Mercurial > hg > xemacs-beta
annotate src/dumper.c @ 4701:684f0ed6cd4f
Behave better when #'variable-at-point gives nil, #'custom-variable-prompt.
lisp/ChangeLog addition:
2009-09-27 Aidan Kehoe <kehoea@parhasard.net>
* cus-edit.el (custom-variable-prompt):
nil is a symbol, check that variable-at-point is non-nil before
checking if it's a symbol when deciding on the prompt used in this
function.
author | Aidan Kehoe <kehoea@parhasard.net> |
---|---|
date | Sun, 27 Sep 2009 20:37:44 +0100 |
parents | 1a14c304cb8e |
children | 19a72041c5ed |
rev | line source |
---|---|
442 | 1 /* Portable data dumper for XEmacs. |
2551 | 2 Copyright (C) 1999-2000,2004 Olivier Galibert |
458 | 3 Copyright (C) 2001 Martin Buchholz |
2563 | 4 Copyright (C) 2001, 2002, 2003, 2004, 2005 Ben Wing. |
442 | 5 |
6 This file is part of XEmacs. | |
7 | |
8 XEmacs is free software; you can redistribute it and/or modify it | |
9 under the terms of the GNU General Public License as published by the | |
10 Free Software Foundation; either version 2, or (at your option) any | |
11 later version. | |
12 | |
13 XEmacs is distributed in the hope that it will be useful, but WITHOUT | |
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |
16 for more details. | |
17 | |
18 You should have received a copy of the GNU General Public License | |
19 along with XEmacs; see the file COPYING. If not, write to | |
20 the Free Software Foundation, Inc., 59 Temple Place - Suite 330, | |
21 Boston, MA 02111-1307, USA. */ | |
22 | |
23 /* Synched up with: Not in FSF. */ | |
24 | |
2367 | 25 /* This file has been Mule-ized, Ben Wing, 10-10-04. */ |
26 | |
27 /* #### Put in much more assertions. Whenever we store fixups in the | |
28 process or writing out data, make sure the fixups (offsets) point to the | |
29 beginning of an object, i.e. are registered. Same whenever we read in | |
30 -- verify offsets as registered, and when compute a fixup, verify the | |
31 pointer is pointing within the pdump area. registered and check within | |
32 pdump area. For specific types of pointers (e.g. to Lisp_Objects), | |
33 check if they're pointing to the right kinds of types. It should be | |
34 possible to check that a putative Lisp_Object is really a Lisp_Object | |
35 since it will follow a strict format in its header. */ | |
800 | 36 |
442 | 37 #include <config.h> |
38 #include "lisp.h" | |
39 | |
40 #include "specifier.h" | |
771 | 41 #include "file-coding.h" |
442 | 42 #include "elhash.h" |
1204 | 43 #include "lstream.h" |
442 | 44 #include "sysfile.h" |
45 #include "console-stream.h" | |
46 | |
47 #ifdef WIN32_NATIVE | |
771 | 48 #include "syswindows.h" |
442 | 49 #else |
50 #ifdef HAVE_MMAP | |
51 #include <sys/mman.h> | |
52 #endif | |
2720 | 53 #ifdef DUMP_IN_EXEC |
2015 | 54 #include "dump-data.h" |
442 | 55 #endif |
2720 | 56 #endif |
442 | 57 |
58 typedef struct | |
59 { | |
2367 | 60 const void *blockaddr; |
665 | 61 Bytecount size; |
1204 | 62 const struct memory_description *desc; |
63 } pdump_root_block; | |
452 | 64 |
65 typedef struct | |
66 { | |
1204 | 67 Dynarr_declare (pdump_root_block); |
68 } pdump_root_block_dynarr; | |
452 | 69 |
70 typedef struct | |
71 { | |
72 void **ptraddress; | |
1204 | 73 const struct sized_memory_description *desc; |
2367 | 74 } pdump_root_block_ptr; |
452 | 75 |
76 typedef struct | |
77 { | |
2367 | 78 Dynarr_declare (pdump_root_block_ptr); |
79 } pdump_root_block_ptr_dynarr; | |
452 | 80 |
458 | 81 typedef struct |
82 { | |
2551 | 83 const void *object; |
84 void *data; | |
85 Bytecount size; | |
86 EMACS_INT offset; | |
87 EMACS_INT dest_offset; | |
88 EMACS_INT save_offset; | |
89 const struct opaque_convert_functions *fcts; | |
90 } pdump_cv_data_info; | |
91 | |
92 typedef struct | |
93 { | |
94 Dynarr_declare (pdump_cv_data_info); | |
95 } pdump_cv_data_info_dynarr; | |
96 | |
97 typedef struct | |
98 { | |
99 EMACS_INT dest_offset; | |
100 EMACS_INT save_offset; | |
101 Bytecount size; | |
102 } pdump_cv_data_dump_info; | |
103 | |
104 typedef struct | |
105 { | |
106 const void *object; | |
107 void *data; | |
108 Bytecount size; | |
109 EMACS_INT index; | |
110 EMACS_INT save_offset; | |
111 const struct opaque_convert_functions *fcts; | |
112 } pdump_cv_ptr_info; | |
113 | |
114 typedef struct | |
115 { | |
116 Dynarr_declare (pdump_cv_ptr_info); | |
117 } pdump_cv_ptr_info_dynarr; | |
118 | |
119 typedef struct | |
120 { | |
121 EMACS_INT save_offset; | |
122 Bytecount size; | |
123 } pdump_cv_ptr_dump_info; | |
124 | |
125 typedef struct | |
126 { | |
127 EMACS_INT save_offset; | |
128 Bytecount size; | |
129 void *adr; | |
130 } pdump_cv_ptr_load_info; | |
131 | |
132 typedef struct | |
133 { | |
458 | 134 Lisp_Object *address; |
135 Lisp_Object value; | |
136 } pdump_static_Lisp_Object; | |
137 | |
138 typedef struct | |
139 { | |
2367 | 140 Rawbyte **address; /* Rawbyte * for ease of doing relocation */ |
141 Rawbyte * value; | |
458 | 142 } pdump_static_pointer; |
143 | |
1204 | 144 static pdump_root_block_dynarr *pdump_root_blocks; |
2367 | 145 static pdump_root_block_ptr_dynarr *pdump_root_block_ptrs; |
1204 | 146 static Lisp_Object_ptr_dynarr *pdump_root_lisp_objects; |
452 | 147 static Lisp_Object_ptr_dynarr *pdump_weak_object_chains; |
2551 | 148 static pdump_cv_data_info_dynarr *pdump_cv_data; |
149 static pdump_cv_ptr_info_dynarr *pdump_cv_ptr; | |
452 | 150 |
2367 | 151 /* Mark SIZE bytes at non-heap address BLOCKADDR for dumping, described |
152 by DESC. Called by outside callers during XEmacs initialization. */ | |
153 | |
452 | 154 void |
2367 | 155 dump_add_root_block (const void *blockaddr, Bytecount size, |
1204 | 156 const struct memory_description *desc) |
452 | 157 { |
1204 | 158 pdump_root_block info; |
2367 | 159 info.blockaddr = blockaddr; |
452 | 160 info.size = size; |
1204 | 161 info.desc = desc; |
162 if (pdump_root_blocks == NULL) | |
163 pdump_root_blocks = Dynarr_new (pdump_root_block); | |
164 Dynarr_add (pdump_root_blocks, info); | |
452 | 165 } |
166 | |
2367 | 167 /* Mark the block described by DESC and pointed to by the pointer at |
168 non-heap address PTRADDRESS for dumping. | |
169 All the objects reachable from this pointer will also be dumped. | |
170 Called by outside callers during XEmacs initialization. */ | |
452 | 171 void |
2367 | 172 dump_add_root_block_ptr (void *ptraddress, |
173 const struct sized_memory_description *desc) | |
452 | 174 { |
2367 | 175 pdump_root_block_ptr info; |
452 | 176 info.ptraddress = (void **) ptraddress; |
177 info.desc = desc; | |
2367 | 178 if (pdump_root_block_ptrs == NULL) |
179 pdump_root_block_ptrs = Dynarr_new (pdump_root_block_ptr); | |
180 Dynarr_add (pdump_root_block_ptrs, info); | |
452 | 181 } |
182 | |
183 /* Mark the Lisp_Object at non-heap address VARADDRESS for dumping. | |
2367 | 184 All the objects reachable from this var will also be dumped. |
185 Called by outside callers during XEmacs initialization. */ | |
452 | 186 void |
1204 | 187 dump_add_root_lisp_object (Lisp_Object *varaddress) |
452 | 188 { |
1204 | 189 if (pdump_root_lisp_objects == NULL) |
190 pdump_root_lisp_objects = Dynarr_new2 (Lisp_Object_ptr_dynarr, Lisp_Object *); | |
191 Dynarr_add (pdump_root_lisp_objects, varaddress); | |
452 | 192 } |
193 | |
2367 | 194 /* Mark the list pointed to by the Lisp_Object at VARADDRESS for dumping. |
195 Called by outside callers during XEmacs initialization. */ | |
452 | 196 void |
197 dump_add_weak_object_chain (Lisp_Object *varaddress) | |
198 { | |
199 if (pdump_weak_object_chains == NULL) | |
200 pdump_weak_object_chains = Dynarr_new2 (Lisp_Object_ptr_dynarr, Lisp_Object *); | |
201 Dynarr_add (pdump_weak_object_chains, varaddress); | |
202 } | |
203 | |
204 | |
458 | 205 inline static void |
665 | 206 pdump_align_stream (FILE *stream, Bytecount alignment) |
458 | 207 { |
208 long offset = ftell (stream); | |
209 long adjustment = ALIGN_SIZE (offset, alignment) - offset; | |
210 if (adjustment) | |
211 fseek (stream, adjustment, SEEK_CUR); | |
212 } | |
213 | |
214 #define PDUMP_ALIGN_OUTPUT(type) pdump_align_stream (pdump_out, ALIGNOF (type)) | |
215 | |
216 #define PDUMP_WRITE(type, object) \ | |
771 | 217 retry_fwrite (&object, sizeof (object), 1, pdump_out); |
458 | 218 |
219 #define PDUMP_WRITE_ALIGNED(type, object) do { \ | |
220 PDUMP_ALIGN_OUTPUT (type); \ | |
221 PDUMP_WRITE (type, object); \ | |
222 } while (0) | |
223 | |
224 #define PDUMP_READ(ptr, type) \ | |
2367 | 225 (((type *) (ptr = (Rawbyte *) (((type *) ptr) + 1)))[-1]) |
458 | 226 |
227 #define PDUMP_READ_ALIGNED(ptr, type) \ | |
2367 | 228 ((ptr = (Rawbyte *) ALIGN_PTR (ptr, type)), PDUMP_READ (ptr, type)) |
458 | 229 |
230 | |
231 | |
452 | 232 typedef struct |
233 { | |
1204 | 234 const struct memory_description *desc; |
442 | 235 int count; |
236 } pdump_reloc_table; | |
237 | |
2367 | 238 static Rawbyte *pdump_rt_list = 0; |
442 | 239 |
3263 | 240 #ifndef NEW_GC |
442 | 241 void |
242 pdump_objects_unmark (void) | |
243 { | |
244 int i; | |
2367 | 245 Rawbyte *p = pdump_rt_list; |
442 | 246 if (p) |
247 for (;;) | |
248 { | |
249 pdump_reloc_table *rt = (pdump_reloc_table *)p; | |
250 p += sizeof (pdump_reloc_table); | |
251 if (rt->desc) | |
252 { | |
253 for (i=0; i<rt->count; i++) | |
254 { | |
255 struct lrecord_header *lh = * (struct lrecord_header **) p; | |
256 if (! C_READONLY_RECORD_HEADER_P (lh)) | |
257 UNMARK_RECORD_HEADER (lh); | |
258 p += sizeof (EMACS_INT); | |
259 } | |
260 } else | |
261 break; | |
262 } | |
263 } | |
3263 | 264 #endif /* not NEW_GC */ |
265 | |
266 | |
267 #ifdef NEW_GC | |
2720 | 268 /* The structure of the dump file looks like this: |
269 0 - header | |
270 - dumped objects | |
271 stab_offset - mc allocation table (count, size, address) for individual | |
272 allocation and relocation at load time. | |
273 - nb_cv_data*struct(dest, adr) for in-object externally | |
274 represented data | |
275 - nb_cv_ptr*(adr) for pointed-to externally represented data | |
276 - relocation table | |
277 - nb_root_struct_ptrs*struct(void *, adr) | |
278 for global pointers to structures | |
279 - nb_root_blocks*struct(void *, size, info) for global | |
280 objects to restore | |
281 - root lisp object address/value couples with the count | |
282 preceding the list | |
283 */ | |
3263 | 284 #else /* not NEW_GC */ |
1204 | 285 /* The structure of the dump file looks like this: |
458 | 286 0 - header |
287 - dumped objects | |
2551 | 288 stab_offset - nb_cv_data*struct(dest, adr) for in-object externally |
289 represented data | |
290 - nb_cv_ptr*(adr) for pointed-to externally represented data | |
291 - nb_root_block_ptrs*struct(void *, adr) | |
2367 | 292 for global pointers to heap blocks |
1204 | 293 - nb_root_blocks*struct(void *, size, info) for global |
2367 | 294 data-segment blocks to restore |
458 | 295 - relocation table |
296 - root lisp object address/value couples with the count | |
297 preceding the list | |
442 | 298 */ |
3263 | 299 #endif /* not NEW_GC */ |
442 | 300 |
301 | |
452 | 302 #define PDUMP_SIGNATURE "XEmacsDP" |
303 #define PDUMP_SIGNATURE_LEN (sizeof (PDUMP_SIGNATURE) - 1) | |
442 | 304 |
305 typedef struct | |
306 { | |
452 | 307 char signature[PDUMP_SIGNATURE_LEN]; |
442 | 308 unsigned int id; |
309 EMACS_UINT stab_offset; | |
310 EMACS_UINT reloc_address; | |
2367 | 311 int nb_root_block_ptrs; |
1204 | 312 int nb_root_blocks; |
2551 | 313 int nb_cv_data; |
314 int nb_cv_ptr; | |
452 | 315 } pdump_header; |
442 | 316 |
2367 | 317 Rawbyte *pdump_start; |
318 Rawbyte *pdump_end; | |
665 | 319 static Bytecount pdump_length; |
442 | 320 |
2551 | 321 static pdump_cv_data_dump_info *pdump_loaded_cv_data; |
322 static pdump_cv_ptr_load_info *pdump_loaded_cv_ptr; | |
323 | |
442 | 324 #ifdef WIN32_NATIVE |
452 | 325 /* Handle for the dump file */ |
458 | 326 static HANDLE pdump_hFile = INVALID_HANDLE_VALUE; |
452 | 327 /* Handle for the file mapping object for the dump file */ |
458 | 328 static HANDLE pdump_hMap = INVALID_HANDLE_VALUE; |
442 | 329 #endif |
330 | |
458 | 331 static void (*pdump_free) (void); |
442 | 332 |
460 | 333 static unsigned char pdump_align_table[] = |
442 | 334 { |
460 | 335 64, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, |
336 16, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, | |
337 32, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, | |
338 16, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1 | |
442 | 339 }; |
340 | |
647 | 341 static inline int |
665 | 342 pdump_size_to_align (Bytecount size) |
442 | 343 { |
460 | 344 return pdump_align_table[size % countof (pdump_align_table)]; |
345 } | |
346 | |
2367 | 347 /************************************************************************/ |
348 /* Registering memory blocks */ | |
349 /************************************************************************/ | |
350 | |
351 /* "Registering" or recording a heap memory block (which will need to be | |
352 written out, reloaded and relocated, and to which there may be pointers | |
353 from other heap blocks or from the data segment) happens both in a list | |
354 and in a hash table. There is a single hash table covering all | |
355 registered blocks, but different lists for different kinds of blocks. | |
356 There is one list for "opaque data" (stuff identified as | |
357 XD_OPAQUE_DATA_PTR, XD_ASCII_STRING, XD_DOC_STRING), one list for each | |
358 type of Lisp object, and one list for each different memory descriptor. | |
359 This lets similar-sized and aligned objects be grouped together when | |
360 they are written out, to save space. | |
361 | |
362 pdump_block_list is a list keeping track of registered memory blocks. | |
363 pdump_block_list_elt is a single entry through the list, and the list is | |
364 threaded through the NEXT pointer. The information in this list | |
365 associated with a particular block of memory is | |
366 | |
367 -- address of the beginning | |
368 -- number of elements at that address | |
369 -- size of each element | |
370 -- offset to this block in the dumped data | |
371 | |
372 pdump_desc_list is a list keeping track of the various descriptions | |
373 that we've seen. The primary purpose of this is so that memory blocks | |
374 can be grouped depending on the particular memory description | |
375 appropriate for them. The format of the list is different from | |
376 pdump_block_list -- a single array is used. (#### Dynarr should have | |
377 been used!!!). The information in this list associated with a | |
378 description is | |
379 | |
380 -- pointer to the description | |
381 -- a pdump_block_list of blocks using that description | |
382 | |
383 Functions for working with lists of memory blocks: | |
384 | |
385 -- Add a memory block to a list using pdump_add_block() | |
386 | |
387 -- Get a memory block from a pointer to its beginning using | |
388 pdump_get_block(). This uses the hash table, which lists everything. | |
389 | |
390 -- Return the memory-block list (pdump_block_list) associated with a | |
391 descriptor, using pdump_get_block_list(). If no entry found in the | |
392 pdump_desc_list, add a new one. | |
393 | |
394 */ | |
395 | |
396 typedef struct pdump_block_list_elt | |
460 | 397 { |
2367 | 398 struct pdump_block_list_elt *next; |
442 | 399 const void *obj; |
665 | 400 Bytecount size; |
442 | 401 int count; |
402 EMACS_INT save_offset; | |
2367 | 403 } pdump_block_list_elt; |
442 | 404 |
405 typedef struct | |
406 { | |
2367 | 407 pdump_block_list_elt *first; |
442 | 408 int align; |
409 int count; | |
2367 | 410 } pdump_block_list; |
442 | 411 |
2367 | 412 typedef struct pdump_desc_list_elt |
442 | 413 { |
2367 | 414 pdump_block_list list; |
1204 | 415 const struct memory_description *desc; |
2367 | 416 } pdump_desc_list_elt; |
442 | 417 |
418 typedef struct | |
419 { | |
2367 | 420 pdump_desc_list_elt *list; |
442 | 421 int count; |
422 int size; | |
2367 | 423 } pdump_desc_list; |
442 | 424 |
2367 | 425 static pdump_block_list *pdump_object_table; |
426 static pdump_block_list pdump_opaque_data_list; | |
427 static pdump_desc_list pdump_desc_table; | |
442 | 428 |
460 | 429 static int *pdump_alert_undump_object; |
442 | 430 |
431 static unsigned long cur_offset; | |
665 | 432 static Bytecount max_size; |
442 | 433 static int pdump_fd; |
434 static void *pdump_buf; | |
458 | 435 static FILE *pdump_out; |
442 | 436 |
3263 | 437 #ifdef NEW_GC |
2775 | 438 /* PDUMP_HASHSIZE is a large prime. */ |
439 #define PDUMP_HASHSIZE 1000003 | |
440 /* Nothing special about PDUMP_HASH_MULTIPLIER: arbitrary odd integer | |
441 smaller than PDUMP_HASHSIZE. */ | |
442 #define PDUMP_HASH_MULTIPLIER 12347 | |
443 /* Nothing special about PDUMP_HASH_STEP: arbitrary integer for linear | |
444 probing. */ | |
445 #define PDUMP_HASH_STEP 574853 | |
3263 | 446 #else /* not NEW_GC */ |
442 | 447 #define PDUMP_HASHSIZE 200001 |
3263 | 448 #endif /* not NEW_GC */ |
442 | 449 |
2367 | 450 static pdump_block_list_elt **pdump_hash; |
442 | 451 |
3263 | 452 #ifndef NEW_GC |
442 | 453 /* Since most pointers are eight bytes aligned, the >>3 allows for a better hash */ |
3263 | 454 #endif /* not NEW_GC */ |
442 | 455 static int |
456 pdump_make_hash (const void *obj) | |
457 { | |
3263 | 458 #ifdef NEW_GC |
2775 | 459 return ((unsigned long)(obj) * PDUMP_HASH_MULTIPLIER) % PDUMP_HASHSIZE; |
3263 | 460 #else /* not NEW_GC */ |
442 | 461 return ((unsigned long)(obj)>>3) % PDUMP_HASHSIZE; |
3263 | 462 #endif /* not NEW_GC */ |
442 | 463 } |
464 | |
2367 | 465 /* Return the entry for an already-registered memory block at OBJ, |
466 or NULL if none. */ | |
467 | |
468 static pdump_block_list_elt * | |
469 pdump_get_block (const void *obj) | |
442 | 470 { |
471 int pos = pdump_make_hash (obj); | |
2367 | 472 pdump_block_list_elt *e; |
442 | 473 |
474 assert (obj != 0); | |
475 | |
476 while ((e = pdump_hash[pos]) != 0) | |
477 { | |
478 if (e->obj == obj) | |
479 return e; | |
480 | |
481 pos++; | |
482 if (pos == PDUMP_HASHSIZE) | |
483 pos = 0; | |
484 } | |
485 return 0; | |
486 } | |
487 | |
2367 | 488 /* Register a new memory block on Return the entry for an already-registered heap (?) memory block at OBJ, |
489 or NULL if none. */ | |
490 | |
442 | 491 static void |
2367 | 492 pdump_add_block (pdump_block_list *list, const void *obj, Bytecount size, |
458 | 493 int count) |
442 | 494 { |
2367 | 495 pdump_block_list_elt *e; |
442 | 496 int pos = pdump_make_hash (obj); |
497 | |
498 while ((e = pdump_hash[pos]) != 0) | |
499 { | |
500 if (e->obj == obj) | |
501 return; | |
502 | |
503 pos++; | |
504 if (pos == PDUMP_HASHSIZE) | |
505 pos = 0; | |
506 } | |
507 | |
2367 | 508 e = xnew (pdump_block_list_elt); |
442 | 509 |
510 e->next = list->first; | |
511 e->obj = obj; | |
512 e->size = size; | |
513 e->count = count; | |
514 list->first = e; | |
515 | |
516 list->count += count; | |
517 pdump_hash[pos] = e; | |
518 | |
460 | 519 { |
520 int align = pdump_size_to_align (size); | |
442 | 521 |
460 | 522 if (align < list->align) |
523 list->align = align; | |
524 } | |
442 | 525 } |
526 | |
3263 | 527 #ifdef NEW_GC |
2720 | 528 typedef struct mc_addr_elt |
529 { | |
530 const void *obj; | |
531 EMACS_INT addr; | |
532 } mc_addr_elt; | |
533 | |
534 static mc_addr_elt *pdump_mc_hash; | |
535 | |
536 /* Return the entry for an already-registered memory block at OBJ, | |
537 or NULL if none. */ | |
538 static EMACS_INT | |
539 pdump_get_mc_addr (const void *obj) | |
540 { | |
541 int pos = pdump_make_hash (obj); | |
542 mc_addr_elt *mc_addr; | |
543 | |
544 assert (obj != 0); | |
545 | |
2723 | 546 while (((mc_addr = &pdump_mc_hash[pos]) != 0) && (mc_addr->obj != 0)) |
2720 | 547 { |
548 if (mc_addr->obj == obj) | |
549 return mc_addr->addr; | |
550 | |
2775 | 551 pos += PDUMP_HASH_STEP; |
552 if (pos >= PDUMP_HASHSIZE) | |
553 pos -= PDUMP_HASHSIZE; | |
2720 | 554 } |
555 | |
556 /* If this code is reached, an heap address occurred which has not | |
557 been written to the lookup table before. | |
558 This is a bug! */ | |
559 ABORT(); | |
560 return 0; | |
561 } | |
562 | |
563 /* For indirect address lookups, needed for convertibles: Ptr points | |
564 to an address within an object. Indirect gives the offset by how | |
565 many bytes the address of the object has to be adjusted to do a | |
566 lookup in the mc_addr translation table and get the new location of | |
567 the data. */ | |
568 #define pdump_get_indirect_mc_addr(ptr, indirect) \ | |
569 pdump_get_mc_addr ((void *)((ptr) - indirect)) + indirect | |
570 | |
571 static void | |
572 pdump_put_mc_addr (const void *obj, EMACS_INT addr) | |
573 { | |
574 mc_addr_elt *mc_addr; | |
575 int pos = pdump_make_hash (obj); | |
576 | |
2723 | 577 while (((mc_addr = &pdump_mc_hash[pos]) != 0) && (mc_addr->obj != 0)) |
2720 | 578 { |
579 if (mc_addr->obj == obj) | |
580 return; | |
581 | |
2775 | 582 pos += PDUMP_HASH_STEP; |
583 if (pos >= PDUMP_HASHSIZE) | |
584 pos -= PDUMP_HASHSIZE; | |
2720 | 585 } |
586 | |
587 pdump_mc_hash[pos].obj = obj; | |
588 pdump_mc_hash[pos].addr = addr; | |
589 } | |
3263 | 590 #endif /* NEW_GC */ |
2720 | 591 |
2367 | 592 static pdump_block_list * |
593 pdump_get_block_list (const struct memory_description *desc) | |
442 | 594 { |
595 int i; | |
2367 | 596 for (i=0; i<pdump_desc_table.count; i++) |
597 if (pdump_desc_table.list[i].desc == desc) | |
598 return &pdump_desc_table.list[i].list; | |
442 | 599 |
2367 | 600 if (pdump_desc_table.size <= pdump_desc_table.count) |
442 | 601 { |
2367 | 602 if (pdump_desc_table.size == -1) |
603 pdump_desc_table.size = 10; | |
442 | 604 else |
2367 | 605 pdump_desc_table.size = pdump_desc_table.size * 2; |
606 pdump_desc_table.list = (pdump_desc_list_elt *) | |
607 xrealloc (pdump_desc_table.list, | |
608 pdump_desc_table.size * sizeof (pdump_desc_list_elt)); | |
442 | 609 } |
2367 | 610 pdump_desc_table.list[pdump_desc_table.count].list.first = 0; |
611 pdump_desc_table.list[pdump_desc_table.count].list.align = ALIGNOF (max_align_t); | |
612 pdump_desc_table.list[pdump_desc_table.count].list.count = 0; | |
613 pdump_desc_table.list[pdump_desc_table.count].desc = desc; | |
442 | 614 |
2367 | 615 return &pdump_desc_table.list[pdump_desc_table.count++].list; |
442 | 616 } |
617 | |
2551 | 618 static pdump_cv_ptr_info * |
619 pdump_find_in_cv_ptr_dynarr(const void *object) | |
620 { | |
621 int i; | |
622 for (i = 0; i < Dynarr_length (pdump_cv_ptr); i++) | |
623 if (Dynarr_at (pdump_cv_ptr, i).object == object) | |
624 return Dynarr_atp (pdump_cv_ptr, i); | |
625 return 0; | |
626 } | |
627 | |
2698 | 628 #define BACKTRACE_MAX 65536 |
629 | |
442 | 630 static struct |
631 { | |
632 struct lrecord_header *obj; | |
633 int position; | |
634 int offset; | |
2698 | 635 } backtrace[BACKTRACE_MAX]; |
442 | 636 |
1204 | 637 static int pdump_depth; |
442 | 638 |
1204 | 639 void |
452 | 640 pdump_backtrace (void) |
442 | 641 { |
642 int i; | |
643 stderr_out ("pdump backtrace :\n"); | |
1204 | 644 for (i = 0; i < pdump_depth; i++) |
442 | 645 { |
646 if (!backtrace[i].obj) | |
458 | 647 stderr_out (" - ind. (%d, %d)\n", |
648 backtrace[i].position, | |
649 backtrace[i].offset); | |
442 | 650 else |
651 { | |
652 stderr_out (" - %s (%d, %d)\n", | |
1204 | 653 LHEADER_IMPLEMENTATION (backtrace[i].obj)->name, |
654 backtrace[i].position, | |
655 backtrace[i].offset); | |
442 | 656 } |
657 } | |
658 } | |
659 | |
1204 | 660 static void |
1333 | 661 pdump_unsupported_dump_type (enum memory_description_type type, |
662 int do_backtrace) | |
663 { | |
664 stderr_out ("Unsupported dump type : %d\n", type); | |
665 #ifdef WIN32_NATIVE | |
666 stderr_out ("Are you compiling with SUPPORT_EDIT_AND_CONTINUE?\n"); | |
667 stderr_out ("See the PROBLEMS file.\n"); | |
668 #endif | |
669 if (do_backtrace) | |
670 pdump_backtrace (); | |
2500 | 671 ABORT (); |
1333 | 672 } |
673 | |
674 static void | |
1204 | 675 pdump_bump_depth (void) |
676 { | |
677 int me = pdump_depth++; | |
2698 | 678 if (me >= BACKTRACE_MAX) |
1204 | 679 { |
680 stderr_out ("Backtrace overflow, loop ?\n"); | |
2500 | 681 ABORT (); |
1204 | 682 } |
683 backtrace[me].obj = 0; | |
684 backtrace[me].position = 0; | |
685 backtrace[me].offset = 0; | |
686 } | |
687 | |
442 | 688 static void pdump_register_object (Lisp_Object obj); |
3092 | 689 #ifdef NEW_GC |
690 static void pdump_register_object_array (Lisp_Object data, | |
691 Bytecount size, | |
692 const struct memory_description *desc, | |
693 int count); | |
694 #endif /* NEW_GC */ | |
2367 | 695 static void pdump_register_block_contents (const void *data, |
696 Bytecount size, | |
697 const struct memory_description * | |
698 desc, | |
699 int count); | |
700 static void pdump_register_block (const void *data, | |
701 Bytecount size, | |
702 const struct memory_description *desc, | |
703 int count); | |
442 | 704 |
705 static void | |
1204 | 706 pdump_register_sub (const void *data, const struct memory_description *desc) |
442 | 707 { |
708 int pos; | |
1204 | 709 int me = pdump_depth - 1; |
442 | 710 |
711 for (pos = 0; desc[pos].type != XD_END; pos++) | |
712 { | |
1204 | 713 const struct memory_description *desc1 = &desc[pos]; |
714 EMACS_INT offset = lispdesc_indirect_count (desc1->offset, desc, | |
715 data); | |
2367 | 716 const void *rdata = (const Rawbyte *) data + offset; |
442 | 717 |
718 backtrace[me].position = pos; | |
1204 | 719 backtrace[me].offset = offset; |
720 | |
721 union_switcheroo: | |
442 | 722 |
1204 | 723 /* If the flag says don't dump, then don't dump. */ |
724 if ((desc1->flags) & XD_FLAG_NO_PDUMP) | |
725 continue; | |
726 | |
727 switch (desc1->type) | |
442 | 728 { |
665 | 729 case XD_BYTECOUNT: |
730 case XD_ELEMCOUNT: | |
731 case XD_HASHCODE: | |
442 | 732 case XD_INT: |
733 case XD_LONG: | |
734 case XD_INT_RESET: | |
735 case XD_LO_LINK: | |
736 break; | |
737 case XD_OPAQUE_DATA_PTR: | |
738 { | |
1204 | 739 EMACS_INT count = lispdesc_indirect_count (desc1->data1, desc, |
740 data); | |
442 | 741 |
2367 | 742 pdump_add_block (&pdump_opaque_data_list, |
458 | 743 *(void **)rdata, count, 1); |
442 | 744 break; |
745 } | |
2367 | 746 case XD_ASCII_STRING: |
442 | 747 { |
2367 | 748 const Ascbyte *str = * (const Ascbyte **) rdata; |
442 | 749 if (str) |
2367 | 750 pdump_add_block (&pdump_opaque_data_list, str, strlen (str) + 1, |
1204 | 751 1); |
442 | 752 break; |
753 } | |
754 case XD_DOC_STRING: | |
755 { | |
2367 | 756 const Ascbyte *str = * (const Ascbyte **) rdata; |
1204 | 757 if ((EMACS_INT) str > 0) |
2367 | 758 pdump_add_block (&pdump_opaque_data_list, str, strlen (str) + 1, |
1204 | 759 1); |
442 | 760 break; |
761 } | |
762 case XD_LISP_OBJECT: | |
763 { | |
1204 | 764 const Lisp_Object *pobj = (const Lisp_Object *) rdata; |
442 | 765 |
1204 | 766 assert (desc1->data1 == 0); |
442 | 767 |
2367 | 768 backtrace[me].offset = |
769 (const Rawbyte *) pobj - (const Rawbyte *) data; | |
442 | 770 pdump_register_object (*pobj); |
771 break; | |
772 } | |
773 case XD_LISP_OBJECT_ARRAY: | |
774 { | |
775 int i; | |
1204 | 776 EMACS_INT count = lispdesc_indirect_count (desc1->data1, desc, |
777 data); | |
442 | 778 |
779 for (i = 0; i < count; i++) | |
780 { | |
1204 | 781 const Lisp_Object *pobj = ((const Lisp_Object *) rdata) + i; |
442 | 782 Lisp_Object dobj = *pobj; |
783 | |
1204 | 784 backtrace[me].offset = |
2367 | 785 (const Rawbyte *) pobj - (const Rawbyte *) data; |
442 | 786 pdump_register_object (dobj); |
787 } | |
788 break; | |
789 } | |
3092 | 790 #ifdef NEW_GC |
791 case XD_LISP_OBJECT_BLOCK_PTR: | |
792 { | |
793 EMACS_INT count = lispdesc_indirect_count (desc1->data1, desc, | |
794 data); | |
795 const struct sized_memory_description *sdesc = | |
796 lispdesc_indirect_description (data, desc1->data2.descr); | |
797 const Lisp_Object *pobj = (const Lisp_Object *) rdata; | |
798 if (pobj) | |
799 pdump_register_object_array | |
800 (*pobj, sdesc->size, sdesc->description, count); | |
801 break; | |
802 } | |
803 #endif /* NEW_GC */ | |
2367 | 804 case XD_BLOCK_PTR: |
442 | 805 { |
1204 | 806 EMACS_INT count = lispdesc_indirect_count (desc1->data1, desc, |
807 data); | |
808 const struct sized_memory_description *sdesc = | |
2551 | 809 lispdesc_indirect_description (data, desc1->data2.descr); |
2367 | 810 const Rawbyte *dobj = *(const Rawbyte **)rdata; |
442 | 811 if (dobj) |
2367 | 812 pdump_register_block (dobj, sdesc->size, sdesc->description, |
813 count); | |
442 | 814 break; |
815 } | |
2367 | 816 case XD_BLOCK_ARRAY: |
771 | 817 { |
1204 | 818 EMACS_INT count = lispdesc_indirect_count (desc1->data1, desc, |
819 data); | |
820 const struct sized_memory_description *sdesc = | |
2551 | 821 lispdesc_indirect_description (data, desc1->data2.descr); |
771 | 822 |
2367 | 823 pdump_register_block_contents (rdata, sdesc->size, |
824 sdesc->description, count); | |
771 | 825 break; |
826 } | |
827 case XD_UNION: | |
1204 | 828 case XD_UNION_DYNAMIC_SIZE: |
829 desc1 = lispdesc_process_xd_union (desc1, desc, data); | |
830 if (desc1) | |
831 goto union_switcheroo; | |
832 break; | |
2551 | 833 case XD_OPAQUE_PTR_CONVERTIBLE: |
834 { | |
835 pdump_cv_ptr_info info; | |
836 info.object = *(void **)rdata; | |
837 info.fcts = desc1->data2.funcs; | |
838 if (!pdump_find_in_cv_ptr_dynarr (info.object)) | |
839 { | |
840 info.fcts->convert(info.object, &info.data, &info.size); | |
841 Dynarr_add (pdump_cv_ptr, info); | |
842 } | |
843 break; | |
844 } | |
845 case XD_OPAQUE_DATA_CONVERTIBLE: | |
846 { | |
847 pdump_cv_data_info info; | |
848 info.object = data; | |
849 info.offset = offset; | |
850 info.fcts = desc1->data2.funcs; | |
851 | |
852 info.fcts->convert(rdata, &info.data, &info.size); | |
853 Dynarr_add (pdump_cv_data, info); | |
854 break; | |
855 } | |
771 | 856 |
442 | 857 default: |
1333 | 858 pdump_unsupported_dump_type (desc1->type, 1); |
1204 | 859 } |
442 | 860 } |
861 } | |
862 | |
863 static void | |
864 pdump_register_object (Lisp_Object obj) | |
865 { | |
866 struct lrecord_header *objh; | |
458 | 867 const struct lrecord_implementation *imp; |
442 | 868 |
869 if (!POINTER_TYPE_P (XTYPE (obj))) | |
870 return; | |
871 | |
872 objh = XRECORD_LHEADER (obj); | |
873 if (!objh) | |
874 return; | |
875 | |
2367 | 876 if (pdump_get_block (objh)) |
442 | 877 return; |
878 | |
458 | 879 imp = LHEADER_IMPLEMENTATION (objh); |
880 | |
934 | 881 if (imp->description |
3263 | 882 #ifdef NEW_GC |
883 /* Objects with finalizers cannot be dumped with the new | |
884 allocator's asynchronous finalization strategy. */ | |
885 && !imp->finalizer | |
886 #endif /* not NEW_GC */ | |
1204 | 887 && RECORD_DUMPABLE (objh)) |
442 | 888 { |
1204 | 889 pdump_bump_depth (); |
890 backtrace[pdump_depth - 1].obj = objh; | |
2367 | 891 pdump_add_block (pdump_object_table + objh->type, |
1204 | 892 objh, detagged_lisp_object_size (objh), 1); |
893 pdump_register_sub (objh, imp->description); | |
894 --pdump_depth; | |
442 | 895 } |
896 else | |
897 { | |
898 pdump_alert_undump_object[objh->type]++; | |
458 | 899 stderr_out ("Undumpable object type : %s\n", imp->name); |
442 | 900 pdump_backtrace (); |
901 } | |
902 } | |
903 | |
3092 | 904 #ifdef NEW_GC |
905 static void | |
906 pdump_register_object_array (Lisp_Object obj, | |
907 Bytecount size, | |
908 const struct memory_description *desc, | |
909 int count) | |
910 { | |
911 struct lrecord_header *objh; | |
912 const struct lrecord_implementation *imp; | |
913 | |
914 if (!POINTER_TYPE_P (XTYPE (obj))) | |
915 return; | |
916 | |
917 objh = XRECORD_LHEADER (obj); | |
918 if (!objh) | |
919 return; | |
920 | |
921 if (pdump_get_block (objh)) | |
922 return; | |
923 | |
924 imp = LHEADER_IMPLEMENTATION (objh); | |
925 | |
926 if (imp->description | |
927 && RECORD_DUMPABLE (objh)) | |
928 { | |
929 pdump_bump_depth (); | |
930 backtrace[pdump_depth - 1].obj = objh; | |
931 pdump_add_block (pdump_object_table + objh->type, | |
932 objh, lispdesc_block_size_1 (objh, size, desc), count); | |
933 pdump_register_block_contents (objh, size, desc, count); | |
934 --pdump_depth; | |
935 } | |
936 else | |
937 { | |
938 pdump_alert_undump_object[objh->type]++; | |
939 stderr_out ("Undumpable object type : %s\n", imp->name); | |
940 pdump_backtrace (); | |
941 } | |
942 } | |
943 #endif /* NEW_GC */ | |
944 | |
2367 | 945 /* Register the referenced objects in the array of COUNT blocks located at |
946 DATA; each block is described by SIZE and DESC. "Block" here simply | |
947 means any block of memory. | |
771 | 948 |
949 This does not register the block of memory itself; it may, for | |
950 example, be an array of structures inlined in another memory block | |
2367 | 951 and thus should not be registered. See pdump_register_block(), |
771 | 952 which does register the memory block. */ |
953 | |
954 static void | |
2367 | 955 pdump_register_block_contents (const void *data, |
956 Bytecount size, | |
957 const struct memory_description *desc, | |
958 int count) | |
771 | 959 { |
960 int i; | |
961 Bytecount elsize; | |
962 | |
1204 | 963 pdump_bump_depth (); |
2367 | 964 elsize = lispdesc_block_size_1 (data, size, desc); |
771 | 965 for (i = 0; i < count; i++) |
966 { | |
2367 | 967 pdump_register_sub (((Rawbyte *) data) + elsize * i, desc); |
771 | 968 } |
1204 | 969 --pdump_depth; |
771 | 970 } |
971 | |
2367 | 972 /* Register the array of COUNT blocks located at DATA; each block is |
973 described by SDESC. "Block" here simply means any block of memory, | |
974 which is more accurate and less confusing than terms like `struct' and | |
975 `object'. A `block' need not actually be a C "struct". It could be a | |
976 single integer or Lisp_Object, for example, as long as the description | |
977 is accurate. | |
771 | 978 |
2367 | 979 This is like pdump_register_block_contents() but also registers |
771 | 980 the memory block itself. */ |
981 | |
442 | 982 static void |
2367 | 983 pdump_register_block (const void *data, |
984 Bytecount size, | |
985 const struct memory_description *desc, | |
986 int count) | |
442 | 987 { |
2367 | 988 if (data && !pdump_get_block (data)) |
442 | 989 { |
2367 | 990 pdump_add_block (pdump_get_block_list (desc), data, |
991 lispdesc_block_size_1 (data, size, desc), count); | |
992 pdump_register_block_contents (data, size, desc, count); | |
442 | 993 } |
994 } | |
995 | |
2551 | 996 |
1204 | 997 /* Store the already-calculated new pointer offsets for all pointers in the |
998 COUNT contiguous blocks of memory, each described by DESC and of size | |
999 SIZE, whose original is located at ORIG_DATA and the modifiable copy at | |
1000 DATA. We examine the description to figure out where the pointers are, | |
2367 | 1001 and then look up the replacement values using pdump_get_block(). |
771 | 1002 |
1204 | 1003 This is done just before writing the modified block of memory to the |
1004 dump file. The new pointer offsets have been carefully calculated so | |
1005 that the data being pointed gets written at that offset in the dump | |
1006 file. That way, the dump file is a correct memory image except perhaps | |
1007 for a constant that needs to be added to all pointers. (#### In fact, we | |
1008 SHOULD be starting up a dumped XEmacs, seeing where the dumped file gets | |
1009 loaded into memory, and then rewriting the dumped file after relocating | |
1010 all the pointers relative to this memory location. That way, if the | |
1011 file gets loaded again at the same location, which will be common, we | |
1012 don't have to do any relocating, which is both faster at startup and | |
771 | 1013 allows the read-only part of the dumped data to be shared read-only |
1014 between different invocations of XEmacs.) | |
1015 | |
1016 #### Do we distinguish between read-only and writable dumped data? | |
1017 Should we? It's tricky because the dumped data, once loaded again, | |
1204 | 1018 cannot really be free()d or garbage collected since it's all stored in |
1019 one contiguous block of data with no malloc() headers, and we don't keep | |
1020 track of the pointers used internally in malloc() and the Lisp allocator | |
1021 to track allocated blocks of memory. */ | |
771 | 1022 |
1023 static void | |
1024 pdump_store_new_pointer_offsets (int count, void *data, const void *orig_data, | |
1204 | 1025 const struct memory_description *desc, |
771 | 1026 int size) |
1027 { | |
1028 int pos, i; | |
1029 /* Process each block one by one */ | |
1030 for (i = 0; i < count; i++) | |
1031 { | |
1032 /* CUR points to the beginning of each block in the new data. */ | |
2367 | 1033 Rawbyte *cur = ((Rawbyte *)data) + i * size; |
771 | 1034 /* Scan each line of the description for relocatable pointers */ |
1035 for (pos = 0; desc[pos].type != XD_END; pos++) | |
1036 { | |
1037 /* RDATA points to the beginning of each element in the new data. */ | |
1204 | 1038 const struct memory_description *desc1 = &desc[pos]; |
1039 /* #### Change ORIG_DATA to DATA. See below. */ | |
1040 void *rdata = cur + lispdesc_indirect_count (desc1->offset, desc, | |
1041 orig_data); | |
1042 union_switcheroo: | |
1043 | |
1044 /* If the flag says don't dump, then don't dump. */ | |
1045 if ((desc1->flags) & XD_FLAG_NO_PDUMP) | |
1046 continue; | |
1047 | |
1048 switch (desc1->type) | |
771 | 1049 { |
1050 case XD_BYTECOUNT: | |
1051 case XD_ELEMCOUNT: | |
1052 case XD_HASHCODE: | |
1053 case XD_INT: | |
1054 case XD_LONG: | |
1055 break; | |
1056 case XD_INT_RESET: | |
1057 { | |
1204 | 1058 EMACS_INT val = lispdesc_indirect_count (desc1->data1, desc, |
1059 orig_data); | |
771 | 1060 * (int *) rdata = val; |
1061 break; | |
1062 } | |
3092 | 1063 #ifdef NEW_GC |
1064 case XD_LISP_OBJECT_BLOCK_PTR: | |
1065 #endif /* NEW_GC */ | |
771 | 1066 case XD_OPAQUE_DATA_PTR: |
2367 | 1067 case XD_ASCII_STRING: |
1068 case XD_BLOCK_PTR: | |
771 | 1069 { |
1070 void *ptr = * (void **) rdata; | |
1071 if (ptr) | |
2367 | 1072 * (EMACS_INT *) rdata = pdump_get_block (ptr)->save_offset; |
771 | 1073 break; |
1074 } | |
1075 case XD_LO_LINK: | |
1076 { | |
1077 /* As described in lrecord.h, this is a weak link. | |
1078 Thus, we need to link this object not (necessarily) | |
1079 to the object directly pointed to, but to the next | |
1080 referenced object in the chain. None of the | |
1081 intermediate objects will be written out, so we | |
1082 traverse down the chain of objects until we find a | |
1083 referenced one. (The Qnil or Qunbound that ends the | |
1084 chain will always be a referenced object.) */ | |
1085 Lisp_Object obj = * (Lisp_Object *) rdata; | |
2367 | 1086 pdump_block_list_elt *elt1; |
1204 | 1087 /* #### Figure out how to handle indirect offsets here. |
1088 #### In general, when computing indirect counts, do we | |
1089 really need to use the orig_data pointer? Why not just | |
1090 use the new stuff? | |
1091 | |
1092 No, we don't usually need orig_data. We only need it | |
1093 when fetching pointers out of the data, not integers. | |
1094 This currently occurs only with description maps. We | |
1095 should change the other places to DATA to emphasize | |
1096 this. */ | |
1097 assert (!XD_IS_INDIRECT (desc1->offset)); | |
771 | 1098 for (;;) |
1099 { | |
2367 | 1100 elt1 = pdump_get_block (XRECORD_LHEADER (obj)); |
771 | 1101 if (elt1) |
1102 break; | |
1204 | 1103 obj = * (Lisp_Object *) (desc1->offset + |
2367 | 1104 (Rawbyte *) |
1105 (XRECORD_LHEADER (obj))); | |
771 | 1106 } |
1107 * (EMACS_INT *) rdata = elt1->save_offset; | |
1108 break; | |
1109 } | |
1110 case XD_LISP_OBJECT: | |
1111 { | |
1112 Lisp_Object *pobj = (Lisp_Object *) rdata; | |
1113 | |
1204 | 1114 assert (desc1->data1 == 0); |
771 | 1115 |
1116 if (POINTER_TYPE_P (XTYPE (*pobj)) && XRECORD_LHEADER (*pobj)) | |
1117 * (EMACS_INT *) pobj = | |
2367 | 1118 pdump_get_block (XRECORD_LHEADER (*pobj))->save_offset; |
771 | 1119 break; |
1120 } | |
1121 case XD_LISP_OBJECT_ARRAY: | |
1122 { | |
1204 | 1123 EMACS_INT num = lispdesc_indirect_count (desc1->data1, desc, |
1124 orig_data); | |
771 | 1125 int j; |
1126 | |
1127 for (j = 0; j < num; j++) | |
1128 { | |
1129 Lisp_Object *pobj = ((Lisp_Object *) rdata) + j; | |
1130 if (POINTER_TYPE_P (XTYPE (*pobj)) && | |
1131 XRECORD_LHEADER (*pobj)) | |
1132 * (EMACS_INT *) pobj = | |
2367 | 1133 pdump_get_block (XRECORD_LHEADER (*pobj))->save_offset; |
771 | 1134 } |
1135 break; | |
1136 } | |
1137 case XD_DOC_STRING: | |
1138 { | |
1139 EMACS_INT str = *(EMACS_INT *)rdata; | |
1140 if (str > 0) | |
1141 * (EMACS_INT *) rdata = | |
2367 | 1142 pdump_get_block ((void *)str)->save_offset; |
771 | 1143 break; |
1144 } | |
2367 | 1145 case XD_BLOCK_ARRAY: |
771 | 1146 { |
1204 | 1147 EMACS_INT num = lispdesc_indirect_count (desc1->data1, desc, |
1148 orig_data); | |
1149 const struct sized_memory_description *sdesc = | |
2551 | 1150 lispdesc_indirect_description (orig_data, desc1->data2.descr); |
771 | 1151 |
1152 pdump_store_new_pointer_offsets | |
1153 (num, rdata, | |
2367 | 1154 ((Rawbyte *) rdata - (Rawbyte *) data) + |
1155 (Rawbyte *) orig_data, | |
1204 | 1156 sdesc->description, |
2367 | 1157 lispdesc_block_size |
1158 (((Rawbyte *) rdata - (Rawbyte *) data) + | |
1159 (Rawbyte *) orig_data, sdesc)); | |
771 | 1160 break; |
1161 } | |
1162 case XD_UNION: | |
1204 | 1163 case XD_UNION_DYNAMIC_SIZE: |
1164 desc1 = lispdesc_process_xd_union (desc1, desc, orig_data); | |
1165 if (desc1) | |
1166 goto union_switcheroo; | |
1167 break; | |
771 | 1168 |
2551 | 1169 case XD_OPAQUE_PTR_CONVERTIBLE: |
1170 *(EMACS_INT *)rdata = pdump_find_in_cv_ptr_dynarr (*(void **)rdata)->index; | |
1171 break; | |
1172 | |
1173 case XD_OPAQUE_DATA_CONVERTIBLE: | |
1174 /* in-object, nothing to do */ | |
1175 break; | |
1176 | |
771 | 1177 default: |
1333 | 1178 pdump_unsupported_dump_type (desc1->type, 0); |
771 | 1179 } |
1180 } | |
1181 } | |
1182 } | |
1183 | |
1184 /* Write out to global file descriptor PDUMP_OUT the element (one or | |
1185 more contiguous blocks of identical size/description) recorded in | |
1186 ELT and described by DESC. The element is first copied to a buffer | |
1187 and then all pointers (this includes Lisp_Objects other than | |
1188 integer/character) are relocated to the (pre-computed) offset in | |
1189 the dump file. */ | |
1190 | |
442 | 1191 static void |
2367 | 1192 pdump_dump_data (pdump_block_list_elt *elt, |
1204 | 1193 const struct memory_description *desc) |
442 | 1194 { |
665 | 1195 Bytecount size = elt->size; |
460 | 1196 int count = elt->count; |
442 | 1197 if (desc) |
1198 { | |
771 | 1199 /* Copy to temporary buffer */ |
460 | 1200 memcpy (pdump_buf, elt->obj, size*count); |
442 | 1201 |
771 | 1202 /* Store new offsets into all pointers in block */ |
1203 pdump_store_new_pointer_offsets (count, pdump_buf, elt->obj, desc, size); | |
1204 } | |
1205 retry_fwrite (desc ? pdump_buf : elt->obj, size, count, pdump_out); | |
1206 } | |
442 | 1207 |
3263 | 1208 #ifdef NEW_GC |
2720 | 1209 /* To be able to relocate during load time, more information about the |
1210 dumped objects are needed: The count (for array-like data | |
1211 structures), the size of the object, and the location in the dumped | |
1212 data. | |
1213 */ | |
1214 static void | |
1215 pdump_dump_mc_data (pdump_block_list_elt *elt, | |
1216 const struct memory_description *UNUSED(desc)) | |
1217 { | |
1218 EMACS_INT rdata = pdump_get_block (elt->obj)->save_offset; | |
1219 int j; | |
1220 PDUMP_WRITE_ALIGNED (int, elt->count); | |
1221 PDUMP_WRITE_ALIGNED (Bytecount, elt->size); | |
1222 for (j = 0; j < elt->count; j++) | |
1223 { | |
1224 PDUMP_WRITE_ALIGNED (EMACS_INT, rdata); | |
1225 rdata += elt->size; | |
1226 } | |
1227 } | |
1228 | |
1229 static void | |
1230 pdump_scan_lisp_objects_by_alignment (void (*f) | |
1231 (pdump_block_list_elt *, | |
1232 const struct memory_description *)) | |
1233 { | |
1234 int align; | |
1235 | |
1236 for (align = ALIGNOF (max_align_t); align; align>>=1) | |
1237 { | |
1238 int i; | |
1239 pdump_block_list_elt *elt; | |
1240 | |
1241 for (i=0; i<lrecord_type_count; i++) | |
1242 if (pdump_object_table[i].align == align) | |
1243 for (elt = pdump_object_table[i].first; elt; elt = elt->next) | |
1244 { | |
1245 f (elt, lrecord_implementations_table[i]->description); | |
1246 } | |
1247 } | |
1248 } | |
1249 | |
1250 static void | |
1251 pdump_scan_non_lisp_objects_by_alignment (void (*f) | |
1252 (pdump_block_list_elt *, | |
1253 const struct memory_description *)) | |
1254 { | |
1255 int align; | |
1256 | |
1257 for (align = ALIGNOF (max_align_t); align; align>>=1) | |
1258 { | |
1259 int i; | |
1260 pdump_block_list_elt *elt; | |
1261 | |
1262 for (i=0; i<pdump_desc_table.count; i++) | |
1263 { | |
1264 pdump_desc_list_elt list = pdump_desc_table.list[i]; | |
1265 if (list.list.align == align) | |
1266 for (elt = list.list.first; elt; elt = elt->next) | |
1267 f (elt, list.desc); | |
1268 } | |
1269 | |
1270 for (elt = pdump_opaque_data_list.first; elt; elt = elt->next) | |
1271 if (pdump_size_to_align (elt->size) == align) | |
1272 f (elt, 0); | |
1273 } | |
1274 } | |
1275 | |
1276 | |
1277 | |
1278 static void | |
1279 pdump_reloc_one_mc (void *data, const struct memory_description *desc) | |
1280 { | |
1281 int pos; | |
1282 | |
1283 for (pos = 0; desc[pos].type != XD_END; pos++) | |
1284 { | |
1285 const struct memory_description *desc1 = &desc[pos]; | |
1286 void *rdata = | |
1287 (Rawbyte *) data + lispdesc_indirect_count (desc1->offset, | |
1288 desc, data); | |
1289 | |
1290 union_switcheroo: | |
1291 | |
1292 /* If the flag says don't dump, then don't dump. */ | |
1293 if ((desc1->flags) & XD_FLAG_NO_PDUMP) | |
1294 continue; | |
1295 | |
1296 switch (desc1->type) | |
1297 { | |
1298 case XD_BYTECOUNT: | |
1299 case XD_ELEMCOUNT: | |
1300 case XD_HASHCODE: | |
1301 case XD_INT: | |
1302 case XD_LONG: | |
1303 case XD_INT_RESET: | |
1304 break; | |
3092 | 1305 case XD_LISP_OBJECT_BLOCK_PTR: |
2720 | 1306 case XD_OPAQUE_DATA_PTR: |
1307 case XD_ASCII_STRING: | |
1308 case XD_BLOCK_PTR: | |
1309 case XD_LO_LINK: | |
1310 { | |
1311 EMACS_INT ptr = *(EMACS_INT *) rdata; | |
1312 if (ptr) | |
1313 *(EMACS_INT *) rdata = pdump_get_mc_addr ((void *) ptr); | |
1314 break; | |
1315 } | |
1316 case XD_LISP_OBJECT: | |
1317 { | |
1318 Lisp_Object *pobj = (Lisp_Object *) rdata; | |
1319 | |
1320 assert (desc1->data1 == 0); | |
1321 | |
1322 if (POINTER_TYPE_P (XTYPE (*pobj)) | |
1323 && ! EQ (*pobj, Qnull_pointer)) | |
3092 | 1324 *pobj = wrap_pointer_1 ((Rawbyte *) pdump_get_mc_addr |
2720 | 1325 (XPNTR (*pobj))); |
1326 break; | |
1327 } | |
1328 case XD_LISP_OBJECT_ARRAY: | |
1329 { | |
1330 EMACS_INT num = lispdesc_indirect_count (desc1->data1, desc, | |
1331 data); | |
1332 int j; | |
1333 | |
1334 for (j=0; j<num; j++) | |
1335 { | |
1336 Lisp_Object *pobj = (Lisp_Object *) rdata + j; | |
1337 | |
1338 if (POINTER_TYPE_P (XTYPE (*pobj)) | |
1339 && ! EQ (*pobj, Qnull_pointer)) | |
3092 | 1340 *pobj = wrap_pointer_1 ((Rawbyte *) pdump_get_mc_addr |
2775 | 1341 (XPNTR (*pobj))); |
2720 | 1342 } |
1343 break; | |
1344 } | |
1345 case XD_DOC_STRING: | |
1346 { | |
1347 EMACS_INT str = *(EMACS_INT *) rdata; | |
1348 if (str > 0) | |
1349 *(EMACS_INT *) rdata = pdump_get_mc_addr ((void *) str); | |
1350 break; | |
1351 } | |
1352 case XD_BLOCK_ARRAY: | |
1353 { | |
1354 EMACS_INT num = lispdesc_indirect_count (desc1->data1, desc, | |
1355 data); | |
1356 int j; | |
1357 const struct sized_memory_description *sdesc = | |
1358 lispdesc_indirect_description (data, desc1->data2.descr); | |
1359 Bytecount size = lispdesc_block_size (rdata, sdesc); | |
1360 | |
1361 /* Note: We are recursing over data in the block itself */ | |
1362 for (j = 0; j < num; j++) | |
1363 pdump_reloc_one_mc ((Rawbyte *) rdata + j * size, | |
1364 sdesc->description); | |
1365 | |
1366 break; | |
1367 } | |
1368 case XD_UNION: | |
1369 case XD_UNION_DYNAMIC_SIZE: | |
1370 desc1 = lispdesc_process_xd_union (desc1, desc, data); | |
1371 if (desc1) | |
1372 goto union_switcheroo; | |
1373 break; | |
1374 | |
1375 case XD_OPAQUE_PTR_CONVERTIBLE: | |
1376 { | |
1377 pdump_cv_ptr_load_info *p = pdump_loaded_cv_ptr + *(EMACS_INT *)rdata; | |
1378 if (!p->adr) | |
1379 p->adr = desc1->data2.funcs->deconvert(0, | |
1380 pdump_start + p->save_offset, | |
1381 p->size); | |
1382 *(void **)rdata = p->adr; | |
1383 break; | |
1384 } | |
1385 | |
1386 case XD_OPAQUE_DATA_CONVERTIBLE: | |
1387 { | |
1388 EMACS_INT dest_offset = (EMACS_INT) rdata; | |
1389 EMACS_INT indirect = | |
1390 lispdesc_indirect_count (desc1->offset, desc, data); | |
1391 pdump_cv_data_dump_info *p; | |
1392 | |
1393 for(p = pdump_loaded_cv_data; | |
1394 pdump_get_indirect_mc_addr (p->dest_offset, indirect) | |
1395 != dest_offset; | |
1396 p++); | |
1397 | |
1398 desc1->data2.funcs->deconvert(rdata, pdump_start + p->save_offset, | |
1399 p->size); | |
1400 break; | |
1401 } | |
1402 | |
1403 default: | |
1404 pdump_unsupported_dump_type (desc1->type, 0); | |
1405 } | |
1406 } | |
1407 } | |
3263 | 1408 #else /* not NEW_GC */ |
771 | 1409 /* Relocate a single memory block at DATA, described by DESC, from its |
1204 | 1410 assumed load location to its actual one by adding DELTA to all pointers |
1411 in the block. Does not recursively relocate any other memory blocks | |
1412 pointed to. (We already have a list of all memory blocks in the dump | |
1413 file.) This is used once the dump data has been loaded back in, both | |
2367 | 1414 for blocks sitting in the dumped data (former heap blocks) and in global |
1415 data-sgment blocks whose contents have been restored from the dumped | |
1416 data. */ | |
442 | 1417 |
1418 static void | |
458 | 1419 pdump_reloc_one (void *data, EMACS_INT delta, |
1204 | 1420 const struct memory_description *desc) |
442 | 1421 { |
1422 int pos; | |
1423 | |
1424 for (pos = 0; desc[pos].type != XD_END; pos++) | |
1425 { | |
1204 | 1426 const struct memory_description *desc1 = &desc[pos]; |
2367 | 1427 void *rdata = |
1428 (Rawbyte *) data + lispdesc_indirect_count (desc1->offset, | |
1429 desc, data); | |
1204 | 1430 |
1431 union_switcheroo: | |
1432 | |
1433 /* If the flag says don't dump, then don't dump. */ | |
1434 if ((desc1->flags) & XD_FLAG_NO_PDUMP) | |
1435 continue; | |
1436 | |
1437 switch (desc1->type) | |
442 | 1438 { |
665 | 1439 case XD_BYTECOUNT: |
1440 case XD_ELEMCOUNT: | |
1441 case XD_HASHCODE: | |
442 | 1442 case XD_INT: |
1443 case XD_LONG: | |
1444 case XD_INT_RESET: | |
1445 break; | |
1446 case XD_OPAQUE_DATA_PTR: | |
2367 | 1447 case XD_ASCII_STRING: |
1448 case XD_BLOCK_PTR: | |
442 | 1449 case XD_LO_LINK: |
1450 { | |
1451 EMACS_INT ptr = *(EMACS_INT *)rdata; | |
1452 if (ptr) | |
1453 *(EMACS_INT *)rdata = ptr+delta; | |
1454 break; | |
1455 } | |
1456 case XD_LISP_OBJECT: | |
1457 { | |
1458 Lisp_Object *pobj = (Lisp_Object *) rdata; | |
1459 | |
1204 | 1460 assert (desc1->data1 == 0); |
442 | 1461 |
1462 if (POINTER_TYPE_P (XTYPE (*pobj)) | |
1463 && ! EQ (*pobj, Qnull_pointer)) | |
2367 | 1464 *pobj = wrap_pointer_1 ((Rawbyte *) XPNTR (*pobj) + delta); |
442 | 1465 |
1466 break; | |
1467 } | |
1468 case XD_LISP_OBJECT_ARRAY: | |
1469 { | |
1204 | 1470 EMACS_INT num = lispdesc_indirect_count (desc1->data1, desc, |
1471 data); | |
442 | 1472 int j; |
1473 | |
1474 for (j=0; j<num; j++) | |
1475 { | |
1476 Lisp_Object *pobj = (Lisp_Object *) rdata + j; | |
1477 | |
1478 if (POINTER_TYPE_P (XTYPE (*pobj)) | |
1479 && ! EQ (*pobj, Qnull_pointer)) | |
2367 | 1480 *pobj = wrap_pointer_1 ((Rawbyte *) XPNTR (*pobj) + |
1481 delta); | |
442 | 1482 } |
1483 break; | |
1484 } | |
1485 case XD_DOC_STRING: | |
1486 { | |
1487 EMACS_INT str = *(EMACS_INT *)rdata; | |
1488 if (str > 0) | |
1489 *(EMACS_INT *)rdata = str + delta; | |
1490 break; | |
1491 } | |
2367 | 1492 case XD_BLOCK_ARRAY: |
771 | 1493 { |
1204 | 1494 EMACS_INT num = lispdesc_indirect_count (desc1->data1, desc, |
1495 data); | |
771 | 1496 int j; |
1204 | 1497 const struct sized_memory_description *sdesc = |
2551 | 1498 lispdesc_indirect_description (data, desc1->data2.descr); |
2367 | 1499 Bytecount size = lispdesc_block_size (rdata, sdesc); |
771 | 1500 |
1501 /* Note: We are recursing over data in the block itself */ | |
1502 for (j = 0; j < num; j++) | |
2367 | 1503 pdump_reloc_one ((Rawbyte *) rdata + j * size, delta, |
771 | 1504 sdesc->description); |
1505 | |
1506 break; | |
1507 } | |
1204 | 1508 case XD_UNION: |
1509 case XD_UNION_DYNAMIC_SIZE: | |
1510 desc1 = lispdesc_process_xd_union (desc1, desc, data); | |
1511 if (desc1) | |
1512 goto union_switcheroo; | |
1513 break; | |
771 | 1514 |
2551 | 1515 case XD_OPAQUE_PTR_CONVERTIBLE: |
1516 { | |
1517 pdump_cv_ptr_load_info *p = pdump_loaded_cv_ptr + *(EMACS_INT *)rdata; | |
1518 if (!p->adr) | |
1519 p->adr = desc1->data2.funcs->deconvert(0, pdump_start + | |
1520 p->save_offset, p->size); | |
1521 *(void **)rdata = p->adr; | |
1522 break; | |
1523 } | |
1524 | |
1525 case XD_OPAQUE_DATA_CONVERTIBLE: | |
1526 { | |
1527 EMACS_INT dest_offset = (Rawbyte *)rdata - pdump_start; | |
1528 pdump_cv_data_dump_info *p; | |
1529 | |
1530 for(p = pdump_loaded_cv_data; p->dest_offset != dest_offset; p++); | |
1531 | |
1532 desc1->data2.funcs->deconvert(rdata, pdump_start + p->save_offset, | |
1533 p->size); | |
1534 break; | |
1535 } | |
1536 | |
442 | 1537 default: |
1333 | 1538 pdump_unsupported_dump_type (desc1->type, 0); |
1204 | 1539 } |
442 | 1540 } |
1541 } | |
3263 | 1542 #endif /* not NEW_GC */ |
442 | 1543 |
1544 static void | |
2367 | 1545 pdump_allocate_offset (pdump_block_list_elt *elt, |
2286 | 1546 const struct memory_description *UNUSED (desc)) |
442 | 1547 { |
665 | 1548 Bytecount size = elt->count * elt->size; |
460 | 1549 elt->save_offset = cur_offset; |
2367 | 1550 if (size > max_size) |
442 | 1551 max_size = size; |
1552 cur_offset += size; | |
1553 } | |
1554 | |
2551 | 1555 /* Write out to global file descriptor PDUMP_OUT the result of an |
1556 external element. It's just opaque data. */ | |
1557 | |
1558 static void | |
1559 pdump_dump_cv_data (pdump_cv_data_info *elt) | |
1560 { | |
1561 retry_fwrite (elt->data, elt->size, 1, pdump_out); | |
1562 } | |
1563 | |
1564 static void | |
1565 pdump_dump_cv_ptr (pdump_cv_ptr_info *elt) | |
1566 { | |
1567 retry_fwrite (elt->data, elt->size, 1, pdump_out); | |
1568 } | |
1569 | |
1570 static void | |
1571 pdump_allocate_offset_cv_data (pdump_cv_data_info *elt) | |
1572 { | |
1573 elt->save_offset = cur_offset; | |
1574 if (elt->size>max_size) | |
1575 max_size = elt->size; | |
1576 cur_offset += elt->size; | |
1577 } | |
1578 | |
1579 static void | |
1580 pdump_allocate_offset_cv_ptr (pdump_cv_ptr_info *elt) | |
1581 { | |
1582 elt->save_offset = cur_offset; | |
1583 if (elt->size>max_size) | |
1584 max_size = elt->size; | |
1585 cur_offset += elt->size; | |
1586 } | |
1587 | |
2367 | 1588 /* Traverse through all the heap blocks, once the "register" stage of |
1589 dumping has finished. To compress space as much as possible, we | |
1590 logically sort all blocks by alignment, hitting all blocks with | |
1591 alignment == the maximum (which may be 8 bytes, for doubles), then | |
1592 all blocks with the next lower alignment (4 bytes), etc. | |
1593 | |
1594 Within each alignment we hit | |
1595 | |
1596 -- first the Lisp objects, type-by-type | |
1597 | |
1598 -- then the heap memory blocks that are not Lisp objects, description-by- | |
1599 description -- i.e. all blocks with the same description will be | |
1600 placed together | |
1601 | |
1602 -- then the "opaque" data objects declared as XD_OPAQUE_DATA_PTR, | |
1603 XD_ASCII_STRING and XD_DOC_STRING. | |
1604 | |
1605 The idea is to have as little blank space as possible in the laid-out | |
1606 data. | |
1607 | |
1608 For each item that we have hit, we process it by calling F, the function | |
1609 passed it. In dumper.c, pdump_scan_by_alignment() is called twice with | |
1610 two different functions -- pdump_allocate_offset() in stage 2 to compute | |
1611 the offset to each block, and pdump_dump_data() in stage 3 to | |
1612 successively write each block to disk. | |
1613 | |
1614 It's extremely important that the SAME traversal order gets invoked | |
1615 in both stage 2 and 3. | |
1616 */ | |
1617 | |
442 | 1618 static void |
2367 | 1619 pdump_scan_by_alignment (void (*f)(pdump_block_list_elt *, |
2551 | 1620 const struct memory_description *), |
1621 void (*g)(pdump_cv_data_info *), | |
1622 void (*h)(pdump_cv_ptr_info *)) | |
442 | 1623 { |
460 | 1624 int align; |
1625 | |
1626 for (align = ALIGNOF (max_align_t); align; align>>=1) | |
442 | 1627 { |
460 | 1628 int i; |
2367 | 1629 pdump_block_list_elt *elt; |
460 | 1630 |
442 | 1631 for (i=0; i<lrecord_type_count; i++) |
1632 if (pdump_object_table[i].align == align) | |
460 | 1633 for (elt = pdump_object_table[i].first; elt; elt = elt->next) |
1634 f (elt, lrecord_implementations_table[i]->description); | |
442 | 1635 |
2367 | 1636 for (i=0; i<pdump_desc_table.count; i++) |
460 | 1637 { |
2367 | 1638 pdump_desc_list_elt list = pdump_desc_table.list[i]; |
460 | 1639 if (list.list.align == align) |
1640 for (elt = list.list.first; elt; elt = elt->next) | |
1204 | 1641 f (elt, list.desc); |
460 | 1642 } |
442 | 1643 |
460 | 1644 for (elt = pdump_opaque_data_list.first; elt; elt = elt->next) |
1645 if (pdump_size_to_align (elt->size) == align) | |
1646 f (elt, 0); | |
2551 | 1647 |
1648 for (i=0; i < Dynarr_length (pdump_cv_data); i++) | |
1649 if (pdump_size_to_align (Dynarr_atp (pdump_cv_data, i)->size) == align) | |
1650 g (Dynarr_atp (pdump_cv_data, i)); | |
1651 | |
1652 for (i=0; i < Dynarr_length (pdump_cv_ptr); i++) | |
1653 if (pdump_size_to_align (Dynarr_atp (pdump_cv_ptr, i)->size) == align) | |
1654 h (Dynarr_atp (pdump_cv_ptr, i)); | |
442 | 1655 } |
1656 } | |
1657 | |
2551 | 1658 static void |
1659 pdump_dump_cv_data_info (void) | |
1660 { | |
1661 int i; | |
1662 Elemcount count = Dynarr_length (pdump_cv_data); | |
1663 pdump_cv_data_dump_info *data = alloca_array (pdump_cv_data_dump_info, count); | |
1664 for (i = 0; i < count; i++) | |
1665 { | |
1666 data[i].dest_offset = Dynarr_at (pdump_cv_data, i).dest_offset; | |
1667 data[i].save_offset = Dynarr_at (pdump_cv_data, i).save_offset; | |
1668 data[i].size = Dynarr_at (pdump_cv_data, i).size; | |
1669 } | |
1670 | |
1671 PDUMP_ALIGN_OUTPUT (pdump_cv_data_dump_info); | |
1672 retry_fwrite (data, sizeof (pdump_cv_data_dump_info), count, pdump_out); | |
1673 } | |
1674 | |
442 | 1675 static void |
2551 | 1676 pdump_dump_cv_ptr_info (void) |
1677 { | |
1678 int i; | |
1679 Elemcount count = Dynarr_length (pdump_cv_ptr); | |
1680 pdump_cv_ptr_dump_info *data = alloca_array (pdump_cv_ptr_dump_info, count); | |
1681 for (i = 0; i < count; i++) | |
1682 { | |
1683 data[i].save_offset = Dynarr_at (pdump_cv_ptr, i).save_offset; | |
1684 data[i].size = Dynarr_at (pdump_cv_ptr, i).size; | |
1685 } | |
1686 | |
1687 PDUMP_ALIGN_OUTPUT (pdump_cv_ptr_dump_info); | |
1688 retry_fwrite (data, sizeof (pdump_cv_ptr_dump_info), count, pdump_out); | |
1689 } | |
1690 | |
3103 | 1691 /* Dump out the root block pointers, part of stage 3 (the "WRITE" stage) of |
1692 dumping. For each pointer we dump out a structure containing the | |
1693 location of the pointer and its value, replaced by the appropriate | |
1694 offset into the dumped data. */ | |
1695 | |
2551 | 1696 static void |
2367 | 1697 pdump_dump_root_block_ptrs (void) |
442 | 1698 { |
1699 int i; | |
2367 | 1700 Elemcount count = Dynarr_length (pdump_root_block_ptrs); |
458 | 1701 pdump_static_pointer *data = alloca_array (pdump_static_pointer, count); |
1702 for (i = 0; i < count; i++) | |
442 | 1703 { |
1333 | 1704 data[i].address = |
2367 | 1705 (Rawbyte **) Dynarr_atp (pdump_root_block_ptrs, i)->ptraddress; |
1333 | 1706 data[i].value = |
2367 | 1707 (Rawbyte *) pdump_get_block (* data[i].address)->save_offset; |
442 | 1708 } |
458 | 1709 PDUMP_ALIGN_OUTPUT (pdump_static_pointer); |
771 | 1710 retry_fwrite (data, sizeof (pdump_static_pointer), count, pdump_out); |
442 | 1711 } |
1712 | |
2367 | 1713 /* Dump out the root blocks, part of stage 3 (the "WRITE" stage) of |
1714 dumping. For each block we dump a structure containing info about the | |
1715 block (its location, size and description) and then the block itself, | |
1716 with its pointers replaced with offsets into the dump data. */ | |
1717 | |
442 | 1718 static void |
1204 | 1719 pdump_dump_root_blocks (void) |
442 | 1720 { |
1721 int i; | |
1204 | 1722 for (i = 0; i < Dynarr_length (pdump_root_blocks); i++) |
442 | 1723 { |
2367 | 1724 pdump_root_block info = Dynarr_at (pdump_root_blocks, i); |
1725 PDUMP_WRITE_ALIGNED (pdump_root_block, info); | |
1726 | |
1727 if (info.desc) | |
1728 { | |
1729 /* Copy to temporary buffer */ | |
1730 memcpy (pdump_buf, info.blockaddr, info.size); | |
1731 | |
1732 /* Store new offsets into all pointers in block */ | |
1733 pdump_store_new_pointer_offsets (1, pdump_buf, info.blockaddr, | |
1734 info.desc, info.size); | |
1735 } | |
1736 retry_fwrite (info.desc ? pdump_buf : info.blockaddr, | |
1737 info.size, 1, pdump_out); | |
442 | 1738 } |
1739 } | |
1740 | |
1741 static void | |
1742 pdump_dump_rtables (void) | |
1743 { | |
452 | 1744 int i; |
2367 | 1745 pdump_block_list_elt *elt; |
442 | 1746 pdump_reloc_table rt; |
1747 | |
1748 for (i=0; i<lrecord_type_count; i++) | |
1749 { | |
460 | 1750 elt = pdump_object_table[i].first; |
1751 if (!elt) | |
442 | 1752 continue; |
1753 rt.desc = lrecord_implementations_table[i]->description; | |
1754 rt.count = pdump_object_table[i].count; | |
458 | 1755 PDUMP_WRITE_ALIGNED (pdump_reloc_table, rt); |
460 | 1756 while (elt) |
442 | 1757 { |
2367 | 1758 EMACS_INT rdata = pdump_get_block (elt->obj)->save_offset; |
3092 | 1759 #ifdef NEW_GC |
1760 int j; | |
1761 for (j=0; j<elt->count; j++) | |
1762 { | |
1763 PDUMP_WRITE_ALIGNED (EMACS_INT, rdata); | |
1764 rdata += elt->size; | |
1765 } | |
1766 #else /* not NEW_GC */ | |
458 | 1767 PDUMP_WRITE_ALIGNED (EMACS_INT, rdata); |
3092 | 1768 #endif /* not NEW_GC */ |
460 | 1769 elt = elt->next; |
442 | 1770 } |
1771 } | |
1772 | |
1773 rt.desc = 0; | |
1774 rt.count = 0; | |
458 | 1775 PDUMP_WRITE_ALIGNED (pdump_reloc_table, rt); |
442 | 1776 |
2367 | 1777 for (i=0; i<pdump_desc_table.count; i++) |
442 | 1778 { |
2367 | 1779 elt = pdump_desc_table.list[i].list.first; |
1780 rt.desc = pdump_desc_table.list[i].desc; | |
1781 rt.count = pdump_desc_table.list[i].list.count; | |
458 | 1782 PDUMP_WRITE_ALIGNED (pdump_reloc_table, rt); |
460 | 1783 while (elt) |
442 | 1784 { |
2367 | 1785 EMACS_INT rdata = pdump_get_block (elt->obj)->save_offset; |
452 | 1786 int j; |
460 | 1787 for (j=0; j<elt->count; j++) |
442 | 1788 { |
458 | 1789 PDUMP_WRITE_ALIGNED (EMACS_INT, rdata); |
460 | 1790 rdata += elt->size; |
442 | 1791 } |
460 | 1792 elt = elt->next; |
442 | 1793 } |
1794 } | |
1795 rt.desc = 0; | |
1796 rt.count = 0; | |
458 | 1797 PDUMP_WRITE_ALIGNED (pdump_reloc_table, rt); |
442 | 1798 } |
1799 | |
1800 static void | |
1204 | 1801 pdump_dump_root_lisp_objects (void) |
442 | 1802 { |
1204 | 1803 Elemcount count = (Dynarr_length (pdump_root_lisp_objects) + |
647 | 1804 Dynarr_length (pdump_weak_object_chains)); |
665 | 1805 Elemcount i; |
442 | 1806 |
665 | 1807 PDUMP_WRITE_ALIGNED (Elemcount, count); |
458 | 1808 PDUMP_ALIGN_OUTPUT (pdump_static_Lisp_Object); |
442 | 1809 |
1204 | 1810 for (i = 0; i < Dynarr_length (pdump_root_lisp_objects); i++) |
442 | 1811 { |
458 | 1812 pdump_static_Lisp_Object obj; |
1204 | 1813 obj.address = Dynarr_at (pdump_root_lisp_objects, i); |
458 | 1814 obj.value = * obj.address; |
460 | 1815 |
458 | 1816 if (POINTER_TYPE_P (XTYPE (obj.value))) |
619 | 1817 obj.value = |
2367 | 1818 wrap_pointer_1 ((void *) pdump_get_block (XRECORD_LHEADER |
617 | 1819 (obj.value))->save_offset); |
460 | 1820 |
458 | 1821 PDUMP_WRITE (pdump_static_Lisp_Object, obj); |
442 | 1822 } |
1823 | |
2367 | 1824 for (i = 0; i < Dynarr_length (pdump_weak_object_chains); i++) |
442 | 1825 { |
2367 | 1826 pdump_block_list_elt *elt; |
458 | 1827 pdump_static_Lisp_Object obj; |
442 | 1828 |
458 | 1829 obj.address = Dynarr_at (pdump_weak_object_chains, i); |
1830 obj.value = * obj.address; | |
460 | 1831 |
442 | 1832 for (;;) |
1833 { | |
1204 | 1834 const struct memory_description *desc; |
442 | 1835 int pos; |
2367 | 1836 elt = pdump_get_block (XRECORD_LHEADER (obj.value)); |
460 | 1837 if (elt) |
442 | 1838 break; |
458 | 1839 desc = XRECORD_LHEADER_IMPLEMENTATION (obj.value)->description; |
442 | 1840 for (pos = 0; desc[pos].type != XD_LO_LINK; pos++) |
1841 assert (desc[pos].type != XD_END); | |
1842 | |
1204 | 1843 /* #### Figure out how to handle indirect offsets here. */ |
1844 assert (!XD_IS_INDIRECT (desc[pos].offset)); | |
1845 obj.value = | |
1846 * (Lisp_Object *) (desc[pos].offset + | |
2367 | 1847 (Rawbyte *) (XRECORD_LHEADER (obj.value))); |
442 | 1848 } |
619 | 1849 obj.value = wrap_pointer_1 ((void *) elt->save_offset); |
442 | 1850 |
458 | 1851 PDUMP_WRITE (pdump_static_Lisp_Object, obj); |
442 | 1852 } |
1853 } | |
1854 | |
2367 | 1855 |
1856 /*######################################################################## | |
1857 # Pdump # | |
1858 ######################################################################## | |
1859 | |
1860 [ben] | |
1861 | |
1862 DISCUSSION OF DUMPING: | |
1863 | |
1864 The idea of dumping is to record the state of XEmacs in a file, so that | |
1865 it can be reloaded later. This avoids having to reload all of the basic | |
1866 Lisp code each time XEmacs is run, which is a rather time-consuming | |
1867 process. (Less so on new machines, but still noticeable. As an example | |
1868 of a program with similar issues but which does not have a dumping | |
1869 process and as a result has a slow startup time, consider Adobe Photoshop | |
1870 5.0 or Adobe Photoshop Elements 2.0.) | |
1871 | |
1872 We don't actually record ALL the state of XEmacs (some of it, for example, | |
1873 is dependent on the run-time environment and needs to be initialized | |
1874 whenever XEmacs is run), but whatever state we don't record needs to be | |
1875 reinitialized every time XEmacs is run. | |
1876 | |
1877 The old way of dumping was to make a new executable file with the data | |
1878 segment expanded to contain the heap and written out from memory. This | |
1879 is what the unex* files do. Unfortunately this process is extremely | |
1880 system-specific and breaks easily with OS changes. | |
1881 | |
1882 Another simple, more portable trick, the "static heap" method, involves | |
1883 replacing the allocator with our own allocator which allocates all space | |
1884 out of a very large array declared in our data segment until we run out, | |
1885 then uses the underlying malloc() to start allocating on the heap. If we | |
1886 ensure that the large array is big enough to hold all data allocated | |
1887 during the dump stage, then all of the data we need to save is in the | |
1888 data segment, and it's easy to calculate the location and size of the | |
1889 data segment we want to save (we don't want to record and reinitialize | |
1890 the data segment of library functions) by using appropriately declared | |
1891 variables in the first and last file linked. This method is known as the | |
1892 "static heap" method, and is used by the non-pdump version of the dumper | |
1893 under Cygwin, and was also used under VMS and in Win-Emacs. | |
1894 | |
1895 The "static heap" method works well in practice. Nonetheless, a more | |
1896 complex method of dumping was written by Olivier Galibert, which requires | |
1897 that structural descriptions of all data allocated in the heap be provided | |
1898 and the roots of all pointers into the heap be noted through function calls | |
1899 to the pdump API. This way, all the heap data can be traversed and written | |
1900 out to a file, and then reloaded at run-time and the pointers relocated to | |
1901 point at the new location of the loaded data. This is the "pdump" method | |
1902 used in this file. | |
1903 | |
1904 There are two potential advantages of "pdump" over the "static heap": | |
1905 | |
1906 (1) It doesn't require any tricks to calculate the beginning and end of | |
1907 the data segment, or even that the XEmacs section of the data segment | |
1908 be contiguous. (It's not clear whether this is an issue in practice.) | |
1909 (2) Potentially, it could handle an OS that does not always load the | |
1910 static data segment at a predictable location. The "static heap" | |
1911 method by its nature needs the data segment to stay in the same place | |
1912 from invocation to invocation, since it simply dumps out memory and | |
1913 reloads it, without any pointer relocation. I say "potentially" | |
1914 because as it is currently written pdump does assume that the data | |
1915 segment is never relocated. However, changing pdump to remove this | |
1916 assumption is probably not difficult, as all the mechanism to handle | |
1917 pointer relocation is already present. | |
1918 | |
1919 | |
1920 DISCUSSION OF PDUMP WORKINGS: | |
1921 | |
1922 See man/internals/internals.texi for more information. | |
1923 | |
1924 NOTE that we have two kinds of memory to handle: memory on the heap | |
1925 (i.e. allocated through malloc()) or the like, and static memory in the | |
1926 data segment of the program, i.e. stuff declared as global or static. | |
1927 All heap memory needs to be written out to the dump file and reproduced | |
1928 (i.e. reloaded and any necessary relocations performed). Data-segment | |
1929 memory that is not statically initialized (i.e. through declarations in | |
1930 the C code) needs either to be written out and reloaded, or | |
1931 reinitialized. In addition, any pointers in data-segment memory to heap | |
1932 memory must be written out, reloaded and relocated. | |
1933 | |
1934 NOTE that we currently don't handle relocation of pointers into data- | |
1935 segment memory. (See overview discussion above.) These are treated in | |
1936 the descriptions as opaque data not needing relocation. If this becomes a | |
1937 problem, it can be fixed through new kinds of types in | |
1938 enum memory_description_type. | |
1939 | |
1940 Three basic steps to dumping out: | |
1941 | |
1942 (1) "REGISTER": | |
1943 Starting with all sources of relocatable memory (currently this means | |
1944 all data-segment pointers to heap memory -- see above about pointers | |
1945 to data-segment memory), recursively traverse the tree of pointers | |
1946 and "register" (make a note of) every memory block seen. | |
1947 | |
1948 (2) "LAYOUT": | |
1949 Go through all of the registered blocks and compute the location of | |
1950 each one in the dump data (i.e. the "offset" that will be added to | |
1951 the address corresponding to start of the loaded-in data to get the | |
1952 new pointer referring to this block). The blocks will be laid out | |
1953 sequentially according to the order we traverse them. Also note the | |
1954 maximum-sized block for use in step 3. | |
1955 | |
1956 (3) "WRITE": | |
1957 After writing some header stuff, go through all of the registered | |
1958 blocks and write out each one to the dump file. Note that we are | |
1959 simply writing out the blocks sequentially as we see them, and our | |
1960 traversal path is identical to that in step 2, so blocks will end up | |
1961 at the locations computed for them. In order to write out a block, | |
1962 first copy it to a temporary location (hence the maximum-block-size | |
1963 computation in the previous step), then for each relocatable pointer | |
1964 in the block, write in its place the offset to the heap block in the | |
1965 dump data. When the dump data is loaded, the address of the | |
1966 beginning of the dump data will be added to the offset in each | |
1967 pointer, and thence become accurate. | |
1968 | |
1969 --ben | |
1970 */ | |
1971 | |
442 | 1972 void |
1973 pdump (void) | |
1974 { | |
1975 int i; | |
1976 Lisp_Object t_console, t_device, t_frame; | |
1977 int none; | |
458 | 1978 pdump_header header; |
442 | 1979 |
1204 | 1980 in_pdump = 1; |
1981 | |
2367 | 1982 pdump_object_table = xnew_array (pdump_block_list, lrecord_type_count); |
460 | 1983 pdump_alert_undump_object = xnew_array (int, lrecord_type_count); |
1984 | |
1985 assert (ALIGNOF (max_align_t) <= pdump_align_table[0]); | |
1986 | |
1987 for (i = 0; i < countof (pdump_align_table); i++) | |
1988 if (pdump_align_table[i] > ALIGNOF (max_align_t)) | |
1989 pdump_align_table[i] = ALIGNOF (max_align_t); | |
1990 | |
446 | 1991 flush_all_buffer_local_cache (); |
1992 | |
442 | 1993 /* These appear in a DEFVAR_LISP, which does a staticpro() */ |
452 | 1994 t_console = Vterminal_console; Vterminal_console = Qnil; |
1995 t_frame = Vterminal_frame; Vterminal_frame = Qnil; | |
1996 t_device = Vterminal_device; Vterminal_device = Qnil; | |
442 | 1997 |
452 | 1998 dump_add_opaque (&lrecord_implementations_table, |
1204 | 1999 lrecord_type_count * |
2000 sizeof (lrecord_implementations_table[0])); | |
1676 | 2001 #ifdef USE_KKCC |
2002 dump_add_opaque (&lrecord_memory_descriptions, | |
2003 lrecord_type_count | |
2004 * sizeof (lrecord_memory_descriptions[0])); | |
2005 #else /* not USE_KKCC */ | |
452 | 2006 dump_add_opaque (&lrecord_markers, |
2007 lrecord_type_count * sizeof (lrecord_markers[0])); | |
1676 | 2008 #endif /* not USE_KKCC */ |
442 | 2009 |
2367 | 2010 pdump_hash = xnew_array_and_zero (pdump_block_list_elt *, PDUMP_HASHSIZE); |
442 | 2011 |
2367 | 2012 for (i = 0; i<lrecord_type_count; i++) |
442 | 2013 { |
2014 pdump_object_table[i].first = 0; | |
460 | 2015 pdump_object_table[i].align = ALIGNOF (max_align_t); |
442 | 2016 pdump_object_table[i].count = 0; |
2017 pdump_alert_undump_object[i] = 0; | |
2018 } | |
2367 | 2019 pdump_desc_table.count = 0; |
2020 pdump_desc_table.size = -1; | |
442 | 2021 |
2022 pdump_opaque_data_list.first = 0; | |
460 | 2023 pdump_opaque_data_list.align = ALIGNOF (max_align_t); |
442 | 2024 pdump_opaque_data_list.count = 0; |
1204 | 2025 pdump_depth = 0; |
442 | 2026 |
2551 | 2027 pdump_cv_data = Dynarr_new2 (pdump_cv_data_info_dynarr, pdump_cv_data_info); |
2028 pdump_cv_ptr = Dynarr_new2 (pdump_cv_ptr_info_dynarr, pdump_cv_ptr_info); | |
2029 | |
2367 | 2030 /* (I) The "register" stage: Note all heap memory blocks to be relocated |
2031 */ | |
2032 | |
2033 /* Try various roots of accessibility: */ | |
2034 | |
2035 /* (1) Lisp objects, both those declared using DEFVAR_LISP*() and those | |
2036 staticpro()d. */ | |
1204 | 2037 for (i = 0; i < Dynarr_length (pdump_root_lisp_objects); i++) |
2038 pdump_register_object (* Dynarr_at (pdump_root_lisp_objects, i)); | |
442 | 2039 |
2040 none = 1; | |
2367 | 2041 for (i = 0; i < lrecord_type_count; i++) |
442 | 2042 if (pdump_alert_undump_object[i]) |
2043 { | |
2044 if (none) | |
2367 | 2045 stderr_out ("Undumpable types list :\n"); |
442 | 2046 none = 0; |
2367 | 2047 stderr_out (" - %s (%d)\n", lrecord_implementations_table[i]->name, |
2048 pdump_alert_undump_object[i]); | |
442 | 2049 } |
2050 if (!none) | |
1204 | 2051 { |
2052 in_pdump = 0; | |
2053 return; | |
2054 } | |
442 | 2055 |
2367 | 2056 /* (2) Register out the data-segment pointer variables to heap blocks */ |
2057 for (i = 0; i < Dynarr_length (pdump_root_block_ptrs); i++) | |
452 | 2058 { |
2367 | 2059 pdump_root_block_ptr info = Dynarr_at (pdump_root_block_ptrs, i); |
2060 pdump_register_block (*(info.ptraddress), info.desc->size, | |
2061 info.desc->description, 1); | |
452 | 2062 } |
442 | 2063 |
2367 | 2064 /* (3) Register out the data-segment blocks, maybe with pointers to heap |
2065 blocks */ | |
2066 for (i = 0; i < Dynarr_length (pdump_root_blocks); i++) | |
2067 { | |
2068 pdump_root_block *info = Dynarr_atp (pdump_root_blocks, i); | |
2069 if (info->desc) | |
2070 { | |
2071 /* Size may have been given as 0 meaning "compute later". | |
2072 Compute now and update. If no DESC, size must always be | |
2073 correct as there is no other way of computing it. */ | |
2074 info->size = lispdesc_block_size_1 (info->blockaddr, info->size, | |
2075 info->desc); | |
2076 pdump_register_block_contents (info->blockaddr, info->size, | |
2077 info->desc, 1); | |
2078 } | |
2079 } | |
2080 | |
2081 /* (II) The "layout" stage: Compute the offsets and max-size */ | |
2082 | |
2083 /* (1) Determine header size */ | |
458 | 2084 memcpy (header.signature, PDUMP_SIGNATURE, PDUMP_SIGNATURE_LEN); |
2085 header.id = dump_id; | |
2086 header.reloc_address = 0; | |
2367 | 2087 header.nb_root_block_ptrs = Dynarr_length (pdump_root_block_ptrs); |
1204 | 2088 header.nb_root_blocks = Dynarr_length (pdump_root_blocks); |
2551 | 2089 header.nb_cv_data = Dynarr_length (pdump_cv_data); |
2090 header.nb_cv_ptr = Dynarr_length (pdump_cv_ptr); | |
442 | 2091 |
826 | 2092 cur_offset = MAX_ALIGN_SIZE (sizeof (header)); |
442 | 2093 max_size = 0; |
2094 | |
2367 | 2095 /* (2) Traverse all heap blocks and compute their offsets; keep track |
2096 of maximum block size seen */ | |
2551 | 2097 pdump_scan_by_alignment (pdump_allocate_offset, |
2098 pdump_allocate_offset_cv_data, | |
2099 pdump_allocate_offset_cv_ptr); | |
826 | 2100 cur_offset = MAX_ALIGN_SIZE (cur_offset); |
458 | 2101 header.stab_offset = cur_offset; |
442 | 2102 |
2367 | 2103 /* (3) Update maximum size based on root (data-segment) blocks */ |
2104 for (i = 0; i < Dynarr_length (pdump_root_blocks); i++) | |
2105 { | |
2106 pdump_root_block info = Dynarr_at (pdump_root_blocks, i); | |
2107 | |
2108 /* If no DESC, no relocation needed and we copy directly instead of | |
2109 into a temp buffer. */ | |
2110 if (info.desc) | |
2111 { | |
2112 if (info.size > max_size) | |
2113 max_size = info.size; | |
2114 } | |
2115 } | |
2116 | |
2117 /* (III) The "write "stage: Dump out the data, storing the offsets in | |
2118 place of pointers whenever we write out memory blocks */ | |
2119 | |
442 | 2120 pdump_buf = xmalloc (max_size); |
2367 | 2121 /* EMACS_PROGNAME is entirely ASCII so this should be Mule-safe */ |
442 | 2122 pdump_fd = open (EMACS_PROGNAME ".dmp", |
2123 O_WRONLY | O_CREAT | O_TRUNC | OPEN_BINARY, 0666); | |
771 | 2124 if (pdump_fd < 0) |
2125 report_file_error ("Unable to open dump file", | |
2126 build_string (EMACS_PROGNAME ".dmp")); | |
458 | 2127 pdump_out = fdopen (pdump_fd, "w"); |
771 | 2128 if (pdump_out < 0) |
2129 report_file_error ("Unable to open dump file for writing", | |
2130 build_string (EMACS_PROGNAME ".dmp")); | |
442 | 2131 |
771 | 2132 retry_fwrite (&header, sizeof (header), 1, pdump_out); |
458 | 2133 PDUMP_ALIGN_OUTPUT (max_align_t); |
442 | 2134 |
2551 | 2135 for (i = 0; i < Dynarr_length (pdump_cv_data); i++) |
2136 { | |
2137 pdump_cv_data_info *elt = Dynarr_atp (pdump_cv_data, i); | |
2138 elt->dest_offset = | |
2139 pdump_get_block (elt->object)->save_offset + elt->offset; | |
2140 } | |
2141 | |
2142 for (i = 0; i < Dynarr_length (pdump_cv_ptr); i++) | |
2143 Dynarr_at (pdump_cv_ptr, i).index = i; | |
2144 | |
2145 pdump_scan_by_alignment (pdump_dump_data, pdump_dump_cv_data, pdump_dump_cv_ptr); | |
2146 | |
2147 for (i = 0; i < Dynarr_length (pdump_cv_data); i++) | |
2148 { | |
2149 pdump_cv_data_info *elt = Dynarr_atp (pdump_cv_data, i); | |
2150 if(elt->fcts->convert_free) | |
2151 elt->fcts->convert_free(elt->object, elt->data, elt->size); | |
2152 } | |
2153 | |
2154 for (i = 0; i < Dynarr_length (pdump_cv_ptr); i++) | |
2155 { | |
2156 pdump_cv_ptr_info *elt = Dynarr_atp (pdump_cv_ptr, i); | |
2157 if(elt->fcts->convert_free) | |
2158 elt->fcts->convert_free(elt->object, elt->data, elt->size); | |
2159 } | |
442 | 2160 |
458 | 2161 fseek (pdump_out, header.stab_offset, SEEK_SET); |
442 | 2162 |
3263 | 2163 #ifdef NEW_GC |
2720 | 2164 { |
2165 EMACS_INT zero = 0; | |
2166 pdump_scan_lisp_objects_by_alignment (pdump_dump_mc_data); | |
2167 PDUMP_WRITE_ALIGNED (EMACS_INT, zero); | |
2168 pdump_scan_non_lisp_objects_by_alignment (pdump_dump_mc_data); | |
2169 PDUMP_WRITE_ALIGNED (EMACS_INT, zero); | |
2170 } | |
3263 | 2171 #endif /* NEW_GC */ |
2551 | 2172 pdump_dump_cv_data_info (); |
2173 pdump_dump_cv_ptr_info (); | |
3263 | 2174 #ifdef NEW_GC |
2720 | 2175 pdump_dump_rtables (); |
3263 | 2176 #endif /* NEW_GC */ |
2367 | 2177 pdump_dump_root_block_ptrs (); |
1204 | 2178 pdump_dump_root_blocks (); |
3263 | 2179 #ifndef NEW_GC |
442 | 2180 pdump_dump_rtables (); |
3263 | 2181 #endif /* not NEW_GC */ |
1204 | 2182 pdump_dump_root_lisp_objects (); |
442 | 2183 |
771 | 2184 retry_fclose (pdump_out); |
3964 | 2185 /* pdump_fd is already closed by the preceding call to fclose. |
2186 retry_close (pdump_fd); */ | |
458 | 2187 |
442 | 2188 free (pdump_buf); |
2189 | |
2190 free (pdump_hash); | |
2191 | |
2192 Vterminal_console = t_console; | |
2193 Vterminal_frame = t_frame; | |
2194 Vterminal_device = t_device; | |
1204 | 2195 in_pdump = 0; |
442 | 2196 } |
2197 | |
452 | 2198 static int |
2199 pdump_load_check (void) | |
442 | 2200 { |
2367 | 2201 return (!memcmp (((pdump_header *) pdump_start)->signature, |
452 | 2202 PDUMP_SIGNATURE, PDUMP_SIGNATURE_LEN) |
2203 && ((pdump_header *)pdump_start)->id == dump_id); | |
442 | 2204 } |
2205 | |
458 | 2206 /*----------------------------------------------------------------------*/ |
2207 /* Reading the dump file */ | |
2208 /*----------------------------------------------------------------------*/ | |
452 | 2209 static int |
2210 pdump_load_finish (void) | |
442 | 2211 { |
2212 int i; | |
2367 | 2213 Rawbyte *p; |
442 | 2214 EMACS_INT delta; |
2215 EMACS_INT count; | |
1204 | 2216 pdump_header *header = (pdump_header *) pdump_start; |
442 | 2217 |
3092 | 2218 #ifdef NEW_GC |
2219 /* This is a DEFVAR_BOOL and gets dumped, but the actual value was | |
2220 already determined by vdb_install_signal_handler () in | |
2221 vdb-mprotect.c, which could be different from the value in the | |
2222 dump file. So store it here and restore it after loading the dump | |
2223 file. */ | |
2224 int allow_inc_gc = allow_incremental_gc; | |
2225 #endif /* NEW_GC */ | |
442 | 2226 pdump_end = pdump_start + pdump_length; |
2227 | |
1204 | 2228 delta = ((EMACS_INT) pdump_start) - header->reloc_address; |
458 | 2229 p = pdump_start + header->stab_offset; |
442 | 2230 |
3263 | 2231 #ifdef NEW_GC |
2720 | 2232 pdump_mc_hash = xnew_array_and_zero (mc_addr_elt, PDUMP_HASHSIZE); |
2233 | |
2234 /* Allocate space for each object individually. First the | |
2235 Lisp_Objects, then the blocks. */ | |
2236 count = 2; | |
2237 for (;;) | |
2238 { | |
2824 | 2239 EMACS_INT elt_count = PDUMP_READ_ALIGNED (p, EMACS_INT); |
2720 | 2240 if (elt_count) |
2241 { | |
2242 Rawbyte *mc_addr = 0; | |
2243 Bytecount size = PDUMP_READ_ALIGNED (p, Bytecount); | |
2244 for (i = 0; i < elt_count; i++) | |
2245 { | |
2246 EMACS_INT rdata = PDUMP_READ_ALIGNED (p, EMACS_INT); | |
2247 | |
2248 if (i == 0) | |
2249 { | |
2250 Bytecount real_size = size * elt_count; | |
2251 if (count == 2) | |
2775 | 2252 { |
3092 | 2253 if (elt_count <= 1) |
2254 mc_addr = (Rawbyte *) mc_alloc (real_size); | |
2255 else | |
2256 mc_addr = (Rawbyte *) mc_alloc_array (size, elt_count); | |
2994 | 2257 #ifdef ALLOC_TYPE_STATS |
2775 | 2258 inc_lrecord_stats (real_size, |
2259 (const struct lrecord_header *) | |
3092 | 2260 ((Rawbyte *) rdata + delta)); |
2994 | 2261 #endif /* ALLOC_TYPE_STATS */ |
2775 | 2262 } |
2720 | 2263 else |
2264 mc_addr = (Rawbyte *) xmalloc_and_zero (real_size); | |
2265 } | |
2266 else | |
2267 mc_addr += size; | |
2268 | |
2269 pdump_put_mc_addr ((void *) rdata, (EMACS_INT) mc_addr); | |
3092 | 2270 memcpy (mc_addr, (Rawbyte *) rdata + delta, size); |
2720 | 2271 } |
2272 } | |
2273 else if (!(--count)) | |
2274 break; | |
2275 } | |
3263 | 2276 #endif /* NEW_GC */ |
2720 | 2277 |
2551 | 2278 /* Get the cv_data array */ |
2553 | 2279 p = (Rawbyte *) ALIGN_PTR (p, pdump_cv_data_dump_info); |
2551 | 2280 pdump_loaded_cv_data = (pdump_cv_data_dump_info *)p; |
2281 p += header->nb_cv_data*sizeof(pdump_cv_data_dump_info); | |
2282 | |
2283 /* Build the cv_ptr array */ | |
2553 | 2284 p = (Rawbyte *) ALIGN_PTR (p, pdump_cv_ptr_dump_info); |
2551 | 2285 pdump_loaded_cv_ptr = |
2286 alloca_array (pdump_cv_ptr_load_info, header->nb_cv_ptr); | |
2287 for (i = 0; i < header->nb_cv_ptr; i++) | |
2288 { | |
2289 pdump_cv_ptr_dump_info info = PDUMP_READ (p, pdump_cv_ptr_dump_info); | |
2290 pdump_loaded_cv_ptr[i].save_offset = info.save_offset; | |
2291 pdump_loaded_cv_ptr[i].size = info.size; | |
2292 pdump_loaded_cv_ptr[i].adr = 0; | |
2293 } | |
2294 | |
3263 | 2295 #ifdef NEW_GC |
2720 | 2296 /* Relocate the heap objects */ |
2297 pdump_rt_list = p; | |
2298 count = 2; | |
2299 for (;;) | |
2300 { | |
2301 pdump_reloc_table rt = PDUMP_READ_ALIGNED (p, pdump_reloc_table); | |
2302 p = (Rawbyte *) ALIGN_PTR (p, Rawbyte *); | |
2303 if (rt.desc) | |
2304 { | |
3092 | 2305 Rawbyte **reloc = (Rawbyte **) p; |
2720 | 2306 for (i = 0; i < rt.count; i++) |
2307 { | |
3092 | 2308 reloc[i] = (Rawbyte *) pdump_get_mc_addr (reloc[i]); |
2720 | 2309 pdump_reloc_one_mc (reloc[i], rt.desc); |
2310 } | |
3092 | 2311 p += rt.count * sizeof (Rawbyte *); |
2720 | 2312 } |
2313 else if (!(--count)) | |
2314 break; | |
2315 } | |
3263 | 2316 #endif /* NEW_GC */ |
2720 | 2317 |
2367 | 2318 /* Put back the pdump_root_block_ptrs */ |
2319 p = (Rawbyte *) ALIGN_PTR (p, pdump_static_pointer); | |
2320 for (i = 0; i < header->nb_root_block_ptrs; i++) | |
442 | 2321 { |
458 | 2322 pdump_static_pointer ptr = PDUMP_READ (p, pdump_static_pointer); |
3263 | 2323 #ifdef NEW_GC |
2720 | 2324 (* ptr.address) = (Rawbyte *) pdump_get_mc_addr (ptr.value); |
3263 | 2325 #else /* not NEW_GC */ |
458 | 2326 (* ptr.address) = ptr.value + delta; |
3263 | 2327 #endif /* not NEW_GC */ |
442 | 2328 } |
2329 | |
1204 | 2330 /* Put back the pdump_root_blocks and relocate */ |
2331 for (i = 0; i < header->nb_root_blocks; i++) | |
442 | 2332 { |
1204 | 2333 pdump_root_block info = PDUMP_READ_ALIGNED (p, pdump_root_block); |
2367 | 2334 memcpy ((void *) info.blockaddr, p, info.size); |
1204 | 2335 if (info.desc) |
3263 | 2336 #ifdef NEW_GC |
2720 | 2337 pdump_reloc_one_mc ((void *) info.blockaddr, info.desc); |
3263 | 2338 #else /* not NEW_GC */ |
2367 | 2339 pdump_reloc_one ((void *) info.blockaddr, delta, info.desc); |
3263 | 2340 #endif /* not NEW_GC */ |
452 | 2341 p += info.size; |
442 | 2342 } |
2343 | |
3263 | 2344 #ifndef NEW_GC |
1204 | 2345 /* Relocate the heap objects */ |
442 | 2346 pdump_rt_list = p; |
2347 count = 2; | |
2348 for (;;) | |
2349 { | |
458 | 2350 pdump_reloc_table rt = PDUMP_READ_ALIGNED (p, pdump_reloc_table); |
2367 | 2351 p = (Rawbyte *) ALIGN_PTR (p, Rawbyte *); |
442 | 2352 if (rt.desc) |
2353 { | |
2367 | 2354 Rawbyte **reloc = (Rawbyte **) p; |
1204 | 2355 for (i = 0; i < rt.count; i++) |
442 | 2356 { |
458 | 2357 reloc[i] += delta; |
2358 pdump_reloc_one (reloc[i], delta, rt.desc); | |
442 | 2359 } |
2367 | 2360 p += rt.count * sizeof (Rawbyte *); |
1204 | 2361 } |
2362 else if (!(--count)) | |
2363 break; | |
442 | 2364 } |
3263 | 2365 #endif /* not NEW_GC */ |
442 | 2366 |
1204 | 2367 /* Put the pdump_root_lisp_objects variables in place */ |
665 | 2368 i = PDUMP_READ_ALIGNED (p, Elemcount); |
2367 | 2369 p = (Rawbyte *) ALIGN_PTR (p, pdump_static_Lisp_Object); |
458 | 2370 while (i--) |
442 | 2371 { |
458 | 2372 pdump_static_Lisp_Object obj = PDUMP_READ (p, pdump_static_Lisp_Object); |
442 | 2373 |
458 | 2374 if (POINTER_TYPE_P (XTYPE (obj.value))) |
3263 | 2375 #ifdef NEW_GC |
2720 | 2376 obj.value = wrap_pointer_1 ((Rawbyte *) pdump_get_mc_addr |
2377 (XPNTR (obj.value))); | |
3263 | 2378 #else /* not NEW_GC */ |
2720 | 2379 obj.value = wrap_pointer_1 ((Rawbyte *) XPNTR (obj.value) + delta); |
3263 | 2380 #endif /* not NEW_GC */ |
442 | 2381 |
458 | 2382 (* obj.address) = obj.value; |
442 | 2383 } |
2384 | |
2385 /* Final cleanups */ | |
2386 /* reorganize hash tables */ | |
2387 p = pdump_rt_list; | |
2388 for (;;) | |
2389 { | |
458 | 2390 pdump_reloc_table rt = PDUMP_READ_ALIGNED (p, pdump_reloc_table); |
2367 | 2391 p = (Rawbyte *) ALIGN_PTR (p, Lisp_Object); |
442 | 2392 if (!rt.desc) |
2393 break; | |
2394 if (rt.desc == hash_table_description) | |
2395 { | |
1204 | 2396 for (i = 0; i < rt.count; i++) |
442 | 2397 pdump_reorganize_hash_table (PDUMP_READ (p, Lisp_Object)); |
2398 break; | |
1204 | 2399 } |
2400 else | |
2401 p += sizeof (Lisp_Object) * rt.count; | |
442 | 2402 } |
2403 | |
3263 | 2404 #ifdef NEW_GC |
2720 | 2405 xfree (pdump_mc_hash, mc_addr_elt *); |
3263 | 2406 #endif /* NEW_GC */ |
2720 | 2407 |
3092 | 2408 #ifdef NEW_GC |
2409 allow_incremental_gc = allow_inc_gc; | |
2410 #endif /* NEW_GC */ | |
2411 | |
442 | 2412 return 1; |
2413 } | |
2414 | |
2415 #ifdef WIN32_NATIVE | |
2416 /* Free the mapped file if we decide we don't want it after all */ | |
452 | 2417 static void |
2418 pdump_file_unmap (void) | |
442 | 2419 { |
2420 UnmapViewOfFile (pdump_start); | |
2421 CloseHandle (pdump_hFile); | |
2422 CloseHandle (pdump_hMap); | |
2423 } | |
2424 | |
452 | 2425 static int |
2367 | 2426 pdump_file_get (const Wexttext *wpath) |
442 | 2427 { |
2367 | 2428 Extbyte *path; |
2429 if (XEUNICODE_P) | |
2430 path = (Extbyte *) wpath; | |
2431 else | |
2432 path = WEXTTEXT_TO_MULTIBYTE (wpath); | |
442 | 2433 |
2367 | 2434 pdump_hFile = |
2435 qxeCreateFile (path, | |
2436 GENERIC_READ + GENERIC_WRITE, /* Required for copy on | |
2437 write */ | |
2438 0, /* Not shared */ | |
2439 NULL, /* Not inheritable */ | |
2440 OPEN_EXISTING, | |
2441 FILE_ATTRIBUTE_NORMAL, | |
2442 NULL); /* No template file */ | |
442 | 2443 if (pdump_hFile == INVALID_HANDLE_VALUE) |
2444 return 0; | |
2445 | |
2446 pdump_length = GetFileSize (pdump_hFile, NULL); | |
2367 | 2447 pdump_hMap = |
2448 qxeCreateFileMapping (pdump_hFile, | |
2449 NULL, /* No security attributes */ | |
2450 PAGE_WRITECOPY, /* Copy on write */ | |
2451 0, /* Max size, high half */ | |
2452 0, /* Max size, low half */ | |
2453 NULL); /* Unnamed */ | |
442 | 2454 if (pdump_hMap == INVALID_HANDLE_VALUE) |
2455 return 0; | |
2456 | |
2367 | 2457 pdump_start = |
2458 (Rawbyte *) MapViewOfFile (pdump_hMap, | |
2459 FILE_MAP_COPY, /* Copy on write */ | |
2460 0, /* Start at zero */ | |
2461 0, | |
2462 0); /* Map all of it */ | |
442 | 2463 pdump_free = pdump_file_unmap; |
2464 return 1; | |
2465 } | |
2466 | |
2467 /* pdump_resource_free is called (via the pdump_free pointer) to release | |
2468 any resources allocated by pdump_resource_get. Since the Windows API | |
2469 specs specifically state that you don't need to (and shouldn't) free the | |
2470 resources allocated by FindResource, LoadResource, and LockResource this | |
2471 routine does nothing. */ | |
452 | 2472 static void |
2473 pdump_resource_free (void) | |
442 | 2474 { |
2475 } | |
2476 | |
452 | 2477 static int |
2478 pdump_resource_get (void) | |
442 | 2479 { |
452 | 2480 HRSRC hRes; /* Handle to dump resource */ |
2481 HRSRC hResLoad; /* Handle to loaded dump resource */ | |
442 | 2482 |
2483 /* See Q126630 which describes how Windows NT and 95 trap writes to | |
2484 resource sections and duplicate the page to allow the write to proceed. | |
2485 It also describes how to make the resource section read/write (and hence | |
2486 private to each process). Doing this avoids the exceptions and related | |
2487 overhead, but causes the resource section to be private to each process | |
2488 that is running XEmacs. Since the resource section contains little | |
2489 other than the dumped data, which should be private to each process, we | |
2490 make the whole resource section read/write so we don't have to copy it. */ | |
2491 | |
800 | 2492 hRes = FindResourceA (NULL, MAKEINTRESOURCE (101), "DUMP"); |
442 | 2493 if (hRes == NULL) |
2494 return 0; | |
2495 | |
2496 /* Found it, use the data in the resource */ | |
1204 | 2497 hResLoad = (HRSRC) LoadResource (NULL, hRes); |
442 | 2498 if (hResLoad == NULL) |
2499 return 0; | |
2500 | |
2367 | 2501 pdump_start = (Rawbyte *) LockResource (hResLoad); |
442 | 2502 if (pdump_start == NULL) |
2503 return 0; | |
2504 | |
2505 pdump_free = pdump_resource_free; | |
2506 pdump_length = SizeofResource (NULL, hRes); | |
665 | 2507 if (pdump_length <= (Bytecount) sizeof (pdump_header)) |
442 | 2508 { |
2509 pdump_start = 0; | |
2510 return 0; | |
2511 } | |
2512 | |
2513 return 1; | |
2514 } | |
2515 | |
2516 #else /* !WIN32_NATIVE */ | |
2517 | |
452 | 2518 static void |
2519 pdump_file_free (void) | |
442 | 2520 { |
2367 | 2521 xfree (pdump_start, Rawbyte *); |
442 | 2522 } |
2523 | |
2524 #ifdef HAVE_MMAP | |
452 | 2525 static void |
2526 pdump_file_unmap (void) | |
442 | 2527 { |
2528 munmap (pdump_start, pdump_length); | |
2529 } | |
2530 #endif | |
2531 | |
452 | 2532 static int |
2367 | 2533 pdump_file_get (const Wexttext *path) |
442 | 2534 { |
2367 | 2535 int fd = wext_retry_open (path, O_RDONLY | OPEN_BINARY); |
2536 if (fd < 0) | |
442 | 2537 return 0; |
2538 | |
2539 pdump_length = lseek (fd, 0, SEEK_END); | |
665 | 2540 if (pdump_length < (Bytecount) sizeof (pdump_header)) |
442 | 2541 { |
771 | 2542 retry_close (fd); |
442 | 2543 return 0; |
2544 } | |
2545 | |
2546 lseek (fd, 0, SEEK_SET); | |
2547 | |
2548 #ifdef HAVE_MMAP | |
456 | 2549 /* Unix 98 requires that sys/mman.h define MAP_FAILED, |
2550 but many earlier implementations don't. */ | |
2551 # ifndef MAP_FAILED | |
2552 # define MAP_FAILED ((void *) -1L) | |
2553 # endif | |
2367 | 2554 pdump_start = |
2555 (Rawbyte *) mmap (0, pdump_length, PROT_READ|PROT_WRITE, MAP_PRIVATE, | |
2556 fd, 0); | |
2557 if (pdump_start != (Rawbyte *) MAP_FAILED) | |
442 | 2558 { |
2559 pdump_free = pdump_file_unmap; | |
771 | 2560 retry_close (fd); |
442 | 2561 return 1; |
2562 } | |
456 | 2563 #endif /* HAVE_MMAP */ |
442 | 2564 |
2367 | 2565 pdump_start = xnew_array (Rawbyte, pdump_length); |
442 | 2566 pdump_free = pdump_file_free; |
771 | 2567 retry_read (fd, pdump_start, pdump_length); |
442 | 2568 |
771 | 2569 retry_close (fd); |
442 | 2570 return 1; |
2571 } | |
2015 | 2572 |
2720 | 2573 #ifdef DUMP_IN_EXEC |
2015 | 2574 static int |
2575 pdump_ram_try (void) | |
2576 { | |
2367 | 2577 pdump_start = dumped_data_get (); |
2578 pdump_length = dumped_data_size (); | |
2015 | 2579 |
2367 | 2580 return pdump_load_check (); |
2015 | 2581 } |
2720 | 2582 #endif |
2015 | 2583 |
442 | 2584 #endif /* !WIN32_NATIVE */ |
2585 | |
2586 | |
452 | 2587 static int |
2367 | 2588 pdump_file_try (Wexttext *exe_path) |
442 | 2589 { |
2367 | 2590 Wexttext *w = exe_path + wext_strlen (exe_path); |
442 | 2591 |
2563 | 2592 /* We look for various names, including those with the version and dump ID, |
2593 those with just the dump ID, and those without either. We first try | |
2594 adding directly to the executable name, then lopping off any extension | |
2595 (e.g. .exe) or version name in the executable (xemacs-21.5.18). */ | |
442 | 2596 do |
2597 { | |
2367 | 2598 wext_sprintf (w, WEXTSTRING ("-%s-%08x.dmp"), WEXTSTRING (EMACS_VERSION), |
2599 dump_id); | |
442 | 2600 if (pdump_file_get (exe_path)) |
2601 { | |
2602 if (pdump_load_check ()) | |
2603 return 1; | |
452 | 2604 pdump_free (); |
442 | 2605 } |
2606 | |
2367 | 2607 wext_sprintf (w, WEXTSTRING ("-%08x.dmp"), dump_id); |
442 | 2608 if (pdump_file_get (exe_path)) |
2609 { | |
2610 if (pdump_load_check ()) | |
2611 return 1; | |
452 | 2612 pdump_free (); |
442 | 2613 } |
2614 | |
2367 | 2615 wext_sprintf (w, WEXTSTRING (".dmp")); |
442 | 2616 if (pdump_file_get (exe_path)) |
2617 { | |
2618 if (pdump_load_check ()) | |
2619 return 1; | |
452 | 2620 pdump_free (); |
442 | 2621 } |
2622 | |
2623 do | |
2624 w--; | |
2367 | 2625 /* !!#### See comment below about how this is unsafe. */ |
2626 while (w > exe_path && !IS_DIRECTORY_SEP (*w) && (*w != '-') && | |
2627 (*w != '.')); | |
442 | 2628 } |
2367 | 2629 while (w > exe_path && !IS_DIRECTORY_SEP (*w)); |
442 | 2630 return 0; |
2631 } | |
2632 | |
4388
1a14c304cb8e
Don't use PATH_MAX_EXTERNAL, non-Win32.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4137
diff
changeset
|
2633 #define DUMP_SLACK 100 /* Enough to include dump ID, version name, .DMP */ |
1a14c304cb8e
Don't use PATH_MAX_EXTERNAL, non-Win32.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4137
diff
changeset
|
2634 |
452 | 2635 int |
2367 | 2636 pdump_load (const Wexttext *argv0) |
442 | 2637 { |
2638 #ifdef WIN32_NATIVE | |
2421 | 2639 Wexttext *exe_path = NULL; |
2640 int bufsize = 4096; | |
2641 int cchpathsize; | |
2642 | |
2643 /* Copied from mswindows_get_module_file_name (). Not clear if it's | |
2644 kosher to malloc() yet. */ | |
2645 while (1) | |
2646 { | |
2647 exe_path = alloca_array (Wexttext, bufsize); | |
2648 cchpathsize = qxeGetModuleFileName (NULL, (Extbyte *) exe_path, | |
2649 bufsize); | |
2650 if (!cchpathsize) | |
2651 goto fail; | |
2563 | 2652 if (cchpathsize + DUMP_SLACK <= bufsize) |
2421 | 2653 break; |
2654 bufsize *= 2; | |
2655 } | |
2656 | |
2367 | 2657 if (!XEUNICODE_P) |
2658 { | |
2659 Wexttext *wexe = MULTIBYTE_TO_WEXTTEXT ((Extbyte *) exe_path); | |
2660 wext_strcpy (exe_path, wexe); | |
2661 } | |
442 | 2662 #else /* !WIN32_NATIVE */ |
4388
1a14c304cb8e
Don't use PATH_MAX_EXTERNAL, non-Win32.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4137
diff
changeset
|
2663 Wexttext *exe_path; |
2367 | 2664 Wexttext *w; |
2665 const Wexttext *dir, *p; | |
442 | 2666 |
2720 | 2667 #ifdef DUMP_IN_EXEC |
2367 | 2668 if (pdump_ram_try ()) |
2669 { | |
2670 pdump_load_finish (); | |
2671 in_pdump = 0; | |
2672 return 1; | |
2673 } | |
2720 | 2674 #endif |
2015 | 2675 |
1204 | 2676 in_pdump = 1; |
442 | 2677 dir = argv0; |
2678 if (dir[0] == '-') | |
2679 { | |
2680 /* XEmacs as a login shell, oh goody! */ | |
2367 | 2681 dir = wext_getenv ("SHELL"); /* not egetenv -- not yet initialized and we |
2682 want external-format data */ | |
442 | 2683 } |
2684 | |
2367 | 2685 p = dir + wext_strlen (dir); |
2686 /* !!#### This is bad as it may fail with certain non-ASCII-compatible | |
2687 external formats such as JIS. Maybe we should be using the mb*() | |
2688 routines in libc? But can we reliably trust them on all Unix | |
2689 platforms? (We can't convert to internal since those conversion | |
2690 routines aren't yet initialized) */ | |
2691 while (p != dir && !IS_ANY_SEP (p[-1])) | |
2692 p--; | |
442 | 2693 |
2694 if (p != dir) | |
2695 { | |
2696 /* invocation-name includes a directory component -- presumably it | |
4137 | 2697 is relative to cwd, not $PATH. */ |
4388
1a14c304cb8e
Don't use PATH_MAX_EXTERNAL, non-Win32.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4137
diff
changeset
|
2698 exe_path = alloca_array (Wexttext, 1 + wext_strlen (dir) + DUMP_SLACK); |
2367 | 2699 wext_strcpy (exe_path, dir); |
442 | 2700 } |
2701 else | |
2702 { | |
2367 | 2703 const Wexttext *path = wext_getenv ("PATH"); /* not egetenv -- |
4388
1a14c304cb8e
Don't use PATH_MAX_EXTERNAL, non-Win32.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4137
diff
changeset
|
2704 not yet init. */ |
2367 | 2705 const Wexttext *name = p; |
4388
1a14c304cb8e
Don't use PATH_MAX_EXTERNAL, non-Win32.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4137
diff
changeset
|
2706 exe_path = alloca_array (Wexttext, |
1a14c304cb8e
Don't use PATH_MAX_EXTERNAL, non-Win32.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4137
diff
changeset
|
2707 1 + DUMP_SLACK + max (wext_strlen (name), |
1a14c304cb8e
Don't use PATH_MAX_EXTERNAL, non-Win32.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4137
diff
changeset
|
2708 wext_strlen (path))); |
442 | 2709 for (;;) |
2710 { | |
2711 p = path; | |
2712 while (*p && *p != SEPCHAR) | |
2713 p++; | |
2714 if (p == path) | |
2715 { | |
2716 exe_path[0] = '.'; | |
2717 w = exe_path + 1; | |
2718 } | |
2719 else | |
2720 { | |
2367 | 2721 memcpy (exe_path, path, (p - path) * sizeof (Wexttext)); |
442 | 2722 w = exe_path + (p - path); |
2723 } | |
2724 if (!IS_DIRECTORY_SEP (w[-1])) | |
2367 | 2725 *w++ = '/'; |
2726 wext_strcpy (w, name); | |
1466 | 2727 |
2728 { | |
2729 struct stat statbuf; | |
2367 | 2730 if (wext_access (exe_path, X_OK) == 0 |
2731 && wext_stat (exe_path, &statbuf) == 0 | |
1466 | 2732 && ! S_ISDIR (statbuf.st_mode)) |
2733 break; | |
2734 } | |
2735 | |
442 | 2736 if (!*p) |
2737 { | |
2738 /* Oh well, let's have some kind of default */ | |
2367 | 2739 wext_sprintf (exe_path, "./%s", name); |
442 | 2740 break; |
2741 } | |
2421 | 2742 path = p + 1; |
442 | 2743 } |
2744 } | |
2745 #endif /* WIN32_NATIVE */ | |
2746 | |
2747 if (pdump_file_try (exe_path)) | |
2748 { | |
2749 pdump_load_finish (); | |
1204 | 2750 in_pdump = 0; |
3263 | 2751 #ifdef NEW_GC |
2720 | 2752 pdump_free (); |
3263 | 2753 #endif /* NEW_GC */ |
442 | 2754 return 1; |
2755 } | |
2756 | |
2757 #ifdef WIN32_NATIVE | |
2758 if (pdump_resource_get ()) | |
2759 { | |
2760 if (pdump_load_check ()) | |
2761 { | |
2762 pdump_load_finish (); | |
1204 | 2763 in_pdump = 0; |
3263 | 2764 #ifdef NEW_GC |
2720 | 2765 pdump_free (); |
3263 | 2766 #endif /* NEW_GC */ |
442 | 2767 return 1; |
2768 } | |
2769 pdump_free (); | |
2770 } | |
2421 | 2771 |
2772 fail: | |
442 | 2773 #endif |
2774 | |
1204 | 2775 in_pdump = 0; |
442 | 2776 return 0; |
2777 } |