |
5229 if (REG_UNSET (regstart[internal_reg]) || | |
5230 REG_UNSET (regend[internal_reg])) | |
5231 regs->start[mcnt] = regs->end[mcnt] = -1; | |
5232 else | |
5233 { | |
5234 regs->start[mcnt] = | |
5235 (regoff_t) POINTER_TO_OFFSET (regstart[internal_reg]); | |
5236 regs->end[mcnt] = | |
5237 (regoff_t) POINTER_TO_OFFSET (regend[internal_reg]); | |
5238 } | |
5239 } | |
5240 } /* regs && !bufp->no_sub */ | |
5241 | |
5242 /* If we have regs and the regs structure has more elements than | |
2639 | 5243 were in the pattern, set the extra elements starting with |
5244 NUM_NONSHY_REGS to -1. If we (re)allocated the registers, | |
5245 this is the case, because we always allocate enough to have | |
5246 at least one -1 at the end. | |
1028 | 5247 |
5248 We do this even when no_sub is set because some applications | |
5249 (XEmacs) reuse register structures which may contain stale | |
5250 information, and permit attempts to access those registers. | |
5251 | |
5252 It would be possible to require the caller to do this, but we'd | |
5253 have to change the API for this function to reflect that, and | |
1425 | 5254 audit all callers. Note: as of 2003-04-17 callers in XEmacs |
5255 do clear the registers, but it's safer to leave this code in | |
5256 because of reallocation. | |
5257 */ | |
1028 | 5258 if (regs && regs->num_regs > 0) |
5259 for (mcnt = num_nonshy_regs; mcnt < regs->num_regs; mcnt++) | |
5260 regs->start[mcnt] = regs->end[mcnt] = -1; | |
5261 } | |
5041 | 5262 DEBUG_MATCH_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n", |
428 | 5263 nfailure_points_pushed, nfailure_points_popped, |
5264 nfailure_points_pushed - nfailure_points_popped); | |
5041 | 5265 DEBUG_MATCH_PRINT2 ("%u registers pushed.\n", num_regs_pushed); |
428 | 5266 |
5267 mcnt = d - pos - (MATCHING_IN_FIRST_STRING | |
5268 ? string1 | |
5269 : string2 - size1); | |
5270 | |
5041 | 5271 DEBUG_MATCH_PRINT2 ("Returning %d from re_match_2.\n", mcnt); |
428 | 5272 |
5273 FREE_VARIABLES (); | |
5274 return mcnt; | |
5275 } | |
5276 | |
5277 /* Otherwise match next pattern command. */ | |
4759
aa5ed11f473b
Remove support for obsolete systems. See xemacs-patches message with ID
Jerry James <james@xemacs.org>
parents:
4750
diff
changeset
|
5278 switch ((re_opcode_t) *p++) |
428 | 5279 { |
5280 /* Ignore these. Used to ignore the n of succeed_n's which | |
5281 currently have n == 0. */ | |
5282 case no_op: | |
5041 | 5283 DEBUG_MATCH_PRINT1 ("EXECUTING no_op.\n"); |
428 | 5284 break; |
5285 | |
5286 case succeed: | |
5041 | 5287 DEBUG_MATCH_PRINT1 ("EXECUTING succeed.\n"); |
428 | 5288 goto succeed_label; |
5289 | |
826 | 5290 /* Match exactly a string of length n in the pattern. The |
5291 following byte in the pattern defines n, and the n bytes after | |
5292 that make up the string to match. (Under Mule, this will be in | |
5293 the default internal format.) */ | |
428 | 5294 case exactn: |
5295 mcnt = *p++; | |
5041 | 5296 DEBUG_MATCH_PRINT2 ("EXECUTING exactn %d.\n", mcnt); |
428 | 5297 |
5298 /* This is written out as an if-else so we don't waste time | |
5299 testing `translate' inside the loop. */ | |
446 | 5300 if (TRANSLATE_P (translate)) |
428 | 5301 { |
5302 do | |
5303 { | |
446 | 5304 #ifdef MULE |
5305 Bytecount pat_len; | |
5306 | |
450 | 5307 REGEX_PREFETCH (); |
867 | 5308 if (RE_TRANSLATE_1 (itext_ichar_fmt (d, fmt, lispobj)) |
5309 != itext_ichar (p)) | |
428 | 5310 goto fail; |
446 | 5311 |
867 | 5312 pat_len = itext_ichar_len (p); |
446 | 5313 p += pat_len; |
867 | 5314 INC_IBYTEPTR_FMT (d, fmt); |
446 | 5315 |
5316 mcnt -= pat_len; | |
5317 #else /* not MULE */ | |
450 | 5318 REGEX_PREFETCH (); |
826 | 5319 if ((unsigned char) RE_TRANSLATE_1 (*d++) != *p++) |
446 | 5320 goto fail; |
5321 mcnt--; | |
5322 #endif | |
428 | 5323 } |
446 | 5324 while (mcnt > 0); |
428 | 5325 } |
5326 else | |
5327 { | |
826 | 5328 #ifdef MULE |
5329 /* If buffer format is default, then we can shortcut and just | |
5330 compare the text directly, byte by byte. Otherwise, we | |
5331 need to go character by character. */ | |
5332 if (fmt != FORMAT_DEFAULT) | |
428 | 5333 { |
826 | 5334 do |
5335 { | |
5336 Bytecount pat_len; | |
5337 | |
5338 REGEX_PREFETCH (); | |
867 | 5339 if (itext_ichar_fmt (d, fmt, lispobj) != |
5340 itext_ichar (p)) | |
826 | 5341 goto fail; |
5342 | |
867 | 5343 pat_len = itext_ichar_len (p); |
826 | 5344 p += pat_len; |
867 | 5345 INC_IBYTEPTR_FMT (d, fmt); |
826 | 5346 |
5347 mcnt -= pat_len; | |
5348 } | |
5349 while (mcnt > 0); | |
428 | 5350 } |
826 | 5351 else |
5352 #endif | |
5353 { | |
5354 do | |
5355 { | |
5356 REGEX_PREFETCH (); | |
5357 if (*d++ != *p++) goto fail; | |
5358 mcnt--; | |
5359 } | |
5360 while (mcnt > 0); | |
5361 } | |
428 | 5362 } |
5363 SET_REGS_MATCHED (); | |
5364 break; | |
5365 | |
5366 | |
5367 /* Match any character except possibly a newline or a null. */ | |
5368 case anychar: | |
5041 | 5369 DEBUG_MATCH_PRINT1 ("EXECUTING anychar.\n"); |
428 | 5370 |
450 | 5371 REGEX_PREFETCH (); |
428 | 5372 |
826 | 5373 if ((!(bufp->syntax & RE_DOT_NEWLINE) && |
867 | 5374 RE_TRANSLATE (itext_ichar_fmt (d, fmt, lispobj)) == '\n') |
826 | 5375 || (bufp->syntax & RE_DOT_NOT_NULL && |
867 | 5376 RE_TRANSLATE (itext_ichar_fmt (d, fmt, lispobj)) == |
826 | 5377 '\000')) |
428 | 5378 goto fail; |
5379 | |
5380 SET_REGS_MATCHED (); | |
5041 | 5381 DEBUG_MATCH_PRINT2 (" Matched `%d'.\n", *d); |
867 | 5382 INC_IBYTEPTR_FMT (d, fmt); /* XEmacs change */ |
428 | 5383 break; |
5384 | |
5385 | |
5386 case charset: | |
5387 case charset_not: | |
5388 { | |
1414 | 5389 REGISTER Ichar c; |
460 | 5390 re_bool not_p = (re_opcode_t) *(p - 1) == charset_not; |
458 | 5391 |
5041 | 5392 DEBUG_MATCH_PRINT2 ("EXECUTING charset%s.\n", not_p ? "_not" : ""); |
428 | 5393 |
450 | 5394 REGEX_PREFETCH (); |
867 | 5395 c = itext_ichar_fmt (d, fmt, lispobj); |
826 | 5396 c = RE_TRANSLATE (c); /* The character to match. */ |
428 | 5397 |
647 | 5398 /* Cast to `unsigned int' instead of `unsigned char' in case the |
428 | 5399 bit list is a full 32 bytes long. */ |
1414 | 5400 if ((unsigned int)c < (unsigned int) (*p * BYTEWIDTH) |
428 | 5401 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH))) |
458 | 5402 not_p = !not_p; |
428 | 5403 |
5404 p += 1 + *p; | |
5405 | |
458 | 5406 if (!not_p) goto fail; |
428 | 5407 |
5408 SET_REGS_MATCHED (); | |
867 | 5409 INC_IBYTEPTR_FMT (d, fmt); /* XEmacs change */ |
428 | 5410 break; |
5411 } | |
5412 | |
5413 #ifdef MULE | |
5414 case charset_mule: | |
5415 case charset_mule_not: | |
5416 { | |
867 | 5417 REGISTER Ichar c; |
460 | 5418 re_bool not_p = (re_opcode_t) *(p - 1) == charset_mule_not; |
458 | 5419 |
5041 | 5420 DEBUG_MATCH_PRINT2 ("EXECUTING charset_mule%s.\n", not_p ? "_not" : ""); |
428 | 5421 |
450 | 5422 REGEX_PREFETCH (); |
867 | 5423 c = itext_ichar_fmt (d, fmt, lispobj); |
826 | 5424 c = RE_TRANSLATE (c); /* The character to match. */ |
428 | 5425 |
5426 if (EQ (Qt, unified_range_table_lookup (p, c, Qnil))) | |
458 | 5427 not_p = !not_p; |
428 | 5428 |
5429 p += unified_range_table_bytes_used (p); | |
5430 | |
458 | 5431 if (!not_p) goto fail; |
428 | 5432 |
5433 SET_REGS_MATCHED (); | |
867 | 5434 INC_IBYTEPTR_FMT (d, fmt); |
428 | 5435 break; |
5436 } | |
5437 #endif /* MULE */ | |
5438 | |
5439 | |
5440 /* The beginning of a group is represented by start_memory. | |
5441 The arguments are the register number in the next byte, and the | |
5442 number of groups inner to this one in the next. The text | |
5443 matched within the group is recorded (in the internal | |
5444 registers data structure) under the register number. */ | |
5445 case start_memory: | |
5041 | 5446 DEBUG_MATCH_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]); |
428 | 5447 |
5448 /* Find out if this group can match the empty string. */ | |
5449 p1 = p; /* To send to group_match_null_string_p. */ | |
5450 | |
5451 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE) | |
2639 | 5452 REG_MATCH_NULL_STRING_P (reg_info[*p]) |
5453 = group_match_null_string_p (&p1, pend, reg_info); | |
5454 | |
5041 | 5455 DEBUG_MATCH_PRINT2 (" group CAN%s match null string\n", |
2639 | 5456 REG_MATCH_NULL_STRING_P (reg_info[*p]) ? "NOT" : ""); |
428 | 5457 |
5458 /* Save the position in the string where we were the last time | |
5459 we were at this open-group operator in case the group is | |
5460 operated upon by a repetition operator, e.g., with `(a*)*b' | |
5461 against `ab'; then we want to ignore where we are now in | |
5462 the string in case this attempt to match fails. */ | |
5463 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p]) | |
5464 ? REG_UNSET (regstart[*p]) ? d : regstart[*p] | |
5465 : regstart[*p]; | |
5041 | 5466 DEBUG_MATCH_PRINT2 (" old_regstart: %d\n", |
428 | 5467 POINTER_TO_OFFSET (old_regstart[*p])); |
5468 | |
5469 regstart[*p] = d; | |
5041 | 5470 DEBUG_MATCH_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p])); |
428 | 5471 |
5472 IS_ACTIVE (reg_info[*p]) = 1; | |
5473 MATCHED_SOMETHING (reg_info[*p]) = 0; | |
5474 | |
5475 /* Clear this whenever we change the register activity status. */ | |
5476 set_regs_matched_done = 0; | |
5477 | |
5478 /* This is the new highest active register. */ | |
5479 highest_active_reg = *p; | |
5480 | |
5481 /* If nothing was active before, this is the new lowest active | |
5482 register. */ | |
5483 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG) | |
5484 lowest_active_reg = *p; | |
5485 | |
5486 /* Move past the register number and inner group count. */ | |
5487 p += 2; | |
5488 just_past_start_mem = p; | |
5489 | |
5490 break; | |
5491 | |
5492 | |
5493 /* The stop_memory opcode represents the end of a group. Its | |
5494 arguments are the same as start_memory's: the register | |
5495 number, and the number of inner groups. */ | |
5496 case stop_memory: | |
5041 | 5497 DEBUG_MATCH_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]); |
428 | 5498 |
5499 /* We need to save the string position the last time we were at | |
5500 this close-group operator in case the group is operated | |
5501 upon by a repetition operator, e.g., with `((a*)*(b*)*)*' | |
5502 against `aba'; then we want to ignore where we are now in | |
5503 the string in case this attempt to match fails. */ | |
5504 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p]) | |
5505 ? REG_UNSET (regend[*p]) ? d : regend[*p] | |
5506 : regend[*p]; | |
5041 | 5507 DEBUG_MATCH_PRINT2 (" old_regend: %d\n", |
428 | 5508 POINTER_TO_OFFSET (old_regend[*p])); |
5509 | |
5510 regend[*p] = d; | |
5041 | 5511 DEBUG_MATCH_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p])); |
428 | 5512 |
5513 /* This register isn't active anymore. */ | |
5514 IS_ACTIVE (reg_info[*p]) = 0; | |
5515 | |
5516 /* Clear this whenever we change the register activity status. */ | |
5517 set_regs_matched_done = 0; | |
5518 | |
5519 /* If this was the only register active, nothing is active | |
5520 anymore. */ | |
5521 if (lowest_active_reg == highest_active_reg) | |
5522 { | |
5523 lowest_active_reg = NO_LOWEST_ACTIVE_REG; | |
5524 highest_active_reg = NO_HIGHEST_ACTIVE_REG; | |
5525 } | |
5526 else | |
5527 { /* We must scan for the new highest active register, since | |
5528 it isn't necessarily one less than now: consider | |
5529 (a(b)c(d(e)f)g). When group 3 ends, after the f), the | |
5530 new highest active register is 1. */ | |
5531 unsigned char r = *p - 1; | |
5532 while (r > 0 && !IS_ACTIVE (reg_info[r])) | |
5533 r--; | |
5534 | |
5535 /* If we end up at register zero, that means that we saved | |
5536 the registers as the result of an `on_failure_jump', not | |
5537 a `start_memory', and we jumped to past the innermost | |
5538 `stop_memory'. For example, in ((.)*) we save | |
5539 registers 1 and 2 as a result of the *, but when we pop | |
5540 back to the second ), we are at the stop_memory 1. | |
5541 Thus, nothing is active. */ | |
5542 if (r == 0) | |
5543 { | |
5544 lowest_active_reg = NO_LOWEST_ACTIVE_REG; | |
5545 highest_active_reg = NO_HIGHEST_ACTIVE_REG; | |
5546 } | |
5547 else | |
5548 { | |
5549 highest_active_reg = r; | |
5550 | |
5551 /* 98/9/21 jhod: We've also gotta set lowest_active_reg, don't we? */ | |
5552 r = 1; | |
5553 while (r < highest_active_reg && !IS_ACTIVE(reg_info[r])) | |
5554 r++; | |
5555 lowest_active_reg = r; | |
5556 } | |
5557 } | |
5558 | |
5559 /* If just failed to match something this time around with a | |
5560 group that's operated on by a repetition operator, try to | |
5561 force exit from the ``loop'', and restore the register | |
5562 information for this group that we had before trying this | |
5563 last match. */ | |
5564 if ((!MATCHED_SOMETHING (reg_info[*p]) | |
5565 || just_past_start_mem == p - 1) | |
5566 && (p + 2) < pend) | |
5567 { | |
460 | 5568 re_bool is_a_jump_n = false; |
428 | 5569 |
5570 p1 = p + 2; | |
5571 mcnt = 0; | |
5572 switch ((re_opcode_t) *p1++) | |
5573 { | |
5574 case jump_n: | |
5575 is_a_jump_n = true; | |
5576 case pop_failure_jump: | |
5577 case maybe_pop_jump: | |
5578 case jump: | |
5579 case dummy_failure_jump: | |
5580 EXTRACT_NUMBER_AND_INCR (mcnt, p1); | |
5581 if (is_a_jump_n) | |
5582 p1 += 2; | |
5583 break; | |
5584 | |
5585 default: | |
5586 /* do nothing */ ; | |
5587 } | |
5588 p1 += mcnt; | |
5589 | |
5590 /* If the next operation is a jump backwards in the pattern | |
5591 to an on_failure_jump right before the start_memory | |
5592 corresponding to this stop_memory, exit from the loop | |
5593 by forcing a failure after pushing on the stack the | |
5594 on_failure_jump's jump in the pattern, and d. */ | |
5595 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump | |
5596 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p) | |
5597 { | |
5598 /* If this group ever matched anything, then restore | |
5599 what its registers were before trying this last | |
5600 failed match, e.g., with `(a*)*b' against `ab' for | |
5601 regstart[1], and, e.g., with `((a*)*(b*)*)*' | |
5602 against `aba' for regend[3]. | |
5603 | |
5604 Also restore the registers for inner groups for, | |
5605 e.g., `((a*)(b*))*' against `aba' (register 3 would | |
5606 otherwise get trashed). */ | |
5607 | |
5608 if (EVER_MATCHED_SOMETHING (reg_info[*p])) | |
5609 { | |
647 | 5610 int r; |
428 | 5611 |
5612 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0; | |
5613 | |
5614 /* Restore this and inner groups' (if any) registers. */ | |
5615 for (r = *p; r < *p + *(p + 1); r++) | |
5616 { | |
5617 regstart[r] = old_regstart[r]; | |
5618 | |
5619 /* xx why this test? */ | |
5620 if (old_regend[r] >= regstart[r]) | |
5621 regend[r] = old_regend[r]; | |
5622 } | |
5623 } | |
5624 p1++; | |
5625 EXTRACT_NUMBER_AND_INCR (mcnt, p1); | |
5626 PUSH_FAILURE_POINT (p1 + mcnt, d, -2); | |
5627 | |
5628 goto fail; | |
5629 } | |
5630 } | |
5631 | |
5632 /* Move past the register number and the inner group count. */ | |
5633 p += 2; | |
5634 break; | |
5635 | |
5636 | |
5637 /* \<digit> has been turned into a `duplicate' command which is | |
502 | 5638 followed by the numeric value of <digit> as the register number. |
5639 (Already passed through external-to-internal-register mapping, | |
5640 so it refers to the actual group number, not the non-shy-only | |
5641 numbering used in the external world.) */ | |
428 | 5642 case duplicate: |
5643 { | |
446 | 5644 REGISTER re_char *d2, *dend2; |
502 | 5645 /* Get which register to match against. */ |
5646 int regno = *p++; | |
5041 | 5647 DEBUG_MATCH_PRINT2 ("EXECUTING duplicate %d.\n", regno); |
428 | 5648 |
5649 /* Can't back reference a group which we've never matched. */ | |
5650 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno])) | |
5651 goto fail; | |
5652 | |
5653 /* Where in input to try to start matching. */ | |
5654 d2 = regstart[regno]; | |
5655 | |
5656 /* Where to stop matching; if both the place to start and | |
5657 the place to stop matching are in the same string, then | |
5658 set to the place to stop, otherwise, for now have to use | |
5659 the end of the first string. */ | |
5660 | |
5661 dend2 = ((FIRST_STRING_P (regstart[regno]) | |
5662 == FIRST_STRING_P (regend[regno])) | |
5663 ? regend[regno] : end_match_1); | |
5664 for (;;) | |
5665 { | |
5666 /* If necessary, advance to next segment in register | |
5667 contents. */ | |
5668 while (d2 == dend2) | |
5669 { | |
5670 if (dend2 == end_match_2) break; | |
5671 if (dend2 == regend[regno]) break; | |
5672 | |
5673 /* End of string1 => advance to string2. */ | |
5674 d2 = string2; | |
5675 dend2 = regend[regno]; | |
5676 } | |
5677 /* At end of register contents => success */ | |
5678 if (d2 == dend2) break; | |
5679 | |
5680 /* If necessary, advance to next segment in data. */ | |
450 | 5681 REGEX_PREFETCH (); |
428 | 5682 |
5683 /* How many characters left in this segment to match. */ | |
5684 mcnt = dend - d; | |
5685 | |
5686 /* Want how many consecutive characters we can match in | |
5687 one shot, so, if necessary, adjust the count. */ | |
5688 if (mcnt > dend2 - d2) | |
5689 mcnt = dend2 - d2; | |
5690 | |
5691 /* Compare that many; failure if mismatch, else move | |
5692 past them. */ | |
446 | 5693 if (TRANSLATE_P (translate) |
826 | 5694 ? bcmp_translate (d, d2, mcnt, translate |
5695 #ifdef emacs | |
5696 , fmt, lispobj | |
5697 #endif | |
5698 ) | |
428 | 5699 : memcmp (d, d2, mcnt)) |
5700 goto fail; | |
5701 d += mcnt, d2 += mcnt; | |
5702 | |
5703 /* Do this because we've match some characters. */ | |
5704 SET_REGS_MATCHED (); | |
5705 } | |
5706 } | |
5707 break; | |
5708 | |
5709 | |
5710 /* begline matches the empty string at the beginning of the string | |
5711 (unless `not_bol' is set in `bufp'), and, if | |
5712 `newline_anchor' is set, after newlines. */ | |
5713 case begline: | |
5041 | 5714 DEBUG_MATCH_PRINT1 ("EXECUTING begline.\n"); |
428 | 5715 |
5716 if (AT_STRINGS_BEG (d)) | |
5717 { | |
5718 if (!bufp->not_bol) break; | |
5719 } | |
826 | 5720 else |
5721 { | |
5722 re_char *d2 = d; | |
867 | 5723 DEC_IBYTEPTR (d2); |
5724 if (itext_ichar_ascii_fmt (d2, fmt, lispobj) == '\n' && | |
826 | 5725 bufp->newline_anchor) |
5726 break; | |
5727 } | |
428 | 5728 /* In all other cases, we fail. */ |
5729 goto fail; | |
5730 | |
5731 | |
5732 /* endline is the dual of begline. */ | |
5733 case endline: | |
5041 | 5734 DEBUG_MATCH_PRINT1 ("EXECUTING endline.\n"); |
428 | 5735 |
5736 if (AT_STRINGS_END (d)) | |
5737 { | |
5738 if (!bufp->not_eol) break; | |
5739 } | |
5740 | |
5741 /* We have to ``prefetch'' the next character. */ | |
826 | 5742 else if ((d == end1 ? |
867 | 5743 itext_ichar_ascii_fmt (string2, fmt, lispobj) : |
5744 itext_ichar_ascii_fmt (d, fmt, lispobj)) == '\n' | |
428 | 5745 && bufp->newline_anchor) |
5746 { | |
5747 break; | |
5748 } | |
5749 goto fail; | |
5750 | |
5751 | |
5752 /* Match at the very beginning of the data. */ | |
5753 case begbuf: | |
5041 | 5754 DEBUG_MATCH_PRINT1 ("EXECUTING begbuf.\n"); |
428 | 5755 if (AT_STRINGS_BEG (d)) |
5756 break; | |
5757 goto fail; | |
5758 | |
5759 | |
5760 /* Match at the very end of the data. */ | |
5761 case endbuf: | |
5041 | 5762 DEBUG_MATCH_PRINT1 ("EXECUTING endbuf.\n"); |
428 | 5763 if (AT_STRINGS_END (d)) |
5764 break; | |
5765 goto fail; | |
5766 | |
5767 | |
5768 /* on_failure_keep_string_jump is used to optimize `.*\n'. It | |
5769 pushes NULL as the value for the string on the stack. Then | |
5770 `pop_failure_point' will keep the current value for the | |
5771 string, instead of restoring it. To see why, consider | |
5772 matching `foo\nbar' against `.*\n'. The .* matches the foo; | |
5773 then the . fails against the \n. But the next thing we want | |
5774 to do is match the \n against the \n; if we restored the | |
5775 string value, we would be back at the foo. | |
5776 | |
5777 Because this is used only in specific cases, we don't need to | |
5778 check all the things that `on_failure_jump' does, to make | |
5779 sure the right things get saved on the stack. Hence we don't | |
5780 share its code. The only reason to push anything on the | |
5781 stack at all is that otherwise we would have to change | |
5782 `anychar's code to do something besides goto fail in this | |
5783 case; that seems worse than this. */ | |
5784 case on_failure_keep_string_jump: | |
5041 | 5785 DEBUG_MATCH_PRINT1 ("EXECUTING on_failure_keep_string_jump"); |
428 | 5786 |
5787 EXTRACT_NUMBER_AND_INCR (mcnt, p); | |
5041 | 5788 DEBUG_MATCH_PRINT3 (" %d (to 0x%lx):\n", mcnt, (long) (p + mcnt)); |
428 | 5789 |
446 | 5790 PUSH_FAILURE_POINT (p + mcnt, (unsigned char *) 0, -2); |
428 | 5791 break; |
5792 | |
5793 | |
5794 /* Uses of on_failure_jump: | |
5795 | |
5796 Each alternative starts with an on_failure_jump that points | |
5797 to the beginning of the next alternative. Each alternative | |
5798 except the last ends with a jump that in effect jumps past | |
5799 the rest of the alternatives. (They really jump to the | |
5800 ending jump of the following alternative, because tensioning | |
5801 these jumps is a hassle.) | |
5802 | |
5803 Repeats start with an on_failure_jump that points past both | |
5804 the repetition text and either the following jump or | |
5805 pop_failure_jump back to this on_failure_jump. */ | |
5806 case on_failure_jump: | |
5807 on_failure: | |
5041 | 5808 DEBUG_MATCH_PRINT1 ("EXECUTING on_failure_jump"); |
428 | 5809 |
5810 EXTRACT_NUMBER_AND_INCR (mcnt, p); | |
5041 | 5811 DEBUG_MATCH_PRINT3 (" %d (to 0x%lx)", mcnt, (long) (p + mcnt)); |
428 | 5812 |
5813 /* If this on_failure_jump comes right before a group (i.e., | |
5814 the original * applied to a group), save the information | |
5815 for that group and all inner ones, so that if we fail back | |
5816 to this point, the group's information will be correct. | |
5817 For example, in \(a*\)*\1, we need the preceding group, | |
5818 and in \(\(a*\)b*\)\2, we need the inner group. */ | |
5819 | |
5820 /* We can't use `p' to check ahead because we push | |
5821 a failure point to `p + mcnt' after we do this. */ | |
5822 p1 = p; | |
5823 | |
5824 /* We need to skip no_op's before we look for the | |
5825 start_memory in case this on_failure_jump is happening as | |
5826 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1 | |
5827 against aba. */ | |
5828 while (p1 < pend && (re_opcode_t) *p1 == no_op) | |
5829 p1++; | |
5830 | |
5831 if (p1 < pend && (re_opcode_t) *p1 == start_memory) | |
5832 { | |
5833 /* We have a new highest active register now. This will | |
5834 get reset at the start_memory we are about to get to, | |
5835 but we will have saved all the registers relevant to | |
5836 this repetition op, as described above. */ | |
5837 highest_active_reg = *(p1 + 1) + *(p1 + 2); | |
5838 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG) | |
5839 lowest_active_reg = *(p1 + 1); | |
5840 } | |
5841 | |
5041 | 5842 DEBUG_MATCH_PRINT1 (":\n"); |
428 | 5843 PUSH_FAILURE_POINT (p + mcnt, d, -2); |
5844 break; | |
5845 | |
5846 | |
5847 /* A smart repeat ends with `maybe_pop_jump'. | |
5848 We change it to either `pop_failure_jump' or `jump'. */ | |
5849 case maybe_pop_jump: | |
5850 EXTRACT_NUMBER_AND_INCR (mcnt, p); | |
5041 | 5851 DEBUG_MATCH_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt); |
428 | 5852 { |
5853 REGISTER unsigned char *p2 = p; | |
5854 | |
5855 /* Compare the beginning of the repeat with what in the | |
5856 pattern follows its end. If we can establish that there | |
5857 is nothing that they would both match, i.e., that we | |
5858 would have to backtrack because of (as in, e.g., `a*a') | |
5859 then we can change to pop_failure_jump, because we'll | |
5860 never have to backtrack. | |
5861 | |
5862 This is not true in the case of alternatives: in | |
5863 `(a|ab)*' we do need to backtrack to the `ab' alternative | |
5864 (e.g., if the string was `ab'). But instead of trying to | |
5865 detect that here, the alternative has put on a dummy | |
5866 failure point which is what we will end up popping. */ | |
5867 | |
5868 /* Skip over open/close-group commands. | |
5869 If what follows this loop is a ...+ construct, | |
5870 look at what begins its body, since we will have to | |
5871 match at least one of that. */ | |
5872 while (1) | |
5873 { | |
5874 if (p2 + 2 < pend | |
5875 && ((re_opcode_t) *p2 == stop_memory | |
5876 || (re_opcode_t) *p2 == start_memory)) | |
5877 p2 += 3; | |
5878 else if (p2 + 6 < pend | |
5879 && (re_opcode_t) *p2 == dummy_failure_jump) | |
5880 p2 += 6; | |
5881 else | |
5882 break; | |
5883 } | |
5884 | |
5885 p1 = p + mcnt; | |
5886 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding | |
5887 to the `maybe_finalize_jump' of this case. Examine what | |
5888 follows. */ | |
5889 | |
5890 /* If we're at the end of the pattern, we can change. */ | |
5891 if (p2 == pend) | |
5892 { | |
5893 /* Consider what happens when matching ":\(.*\)" | |
5894 against ":/". I don't really understand this code | |
5895 yet. */ | |
5896 p[-3] = (unsigned char) pop_failure_jump; | |
5041 | 5897 DEBUG_MATCH_PRINT1 |
428 | 5898 (" End of pattern: change to `pop_failure_jump'.\n"); |
5899 } | |
5900 | |
5901 else if ((re_opcode_t) *p2 == exactn | |
5902 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline)) | |
5903 { | |
5904 REGISTER unsigned char c | |
5905 = *p2 == (unsigned char) endline ? '\n' : p2[2]; | |
5906 | |
5907 if ((re_opcode_t) p1[3] == exactn && p1[5] != c) | |
5908 { | |
5909 p[-3] = (unsigned char) pop_failure_jump; | |
5041 | 5910 DEBUG_MATCH_PRINT3 (" %c != %c => pop_failure_jump.\n", |
428 | 5911 c, p1[5]); |
5912 } | |
5913 | |
5914 else if ((re_opcode_t) p1[3] == charset | |
5915 || (re_opcode_t) p1[3] == charset_not) | |
5916 { | |
458 | 5917 int not_p = (re_opcode_t) p1[3] == charset_not; |
428 | 5918 |
5919 if (c < (unsigned char) (p1[4] * BYTEWIDTH) | |
5920 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH))) | |
458 | 5921 not_p = !not_p; |
5922 | |
5923 /* `not_p' is equal to 1 if c would match, which means | |
428 | 5924 that we can't change to pop_failure_jump. */ |
458 | 5925 if (!not_p) |
428 | 5926 { |
5927 p[-3] = (unsigned char) pop_failure_jump; | |
5041 | 5928 DEBUG_MATCH_PRINT1 (" No match => pop_failure_jump.\n"); |
428 | 5929 } |
5930 } | |
5931 } | |
5932 else if ((re_opcode_t) *p2 == charset) | |
5933 { | |
5934 #ifdef DEBUG | |
5935 REGISTER unsigned char c | |
5936 = *p2 == (unsigned char) endline ? '\n' : p2[2]; | |
5937 #endif | |
5938 | |
5939 if ((re_opcode_t) p1[3] == exactn | |
5940 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5] | |
5941 && (p2[2 + p1[5] / BYTEWIDTH] | |
5942 & (1 << (p1[5] % BYTEWIDTH))))) | |
5943 { | |
5944 p[-3] = (unsigned char) pop_failure_jump; | |
5041 | 5945 DEBUG_MATCH_PRINT3 (" %c != %c => pop_failure_jump.\n", |
428 | 5946 c, p1[5]); |
5947 } | |
5948 | |
5949 else if ((re_opcode_t) p1[3] == charset_not) | |
5950 { | |
5951 int idx; | |
5952 /* We win if the charset_not inside the loop | |
5953 lists every character listed in the charset after. */ | |
5954 for (idx = 0; idx < (int) p2[1]; idx++) | |
5955 if (! (p2[2 + idx] == 0 | |
5956 || (idx < (int) p1[4] | |
5957 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0)))) | |
5958 break; | |
5959 | |
5960 if (idx == p2[1]) | |
5961 { | |
5962 p[-3] = (unsigned char) pop_failure_jump; | |
5041 | 5963 DEBUG_MATCH_PRINT1 (" No match => pop_failure_jump.\n"); |
428 | 5964 } |
5965 } | |
5966 else if ((re_opcode_t) p1[3] == charset) | |
5967 { | |
5968 int idx; | |
5969 /* We win if the charset inside the loop | |
5970 has no overlap with the one after the loop. */ | |
5971 for (idx = 0; | |
5972 idx < (int) p2[1] && idx < (int) p1[4]; | |
5973 idx++) | |
5974 if ((p2[2 + idx] & p1[5 + idx]) != 0) | |
5975 break; | |
5976 | |
5977 if (idx == p2[1] || idx == p1[4]) | |
5978 { | |
5979 p[-3] = (unsigned char) pop_failure_jump; | |
5041 | 5980 DEBUG_MATCH_PRINT1 (" No match => pop_failure_jump.\n"); |
428 | 5981 } |
5982 } | |
5983 } | |
5984 } | |
5985 p -= 2; /* Point at relative address again. */ | |
5986 if ((re_opcode_t) p[-1] != pop_failure_jump) | |
5987 { | |
5988 p[-1] = (unsigned char) jump; | |
5041 | 5989 DEBUG_MATCH_PRINT1 (" Match => jump.\n"); |
428 | 5990 goto unconditional_jump; |
5991 } | |
5992 /* Note fall through. */ | |
5993 | |
5994 | |
5995 /* The end of a simple repeat has a pop_failure_jump back to | |
5996 its matching on_failure_jump, where the latter will push a | |
5997 failure point. The pop_failure_jump takes off failure | |
5998 points put on by this pop_failure_jump's matching | |
5999 on_failure_jump; we got through the pattern to here from the | |
6000 matching on_failure_jump, so didn't fail. */ | |
6001 case pop_failure_jump: | |
6002 { | |
6003 /* We need to pass separate storage for the lowest and | |
6004 highest registers, even though we don't care about the | |
6005 actual values. Otherwise, we will restore only one | |
6006 register from the stack, since lowest will == highest in | |
6007 `pop_failure_point'. */ | |
647 | 6008 int dummy_low_reg, dummy_high_reg; |
428 | 6009 unsigned char *pdummy; |
446 | 6010 re_char *sdummy = NULL; |
428 | 6011 |
5041 | 6012 DEBUG_MATCH_PRINT1 ("EXECUTING pop_failure_jump.\n"); |
428 | 6013 POP_FAILURE_POINT (sdummy, pdummy, |
6014 dummy_low_reg, dummy_high_reg, | |
6015 reg_dummy, reg_dummy, reg_info_dummy); | |
6016 } | |
6017 /* Note fall through. */ | |
6018 | |
6019 | |
6020 /* Unconditionally jump (without popping any failure points). */ | |
6021 case jump: | |
6022 unconditional_jump: | |
6023 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */ | |
5041 | 6024 DEBUG_MATCH_PRINT2 ("EXECUTING jump %d ", mcnt); |
428 | 6025 p += mcnt; /* Do the jump. */ |
5041 | 6026 DEBUG_MATCH_PRINT2 ("(to 0x%lx).\n", (long) p); |
428 | 6027 break; |
6028 | |
6029 | |
6030 /* We need this opcode so we can detect where alternatives end | |
6031 in `group_match_null_string_p' et al. */ | |
6032 case jump_past_alt: | |
5041 | 6033 DEBUG_MATCH_PRINT1 ("EXECUTING jump_past_alt.\n"); |
428 | 6034 goto unconditional_jump; |
6035 | |
6036 | |
6037 /* Normally, the on_failure_jump pushes a failure point, which | |
6038 then gets popped at pop_failure_jump. We will end up at | |
6039 pop_failure_jump, also, and with a pattern of, say, `a+', we | |
6040 are skipping over the on_failure_jump, so we have to push | |
6041 something meaningless for pop_failure_jump to pop. */ | |
6042 case dummy_failure_jump: | |
5041 | 6043 DEBUG_MATCH_PRINT1 ("EXECUTING dummy_failure_jump.\n"); |
428 | 6044 /* It doesn't matter what we push for the string here. What |
6045 the code at `fail' tests is the value for the pattern. */ | |
446 | 6046 PUSH_FAILURE_POINT ((unsigned char *) 0, (unsigned char *) 0, -2); |
428 | 6047 goto unconditional_jump; |
6048 | |
6049 | |
6050 /* At the end of an alternative, we need to push a dummy failure | |
6051 point in case we are followed by a `pop_failure_jump', because | |
6052 we don't want the failure point for the alternative to be | |
6053 popped. For example, matching `(a|ab)*' against `aab' | |
6054 requires that we match the `ab' alternative. */ | |
6055 case push_dummy_failure: | |
5041 | 6056 DEBUG_MATCH_PRINT1 ("EXECUTING push_dummy_failure.\n"); |
428 | 6057 /* See comments just above at `dummy_failure_jump' about the |
6058 two zeroes. */ | |
446 | 6059 PUSH_FAILURE_POINT ((unsigned char *) 0, (unsigned char *) 0, -2); |
428 | 6060 break; |
6061 | |
6062 /* Have to succeed matching what follows at least n times. | |
6063 After that, handle like `on_failure_jump'. */ | |
6064 case succeed_n: | |
6065 EXTRACT_NUMBER (mcnt, p + 2); | |
5041 | 6066 DEBUG_MATCH_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt); |
428 | 6067 |
6068 assert (mcnt >= 0); | |
6069 /* Originally, this is how many times we HAVE to succeed. */ | |
6070 if (mcnt > 0) | |
6071 { | |
6072 mcnt--; | |
6073 p += 2; | |
6074 STORE_NUMBER_AND_INCR (p, mcnt); | |
5041 | 6075 DEBUG_MATCH_PRINT3 (" Setting 0x%lx to %d.\n", (long) p, mcnt); |
428 | 6076 } |
6077 else if (mcnt == 0) | |
6078 { | |
5041 | 6079 DEBUG_MATCH_PRINT2 (" Setting two bytes from 0x%lx to no_op.\n", |
428 | 6080 (long) (p+2)); |
6081 p[2] = (unsigned char) no_op; | |
6082 p[3] = (unsigned char) no_op; | |
6083 goto on_failure; | |
6084 } | |
6085 break; | |
6086 | |
6087 case jump_n: | |
6088 EXTRACT_NUMBER (mcnt, p + 2); | |
5041 | 6089 DEBUG_MATCH_PRINT2 ("EXECUTING jump_n %d.\n", mcnt); |
428 | 6090 |
6091 /* Originally, this is how many times we CAN jump. */ | |
6092 if (mcnt) | |
6093 { | |
6094 mcnt--; | |
6095 STORE_NUMBER (p + 2, mcnt); | |
6096 goto unconditional_jump; | |
6097 } | |
6098 /* If don't have to jump any more, skip over the rest of command. */ | |
6099 else | |
6100 p += 4; | |
6101 break; | |
6102 | |
6103 case set_number_at: | |
6104 { | |
5041 | 6105 DEBUG_MATCH_PRINT1 ("EXECUTING set_number_at.\n"); |
428 | 6106 |
6107 EXTRACT_NUMBER_AND_INCR (mcnt, p); | |
6108 p1 = p + mcnt; | |
6109 EXTRACT_NUMBER_AND_INCR (mcnt, p); | |
5041 | 6110 DEBUG_MATCH_PRINT3 (" Setting 0x%lx to %d.\n", (long) p1, mcnt); |
428 | 6111 STORE_NUMBER (p1, mcnt); |
6112 break; | |
6113 } | |
6114 | |
6115 case wordbound: | |
5041 | 6116 DEBUG_MATCH_PRINT1 ("EXECUTING wordbound.\n"); |
428 | 6117 should_succeed = 1; |
6118 matchwordbound: | |
6119 { | |
6120 /* XEmacs change */ | |
1377 | 6121 /* Straightforward and (I hope) correct implementation. |
6122 Probably should be optimized by arranging to compute | |
1497 | 6123 charpos only once. */ |
1377 | 6124 /* emch1 is the character before d, syn1 is the syntax of |
6125 emch1, emch2 is the character at d, and syn2 is the | |
6126 syntax of emch2. */ | |
6127 Ichar emch1, emch2; | |
1468 | 6128 int syn1 = 0, |
6129 syn2 = 0; | |
1377 | 6130 re_char *d_before, *d_after; |
6131 int result, | |
6132 at_beg = AT_STRINGS_BEG (d), | |
6133 at_end = AT_STRINGS_END (d); | |
6134 #ifdef emacs | |
1497 | 6135 Charxpos charpos; |
1377 | 6136 #endif |
6137 | |
6138 if (at_beg && at_end) | |
6139 { | |
6140 result = 0; | |
6141 } | |
428 | 6142 else |
6143 { | |
1377 | 6144 if (!at_beg) |
6145 { | |
6146 d_before = POS_BEFORE_GAP_UNSAFE (d); | |
6147 DEC_IBYTEPTR_FMT (d_before, fmt); | |
6148 emch1 = itext_ichar_fmt (d_before, fmt, lispobj); | |
460 | 6149 #ifdef emacs |
1497 | 6150 charpos = offset_to_charxpos (lispobj, |
6151 PTR_TO_OFFSET (d)) - 1; | |
1377 | 6152 BEGIN_REGEX_MALLOC_OK (); |
1497 | 6153 UPDATE_SYNTAX_CACHE (scache, charpos); |
460 | 6154 #endif |
1377 | 6155 syn1 = SYNTAX_FROM_CACHE (scache, emch1); |
6156 END_REGEX_MALLOC_OK (); | |
6157 } | |
6158 if (!at_end) | |
6159 { | |
6160 d_after = POS_AFTER_GAP_UNSAFE (d); | |
6161 emch2 = itext_ichar_fmt (d_after, fmt, lispobj); | |
460 | 6162 #ifdef emacs |
1497 | 6163 charpos = offset_to_charxpos (lispobj, PTR_TO_OFFSET (d)); |
1377 | 6164 BEGIN_REGEX_MALLOC_OK (); |
1497 | 6165 UPDATE_SYNTAX_CACHE_FORWARD (scache, charpos); |
460 | 6166 #endif |
1377 | 6167 syn2 = SYNTAX_FROM_CACHE (scache, emch2); |
6168 END_REGEX_MALLOC_OK (); | |
6169 } | |
1333 | 6170 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS (); |
1377 | 6171 |
6172 if (at_beg) | |
6173 result = (syn2 == Sword); | |
6174 else if (at_end) | |
6175 result = (syn1 == Sword); | |
6176 else | |
6177 result = ((syn1 == Sword) != (syn2 == Sword)); | |
428 | 6178 } |
1377 | 6179 |
428 | 6180 if (result == should_succeed) |
6181 break; | |
6182 goto fail; | |
6183 } | |
6184 | |
6185 case notwordbound: | |
5041 | 6186 DEBUG_MATCH_PRINT1 ("EXECUTING notwordbound.\n"); |
428 | 6187 should_succeed = 0; |
6188 goto matchwordbound; | |
6189 | |
6190 case wordbeg: | |
5041 | 6191 DEBUG_MATCH_PRINT1 ("EXECUTING wordbeg.\n"); |
460 | 6192 if (AT_STRINGS_END (d)) |
6193 goto fail; | |
428 | 6194 { |
6195 /* XEmacs: this originally read: | |
6196 | |
6197 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1))) | |
6198 break; | |
6199 | |
6200 */ | |
460 | 6201 re_char *dtmp = POS_AFTER_GAP_UNSAFE (d); |
867 | 6202 Ichar emch = itext_ichar_fmt (dtmp, fmt, lispobj); |
1333 | 6203 int tempres; |
1347 | 6204 #ifdef emacs |
6205 Charxpos charpos = offset_to_charxpos (lispobj, PTR_TO_OFFSET (d)); | |
6206 #endif | |
1333 | 6207 BEGIN_REGEX_MALLOC_OK (); |
460 | 6208 #ifdef emacs |
826 | 6209 UPDATE_SYNTAX_CACHE (scache, charpos); |
460 | 6210 #endif |
1333 | 6211 tempres = (SYNTAX_FROM_CACHE (scache, emch) != Sword); |
6212 END_REGEX_MALLOC_OK (); | |
6213 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS (); | |
6214 if (tempres) | |
428 | 6215 goto fail; |
6216 if (AT_STRINGS_BEG (d)) | |
6217 break; | |
460 | 6218 dtmp = POS_BEFORE_GAP_UNSAFE (d); |
867 | 6219 DEC_IBYTEPTR_FMT (dtmp, fmt); |
6220 emch = itext_ichar_fmt (dtmp, fmt, lispobj); | |
1333 | 6221 BEGIN_REGEX_MALLOC_OK (); |
460 | 6222 #ifdef emacs |
826 | 6223 UPDATE_SYNTAX_CACHE_BACKWARD (scache, charpos - 1); |
460 | 6224 #endif |
1333 | 6225 tempres = (SYNTAX_FROM_CACHE (scache, emch) != Sword); |
6226 END_REGEX_MALLOC_OK (); | |
6227 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS (); | |
6228 if (tempres) | |
428 | 6229 break; |
6230 goto fail; | |
6231 } | |
6232 | |
6233 case wordend: | |
5041 | 6234 DEBUG_MATCH_PRINT1 ("EXECUTING wordend.\n"); |
460 | 6235 if (AT_STRINGS_BEG (d)) |
6236 goto fail; | |
428 | 6237 { |
6238 /* XEmacs: this originally read: | |
6239 | |
6240 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1) | |
6241 && (!WORDCHAR_P (d) || AT_STRINGS_END (d))) | |
6242 break; | |
6243 | |
6244 The or condition is incorrect (reversed). | |
6245 */ | |
460 | 6246 re_char *dtmp; |
867 | 6247 Ichar emch; |
1333 | 6248 int tempres; |
460 | 6249 #ifdef emacs |
826 | 6250 Charxpos charpos = offset_to_charxpos (lispobj, PTR_TO_OFFSET (d)); |
1347 | 6251 BEGIN_REGEX_MALLOC_OK (); |
826 | 6252 UPDATE_SYNTAX_CACHE (scache, charpos); |
1333 | 6253 END_REGEX_MALLOC_OK (); |
6254 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS (); | |
1347 | 6255 #endif |
460 | 6256 dtmp = POS_BEFORE_GAP_UNSAFE (d); |
867 | 6257 DEC_IBYTEPTR_FMT (dtmp, fmt); |
6258 emch = itext_ichar_fmt (dtmp, fmt, lispobj); | |
1333 | 6259 BEGIN_REGEX_MALLOC_OK (); |
6260 tempres = (SYNTAX_FROM_CACHE (scache, emch) != Sword); | |
6261 END_REGEX_MALLOC_OK (); | |
6262 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS (); | |
6263 if (tempres) | |
428 | 6264 goto fail; |
6265 if (AT_STRINGS_END (d)) | |
6266 break; | |
460 | 6267 dtmp = POS_AFTER_GAP_UNSAFE (d); |
867 | 6268 emch = itext_ichar_fmt (dtmp, fmt, lispobj); |
1333 | 6269 BEGIN_REGEX_MALLOC_OK (); |
460 | 6270 #ifdef emacs |
826 | 6271 UPDATE_SYNTAX_CACHE_FORWARD (scache, charpos + 1); |
460 | 6272 #endif |
1333 | 6273 tempres = (SYNTAX_FROM_CACHE (scache, emch) != Sword); |
6274 END_REGEX_MALLOC_OK (); | |
6275 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS (); | |
6276 if (tempres) | |
428 | 6277 break; |
6278 goto fail; | |
6279 } | |
6280 | |
6281 #ifdef emacs | |
6282 case before_dot: | |
5041 | 6283 DEBUG_MATCH_PRINT1 ("EXECUTING before_dot.\n"); |
826 | 6284 if (!BUFFERP (lispobj) |
6285 || (BUF_PTR_BYTE_POS (XBUFFER (lispobj), (unsigned char *) d) | |
6286 >= BUF_PT (XBUFFER (lispobj)))) | |
428 | 6287 goto fail; |
6288 break; | |
6289 | |
6290 case at_dot: | |
5041 | 6291 DEBUG_MATCH_PRINT1 ("EXECUTING at_dot.\n"); |
826 | 6292 if (!BUFFERP (lispobj) |
6293 || (BUF_PTR_BYTE_POS (XBUFFER (lispobj), (unsigned char *) d) | |
6294 != BUF_PT (XBUFFER (lispobj)))) | |
428 | 6295 goto fail; |
6296 break; | |
6297 | |
6298 case after_dot: | |
5041 | 6299 DEBUG_MATCH_PRINT1 ("EXECUTING after_dot.\n"); |
826 | 6300 if (!BUFFERP (lispobj) |
6301 || (BUF_PTR_BYTE_POS (XBUFFER (lispobj), (unsigned char *) d) | |
6302 <= BUF_PT (XBUFFER (lispobj)))) | |
428 | 6303 goto fail; |
6304 break; | |
6305 | |
6306 case syntaxspec: | |
5041 | 6307 DEBUG_MATCH_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt); |
428 | 6308 mcnt = *p++; |
6309 goto matchsyntax; | |
6310 | |
6311 case wordchar: | |
5041 | 6312 DEBUG_MATCH_PRINT1 ("EXECUTING Emacs wordchar.\n"); |
428 | 6313 mcnt = (int) Sword; |
6314 matchsyntax: | |
6315 should_succeed = 1; | |
6316 matchornotsyntax: | |
6317 { | |
6318 int matches; | |
867 | 6319 Ichar emch; |
428 | 6320 |
450 | 6321 REGEX_PREFETCH (); |
1333 | 6322 BEGIN_REGEX_MALLOC_OK (); |
826 | 6323 UPDATE_SYNTAX_CACHE |
6324 (scache, offset_to_charxpos (lispobj, PTR_TO_OFFSET (d))); | |
1333 | 6325 END_REGEX_MALLOC_OK (); |
6326 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS (); | |
826 | 6327 |
867 | 6328 emch = itext_ichar_fmt (d, fmt, lispobj); |
1333 | 6329 BEGIN_REGEX_MALLOC_OK (); |
826 | 6330 matches = (SYNTAX_FROM_CACHE (scache, emch) == |
6331 (enum syntaxcode) mcnt); | |
1333 | 6332 END_REGEX_MALLOC_OK (); |
6333 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS (); | |
867 | 6334 INC_IBYTEPTR_FMT (d, fmt); |
428 | 6335 if (matches != should_succeed) |
6336 goto fail; | |
6337 SET_REGS_MATCHED (); | |
6338 } | |
6339 break; | |
6340 | |
6341 case notsyntaxspec: | |
5041 | 6342 DEBUG_MATCH_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt); |
428 | 6343 mcnt = *p++; |
6344 goto matchnotsyntax; | |
6345 | |
6346 case notwordchar: | |
5041 | 6347 DEBUG_MATCH_PRINT1 ("EXECUTING Emacs notwordchar.\n"); |
428 | 6348 mcnt = (int) Sword; |
6349 matchnotsyntax: | |
6350 should_succeed = 0; | |
6351 goto matchornotsyntax; | |
6352 | |
6353 #ifdef MULE | |
6354 /* 97/2/17 jhod Mule category code patch */ | |
6355 case categoryspec: | |
6356 should_succeed = 1; | |
6357 matchornotcategory: | |
6358 { | |
867 | 6359 Ichar emch; |
428 | 6360 |
6361 mcnt = *p++; | |
450 | 6362 REGEX_PREFETCH (); |
867 | 6363 emch = itext_ichar_fmt (d, fmt, lispobj); |
6364 INC_IBYTEPTR_FMT (d, fmt); | |
826 | 6365 if (check_category_char (emch, BUFFER_CATEGORY_TABLE (lispbuf), |
6366 mcnt, should_succeed)) | |
428 | 6367 goto fail; |
6368 SET_REGS_MATCHED (); | |
6369 } | |
6370 break; | |
6371 | |
6372 case notcategoryspec: | |
6373 should_succeed = 0; | |
6374 goto matchornotcategory; | |
6375 /* end of category patch */ | |
6376 #endif /* MULE */ | |
6377 #else /* not emacs */ | |
6378 case wordchar: | |
5041 | 6379 DEBUG_MATCH_PRINT1 ("EXECUTING non-Emacs wordchar.\n"); |
450 | 6380 REGEX_PREFETCH (); |
826 | 6381 if (!WORDCHAR_P ((int) (*d))) |
428 | 6382 goto fail; |
6383 SET_REGS_MATCHED (); | |
6384 d++; | |
6385 break; | |
6386 | |
6387 case notwordchar: | |
5041 | 6388 DEBUG_MATCH_PRINT1 ("EXECUTING non-Emacs notwordchar.\n"); |
450 | 6389 REGEX_PREFETCH (); |
826 | 6390 if (!WORDCHAR_P ((int) (*d))) |
428 | 6391 goto fail; |
6392 SET_REGS_MATCHED (); | |
6393 d++; | |
6394 break; | |
446 | 6395 #endif /* emacs */ |
428 | 6396 |
6397 default: | |
2500 | 6398 ABORT (); |
428 | 6399 } |
6400 continue; /* Successfully executed one pattern command; keep going. */ | |
6401 | |
6402 | |
6403 /* We goto here if a matching operation fails. */ | |
6404 fail: | |
6405 if (!FAIL_STACK_EMPTY ()) | |
6406 { /* A restart point is known. Restore to that state. */ | |
5041 | 6407 DEBUG_MATCH_PRINT1 ("\nFAIL:\n"); |
428 | 6408 POP_FAILURE_POINT (d, p, |
6409 lowest_active_reg, highest_active_reg, | |
6410 regstart, regend, reg_info); | |
6411 | |
6412 /* If this failure point is a dummy, try the next one. */ | |
6413 if (!p) | |
6414 goto fail; | |
6415 | |
6416 /* If we failed to the end of the pattern, don't examine *p. */ | |
6417 assert (p <= pend); | |
6418 if (p < pend) | |
6419 { | |
460 | 6420 re_bool is_a_jump_n = false; |
428 | 6421 |
6422 /* If failed to a backwards jump that's part of a repetition | |
6423 loop, need to pop this failure point and use the next one. */ | |
6424 switch ((re_opcode_t) *p) | |
6425 { | |
6426 case jump_n: | |
6427 is_a_jump_n = true; | |
6428 case maybe_pop_jump: | |
6429 case pop_failure_jump: | |
6430 case jump: | |
6431 p1 = p + 1; | |
6432 EXTRACT_NUMBER_AND_INCR (mcnt, p1); | |
6433 p1 += mcnt; | |
6434 | |
6435 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n) | |
6436 || (!is_a_jump_n | |
6437 && (re_opcode_t) *p1 == on_failure_jump)) | |
6438 goto fail; | |
6439 break; | |
6440 default: | |
6441 /* do nothing */ ; | |
6442 } | |
6443 } | |
6444 | |
6445 if (d >= string1 && d <= end1) | |
6446 dend = end_match_1; | |
6447 } | |
6448 else | |
6449 break; /* Matching at this starting point really fails. */ | |
6450 } /* for (;;) */ | |
6451 | |
6452 if (best_regs_set) | |
6453 goto restore_best_regs; | |
6454 | |
6455 FREE_VARIABLES (); | |
6456 | |
6457 return -1; /* Failure to match. */ | |
1333 | 6458 } /* re_match_2_internal */ |
428 | 6459 |
6460 /* Subroutine definitions for re_match_2. */ | |
6461 | |
6462 | |
6463 /* We are passed P pointing to a register number after a start_memory. | |
6464 | |
6465 Return true if the pattern up to the corresponding stop_memory can | |
6466 match the empty string, and false otherwise. | |
6467 | |
6468 If we find the matching stop_memory, sets P to point to one past its number. | |
6469 Otherwise, sets P to an undefined byte less than or equal to END. | |
6470 | |
6471 We don't handle duplicates properly (yet). */ | |
6472 | |
460 | 6473 static re_bool |
428 | 6474 group_match_null_string_p (unsigned char **p, unsigned char *end, |
6475 register_info_type *reg_info) | |
6476 { | |
6477 int mcnt; | |
6478 /* Point to after the args to the start_memory. */ | |
6479 unsigned char *p1 = *p + 2; | |
6480 | |
6481 while (p1 < end) | |
6482 { | |
6483 /* Skip over opcodes that can match nothing, and return true or | |
6484 false, as appropriate, when we get to one that can't, or to the | |
6485 matching stop_memory. */ | |
6486 | |
6487 switch ((re_opcode_t) *p1) | |
6488 { | |
6489 /* Could be either a loop or a series of alternatives. */ | |
6490 case on_failure_jump: | |
6491 p1++; | |
6492 EXTRACT_NUMBER_AND_INCR (mcnt, p1); | |
6493 | |
6494 /* If the next operation is not a jump backwards in the | |
6495 pattern. */ | |
6496 | |
6497 if (mcnt >= 0) | |
6498 { | |
6499 /* Go through the on_failure_jumps of the alternatives, | |
6500 seeing if any of the alternatives cannot match nothing. | |
6501 The last alternative starts with only a jump, | |
6502 whereas the rest start with on_failure_jump and end | |
6503 with a jump, e.g., here is the pattern for `a|b|c': | |
6504 | |
6505 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6 | |
6506 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3 | |
6507 /exactn/1/c | |
6508 | |
6509 So, we have to first go through the first (n-1) | |
6510 alternatives and then deal with the last one separately. */ | |
6511 | |
6512 | |
6513 /* Deal with the first (n-1) alternatives, which start | |
6514 with an on_failure_jump (see above) that jumps to right | |
6515 past a jump_past_alt. */ | |
6516 | |
6517 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt) | |
6518 { | |
6519 /* `mcnt' holds how many bytes long the alternative | |
6520 is, including the ending `jump_past_alt' and | |
6521 its number. */ | |
6522 | |
6523 if (!alt_match_null_string_p (p1, p1 + mcnt - 3, | |
6524 reg_info)) | |
6525 return false; | |
6526 | |
6527 /* Move to right after this alternative, including the | |
6528 jump_past_alt. */ | |
6529 p1 += mcnt; | |
6530 | |
6531 /* Break if it's the beginning of an n-th alternative | |
6532 that doesn't begin with an on_failure_jump. */ | |
6533 if ((re_opcode_t) *p1 != on_failure_jump) | |
6534 break; | |
6535 | |
6536 /* Still have to check that it's not an n-th | |
6537 alternative that starts with an on_failure_jump. */ | |
6538 p1++; | |
6539 EXTRACT_NUMBER_AND_INCR (mcnt, p1); | |
6540 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt) | |
6541 { | |
6542 /* Get to the beginning of the n-th alternative. */ | |
6543 p1 -= 3; | |
6544 break; | |
6545 } | |
6546 } | |
6547 | |
6548 /* Deal with the last alternative: go back and get number | |
6549 of the `jump_past_alt' just before it. `mcnt' contains | |
6550 the length of the alternative. */ | |
6551 EXTRACT_NUMBER (mcnt, p1 - 2); | |
6552 | |
6553 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info)) | |
6554 return false; | |
6555 | |
6556 p1 += mcnt; /* Get past the n-th alternative. */ | |
6557 } /* if mcnt > 0 */ | |
6558 break; | |
6559 | |
6560 | |
6561 case stop_memory: | |
6562 assert (p1[1] == **p); | |
6563 *p = p1 + 2; | |
6564 return true; | |
6565 | |
6566 | |
6567 default: | |
6568 if (!common_op_match_null_string_p (&p1, end, reg_info)) | |
6569 return false; | |
6570 } | |
6571 } /* while p1 < end */ | |
6572 | |
6573 return false; | |
6574 } /* group_match_null_string_p */ | |
6575 | |
6576 | |
6577 /* Similar to group_match_null_string_p, but doesn't deal with alternatives: | |
6578 It expects P to be the first byte of a single alternative and END one | |
6579 byte past the last. The alternative can contain groups. */ | |
6580 | |
460 | 6581 static re_bool |
428 | 6582 alt_match_null_string_p (unsigned char *p, unsigned char *end, |
6583 register_info_type *reg_info) | |
6584 { | |
6585 int mcnt; | |
6586 unsigned char *p1 = p; | |
6587 | |
6588 while (p1 < end) | |
6589 { | |
6590 /* Skip over opcodes that can match nothing, and break when we get | |
6591 to one that can't. */ | |
6592 | |
6593 switch ((re_opcode_t) *p1) | |
6594 { | |
6595 /* It's a loop. */ | |
6596 case on_failure_jump: | |
6597 p1++; | |
6598 EXTRACT_NUMBER_AND_INCR (mcnt, p1); | |
6599 p1 += mcnt; | |
6600 break; | |
6601 | |
6602 default: | |
6603 if (!common_op_match_null_string_p (&p1, end, reg_info)) | |
6604 return false; | |
6605 } | |
6606 } /* while p1 < end */ | |
6607 | |
6608 return true; | |
6609 } /* alt_match_null_string_p */ | |
6610 | |
6611 | |
6612 /* Deals with the ops common to group_match_null_string_p and | |
6613 alt_match_null_string_p. | |
6614 | |
6615 Sets P to one after the op and its arguments, if any. */ | |
6616 | |
460 | 6617 static re_bool |
428 | 6618 common_op_match_null_string_p (unsigned char **p, unsigned char *end, |
6619 register_info_type *reg_info) | |
6620 { | |
6621 int mcnt; | |
460 | 6622 re_bool ret; |
428 | 6623 int reg_no; |
6624 unsigned char *p1 = *p; | |
6625 | |
6626 switch ((re_opcode_t) *p1++) | |
6627 { | |
6628 case no_op: | |
6629 case begline: | |
6630 case endline: | |
6631 case begbuf: | |
6632 case endbuf: | |
6633 case wordbeg: | |
6634 case wordend: | |
6635 case wordbound: | |
6636 case notwordbound: | |
6637 #ifdef emacs | |
6638 case before_dot: | |
6639 case at_dot: | |
6640 case after_dot: | |
6641 #endif | |
6642 break; | |
6643 | |
6644 case start_memory: | |
6645 reg_no = *p1; | |
6646 assert (reg_no > 0 && reg_no <= MAX_REGNUM); | |
6647 ret = group_match_null_string_p (&p1, end, reg_info); | |
6648 | |
6649 /* Have to set this here in case we're checking a group which | |
6650 contains a group and a back reference to it. */ | |
6651 | |
6652 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE) | |
6653 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret; | |
6654 | |
6655 if (!ret) | |
6656 return false; | |
6657 break; | |
6658 | |
6659 /* If this is an optimized succeed_n for zero times, make the jump. */ | |
6660 case jump: | |
6661 EXTRACT_NUMBER_AND_INCR (mcnt, p1); | |
6662 if (mcnt >= 0) | |
6663 p1 += mcnt; | |
6664 else | |
6665 return false; | |
6666 break; | |
6667 | |
6668 case succeed_n: | |
6669 /* Get to the number of times to succeed. */ | |
6670 p1 += 2; | |
6671 EXTRACT_NUMBER_AND_INCR (mcnt, p1); | |
6672 | |
6673 if (mcnt == 0) | |
6674 { | |
6675 p1 -= 4; | |
6676 EXTRACT_NUMBER_AND_INCR (mcnt, p1); | |
6677 p1 += mcnt; | |
6678 } | |
6679 else | |
6680 return false; | |
6681 break; | |
6682 | |
6683 case duplicate: | |
6684 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1])) | |
6685 return false; | |
6686 break; | |
6687 | |
6688 case set_number_at: | |
6689 p1 += 4; | |
6690 | |
6691 default: | |
6692 /* All other opcodes mean we cannot match the empty string. */ | |
6693 return false; | |
6694 } | |
6695 | |
6696 *p = p1; | |
6697 return true; | |
6698 } /* common_op_match_null_string_p */ | |
6699 | |
6700 | |
6701 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN | |
6702 bytes; nonzero otherwise. */ | |
6703 | |
6704 static int | |
446 | 6705 bcmp_translate (re_char *s1, re_char *s2, |
826 | 6706 REGISTER int len, RE_TRANSLATE_TYPE translate |
6707 #ifdef emacs | |
2333 | 6708 , Internal_Format USED_IF_MULE (fmt), |
6709 Lisp_Object USED_IF_MULE (lispobj) | |
826 | 6710 #endif |
6711 ) | |
428 | 6712 { |
826 | 6713 REGISTER re_char *p1 = s1, *p2 = s2; |
446 | 6714 #ifdef MULE |
826 | 6715 re_char *p1_end = s1 + len; |
6716 re_char *p2_end = s2 + len; | |
446 | 6717 |
6718 while (p1 != p1_end && p2 != p2_end) | |
6719 { | |
867 | 6720 Ichar p1_ch, p2_ch; |
6721 | |
6722 p1_ch = itext_ichar_fmt (p1, fmt, lispobj); | |
6723 p2_ch = itext_ichar_fmt (p2, fmt, lispobj); | |
826 | 6724 |
6725 if (RE_TRANSLATE_1 (p1_ch) | |
6726 != RE_TRANSLATE_1 (p2_ch)) | |
446 | 6727 return 1; |
867 | 6728 INC_IBYTEPTR_FMT (p1, fmt); |
6729 INC_IBYTEPTR_FMT (p2, fmt); | |
446 | 6730 } |
6731 #else /* not MULE */ | |
428 | 6732 while (len) |
6733 { | |
826 | 6734 if (RE_TRANSLATE_1 (*p1++) != RE_TRANSLATE_1 (*p2++)) return 1; |
428 | 6735 len--; |
6736 } | |
446 | 6737 #endif /* MULE */ |
428 | 6738 return 0; |
6739 } | |
6740 | |
6741 /* Entry points for GNU code. */ | |
6742 | |
6743 /* re_compile_pattern is the GNU regular expression compiler: it | |
6744 compiles PATTERN (of length SIZE) and puts the result in BUFP. | |
6745 Returns 0 if the pattern was valid, otherwise an error string. | |
6746 | |
6747 Assumes the `allocated' (and perhaps `buffer') and `translate' fields | |
6748 are set in BUFP on entry. | |
6749 | |
6750 We call regex_compile to do the actual compilation. */ | |
6751 | |
442 | 6752 const char * |
6753 re_compile_pattern (const char *pattern, int length, | |
428 | 6754 struct re_pattern_buffer *bufp) |
6755 { | |
6756 reg_errcode_t ret; | |
6757 | |
6758 /* GNU code is written to assume at least RE_NREGS registers will be set | |
6759 (and at least one extra will be -1). */ | |
6760 bufp->regs_allocated = REGS_UNALLOCATED; | |
6761 | |
6762 /* And GNU code determines whether or not to get register information | |
6763 by passing null for the REGS argument to re_match, etc., not by | |
6764 setting no_sub. */ | |
6765 bufp->no_sub = 0; | |
6766 | |
6767 /* Match anchors at newline. */ | |
6768 bufp->newline_anchor = 1; | |
6769 | |
826 | 6770 ret = regex_compile ((unsigned char *) pattern, length, re_syntax_options, |
6771 bufp); | |
428 | 6772 |
6773 if (!ret) | |
6774 return NULL; | |
6775 return gettext (re_error_msgid[(int) ret]); | |
6776 } | |
6777 | |
6778 /* Entry points compatible with 4.2 BSD regex library. We don't define | |
6779 them unless specifically requested. */ | |
6780 | |
6781 #ifdef _REGEX_RE_COMP | |
6782 | |
6783 /* BSD has one and only one pattern buffer. */ | |
6784 static struct re_pattern_buffer re_comp_buf; | |
6785 | |
6786 char * | |
442 | 6787 re_comp (const char *s) |
428 | 6788 { |
6789 reg_errcode_t ret; | |
6790 | |
6791 if (!s) | |
6792 { | |
6793 if (!re_comp_buf.buffer) | |
6794 return gettext ("No previous regular expression"); | |
6795 return 0; | |
6796 } | |
6797 | |
6798 if (!re_comp_buf.buffer) | |
6799 { | |
1333 | 6800 re_comp_buf.buffer = (unsigned char *) xmalloc (200); |
428 | 6801 if (re_comp_buf.buffer == NULL) |
6802 return gettext (re_error_msgid[(int) REG_ESPACE]); | |
6803 re_comp_buf.allocated = 200; | |
6804 | |
1333 | 6805 re_comp_buf.fastmap = (char *) xmalloc (1 << BYTEWIDTH); |
428 | 6806 if (re_comp_buf.fastmap == NULL) |
6807 return gettext (re_error_msgid[(int) REG_ESPACE]); | |
6808 } | |
6809 | |
6810 /* Since `re_exec' always passes NULL for the `regs' argument, we | |
6811 don't need to initialize the pattern buffer fields which affect it. */ | |
6812 | |
6813 /* Match anchors at newlines. */ | |
6814 re_comp_buf.newline_anchor = 1; | |
6815 | |
826 | 6816 ret = regex_compile ((unsigned char *)s, strlen (s), re_syntax_options, |
6817 &re_comp_buf); | |
428 | 6818 |
6819 if (!ret) | |
6820 return NULL; | |
6821 | |
442 | 6822 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */ |
428 | 6823 return (char *) gettext (re_error_msgid[(int) ret]); |
6824 } | |
6825 | |
6826 | |
6827 int | |
442 | 6828 re_exec (const char *s) |
428 | 6829 { |
442 | 6830 const int len = strlen (s); |
428 | 6831 return |
6832 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0); | |
6833 } | |
6834 #endif /* _REGEX_RE_COMP */ | |
6835 | |
6836 /* POSIX.2 functions. Don't define these for Emacs. */ | |
6837 | |
6838 #ifndef emacs | |
6839 | |
6840 /* regcomp takes a regular expression as a string and compiles it. | |
6841 | |
6842 PREG is a regex_t *. We do not expect any fields to be initialized, | |
6843 since POSIX says we shouldn't. Thus, we set | |
6844 | |
6845 `buffer' to the compiled pattern; | |
6846 `used' to the length of the compiled pattern; | |
6847 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the | |
6848 REG_EXTENDED bit in CFLAGS is set; otherwise, to | |
6849 RE_SYNTAX_POSIX_BASIC; | |
6850 `newline_anchor' to REG_NEWLINE being set in CFLAGS; | |
6851 `fastmap' and `fastmap_accurate' to zero; | |
6852 `re_nsub' to the number of subexpressions in PATTERN. | |
502 | 6853 (non-shy of course. POSIX probably doesn't know about |
6854 shy ones, and in any case they should be invisible.) | |
428 | 6855 |
6856 PATTERN is the address of the pattern string. | |
6857 | |
6858 CFLAGS is a series of bits which affect compilation. | |
6859 | |
6860 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we | |
6861 use POSIX basic syntax. | |
6862 | |
6863 If REG_NEWLINE is set, then . and [^...] don't match newline. | |
6864 Also, regexec will try a match beginning after every newline. | |
6865 | |
6866 If REG_ICASE is set, then we considers upper- and lowercase | |
6867 versions of letters to be equivalent when matching. | |
6868 | |
6869 If REG_NOSUB is set, then when PREG is passed to regexec, that | |
6870 routine will report only success or failure, and nothing about the | |
6871 registers. | |
6872 | |
6873 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for | |
6874 the return codes and their meanings.) */ | |
6875 | |
6876 int | |
442 | 6877 regcomp (regex_t *preg, const char *pattern, int cflags) |
428 | 6878 { |
6879 reg_errcode_t ret; | |
647 | 6880 unsigned int syntax |
428 | 6881 = (cflags & REG_EXTENDED) ? |
6882 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC; | |
6883 | |
6884 /* regex_compile will allocate the space for the compiled pattern. */ | |
6885 preg->buffer = 0; | |
6886 preg->allocated = 0; | |
6887 preg->used = 0; | |
6888 | |
6889 /* Don't bother to use a fastmap when searching. This simplifies the | |
6890 REG_NEWLINE case: if we used a fastmap, we'd have to put all the | |
6891 characters after newlines into the fastmap. This way, we just try | |
6892 every character. */ | |
6893 preg->fastmap = 0; | |
6894 | |
6895 if (cflags & REG_ICASE) | |
6896 { | |
647 | 6897 int i; |
428 | 6898 |
1333 | 6899 preg->translate = (char *) xmalloc (CHAR_SET_SIZE); |
428 | 6900 if (preg->translate == NULL) |
6901 return (int) REG_ESPACE; | |
6902 | |
6903 /* Map uppercase characters to corresponding lowercase ones. */ | |
6904 for (i = 0; i < CHAR_SET_SIZE; i++) | |
6905 preg->translate[i] = ISUPPER (i) ? tolower (i) : i; | |
6906 } | |
6907 else | |
6908 preg->translate = NULL; | |
6909 | |
6910 /* If REG_NEWLINE is set, newlines are treated differently. */ | |
6911 if (cflags & REG_NEWLINE) | |
6912 { /* REG_NEWLINE implies neither . nor [^...] match newline. */ | |
6913 syntax &= ~RE_DOT_NEWLINE; | |
6914 syntax |= RE_HAT_LISTS_NOT_NEWLINE; | |
6915 /* It also changes the matching behavior. */ | |
6916 preg->newline_anchor = 1; | |
6917 } | |
6918 else | |
6919 preg->newline_anchor = 0; | |
6920 | |
6921 preg->no_sub = !!(cflags & REG_NOSUB); | |
6922 | |
6923 /* POSIX says a null character in the pattern terminates it, so we | |
6924 can use strlen here in compiling the pattern. */ | |
446 | 6925 ret = regex_compile ((unsigned char *) pattern, strlen (pattern), syntax, preg); |
428 | 6926 |
6927 /* POSIX doesn't distinguish between an unmatched open-group and an | |
6928 unmatched close-group: both are REG_EPAREN. */ | |
6929 if (ret == REG_ERPAREN) ret = REG_EPAREN; | |
6930 | |
6931 return (int) ret; | |
6932 } | |
6933 | |
6934 | |
6935 /* regexec searches for a given pattern, specified by PREG, in the | |
6936 string STRING. | |
6937 | |
6938 If NMATCH is zero or REG_NOSUB was set in the cflags argument to | |
6939 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at | |
6940 least NMATCH elements, and we set them to the offsets of the | |
6941 corresponding matched substrings. | |
6942 | |
6943 EFLAGS specifies `execution flags' which affect matching: if | |
6944 REG_NOTBOL is set, then ^ does not match at the beginning of the | |
6945 string; if REG_NOTEOL is set, then $ does not match at the end. | |
6946 | |
6947 We return 0 if we find a match and REG_NOMATCH if not. */ | |
6948 | |
6949 int | |
442 | 6950 regexec (const regex_t *preg, const char *string, size_t nmatch, |
428 | 6951 regmatch_t pmatch[], int eflags) |
6952 { | |
6953 int ret; | |
6954 struct re_registers regs; | |
6955 regex_t private_preg; | |
6956 int len = strlen (string); | |
460 | 6957 re_bool want_reg_info = !preg->no_sub && nmatch > 0; |
428 | 6958 |
6959 private_preg = *preg; | |
6960 | |
6961 private_preg.not_bol = !!(eflags & REG_NOTBOL); | |
6962 private_preg.not_eol = !!(eflags & REG_NOTEOL); | |
6963 | |
6964 /* The user has told us exactly how many registers to return | |
6965 information about, via `nmatch'. We have to pass that on to the | |
6966 matching routines. */ | |
6967 private_preg.regs_allocated = REGS_FIXED; | |
6968 | |
6969 if (want_reg_info) | |
6970 { | |
647 | 6971 regs.num_regs = (int) nmatch; |
6972 regs.start = TALLOC ((int) nmatch, regoff_t); | |
6973 regs.end = TALLOC ((int) nmatch, regoff_t); | |
428 | 6974 if (regs.start == NULL || regs.end == NULL) |
6975 return (int) REG_NOMATCH; | |
6976 } | |
6977 | |
6978 /* Perform the searching operation. */ | |
6979 ret = re_search (&private_preg, string, len, | |
6980 /* start: */ 0, /* range: */ len, | |
6981 want_reg_info ? ®s : (struct re_registers *) 0); | |
6982 | |
6983 /* Copy the register information to the POSIX structure. */ | |
6984 if (want_reg_info) | |
6985 { | |
6986 if (ret >= 0) | |
6987 { | |
647 | 6988 int r; |
6989 | |
6990 for (r = 0; r < (int) nmatch; r++) | |
428 | 6991 { |
6992 pmatch[r].rm_so = regs.start[r]; | |
6993 pmatch[r].rm_eo = regs.end[r]; | |
6994 } | |
6995 } | |
6996 | |
6997 /* If we needed the temporary register info, free the space now. */ | |
4976
16112448d484
Rename xfree(FOO, TYPE) -> xfree(FOO)
Ben Wing <ben@xemacs.org>
parents:
4832
diff
changeset
|
6998 xfree (regs.start); |
16112448d484
Rename xfree(FOO, TYPE) -> xfree(FOO)
Ben Wing <ben@xemacs.org>
parents:
4832
diff
changeset
|
6999 xfree (regs.end); |
428 | 7000 } |
7001 | |
7002 /* We want zero return to mean success, unlike `re_search'. */ | |
7003 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH; | |
7004 } | |
7005 | |
7006 | |
7007 /* Returns a message corresponding to an error code, ERRCODE, returned | |
7008 from either regcomp or regexec. We don't use PREG here. */ | |
7009 | |
7010 size_t | |
2286 | 7011 regerror (int errcode, const regex_t *UNUSED (preg), char *errbuf, |
647 | 7012 size_t errbuf_size) |
428 | 7013 { |
442 | 7014 const char *msg; |
665 | 7015 Bytecount msg_size; |
428 | 7016 |
7017 if (errcode < 0 | |
647 | 7018 || errcode >= (int) (sizeof (re_error_msgid) / |
7019 sizeof (re_error_msgid[0]))) | |
428 | 7020 /* Only error codes returned by the rest of the code should be passed |
7021 to this routine. If we are given anything else, or if other regex | |
7022 code generates an invalid error code, then the program has a bug. | |
7023 Dump core so we can fix it. */ | |
2500 | 7024 ABORT (); |
428 | 7025 |
7026 msg = gettext (re_error_msgid[errcode]); | |
7027 | |
7028 msg_size = strlen (msg) + 1; /* Includes the null. */ | |
7029 | |
7030 if (errbuf_size != 0) | |
7031 { | |
665 | 7032 if (msg_size > (Bytecount) errbuf_size) |
428 | 7033 { |
7034 strncpy (errbuf, msg, errbuf_size - 1); | |
7035 errbuf[errbuf_size - 1] = 0; | |
7036 } | |
7037 else | |
7038 strcpy (errbuf, msg); | |
7039 } | |
7040 | |
647 | 7041 return (size_t) msg_size; |
428 | 7042 } |
7043 | |
7044 | |
7045 /* Free dynamically allocated space used by PREG. */ | |
7046 | |
7047 void | |
7048 regfree (regex_t *preg) | |
7049 { | |
7050 if (preg->buffer != NULL) | |
4976
16112448d484
Rename xfree(FOO, TYPE) -> xfree(FOO)
Ben Wing <ben@xemacs.org>
parents:
4832
diff
changeset
|
7051 xfree (preg->buffer); |
428 | 7052 preg->buffer = NULL; |
7053 | |
7054 preg->allocated = 0; | |
7055 preg->used = 0; | |
7056 | |
7057 if (preg->fastmap != NULL) | |
4976
16112448d484
Rename xfree(FOO, TYPE) -> xfree(FOO)
Ben Wing <ben@xemacs.org>
parents:
4832
diff
changeset
|
7058 xfree (preg->fastmap); |
428 | 7059 preg->fastmap = NULL; |
7060 preg->fastmap_accurate = 0; | |
7061 | |
7062 if (preg->translate != NULL) | |
4976
16112448d484
Rename xfree(FOO, TYPE) -> xfree(FOO)
Ben Wing <ben@xemacs.org>
parents:
4832
diff
changeset
|
7063 xfree (preg->translate); |
428 | 7064 preg->translate = NULL; |
7065 } | |
7066 | |
7067 #endif /* not emacs */ | |
7068 |