Mercurial > hg > xemacs-beta
annotate src/dumper.c @ 5534:68db75473fc6
Merge.
author | Mats Lidell <mats.lidell@cag.se> |
---|---|
date | Sun, 07 Aug 2011 23:22:59 +0200 |
parents | eb4eeec50f25 |
children | 25325da1d1a8 |
rev | line source |
---|---|
442 | 1 /* Portable data dumper for XEmacs. |
2551 | 2 Copyright (C) 1999-2000,2004 Olivier Galibert |
458 | 3 Copyright (C) 2001 Martin Buchholz |
5059
c8f90d61dcf3
fix memory usage stats to include pdumped objects
Ben Wing <ben@xemacs.org>
parents:
4976
diff
changeset
|
4 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2010 Ben Wing. |
442 | 5 |
6 This file is part of XEmacs. | |
7 | |
5402
308d34e9f07d
Changed bulk of GPLv2 or later files identified by script
Mats Lidell <matsl@xemacs.org>
parents:
5169
diff
changeset
|
8 XEmacs is free software: you can redistribute it and/or modify it |
442 | 9 under the terms of the GNU General Public License as published by the |
5402
308d34e9f07d
Changed bulk of GPLv2 or later files identified by script
Mats Lidell <matsl@xemacs.org>
parents:
5169
diff
changeset
|
10 Free Software Foundation, either version 3 of the License, or (at your |
308d34e9f07d
Changed bulk of GPLv2 or later files identified by script
Mats Lidell <matsl@xemacs.org>
parents:
5169
diff
changeset
|
11 option) any later version. |
442 | 12 |
13 XEmacs is distributed in the hope that it will be useful, but WITHOUT | |
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |
16 for more details. | |
17 | |
18 You should have received a copy of the GNU General Public License | |
5402
308d34e9f07d
Changed bulk of GPLv2 or later files identified by script
Mats Lidell <matsl@xemacs.org>
parents:
5169
diff
changeset
|
19 along with XEmacs. If not, see <http://www.gnu.org/licenses/>. */ |
442 | 20 |
21 /* Synched up with: Not in FSF. */ | |
22 | |
2367 | 23 /* This file has been Mule-ized, Ben Wing, 10-10-04. */ |
24 | |
25 /* #### Put in much more assertions. Whenever we store fixups in the | |
26 process or writing out data, make sure the fixups (offsets) point to the | |
27 beginning of an object, i.e. are registered. Same whenever we read in | |
28 -- verify offsets as registered, and when compute a fixup, verify the | |
29 pointer is pointing within the pdump area. registered and check within | |
30 pdump area. For specific types of pointers (e.g. to Lisp_Objects), | |
31 check if they're pointing to the right kinds of types. It should be | |
32 possible to check that a putative Lisp_Object is really a Lisp_Object | |
33 since it will follow a strict format in its header. */ | |
800 | 34 |
442 | 35 #include <config.h> |
36 #include "lisp.h" | |
37 | |
38 #include "specifier.h" | |
771 | 39 #include "file-coding.h" |
442 | 40 #include "elhash.h" |
1204 | 41 #include "lstream.h" |
442 | 42 #include "sysfile.h" |
43 #include "console-stream.h" | |
44 | |
45 #ifdef WIN32_NATIVE | |
771 | 46 #include "syswindows.h" |
442 | 47 #else |
48 #ifdef HAVE_MMAP | |
49 #include <sys/mman.h> | |
50 #endif | |
2720 | 51 #ifdef DUMP_IN_EXEC |
2015 | 52 #include "dump-data.h" |
442 | 53 #endif |
2720 | 54 #endif |
442 | 55 |
56 typedef struct | |
57 { | |
2367 | 58 const void *blockaddr; |
665 | 59 Bytecount size; |
1204 | 60 const struct memory_description *desc; |
61 } pdump_root_block; | |
452 | 62 |
63 typedef struct | |
64 { | |
1204 | 65 Dynarr_declare (pdump_root_block); |
66 } pdump_root_block_dynarr; | |
452 | 67 |
68 typedef struct | |
69 { | |
70 void **ptraddress; | |
1204 | 71 const struct sized_memory_description *desc; |
2367 | 72 } pdump_root_block_ptr; |
452 | 73 |
74 typedef struct | |
75 { | |
2367 | 76 Dynarr_declare (pdump_root_block_ptr); |
77 } pdump_root_block_ptr_dynarr; | |
452 | 78 |
458 | 79 typedef struct |
80 { | |
2551 | 81 const void *object; |
82 void *data; | |
83 Bytecount size; | |
84 EMACS_INT offset; | |
85 EMACS_INT dest_offset; | |
86 EMACS_INT save_offset; | |
87 const struct opaque_convert_functions *fcts; | |
88 } pdump_cv_data_info; | |
89 | |
90 typedef struct | |
91 { | |
92 Dynarr_declare (pdump_cv_data_info); | |
93 } pdump_cv_data_info_dynarr; | |
94 | |
95 typedef struct | |
96 { | |
97 EMACS_INT dest_offset; | |
98 EMACS_INT save_offset; | |
99 Bytecount size; | |
100 } pdump_cv_data_dump_info; | |
101 | |
102 typedef struct | |
103 { | |
104 const void *object; | |
105 void *data; | |
106 Bytecount size; | |
107 EMACS_INT index; | |
108 EMACS_INT save_offset; | |
109 const struct opaque_convert_functions *fcts; | |
110 } pdump_cv_ptr_info; | |
111 | |
112 typedef struct | |
113 { | |
114 Dynarr_declare (pdump_cv_ptr_info); | |
115 } pdump_cv_ptr_info_dynarr; | |
116 | |
117 typedef struct | |
118 { | |
119 EMACS_INT save_offset; | |
120 Bytecount size; | |
121 } pdump_cv_ptr_dump_info; | |
122 | |
123 typedef struct | |
124 { | |
125 EMACS_INT save_offset; | |
126 Bytecount size; | |
127 void *adr; | |
128 } pdump_cv_ptr_load_info; | |
129 | |
130 typedef struct | |
131 { | |
458 | 132 Lisp_Object *address; |
133 Lisp_Object value; | |
134 } pdump_static_Lisp_Object; | |
135 | |
136 typedef struct | |
137 { | |
2367 | 138 Rawbyte **address; /* Rawbyte * for ease of doing relocation */ |
139 Rawbyte * value; | |
458 | 140 } pdump_static_pointer; |
141 | |
1204 | 142 static pdump_root_block_dynarr *pdump_root_blocks; |
2367 | 143 static pdump_root_block_ptr_dynarr *pdump_root_block_ptrs; |
1204 | 144 static Lisp_Object_ptr_dynarr *pdump_root_lisp_objects; |
452 | 145 static Lisp_Object_ptr_dynarr *pdump_weak_object_chains; |
2551 | 146 static pdump_cv_data_info_dynarr *pdump_cv_data; |
147 static pdump_cv_ptr_info_dynarr *pdump_cv_ptr; | |
452 | 148 |
2367 | 149 /* Mark SIZE bytes at non-heap address BLOCKADDR for dumping, described |
150 by DESC. Called by outside callers during XEmacs initialization. */ | |
151 | |
452 | 152 void |
2367 | 153 dump_add_root_block (const void *blockaddr, Bytecount size, |
1204 | 154 const struct memory_description *desc) |
452 | 155 { |
1204 | 156 pdump_root_block info; |
2367 | 157 info.blockaddr = blockaddr; |
452 | 158 info.size = size; |
1204 | 159 info.desc = desc; |
160 if (pdump_root_blocks == NULL) | |
161 pdump_root_blocks = Dynarr_new (pdump_root_block); | |
162 Dynarr_add (pdump_root_blocks, info); | |
452 | 163 } |
164 | |
2367 | 165 /* Mark the block described by DESC and pointed to by the pointer at |
166 non-heap address PTRADDRESS for dumping. | |
167 All the objects reachable from this pointer will also be dumped. | |
168 Called by outside callers during XEmacs initialization. */ | |
452 | 169 void |
2367 | 170 dump_add_root_block_ptr (void *ptraddress, |
171 const struct sized_memory_description *desc) | |
452 | 172 { |
2367 | 173 pdump_root_block_ptr info; |
452 | 174 info.ptraddress = (void **) ptraddress; |
175 info.desc = desc; | |
2367 | 176 if (pdump_root_block_ptrs == NULL) |
177 pdump_root_block_ptrs = Dynarr_new (pdump_root_block_ptr); | |
178 Dynarr_add (pdump_root_block_ptrs, info); | |
452 | 179 } |
180 | |
181 /* Mark the Lisp_Object at non-heap address VARADDRESS for dumping. | |
2367 | 182 All the objects reachable from this var will also be dumped. |
183 Called by outside callers during XEmacs initialization. */ | |
452 | 184 void |
1204 | 185 dump_add_root_lisp_object (Lisp_Object *varaddress) |
452 | 186 { |
1204 | 187 if (pdump_root_lisp_objects == NULL) |
188 pdump_root_lisp_objects = Dynarr_new2 (Lisp_Object_ptr_dynarr, Lisp_Object *); | |
189 Dynarr_add (pdump_root_lisp_objects, varaddress); | |
452 | 190 } |
191 | |
2367 | 192 /* Mark the list pointed to by the Lisp_Object at VARADDRESS for dumping. |
193 Called by outside callers during XEmacs initialization. */ | |
452 | 194 void |
195 dump_add_weak_object_chain (Lisp_Object *varaddress) | |
196 { | |
197 if (pdump_weak_object_chains == NULL) | |
198 pdump_weak_object_chains = Dynarr_new2 (Lisp_Object_ptr_dynarr, Lisp_Object *); | |
199 Dynarr_add (pdump_weak_object_chains, varaddress); | |
200 } | |
201 | |
202 | |
458 | 203 inline static void |
665 | 204 pdump_align_stream (FILE *stream, Bytecount alignment) |
458 | 205 { |
206 long offset = ftell (stream); | |
207 long adjustment = ALIGN_SIZE (offset, alignment) - offset; | |
208 if (adjustment) | |
209 fseek (stream, adjustment, SEEK_CUR); | |
210 } | |
211 | |
212 #define PDUMP_ALIGN_OUTPUT(type) pdump_align_stream (pdump_out, ALIGNOF (type)) | |
213 | |
214 #define PDUMP_WRITE(type, object) \ | |
771 | 215 retry_fwrite (&object, sizeof (object), 1, pdump_out); |
458 | 216 |
217 #define PDUMP_WRITE_ALIGNED(type, object) do { \ | |
218 PDUMP_ALIGN_OUTPUT (type); \ | |
219 PDUMP_WRITE (type, object); \ | |
220 } while (0) | |
221 | |
222 #define PDUMP_READ(ptr, type) \ | |
2367 | 223 (((type *) (ptr = (Rawbyte *) (((type *) ptr) + 1)))[-1]) |
458 | 224 |
225 #define PDUMP_READ_ALIGNED(ptr, type) \ | |
2367 | 226 ((ptr = (Rawbyte *) ALIGN_PTR (ptr, type)), PDUMP_READ (ptr, type)) |
458 | 227 |
228 | |
229 | |
452 | 230 typedef struct |
231 { | |
1204 | 232 const struct memory_description *desc; |
442 | 233 int count; |
234 } pdump_reloc_table; | |
235 | |
2367 | 236 static Rawbyte *pdump_rt_list = 0; |
442 | 237 |
3263 | 238 #ifndef NEW_GC |
442 | 239 void |
240 pdump_objects_unmark (void) | |
241 { | |
242 int i; | |
2367 | 243 Rawbyte *p = pdump_rt_list; |
442 | 244 if (p) |
245 for (;;) | |
246 { | |
247 pdump_reloc_table *rt = (pdump_reloc_table *)p; | |
248 p += sizeof (pdump_reloc_table); | |
249 if (rt->desc) | |
250 { | |
251 for (i=0; i<rt->count; i++) | |
252 { | |
253 struct lrecord_header *lh = * (struct lrecord_header **) p; | |
5059
c8f90d61dcf3
fix memory usage stats to include pdumped objects
Ben Wing <ben@xemacs.org>
parents:
4976
diff
changeset
|
254 #ifdef ALLOC_TYPE_STATS |
c8f90d61dcf3
fix memory usage stats to include pdumped objects
Ben Wing <ben@xemacs.org>
parents:
4976
diff
changeset
|
255 if (C_READONLY_RECORD_HEADER_P (lh)) |
c8f90d61dcf3
fix memory usage stats to include pdumped objects
Ben Wing <ben@xemacs.org>
parents:
4976
diff
changeset
|
256 tick_lrecord_stats (lh, ALLOC_IN_USE); |
c8f90d61dcf3
fix memory usage stats to include pdumped objects
Ben Wing <ben@xemacs.org>
parents:
4976
diff
changeset
|
257 |
c8f90d61dcf3
fix memory usage stats to include pdumped objects
Ben Wing <ben@xemacs.org>
parents:
4976
diff
changeset
|
258 else |
c8f90d61dcf3
fix memory usage stats to include pdumped objects
Ben Wing <ben@xemacs.org>
parents:
4976
diff
changeset
|
259 { |
c8f90d61dcf3
fix memory usage stats to include pdumped objects
Ben Wing <ben@xemacs.org>
parents:
4976
diff
changeset
|
260 tick_lrecord_stats (lh, MARKED_RECORD_HEADER_P (lh) ? |
c8f90d61dcf3
fix memory usage stats to include pdumped objects
Ben Wing <ben@xemacs.org>
parents:
4976
diff
changeset
|
261 ALLOC_IN_USE : ALLOC_ON_FREE_LIST); |
c8f90d61dcf3
fix memory usage stats to include pdumped objects
Ben Wing <ben@xemacs.org>
parents:
4976
diff
changeset
|
262 UNMARK_RECORD_HEADER (lh); |
c8f90d61dcf3
fix memory usage stats to include pdumped objects
Ben Wing <ben@xemacs.org>
parents:
4976
diff
changeset
|
263 } |
c8f90d61dcf3
fix memory usage stats to include pdumped objects
Ben Wing <ben@xemacs.org>
parents:
4976
diff
changeset
|
264 #else /* not ALLOC_TYPE_STATS */ |
442 | 265 if (! C_READONLY_RECORD_HEADER_P (lh)) |
266 UNMARK_RECORD_HEADER (lh); | |
5059
c8f90d61dcf3
fix memory usage stats to include pdumped objects
Ben Wing <ben@xemacs.org>
parents:
4976
diff
changeset
|
267 #endif /* (not) ALLOC_TYPE_STATS */ |
442 | 268 p += sizeof (EMACS_INT); |
269 } | |
270 } else | |
271 break; | |
272 } | |
273 } | |
3263 | 274 #endif /* not NEW_GC */ |
275 | |
276 | |
277 #ifdef NEW_GC | |
2720 | 278 /* The structure of the dump file looks like this: |
279 0 - header | |
280 - dumped objects | |
281 stab_offset - mc allocation table (count, size, address) for individual | |
282 allocation and relocation at load time. | |
283 - nb_cv_data*struct(dest, adr) for in-object externally | |
284 represented data | |
285 - nb_cv_ptr*(adr) for pointed-to externally represented data | |
286 - relocation table | |
287 - nb_root_struct_ptrs*struct(void *, adr) | |
288 for global pointers to structures | |
289 - nb_root_blocks*struct(void *, size, info) for global | |
290 objects to restore | |
291 - root lisp object address/value couples with the count | |
292 preceding the list | |
293 */ | |
3263 | 294 #else /* not NEW_GC */ |
1204 | 295 /* The structure of the dump file looks like this: |
458 | 296 0 - header |
297 - dumped objects | |
2551 | 298 stab_offset - nb_cv_data*struct(dest, adr) for in-object externally |
299 represented data | |
300 - nb_cv_ptr*(adr) for pointed-to externally represented data | |
301 - nb_root_block_ptrs*struct(void *, adr) | |
2367 | 302 for global pointers to heap blocks |
1204 | 303 - nb_root_blocks*struct(void *, size, info) for global |
2367 | 304 data-segment blocks to restore |
458 | 305 - relocation table |
306 - root lisp object address/value couples with the count | |
307 preceding the list | |
442 | 308 */ |
3263 | 309 #endif /* not NEW_GC */ |
442 | 310 |
311 | |
452 | 312 #define PDUMP_SIGNATURE "XEmacsDP" |
313 #define PDUMP_SIGNATURE_LEN (sizeof (PDUMP_SIGNATURE) - 1) | |
442 | 314 |
315 typedef struct | |
316 { | |
452 | 317 char signature[PDUMP_SIGNATURE_LEN]; |
442 | 318 unsigned int id; |
319 EMACS_UINT stab_offset; | |
320 EMACS_UINT reloc_address; | |
2367 | 321 int nb_root_block_ptrs; |
1204 | 322 int nb_root_blocks; |
2551 | 323 int nb_cv_data; |
324 int nb_cv_ptr; | |
452 | 325 } pdump_header; |
442 | 326 |
2367 | 327 Rawbyte *pdump_start; |
328 Rawbyte *pdump_end; | |
665 | 329 static Bytecount pdump_length; |
442 | 330 |
2551 | 331 static pdump_cv_data_dump_info *pdump_loaded_cv_data; |
332 static pdump_cv_ptr_load_info *pdump_loaded_cv_ptr; | |
333 | |
442 | 334 #ifdef WIN32_NATIVE |
452 | 335 /* Handle for the dump file */ |
458 | 336 static HANDLE pdump_hFile = INVALID_HANDLE_VALUE; |
452 | 337 /* Handle for the file mapping object for the dump file */ |
458 | 338 static HANDLE pdump_hMap = INVALID_HANDLE_VALUE; |
442 | 339 #endif |
340 | |
458 | 341 static void (*pdump_free) (void); |
442 | 342 |
460 | 343 static unsigned char pdump_align_table[] = |
442 | 344 { |
460 | 345 64, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, |
346 16, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, | |
347 32, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, | |
348 16, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1 | |
442 | 349 }; |
350 | |
647 | 351 static inline int |
665 | 352 pdump_size_to_align (Bytecount size) |
442 | 353 { |
460 | 354 return pdump_align_table[size % countof (pdump_align_table)]; |
355 } | |
356 | |
2367 | 357 /************************************************************************/ |
358 /* Registering memory blocks */ | |
359 /************************************************************************/ | |
360 | |
361 /* "Registering" or recording a heap memory block (which will need to be | |
362 written out, reloaded and relocated, and to which there may be pointers | |
363 from other heap blocks or from the data segment) happens both in a list | |
364 and in a hash table. There is a single hash table covering all | |
365 registered blocks, but different lists for different kinds of blocks. | |
366 There is one list for "opaque data" (stuff identified as | |
367 XD_OPAQUE_DATA_PTR, XD_ASCII_STRING, XD_DOC_STRING), one list for each | |
368 type of Lisp object, and one list for each different memory descriptor. | |
369 This lets similar-sized and aligned objects be grouped together when | |
370 they are written out, to save space. | |
371 | |
372 pdump_block_list is a list keeping track of registered memory blocks. | |
373 pdump_block_list_elt is a single entry through the list, and the list is | |
374 threaded through the NEXT pointer. The information in this list | |
375 associated with a particular block of memory is | |
376 | |
377 -- address of the beginning | |
378 -- number of elements at that address | |
379 -- size of each element | |
380 -- offset to this block in the dumped data | |
381 | |
382 pdump_desc_list is a list keeping track of the various descriptions | |
383 that we've seen. The primary purpose of this is so that memory blocks | |
384 can be grouped depending on the particular memory description | |
385 appropriate for them. The format of the list is different from | |
386 pdump_block_list -- a single array is used. (#### Dynarr should have | |
387 been used!!!). The information in this list associated with a | |
388 description is | |
389 | |
390 -- pointer to the description | |
391 -- a pdump_block_list of blocks using that description | |
392 | |
393 Functions for working with lists of memory blocks: | |
394 | |
395 -- Add a memory block to a list using pdump_add_block() | |
396 | |
397 -- Get a memory block from a pointer to its beginning using | |
398 pdump_get_block(). This uses the hash table, which lists everything. | |
399 | |
400 -- Return the memory-block list (pdump_block_list) associated with a | |
401 descriptor, using pdump_get_block_list(). If no entry found in the | |
402 pdump_desc_list, add a new one. | |
403 | |
404 */ | |
405 | |
406 typedef struct pdump_block_list_elt | |
460 | 407 { |
2367 | 408 struct pdump_block_list_elt *next; |
442 | 409 const void *obj; |
665 | 410 Bytecount size; |
442 | 411 int count; |
412 EMACS_INT save_offset; | |
2367 | 413 } pdump_block_list_elt; |
442 | 414 |
415 typedef struct | |
416 { | |
2367 | 417 pdump_block_list_elt *first; |
442 | 418 int align; |
419 int count; | |
2367 | 420 } pdump_block_list; |
442 | 421 |
2367 | 422 typedef struct pdump_desc_list_elt |
442 | 423 { |
2367 | 424 pdump_block_list list; |
1204 | 425 const struct memory_description *desc; |
2367 | 426 } pdump_desc_list_elt; |
442 | 427 |
428 typedef struct | |
429 { | |
2367 | 430 pdump_desc_list_elt *list; |
442 | 431 int count; |
432 int size; | |
2367 | 433 } pdump_desc_list; |
442 | 434 |
2367 | 435 static pdump_block_list *pdump_object_table; |
436 static pdump_block_list pdump_opaque_data_list; | |
437 static pdump_desc_list pdump_desc_table; | |
442 | 438 |
460 | 439 static int *pdump_alert_undump_object; |
442 | 440 |
441 static unsigned long cur_offset; | |
665 | 442 static Bytecount max_size; |
442 | 443 static int pdump_fd; |
444 static void *pdump_buf; | |
458 | 445 static FILE *pdump_out; |
442 | 446 |
3263 | 447 #ifdef NEW_GC |
2775 | 448 /* PDUMP_HASHSIZE is a large prime. */ |
449 #define PDUMP_HASHSIZE 1000003 | |
450 /* Nothing special about PDUMP_HASH_MULTIPLIER: arbitrary odd integer | |
451 smaller than PDUMP_HASHSIZE. */ | |
452 #define PDUMP_HASH_MULTIPLIER 12347 | |
453 /* Nothing special about PDUMP_HASH_STEP: arbitrary integer for linear | |
454 probing. */ | |
455 #define PDUMP_HASH_STEP 574853 | |
3263 | 456 #else /* not NEW_GC */ |
442 | 457 #define PDUMP_HASHSIZE 200001 |
3263 | 458 #endif /* not NEW_GC */ |
442 | 459 |
2367 | 460 static pdump_block_list_elt **pdump_hash; |
442 | 461 |
3263 | 462 #ifndef NEW_GC |
442 | 463 /* Since most pointers are eight bytes aligned, the >>3 allows for a better hash */ |
3263 | 464 #endif /* not NEW_GC */ |
442 | 465 static int |
466 pdump_make_hash (const void *obj) | |
467 { | |
3263 | 468 #ifdef NEW_GC |
2775 | 469 return ((unsigned long)(obj) * PDUMP_HASH_MULTIPLIER) % PDUMP_HASHSIZE; |
3263 | 470 #else /* not NEW_GC */ |
442 | 471 return ((unsigned long)(obj)>>3) % PDUMP_HASHSIZE; |
3263 | 472 #endif /* not NEW_GC */ |
442 | 473 } |
474 | |
2367 | 475 /* Return the entry for an already-registered memory block at OBJ, |
476 or NULL if none. */ | |
477 | |
478 static pdump_block_list_elt * | |
479 pdump_get_block (const void *obj) | |
442 | 480 { |
481 int pos = pdump_make_hash (obj); | |
2367 | 482 pdump_block_list_elt *e; |
442 | 483 |
484 assert (obj != 0); | |
485 | |
486 while ((e = pdump_hash[pos]) != 0) | |
487 { | |
488 if (e->obj == obj) | |
489 return e; | |
490 | |
491 pos++; | |
492 if (pos == PDUMP_HASHSIZE) | |
493 pos = 0; | |
494 } | |
495 return 0; | |
496 } | |
497 | |
2367 | 498 /* Register a new memory block on Return the entry for an already-registered heap (?) memory block at OBJ, |
499 or NULL if none. */ | |
500 | |
442 | 501 static void |
2367 | 502 pdump_add_block (pdump_block_list *list, const void *obj, Bytecount size, |
458 | 503 int count) |
442 | 504 { |
2367 | 505 pdump_block_list_elt *e; |
442 | 506 int pos = pdump_make_hash (obj); |
507 | |
508 while ((e = pdump_hash[pos]) != 0) | |
509 { | |
510 if (e->obj == obj) | |
511 return; | |
512 | |
513 pos++; | |
514 if (pos == PDUMP_HASHSIZE) | |
515 pos = 0; | |
516 } | |
517 | |
2367 | 518 e = xnew (pdump_block_list_elt); |
442 | 519 |
520 e->next = list->first; | |
521 e->obj = obj; | |
522 e->size = size; | |
523 e->count = count; | |
524 list->first = e; | |
525 | |
526 list->count += count; | |
527 pdump_hash[pos] = e; | |
528 | |
460 | 529 { |
530 int align = pdump_size_to_align (size); | |
442 | 531 |
460 | 532 if (align < list->align) |
533 list->align = align; | |
534 } | |
442 | 535 } |
536 | |
3263 | 537 #ifdef NEW_GC |
2720 | 538 typedef struct mc_addr_elt |
539 { | |
540 const void *obj; | |
541 EMACS_INT addr; | |
542 } mc_addr_elt; | |
543 | |
544 static mc_addr_elt *pdump_mc_hash; | |
545 | |
546 /* Return the entry for an already-registered memory block at OBJ, | |
547 or NULL if none. */ | |
548 static EMACS_INT | |
549 pdump_get_mc_addr (const void *obj) | |
550 { | |
551 int pos = pdump_make_hash (obj); | |
552 mc_addr_elt *mc_addr; | |
553 | |
554 assert (obj != 0); | |
555 | |
2723 | 556 while (((mc_addr = &pdump_mc_hash[pos]) != 0) && (mc_addr->obj != 0)) |
2720 | 557 { |
558 if (mc_addr->obj == obj) | |
559 return mc_addr->addr; | |
560 | |
2775 | 561 pos += PDUMP_HASH_STEP; |
562 if (pos >= PDUMP_HASHSIZE) | |
563 pos -= PDUMP_HASHSIZE; | |
2720 | 564 } |
565 | |
566 /* If this code is reached, an heap address occurred which has not | |
567 been written to the lookup table before. | |
568 This is a bug! */ | |
569 ABORT(); | |
570 return 0; | |
571 } | |
572 | |
573 /* For indirect address lookups, needed for convertibles: Ptr points | |
574 to an address within an object. Indirect gives the offset by how | |
575 many bytes the address of the object has to be adjusted to do a | |
576 lookup in the mc_addr translation table and get the new location of | |
577 the data. */ | |
578 #define pdump_get_indirect_mc_addr(ptr, indirect) \ | |
579 pdump_get_mc_addr ((void *)((ptr) - indirect)) + indirect | |
580 | |
581 static void | |
582 pdump_put_mc_addr (const void *obj, EMACS_INT addr) | |
583 { | |
584 mc_addr_elt *mc_addr; | |
585 int pos = pdump_make_hash (obj); | |
586 | |
2723 | 587 while (((mc_addr = &pdump_mc_hash[pos]) != 0) && (mc_addr->obj != 0)) |
2720 | 588 { |
589 if (mc_addr->obj == obj) | |
590 return; | |
591 | |
2775 | 592 pos += PDUMP_HASH_STEP; |
593 if (pos >= PDUMP_HASHSIZE) | |
594 pos -= PDUMP_HASHSIZE; | |
2720 | 595 } |
596 | |
597 pdump_mc_hash[pos].obj = obj; | |
598 pdump_mc_hash[pos].addr = addr; | |
599 } | |
3263 | 600 #endif /* NEW_GC */ |
2720 | 601 |
2367 | 602 static pdump_block_list * |
603 pdump_get_block_list (const struct memory_description *desc) | |
442 | 604 { |
605 int i; | |
2367 | 606 for (i=0; i<pdump_desc_table.count; i++) |
607 if (pdump_desc_table.list[i].desc == desc) | |
608 return &pdump_desc_table.list[i].list; | |
442 | 609 |
2367 | 610 if (pdump_desc_table.size <= pdump_desc_table.count) |
442 | 611 { |
2367 | 612 if (pdump_desc_table.size == -1) |
613 pdump_desc_table.size = 10; | |
442 | 614 else |
2367 | 615 pdump_desc_table.size = pdump_desc_table.size * 2; |
616 pdump_desc_table.list = (pdump_desc_list_elt *) | |
617 xrealloc (pdump_desc_table.list, | |
618 pdump_desc_table.size * sizeof (pdump_desc_list_elt)); | |
442 | 619 } |
2367 | 620 pdump_desc_table.list[pdump_desc_table.count].list.first = 0; |
621 pdump_desc_table.list[pdump_desc_table.count].list.align = ALIGNOF (max_align_t); | |
622 pdump_desc_table.list[pdump_desc_table.count].list.count = 0; | |
623 pdump_desc_table.list[pdump_desc_table.count].desc = desc; | |
442 | 624 |
2367 | 625 return &pdump_desc_table.list[pdump_desc_table.count++].list; |
442 | 626 } |
627 | |
2551 | 628 static pdump_cv_ptr_info * |
629 pdump_find_in_cv_ptr_dynarr(const void *object) | |
630 { | |
631 int i; | |
632 for (i = 0; i < Dynarr_length (pdump_cv_ptr); i++) | |
633 if (Dynarr_at (pdump_cv_ptr, i).object == object) | |
634 return Dynarr_atp (pdump_cv_ptr, i); | |
635 return 0; | |
636 } | |
637 | |
2698 | 638 #define BACKTRACE_MAX 65536 |
639 | |
442 | 640 static struct |
641 { | |
642 struct lrecord_header *obj; | |
643 int position; | |
644 int offset; | |
2698 | 645 } backtrace[BACKTRACE_MAX]; |
442 | 646 |
1204 | 647 static int pdump_depth; |
442 | 648 |
1204 | 649 void |
452 | 650 pdump_backtrace (void) |
442 | 651 { |
652 int i; | |
653 stderr_out ("pdump backtrace :\n"); | |
1204 | 654 for (i = 0; i < pdump_depth; i++) |
442 | 655 { |
656 if (!backtrace[i].obj) | |
458 | 657 stderr_out (" - ind. (%d, %d)\n", |
658 backtrace[i].position, | |
659 backtrace[i].offset); | |
442 | 660 else |
661 { | |
662 stderr_out (" - %s (%d, %d)\n", | |
1204 | 663 LHEADER_IMPLEMENTATION (backtrace[i].obj)->name, |
664 backtrace[i].position, | |
665 backtrace[i].offset); | |
442 | 666 } |
667 } | |
668 } | |
669 | |
1204 | 670 static void |
1333 | 671 pdump_unsupported_dump_type (enum memory_description_type type, |
672 int do_backtrace) | |
673 { | |
674 stderr_out ("Unsupported dump type : %d\n", type); | |
675 #ifdef WIN32_NATIVE | |
676 stderr_out ("Are you compiling with SUPPORT_EDIT_AND_CONTINUE?\n"); | |
677 stderr_out ("See the PROBLEMS file.\n"); | |
678 #endif | |
679 if (do_backtrace) | |
680 pdump_backtrace (); | |
2500 | 681 ABORT (); |
1333 | 682 } |
683 | |
684 static void | |
1204 | 685 pdump_bump_depth (void) |
686 { | |
687 int me = pdump_depth++; | |
2698 | 688 if (me >= BACKTRACE_MAX) |
1204 | 689 { |
690 stderr_out ("Backtrace overflow, loop ?\n"); | |
2500 | 691 ABORT (); |
1204 | 692 } |
693 backtrace[me].obj = 0; | |
694 backtrace[me].position = 0; | |
695 backtrace[me].offset = 0; | |
696 } | |
697 | |
442 | 698 static void pdump_register_object (Lisp_Object obj); |
3092 | 699 #ifdef NEW_GC |
700 static void pdump_register_object_array (Lisp_Object data, | |
701 Bytecount size, | |
702 const struct memory_description *desc, | |
703 int count); | |
704 #endif /* NEW_GC */ | |
2367 | 705 static void pdump_register_block_contents (const void *data, |
706 Bytecount size, | |
707 const struct memory_description * | |
708 desc, | |
709 int count); | |
710 static void pdump_register_block (const void *data, | |
711 Bytecount size, | |
712 const struct memory_description *desc, | |
713 int count); | |
442 | 714 |
715 static void | |
1204 | 716 pdump_register_sub (const void *data, const struct memory_description *desc) |
442 | 717 { |
718 int pos; | |
1204 | 719 int me = pdump_depth - 1; |
442 | 720 |
721 for (pos = 0; desc[pos].type != XD_END; pos++) | |
722 { | |
1204 | 723 const struct memory_description *desc1 = &desc[pos]; |
724 EMACS_INT offset = lispdesc_indirect_count (desc1->offset, desc, | |
725 data); | |
2367 | 726 const void *rdata = (const Rawbyte *) data + offset; |
442 | 727 |
728 backtrace[me].position = pos; | |
1204 | 729 backtrace[me].offset = offset; |
730 | |
731 union_switcheroo: | |
442 | 732 |
1204 | 733 /* If the flag says don't dump, then don't dump. */ |
734 if ((desc1->flags) & XD_FLAG_NO_PDUMP) | |
735 continue; | |
736 | |
737 switch (desc1->type) | |
442 | 738 { |
665 | 739 case XD_BYTECOUNT: |
740 case XD_ELEMCOUNT: | |
741 case XD_HASHCODE: | |
442 | 742 case XD_INT: |
743 case XD_LONG: | |
744 case XD_INT_RESET: | |
745 case XD_LO_LINK: | |
746 break; | |
747 case XD_OPAQUE_DATA_PTR: | |
748 { | |
1204 | 749 EMACS_INT count = lispdesc_indirect_count (desc1->data1, desc, |
750 data); | |
442 | 751 |
2367 | 752 pdump_add_block (&pdump_opaque_data_list, |
458 | 753 *(void **)rdata, count, 1); |
442 | 754 break; |
755 } | |
2367 | 756 case XD_ASCII_STRING: |
442 | 757 { |
2367 | 758 const Ascbyte *str = * (const Ascbyte **) rdata; |
442 | 759 if (str) |
2367 | 760 pdump_add_block (&pdump_opaque_data_list, str, strlen (str) + 1, |
1204 | 761 1); |
442 | 762 break; |
763 } | |
764 case XD_DOC_STRING: | |
765 { | |
2367 | 766 const Ascbyte *str = * (const Ascbyte **) rdata; |
1204 | 767 if ((EMACS_INT) str > 0) |
2367 | 768 pdump_add_block (&pdump_opaque_data_list, str, strlen (str) + 1, |
1204 | 769 1); |
442 | 770 break; |
771 } | |
772 case XD_LISP_OBJECT: | |
773 { | |
1204 | 774 const Lisp_Object *pobj = (const Lisp_Object *) rdata; |
442 | 775 |
1204 | 776 assert (desc1->data1 == 0); |
442 | 777 |
2367 | 778 backtrace[me].offset = |
779 (const Rawbyte *) pobj - (const Rawbyte *) data; | |
442 | 780 pdump_register_object (*pobj); |
781 break; | |
782 } | |
783 case XD_LISP_OBJECT_ARRAY: | |
784 { | |
785 int i; | |
1204 | 786 EMACS_INT count = lispdesc_indirect_count (desc1->data1, desc, |
787 data); | |
442 | 788 |
789 for (i = 0; i < count; i++) | |
790 { | |
1204 | 791 const Lisp_Object *pobj = ((const Lisp_Object *) rdata) + i; |
442 | 792 Lisp_Object dobj = *pobj; |
793 | |
1204 | 794 backtrace[me].offset = |
2367 | 795 (const Rawbyte *) pobj - (const Rawbyte *) data; |
442 | 796 pdump_register_object (dobj); |
797 } | |
798 break; | |
799 } | |
3092 | 800 #ifdef NEW_GC |
5169
6c6d78781d59
cleanup of code related to xfree(), better KKCC backtrace capabilities, document XD_INLINE_LISP_OBJECT_BLOCK_PTR, fix some memory leaks, other code cleanup
Ben Wing <ben@xemacs.org>
parents:
5059
diff
changeset
|
801 case XD_INLINE_LISP_OBJECT_BLOCK_PTR: |
3092 | 802 { |
803 EMACS_INT count = lispdesc_indirect_count (desc1->data1, desc, | |
804 data); | |
805 const struct sized_memory_description *sdesc = | |
806 lispdesc_indirect_description (data, desc1->data2.descr); | |
807 const Lisp_Object *pobj = (const Lisp_Object *) rdata; | |
808 if (pobj) | |
809 pdump_register_object_array | |
810 (*pobj, sdesc->size, sdesc->description, count); | |
811 break; | |
812 } | |
813 #endif /* NEW_GC */ | |
2367 | 814 case XD_BLOCK_PTR: |
442 | 815 { |
1204 | 816 EMACS_INT count = lispdesc_indirect_count (desc1->data1, desc, |
817 data); | |
818 const struct sized_memory_description *sdesc = | |
2551 | 819 lispdesc_indirect_description (data, desc1->data2.descr); |
2367 | 820 const Rawbyte *dobj = *(const Rawbyte **)rdata; |
442 | 821 if (dobj) |
2367 | 822 pdump_register_block (dobj, sdesc->size, sdesc->description, |
823 count); | |
442 | 824 break; |
825 } | |
2367 | 826 case XD_BLOCK_ARRAY: |
771 | 827 { |
1204 | 828 EMACS_INT count = lispdesc_indirect_count (desc1->data1, desc, |
829 data); | |
830 const struct sized_memory_description *sdesc = | |
2551 | 831 lispdesc_indirect_description (data, desc1->data2.descr); |
771 | 832 |
2367 | 833 pdump_register_block_contents (rdata, sdesc->size, |
834 sdesc->description, count); | |
771 | 835 break; |
836 } | |
837 case XD_UNION: | |
1204 | 838 case XD_UNION_DYNAMIC_SIZE: |
839 desc1 = lispdesc_process_xd_union (desc1, desc, data); | |
840 if (desc1) | |
841 goto union_switcheroo; | |
842 break; | |
2551 | 843 case XD_OPAQUE_PTR_CONVERTIBLE: |
844 { | |
845 pdump_cv_ptr_info info; | |
846 info.object = *(void **)rdata; | |
847 info.fcts = desc1->data2.funcs; | |
848 if (!pdump_find_in_cv_ptr_dynarr (info.object)) | |
849 { | |
850 info.fcts->convert(info.object, &info.data, &info.size); | |
851 Dynarr_add (pdump_cv_ptr, info); | |
852 } | |
853 break; | |
854 } | |
855 case XD_OPAQUE_DATA_CONVERTIBLE: | |
856 { | |
857 pdump_cv_data_info info; | |
858 info.object = data; | |
859 info.offset = offset; | |
860 info.fcts = desc1->data2.funcs; | |
861 | |
862 info.fcts->convert(rdata, &info.data, &info.size); | |
863 Dynarr_add (pdump_cv_data, info); | |
864 break; | |
865 } | |
771 | 866 |
442 | 867 default: |
1333 | 868 pdump_unsupported_dump_type (desc1->type, 1); |
1204 | 869 } |
442 | 870 } |
871 } | |
872 | |
873 static void | |
874 pdump_register_object (Lisp_Object obj) | |
875 { | |
876 struct lrecord_header *objh; | |
458 | 877 const struct lrecord_implementation *imp; |
442 | 878 |
879 if (!POINTER_TYPE_P (XTYPE (obj))) | |
880 return; | |
881 | |
882 objh = XRECORD_LHEADER (obj); | |
883 if (!objh) | |
884 return; | |
885 | |
2367 | 886 if (pdump_get_block (objh)) |
442 | 887 return; |
888 | |
458 | 889 imp = LHEADER_IMPLEMENTATION (objh); |
890 | |
934 | 891 if (imp->description |
3263 | 892 #ifdef NEW_GC |
893 /* Objects with finalizers cannot be dumped with the new | |
894 allocator's asynchronous finalization strategy. */ | |
895 && !imp->finalizer | |
896 #endif /* not NEW_GC */ | |
1204 | 897 && RECORD_DUMPABLE (objh)) |
442 | 898 { |
1204 | 899 pdump_bump_depth (); |
900 backtrace[pdump_depth - 1].obj = objh; | |
2367 | 901 pdump_add_block (pdump_object_table + objh->type, |
1204 | 902 objh, detagged_lisp_object_size (objh), 1); |
903 pdump_register_sub (objh, imp->description); | |
904 --pdump_depth; | |
442 | 905 } |
906 else | |
907 { | |
908 pdump_alert_undump_object[objh->type]++; | |
458 | 909 stderr_out ("Undumpable object type : %s\n", imp->name); |
442 | 910 pdump_backtrace (); |
911 } | |
912 } | |
913 | |
3092 | 914 #ifdef NEW_GC |
915 static void | |
916 pdump_register_object_array (Lisp_Object obj, | |
917 Bytecount size, | |
918 const struct memory_description *desc, | |
919 int count) | |
920 { | |
921 struct lrecord_header *objh; | |
922 const struct lrecord_implementation *imp; | |
923 | |
924 if (!POINTER_TYPE_P (XTYPE (obj))) | |
925 return; | |
926 | |
927 objh = XRECORD_LHEADER (obj); | |
928 if (!objh) | |
929 return; | |
930 | |
931 if (pdump_get_block (objh)) | |
932 return; | |
933 | |
934 imp = LHEADER_IMPLEMENTATION (objh); | |
935 | |
936 if (imp->description | |
937 && RECORD_DUMPABLE (objh)) | |
938 { | |
939 pdump_bump_depth (); | |
940 backtrace[pdump_depth - 1].obj = objh; | |
941 pdump_add_block (pdump_object_table + objh->type, | |
942 objh, lispdesc_block_size_1 (objh, size, desc), count); | |
943 pdump_register_block_contents (objh, size, desc, count); | |
944 --pdump_depth; | |
945 } | |
946 else | |
947 { | |
948 pdump_alert_undump_object[objh->type]++; | |
949 stderr_out ("Undumpable object type : %s\n", imp->name); | |
950 pdump_backtrace (); | |
951 } | |
952 } | |
953 #endif /* NEW_GC */ | |
954 | |
2367 | 955 /* Register the referenced objects in the array of COUNT blocks located at |
956 DATA; each block is described by SIZE and DESC. "Block" here simply | |
957 means any block of memory. | |
771 | 958 |
959 This does not register the block of memory itself; it may, for | |
960 example, be an array of structures inlined in another memory block | |
2367 | 961 and thus should not be registered. See pdump_register_block(), |
771 | 962 which does register the memory block. */ |
963 | |
964 static void | |
2367 | 965 pdump_register_block_contents (const void *data, |
966 Bytecount size, | |
967 const struct memory_description *desc, | |
968 int count) | |
771 | 969 { |
970 int i; | |
971 Bytecount elsize; | |
972 | |
1204 | 973 pdump_bump_depth (); |
2367 | 974 elsize = lispdesc_block_size_1 (data, size, desc); |
771 | 975 for (i = 0; i < count; i++) |
976 { | |
2367 | 977 pdump_register_sub (((Rawbyte *) data) + elsize * i, desc); |
771 | 978 } |
1204 | 979 --pdump_depth; |
771 | 980 } |
981 | |
2367 | 982 /* Register the array of COUNT blocks located at DATA; each block is |
983 described by SDESC. "Block" here simply means any block of memory, | |
984 which is more accurate and less confusing than terms like `struct' and | |
985 `object'. A `block' need not actually be a C "struct". It could be a | |
986 single integer or Lisp_Object, for example, as long as the description | |
987 is accurate. | |
771 | 988 |
2367 | 989 This is like pdump_register_block_contents() but also registers |
771 | 990 the memory block itself. */ |
991 | |
442 | 992 static void |
2367 | 993 pdump_register_block (const void *data, |
994 Bytecount size, | |
995 const struct memory_description *desc, | |
996 int count) | |
442 | 997 { |
2367 | 998 if (data && !pdump_get_block (data)) |
442 | 999 { |
2367 | 1000 pdump_add_block (pdump_get_block_list (desc), data, |
1001 lispdesc_block_size_1 (data, size, desc), count); | |
1002 pdump_register_block_contents (data, size, desc, count); | |
442 | 1003 } |
1004 } | |
1005 | |
2551 | 1006 |
1204 | 1007 /* Store the already-calculated new pointer offsets for all pointers in the |
1008 COUNT contiguous blocks of memory, each described by DESC and of size | |
1009 SIZE, whose original is located at ORIG_DATA and the modifiable copy at | |
1010 DATA. We examine the description to figure out where the pointers are, | |
2367 | 1011 and then look up the replacement values using pdump_get_block(). |
771 | 1012 |
1204 | 1013 This is done just before writing the modified block of memory to the |
1014 dump file. The new pointer offsets have been carefully calculated so | |
1015 that the data being pointed gets written at that offset in the dump | |
1016 file. That way, the dump file is a correct memory image except perhaps | |
1017 for a constant that needs to be added to all pointers. (#### In fact, we | |
1018 SHOULD be starting up a dumped XEmacs, seeing where the dumped file gets | |
1019 loaded into memory, and then rewriting the dumped file after relocating | |
1020 all the pointers relative to this memory location. That way, if the | |
1021 file gets loaded again at the same location, which will be common, we | |
1022 don't have to do any relocating, which is both faster at startup and | |
771 | 1023 allows the read-only part of the dumped data to be shared read-only |
1024 between different invocations of XEmacs.) | |
1025 | |
1026 #### Do we distinguish between read-only and writable dumped data? | |
1027 Should we? It's tricky because the dumped data, once loaded again, | |
1204 | 1028 cannot really be free()d or garbage collected since it's all stored in |
1029 one contiguous block of data with no malloc() headers, and we don't keep | |
1030 track of the pointers used internally in malloc() and the Lisp allocator | |
1031 to track allocated blocks of memory. */ | |
771 | 1032 |
1033 static void | |
1034 pdump_store_new_pointer_offsets (int count, void *data, const void *orig_data, | |
1204 | 1035 const struct memory_description *desc, |
771 | 1036 int size) |
1037 { | |
1038 int pos, i; | |
1039 /* Process each block one by one */ | |
1040 for (i = 0; i < count; i++) | |
1041 { | |
1042 /* CUR points to the beginning of each block in the new data. */ | |
2367 | 1043 Rawbyte *cur = ((Rawbyte *)data) + i * size; |
771 | 1044 /* Scan each line of the description for relocatable pointers */ |
1045 for (pos = 0; desc[pos].type != XD_END; pos++) | |
1046 { | |
1047 /* RDATA points to the beginning of each element in the new data. */ | |
1204 | 1048 const struct memory_description *desc1 = &desc[pos]; |
1049 /* #### Change ORIG_DATA to DATA. See below. */ | |
1050 void *rdata = cur + lispdesc_indirect_count (desc1->offset, desc, | |
1051 orig_data); | |
1052 union_switcheroo: | |
1053 | |
1054 /* If the flag says don't dump, then don't dump. */ | |
1055 if ((desc1->flags) & XD_FLAG_NO_PDUMP) | |
1056 continue; | |
1057 | |
1058 switch (desc1->type) | |
771 | 1059 { |
1060 case XD_BYTECOUNT: | |
1061 case XD_ELEMCOUNT: | |
1062 case XD_HASHCODE: | |
1063 case XD_INT: | |
1064 case XD_LONG: | |
1065 break; | |
1066 case XD_INT_RESET: | |
1067 { | |
1204 | 1068 EMACS_INT val = lispdesc_indirect_count (desc1->data1, desc, |
1069 orig_data); | |
771 | 1070 * (int *) rdata = val; |
1071 break; | |
1072 } | |
3092 | 1073 #ifdef NEW_GC |
5169
6c6d78781d59
cleanup of code related to xfree(), better KKCC backtrace capabilities, document XD_INLINE_LISP_OBJECT_BLOCK_PTR, fix some memory leaks, other code cleanup
Ben Wing <ben@xemacs.org>
parents:
5059
diff
changeset
|
1074 case XD_INLINE_LISP_OBJECT_BLOCK_PTR: |
3092 | 1075 #endif /* NEW_GC */ |
771 | 1076 case XD_OPAQUE_DATA_PTR: |
2367 | 1077 case XD_ASCII_STRING: |
1078 case XD_BLOCK_PTR: | |
771 | 1079 { |
1080 void *ptr = * (void **) rdata; | |
1081 if (ptr) | |
2367 | 1082 * (EMACS_INT *) rdata = pdump_get_block (ptr)->save_offset; |
771 | 1083 break; |
1084 } | |
1085 case XD_LO_LINK: | |
1086 { | |
1087 /* As described in lrecord.h, this is a weak link. | |
1088 Thus, we need to link this object not (necessarily) | |
1089 to the object directly pointed to, but to the next | |
1090 referenced object in the chain. None of the | |
1091 intermediate objects will be written out, so we | |
1092 traverse down the chain of objects until we find a | |
1093 referenced one. (The Qnil or Qunbound that ends the | |
1094 chain will always be a referenced object.) */ | |
1095 Lisp_Object obj = * (Lisp_Object *) rdata; | |
2367 | 1096 pdump_block_list_elt *elt1; |
1204 | 1097 /* #### Figure out how to handle indirect offsets here. |
1098 #### In general, when computing indirect counts, do we | |
1099 really need to use the orig_data pointer? Why not just | |
1100 use the new stuff? | |
1101 | |
1102 No, we don't usually need orig_data. We only need it | |
1103 when fetching pointers out of the data, not integers. | |
1104 This currently occurs only with description maps. We | |
1105 should change the other places to DATA to emphasize | |
1106 this. */ | |
1107 assert (!XD_IS_INDIRECT (desc1->offset)); | |
771 | 1108 for (;;) |
1109 { | |
2367 | 1110 elt1 = pdump_get_block (XRECORD_LHEADER (obj)); |
771 | 1111 if (elt1) |
1112 break; | |
1204 | 1113 obj = * (Lisp_Object *) (desc1->offset + |
2367 | 1114 (Rawbyte *) |
1115 (XRECORD_LHEADER (obj))); | |
771 | 1116 } |
1117 * (EMACS_INT *) rdata = elt1->save_offset; | |
1118 break; | |
1119 } | |
1120 case XD_LISP_OBJECT: | |
1121 { | |
1122 Lisp_Object *pobj = (Lisp_Object *) rdata; | |
1123 | |
1204 | 1124 assert (desc1->data1 == 0); |
771 | 1125 |
1126 if (POINTER_TYPE_P (XTYPE (*pobj)) && XRECORD_LHEADER (*pobj)) | |
1127 * (EMACS_INT *) pobj = | |
2367 | 1128 pdump_get_block (XRECORD_LHEADER (*pobj))->save_offset; |
771 | 1129 break; |
1130 } | |
1131 case XD_LISP_OBJECT_ARRAY: | |
1132 { | |
1204 | 1133 EMACS_INT num = lispdesc_indirect_count (desc1->data1, desc, |
1134 orig_data); | |
771 | 1135 int j; |
1136 | |
1137 for (j = 0; j < num; j++) | |
1138 { | |
1139 Lisp_Object *pobj = ((Lisp_Object *) rdata) + j; | |
1140 if (POINTER_TYPE_P (XTYPE (*pobj)) && | |
1141 XRECORD_LHEADER (*pobj)) | |
1142 * (EMACS_INT *) pobj = | |
2367 | 1143 pdump_get_block (XRECORD_LHEADER (*pobj))->save_offset; |
771 | 1144 } |
1145 break; | |
1146 } | |
1147 case XD_DOC_STRING: | |
1148 { | |
1149 EMACS_INT str = *(EMACS_INT *)rdata; | |
1150 if (str > 0) | |
1151 * (EMACS_INT *) rdata = | |
2367 | 1152 pdump_get_block ((void *)str)->save_offset; |
771 | 1153 break; |
1154 } | |
2367 | 1155 case XD_BLOCK_ARRAY: |
771 | 1156 { |
1204 | 1157 EMACS_INT num = lispdesc_indirect_count (desc1->data1, desc, |
1158 orig_data); | |
1159 const struct sized_memory_description *sdesc = | |
2551 | 1160 lispdesc_indirect_description (orig_data, desc1->data2.descr); |
771 | 1161 |
1162 pdump_store_new_pointer_offsets | |
1163 (num, rdata, | |
2367 | 1164 ((Rawbyte *) rdata - (Rawbyte *) data) + |
1165 (Rawbyte *) orig_data, | |
1204 | 1166 sdesc->description, |
2367 | 1167 lispdesc_block_size |
1168 (((Rawbyte *) rdata - (Rawbyte *) data) + | |
1169 (Rawbyte *) orig_data, sdesc)); | |
771 | 1170 break; |
1171 } | |
1172 case XD_UNION: | |
1204 | 1173 case XD_UNION_DYNAMIC_SIZE: |
1174 desc1 = lispdesc_process_xd_union (desc1, desc, orig_data); | |
1175 if (desc1) | |
1176 goto union_switcheroo; | |
1177 break; | |
771 | 1178 |
2551 | 1179 case XD_OPAQUE_PTR_CONVERTIBLE: |
1180 *(EMACS_INT *)rdata = pdump_find_in_cv_ptr_dynarr (*(void **)rdata)->index; | |
1181 break; | |
1182 | |
1183 case XD_OPAQUE_DATA_CONVERTIBLE: | |
1184 /* in-object, nothing to do */ | |
1185 break; | |
1186 | |
771 | 1187 default: |
1333 | 1188 pdump_unsupported_dump_type (desc1->type, 0); |
771 | 1189 } |
1190 } | |
1191 } | |
1192 } | |
1193 | |
1194 /* Write out to global file descriptor PDUMP_OUT the element (one or | |
1195 more contiguous blocks of identical size/description) recorded in | |
1196 ELT and described by DESC. The element is first copied to a buffer | |
1197 and then all pointers (this includes Lisp_Objects other than | |
1198 integer/character) are relocated to the (pre-computed) offset in | |
1199 the dump file. */ | |
1200 | |
442 | 1201 static void |
2367 | 1202 pdump_dump_data (pdump_block_list_elt *elt, |
1204 | 1203 const struct memory_description *desc) |
442 | 1204 { |
665 | 1205 Bytecount size = elt->size; |
460 | 1206 int count = elt->count; |
442 | 1207 if (desc) |
1208 { | |
771 | 1209 /* Copy to temporary buffer */ |
460 | 1210 memcpy (pdump_buf, elt->obj, size*count); |
442 | 1211 |
771 | 1212 /* Store new offsets into all pointers in block */ |
1213 pdump_store_new_pointer_offsets (count, pdump_buf, elt->obj, desc, size); | |
1214 } | |
1215 retry_fwrite (desc ? pdump_buf : elt->obj, size, count, pdump_out); | |
1216 } | |
442 | 1217 |
3263 | 1218 #ifdef NEW_GC |
2720 | 1219 /* To be able to relocate during load time, more information about the |
1220 dumped objects are needed: The count (for array-like data | |
1221 structures), the size of the object, and the location in the dumped | |
1222 data. | |
1223 */ | |
1224 static void | |
1225 pdump_dump_mc_data (pdump_block_list_elt *elt, | |
1226 const struct memory_description *UNUSED(desc)) | |
1227 { | |
1228 EMACS_INT rdata = pdump_get_block (elt->obj)->save_offset; | |
1229 int j; | |
1230 PDUMP_WRITE_ALIGNED (int, elt->count); | |
1231 PDUMP_WRITE_ALIGNED (Bytecount, elt->size); | |
1232 for (j = 0; j < elt->count; j++) | |
1233 { | |
1234 PDUMP_WRITE_ALIGNED (EMACS_INT, rdata); | |
1235 rdata += elt->size; | |
1236 } | |
1237 } | |
1238 | |
1239 static void | |
1240 pdump_scan_lisp_objects_by_alignment (void (*f) | |
1241 (pdump_block_list_elt *, | |
1242 const struct memory_description *)) | |
1243 { | |
1244 int align; | |
1245 | |
1246 for (align = ALIGNOF (max_align_t); align; align>>=1) | |
1247 { | |
1248 int i; | |
1249 pdump_block_list_elt *elt; | |
1250 | |
1251 for (i=0; i<lrecord_type_count; i++) | |
1252 if (pdump_object_table[i].align == align) | |
1253 for (elt = pdump_object_table[i].first; elt; elt = elt->next) | |
1254 { | |
1255 f (elt, lrecord_implementations_table[i]->description); | |
1256 } | |
1257 } | |
1258 } | |
1259 | |
1260 static void | |
1261 pdump_scan_non_lisp_objects_by_alignment (void (*f) | |
1262 (pdump_block_list_elt *, | |
1263 const struct memory_description *)) | |
1264 { | |
1265 int align; | |
1266 | |
1267 for (align = ALIGNOF (max_align_t); align; align>>=1) | |
1268 { | |
1269 int i; | |
1270 pdump_block_list_elt *elt; | |
1271 | |
1272 for (i=0; i<pdump_desc_table.count; i++) | |
1273 { | |
1274 pdump_desc_list_elt list = pdump_desc_table.list[i]; | |
1275 if (list.list.align == align) | |
1276 for (elt = list.list.first; elt; elt = elt->next) | |
1277 f (elt, list.desc); | |
1278 } | |
1279 | |
1280 for (elt = pdump_opaque_data_list.first; elt; elt = elt->next) | |
1281 if (pdump_size_to_align (elt->size) == align) | |
1282 f (elt, 0); | |
1283 } | |
1284 } | |
1285 | |
1286 | |
1287 | |
1288 static void | |
1289 pdump_reloc_one_mc (void *data, const struct memory_description *desc) | |
1290 { | |
1291 int pos; | |
1292 | |
1293 for (pos = 0; desc[pos].type != XD_END; pos++) | |
1294 { | |
1295 const struct memory_description *desc1 = &desc[pos]; | |
1296 void *rdata = | |
1297 (Rawbyte *) data + lispdesc_indirect_count (desc1->offset, | |
1298 desc, data); | |
1299 | |
1300 union_switcheroo: | |
1301 | |
1302 /* If the flag says don't dump, then don't dump. */ | |
1303 if ((desc1->flags) & XD_FLAG_NO_PDUMP) | |
1304 continue; | |
1305 | |
1306 switch (desc1->type) | |
1307 { | |
1308 case XD_BYTECOUNT: | |
1309 case XD_ELEMCOUNT: | |
1310 case XD_HASHCODE: | |
1311 case XD_INT: | |
1312 case XD_LONG: | |
1313 case XD_INT_RESET: | |
1314 break; | |
5169
6c6d78781d59
cleanup of code related to xfree(), better KKCC backtrace capabilities, document XD_INLINE_LISP_OBJECT_BLOCK_PTR, fix some memory leaks, other code cleanup
Ben Wing <ben@xemacs.org>
parents:
5059
diff
changeset
|
1315 case XD_INLINE_LISP_OBJECT_BLOCK_PTR: |
2720 | 1316 case XD_OPAQUE_DATA_PTR: |
1317 case XD_ASCII_STRING: | |
1318 case XD_BLOCK_PTR: | |
1319 case XD_LO_LINK: | |
1320 { | |
1321 EMACS_INT ptr = *(EMACS_INT *) rdata; | |
1322 if (ptr) | |
1323 *(EMACS_INT *) rdata = pdump_get_mc_addr ((void *) ptr); | |
1324 break; | |
1325 } | |
1326 case XD_LISP_OBJECT: | |
1327 { | |
1328 Lisp_Object *pobj = (Lisp_Object *) rdata; | |
1329 | |
1330 assert (desc1->data1 == 0); | |
1331 | |
1332 if (POINTER_TYPE_P (XTYPE (*pobj)) | |
1333 && ! EQ (*pobj, Qnull_pointer)) | |
3092 | 1334 *pobj = wrap_pointer_1 ((Rawbyte *) pdump_get_mc_addr |
2720 | 1335 (XPNTR (*pobj))); |
1336 break; | |
1337 } | |
1338 case XD_LISP_OBJECT_ARRAY: | |
1339 { | |
1340 EMACS_INT num = lispdesc_indirect_count (desc1->data1, desc, | |
1341 data); | |
1342 int j; | |
1343 | |
1344 for (j=0; j<num; j++) | |
1345 { | |
1346 Lisp_Object *pobj = (Lisp_Object *) rdata + j; | |
1347 | |
1348 if (POINTER_TYPE_P (XTYPE (*pobj)) | |
1349 && ! EQ (*pobj, Qnull_pointer)) | |
3092 | 1350 *pobj = wrap_pointer_1 ((Rawbyte *) pdump_get_mc_addr |
2775 | 1351 (XPNTR (*pobj))); |
2720 | 1352 } |
1353 break; | |
1354 } | |
1355 case XD_DOC_STRING: | |
1356 { | |
1357 EMACS_INT str = *(EMACS_INT *) rdata; | |
1358 if (str > 0) | |
1359 *(EMACS_INT *) rdata = pdump_get_mc_addr ((void *) str); | |
1360 break; | |
1361 } | |
1362 case XD_BLOCK_ARRAY: | |
1363 { | |
1364 EMACS_INT num = lispdesc_indirect_count (desc1->data1, desc, | |
1365 data); | |
1366 int j; | |
1367 const struct sized_memory_description *sdesc = | |
1368 lispdesc_indirect_description (data, desc1->data2.descr); | |
1369 Bytecount size = lispdesc_block_size (rdata, sdesc); | |
1370 | |
1371 /* Note: We are recursing over data in the block itself */ | |
1372 for (j = 0; j < num; j++) | |
1373 pdump_reloc_one_mc ((Rawbyte *) rdata + j * size, | |
1374 sdesc->description); | |
1375 | |
1376 break; | |
1377 } | |
1378 case XD_UNION: | |
1379 case XD_UNION_DYNAMIC_SIZE: | |
1380 desc1 = lispdesc_process_xd_union (desc1, desc, data); | |
1381 if (desc1) | |
1382 goto union_switcheroo; | |
1383 break; | |
1384 | |
1385 case XD_OPAQUE_PTR_CONVERTIBLE: | |
1386 { | |
1387 pdump_cv_ptr_load_info *p = pdump_loaded_cv_ptr + *(EMACS_INT *)rdata; | |
1388 if (!p->adr) | |
1389 p->adr = desc1->data2.funcs->deconvert(0, | |
1390 pdump_start + p->save_offset, | |
1391 p->size); | |
1392 *(void **)rdata = p->adr; | |
1393 break; | |
1394 } | |
1395 | |
1396 case XD_OPAQUE_DATA_CONVERTIBLE: | |
1397 { | |
1398 EMACS_INT dest_offset = (EMACS_INT) rdata; | |
1399 EMACS_INT indirect = | |
1400 lispdesc_indirect_count (desc1->offset, desc, data); | |
1401 pdump_cv_data_dump_info *p; | |
1402 | |
1403 for(p = pdump_loaded_cv_data; | |
1404 pdump_get_indirect_mc_addr (p->dest_offset, indirect) | |
1405 != dest_offset; | |
1406 p++); | |
1407 | |
1408 desc1->data2.funcs->deconvert(rdata, pdump_start + p->save_offset, | |
1409 p->size); | |
1410 break; | |
1411 } | |
1412 | |
1413 default: | |
1414 pdump_unsupported_dump_type (desc1->type, 0); | |
1415 } | |
1416 } | |
1417 } | |
3263 | 1418 #else /* not NEW_GC */ |
771 | 1419 /* Relocate a single memory block at DATA, described by DESC, from its |
1204 | 1420 assumed load location to its actual one by adding DELTA to all pointers |
1421 in the block. Does not recursively relocate any other memory blocks | |
1422 pointed to. (We already have a list of all memory blocks in the dump | |
1423 file.) This is used once the dump data has been loaded back in, both | |
2367 | 1424 for blocks sitting in the dumped data (former heap blocks) and in global |
1425 data-sgment blocks whose contents have been restored from the dumped | |
1426 data. */ | |
442 | 1427 |
1428 static void | |
458 | 1429 pdump_reloc_one (void *data, EMACS_INT delta, |
1204 | 1430 const struct memory_description *desc) |
442 | 1431 { |
1432 int pos; | |
1433 | |
1434 for (pos = 0; desc[pos].type != XD_END; pos++) | |
1435 { | |
1204 | 1436 const struct memory_description *desc1 = &desc[pos]; |
2367 | 1437 void *rdata = |
1438 (Rawbyte *) data + lispdesc_indirect_count (desc1->offset, | |
1439 desc, data); | |
1204 | 1440 |
1441 union_switcheroo: | |
1442 | |
1443 /* If the flag says don't dump, then don't dump. */ | |
1444 if ((desc1->flags) & XD_FLAG_NO_PDUMP) | |
1445 continue; | |
1446 | |
1447 switch (desc1->type) | |
442 | 1448 { |
665 | 1449 case XD_BYTECOUNT: |
1450 case XD_ELEMCOUNT: | |
1451 case XD_HASHCODE: | |
442 | 1452 case XD_INT: |
1453 case XD_LONG: | |
1454 case XD_INT_RESET: | |
1455 break; | |
1456 case XD_OPAQUE_DATA_PTR: | |
2367 | 1457 case XD_ASCII_STRING: |
1458 case XD_BLOCK_PTR: | |
442 | 1459 case XD_LO_LINK: |
1460 { | |
1461 EMACS_INT ptr = *(EMACS_INT *)rdata; | |
1462 if (ptr) | |
1463 *(EMACS_INT *)rdata = ptr+delta; | |
1464 break; | |
1465 } | |
1466 case XD_LISP_OBJECT: | |
1467 { | |
1468 Lisp_Object *pobj = (Lisp_Object *) rdata; | |
1469 | |
1204 | 1470 assert (desc1->data1 == 0); |
442 | 1471 |
1472 if (POINTER_TYPE_P (XTYPE (*pobj)) | |
1473 && ! EQ (*pobj, Qnull_pointer)) | |
2367 | 1474 *pobj = wrap_pointer_1 ((Rawbyte *) XPNTR (*pobj) + delta); |
442 | 1475 |
1476 break; | |
1477 } | |
1478 case XD_LISP_OBJECT_ARRAY: | |
1479 { | |
1204 | 1480 EMACS_INT num = lispdesc_indirect_count (desc1->data1, desc, |
1481 data); | |
442 | 1482 int j; |
1483 | |
1484 for (j=0; j<num; j++) | |
1485 { | |
1486 Lisp_Object *pobj = (Lisp_Object *) rdata + j; | |
1487 | |
1488 if (POINTER_TYPE_P (XTYPE (*pobj)) | |
1489 && ! EQ (*pobj, Qnull_pointer)) | |
2367 | 1490 *pobj = wrap_pointer_1 ((Rawbyte *) XPNTR (*pobj) + |
1491 delta); | |
442 | 1492 } |
1493 break; | |
1494 } | |
1495 case XD_DOC_STRING: | |
1496 { | |
1497 EMACS_INT str = *(EMACS_INT *)rdata; | |
1498 if (str > 0) | |
1499 *(EMACS_INT *)rdata = str + delta; | |
1500 break; | |
1501 } | |
2367 | 1502 case XD_BLOCK_ARRAY: |
771 | 1503 { |
1204 | 1504 EMACS_INT num = lispdesc_indirect_count (desc1->data1, desc, |
1505 data); | |
771 | 1506 int j; |
1204 | 1507 const struct sized_memory_description *sdesc = |
2551 | 1508 lispdesc_indirect_description (data, desc1->data2.descr); |
2367 | 1509 Bytecount size = lispdesc_block_size (rdata, sdesc); |
771 | 1510 |
1511 /* Note: We are recursing over data in the block itself */ | |
1512 for (j = 0; j < num; j++) | |
2367 | 1513 pdump_reloc_one ((Rawbyte *) rdata + j * size, delta, |
771 | 1514 sdesc->description); |
1515 | |
1516 break; | |
1517 } | |
1204 | 1518 case XD_UNION: |
1519 case XD_UNION_DYNAMIC_SIZE: | |
1520 desc1 = lispdesc_process_xd_union (desc1, desc, data); | |
1521 if (desc1) | |
1522 goto union_switcheroo; | |
1523 break; | |
771 | 1524 |
2551 | 1525 case XD_OPAQUE_PTR_CONVERTIBLE: |
1526 { | |
1527 pdump_cv_ptr_load_info *p = pdump_loaded_cv_ptr + *(EMACS_INT *)rdata; | |
1528 if (!p->adr) | |
1529 p->adr = desc1->data2.funcs->deconvert(0, pdump_start + | |
1530 p->save_offset, p->size); | |
1531 *(void **)rdata = p->adr; | |
1532 break; | |
1533 } | |
1534 | |
1535 case XD_OPAQUE_DATA_CONVERTIBLE: | |
1536 { | |
1537 EMACS_INT dest_offset = (Rawbyte *)rdata - pdump_start; | |
1538 pdump_cv_data_dump_info *p; | |
1539 | |
1540 for(p = pdump_loaded_cv_data; p->dest_offset != dest_offset; p++); | |
1541 | |
1542 desc1->data2.funcs->deconvert(rdata, pdump_start + p->save_offset, | |
1543 p->size); | |
1544 break; | |
1545 } | |
1546 | |
442 | 1547 default: |
1333 | 1548 pdump_unsupported_dump_type (desc1->type, 0); |
1204 | 1549 } |
442 | 1550 } |
1551 } | |
3263 | 1552 #endif /* not NEW_GC */ |
442 | 1553 |
1554 static void | |
2367 | 1555 pdump_allocate_offset (pdump_block_list_elt *elt, |
2286 | 1556 const struct memory_description *UNUSED (desc)) |
442 | 1557 { |
665 | 1558 Bytecount size = elt->count * elt->size; |
460 | 1559 elt->save_offset = cur_offset; |
2367 | 1560 if (size > max_size) |
442 | 1561 max_size = size; |
1562 cur_offset += size; | |
1563 } | |
1564 | |
2551 | 1565 /* Write out to global file descriptor PDUMP_OUT the result of an |
1566 external element. It's just opaque data. */ | |
1567 | |
1568 static void | |
1569 pdump_dump_cv_data (pdump_cv_data_info *elt) | |
1570 { | |
1571 retry_fwrite (elt->data, elt->size, 1, pdump_out); | |
1572 } | |
1573 | |
1574 static void | |
1575 pdump_dump_cv_ptr (pdump_cv_ptr_info *elt) | |
1576 { | |
1577 retry_fwrite (elt->data, elt->size, 1, pdump_out); | |
1578 } | |
1579 | |
1580 static void | |
1581 pdump_allocate_offset_cv_data (pdump_cv_data_info *elt) | |
1582 { | |
1583 elt->save_offset = cur_offset; | |
1584 if (elt->size>max_size) | |
1585 max_size = elt->size; | |
1586 cur_offset += elt->size; | |
1587 } | |
1588 | |
1589 static void | |
1590 pdump_allocate_offset_cv_ptr (pdump_cv_ptr_info *elt) | |
1591 { | |
1592 elt->save_offset = cur_offset; | |
1593 if (elt->size>max_size) | |
1594 max_size = elt->size; | |
1595 cur_offset += elt->size; | |
1596 } | |
1597 | |
2367 | 1598 /* Traverse through all the heap blocks, once the "register" stage of |
1599 dumping has finished. To compress space as much as possible, we | |
1600 logically sort all blocks by alignment, hitting all blocks with | |
1601 alignment == the maximum (which may be 8 bytes, for doubles), then | |
1602 all blocks with the next lower alignment (4 bytes), etc. | |
1603 | |
1604 Within each alignment we hit | |
1605 | |
1606 -- first the Lisp objects, type-by-type | |
1607 | |
1608 -- then the heap memory blocks that are not Lisp objects, description-by- | |
1609 description -- i.e. all blocks with the same description will be | |
1610 placed together | |
1611 | |
1612 -- then the "opaque" data objects declared as XD_OPAQUE_DATA_PTR, | |
1613 XD_ASCII_STRING and XD_DOC_STRING. | |
1614 | |
1615 The idea is to have as little blank space as possible in the laid-out | |
1616 data. | |
1617 | |
1618 For each item that we have hit, we process it by calling F, the function | |
1619 passed it. In dumper.c, pdump_scan_by_alignment() is called twice with | |
1620 two different functions -- pdump_allocate_offset() in stage 2 to compute | |
1621 the offset to each block, and pdump_dump_data() in stage 3 to | |
1622 successively write each block to disk. | |
1623 | |
1624 It's extremely important that the SAME traversal order gets invoked | |
1625 in both stage 2 and 3. | |
1626 */ | |
1627 | |
442 | 1628 static void |
2367 | 1629 pdump_scan_by_alignment (void (*f)(pdump_block_list_elt *, |
2551 | 1630 const struct memory_description *), |
1631 void (*g)(pdump_cv_data_info *), | |
1632 void (*h)(pdump_cv_ptr_info *)) | |
442 | 1633 { |
460 | 1634 int align; |
1635 | |
1636 for (align = ALIGNOF (max_align_t); align; align>>=1) | |
442 | 1637 { |
460 | 1638 int i; |
2367 | 1639 pdump_block_list_elt *elt; |
460 | 1640 |
442 | 1641 for (i=0; i<lrecord_type_count; i++) |
1642 if (pdump_object_table[i].align == align) | |
460 | 1643 for (elt = pdump_object_table[i].first; elt; elt = elt->next) |
1644 f (elt, lrecord_implementations_table[i]->description); | |
442 | 1645 |
2367 | 1646 for (i=0; i<pdump_desc_table.count; i++) |
460 | 1647 { |
2367 | 1648 pdump_desc_list_elt list = pdump_desc_table.list[i]; |
460 | 1649 if (list.list.align == align) |
1650 for (elt = list.list.first; elt; elt = elt->next) | |
1204 | 1651 f (elt, list.desc); |
460 | 1652 } |
442 | 1653 |
460 | 1654 for (elt = pdump_opaque_data_list.first; elt; elt = elt->next) |
1655 if (pdump_size_to_align (elt->size) == align) | |
1656 f (elt, 0); | |
2551 | 1657 |
1658 for (i=0; i < Dynarr_length (pdump_cv_data); i++) | |
1659 if (pdump_size_to_align (Dynarr_atp (pdump_cv_data, i)->size) == align) | |
1660 g (Dynarr_atp (pdump_cv_data, i)); | |
1661 | |
1662 for (i=0; i < Dynarr_length (pdump_cv_ptr); i++) | |
1663 if (pdump_size_to_align (Dynarr_atp (pdump_cv_ptr, i)->size) == align) | |
1664 h (Dynarr_atp (pdump_cv_ptr, i)); | |
442 | 1665 } |
1666 } | |
1667 | |
2551 | 1668 static void |
1669 pdump_dump_cv_data_info (void) | |
1670 { | |
1671 int i; | |
1672 Elemcount count = Dynarr_length (pdump_cv_data); | |
1673 pdump_cv_data_dump_info *data = alloca_array (pdump_cv_data_dump_info, count); | |
1674 for (i = 0; i < count; i++) | |
1675 { | |
1676 data[i].dest_offset = Dynarr_at (pdump_cv_data, i).dest_offset; | |
1677 data[i].save_offset = Dynarr_at (pdump_cv_data, i).save_offset; | |
1678 data[i].size = Dynarr_at (pdump_cv_data, i).size; | |
1679 } | |
1680 | |
1681 PDUMP_ALIGN_OUTPUT (pdump_cv_data_dump_info); | |
1682 retry_fwrite (data, sizeof (pdump_cv_data_dump_info), count, pdump_out); | |
1683 } | |
1684 | |
442 | 1685 static void |
2551 | 1686 pdump_dump_cv_ptr_info (void) |
1687 { | |
1688 int i; | |
1689 Elemcount count = Dynarr_length (pdump_cv_ptr); | |
1690 pdump_cv_ptr_dump_info *data = alloca_array (pdump_cv_ptr_dump_info, count); | |
1691 for (i = 0; i < count; i++) | |
1692 { | |
1693 data[i].save_offset = Dynarr_at (pdump_cv_ptr, i).save_offset; | |
1694 data[i].size = Dynarr_at (pdump_cv_ptr, i).size; | |
1695 } | |
1696 | |
1697 PDUMP_ALIGN_OUTPUT (pdump_cv_ptr_dump_info); | |
1698 retry_fwrite (data, sizeof (pdump_cv_ptr_dump_info), count, pdump_out); | |
1699 } | |
1700 | |
3103 | 1701 /* Dump out the root block pointers, part of stage 3 (the "WRITE" stage) of |
1702 dumping. For each pointer we dump out a structure containing the | |
1703 location of the pointer and its value, replaced by the appropriate | |
1704 offset into the dumped data. */ | |
1705 | |
2551 | 1706 static void |
2367 | 1707 pdump_dump_root_block_ptrs (void) |
442 | 1708 { |
1709 int i; | |
2367 | 1710 Elemcount count = Dynarr_length (pdump_root_block_ptrs); |
458 | 1711 pdump_static_pointer *data = alloca_array (pdump_static_pointer, count); |
1712 for (i = 0; i < count; i++) | |
442 | 1713 { |
1333 | 1714 data[i].address = |
2367 | 1715 (Rawbyte **) Dynarr_atp (pdump_root_block_ptrs, i)->ptraddress; |
1333 | 1716 data[i].value = |
2367 | 1717 (Rawbyte *) pdump_get_block (* data[i].address)->save_offset; |
442 | 1718 } |
458 | 1719 PDUMP_ALIGN_OUTPUT (pdump_static_pointer); |
771 | 1720 retry_fwrite (data, sizeof (pdump_static_pointer), count, pdump_out); |
442 | 1721 } |
1722 | |
2367 | 1723 /* Dump out the root blocks, part of stage 3 (the "WRITE" stage) of |
1724 dumping. For each block we dump a structure containing info about the | |
1725 block (its location, size and description) and then the block itself, | |
1726 with its pointers replaced with offsets into the dump data. */ | |
1727 | |
442 | 1728 static void |
1204 | 1729 pdump_dump_root_blocks (void) |
442 | 1730 { |
1731 int i; | |
1204 | 1732 for (i = 0; i < Dynarr_length (pdump_root_blocks); i++) |
442 | 1733 { |
2367 | 1734 pdump_root_block info = Dynarr_at (pdump_root_blocks, i); |
1735 PDUMP_WRITE_ALIGNED (pdump_root_block, info); | |
1736 | |
1737 if (info.desc) | |
1738 { | |
1739 /* Copy to temporary buffer */ | |
1740 memcpy (pdump_buf, info.blockaddr, info.size); | |
1741 | |
1742 /* Store new offsets into all pointers in block */ | |
1743 pdump_store_new_pointer_offsets (1, pdump_buf, info.blockaddr, | |
1744 info.desc, info.size); | |
1745 } | |
1746 retry_fwrite (info.desc ? pdump_buf : info.blockaddr, | |
1747 info.size, 1, pdump_out); | |
442 | 1748 } |
1749 } | |
1750 | |
1751 static void | |
1752 pdump_dump_rtables (void) | |
1753 { | |
452 | 1754 int i; |
2367 | 1755 pdump_block_list_elt *elt; |
442 | 1756 pdump_reloc_table rt; |
1757 | |
1758 for (i=0; i<lrecord_type_count; i++) | |
1759 { | |
460 | 1760 elt = pdump_object_table[i].first; |
1761 if (!elt) | |
442 | 1762 continue; |
1763 rt.desc = lrecord_implementations_table[i]->description; | |
1764 rt.count = pdump_object_table[i].count; | |
458 | 1765 PDUMP_WRITE_ALIGNED (pdump_reloc_table, rt); |
460 | 1766 while (elt) |
442 | 1767 { |
2367 | 1768 EMACS_INT rdata = pdump_get_block (elt->obj)->save_offset; |
3092 | 1769 #ifdef NEW_GC |
1770 int j; | |
1771 for (j=0; j<elt->count; j++) | |
1772 { | |
1773 PDUMP_WRITE_ALIGNED (EMACS_INT, rdata); | |
1774 rdata += elt->size; | |
1775 } | |
1776 #else /* not NEW_GC */ | |
458 | 1777 PDUMP_WRITE_ALIGNED (EMACS_INT, rdata); |
3092 | 1778 #endif /* not NEW_GC */ |
460 | 1779 elt = elt->next; |
442 | 1780 } |
1781 } | |
1782 | |
1783 rt.desc = 0; | |
1784 rt.count = 0; | |
458 | 1785 PDUMP_WRITE_ALIGNED (pdump_reloc_table, rt); |
442 | 1786 |
2367 | 1787 for (i=0; i<pdump_desc_table.count; i++) |
442 | 1788 { |
2367 | 1789 elt = pdump_desc_table.list[i].list.first; |
1790 rt.desc = pdump_desc_table.list[i].desc; | |
1791 rt.count = pdump_desc_table.list[i].list.count; | |
458 | 1792 PDUMP_WRITE_ALIGNED (pdump_reloc_table, rt); |
460 | 1793 while (elt) |
442 | 1794 { |
2367 | 1795 EMACS_INT rdata = pdump_get_block (elt->obj)->save_offset; |
452 | 1796 int j; |
460 | 1797 for (j=0; j<elt->count; j++) |
442 | 1798 { |
458 | 1799 PDUMP_WRITE_ALIGNED (EMACS_INT, rdata); |
460 | 1800 rdata += elt->size; |
442 | 1801 } |
460 | 1802 elt = elt->next; |
442 | 1803 } |
1804 } | |
1805 rt.desc = 0; | |
1806 rt.count = 0; | |
458 | 1807 PDUMP_WRITE_ALIGNED (pdump_reloc_table, rt); |
442 | 1808 } |
1809 | |
1810 static void | |
1204 | 1811 pdump_dump_root_lisp_objects (void) |
442 | 1812 { |
1204 | 1813 Elemcount count = (Dynarr_length (pdump_root_lisp_objects) + |
647 | 1814 Dynarr_length (pdump_weak_object_chains)); |
665 | 1815 Elemcount i; |
442 | 1816 |
665 | 1817 PDUMP_WRITE_ALIGNED (Elemcount, count); |
458 | 1818 PDUMP_ALIGN_OUTPUT (pdump_static_Lisp_Object); |
442 | 1819 |
1204 | 1820 for (i = 0; i < Dynarr_length (pdump_root_lisp_objects); i++) |
442 | 1821 { |
458 | 1822 pdump_static_Lisp_Object obj; |
1204 | 1823 obj.address = Dynarr_at (pdump_root_lisp_objects, i); |
458 | 1824 obj.value = * obj.address; |
460 | 1825 |
458 | 1826 if (POINTER_TYPE_P (XTYPE (obj.value))) |
619 | 1827 obj.value = |
2367 | 1828 wrap_pointer_1 ((void *) pdump_get_block (XRECORD_LHEADER |
617 | 1829 (obj.value))->save_offset); |
460 | 1830 |
458 | 1831 PDUMP_WRITE (pdump_static_Lisp_Object, obj); |
442 | 1832 } |
1833 | |
2367 | 1834 for (i = 0; i < Dynarr_length (pdump_weak_object_chains); i++) |
442 | 1835 { |
2367 | 1836 pdump_block_list_elt *elt; |
458 | 1837 pdump_static_Lisp_Object obj; |
442 | 1838 |
458 | 1839 obj.address = Dynarr_at (pdump_weak_object_chains, i); |
1840 obj.value = * obj.address; | |
460 | 1841 |
442 | 1842 for (;;) |
1843 { | |
1204 | 1844 const struct memory_description *desc; |
442 | 1845 int pos; |
2367 | 1846 elt = pdump_get_block (XRECORD_LHEADER (obj.value)); |
460 | 1847 if (elt) |
442 | 1848 break; |
458 | 1849 desc = XRECORD_LHEADER_IMPLEMENTATION (obj.value)->description; |
442 | 1850 for (pos = 0; desc[pos].type != XD_LO_LINK; pos++) |
1851 assert (desc[pos].type != XD_END); | |
1852 | |
1204 | 1853 /* #### Figure out how to handle indirect offsets here. */ |
1854 assert (!XD_IS_INDIRECT (desc[pos].offset)); | |
1855 obj.value = | |
1856 * (Lisp_Object *) (desc[pos].offset + | |
2367 | 1857 (Rawbyte *) (XRECORD_LHEADER (obj.value))); |
442 | 1858 } |
619 | 1859 obj.value = wrap_pointer_1 ((void *) elt->save_offset); |
442 | 1860 |
458 | 1861 PDUMP_WRITE (pdump_static_Lisp_Object, obj); |
442 | 1862 } |
1863 } | |
1864 | |
2367 | 1865 |
1866 /*######################################################################## | |
1867 # Pdump # | |
1868 ######################################################################## | |
1869 | |
1870 [ben] | |
1871 | |
1872 DISCUSSION OF DUMPING: | |
1873 | |
1874 The idea of dumping is to record the state of XEmacs in a file, so that | |
1875 it can be reloaded later. This avoids having to reload all of the basic | |
1876 Lisp code each time XEmacs is run, which is a rather time-consuming | |
1877 process. (Less so on new machines, but still noticeable. As an example | |
1878 of a program with similar issues but which does not have a dumping | |
1879 process and as a result has a slow startup time, consider Adobe Photoshop | |
1880 5.0 or Adobe Photoshop Elements 2.0.) | |
1881 | |
1882 We don't actually record ALL the state of XEmacs (some of it, for example, | |
1883 is dependent on the run-time environment and needs to be initialized | |
1884 whenever XEmacs is run), but whatever state we don't record needs to be | |
1885 reinitialized every time XEmacs is run. | |
1886 | |
1887 The old way of dumping was to make a new executable file with the data | |
1888 segment expanded to contain the heap and written out from memory. This | |
1889 is what the unex* files do. Unfortunately this process is extremely | |
1890 system-specific and breaks easily with OS changes. | |
1891 | |
1892 Another simple, more portable trick, the "static heap" method, involves | |
1893 replacing the allocator with our own allocator which allocates all space | |
1894 out of a very large array declared in our data segment until we run out, | |
1895 then uses the underlying malloc() to start allocating on the heap. If we | |
1896 ensure that the large array is big enough to hold all data allocated | |
1897 during the dump stage, then all of the data we need to save is in the | |
1898 data segment, and it's easy to calculate the location and size of the | |
1899 data segment we want to save (we don't want to record and reinitialize | |
1900 the data segment of library functions) by using appropriately declared | |
1901 variables in the first and last file linked. This method is known as the | |
1902 "static heap" method, and is used by the non-pdump version of the dumper | |
1903 under Cygwin, and was also used under VMS and in Win-Emacs. | |
1904 | |
1905 The "static heap" method works well in practice. Nonetheless, a more | |
1906 complex method of dumping was written by Olivier Galibert, which requires | |
1907 that structural descriptions of all data allocated in the heap be provided | |
1908 and the roots of all pointers into the heap be noted through function calls | |
1909 to the pdump API. This way, all the heap data can be traversed and written | |
1910 out to a file, and then reloaded at run-time and the pointers relocated to | |
1911 point at the new location of the loaded data. This is the "pdump" method | |
1912 used in this file. | |
1913 | |
1914 There are two potential advantages of "pdump" over the "static heap": | |
1915 | |
1916 (1) It doesn't require any tricks to calculate the beginning and end of | |
1917 the data segment, or even that the XEmacs section of the data segment | |
1918 be contiguous. (It's not clear whether this is an issue in practice.) | |
1919 (2) Potentially, it could handle an OS that does not always load the | |
1920 static data segment at a predictable location. The "static heap" | |
1921 method by its nature needs the data segment to stay in the same place | |
1922 from invocation to invocation, since it simply dumps out memory and | |
1923 reloads it, without any pointer relocation. I say "potentially" | |
1924 because as it is currently written pdump does assume that the data | |
1925 segment is never relocated. However, changing pdump to remove this | |
1926 assumption is probably not difficult, as all the mechanism to handle | |
1927 pointer relocation is already present. | |
1928 | |
1929 | |
1930 DISCUSSION OF PDUMP WORKINGS: | |
1931 | |
1932 See man/internals/internals.texi for more information. | |
1933 | |
1934 NOTE that we have two kinds of memory to handle: memory on the heap | |
1935 (i.e. allocated through malloc()) or the like, and static memory in the | |
1936 data segment of the program, i.e. stuff declared as global or static. | |
1937 All heap memory needs to be written out to the dump file and reproduced | |
1938 (i.e. reloaded and any necessary relocations performed). Data-segment | |
1939 memory that is not statically initialized (i.e. through declarations in | |
1940 the C code) needs either to be written out and reloaded, or | |
1941 reinitialized. In addition, any pointers in data-segment memory to heap | |
1942 memory must be written out, reloaded and relocated. | |
1943 | |
1944 NOTE that we currently don't handle relocation of pointers into data- | |
1945 segment memory. (See overview discussion above.) These are treated in | |
1946 the descriptions as opaque data not needing relocation. If this becomes a | |
1947 problem, it can be fixed through new kinds of types in | |
1948 enum memory_description_type. | |
1949 | |
1950 Three basic steps to dumping out: | |
1951 | |
1952 (1) "REGISTER": | |
1953 Starting with all sources of relocatable memory (currently this means | |
1954 all data-segment pointers to heap memory -- see above about pointers | |
1955 to data-segment memory), recursively traverse the tree of pointers | |
1956 and "register" (make a note of) every memory block seen. | |
1957 | |
1958 (2) "LAYOUT": | |
1959 Go through all of the registered blocks and compute the location of | |
1960 each one in the dump data (i.e. the "offset" that will be added to | |
1961 the address corresponding to start of the loaded-in data to get the | |
1962 new pointer referring to this block). The blocks will be laid out | |
1963 sequentially according to the order we traverse them. Also note the | |
1964 maximum-sized block for use in step 3. | |
1965 | |
1966 (3) "WRITE": | |
1967 After writing some header stuff, go through all of the registered | |
1968 blocks and write out each one to the dump file. Note that we are | |
1969 simply writing out the blocks sequentially as we see them, and our | |
1970 traversal path is identical to that in step 2, so blocks will end up | |
1971 at the locations computed for them. In order to write out a block, | |
1972 first copy it to a temporary location (hence the maximum-block-size | |
1973 computation in the previous step), then for each relocatable pointer | |
1974 in the block, write in its place the offset to the heap block in the | |
1975 dump data. When the dump data is loaded, the address of the | |
1976 beginning of the dump data will be added to the offset in each | |
1977 pointer, and thence become accurate. | |
1978 | |
1979 --ben | |
1980 */ | |
1981 | |
442 | 1982 void |
1983 pdump (void) | |
1984 { | |
1985 int i; | |
1986 Lisp_Object t_console, t_device, t_frame; | |
1987 int none; | |
458 | 1988 pdump_header header; |
442 | 1989 |
1204 | 1990 in_pdump = 1; |
1991 | |
2367 | 1992 pdump_object_table = xnew_array (pdump_block_list, lrecord_type_count); |
460 | 1993 pdump_alert_undump_object = xnew_array (int, lrecord_type_count); |
1994 | |
1995 assert (ALIGNOF (max_align_t) <= pdump_align_table[0]); | |
1996 | |
1997 for (i = 0; i < countof (pdump_align_table); i++) | |
1998 if (pdump_align_table[i] > ALIGNOF (max_align_t)) | |
1999 pdump_align_table[i] = ALIGNOF (max_align_t); | |
2000 | |
446 | 2001 flush_all_buffer_local_cache (); |
2002 | |
442 | 2003 /* These appear in a DEFVAR_LISP, which does a staticpro() */ |
452 | 2004 t_console = Vterminal_console; Vterminal_console = Qnil; |
2005 t_frame = Vterminal_frame; Vterminal_frame = Qnil; | |
2006 t_device = Vterminal_device; Vterminal_device = Qnil; | |
442 | 2007 |
452 | 2008 dump_add_opaque (&lrecord_implementations_table, |
1204 | 2009 lrecord_type_count * |
2010 sizeof (lrecord_implementations_table[0])); | |
1676 | 2011 #ifdef USE_KKCC |
2012 dump_add_opaque (&lrecord_memory_descriptions, | |
2013 lrecord_type_count | |
2014 * sizeof (lrecord_memory_descriptions[0])); | |
2015 #else /* not USE_KKCC */ | |
452 | 2016 dump_add_opaque (&lrecord_markers, |
2017 lrecord_type_count * sizeof (lrecord_markers[0])); | |
1676 | 2018 #endif /* not USE_KKCC */ |
442 | 2019 |
2367 | 2020 pdump_hash = xnew_array_and_zero (pdump_block_list_elt *, PDUMP_HASHSIZE); |
442 | 2021 |
2367 | 2022 for (i = 0; i<lrecord_type_count; i++) |
442 | 2023 { |
2024 pdump_object_table[i].first = 0; | |
460 | 2025 pdump_object_table[i].align = ALIGNOF (max_align_t); |
442 | 2026 pdump_object_table[i].count = 0; |
2027 pdump_alert_undump_object[i] = 0; | |
2028 } | |
2367 | 2029 pdump_desc_table.count = 0; |
2030 pdump_desc_table.size = -1; | |
442 | 2031 |
2032 pdump_opaque_data_list.first = 0; | |
460 | 2033 pdump_opaque_data_list.align = ALIGNOF (max_align_t); |
442 | 2034 pdump_opaque_data_list.count = 0; |
1204 | 2035 pdump_depth = 0; |
442 | 2036 |
2551 | 2037 pdump_cv_data = Dynarr_new2 (pdump_cv_data_info_dynarr, pdump_cv_data_info); |
2038 pdump_cv_ptr = Dynarr_new2 (pdump_cv_ptr_info_dynarr, pdump_cv_ptr_info); | |
2039 | |
2367 | 2040 /* (I) The "register" stage: Note all heap memory blocks to be relocated |
2041 */ | |
2042 | |
2043 /* Try various roots of accessibility: */ | |
2044 | |
2045 /* (1) Lisp objects, both those declared using DEFVAR_LISP*() and those | |
2046 staticpro()d. */ | |
1204 | 2047 for (i = 0; i < Dynarr_length (pdump_root_lisp_objects); i++) |
2048 pdump_register_object (* Dynarr_at (pdump_root_lisp_objects, i)); | |
442 | 2049 |
2050 none = 1; | |
2367 | 2051 for (i = 0; i < lrecord_type_count; i++) |
442 | 2052 if (pdump_alert_undump_object[i]) |
2053 { | |
2054 if (none) | |
2367 | 2055 stderr_out ("Undumpable types list :\n"); |
442 | 2056 none = 0; |
2367 | 2057 stderr_out (" - %s (%d)\n", lrecord_implementations_table[i]->name, |
2058 pdump_alert_undump_object[i]); | |
442 | 2059 } |
2060 if (!none) | |
1204 | 2061 { |
2062 in_pdump = 0; | |
2063 return; | |
2064 } | |
442 | 2065 |
2367 | 2066 /* (2) Register out the data-segment pointer variables to heap blocks */ |
2067 for (i = 0; i < Dynarr_length (pdump_root_block_ptrs); i++) | |
452 | 2068 { |
2367 | 2069 pdump_root_block_ptr info = Dynarr_at (pdump_root_block_ptrs, i); |
2070 pdump_register_block (*(info.ptraddress), info.desc->size, | |
2071 info.desc->description, 1); | |
452 | 2072 } |
442 | 2073 |
2367 | 2074 /* (3) Register out the data-segment blocks, maybe with pointers to heap |
2075 blocks */ | |
2076 for (i = 0; i < Dynarr_length (pdump_root_blocks); i++) | |
2077 { | |
2078 pdump_root_block *info = Dynarr_atp (pdump_root_blocks, i); | |
2079 if (info->desc) | |
2080 { | |
2081 /* Size may have been given as 0 meaning "compute later". | |
2082 Compute now and update. If no DESC, size must always be | |
2083 correct as there is no other way of computing it. */ | |
2084 info->size = lispdesc_block_size_1 (info->blockaddr, info->size, | |
2085 info->desc); | |
2086 pdump_register_block_contents (info->blockaddr, info->size, | |
2087 info->desc, 1); | |
2088 } | |
2089 } | |
2090 | |
2091 /* (II) The "layout" stage: Compute the offsets and max-size */ | |
2092 | |
2093 /* (1) Determine header size */ | |
458 | 2094 memcpy (header.signature, PDUMP_SIGNATURE, PDUMP_SIGNATURE_LEN); |
2095 header.id = dump_id; | |
2096 header.reloc_address = 0; | |
2367 | 2097 header.nb_root_block_ptrs = Dynarr_length (pdump_root_block_ptrs); |
1204 | 2098 header.nb_root_blocks = Dynarr_length (pdump_root_blocks); |
2551 | 2099 header.nb_cv_data = Dynarr_length (pdump_cv_data); |
2100 header.nb_cv_ptr = Dynarr_length (pdump_cv_ptr); | |
442 | 2101 |
826 | 2102 cur_offset = MAX_ALIGN_SIZE (sizeof (header)); |
442 | 2103 max_size = 0; |
2104 | |
2367 | 2105 /* (2) Traverse all heap blocks and compute their offsets; keep track |
2106 of maximum block size seen */ | |
2551 | 2107 pdump_scan_by_alignment (pdump_allocate_offset, |
2108 pdump_allocate_offset_cv_data, | |
2109 pdump_allocate_offset_cv_ptr); | |
826 | 2110 cur_offset = MAX_ALIGN_SIZE (cur_offset); |
458 | 2111 header.stab_offset = cur_offset; |
442 | 2112 |
2367 | 2113 /* (3) Update maximum size based on root (data-segment) blocks */ |
2114 for (i = 0; i < Dynarr_length (pdump_root_blocks); i++) | |
2115 { | |
2116 pdump_root_block info = Dynarr_at (pdump_root_blocks, i); | |
2117 | |
2118 /* If no DESC, no relocation needed and we copy directly instead of | |
2119 into a temp buffer. */ | |
2120 if (info.desc) | |
2121 { | |
2122 if (info.size > max_size) | |
2123 max_size = info.size; | |
2124 } | |
2125 } | |
2126 | |
2127 /* (III) The "write "stage: Dump out the data, storing the offsets in | |
2128 place of pointers whenever we write out memory blocks */ | |
2129 | |
442 | 2130 pdump_buf = xmalloc (max_size); |
2367 | 2131 /* EMACS_PROGNAME is entirely ASCII so this should be Mule-safe */ |
442 | 2132 pdump_fd = open (EMACS_PROGNAME ".dmp", |
2133 O_WRONLY | O_CREAT | O_TRUNC | OPEN_BINARY, 0666); | |
771 | 2134 if (pdump_fd < 0) |
2135 report_file_error ("Unable to open dump file", | |
4952
19a72041c5ed
Mule-izing, various fixes related to char * arguments
Ben Wing <ben@xemacs.org>
parents:
4388
diff
changeset
|
2136 build_ascstring (EMACS_PROGNAME ".dmp")); |
458 | 2137 pdump_out = fdopen (pdump_fd, "w"); |
771 | 2138 if (pdump_out < 0) |
2139 report_file_error ("Unable to open dump file for writing", | |
4952
19a72041c5ed
Mule-izing, various fixes related to char * arguments
Ben Wing <ben@xemacs.org>
parents:
4388
diff
changeset
|
2140 build_ascstring (EMACS_PROGNAME ".dmp")); |
442 | 2141 |
771 | 2142 retry_fwrite (&header, sizeof (header), 1, pdump_out); |
458 | 2143 PDUMP_ALIGN_OUTPUT (max_align_t); |
442 | 2144 |
2551 | 2145 for (i = 0; i < Dynarr_length (pdump_cv_data); i++) |
2146 { | |
2147 pdump_cv_data_info *elt = Dynarr_atp (pdump_cv_data, i); | |
2148 elt->dest_offset = | |
2149 pdump_get_block (elt->object)->save_offset + elt->offset; | |
2150 } | |
2151 | |
2152 for (i = 0; i < Dynarr_length (pdump_cv_ptr); i++) | |
2153 Dynarr_at (pdump_cv_ptr, i).index = i; | |
2154 | |
2155 pdump_scan_by_alignment (pdump_dump_data, pdump_dump_cv_data, pdump_dump_cv_ptr); | |
2156 | |
2157 for (i = 0; i < Dynarr_length (pdump_cv_data); i++) | |
2158 { | |
2159 pdump_cv_data_info *elt = Dynarr_atp (pdump_cv_data, i); | |
2160 if(elt->fcts->convert_free) | |
2161 elt->fcts->convert_free(elt->object, elt->data, elt->size); | |
2162 } | |
2163 | |
2164 for (i = 0; i < Dynarr_length (pdump_cv_ptr); i++) | |
2165 { | |
2166 pdump_cv_ptr_info *elt = Dynarr_atp (pdump_cv_ptr, i); | |
2167 if(elt->fcts->convert_free) | |
2168 elt->fcts->convert_free(elt->object, elt->data, elt->size); | |
2169 } | |
442 | 2170 |
458 | 2171 fseek (pdump_out, header.stab_offset, SEEK_SET); |
442 | 2172 |
3263 | 2173 #ifdef NEW_GC |
2720 | 2174 { |
2175 EMACS_INT zero = 0; | |
2176 pdump_scan_lisp_objects_by_alignment (pdump_dump_mc_data); | |
2177 PDUMP_WRITE_ALIGNED (EMACS_INT, zero); | |
2178 pdump_scan_non_lisp_objects_by_alignment (pdump_dump_mc_data); | |
2179 PDUMP_WRITE_ALIGNED (EMACS_INT, zero); | |
2180 } | |
3263 | 2181 #endif /* NEW_GC */ |
2551 | 2182 pdump_dump_cv_data_info (); |
2183 pdump_dump_cv_ptr_info (); | |
3263 | 2184 #ifdef NEW_GC |
2720 | 2185 pdump_dump_rtables (); |
3263 | 2186 #endif /* NEW_GC */ |
2367 | 2187 pdump_dump_root_block_ptrs (); |
1204 | 2188 pdump_dump_root_blocks (); |
3263 | 2189 #ifndef NEW_GC |
442 | 2190 pdump_dump_rtables (); |
3263 | 2191 #endif /* not NEW_GC */ |
1204 | 2192 pdump_dump_root_lisp_objects (); |
442 | 2193 |
771 | 2194 retry_fclose (pdump_out); |
3964 | 2195 /* pdump_fd is already closed by the preceding call to fclose. |
2196 retry_close (pdump_fd); */ | |
458 | 2197 |
442 | 2198 free (pdump_buf); |
2199 | |
2200 free (pdump_hash); | |
2201 | |
2202 Vterminal_console = t_console; | |
2203 Vterminal_frame = t_frame; | |
2204 Vterminal_device = t_device; | |
1204 | 2205 in_pdump = 0; |
442 | 2206 } |
2207 | |
452 | 2208 static int |
2209 pdump_load_check (void) | |
442 | 2210 { |
2367 | 2211 return (!memcmp (((pdump_header *) pdump_start)->signature, |
452 | 2212 PDUMP_SIGNATURE, PDUMP_SIGNATURE_LEN) |
2213 && ((pdump_header *)pdump_start)->id == dump_id); | |
442 | 2214 } |
2215 | |
458 | 2216 /*----------------------------------------------------------------------*/ |
2217 /* Reading the dump file */ | |
2218 /*----------------------------------------------------------------------*/ | |
452 | 2219 static int |
2220 pdump_load_finish (void) | |
442 | 2221 { |
2222 int i; | |
2367 | 2223 Rawbyte *p; |
442 | 2224 EMACS_INT delta; |
2225 EMACS_INT count; | |
1204 | 2226 pdump_header *header = (pdump_header *) pdump_start; |
442 | 2227 |
3092 | 2228 #ifdef NEW_GC |
2229 /* This is a DEFVAR_BOOL and gets dumped, but the actual value was | |
2230 already determined by vdb_install_signal_handler () in | |
2231 vdb-mprotect.c, which could be different from the value in the | |
2232 dump file. So store it here and restore it after loading the dump | |
2233 file. */ | |
2234 int allow_inc_gc = allow_incremental_gc; | |
2235 #endif /* NEW_GC */ | |
442 | 2236 pdump_end = pdump_start + pdump_length; |
2237 | |
1204 | 2238 delta = ((EMACS_INT) pdump_start) - header->reloc_address; |
458 | 2239 p = pdump_start + header->stab_offset; |
442 | 2240 |
3263 | 2241 #ifdef NEW_GC |
2720 | 2242 pdump_mc_hash = xnew_array_and_zero (mc_addr_elt, PDUMP_HASHSIZE); |
2243 | |
2244 /* Allocate space for each object individually. First the | |
2245 Lisp_Objects, then the blocks. */ | |
2246 count = 2; | |
2247 for (;;) | |
2248 { | |
2824 | 2249 EMACS_INT elt_count = PDUMP_READ_ALIGNED (p, EMACS_INT); |
2720 | 2250 if (elt_count) |
2251 { | |
2252 Rawbyte *mc_addr = 0; | |
2253 Bytecount size = PDUMP_READ_ALIGNED (p, Bytecount); | |
2254 for (i = 0; i < elt_count; i++) | |
2255 { | |
2256 EMACS_INT rdata = PDUMP_READ_ALIGNED (p, EMACS_INT); | |
2257 | |
2258 if (i == 0) | |
2259 { | |
2260 Bytecount real_size = size * elt_count; | |
2261 if (count == 2) | |
2775 | 2262 { |
3092 | 2263 if (elt_count <= 1) |
2264 mc_addr = (Rawbyte *) mc_alloc (real_size); | |
2265 else | |
2266 mc_addr = (Rawbyte *) mc_alloc_array (size, elt_count); | |
2994 | 2267 #ifdef ALLOC_TYPE_STATS |
2775 | 2268 inc_lrecord_stats (real_size, |
2269 (const struct lrecord_header *) | |
3092 | 2270 ((Rawbyte *) rdata + delta)); |
2994 | 2271 #endif /* ALLOC_TYPE_STATS */ |
2775 | 2272 } |
2720 | 2273 else |
2274 mc_addr = (Rawbyte *) xmalloc_and_zero (real_size); | |
2275 } | |
2276 else | |
2277 mc_addr += size; | |
2278 | |
2279 pdump_put_mc_addr ((void *) rdata, (EMACS_INT) mc_addr); | |
3092 | 2280 memcpy (mc_addr, (Rawbyte *) rdata + delta, size); |
2720 | 2281 } |
2282 } | |
2283 else if (!(--count)) | |
2284 break; | |
2285 } | |
3263 | 2286 #endif /* NEW_GC */ |
2720 | 2287 |
2551 | 2288 /* Get the cv_data array */ |
2553 | 2289 p = (Rawbyte *) ALIGN_PTR (p, pdump_cv_data_dump_info); |
2551 | 2290 pdump_loaded_cv_data = (pdump_cv_data_dump_info *)p; |
2291 p += header->nb_cv_data*sizeof(pdump_cv_data_dump_info); | |
2292 | |
2293 /* Build the cv_ptr array */ | |
2553 | 2294 p = (Rawbyte *) ALIGN_PTR (p, pdump_cv_ptr_dump_info); |
2551 | 2295 pdump_loaded_cv_ptr = |
2296 alloca_array (pdump_cv_ptr_load_info, header->nb_cv_ptr); | |
2297 for (i = 0; i < header->nb_cv_ptr; i++) | |
2298 { | |
2299 pdump_cv_ptr_dump_info info = PDUMP_READ (p, pdump_cv_ptr_dump_info); | |
2300 pdump_loaded_cv_ptr[i].save_offset = info.save_offset; | |
2301 pdump_loaded_cv_ptr[i].size = info.size; | |
2302 pdump_loaded_cv_ptr[i].adr = 0; | |
2303 } | |
2304 | |
3263 | 2305 #ifdef NEW_GC |
2720 | 2306 /* Relocate the heap objects */ |
2307 pdump_rt_list = p; | |
2308 count = 2; | |
2309 for (;;) | |
2310 { | |
2311 pdump_reloc_table rt = PDUMP_READ_ALIGNED (p, pdump_reloc_table); | |
2312 p = (Rawbyte *) ALIGN_PTR (p, Rawbyte *); | |
2313 if (rt.desc) | |
2314 { | |
3092 | 2315 Rawbyte **reloc = (Rawbyte **) p; |
2720 | 2316 for (i = 0; i < rt.count; i++) |
2317 { | |
3092 | 2318 reloc[i] = (Rawbyte *) pdump_get_mc_addr (reloc[i]); |
2720 | 2319 pdump_reloc_one_mc (reloc[i], rt.desc); |
2320 } | |
3092 | 2321 p += rt.count * sizeof (Rawbyte *); |
2720 | 2322 } |
2323 else if (!(--count)) | |
2324 break; | |
2325 } | |
3263 | 2326 #endif /* NEW_GC */ |
2720 | 2327 |
2367 | 2328 /* Put back the pdump_root_block_ptrs */ |
2329 p = (Rawbyte *) ALIGN_PTR (p, pdump_static_pointer); | |
2330 for (i = 0; i < header->nb_root_block_ptrs; i++) | |
442 | 2331 { |
458 | 2332 pdump_static_pointer ptr = PDUMP_READ (p, pdump_static_pointer); |
3263 | 2333 #ifdef NEW_GC |
2720 | 2334 (* ptr.address) = (Rawbyte *) pdump_get_mc_addr (ptr.value); |
3263 | 2335 #else /* not NEW_GC */ |
458 | 2336 (* ptr.address) = ptr.value + delta; |
3263 | 2337 #endif /* not NEW_GC */ |
442 | 2338 } |
2339 | |
1204 | 2340 /* Put back the pdump_root_blocks and relocate */ |
2341 for (i = 0; i < header->nb_root_blocks; i++) | |
442 | 2342 { |
1204 | 2343 pdump_root_block info = PDUMP_READ_ALIGNED (p, pdump_root_block); |
2367 | 2344 memcpy ((void *) info.blockaddr, p, info.size); |
1204 | 2345 if (info.desc) |
3263 | 2346 #ifdef NEW_GC |
2720 | 2347 pdump_reloc_one_mc ((void *) info.blockaddr, info.desc); |
3263 | 2348 #else /* not NEW_GC */ |
2367 | 2349 pdump_reloc_one ((void *) info.blockaddr, delta, info.desc); |
3263 | 2350 #endif /* not NEW_GC */ |
452 | 2351 p += info.size; |
442 | 2352 } |
2353 | |
3263 | 2354 #ifndef NEW_GC |
1204 | 2355 /* Relocate the heap objects */ |
442 | 2356 pdump_rt_list = p; |
2357 count = 2; | |
2358 for (;;) | |
2359 { | |
458 | 2360 pdump_reloc_table rt = PDUMP_READ_ALIGNED (p, pdump_reloc_table); |
2367 | 2361 p = (Rawbyte *) ALIGN_PTR (p, Rawbyte *); |
442 | 2362 if (rt.desc) |
2363 { | |
2367 | 2364 Rawbyte **reloc = (Rawbyte **) p; |
1204 | 2365 for (i = 0; i < rt.count; i++) |
442 | 2366 { |
458 | 2367 reloc[i] += delta; |
2368 pdump_reloc_one (reloc[i], delta, rt.desc); | |
442 | 2369 } |
2367 | 2370 p += rt.count * sizeof (Rawbyte *); |
1204 | 2371 } |
2372 else if (!(--count)) | |
2373 break; | |
442 | 2374 } |
3263 | 2375 #endif /* not NEW_GC */ |
442 | 2376 |
1204 | 2377 /* Put the pdump_root_lisp_objects variables in place */ |
665 | 2378 i = PDUMP_READ_ALIGNED (p, Elemcount); |
2367 | 2379 p = (Rawbyte *) ALIGN_PTR (p, pdump_static_Lisp_Object); |
458 | 2380 while (i--) |
442 | 2381 { |
458 | 2382 pdump_static_Lisp_Object obj = PDUMP_READ (p, pdump_static_Lisp_Object); |
442 | 2383 |
458 | 2384 if (POINTER_TYPE_P (XTYPE (obj.value))) |
3263 | 2385 #ifdef NEW_GC |
2720 | 2386 obj.value = wrap_pointer_1 ((Rawbyte *) pdump_get_mc_addr |
2387 (XPNTR (obj.value))); | |
3263 | 2388 #else /* not NEW_GC */ |
2720 | 2389 obj.value = wrap_pointer_1 ((Rawbyte *) XPNTR (obj.value) + delta); |
3263 | 2390 #endif /* not NEW_GC */ |
442 | 2391 |
458 | 2392 (* obj.address) = obj.value; |
442 | 2393 } |
2394 | |
2395 /* Final cleanups */ | |
2396 /* reorganize hash tables */ | |
2397 p = pdump_rt_list; | |
2398 for (;;) | |
2399 { | |
458 | 2400 pdump_reloc_table rt = PDUMP_READ_ALIGNED (p, pdump_reloc_table); |
2367 | 2401 p = (Rawbyte *) ALIGN_PTR (p, Lisp_Object); |
442 | 2402 if (!rt.desc) |
2403 break; | |
2404 if (rt.desc == hash_table_description) | |
2405 { | |
1204 | 2406 for (i = 0; i < rt.count; i++) |
442 | 2407 pdump_reorganize_hash_table (PDUMP_READ (p, Lisp_Object)); |
2408 break; | |
1204 | 2409 } |
2410 else | |
2411 p += sizeof (Lisp_Object) * rt.count; | |
442 | 2412 } |
2413 | |
3263 | 2414 #ifdef NEW_GC |
4976
16112448d484
Rename xfree(FOO, TYPE) -> xfree(FOO)
Ben Wing <ben@xemacs.org>
parents:
4952
diff
changeset
|
2415 xfree (pdump_mc_hash); |
3263 | 2416 #endif /* NEW_GC */ |
2720 | 2417 |
3092 | 2418 #ifdef NEW_GC |
2419 allow_incremental_gc = allow_inc_gc; | |
2420 #endif /* NEW_GC */ | |
2421 | |
442 | 2422 return 1; |
2423 } | |
2424 | |
2425 #ifdef WIN32_NATIVE | |
2426 /* Free the mapped file if we decide we don't want it after all */ | |
452 | 2427 static void |
2428 pdump_file_unmap (void) | |
442 | 2429 { |
2430 UnmapViewOfFile (pdump_start); | |
2431 CloseHandle (pdump_hFile); | |
2432 CloseHandle (pdump_hMap); | |
2433 } | |
2434 | |
452 | 2435 static int |
2367 | 2436 pdump_file_get (const Wexttext *wpath) |
442 | 2437 { |
2367 | 2438 Extbyte *path; |
2439 if (XEUNICODE_P) | |
2440 path = (Extbyte *) wpath; | |
2441 else | |
2442 path = WEXTTEXT_TO_MULTIBYTE (wpath); | |
442 | 2443 |
2367 | 2444 pdump_hFile = |
2445 qxeCreateFile (path, | |
2446 GENERIC_READ + GENERIC_WRITE, /* Required for copy on | |
2447 write */ | |
2448 0, /* Not shared */ | |
2449 NULL, /* Not inheritable */ | |
2450 OPEN_EXISTING, | |
2451 FILE_ATTRIBUTE_NORMAL, | |
2452 NULL); /* No template file */ | |
442 | 2453 if (pdump_hFile == INVALID_HANDLE_VALUE) |
2454 return 0; | |
2455 | |
2456 pdump_length = GetFileSize (pdump_hFile, NULL); | |
2367 | 2457 pdump_hMap = |
2458 qxeCreateFileMapping (pdump_hFile, | |
2459 NULL, /* No security attributes */ | |
2460 PAGE_WRITECOPY, /* Copy on write */ | |
2461 0, /* Max size, high half */ | |
2462 0, /* Max size, low half */ | |
2463 NULL); /* Unnamed */ | |
442 | 2464 if (pdump_hMap == INVALID_HANDLE_VALUE) |
2465 return 0; | |
2466 | |
2367 | 2467 pdump_start = |
2468 (Rawbyte *) MapViewOfFile (pdump_hMap, | |
2469 FILE_MAP_COPY, /* Copy on write */ | |
2470 0, /* Start at zero */ | |
2471 0, | |
2472 0); /* Map all of it */ | |
442 | 2473 pdump_free = pdump_file_unmap; |
2474 return 1; | |
2475 } | |
2476 | |
2477 /* pdump_resource_free is called (via the pdump_free pointer) to release | |
2478 any resources allocated by pdump_resource_get. Since the Windows API | |
2479 specs specifically state that you don't need to (and shouldn't) free the | |
2480 resources allocated by FindResource, LoadResource, and LockResource this | |
2481 routine does nothing. */ | |
452 | 2482 static void |
2483 pdump_resource_free (void) | |
442 | 2484 { |
2485 } | |
2486 | |
452 | 2487 static int |
2488 pdump_resource_get (void) | |
442 | 2489 { |
452 | 2490 HRSRC hRes; /* Handle to dump resource */ |
2491 HRSRC hResLoad; /* Handle to loaded dump resource */ | |
442 | 2492 |
2493 /* See Q126630 which describes how Windows NT and 95 trap writes to | |
2494 resource sections and duplicate the page to allow the write to proceed. | |
2495 It also describes how to make the resource section read/write (and hence | |
2496 private to each process). Doing this avoids the exceptions and related | |
2497 overhead, but causes the resource section to be private to each process | |
2498 that is running XEmacs. Since the resource section contains little | |
2499 other than the dumped data, which should be private to each process, we | |
2500 make the whole resource section read/write so we don't have to copy it. */ | |
2501 | |
800 | 2502 hRes = FindResourceA (NULL, MAKEINTRESOURCE (101), "DUMP"); |
442 | 2503 if (hRes == NULL) |
2504 return 0; | |
2505 | |
2506 /* Found it, use the data in the resource */ | |
1204 | 2507 hResLoad = (HRSRC) LoadResource (NULL, hRes); |
442 | 2508 if (hResLoad == NULL) |
2509 return 0; | |
2510 | |
2367 | 2511 pdump_start = (Rawbyte *) LockResource (hResLoad); |
442 | 2512 if (pdump_start == NULL) |
2513 return 0; | |
2514 | |
2515 pdump_free = pdump_resource_free; | |
2516 pdump_length = SizeofResource (NULL, hRes); | |
665 | 2517 if (pdump_length <= (Bytecount) sizeof (pdump_header)) |
442 | 2518 { |
2519 pdump_start = 0; | |
2520 return 0; | |
2521 } | |
2522 | |
2523 return 1; | |
2524 } | |
2525 | |
2526 #else /* !WIN32_NATIVE */ | |
2527 | |
452 | 2528 static void |
2529 pdump_file_free (void) | |
442 | 2530 { |
4976
16112448d484
Rename xfree(FOO, TYPE) -> xfree(FOO)
Ben Wing <ben@xemacs.org>
parents:
4952
diff
changeset
|
2531 xfree (pdump_start); |
442 | 2532 } |
2533 | |
2534 #ifdef HAVE_MMAP | |
452 | 2535 static void |
2536 pdump_file_unmap (void) | |
442 | 2537 { |
2538 munmap (pdump_start, pdump_length); | |
2539 } | |
2540 #endif | |
2541 | |
452 | 2542 static int |
2367 | 2543 pdump_file_get (const Wexttext *path) |
442 | 2544 { |
2367 | 2545 int fd = wext_retry_open (path, O_RDONLY | OPEN_BINARY); |
2546 if (fd < 0) | |
442 | 2547 return 0; |
2548 | |
2549 pdump_length = lseek (fd, 0, SEEK_END); | |
665 | 2550 if (pdump_length < (Bytecount) sizeof (pdump_header)) |
442 | 2551 { |
771 | 2552 retry_close (fd); |
442 | 2553 return 0; |
2554 } | |
2555 | |
2556 lseek (fd, 0, SEEK_SET); | |
2557 | |
2558 #ifdef HAVE_MMAP | |
456 | 2559 /* Unix 98 requires that sys/mman.h define MAP_FAILED, |
2560 but many earlier implementations don't. */ | |
2561 # ifndef MAP_FAILED | |
2562 # define MAP_FAILED ((void *) -1L) | |
2563 # endif | |
2367 | 2564 pdump_start = |
2565 (Rawbyte *) mmap (0, pdump_length, PROT_READ|PROT_WRITE, MAP_PRIVATE, | |
2566 fd, 0); | |
2567 if (pdump_start != (Rawbyte *) MAP_FAILED) | |
442 | 2568 { |
2569 pdump_free = pdump_file_unmap; | |
771 | 2570 retry_close (fd); |
442 | 2571 return 1; |
2572 } | |
456 | 2573 #endif /* HAVE_MMAP */ |
442 | 2574 |
2367 | 2575 pdump_start = xnew_array (Rawbyte, pdump_length); |
442 | 2576 pdump_free = pdump_file_free; |
771 | 2577 retry_read (fd, pdump_start, pdump_length); |
442 | 2578 |
771 | 2579 retry_close (fd); |
442 | 2580 return 1; |
2581 } | |
2015 | 2582 |
2720 | 2583 #ifdef DUMP_IN_EXEC |
2015 | 2584 static int |
2585 pdump_ram_try (void) | |
2586 { | |
2367 | 2587 pdump_start = dumped_data_get (); |
2588 pdump_length = dumped_data_size (); | |
2015 | 2589 |
2367 | 2590 return pdump_load_check (); |
2015 | 2591 } |
2720 | 2592 #endif |
2015 | 2593 |
442 | 2594 #endif /* !WIN32_NATIVE */ |
2595 | |
5498
eb4eeec50f25
Remove static qualifier from pdump_file_try.
Stephen J. Turnbull <stephen@xemacs.org>
parents:
5402
diff
changeset
|
2596 /* This used to be static, but there seems to be a bug in the GCC 4.1.2 |
eb4eeec50f25
Remove static qualifier from pdump_file_try.
Stephen J. Turnbull <stephen@xemacs.org>
parents:
5402
diff
changeset
|
2597 optimizer that clobbers exe_path. */ |
eb4eeec50f25
Remove static qualifier from pdump_file_try.
Stephen J. Turnbull <stephen@xemacs.org>
parents:
5402
diff
changeset
|
2598 int |
2367 | 2599 pdump_file_try (Wexttext *exe_path) |
442 | 2600 { |
2367 | 2601 Wexttext *w = exe_path + wext_strlen (exe_path); |
442 | 2602 |
2563 | 2603 /* We look for various names, including those with the version and dump ID, |
2604 those with just the dump ID, and those without either. We first try | |
2605 adding directly to the executable name, then lopping off any extension | |
2606 (e.g. .exe) or version name in the executable (xemacs-21.5.18). */ | |
442 | 2607 do |
2608 { | |
2367 | 2609 wext_sprintf (w, WEXTSTRING ("-%s-%08x.dmp"), WEXTSTRING (EMACS_VERSION), |
2610 dump_id); | |
442 | 2611 if (pdump_file_get (exe_path)) |
2612 { | |
2613 if (pdump_load_check ()) | |
2614 return 1; | |
452 | 2615 pdump_free (); |
442 | 2616 } |
2617 | |
2367 | 2618 wext_sprintf (w, WEXTSTRING ("-%08x.dmp"), dump_id); |
442 | 2619 if (pdump_file_get (exe_path)) |
2620 { | |
2621 if (pdump_load_check ()) | |
2622 return 1; | |
452 | 2623 pdump_free (); |
442 | 2624 } |
2625 | |
2367 | 2626 wext_sprintf (w, WEXTSTRING (".dmp")); |
442 | 2627 if (pdump_file_get (exe_path)) |
2628 { | |
2629 if (pdump_load_check ()) | |
2630 return 1; | |
452 | 2631 pdump_free (); |
442 | 2632 } |
2633 | |
2634 do | |
2635 w--; | |
2367 | 2636 /* !!#### See comment below about how this is unsafe. */ |
2637 while (w > exe_path && !IS_DIRECTORY_SEP (*w) && (*w != '-') && | |
2638 (*w != '.')); | |
442 | 2639 } |
2367 | 2640 while (w > exe_path && !IS_DIRECTORY_SEP (*w)); |
442 | 2641 return 0; |
2642 } | |
2643 | |
4388
1a14c304cb8e
Don't use PATH_MAX_EXTERNAL, non-Win32.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4137
diff
changeset
|
2644 #define DUMP_SLACK 100 /* Enough to include dump ID, version name, .DMP */ |
1a14c304cb8e
Don't use PATH_MAX_EXTERNAL, non-Win32.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4137
diff
changeset
|
2645 |
452 | 2646 int |
2367 | 2647 pdump_load (const Wexttext *argv0) |
442 | 2648 { |
2649 #ifdef WIN32_NATIVE | |
2421 | 2650 Wexttext *exe_path = NULL; |
2651 int bufsize = 4096; | |
2652 int cchpathsize; | |
2653 | |
2654 /* Copied from mswindows_get_module_file_name (). Not clear if it's | |
2655 kosher to malloc() yet. */ | |
2656 while (1) | |
2657 { | |
2658 exe_path = alloca_array (Wexttext, bufsize); | |
2659 cchpathsize = qxeGetModuleFileName (NULL, (Extbyte *) exe_path, | |
2660 bufsize); | |
2661 if (!cchpathsize) | |
2662 goto fail; | |
2563 | 2663 if (cchpathsize + DUMP_SLACK <= bufsize) |
2421 | 2664 break; |
2665 bufsize *= 2; | |
2666 } | |
2667 | |
2367 | 2668 if (!XEUNICODE_P) |
2669 { | |
2670 Wexttext *wexe = MULTIBYTE_TO_WEXTTEXT ((Extbyte *) exe_path); | |
2671 wext_strcpy (exe_path, wexe); | |
2672 } | |
442 | 2673 #else /* !WIN32_NATIVE */ |
4388
1a14c304cb8e
Don't use PATH_MAX_EXTERNAL, non-Win32.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4137
diff
changeset
|
2674 Wexttext *exe_path; |
2367 | 2675 Wexttext *w; |
2676 const Wexttext *dir, *p; | |
442 | 2677 |
2720 | 2678 #ifdef DUMP_IN_EXEC |
2367 | 2679 if (pdump_ram_try ()) |
2680 { | |
2681 pdump_load_finish (); | |
2682 in_pdump = 0; | |
2683 return 1; | |
2684 } | |
2720 | 2685 #endif |
2015 | 2686 |
1204 | 2687 in_pdump = 1; |
442 | 2688 dir = argv0; |
2689 if (dir[0] == '-') | |
2690 { | |
2691 /* XEmacs as a login shell, oh goody! */ | |
2367 | 2692 dir = wext_getenv ("SHELL"); /* not egetenv -- not yet initialized and we |
2693 want external-format data */ | |
442 | 2694 } |
2695 | |
2367 | 2696 p = dir + wext_strlen (dir); |
2697 /* !!#### This is bad as it may fail with certain non-ASCII-compatible | |
2698 external formats such as JIS. Maybe we should be using the mb*() | |
2699 routines in libc? But can we reliably trust them on all Unix | |
2700 platforms? (We can't convert to internal since those conversion | |
2701 routines aren't yet initialized) */ | |
2702 while (p != dir && !IS_ANY_SEP (p[-1])) | |
2703 p--; | |
442 | 2704 |
2705 if (p != dir) | |
2706 { | |
2707 /* invocation-name includes a directory component -- presumably it | |
4137 | 2708 is relative to cwd, not $PATH. */ |
4388
1a14c304cb8e
Don't use PATH_MAX_EXTERNAL, non-Win32.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4137
diff
changeset
|
2709 exe_path = alloca_array (Wexttext, 1 + wext_strlen (dir) + DUMP_SLACK); |
2367 | 2710 wext_strcpy (exe_path, dir); |
442 | 2711 } |
2712 else | |
2713 { | |
2367 | 2714 const Wexttext *path = wext_getenv ("PATH"); /* not egetenv -- |
4388
1a14c304cb8e
Don't use PATH_MAX_EXTERNAL, non-Win32.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4137
diff
changeset
|
2715 not yet init. */ |
2367 | 2716 const Wexttext *name = p; |
4388
1a14c304cb8e
Don't use PATH_MAX_EXTERNAL, non-Win32.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4137
diff
changeset
|
2717 exe_path = alloca_array (Wexttext, |
1a14c304cb8e
Don't use PATH_MAX_EXTERNAL, non-Win32.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4137
diff
changeset
|
2718 1 + DUMP_SLACK + max (wext_strlen (name), |
1a14c304cb8e
Don't use PATH_MAX_EXTERNAL, non-Win32.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4137
diff
changeset
|
2719 wext_strlen (path))); |
442 | 2720 for (;;) |
2721 { | |
2722 p = path; | |
2723 while (*p && *p != SEPCHAR) | |
2724 p++; | |
2725 if (p == path) | |
2726 { | |
2727 exe_path[0] = '.'; | |
2728 w = exe_path + 1; | |
2729 } | |
2730 else | |
2731 { | |
2367 | 2732 memcpy (exe_path, path, (p - path) * sizeof (Wexttext)); |
442 | 2733 w = exe_path + (p - path); |
2734 } | |
2735 if (!IS_DIRECTORY_SEP (w[-1])) | |
2367 | 2736 *w++ = '/'; |
2737 wext_strcpy (w, name); | |
1466 | 2738 |
2739 { | |
2740 struct stat statbuf; | |
2367 | 2741 if (wext_access (exe_path, X_OK) == 0 |
2742 && wext_stat (exe_path, &statbuf) == 0 | |
1466 | 2743 && ! S_ISDIR (statbuf.st_mode)) |
2744 break; | |
2745 } | |
2746 | |
442 | 2747 if (!*p) |
2748 { | |
2749 /* Oh well, let's have some kind of default */ | |
2367 | 2750 wext_sprintf (exe_path, "./%s", name); |
442 | 2751 break; |
2752 } | |
2421 | 2753 path = p + 1; |
442 | 2754 } |
2755 } | |
2756 #endif /* WIN32_NATIVE */ | |
2757 | |
2758 if (pdump_file_try (exe_path)) | |
2759 { | |
2760 pdump_load_finish (); | |
1204 | 2761 in_pdump = 0; |
3263 | 2762 #ifdef NEW_GC |
2720 | 2763 pdump_free (); |
3263 | 2764 #endif /* NEW_GC */ |
442 | 2765 return 1; |
2766 } | |
2767 | |
2768 #ifdef WIN32_NATIVE | |
2769 if (pdump_resource_get ()) | |
2770 { | |
2771 if (pdump_load_check ()) | |
2772 { | |
2773 pdump_load_finish (); | |
1204 | 2774 in_pdump = 0; |
3263 | 2775 #ifdef NEW_GC |
2720 | 2776 pdump_free (); |
3263 | 2777 #endif /* NEW_GC */ |
442 | 2778 return 1; |
2779 } | |
2780 pdump_free (); | |
2781 } | |
2421 | 2782 |
2783 fail: | |
442 | 2784 #endif |
2785 | |
1204 | 2786 in_pdump = 0; |
442 | 2787 return 0; |
2788 } |