428
|
1 /* Hash tables.
|
|
2 Copyright (C) 1992, 1993, 1994 Free Software Foundation, Inc.
|
|
3
|
|
4 This file is part of XEmacs.
|
|
5
|
|
6 XEmacs is free software; you can redistribute it and/or modify it
|
|
7 under the terms of the GNU General Public License as published by the
|
|
8 Free Software Foundation; either version 2, or (at your option) any
|
|
9 later version.
|
|
10
|
|
11 XEmacs is distributed in the hope that it will be useful, but WITHOUT
|
|
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
14 for more details.
|
|
15
|
|
16 You should have received a copy of the GNU General Public License
|
|
17 along with XEmacs; see the file COPYING. If not, write to
|
|
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
19 Boston, MA 02111-1307, USA. */
|
|
20
|
|
21 /* Synched up with: Not in FSF. */
|
|
22
|
|
23 #include <config.h>
|
|
24 #include "lisp.h"
|
|
25 #include "hash.h"
|
|
26
|
|
27 #define NULL_ENTRY ((void *) 0xdeadbeef)
|
|
28
|
|
29 #define COMFORTABLE_SIZE(size) (21 * (size) / 16)
|
|
30
|
|
31 #define KEYS_DIFFER_P(old, new, testfun) \
|
|
32 (((old) != (new)) && (!(testfun) || !(testfun) ((old),(new))))
|
|
33
|
|
34 static void rehash (hentry *harray, struct hash_table *ht, hash_size_t size);
|
|
35
|
|
36 unsigned long
|
442
|
37 memory_hash (const void *xv, size_t size)
|
428
|
38 {
|
|
39 unsigned int h = 0;
|
442
|
40 unsigned const char *x = (unsigned const char *) xv;
|
428
|
41
|
|
42 if (!x) return 0;
|
|
43
|
|
44 while (size--)
|
|
45 {
|
|
46 unsigned int g;
|
|
47 h = (h << 4) + *x++;
|
|
48 if ((g = h & 0xf0000000) != 0)
|
|
49 h = (h ^ (g >> 24)) ^ g;
|
|
50 }
|
|
51
|
|
52 return h;
|
|
53 }
|
|
54
|
442
|
55 unsigned long
|
|
56 string_hash (const char *xv)
|
|
57 {
|
|
58 unsigned int h = 0;
|
|
59 unsigned const char *x = (unsigned const char *) xv;
|
|
60
|
|
61 if (!x) return 0;
|
|
62
|
|
63 while (*x)
|
|
64 {
|
|
65 unsigned int g;
|
|
66 h = (h << 4) + *x++;
|
|
67 if ((g = h & 0xf0000000) != 0)
|
|
68 h = (h ^ (g >> 24)) ^ g;
|
|
69 }
|
|
70
|
|
71 return h;
|
|
72 }
|
|
73
|
428
|
74 /* Return a suitable size for a hash table, with at least SIZE slots. */
|
|
75 static size_t
|
|
76 hash_table_size (size_t requested_size)
|
|
77 {
|
|
78 /* Return some prime near, but greater than or equal to, SIZE.
|
|
79 Decades from the time of writing, someone will have a system large
|
|
80 enough that the list below will be too short... */
|
442
|
81 static const size_t primes [] =
|
428
|
82 {
|
|
83 19, 29, 41, 59, 79, 107, 149, 197, 263, 347, 457, 599, 787, 1031,
|
|
84 1361, 1777, 2333, 3037, 3967, 5167, 6719, 8737, 11369, 14783,
|
|
85 19219, 24989, 32491, 42257, 54941, 71429, 92861, 120721, 156941,
|
|
86 204047, 265271, 344857, 448321, 582821, 757693, 985003, 1280519,
|
|
87 1664681, 2164111, 2813353, 3657361, 4754591, 6180989, 8035301,
|
|
88 10445899, 13579681, 17653589, 22949669, 29834603, 38784989,
|
|
89 50420551, 65546729, 85210757, 110774011, 144006217, 187208107,
|
|
90 243370577, 316381771, 411296309, 534685237, 695090819, 903618083,
|
|
91 1174703521, 1527114613, 1985248999, 2580823717UL, 3355070839UL
|
|
92 };
|
|
93 /* We've heard of binary search. */
|
|
94 int low, high;
|
|
95 for (low = 0, high = countof (primes) - 1; high - low > 1;)
|
|
96 {
|
|
97 /* Loop Invariant: size < primes [high] */
|
|
98 int mid = (low + high) / 2;
|
|
99 if (primes [mid] < requested_size)
|
|
100 low = mid;
|
|
101 else
|
|
102 high = mid;
|
|
103 }
|
|
104 return primes [high];
|
|
105 }
|
|
106
|
442
|
107 const void *
|
|
108 gethash (const void *key, struct hash_table *hash_table, const void **ret_value)
|
428
|
109 {
|
|
110 if (!key)
|
|
111 {
|
|
112 *ret_value = hash_table->zero_entry;
|
|
113 return (void *) hash_table->zero_set;
|
|
114 }
|
|
115 else
|
|
116 {
|
|
117 hentry *harray = hash_table->harray;
|
|
118 hash_table_test_function test_function = hash_table->test_function;
|
|
119 hash_size_t size = hash_table->size;
|
|
120 unsigned int hcode_initial =
|
|
121 hash_table->hash_function ?
|
|
122 hash_table->hash_function (key) :
|
|
123 (unsigned long) key;
|
|
124 unsigned int hcode = hcode_initial % size;
|
|
125 hentry *e = &harray [hcode];
|
442
|
126 const void *e_key = e->key;
|
428
|
127
|
|
128 if (e_key ?
|
|
129 KEYS_DIFFER_P (e_key, key, test_function) :
|
|
130 e->contents == NULL_ENTRY)
|
|
131 {
|
|
132 size_t h2 = size - 2;
|
|
133 unsigned int incr = 1 + (hcode_initial % h2);
|
|
134 do
|
|
135 {
|
|
136 hcode += incr; if (hcode >= size) hcode -= size;
|
|
137 e = &harray [hcode];
|
|
138 e_key = e->key;
|
|
139 }
|
|
140 while (e_key ?
|
|
141 KEYS_DIFFER_P (e_key, key, test_function) :
|
|
142 e->contents == NULL_ENTRY);
|
|
143 }
|
|
144
|
|
145 *ret_value = e->contents;
|
|
146 return e->key;
|
|
147 }
|
|
148 }
|
|
149
|
|
150 void
|
|
151 clrhash (struct hash_table *hash_table)
|
|
152 {
|
|
153 memset (hash_table->harray, 0, sizeof (hentry) * hash_table->size);
|
|
154 hash_table->zero_entry = 0;
|
|
155 hash_table->zero_set = 0;
|
|
156 hash_table->fullness = 0;
|
|
157 }
|
|
158
|
|
159 void
|
|
160 free_hash_table (struct hash_table *hash_table)
|
|
161 {
|
|
162 xfree (hash_table->harray);
|
|
163 xfree (hash_table);
|
|
164 }
|
|
165
|
|
166 struct hash_table*
|
|
167 make_hash_table (hash_size_t size)
|
|
168 {
|
|
169 struct hash_table *hash_table = xnew_and_zero (struct hash_table);
|
|
170 hash_table->size = hash_table_size (COMFORTABLE_SIZE (size));
|
|
171 hash_table->harray = xnew_array (hentry, hash_table->size);
|
|
172 clrhash (hash_table);
|
|
173 return hash_table;
|
|
174 }
|
|
175
|
|
176 struct hash_table *
|
|
177 make_general_hash_table (hash_size_t size,
|
|
178 hash_table_hash_function hash_function,
|
|
179 hash_table_test_function test_function)
|
|
180 {
|
|
181 struct hash_table* hash_table = make_hash_table (size);
|
|
182 hash_table->hash_function = hash_function;
|
|
183 hash_table->test_function = test_function;
|
|
184 return hash_table;
|
|
185 }
|
|
186
|
|
187 static void
|
|
188 grow_hash_table (struct hash_table *hash_table, hash_size_t new_size)
|
|
189 {
|
|
190 hash_size_t old_size = hash_table->size;
|
|
191 hentry *old_harray = hash_table->harray;
|
|
192
|
|
193 hash_table->size = hash_table_size (new_size);
|
|
194 hash_table->harray = xnew_array (hentry, hash_table->size);
|
|
195
|
|
196 /* do the rehash on the "grown" table */
|
|
197 {
|
|
198 long old_zero_set = hash_table->zero_set;
|
|
199 void *old_zero_entry = hash_table->zero_entry;
|
|
200 clrhash (hash_table);
|
|
201 hash_table->zero_set = old_zero_set;
|
|
202 hash_table->zero_entry = old_zero_entry;
|
|
203 rehash (old_harray, hash_table, old_size);
|
|
204 }
|
|
205
|
|
206 xfree (old_harray);
|
|
207 }
|
|
208
|
|
209 void
|
442
|
210 puthash (const void *key, void *contents, struct hash_table *hash_table)
|
428
|
211 {
|
|
212 if (!key)
|
|
213 {
|
|
214 hash_table->zero_entry = contents;
|
|
215 hash_table->zero_set = 1;
|
|
216 }
|
|
217 else
|
|
218 {
|
|
219 hash_table_test_function test_function = hash_table->test_function;
|
|
220 hash_size_t size = hash_table->size;
|
|
221 hentry *harray = hash_table->harray;
|
|
222 unsigned int hcode_initial =
|
|
223 hash_table->hash_function ?
|
|
224 hash_table->hash_function (key) :
|
|
225 (unsigned long) key;
|
|
226 unsigned int hcode = hcode_initial % size;
|
|
227 size_t h2 = size - 2;
|
|
228 unsigned int incr = 1 + (hcode_initial % h2);
|
442
|
229 const void *e_key = harray [hcode].key;
|
|
230 const void *oldcontents;
|
428
|
231
|
|
232 if (e_key && KEYS_DIFFER_P (e_key, key, test_function))
|
|
233 {
|
|
234 do
|
|
235 {
|
|
236 hcode += incr; if (hcode >= size) hcode -= size;
|
|
237 e_key = harray [hcode].key;
|
|
238 }
|
|
239 while (e_key && KEYS_DIFFER_P (e_key, key, test_function));
|
|
240 }
|
|
241 oldcontents = harray [hcode].contents;
|
|
242 harray [hcode].key = key;
|
|
243 harray [hcode].contents = contents;
|
|
244 /* If the entry that we used was a deleted entry,
|
|
245 check for a non deleted entry of the same key,
|
|
246 then delete it. */
|
|
247 if (!e_key && oldcontents == NULL_ENTRY)
|
|
248 {
|
|
249 hentry *e;
|
|
250
|
|
251 do
|
|
252 {
|
|
253 hcode += incr; if (hcode >= size) hcode -= size;
|
|
254 e = &harray [hcode];
|
|
255 e_key = e->key;
|
|
256 }
|
|
257 while (e_key ?
|
|
258 KEYS_DIFFER_P (e_key, key, test_function):
|
|
259 e->contents == NULL_ENTRY);
|
|
260
|
|
261 if (e_key)
|
|
262 {
|
|
263 e->key = 0;
|
|
264 e->contents = NULL_ENTRY;
|
|
265 }
|
|
266 }
|
|
267
|
|
268 /* only increment the fullness when we used up a new hentry */
|
|
269 if (!e_key || KEYS_DIFFER_P (e_key, key, test_function))
|
|
270 {
|
|
271 hash_size_t comfortable_size = COMFORTABLE_SIZE (++(hash_table->fullness));
|
|
272 if (hash_table->size < comfortable_size)
|
|
273 grow_hash_table (hash_table, comfortable_size + 1);
|
|
274 }
|
|
275 }
|
|
276 }
|
|
277
|
|
278 static void
|
|
279 rehash (hentry *harray, struct hash_table *hash_table, hash_size_t size)
|
|
280 {
|
|
281 hentry *limit = harray + size;
|
|
282 hentry *e;
|
|
283 for (e = harray; e < limit; e++)
|
|
284 {
|
|
285 if (e->key)
|
|
286 puthash (e->key, e->contents, hash_table);
|
|
287 }
|
|
288 }
|
|
289
|
|
290 void
|
442
|
291 remhash (const void *key, struct hash_table *hash_table)
|
428
|
292 {
|
|
293 if (!key)
|
|
294 {
|
|
295 hash_table->zero_entry = 0;
|
|
296 hash_table->zero_set = 0;
|
|
297 }
|
|
298 else
|
|
299 {
|
|
300 hentry *harray = hash_table->harray;
|
|
301 hash_table_test_function test_function = hash_table->test_function;
|
|
302 hash_size_t size = hash_table->size;
|
|
303 unsigned int hcode_initial =
|
|
304 (hash_table->hash_function) ?
|
|
305 (hash_table->hash_function (key)) :
|
|
306 ((unsigned long) key);
|
|
307 unsigned int hcode = hcode_initial % size;
|
|
308 hentry *e = &harray [hcode];
|
442
|
309 const void *e_key = e->key;
|
428
|
310
|
|
311 if (e_key ?
|
|
312 KEYS_DIFFER_P (e_key, key, test_function) :
|
|
313 e->contents == NULL_ENTRY)
|
|
314 {
|
|
315 size_t h2 = size - 2;
|
|
316 unsigned int incr = 1 + (hcode_initial % h2);
|
|
317 do
|
|
318 {
|
|
319 hcode += incr; if (hcode >= size) hcode -= size;
|
|
320 e = &harray [hcode];
|
|
321 e_key = e->key;
|
|
322 }
|
|
323 while (e_key?
|
|
324 KEYS_DIFFER_P (e_key, key, test_function):
|
|
325 e->contents == NULL_ENTRY);
|
|
326 }
|
|
327 if (e_key)
|
|
328 {
|
|
329 e->key = 0;
|
|
330 e->contents = NULL_ENTRY;
|
|
331 /* Note: you can't do fullness-- here, it breaks the world. */
|
|
332 }
|
|
333 }
|
|
334 }
|
|
335
|
|
336 void
|
|
337 maphash (maphash_function mf, struct hash_table *hash_table, void *arg)
|
|
338 {
|
|
339 hentry *e;
|
|
340 hentry *limit;
|
|
341
|
|
342 if (hash_table->zero_set)
|
|
343 {
|
|
344 if (mf (0, hash_table->zero_entry, arg))
|
|
345 return;
|
|
346 }
|
|
347
|
|
348 for (e = hash_table->harray, limit = e + hash_table->size; e < limit; e++)
|
|
349 {
|
|
350 if (e->key && mf (e->key, e->contents, arg))
|
|
351 return;
|
|
352 }
|
|
353 }
|
|
354
|
|
355 void
|
|
356 map_remhash (remhash_predicate predicate, struct hash_table *hash_table, void *arg)
|
|
357 {
|
|
358 hentry *e;
|
|
359 hentry *limit;
|
|
360
|
|
361 if (hash_table->zero_set && predicate (0, hash_table->zero_entry, arg))
|
|
362 {
|
|
363 hash_table->zero_set = 0;
|
|
364 hash_table->zero_entry = 0;
|
|
365 }
|
|
366
|
|
367 for (e = hash_table->harray, limit = e + hash_table->size; e < limit; e++)
|
|
368 if (predicate (e->key, e->contents, arg))
|
|
369 {
|
|
370 e->key = 0;
|
|
371 e->contents = NULL_ENTRY;
|
|
372 }
|
|
373 }
|