428
|
1 /* Storage allocation and gc for XEmacs Lisp interpreter.
|
|
2 Copyright (C) 1985-1998 Free Software Foundation, Inc.
|
|
3 Copyright (C) 1995 Sun Microsystems, Inc.
|
|
4 Copyright (C) 1995, 1996 Ben Wing.
|
|
5
|
|
6 This file is part of XEmacs.
|
|
7
|
|
8 XEmacs is free software; you can redistribute it and/or modify it
|
|
9 under the terms of the GNU General Public License as published by the
|
|
10 Free Software Foundation; either version 2, or (at your option) any
|
|
11 later version.
|
|
12
|
|
13 XEmacs is distributed in the hope that it will be useful, but WITHOUT
|
|
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
16 for more details.
|
|
17
|
|
18 You should have received a copy of the GNU General Public License
|
|
19 along with XEmacs; see the file COPYING. If not, write to
|
|
20 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
21 Boston, MA 02111-1307, USA. */
|
|
22
|
|
23 /* Synched up with: FSF 19.28, Mule 2.0. Substantially different from
|
|
24 FSF. */
|
|
25
|
|
26 /* Authorship:
|
|
27
|
|
28 FSF: Original version; a long time ago.
|
|
29 Mly: Significantly rewritten to use new 3-bit tags and
|
|
30 nicely abstracted object definitions, for 19.8.
|
|
31 JWZ: Improved code to keep track of purespace usage and
|
|
32 issue nice purespace and GC stats.
|
|
33 Ben Wing: Cleaned up frob-block lrecord code, added error-checking
|
|
34 and various changes for Mule, for 19.12.
|
|
35 Added bit vectors for 19.13.
|
|
36 Added lcrecord lists for 19.14.
|
|
37 slb: Lots of work on the purification and dump time code.
|
|
38 Synched Doug Lea malloc support from Emacs 20.2.
|
442
|
39 og: Killed the purespace. Portable dumper (moved to dumper.c)
|
428
|
40 */
|
|
41
|
|
42 #include <config.h>
|
|
43 #include "lisp.h"
|
|
44
|
442
|
45 #include "alloc.h"
|
428
|
46 #include "backtrace.h"
|
|
47 #include "buffer.h"
|
|
48 #include "bytecode.h"
|
|
49 #include "chartab.h"
|
|
50 #include "device.h"
|
|
51 #include "elhash.h"
|
|
52 #include "events.h"
|
|
53 #include "extents.h"
|
|
54 #include "frame.h"
|
|
55 #include "glyphs.h"
|
|
56 #include "opaque.h"
|
|
57 #include "redisplay.h"
|
|
58 #include "specifier.h"
|
|
59 #include "sysfile.h"
|
442
|
60 #include "sysdep.h"
|
428
|
61 #include "window.h"
|
|
62 #include "console-stream.h"
|
|
63
|
|
64 #ifdef DOUG_LEA_MALLOC
|
|
65 #include <malloc.h>
|
|
66 #endif
|
|
67
|
|
68 #ifdef PDUMP
|
442
|
69 #include "dumper.h"
|
428
|
70 #endif
|
|
71
|
|
72 EXFUN (Fgarbage_collect, 0);
|
|
73
|
|
74 #if 0 /* this is _way_ too slow to be part of the standard debug options */
|
|
75 #if defined(DEBUG_XEMACS) && defined(MULE)
|
|
76 #define VERIFY_STRING_CHARS_INTEGRITY
|
|
77 #endif
|
|
78 #endif
|
|
79
|
|
80 /* Define this to use malloc/free with no freelist for all datatypes,
|
|
81 the hope being that some debugging tools may help detect
|
|
82 freed memory references */
|
|
83 #ifdef USE_DEBUG_MALLOC /* Taking the above comment at face value -slb */
|
|
84 #include <dmalloc.h>
|
|
85 #define ALLOC_NO_POOLS
|
|
86 #endif
|
|
87
|
|
88 #ifdef DEBUG_XEMACS
|
|
89 static int debug_allocation;
|
|
90 static int debug_allocation_backtrace_length;
|
|
91 #endif
|
|
92
|
|
93 /* Number of bytes of consing done since the last gc */
|
|
94 EMACS_INT consing_since_gc;
|
|
95 #define INCREMENT_CONS_COUNTER_1(size) (consing_since_gc += (size))
|
|
96
|
|
97 #define debug_allocation_backtrace() \
|
|
98 do { \
|
|
99 if (debug_allocation_backtrace_length > 0) \
|
|
100 debug_short_backtrace (debug_allocation_backtrace_length); \
|
|
101 } while (0)
|
|
102
|
|
103 #ifdef DEBUG_XEMACS
|
|
104 #define INCREMENT_CONS_COUNTER(foosize, type) \
|
|
105 do { \
|
|
106 if (debug_allocation) \
|
|
107 { \
|
|
108 stderr_out ("allocating %s (size %ld)\n", type, (long)foosize); \
|
|
109 debug_allocation_backtrace (); \
|
|
110 } \
|
|
111 INCREMENT_CONS_COUNTER_1 (foosize); \
|
|
112 } while (0)
|
|
113 #define NOSEEUM_INCREMENT_CONS_COUNTER(foosize, type) \
|
|
114 do { \
|
|
115 if (debug_allocation > 1) \
|
|
116 { \
|
|
117 stderr_out ("allocating noseeum %s (size %ld)\n", type, (long)foosize); \
|
|
118 debug_allocation_backtrace (); \
|
|
119 } \
|
|
120 INCREMENT_CONS_COUNTER_1 (foosize); \
|
|
121 } while (0)
|
|
122 #else
|
|
123 #define INCREMENT_CONS_COUNTER(size, type) INCREMENT_CONS_COUNTER_1 (size)
|
|
124 #define NOSEEUM_INCREMENT_CONS_COUNTER(size, type) \
|
|
125 INCREMENT_CONS_COUNTER_1 (size)
|
|
126 #endif
|
|
127
|
|
128 #define DECREMENT_CONS_COUNTER(size) do { \
|
|
129 consing_since_gc -= (size); \
|
|
130 if (consing_since_gc < 0) \
|
|
131 consing_since_gc = 0; \
|
|
132 } while (0)
|
|
133
|
|
134 /* Number of bytes of consing since gc before another gc should be done. */
|
|
135 EMACS_INT gc_cons_threshold;
|
|
136
|
|
137 /* Nonzero during gc */
|
|
138 int gc_in_progress;
|
|
139
|
|
140 /* Number of times GC has happened at this level or below.
|
|
141 * Level 0 is most volatile, contrary to usual convention.
|
|
142 * (Of course, there's only one level at present) */
|
|
143 EMACS_INT gc_generation_number[1];
|
|
144
|
|
145 /* This is just for use by the printer, to allow things to print uniquely */
|
|
146 static int lrecord_uid_counter;
|
|
147
|
|
148 /* Nonzero when calling certain hooks or doing other things where
|
|
149 a GC would be bad */
|
|
150 int gc_currently_forbidden;
|
|
151
|
|
152 /* Hooks. */
|
|
153 Lisp_Object Vpre_gc_hook, Qpre_gc_hook;
|
|
154 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
|
|
155
|
|
156 /* "Garbage collecting" */
|
|
157 Lisp_Object Vgc_message;
|
|
158 Lisp_Object Vgc_pointer_glyph;
|
442
|
159 static const char gc_default_message[] = "Garbage collecting";
|
428
|
160 Lisp_Object Qgarbage_collecting;
|
|
161
|
|
162 /* Non-zero means we're in the process of doing the dump */
|
|
163 int purify_flag;
|
|
164
|
|
165 #ifdef ERROR_CHECK_TYPECHECK
|
|
166
|
|
167 Error_behavior ERROR_ME, ERROR_ME_NOT, ERROR_ME_WARN;
|
|
168
|
|
169 #endif
|
|
170
|
|
171 int
|
|
172 c_readonly (Lisp_Object obj)
|
|
173 {
|
|
174 return POINTER_TYPE_P (XTYPE (obj)) && C_READONLY (obj);
|
|
175 }
|
|
176
|
|
177 int
|
|
178 lisp_readonly (Lisp_Object obj)
|
|
179 {
|
|
180 return POINTER_TYPE_P (XTYPE (obj)) && LISP_READONLY (obj);
|
|
181 }
|
|
182
|
|
183
|
|
184 /* Maximum amount of C stack to save when a GC happens. */
|
|
185
|
|
186 #ifndef MAX_SAVE_STACK
|
|
187 #define MAX_SAVE_STACK 0 /* 16000 */
|
|
188 #endif
|
|
189
|
|
190 /* Non-zero means ignore malloc warnings. Set during initialization. */
|
|
191 int ignore_malloc_warnings;
|
|
192
|
|
193
|
|
194 static void *breathing_space;
|
|
195
|
|
196 void
|
|
197 release_breathing_space (void)
|
|
198 {
|
|
199 if (breathing_space)
|
|
200 {
|
|
201 void *tmp = breathing_space;
|
|
202 breathing_space = 0;
|
|
203 xfree (tmp);
|
|
204 }
|
|
205 }
|
|
206
|
|
207 /* malloc calls this if it finds we are near exhausting storage */
|
|
208 void
|
442
|
209 malloc_warning (const char *str)
|
428
|
210 {
|
|
211 if (ignore_malloc_warnings)
|
|
212 return;
|
|
213
|
|
214 warn_when_safe
|
|
215 (Qmemory, Qcritical,
|
|
216 "%s\n"
|
|
217 "Killing some buffers may delay running out of memory.\n"
|
|
218 "However, certainly by the time you receive the 95%% warning,\n"
|
|
219 "you should clean up, kill this Emacs, and start a new one.",
|
|
220 str);
|
|
221 }
|
|
222
|
|
223 /* Called if malloc returns zero */
|
|
224 DOESNT_RETURN
|
|
225 memory_full (void)
|
|
226 {
|
|
227 /* Force a GC next time eval is called.
|
|
228 It's better to loop garbage-collecting (we might reclaim enough
|
|
229 to win) than to loop beeping and barfing "Memory exhausted"
|
|
230 */
|
|
231 consing_since_gc = gc_cons_threshold + 1;
|
|
232 release_breathing_space ();
|
|
233
|
|
234 /* Flush some histories which might conceivably contain garbalogical
|
|
235 inhibitors. */
|
|
236 if (!NILP (Fboundp (Qvalues)))
|
|
237 Fset (Qvalues, Qnil);
|
|
238 Vcommand_history = Qnil;
|
|
239
|
|
240 error ("Memory exhausted");
|
|
241 }
|
|
242
|
|
243 /* like malloc and realloc but check for no memory left, and block input. */
|
|
244
|
|
245 #undef xmalloc
|
|
246 void *
|
|
247 xmalloc (size_t size)
|
|
248 {
|
|
249 void *val = malloc (size);
|
|
250
|
|
251 if (!val && (size != 0)) memory_full ();
|
|
252 return val;
|
|
253 }
|
|
254
|
|
255 #undef xcalloc
|
|
256 static void *
|
|
257 xcalloc (size_t nelem, size_t elsize)
|
|
258 {
|
|
259 void *val = calloc (nelem, elsize);
|
|
260
|
|
261 if (!val && (nelem != 0)) memory_full ();
|
|
262 return val;
|
|
263 }
|
|
264
|
|
265 void *
|
|
266 xmalloc_and_zero (size_t size)
|
|
267 {
|
|
268 return xcalloc (size, sizeof (char));
|
|
269 }
|
|
270
|
|
271 #undef xrealloc
|
|
272 void *
|
|
273 xrealloc (void *block, size_t size)
|
|
274 {
|
|
275 /* We must call malloc explicitly when BLOCK is 0, since some
|
|
276 reallocs don't do this. */
|
|
277 void *val = block ? realloc (block, size) : malloc (size);
|
|
278
|
|
279 if (!val && (size != 0)) memory_full ();
|
|
280 return val;
|
|
281 }
|
|
282
|
|
283 void
|
|
284 #ifdef ERROR_CHECK_MALLOC
|
|
285 xfree_1 (void *block)
|
|
286 #else
|
|
287 xfree (void *block)
|
|
288 #endif
|
|
289 {
|
|
290 #ifdef ERROR_CHECK_MALLOC
|
|
291 /* Unbelievably, calling free() on 0xDEADBEEF doesn't cause an
|
|
292 error until much later on for many system mallocs, such as
|
|
293 the one that comes with Solaris 2.3. FMH!! */
|
|
294 assert (block != (void *) 0xDEADBEEF);
|
|
295 assert (block);
|
|
296 #endif /* ERROR_CHECK_MALLOC */
|
|
297 free (block);
|
|
298 }
|
|
299
|
|
300 #ifdef ERROR_CHECK_GC
|
|
301
|
|
302 #if SIZEOF_INT == 4
|
|
303 typedef unsigned int four_byte_t;
|
|
304 #elif SIZEOF_LONG == 4
|
|
305 typedef unsigned long four_byte_t;
|
|
306 #elif SIZEOF_SHORT == 4
|
|
307 typedef unsigned short four_byte_t;
|
|
308 #else
|
|
309 What kind of strange-ass system are we running on?
|
|
310 #endif
|
|
311
|
|
312 static void
|
|
313 deadbeef_memory (void *ptr, size_t size)
|
|
314 {
|
|
315 four_byte_t *ptr4 = (four_byte_t *) ptr;
|
|
316 size_t beefs = size >> 2;
|
|
317
|
|
318 /* In practice, size will always be a multiple of four. */
|
|
319 while (beefs--)
|
|
320 (*ptr4++) = 0xDEADBEEF;
|
|
321 }
|
|
322
|
|
323 #else /* !ERROR_CHECK_GC */
|
|
324
|
|
325
|
|
326 #define deadbeef_memory(ptr, size)
|
|
327
|
|
328 #endif /* !ERROR_CHECK_GC */
|
|
329
|
|
330 #undef xstrdup
|
|
331 char *
|
442
|
332 xstrdup (const char *str)
|
428
|
333 {
|
|
334 int len = strlen (str) + 1; /* for stupid terminating 0 */
|
|
335
|
|
336 void *val = xmalloc (len);
|
|
337 if (val == 0) return 0;
|
|
338 return (char *) memcpy (val, str, len);
|
|
339 }
|
|
340
|
|
341 #ifdef NEED_STRDUP
|
|
342 char *
|
442
|
343 strdup (const char *s)
|
428
|
344 {
|
|
345 return xstrdup (s);
|
|
346 }
|
|
347 #endif /* NEED_STRDUP */
|
|
348
|
|
349
|
|
350 static void *
|
|
351 allocate_lisp_storage (size_t size)
|
|
352 {
|
|
353 return xmalloc (size);
|
|
354 }
|
|
355
|
|
356
|
442
|
357 /* lcrecords are chained together through their "next" field.
|
|
358 After doing the mark phase, GC will walk this linked list
|
|
359 and free any lcrecord which hasn't been marked. */
|
428
|
360 static struct lcrecord_header *all_lcrecords;
|
|
361
|
|
362 void *
|
442
|
363 alloc_lcrecord (size_t size, const struct lrecord_implementation *implementation)
|
428
|
364 {
|
|
365 struct lcrecord_header *lcheader;
|
|
366
|
442
|
367 type_checking_assert
|
|
368 ((implementation->static_size == 0 ?
|
|
369 implementation->size_in_bytes_method != NULL :
|
|
370 implementation->static_size == size)
|
|
371 &&
|
|
372 (! implementation->basic_p)
|
|
373 &&
|
|
374 (! (implementation->hash == NULL && implementation->equal != NULL)));
|
428
|
375
|
|
376 lcheader = (struct lcrecord_header *) allocate_lisp_storage (size);
|
442
|
377 set_lheader_implementation (&lcheader->lheader, implementation);
|
428
|
378 lcheader->next = all_lcrecords;
|
|
379 #if 1 /* mly prefers to see small ID numbers */
|
|
380 lcheader->uid = lrecord_uid_counter++;
|
|
381 #else /* jwz prefers to see real addrs */
|
|
382 lcheader->uid = (int) &lcheader;
|
|
383 #endif
|
|
384 lcheader->free = 0;
|
|
385 all_lcrecords = lcheader;
|
|
386 INCREMENT_CONS_COUNTER (size, implementation->name);
|
|
387 return lcheader;
|
|
388 }
|
|
389
|
|
390 #if 0 /* Presently unused */
|
|
391 /* Very, very poor man's EGC?
|
|
392 * This may be slow and thrash pages all over the place.
|
|
393 * Only call it if you really feel you must (and if the
|
|
394 * lrecord was fairly recently allocated).
|
|
395 * Otherwise, just let the GC do its job -- that's what it's there for
|
|
396 */
|
|
397 void
|
|
398 free_lcrecord (struct lcrecord_header *lcrecord)
|
|
399 {
|
|
400 if (all_lcrecords == lcrecord)
|
|
401 {
|
|
402 all_lcrecords = lcrecord->next;
|
|
403 }
|
|
404 else
|
|
405 {
|
|
406 struct lrecord_header *header = all_lcrecords;
|
|
407 for (;;)
|
|
408 {
|
|
409 struct lrecord_header *next = header->next;
|
|
410 if (next == lcrecord)
|
|
411 {
|
|
412 header->next = lrecord->next;
|
|
413 break;
|
|
414 }
|
|
415 else if (next == 0)
|
|
416 abort ();
|
|
417 else
|
|
418 header = next;
|
|
419 }
|
|
420 }
|
|
421 if (lrecord->implementation->finalizer)
|
|
422 lrecord->implementation->finalizer (lrecord, 0);
|
|
423 xfree (lrecord);
|
|
424 return;
|
|
425 }
|
|
426 #endif /* Unused */
|
|
427
|
|
428
|
|
429 static void
|
|
430 disksave_object_finalization_1 (void)
|
|
431 {
|
|
432 struct lcrecord_header *header;
|
|
433
|
|
434 for (header = all_lcrecords; header; header = header->next)
|
|
435 {
|
442
|
436 if (LHEADER_IMPLEMENTATION (&header->lheader)->finalizer &&
|
428
|
437 !header->free)
|
442
|
438 LHEADER_IMPLEMENTATION (&header->lheader)->finalizer (header, 1);
|
428
|
439 }
|
|
440 }
|
|
441
|
|
442
|
|
443 /************************************************************************/
|
|
444 /* Debugger support */
|
|
445 /************************************************************************/
|
|
446 /* Give gdb/dbx enough information to decode Lisp Objects. We make
|
|
447 sure certain symbols are always defined, so gdb doesn't complain
|
438
|
448 about expressions in src/.gdbinit. See src/.gdbinit or src/.dbxrc
|
|
449 to see how this is used. */
|
428
|
450
|
|
451 EMACS_UINT dbg_valmask = ((1UL << VALBITS) - 1) << GCBITS;
|
|
452 EMACS_UINT dbg_typemask = (1UL << GCTYPEBITS) - 1;
|
|
453
|
|
454 #ifdef USE_UNION_TYPE
|
|
455 unsigned char dbg_USE_UNION_TYPE = 1;
|
|
456 #else
|
|
457 unsigned char dbg_USE_UNION_TYPE = 0;
|
|
458 #endif
|
|
459
|
|
460 unsigned char dbg_valbits = VALBITS;
|
|
461 unsigned char dbg_gctypebits = GCTYPEBITS;
|
|
462
|
|
463 /* Macros turned into functions for ease of debugging.
|
|
464 Debuggers don't know about macros! */
|
|
465 int dbg_eq (Lisp_Object obj1, Lisp_Object obj2);
|
|
466 int
|
|
467 dbg_eq (Lisp_Object obj1, Lisp_Object obj2)
|
|
468 {
|
|
469 return EQ (obj1, obj2);
|
|
470 }
|
|
471
|
|
472
|
|
473 /************************************************************************/
|
|
474 /* Fixed-size type macros */
|
|
475 /************************************************************************/
|
|
476
|
|
477 /* For fixed-size types that are commonly used, we malloc() large blocks
|
|
478 of memory at a time and subdivide them into chunks of the correct
|
|
479 size for an object of that type. This is more efficient than
|
|
480 malloc()ing each object separately because we save on malloc() time
|
|
481 and overhead due to the fewer number of malloc()ed blocks, and
|
|
482 also because we don't need any extra pointers within each object
|
|
483 to keep them threaded together for GC purposes. For less common
|
|
484 (and frequently large-size) types, we use lcrecords, which are
|
|
485 malloc()ed individually and chained together through a pointer
|
|
486 in the lcrecord header. lcrecords do not need to be fixed-size
|
|
487 (i.e. two objects of the same type need not have the same size;
|
|
488 however, the size of a particular object cannot vary dynamically).
|
|
489 It is also much easier to create a new lcrecord type because no
|
|
490 additional code needs to be added to alloc.c. Finally, lcrecords
|
|
491 may be more efficient when there are only a small number of them.
|
|
492
|
|
493 The types that are stored in these large blocks (or "frob blocks")
|
|
494 are cons, float, compiled-function, symbol, marker, extent, event,
|
|
495 and string.
|
|
496
|
|
497 Note that strings are special in that they are actually stored in
|
|
498 two parts: a structure containing information about the string, and
|
|
499 the actual data associated with the string. The former structure
|
|
500 (a struct Lisp_String) is a fixed-size structure and is managed the
|
|
501 same way as all the other such types. This structure contains a
|
|
502 pointer to the actual string data, which is stored in structures of
|
|
503 type struct string_chars_block. Each string_chars_block consists
|
|
504 of a pointer to a struct Lisp_String, followed by the data for that
|
440
|
505 string, followed by another pointer to a Lisp_String, followed by
|
|
506 the data for that string, etc. At GC time, the data in these
|
|
507 blocks is compacted by searching sequentially through all the
|
428
|
508 blocks and compressing out any holes created by unmarked strings.
|
|
509 Strings that are more than a certain size (bigger than the size of
|
|
510 a string_chars_block, although something like half as big might
|
|
511 make more sense) are malloc()ed separately and not stored in
|
|
512 string_chars_blocks. Furthermore, no one string stretches across
|
|
513 two string_chars_blocks.
|
|
514
|
|
515 Vectors are each malloc()ed separately, similar to lcrecords.
|
|
516
|
|
517 In the following discussion, we use conses, but it applies equally
|
|
518 well to the other fixed-size types.
|
|
519
|
|
520 We store cons cells inside of cons_blocks, allocating a new
|
|
521 cons_block with malloc() whenever necessary. Cons cells reclaimed
|
|
522 by GC are put on a free list to be reallocated before allocating
|
|
523 any new cons cells from the latest cons_block. Each cons_block is
|
|
524 just under 2^n - MALLOC_OVERHEAD bytes long, since malloc (at least
|
|
525 the versions in malloc.c and gmalloc.c) really allocates in units
|
|
526 of powers of two and uses 4 bytes for its own overhead.
|
|
527
|
|
528 What GC actually does is to search through all the cons_blocks,
|
|
529 from the most recently allocated to the oldest, and put all
|
|
530 cons cells that are not marked (whether or not they're already
|
|
531 free) on a cons_free_list. The cons_free_list is a stack, and
|
|
532 so the cons cells in the oldest-allocated cons_block end up
|
|
533 at the head of the stack and are the first to be reallocated.
|
|
534 If any cons_block is entirely free, it is freed with free()
|
|
535 and its cons cells removed from the cons_free_list. Because
|
|
536 the cons_free_list ends up basically in memory order, we have
|
|
537 a high locality of reference (assuming a reasonable turnover
|
|
538 of allocating and freeing) and have a reasonable probability
|
|
539 of entirely freeing up cons_blocks that have been more recently
|
|
540 allocated. This stage is called the "sweep stage" of GC, and
|
|
541 is executed after the "mark stage", which involves starting
|
|
542 from all places that are known to point to in-use Lisp objects
|
|
543 (e.g. the obarray, where are all symbols are stored; the
|
|
544 current catches and condition-cases; the backtrace list of
|
|
545 currently executing functions; the gcpro list; etc.) and
|
|
546 recursively marking all objects that are accessible.
|
|
547
|
|
548 At the beginning of the sweep stage, the conses in the cons
|
|
549 blocks are in one of three states: in use and marked, in use
|
|
550 but not marked, and not in use (already freed). Any conses
|
|
551 that are marked have been marked in the mark stage just
|
|
552 executed, because as part of the sweep stage we unmark any
|
|
553 marked objects. The way we tell whether or not a cons cell
|
|
554 is in use is through the FREE_STRUCT_P macro. This basically
|
|
555 looks at the first 4 bytes (or however many bytes a pointer
|
|
556 fits in) to see if all the bits in those bytes are 1. The
|
|
557 resulting value (0xFFFFFFFF) is not a valid pointer and is
|
|
558 not a valid Lisp_Object. All current fixed-size types have
|
|
559 a pointer or Lisp_Object as their first element with the
|
|
560 exception of strings; they have a size value, which can
|
|
561 never be less than zero, and so 0xFFFFFFFF is invalid for
|
|
562 strings as well. Now assuming that a cons cell is in use,
|
|
563 the way we tell whether or not it is marked is to look at
|
|
564 the mark bit of its car (each Lisp_Object has one bit
|
|
565 reserved as a mark bit, in case it's needed). Note that
|
|
566 different types of objects use different fields to indicate
|
|
567 whether the object is marked, but the principle is the same.
|
|
568
|
|
569 Conses on the free_cons_list are threaded through a pointer
|
|
570 stored in the bytes directly after the bytes that are set
|
|
571 to 0xFFFFFFFF (we cannot overwrite these because the cons
|
|
572 is still in a cons_block and needs to remain marked as
|
|
573 not in use for the next time that GC happens). This
|
|
574 implies that all fixed-size types must be at least big
|
|
575 enough to store two pointers, which is indeed the case
|
|
576 for all current fixed-size types.
|
|
577
|
|
578 Some types of objects need additional "finalization" done
|
|
579 when an object is converted from in use to not in use;
|
|
580 this is the purpose of the ADDITIONAL_FREE_type macro.
|
|
581 For example, markers need to be removed from the chain
|
|
582 of markers that is kept in each buffer. This is because
|
|
583 markers in a buffer automatically disappear if the marker
|
|
584 is no longer referenced anywhere (the same does not
|
|
585 apply to extents, however).
|
|
586
|
|
587 WARNING: Things are in an extremely bizarre state when
|
|
588 the ADDITIONAL_FREE_type macros are called, so beware!
|
|
589
|
|
590 When ERROR_CHECK_GC is defined, we do things differently
|
|
591 so as to maximize our chances of catching places where
|
|
592 there is insufficient GCPROing. The thing we want to
|
|
593 avoid is having an object that we're using but didn't
|
|
594 GCPRO get freed by GC and then reallocated while we're
|
|
595 in the process of using it -- this will result in something
|
|
596 seemingly unrelated getting trashed, and is extremely
|
|
597 difficult to track down. If the object gets freed but
|
|
598 not reallocated, we can usually catch this because we
|
|
599 set all bytes of a freed object to 0xDEADBEEF. (The
|
|
600 first four bytes, however, are 0xFFFFFFFF, and the next
|
|
601 four are a pointer used to chain freed objects together;
|
|
602 we play some tricks with this pointer to make it more
|
|
603 bogus, so crashes are more likely to occur right away.)
|
|
604
|
|
605 We want freed objects to stay free as long as possible,
|
|
606 so instead of doing what we do above, we maintain the
|
|
607 free objects in a first-in first-out queue. We also
|
|
608 don't recompute the free list each GC, unlike above;
|
|
609 this ensures that the queue ordering is preserved.
|
|
610 [This means that we are likely to have worse locality
|
|
611 of reference, and that we can never free a frob block
|
|
612 once it's allocated. (Even if we know that all cells
|
|
613 in it are free, there's no easy way to remove all those
|
|
614 cells from the free list because the objects on the
|
|
615 free list are unlikely to be in memory order.)]
|
|
616 Furthermore, we never take objects off the free list
|
|
617 unless there's a large number (usually 1000, but
|
|
618 varies depending on type) of them already on the list.
|
|
619 This way, we ensure that an object that gets freed will
|
|
620 remain free for the next 1000 (or whatever) times that
|
440
|
621 an object of that type is allocated. */
|
428
|
622
|
|
623 #ifndef MALLOC_OVERHEAD
|
|
624 #ifdef GNU_MALLOC
|
|
625 #define MALLOC_OVERHEAD 0
|
|
626 #elif defined (rcheck)
|
|
627 #define MALLOC_OVERHEAD 20
|
|
628 #else
|
|
629 #define MALLOC_OVERHEAD 8
|
|
630 #endif
|
|
631 #endif /* MALLOC_OVERHEAD */
|
|
632
|
|
633 #if !defined(HAVE_MMAP) || defined(DOUG_LEA_MALLOC)
|
|
634 /* If we released our reserve (due to running out of memory),
|
|
635 and we have a fair amount free once again,
|
|
636 try to set aside another reserve in case we run out once more.
|
|
637
|
|
638 This is called when a relocatable block is freed in ralloc.c. */
|
|
639 void refill_memory_reserve (void);
|
|
640 void
|
442
|
641 refill_memory_reserve (void)
|
428
|
642 {
|
|
643 if (breathing_space == 0)
|
|
644 breathing_space = (char *) malloc (4096 - MALLOC_OVERHEAD);
|
|
645 }
|
|
646 #endif
|
|
647
|
|
648 #ifdef ALLOC_NO_POOLS
|
|
649 # define TYPE_ALLOC_SIZE(type, structtype) 1
|
|
650 #else
|
|
651 # define TYPE_ALLOC_SIZE(type, structtype) \
|
|
652 ((2048 - MALLOC_OVERHEAD - sizeof (struct type##_block *)) \
|
|
653 / sizeof (structtype))
|
|
654 #endif /* ALLOC_NO_POOLS */
|
|
655
|
|
656 #define DECLARE_FIXED_TYPE_ALLOC(type, structtype) \
|
|
657 \
|
|
658 struct type##_block \
|
|
659 { \
|
|
660 struct type##_block *prev; \
|
|
661 structtype block[TYPE_ALLOC_SIZE (type, structtype)]; \
|
|
662 }; \
|
|
663 \
|
|
664 static struct type##_block *current_##type##_block; \
|
|
665 static int current_##type##_block_index; \
|
|
666 \
|
|
667 static structtype *type##_free_list; \
|
|
668 static structtype *type##_free_list_tail; \
|
|
669 \
|
|
670 static void \
|
|
671 init_##type##_alloc (void) \
|
|
672 { \
|
|
673 current_##type##_block = 0; \
|
|
674 current_##type##_block_index = \
|
|
675 countof (current_##type##_block->block); \
|
|
676 type##_free_list = 0; \
|
|
677 type##_free_list_tail = 0; \
|
|
678 } \
|
|
679 \
|
|
680 static int gc_count_num_##type##_in_use; \
|
|
681 static int gc_count_num_##type##_freelist
|
|
682
|
|
683 #define ALLOCATE_FIXED_TYPE_FROM_BLOCK(type, result) do { \
|
|
684 if (current_##type##_block_index \
|
|
685 == countof (current_##type##_block->block)) \
|
|
686 { \
|
|
687 struct type##_block *AFTFB_new = (struct type##_block *) \
|
|
688 allocate_lisp_storage (sizeof (struct type##_block)); \
|
|
689 AFTFB_new->prev = current_##type##_block; \
|
|
690 current_##type##_block = AFTFB_new; \
|
|
691 current_##type##_block_index = 0; \
|
|
692 } \
|
|
693 (result) = \
|
|
694 &(current_##type##_block->block[current_##type##_block_index++]); \
|
|
695 } while (0)
|
|
696
|
|
697 /* Allocate an instance of a type that is stored in blocks.
|
|
698 TYPE is the "name" of the type, STRUCTTYPE is the corresponding
|
|
699 structure type. */
|
|
700
|
|
701 #ifdef ERROR_CHECK_GC
|
|
702
|
|
703 /* Note: if you get crashes in this function, suspect incorrect calls
|
|
704 to free_cons() and friends. This happened once because the cons
|
|
705 cell was not GC-protected and was getting collected before
|
|
706 free_cons() was called. */
|
|
707
|
|
708 #define ALLOCATE_FIXED_TYPE_1(type, structtype, result) \
|
|
709 do \
|
|
710 { \
|
|
711 if (gc_count_num_##type##_freelist > \
|
|
712 MINIMUM_ALLOWED_FIXED_TYPE_CELLS_##type) \
|
|
713 { \
|
|
714 result = type##_free_list; \
|
|
715 /* Before actually using the chain pointer, we complement all its \
|
|
716 bits; see FREE_FIXED_TYPE(). */ \
|
|
717 type##_free_list = \
|
|
718 (structtype *) ~(unsigned long) \
|
|
719 (* (structtype **) ((char *) result + sizeof (void *))); \
|
|
720 gc_count_num_##type##_freelist--; \
|
|
721 } \
|
|
722 else \
|
|
723 ALLOCATE_FIXED_TYPE_FROM_BLOCK (type, result); \
|
|
724 MARK_STRUCT_AS_NOT_FREE (result); \
|
|
725 } while (0)
|
|
726
|
|
727 #else /* !ERROR_CHECK_GC */
|
|
728
|
|
729 #define ALLOCATE_FIXED_TYPE_1(type, structtype, result) \
|
|
730 do \
|
|
731 { \
|
|
732 if (type##_free_list) \
|
|
733 { \
|
|
734 result = type##_free_list; \
|
|
735 type##_free_list = \
|
|
736 * (structtype **) ((char *) result + sizeof (void *)); \
|
|
737 } \
|
|
738 else \
|
|
739 ALLOCATE_FIXED_TYPE_FROM_BLOCK (type, result); \
|
|
740 MARK_STRUCT_AS_NOT_FREE (result); \
|
|
741 } while (0)
|
|
742
|
|
743 #endif /* !ERROR_CHECK_GC */
|
|
744
|
|
745 #define ALLOCATE_FIXED_TYPE(type, structtype, result) \
|
|
746 do \
|
|
747 { \
|
|
748 ALLOCATE_FIXED_TYPE_1 (type, structtype, result); \
|
|
749 INCREMENT_CONS_COUNTER (sizeof (structtype), #type); \
|
|
750 } while (0)
|
|
751
|
|
752 #define NOSEEUM_ALLOCATE_FIXED_TYPE(type, structtype, result) \
|
|
753 do \
|
|
754 { \
|
|
755 ALLOCATE_FIXED_TYPE_1 (type, structtype, result); \
|
|
756 NOSEEUM_INCREMENT_CONS_COUNTER (sizeof (structtype), #type); \
|
|
757 } while (0)
|
|
758
|
|
759 /* INVALID_POINTER_VALUE should be a value that is invalid as a pointer
|
|
760 to a Lisp object and invalid as an actual Lisp_Object value. We have
|
|
761 to make sure that this value cannot be an integer in Lisp_Object form.
|
|
762 0xFFFFFFFF could be so on a 64-bit system, so we extend it to 64 bits.
|
|
763 On a 32-bit system, the type bits will be non-zero, making the value
|
|
764 be a pointer, and the pointer will be misaligned.
|
|
765
|
|
766 Even if Emacs is run on some weirdo system that allows and allocates
|
|
767 byte-aligned pointers, this pointer is at the very top of the address
|
|
768 space and so it's almost inconceivable that it could ever be valid. */
|
|
769
|
|
770 #if INTBITS == 32
|
|
771 # define INVALID_POINTER_VALUE 0xFFFFFFFF
|
|
772 #elif INTBITS == 48
|
|
773 # define INVALID_POINTER_VALUE 0xFFFFFFFFFFFF
|
|
774 #elif INTBITS == 64
|
|
775 # define INVALID_POINTER_VALUE 0xFFFFFFFFFFFFFFFF
|
|
776 #else
|
|
777 You have some weird system and need to supply a reasonable value here.
|
|
778 #endif
|
|
779
|
442
|
780 /* The construct (* (void **) (ptr)) would cause aliasing problems
|
|
781 with modern optimizing compilers like `gcc -O3 -fstrict-aliasing'.
|
|
782 But `char *' can legally alias any pointer. Hence this union trick. */
|
|
783 typedef union { char c; void *p; } *aliasing_voidpp;
|
|
784 #define ALIASING_VOIDPP_DEREFERENCE(ptr) \
|
|
785 (((aliasing_voidpp) (ptr))->p)
|
428
|
786 #define FREE_STRUCT_P(ptr) \
|
442
|
787 (ALIASING_VOIDPP_DEREFERENCE (ptr) == (void *) INVALID_POINTER_VALUE)
|
428
|
788 #define MARK_STRUCT_AS_FREE(ptr) \
|
442
|
789 (ALIASING_VOIDPP_DEREFERENCE (ptr) = (void *) INVALID_POINTER_VALUE)
|
428
|
790 #define MARK_STRUCT_AS_NOT_FREE(ptr) \
|
442
|
791 (ALIASING_VOIDPP_DEREFERENCE (ptr) = 0)
|
428
|
792
|
|
793 #ifdef ERROR_CHECK_GC
|
|
794
|
|
795 #define PUT_FIXED_TYPE_ON_FREE_LIST(type, structtype, ptr) \
|
|
796 do { if (type##_free_list_tail) \
|
|
797 { \
|
|
798 /* When we store the chain pointer, we complement all \
|
|
799 its bits; this should significantly increase its \
|
|
800 bogosity in case someone tries to use the value, and \
|
|
801 should make us dump faster if someone stores something \
|
|
802 over the pointer because when it gets un-complemented in \
|
|
803 ALLOCATED_FIXED_TYPE(), the resulting pointer will be \
|
|
804 extremely bogus. */ \
|
|
805 * (structtype **) \
|
|
806 ((char *) type##_free_list_tail + sizeof (void *)) = \
|
|
807 (structtype *) ~(unsigned long) ptr; \
|
|
808 } \
|
|
809 else \
|
|
810 type##_free_list = ptr; \
|
|
811 type##_free_list_tail = ptr; \
|
|
812 } while (0)
|
|
813
|
|
814 #else /* !ERROR_CHECK_GC */
|
|
815
|
|
816 #define PUT_FIXED_TYPE_ON_FREE_LIST(type, structtype, ptr) \
|
|
817 do { * (structtype **) ((char *) (ptr) + sizeof (void *)) = \
|
|
818 type##_free_list; \
|
|
819 type##_free_list = (ptr); \
|
|
820 } while (0)
|
|
821
|
|
822 #endif /* !ERROR_CHECK_GC */
|
|
823
|
|
824 /* TYPE and STRUCTTYPE are the same as in ALLOCATE_FIXED_TYPE(). */
|
|
825
|
|
826 #define FREE_FIXED_TYPE(type, structtype, ptr) do { \
|
|
827 structtype *FFT_ptr = (ptr); \
|
|
828 ADDITIONAL_FREE_##type (FFT_ptr); \
|
|
829 deadbeef_memory (FFT_ptr, sizeof (structtype)); \
|
|
830 PUT_FIXED_TYPE_ON_FREE_LIST (type, structtype, FFT_ptr); \
|
|
831 MARK_STRUCT_AS_FREE (FFT_ptr); \
|
|
832 } while (0)
|
|
833
|
|
834 /* Like FREE_FIXED_TYPE() but used when we are explicitly
|
|
835 freeing a structure through free_cons(), free_marker(), etc.
|
|
836 rather than through the normal process of sweeping.
|
|
837 We attempt to undo the changes made to the allocation counters
|
|
838 as a result of this structure being allocated. This is not
|
|
839 completely necessary but helps keep things saner: e.g. this way,
|
|
840 repeatedly allocating and freeing a cons will not result in
|
|
841 the consing-since-gc counter advancing, which would cause a GC
|
|
842 and somewhat defeat the purpose of explicitly freeing. */
|
|
843
|
|
844 #define FREE_FIXED_TYPE_WHEN_NOT_IN_GC(type, structtype, ptr) \
|
|
845 do { FREE_FIXED_TYPE (type, structtype, ptr); \
|
|
846 DECREMENT_CONS_COUNTER (sizeof (structtype)); \
|
|
847 gc_count_num_##type##_freelist++; \
|
|
848 } while (0)
|
|
849
|
|
850
|
|
851
|
|
852 /************************************************************************/
|
|
853 /* Cons allocation */
|
|
854 /************************************************************************/
|
|
855
|
440
|
856 DECLARE_FIXED_TYPE_ALLOC (cons, Lisp_Cons);
|
428
|
857 /* conses are used and freed so often that we set this really high */
|
|
858 /* #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_cons 20000 */
|
|
859 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_cons 2000
|
|
860
|
|
861 static Lisp_Object
|
|
862 mark_cons (Lisp_Object obj)
|
|
863 {
|
|
864 if (NILP (XCDR (obj)))
|
|
865 return XCAR (obj);
|
|
866
|
|
867 mark_object (XCAR (obj));
|
|
868 return XCDR (obj);
|
|
869 }
|
|
870
|
|
871 static int
|
|
872 cons_equal (Lisp_Object ob1, Lisp_Object ob2, int depth)
|
|
873 {
|
442
|
874 depth++;
|
|
875 while (internal_equal (XCAR (ob1), XCAR (ob2), depth))
|
428
|
876 {
|
|
877 ob1 = XCDR (ob1);
|
|
878 ob2 = XCDR (ob2);
|
|
879 if (! CONSP (ob1) || ! CONSP (ob2))
|
442
|
880 return internal_equal (ob1, ob2, depth);
|
428
|
881 }
|
|
882 return 0;
|
|
883 }
|
|
884
|
|
885 static const struct lrecord_description cons_description[] = {
|
440
|
886 { XD_LISP_OBJECT, offsetof (Lisp_Cons, car) },
|
|
887 { XD_LISP_OBJECT, offsetof (Lisp_Cons, cdr) },
|
428
|
888 { XD_END }
|
|
889 };
|
|
890
|
|
891 DEFINE_BASIC_LRECORD_IMPLEMENTATION ("cons", cons,
|
|
892 mark_cons, print_cons, 0,
|
|
893 cons_equal,
|
|
894 /*
|
|
895 * No `hash' method needed.
|
|
896 * internal_hash knows how to
|
|
897 * handle conses.
|
|
898 */
|
|
899 0,
|
|
900 cons_description,
|
440
|
901 Lisp_Cons);
|
428
|
902
|
|
903 DEFUN ("cons", Fcons, 2, 2, 0, /*
|
|
904 Create a new cons, give it CAR and CDR as components, and return it.
|
|
905 */
|
|
906 (car, cdr))
|
|
907 {
|
|
908 /* This cannot GC. */
|
|
909 Lisp_Object val;
|
440
|
910 Lisp_Cons *c;
|
|
911
|
|
912 ALLOCATE_FIXED_TYPE (cons, Lisp_Cons, c);
|
442
|
913 set_lheader_implementation (&c->lheader, &lrecord_cons);
|
428
|
914 XSETCONS (val, c);
|
|
915 c->car = car;
|
|
916 c->cdr = cdr;
|
|
917 return val;
|
|
918 }
|
|
919
|
|
920 /* This is identical to Fcons() but it used for conses that we're
|
|
921 going to free later, and is useful when trying to track down
|
|
922 "real" consing. */
|
|
923 Lisp_Object
|
|
924 noseeum_cons (Lisp_Object car, Lisp_Object cdr)
|
|
925 {
|
|
926 Lisp_Object val;
|
440
|
927 Lisp_Cons *c;
|
|
928
|
|
929 NOSEEUM_ALLOCATE_FIXED_TYPE (cons, Lisp_Cons, c);
|
442
|
930 set_lheader_implementation (&c->lheader, &lrecord_cons);
|
428
|
931 XSETCONS (val, c);
|
|
932 XCAR (val) = car;
|
|
933 XCDR (val) = cdr;
|
|
934 return val;
|
|
935 }
|
|
936
|
|
937 DEFUN ("list", Flist, 0, MANY, 0, /*
|
|
938 Return a newly created list with specified arguments as elements.
|
|
939 Any number of arguments, even zero arguments, are allowed.
|
|
940 */
|
|
941 (int nargs, Lisp_Object *args))
|
|
942 {
|
|
943 Lisp_Object val = Qnil;
|
|
944 Lisp_Object *argp = args + nargs;
|
|
945
|
|
946 while (argp > args)
|
|
947 val = Fcons (*--argp, val);
|
|
948 return val;
|
|
949 }
|
|
950
|
|
951 Lisp_Object
|
|
952 list1 (Lisp_Object obj0)
|
|
953 {
|
|
954 /* This cannot GC. */
|
|
955 return Fcons (obj0, Qnil);
|
|
956 }
|
|
957
|
|
958 Lisp_Object
|
|
959 list2 (Lisp_Object obj0, Lisp_Object obj1)
|
|
960 {
|
|
961 /* This cannot GC. */
|
|
962 return Fcons (obj0, Fcons (obj1, Qnil));
|
|
963 }
|
|
964
|
|
965 Lisp_Object
|
|
966 list3 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2)
|
|
967 {
|
|
968 /* This cannot GC. */
|
|
969 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Qnil)));
|
|
970 }
|
|
971
|
|
972 Lisp_Object
|
|
973 cons3 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2)
|
|
974 {
|
|
975 /* This cannot GC. */
|
|
976 return Fcons (obj0, Fcons (obj1, obj2));
|
|
977 }
|
|
978
|
|
979 Lisp_Object
|
|
980 acons (Lisp_Object key, Lisp_Object value, Lisp_Object alist)
|
|
981 {
|
|
982 return Fcons (Fcons (key, value), alist);
|
|
983 }
|
|
984
|
|
985 Lisp_Object
|
|
986 list4 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, Lisp_Object obj3)
|
|
987 {
|
|
988 /* This cannot GC. */
|
|
989 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Fcons (obj3, Qnil))));
|
|
990 }
|
|
991
|
|
992 Lisp_Object
|
|
993 list5 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, Lisp_Object obj3,
|
|
994 Lisp_Object obj4)
|
|
995 {
|
|
996 /* This cannot GC. */
|
|
997 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Fcons (obj3, Fcons (obj4, Qnil)))));
|
|
998 }
|
|
999
|
|
1000 Lisp_Object
|
|
1001 list6 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, Lisp_Object obj3,
|
|
1002 Lisp_Object obj4, Lisp_Object obj5)
|
|
1003 {
|
|
1004 /* This cannot GC. */
|
|
1005 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Fcons (obj3, Fcons (obj4, Fcons (obj5, Qnil))))));
|
|
1006 }
|
|
1007
|
|
1008 DEFUN ("make-list", Fmake_list, 2, 2, 0, /*
|
444
|
1009 Return a new list of length LENGTH, with each element being OBJECT.
|
428
|
1010 */
|
444
|
1011 (length, object))
|
428
|
1012 {
|
|
1013 CHECK_NATNUM (length);
|
|
1014
|
|
1015 {
|
|
1016 Lisp_Object val = Qnil;
|
|
1017 size_t size = XINT (length);
|
|
1018
|
|
1019 while (size--)
|
444
|
1020 val = Fcons (object, val);
|
428
|
1021 return val;
|
|
1022 }
|
|
1023 }
|
|
1024
|
|
1025
|
|
1026 /************************************************************************/
|
|
1027 /* Float allocation */
|
|
1028 /************************************************************************/
|
|
1029
|
|
1030 #ifdef LISP_FLOAT_TYPE
|
|
1031
|
440
|
1032 DECLARE_FIXED_TYPE_ALLOC (float, Lisp_Float);
|
428
|
1033 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_float 1000
|
|
1034
|
|
1035 Lisp_Object
|
|
1036 make_float (double float_value)
|
|
1037 {
|
|
1038 Lisp_Object val;
|
440
|
1039 Lisp_Float *f;
|
|
1040
|
|
1041 ALLOCATE_FIXED_TYPE (float, Lisp_Float, f);
|
|
1042
|
|
1043 /* Avoid dump-time `uninitialized memory read' purify warnings. */
|
|
1044 if (sizeof (struct lrecord_header) + sizeof (double) != sizeof (*f))
|
|
1045 xzero (*f);
|
|
1046
|
442
|
1047 set_lheader_implementation (&f->lheader, &lrecord_float);
|
428
|
1048 float_data (f) = float_value;
|
|
1049 XSETFLOAT (val, f);
|
|
1050 return val;
|
|
1051 }
|
|
1052
|
|
1053 #endif /* LISP_FLOAT_TYPE */
|
|
1054
|
|
1055
|
|
1056 /************************************************************************/
|
|
1057 /* Vector allocation */
|
|
1058 /************************************************************************/
|
|
1059
|
|
1060 static Lisp_Object
|
|
1061 mark_vector (Lisp_Object obj)
|
|
1062 {
|
|
1063 Lisp_Vector *ptr = XVECTOR (obj);
|
|
1064 int len = vector_length (ptr);
|
|
1065 int i;
|
|
1066
|
|
1067 for (i = 0; i < len - 1; i++)
|
|
1068 mark_object (ptr->contents[i]);
|
|
1069 return (len > 0) ? ptr->contents[len - 1] : Qnil;
|
|
1070 }
|
|
1071
|
|
1072 static size_t
|
442
|
1073 size_vector (const void *lheader)
|
428
|
1074 {
|
442
|
1075 return FLEXIBLE_ARRAY_STRUCT_SIZEOF (Lisp_Vector, contents,
|
|
1076 ((Lisp_Vector *) lheader)->size);
|
428
|
1077 }
|
|
1078
|
|
1079 static int
|
|
1080 vector_equal (Lisp_Object obj1, Lisp_Object obj2, int depth)
|
|
1081 {
|
|
1082 int len = XVECTOR_LENGTH (obj1);
|
|
1083 if (len != XVECTOR_LENGTH (obj2))
|
|
1084 return 0;
|
|
1085
|
|
1086 {
|
|
1087 Lisp_Object *ptr1 = XVECTOR_DATA (obj1);
|
|
1088 Lisp_Object *ptr2 = XVECTOR_DATA (obj2);
|
|
1089 while (len--)
|
|
1090 if (!internal_equal (*ptr1++, *ptr2++, depth + 1))
|
|
1091 return 0;
|
|
1092 }
|
|
1093 return 1;
|
|
1094 }
|
|
1095
|
442
|
1096 static hashcode_t
|
|
1097 vector_hash (Lisp_Object obj, int depth)
|
|
1098 {
|
|
1099 return HASH2 (XVECTOR_LENGTH (obj),
|
|
1100 internal_array_hash (XVECTOR_DATA (obj),
|
|
1101 XVECTOR_LENGTH (obj),
|
|
1102 depth + 1));
|
|
1103 }
|
|
1104
|
428
|
1105 static const struct lrecord_description vector_description[] = {
|
440
|
1106 { XD_LONG, offsetof (Lisp_Vector, size) },
|
|
1107 { XD_LISP_OBJECT_ARRAY, offsetof (Lisp_Vector, contents), XD_INDIRECT(0, 0) },
|
428
|
1108 { XD_END }
|
|
1109 };
|
|
1110
|
|
1111 DEFINE_LRECORD_SEQUENCE_IMPLEMENTATION("vector", vector,
|
|
1112 mark_vector, print_vector, 0,
|
|
1113 vector_equal,
|
442
|
1114 vector_hash,
|
428
|
1115 vector_description,
|
|
1116 size_vector, Lisp_Vector);
|
|
1117
|
|
1118 /* #### should allocate `small' vectors from a frob-block */
|
|
1119 static Lisp_Vector *
|
|
1120 make_vector_internal (size_t sizei)
|
|
1121 {
|
|
1122 /* no vector_next */
|
442
|
1123 size_t sizem = FLEXIBLE_ARRAY_STRUCT_SIZEOF (Lisp_Vector, contents, sizei);
|
428
|
1124 Lisp_Vector *p = (Lisp_Vector *) alloc_lcrecord (sizem, &lrecord_vector);
|
|
1125
|
|
1126 p->size = sizei;
|
|
1127 return p;
|
|
1128 }
|
|
1129
|
|
1130 Lisp_Object
|
444
|
1131 make_vector (size_t length, Lisp_Object object)
|
428
|
1132 {
|
|
1133 Lisp_Vector *vecp = make_vector_internal (length);
|
|
1134 Lisp_Object *p = vector_data (vecp);
|
|
1135
|
|
1136 while (length--)
|
444
|
1137 *p++ = object;
|
428
|
1138
|
|
1139 {
|
|
1140 Lisp_Object vector;
|
|
1141 XSETVECTOR (vector, vecp);
|
|
1142 return vector;
|
|
1143 }
|
|
1144 }
|
|
1145
|
|
1146 DEFUN ("make-vector", Fmake_vector, 2, 2, 0, /*
|
444
|
1147 Return a new vector of length LENGTH, with each element being OBJECT.
|
428
|
1148 See also the function `vector'.
|
|
1149 */
|
444
|
1150 (length, object))
|
428
|
1151 {
|
|
1152 CONCHECK_NATNUM (length);
|
444
|
1153 return make_vector (XINT (length), object);
|
428
|
1154 }
|
|
1155
|
|
1156 DEFUN ("vector", Fvector, 0, MANY, 0, /*
|
|
1157 Return a newly created vector with specified arguments as elements.
|
|
1158 Any number of arguments, even zero arguments, are allowed.
|
|
1159 */
|
|
1160 (int nargs, Lisp_Object *args))
|
|
1161 {
|
|
1162 Lisp_Vector *vecp = make_vector_internal (nargs);
|
|
1163 Lisp_Object *p = vector_data (vecp);
|
|
1164
|
|
1165 while (nargs--)
|
|
1166 *p++ = *args++;
|
|
1167
|
|
1168 {
|
|
1169 Lisp_Object vector;
|
|
1170 XSETVECTOR (vector, vecp);
|
|
1171 return vector;
|
|
1172 }
|
|
1173 }
|
|
1174
|
|
1175 Lisp_Object
|
|
1176 vector1 (Lisp_Object obj0)
|
|
1177 {
|
|
1178 return Fvector (1, &obj0);
|
|
1179 }
|
|
1180
|
|
1181 Lisp_Object
|
|
1182 vector2 (Lisp_Object obj0, Lisp_Object obj1)
|
|
1183 {
|
|
1184 Lisp_Object args[2];
|
|
1185 args[0] = obj0;
|
|
1186 args[1] = obj1;
|
|
1187 return Fvector (2, args);
|
|
1188 }
|
|
1189
|
|
1190 Lisp_Object
|
|
1191 vector3 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2)
|
|
1192 {
|
|
1193 Lisp_Object args[3];
|
|
1194 args[0] = obj0;
|
|
1195 args[1] = obj1;
|
|
1196 args[2] = obj2;
|
|
1197 return Fvector (3, args);
|
|
1198 }
|
|
1199
|
|
1200 #if 0 /* currently unused */
|
|
1201
|
|
1202 Lisp_Object
|
|
1203 vector4 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2,
|
|
1204 Lisp_Object obj3)
|
|
1205 {
|
|
1206 Lisp_Object args[4];
|
|
1207 args[0] = obj0;
|
|
1208 args[1] = obj1;
|
|
1209 args[2] = obj2;
|
|
1210 args[3] = obj3;
|
|
1211 return Fvector (4, args);
|
|
1212 }
|
|
1213
|
|
1214 Lisp_Object
|
|
1215 vector5 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2,
|
|
1216 Lisp_Object obj3, Lisp_Object obj4)
|
|
1217 {
|
|
1218 Lisp_Object args[5];
|
|
1219 args[0] = obj0;
|
|
1220 args[1] = obj1;
|
|
1221 args[2] = obj2;
|
|
1222 args[3] = obj3;
|
|
1223 args[4] = obj4;
|
|
1224 return Fvector (5, args);
|
|
1225 }
|
|
1226
|
|
1227 Lisp_Object
|
|
1228 vector6 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2,
|
|
1229 Lisp_Object obj3, Lisp_Object obj4, Lisp_Object obj5)
|
|
1230 {
|
|
1231 Lisp_Object args[6];
|
|
1232 args[0] = obj0;
|
|
1233 args[1] = obj1;
|
|
1234 args[2] = obj2;
|
|
1235 args[3] = obj3;
|
|
1236 args[4] = obj4;
|
|
1237 args[5] = obj5;
|
|
1238 return Fvector (6, args);
|
|
1239 }
|
|
1240
|
|
1241 Lisp_Object
|
|
1242 vector7 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2,
|
|
1243 Lisp_Object obj3, Lisp_Object obj4, Lisp_Object obj5,
|
|
1244 Lisp_Object obj6)
|
|
1245 {
|
|
1246 Lisp_Object args[7];
|
|
1247 args[0] = obj0;
|
|
1248 args[1] = obj1;
|
|
1249 args[2] = obj2;
|
|
1250 args[3] = obj3;
|
|
1251 args[4] = obj4;
|
|
1252 args[5] = obj5;
|
|
1253 args[6] = obj6;
|
|
1254 return Fvector (7, args);
|
|
1255 }
|
|
1256
|
|
1257 Lisp_Object
|
|
1258 vector8 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2,
|
|
1259 Lisp_Object obj3, Lisp_Object obj4, Lisp_Object obj5,
|
|
1260 Lisp_Object obj6, Lisp_Object obj7)
|
|
1261 {
|
|
1262 Lisp_Object args[8];
|
|
1263 args[0] = obj0;
|
|
1264 args[1] = obj1;
|
|
1265 args[2] = obj2;
|
|
1266 args[3] = obj3;
|
|
1267 args[4] = obj4;
|
|
1268 args[5] = obj5;
|
|
1269 args[6] = obj6;
|
|
1270 args[7] = obj7;
|
|
1271 return Fvector (8, args);
|
|
1272 }
|
|
1273 #endif /* unused */
|
|
1274
|
|
1275 /************************************************************************/
|
|
1276 /* Bit Vector allocation */
|
|
1277 /************************************************************************/
|
|
1278
|
|
1279 static Lisp_Object all_bit_vectors;
|
|
1280
|
|
1281 /* #### should allocate `small' bit vectors from a frob-block */
|
440
|
1282 static Lisp_Bit_Vector *
|
428
|
1283 make_bit_vector_internal (size_t sizei)
|
|
1284 {
|
|
1285 size_t num_longs = BIT_VECTOR_LONG_STORAGE (sizei);
|
442
|
1286 size_t sizem = FLEXIBLE_ARRAY_STRUCT_SIZEOF (Lisp_Bit_Vector, bits, num_longs);
|
428
|
1287 Lisp_Bit_Vector *p = (Lisp_Bit_Vector *) allocate_lisp_storage (sizem);
|
442
|
1288 set_lheader_implementation (&p->lheader, &lrecord_bit_vector);
|
428
|
1289
|
|
1290 INCREMENT_CONS_COUNTER (sizem, "bit-vector");
|
|
1291
|
|
1292 bit_vector_length (p) = sizei;
|
|
1293 bit_vector_next (p) = all_bit_vectors;
|
|
1294 /* make sure the extra bits in the last long are 0; the calling
|
|
1295 functions might not set them. */
|
|
1296 p->bits[num_longs - 1] = 0;
|
|
1297 XSETBIT_VECTOR (all_bit_vectors, p);
|
|
1298 return p;
|
|
1299 }
|
|
1300
|
|
1301 Lisp_Object
|
444
|
1302 make_bit_vector (size_t length, Lisp_Object bit)
|
428
|
1303 {
|
440
|
1304 Lisp_Bit_Vector *p = make_bit_vector_internal (length);
|
428
|
1305 size_t num_longs = BIT_VECTOR_LONG_STORAGE (length);
|
|
1306
|
444
|
1307 CHECK_BIT (bit);
|
|
1308
|
|
1309 if (ZEROP (bit))
|
428
|
1310 memset (p->bits, 0, num_longs * sizeof (long));
|
|
1311 else
|
|
1312 {
|
|
1313 size_t bits_in_last = length & (LONGBITS_POWER_OF_2 - 1);
|
|
1314 memset (p->bits, ~0, num_longs * sizeof (long));
|
|
1315 /* But we have to make sure that the unused bits in the
|
|
1316 last long are 0, so that equal/hash is easy. */
|
|
1317 if (bits_in_last)
|
|
1318 p->bits[num_longs - 1] &= (1 << bits_in_last) - 1;
|
|
1319 }
|
|
1320
|
|
1321 {
|
|
1322 Lisp_Object bit_vector;
|
|
1323 XSETBIT_VECTOR (bit_vector, p);
|
|
1324 return bit_vector;
|
|
1325 }
|
|
1326 }
|
|
1327
|
|
1328 Lisp_Object
|
|
1329 make_bit_vector_from_byte_vector (unsigned char *bytevec, size_t length)
|
|
1330 {
|
|
1331 int i;
|
|
1332 Lisp_Bit_Vector *p = make_bit_vector_internal (length);
|
|
1333
|
|
1334 for (i = 0; i < length; i++)
|
|
1335 set_bit_vector_bit (p, i, bytevec[i]);
|
|
1336
|
|
1337 {
|
|
1338 Lisp_Object bit_vector;
|
|
1339 XSETBIT_VECTOR (bit_vector, p);
|
|
1340 return bit_vector;
|
|
1341 }
|
|
1342 }
|
|
1343
|
|
1344 DEFUN ("make-bit-vector", Fmake_bit_vector, 2, 2, 0, /*
|
444
|
1345 Return a new bit vector of length LENGTH. with each bit set to BIT.
|
|
1346 BIT must be one of the integers 0 or 1. See also the function `bit-vector'.
|
428
|
1347 */
|
444
|
1348 (length, bit))
|
428
|
1349 {
|
|
1350 CONCHECK_NATNUM (length);
|
|
1351
|
444
|
1352 return make_bit_vector (XINT (length), bit);
|
428
|
1353 }
|
|
1354
|
|
1355 DEFUN ("bit-vector", Fbit_vector, 0, MANY, 0, /*
|
|
1356 Return a newly created bit vector with specified arguments as elements.
|
|
1357 Any number of arguments, even zero arguments, are allowed.
|
444
|
1358 Each argument must be one of the integers 0 or 1.
|
428
|
1359 */
|
|
1360 (int nargs, Lisp_Object *args))
|
|
1361 {
|
|
1362 int i;
|
|
1363 Lisp_Bit_Vector *p = make_bit_vector_internal (nargs);
|
|
1364
|
|
1365 for (i = 0; i < nargs; i++)
|
|
1366 {
|
|
1367 CHECK_BIT (args[i]);
|
|
1368 set_bit_vector_bit (p, i, !ZEROP (args[i]));
|
|
1369 }
|
|
1370
|
|
1371 {
|
|
1372 Lisp_Object bit_vector;
|
|
1373 XSETBIT_VECTOR (bit_vector, p);
|
|
1374 return bit_vector;
|
|
1375 }
|
|
1376 }
|
|
1377
|
|
1378
|
|
1379 /************************************************************************/
|
|
1380 /* Compiled-function allocation */
|
|
1381 /************************************************************************/
|
|
1382
|
|
1383 DECLARE_FIXED_TYPE_ALLOC (compiled_function, Lisp_Compiled_Function);
|
|
1384 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_compiled_function 1000
|
|
1385
|
|
1386 static Lisp_Object
|
|
1387 make_compiled_function (void)
|
|
1388 {
|
|
1389 Lisp_Compiled_Function *f;
|
|
1390 Lisp_Object fun;
|
|
1391
|
|
1392 ALLOCATE_FIXED_TYPE (compiled_function, Lisp_Compiled_Function, f);
|
442
|
1393 set_lheader_implementation (&f->lheader, &lrecord_compiled_function);
|
428
|
1394
|
|
1395 f->stack_depth = 0;
|
|
1396 f->specpdl_depth = 0;
|
|
1397 f->flags.documentationp = 0;
|
|
1398 f->flags.interactivep = 0;
|
|
1399 f->flags.domainp = 0; /* I18N3 */
|
|
1400 f->instructions = Qzero;
|
|
1401 f->constants = Qzero;
|
|
1402 f->arglist = Qnil;
|
|
1403 f->doc_and_interactive = Qnil;
|
|
1404 #ifdef COMPILED_FUNCTION_ANNOTATION_HACK
|
|
1405 f->annotated = Qnil;
|
|
1406 #endif
|
|
1407 XSETCOMPILED_FUNCTION (fun, f);
|
|
1408 return fun;
|
|
1409 }
|
|
1410
|
|
1411 DEFUN ("make-byte-code", Fmake_byte_code, 4, MANY, 0, /*
|
|
1412 Return a new compiled-function object.
|
|
1413 Usage: (arglist instructions constants stack-depth
|
|
1414 &optional doc-string interactive)
|
|
1415 Note that, unlike all other emacs-lisp functions, calling this with five
|
|
1416 arguments is NOT the same as calling it with six arguments, the last of
|
|
1417 which is nil. If the INTERACTIVE arg is specified as nil, then that means
|
|
1418 that this function was defined with `(interactive)'. If the arg is not
|
|
1419 specified, then that means the function is not interactive.
|
|
1420 This is terrible behavior which is retained for compatibility with old
|
|
1421 `.elc' files which expect these semantics.
|
|
1422 */
|
|
1423 (int nargs, Lisp_Object *args))
|
|
1424 {
|
|
1425 /* In a non-insane world this function would have this arglist...
|
|
1426 (arglist instructions constants stack_depth &optional doc_string interactive)
|
|
1427 */
|
|
1428 Lisp_Object fun = make_compiled_function ();
|
|
1429 Lisp_Compiled_Function *f = XCOMPILED_FUNCTION (fun);
|
|
1430
|
|
1431 Lisp_Object arglist = args[0];
|
|
1432 Lisp_Object instructions = args[1];
|
|
1433 Lisp_Object constants = args[2];
|
|
1434 Lisp_Object stack_depth = args[3];
|
|
1435 Lisp_Object doc_string = (nargs > 4) ? args[4] : Qnil;
|
|
1436 Lisp_Object interactive = (nargs > 5) ? args[5] : Qunbound;
|
|
1437
|
|
1438 if (nargs < 4 || nargs > 6)
|
|
1439 return Fsignal (Qwrong_number_of_arguments,
|
|
1440 list2 (intern ("make-byte-code"), make_int (nargs)));
|
|
1441
|
|
1442 /* Check for valid formal parameter list now, to allow us to use
|
|
1443 SPECBIND_FAST_UNSAFE() later in funcall_compiled_function(). */
|
|
1444 {
|
|
1445 EXTERNAL_LIST_LOOP_3 (symbol, arglist, tail)
|
|
1446 {
|
|
1447 CHECK_SYMBOL (symbol);
|
|
1448 if (EQ (symbol, Qt) ||
|
|
1449 EQ (symbol, Qnil) ||
|
|
1450 SYMBOL_IS_KEYWORD (symbol))
|
|
1451 signal_simple_error_2
|
|
1452 ("Invalid constant symbol in formal parameter list",
|
|
1453 symbol, arglist);
|
|
1454 }
|
|
1455 }
|
|
1456 f->arglist = arglist;
|
|
1457
|
|
1458 /* `instructions' is a string or a cons (string . int) for a
|
|
1459 lazy-loaded function. */
|
|
1460 if (CONSP (instructions))
|
|
1461 {
|
|
1462 CHECK_STRING (XCAR (instructions));
|
|
1463 CHECK_INT (XCDR (instructions));
|
|
1464 }
|
|
1465 else
|
|
1466 {
|
|
1467 CHECK_STRING (instructions);
|
|
1468 }
|
|
1469 f->instructions = instructions;
|
|
1470
|
|
1471 if (!NILP (constants))
|
|
1472 CHECK_VECTOR (constants);
|
|
1473 f->constants = constants;
|
|
1474
|
|
1475 CHECK_NATNUM (stack_depth);
|
442
|
1476 f->stack_depth = (unsigned short) XINT (stack_depth);
|
428
|
1477
|
|
1478 #ifdef COMPILED_FUNCTION_ANNOTATION_HACK
|
|
1479 if (!NILP (Vcurrent_compiled_function_annotation))
|
|
1480 f->annotated = Fcopy (Vcurrent_compiled_function_annotation);
|
|
1481 else if (!NILP (Vload_file_name_internal_the_purecopy))
|
|
1482 f->annotated = Vload_file_name_internal_the_purecopy;
|
|
1483 else if (!NILP (Vload_file_name_internal))
|
|
1484 {
|
|
1485 struct gcpro gcpro1;
|
|
1486 GCPRO1 (fun); /* don't let fun get reaped */
|
|
1487 Vload_file_name_internal_the_purecopy =
|
|
1488 Ffile_name_nondirectory (Vload_file_name_internal);
|
|
1489 f->annotated = Vload_file_name_internal_the_purecopy;
|
|
1490 UNGCPRO;
|
|
1491 }
|
|
1492 #endif /* COMPILED_FUNCTION_ANNOTATION_HACK */
|
|
1493
|
|
1494 /* doc_string may be nil, string, int, or a cons (string . int).
|
|
1495 interactive may be list or string (or unbound). */
|
|
1496 f->doc_and_interactive = Qunbound;
|
|
1497 #ifdef I18N3
|
|
1498 if ((f->flags.domainp = !NILP (Vfile_domain)) != 0)
|
|
1499 f->doc_and_interactive = Vfile_domain;
|
|
1500 #endif
|
|
1501 if ((f->flags.interactivep = !UNBOUNDP (interactive)) != 0)
|
|
1502 {
|
|
1503 f->doc_and_interactive
|
|
1504 = (UNBOUNDP (f->doc_and_interactive) ? interactive :
|
|
1505 Fcons (interactive, f->doc_and_interactive));
|
|
1506 }
|
|
1507 if ((f->flags.documentationp = !NILP (doc_string)) != 0)
|
|
1508 {
|
|
1509 f->doc_and_interactive
|
|
1510 = (UNBOUNDP (f->doc_and_interactive) ? doc_string :
|
|
1511 Fcons (doc_string, f->doc_and_interactive));
|
|
1512 }
|
|
1513 if (UNBOUNDP (f->doc_and_interactive))
|
|
1514 f->doc_and_interactive = Qnil;
|
|
1515
|
|
1516 return fun;
|
|
1517 }
|
|
1518
|
|
1519
|
|
1520 /************************************************************************/
|
|
1521 /* Symbol allocation */
|
|
1522 /************************************************************************/
|
|
1523
|
440
|
1524 DECLARE_FIXED_TYPE_ALLOC (symbol, Lisp_Symbol);
|
428
|
1525 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_symbol 1000
|
|
1526
|
|
1527 DEFUN ("make-symbol", Fmake_symbol, 1, 1, 0, /*
|
|
1528 Return a newly allocated uninterned symbol whose name is NAME.
|
|
1529 Its value and function definition are void, and its property list is nil.
|
|
1530 */
|
|
1531 (name))
|
|
1532 {
|
|
1533 Lisp_Object val;
|
440
|
1534 Lisp_Symbol *p;
|
428
|
1535
|
|
1536 CHECK_STRING (name);
|
|
1537
|
440
|
1538 ALLOCATE_FIXED_TYPE (symbol, Lisp_Symbol, p);
|
442
|
1539 set_lheader_implementation (&p->lheader, &lrecord_symbol);
|
428
|
1540 p->name = XSTRING (name);
|
|
1541 p->plist = Qnil;
|
|
1542 p->value = Qunbound;
|
|
1543 p->function = Qunbound;
|
|
1544 symbol_next (p) = 0;
|
|
1545 XSETSYMBOL (val, p);
|
|
1546 return val;
|
|
1547 }
|
|
1548
|
|
1549
|
|
1550 /************************************************************************/
|
|
1551 /* Extent allocation */
|
|
1552 /************************************************************************/
|
|
1553
|
|
1554 DECLARE_FIXED_TYPE_ALLOC (extent, struct extent);
|
|
1555 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_extent 1000
|
|
1556
|
|
1557 struct extent *
|
|
1558 allocate_extent (void)
|
|
1559 {
|
|
1560 struct extent *e;
|
|
1561
|
|
1562 ALLOCATE_FIXED_TYPE (extent, struct extent, e);
|
442
|
1563 set_lheader_implementation (&e->lheader, &lrecord_extent);
|
428
|
1564 extent_object (e) = Qnil;
|
|
1565 set_extent_start (e, -1);
|
|
1566 set_extent_end (e, -1);
|
|
1567 e->plist = Qnil;
|
|
1568
|
|
1569 xzero (e->flags);
|
|
1570
|
|
1571 extent_face (e) = Qnil;
|
|
1572 e->flags.end_open = 1; /* default is for endpoints to behave like markers */
|
|
1573 e->flags.detachable = 1;
|
|
1574
|
|
1575 return e;
|
|
1576 }
|
|
1577
|
|
1578
|
|
1579 /************************************************************************/
|
|
1580 /* Event allocation */
|
|
1581 /************************************************************************/
|
|
1582
|
440
|
1583 DECLARE_FIXED_TYPE_ALLOC (event, Lisp_Event);
|
428
|
1584 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_event 1000
|
|
1585
|
|
1586 Lisp_Object
|
|
1587 allocate_event (void)
|
|
1588 {
|
|
1589 Lisp_Object val;
|
440
|
1590 Lisp_Event *e;
|
|
1591
|
|
1592 ALLOCATE_FIXED_TYPE (event, Lisp_Event, e);
|
442
|
1593 set_lheader_implementation (&e->lheader, &lrecord_event);
|
428
|
1594
|
|
1595 XSETEVENT (val, e);
|
|
1596 return val;
|
|
1597 }
|
|
1598
|
|
1599
|
|
1600 /************************************************************************/
|
|
1601 /* Marker allocation */
|
|
1602 /************************************************************************/
|
|
1603
|
440
|
1604 DECLARE_FIXED_TYPE_ALLOC (marker, Lisp_Marker);
|
428
|
1605 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_marker 1000
|
|
1606
|
|
1607 DEFUN ("make-marker", Fmake_marker, 0, 0, 0, /*
|
|
1608 Return a new marker which does not point at any place.
|
|
1609 */
|
|
1610 ())
|
|
1611 {
|
|
1612 Lisp_Object val;
|
440
|
1613 Lisp_Marker *p;
|
|
1614
|
|
1615 ALLOCATE_FIXED_TYPE (marker, Lisp_Marker, p);
|
442
|
1616 set_lheader_implementation (&p->lheader, &lrecord_marker);
|
428
|
1617 p->buffer = 0;
|
|
1618 p->memind = 0;
|
|
1619 marker_next (p) = 0;
|
|
1620 marker_prev (p) = 0;
|
|
1621 p->insertion_type = 0;
|
|
1622 XSETMARKER (val, p);
|
|
1623 return val;
|
|
1624 }
|
|
1625
|
|
1626 Lisp_Object
|
|
1627 noseeum_make_marker (void)
|
|
1628 {
|
|
1629 Lisp_Object val;
|
440
|
1630 Lisp_Marker *p;
|
|
1631
|
|
1632 NOSEEUM_ALLOCATE_FIXED_TYPE (marker, Lisp_Marker, p);
|
442
|
1633 set_lheader_implementation (&p->lheader, &lrecord_marker);
|
428
|
1634 p->buffer = 0;
|
|
1635 p->memind = 0;
|
|
1636 marker_next (p) = 0;
|
|
1637 marker_prev (p) = 0;
|
|
1638 p->insertion_type = 0;
|
|
1639 XSETMARKER (val, p);
|
|
1640 return val;
|
|
1641 }
|
|
1642
|
|
1643
|
|
1644 /************************************************************************/
|
|
1645 /* String allocation */
|
|
1646 /************************************************************************/
|
|
1647
|
|
1648 /* The data for "short" strings generally resides inside of structs of type
|
|
1649 string_chars_block. The Lisp_String structure is allocated just like any
|
|
1650 other Lisp object (except for vectors), and these are freelisted when
|
|
1651 they get garbage collected. The data for short strings get compacted,
|
|
1652 but the data for large strings do not.
|
|
1653
|
|
1654 Previously Lisp_String structures were relocated, but this caused a lot
|
|
1655 of bus-errors because the C code didn't include enough GCPRO's for
|
|
1656 strings (since EVERY REFERENCE to a short string needed to be GCPRO'd so
|
|
1657 that the reference would get relocated).
|
|
1658
|
|
1659 This new method makes things somewhat bigger, but it is MUCH safer. */
|
|
1660
|
438
|
1661 DECLARE_FIXED_TYPE_ALLOC (string, Lisp_String);
|
428
|
1662 /* strings are used and freed quite often */
|
|
1663 /* #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_string 10000 */
|
|
1664 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_string 1000
|
|
1665
|
|
1666 static Lisp_Object
|
|
1667 mark_string (Lisp_Object obj)
|
|
1668 {
|
438
|
1669 Lisp_String *ptr = XSTRING (obj);
|
428
|
1670
|
|
1671 if (CONSP (ptr->plist) && EXTENT_INFOP (XCAR (ptr->plist)))
|
|
1672 flush_cached_extent_info (XCAR (ptr->plist));
|
|
1673 return ptr->plist;
|
|
1674 }
|
|
1675
|
|
1676 static int
|
|
1677 string_equal (Lisp_Object obj1, Lisp_Object obj2, int depth)
|
|
1678 {
|
|
1679 Bytecount len;
|
|
1680 return (((len = XSTRING_LENGTH (obj1)) == XSTRING_LENGTH (obj2)) &&
|
|
1681 !memcmp (XSTRING_DATA (obj1), XSTRING_DATA (obj2), len));
|
|
1682 }
|
|
1683
|
|
1684 static const struct lrecord_description string_description[] = {
|
440
|
1685 { XD_BYTECOUNT, offsetof (Lisp_String, size) },
|
|
1686 { XD_OPAQUE_DATA_PTR, offsetof (Lisp_String, data), XD_INDIRECT(0, 1) },
|
|
1687 { XD_LISP_OBJECT, offsetof (Lisp_String, plist) },
|
428
|
1688 { XD_END }
|
|
1689 };
|
|
1690
|
442
|
1691 /* We store the string's extent info as the first element of the string's
|
|
1692 property list; and the string's MODIFF as the first or second element
|
|
1693 of the string's property list (depending on whether the extent info
|
|
1694 is present), but only if the string has been modified. This is ugly
|
|
1695 but it reduces the memory allocated for the string in the vast
|
|
1696 majority of cases, where the string is never modified and has no
|
|
1697 extent info.
|
|
1698
|
|
1699 #### This means you can't use an int as a key in a string's plist. */
|
|
1700
|
|
1701 static Lisp_Object *
|
|
1702 string_plist_ptr (Lisp_Object string)
|
|
1703 {
|
|
1704 Lisp_Object *ptr = &XSTRING (string)->plist;
|
|
1705
|
|
1706 if (CONSP (*ptr) && EXTENT_INFOP (XCAR (*ptr)))
|
|
1707 ptr = &XCDR (*ptr);
|
|
1708 if (CONSP (*ptr) && INTP (XCAR (*ptr)))
|
|
1709 ptr = &XCDR (*ptr);
|
|
1710 return ptr;
|
|
1711 }
|
|
1712
|
|
1713 static Lisp_Object
|
|
1714 string_getprop (Lisp_Object string, Lisp_Object property)
|
|
1715 {
|
|
1716 return external_plist_get (string_plist_ptr (string), property, 0, ERROR_ME);
|
|
1717 }
|
|
1718
|
|
1719 static int
|
|
1720 string_putprop (Lisp_Object string, Lisp_Object property, Lisp_Object value)
|
|
1721 {
|
|
1722 external_plist_put (string_plist_ptr (string), property, value, 0, ERROR_ME);
|
|
1723 return 1;
|
|
1724 }
|
|
1725
|
|
1726 static int
|
|
1727 string_remprop (Lisp_Object string, Lisp_Object property)
|
|
1728 {
|
|
1729 return external_remprop (string_plist_ptr (string), property, 0, ERROR_ME);
|
|
1730 }
|
|
1731
|
|
1732 static Lisp_Object
|
|
1733 string_plist (Lisp_Object string)
|
|
1734 {
|
|
1735 return *string_plist_ptr (string);
|
|
1736 }
|
|
1737
|
|
1738 /* No `finalize', or `hash' methods.
|
|
1739 internal_hash() already knows how to hash strings and finalization
|
|
1740 is done with the ADDITIONAL_FREE_string macro, which is the
|
|
1741 standard way to do finalization when using
|
|
1742 SWEEP_FIXED_TYPE_BLOCK(). */
|
|
1743 DEFINE_BASIC_LRECORD_IMPLEMENTATION_WITH_PROPS ("string", string,
|
|
1744 mark_string, print_string,
|
|
1745 0, string_equal, 0,
|
|
1746 string_description,
|
|
1747 string_getprop,
|
|
1748 string_putprop,
|
|
1749 string_remprop,
|
|
1750 string_plist,
|
|
1751 Lisp_String);
|
428
|
1752
|
|
1753 /* String blocks contain this many useful bytes. */
|
|
1754 #define STRING_CHARS_BLOCK_SIZE \
|
|
1755 ((Bytecount) (8192 - MALLOC_OVERHEAD - \
|
|
1756 ((2 * sizeof (struct string_chars_block *)) \
|
|
1757 + sizeof (EMACS_INT))))
|
|
1758 /* Block header for small strings. */
|
|
1759 struct string_chars_block
|
|
1760 {
|
|
1761 EMACS_INT pos;
|
|
1762 struct string_chars_block *next;
|
|
1763 struct string_chars_block *prev;
|
|
1764 /* Contents of string_chars_block->string_chars are interleaved
|
|
1765 string_chars structures (see below) and the actual string data */
|
|
1766 unsigned char string_chars[STRING_CHARS_BLOCK_SIZE];
|
|
1767 };
|
|
1768
|
|
1769 static struct string_chars_block *first_string_chars_block;
|
|
1770 static struct string_chars_block *current_string_chars_block;
|
|
1771
|
|
1772 /* If SIZE is the length of a string, this returns how many bytes
|
|
1773 * the string occupies in string_chars_block->string_chars
|
|
1774 * (including alignment padding).
|
|
1775 */
|
438
|
1776 #define STRING_FULLSIZE(size) \
|
|
1777 ALIGN_SIZE (((size) + 1 + sizeof (Lisp_String *)),\
|
|
1778 ALIGNOF (Lisp_String *))
|
428
|
1779
|
|
1780 #define BIG_STRING_FULLSIZE_P(fullsize) ((fullsize) >= STRING_CHARS_BLOCK_SIZE)
|
|
1781 #define BIG_STRING_SIZE_P(size) (BIG_STRING_FULLSIZE_P (STRING_FULLSIZE(size)))
|
|
1782
|
|
1783 struct string_chars
|
|
1784 {
|
438
|
1785 Lisp_String *string;
|
428
|
1786 unsigned char chars[1];
|
|
1787 };
|
|
1788
|
|
1789 struct unused_string_chars
|
|
1790 {
|
438
|
1791 Lisp_String *string;
|
428
|
1792 EMACS_INT fullsize;
|
|
1793 };
|
|
1794
|
|
1795 static void
|
|
1796 init_string_chars_alloc (void)
|
|
1797 {
|
|
1798 first_string_chars_block = xnew (struct string_chars_block);
|
|
1799 first_string_chars_block->prev = 0;
|
|
1800 first_string_chars_block->next = 0;
|
|
1801 first_string_chars_block->pos = 0;
|
|
1802 current_string_chars_block = first_string_chars_block;
|
|
1803 }
|
|
1804
|
|
1805 static struct string_chars *
|
438
|
1806 allocate_string_chars_struct (Lisp_String *string_it_goes_with,
|
428
|
1807 EMACS_INT fullsize)
|
|
1808 {
|
|
1809 struct string_chars *s_chars;
|
|
1810
|
438
|
1811 if (fullsize <=
|
|
1812 (countof (current_string_chars_block->string_chars)
|
|
1813 - current_string_chars_block->pos))
|
428
|
1814 {
|
|
1815 /* This string can fit in the current string chars block */
|
|
1816 s_chars = (struct string_chars *)
|
|
1817 (current_string_chars_block->string_chars
|
|
1818 + current_string_chars_block->pos);
|
|
1819 current_string_chars_block->pos += fullsize;
|
|
1820 }
|
|
1821 else
|
|
1822 {
|
|
1823 /* Make a new current string chars block */
|
|
1824 struct string_chars_block *new_scb = xnew (struct string_chars_block);
|
|
1825
|
|
1826 current_string_chars_block->next = new_scb;
|
|
1827 new_scb->prev = current_string_chars_block;
|
|
1828 new_scb->next = 0;
|
|
1829 current_string_chars_block = new_scb;
|
|
1830 new_scb->pos = fullsize;
|
|
1831 s_chars = (struct string_chars *)
|
|
1832 current_string_chars_block->string_chars;
|
|
1833 }
|
|
1834
|
|
1835 s_chars->string = string_it_goes_with;
|
|
1836
|
|
1837 INCREMENT_CONS_COUNTER (fullsize, "string chars");
|
|
1838
|
|
1839 return s_chars;
|
|
1840 }
|
|
1841
|
|
1842 Lisp_Object
|
|
1843 make_uninit_string (Bytecount length)
|
|
1844 {
|
438
|
1845 Lisp_String *s;
|
428
|
1846 EMACS_INT fullsize = STRING_FULLSIZE (length);
|
|
1847 Lisp_Object val;
|
|
1848
|
438
|
1849 assert (length >= 0 && fullsize > 0);
|
428
|
1850
|
|
1851 /* Allocate the string header */
|
438
|
1852 ALLOCATE_FIXED_TYPE (string, Lisp_String, s);
|
442
|
1853 set_lheader_implementation (&s->lheader, &lrecord_string);
|
428
|
1854
|
438
|
1855 set_string_data (s, BIG_STRING_FULLSIZE_P (fullsize)
|
|
1856 ? xnew_array (Bufbyte, length + 1)
|
|
1857 : allocate_string_chars_struct (s, fullsize)->chars);
|
|
1858
|
428
|
1859 set_string_length (s, length);
|
|
1860 s->plist = Qnil;
|
|
1861
|
|
1862 set_string_byte (s, length, 0);
|
|
1863
|
|
1864 XSETSTRING (val, s);
|
|
1865 return val;
|
|
1866 }
|
|
1867
|
|
1868 #ifdef VERIFY_STRING_CHARS_INTEGRITY
|
|
1869 static void verify_string_chars_integrity (void);
|
|
1870 #endif
|
|
1871
|
|
1872 /* Resize the string S so that DELTA bytes can be inserted starting
|
|
1873 at POS. If DELTA < 0, it means deletion starting at POS. If
|
|
1874 POS < 0, resize the string but don't copy any characters. Use
|
|
1875 this if you're planning on completely overwriting the string.
|
|
1876 */
|
|
1877
|
|
1878 void
|
438
|
1879 resize_string (Lisp_String *s, Bytecount pos, Bytecount delta)
|
428
|
1880 {
|
438
|
1881 Bytecount oldfullsize, newfullsize;
|
428
|
1882 #ifdef VERIFY_STRING_CHARS_INTEGRITY
|
|
1883 verify_string_chars_integrity ();
|
|
1884 #endif
|
|
1885
|
|
1886 #ifdef ERROR_CHECK_BUFPOS
|
|
1887 if (pos >= 0)
|
|
1888 {
|
|
1889 assert (pos <= string_length (s));
|
|
1890 if (delta < 0)
|
|
1891 assert (pos + (-delta) <= string_length (s));
|
|
1892 }
|
|
1893 else
|
|
1894 {
|
|
1895 if (delta < 0)
|
|
1896 assert ((-delta) <= string_length (s));
|
|
1897 }
|
|
1898 #endif /* ERROR_CHECK_BUFPOS */
|
|
1899
|
|
1900 if (delta == 0)
|
|
1901 /* simplest case: no size change. */
|
|
1902 return;
|
438
|
1903
|
|
1904 if (pos >= 0 && delta < 0)
|
|
1905 /* If DELTA < 0, the functions below will delete the characters
|
|
1906 before POS. We want to delete characters *after* POS, however,
|
|
1907 so convert this to the appropriate form. */
|
|
1908 pos += -delta;
|
|
1909
|
|
1910 oldfullsize = STRING_FULLSIZE (string_length (s));
|
|
1911 newfullsize = STRING_FULLSIZE (string_length (s) + delta);
|
|
1912
|
|
1913 if (BIG_STRING_FULLSIZE_P (oldfullsize))
|
428
|
1914 {
|
438
|
1915 if (BIG_STRING_FULLSIZE_P (newfullsize))
|
428
|
1916 {
|
440
|
1917 /* Both strings are big. We can just realloc().
|
|
1918 But careful! If the string is shrinking, we have to
|
|
1919 memmove() _before_ realloc(), and if growing, we have to
|
|
1920 memmove() _after_ realloc() - otherwise the access is
|
|
1921 illegal, and we might crash. */
|
|
1922 Bytecount len = string_length (s) + 1 - pos;
|
|
1923
|
|
1924 if (delta < 0 && pos >= 0)
|
|
1925 memmove (string_data (s) + pos + delta, string_data (s) + pos, len);
|
438
|
1926 set_string_data (s, (Bufbyte *) xrealloc (string_data (s),
|
|
1927 string_length (s) + delta + 1));
|
440
|
1928 if (delta > 0 && pos >= 0)
|
|
1929 memmove (string_data (s) + pos + delta, string_data (s) + pos, len);
|
428
|
1930 }
|
438
|
1931 else /* String has been demoted from BIG_STRING. */
|
428
|
1932 {
|
438
|
1933 Bufbyte *new_data =
|
|
1934 allocate_string_chars_struct (s, newfullsize)->chars;
|
|
1935 Bufbyte *old_data = string_data (s);
|
|
1936
|
|
1937 if (pos >= 0)
|
|
1938 {
|
|
1939 memcpy (new_data, old_data, pos);
|
|
1940 memcpy (new_data + pos + delta, old_data + pos,
|
|
1941 string_length (s) + 1 - pos);
|
|
1942 }
|
|
1943 set_string_data (s, new_data);
|
|
1944 xfree (old_data);
|
|
1945 }
|
|
1946 }
|
|
1947 else /* old string is small */
|
|
1948 {
|
|
1949 if (oldfullsize == newfullsize)
|
|
1950 {
|
|
1951 /* special case; size change but the necessary
|
|
1952 allocation size won't change (up or down; code
|
|
1953 somewhere depends on there not being any unused
|
|
1954 allocation space, modulo any alignment
|
|
1955 constraints). */
|
428
|
1956 if (pos >= 0)
|
|
1957 {
|
|
1958 Bufbyte *addroff = pos + string_data (s);
|
|
1959
|
|
1960 memmove (addroff + delta, addroff,
|
|
1961 /* +1 due to zero-termination. */
|
|
1962 string_length (s) + 1 - pos);
|
|
1963 }
|
|
1964 }
|
|
1965 else
|
|
1966 {
|
438
|
1967 Bufbyte *old_data = string_data (s);
|
|
1968 Bufbyte *new_data =
|
|
1969 BIG_STRING_FULLSIZE_P (newfullsize)
|
|
1970 ? xnew_array (Bufbyte, string_length (s) + delta + 1)
|
|
1971 : allocate_string_chars_struct (s, newfullsize)->chars;
|
|
1972
|
428
|
1973 if (pos >= 0)
|
|
1974 {
|
438
|
1975 memcpy (new_data, old_data, pos);
|
|
1976 memcpy (new_data + pos + delta, old_data + pos,
|
428
|
1977 string_length (s) + 1 - pos);
|
|
1978 }
|
438
|
1979 set_string_data (s, new_data);
|
|
1980
|
|
1981 {
|
|
1982 /* We need to mark this chunk of the string_chars_block
|
|
1983 as unused so that compact_string_chars() doesn't
|
|
1984 freak. */
|
|
1985 struct string_chars *old_s_chars = (struct string_chars *)
|
|
1986 ((char *) old_data - offsetof (struct string_chars, chars));
|
|
1987 /* Sanity check to make sure we aren't hosed by strange
|
|
1988 alignment/padding. */
|
|
1989 assert (old_s_chars->string == s);
|
|
1990 MARK_STRUCT_AS_FREE (old_s_chars);
|
|
1991 ((struct unused_string_chars *) old_s_chars)->fullsize =
|
|
1992 oldfullsize;
|
|
1993 }
|
428
|
1994 }
|
438
|
1995 }
|
|
1996
|
|
1997 set_string_length (s, string_length (s) + delta);
|
|
1998 /* If pos < 0, the string won't be zero-terminated.
|
|
1999 Terminate now just to make sure. */
|
|
2000 string_data (s)[string_length (s)] = '\0';
|
|
2001
|
|
2002 if (pos >= 0)
|
|
2003 {
|
|
2004 Lisp_Object string;
|
|
2005
|
|
2006 XSETSTRING (string, s);
|
|
2007 /* We also have to adjust all of the extent indices after the
|
|
2008 place we did the change. We say "pos - 1" because
|
|
2009 adjust_extents() is exclusive of the starting position
|
|
2010 passed to it. */
|
|
2011 adjust_extents (string, pos - 1, string_length (s),
|
|
2012 delta);
|
428
|
2013 }
|
|
2014
|
|
2015 #ifdef VERIFY_STRING_CHARS_INTEGRITY
|
|
2016 verify_string_chars_integrity ();
|
|
2017 #endif
|
|
2018 }
|
|
2019
|
|
2020 #ifdef MULE
|
|
2021
|
|
2022 void
|
438
|
2023 set_string_char (Lisp_String *s, Charcount i, Emchar c)
|
428
|
2024 {
|
|
2025 Bufbyte newstr[MAX_EMCHAR_LEN];
|
|
2026 Bytecount bytoff = charcount_to_bytecount (string_data (s), i);
|
|
2027 Bytecount oldlen = charcount_to_bytecount (string_data (s) + bytoff, 1);
|
|
2028 Bytecount newlen = set_charptr_emchar (newstr, c);
|
|
2029
|
|
2030 if (oldlen != newlen)
|
|
2031 resize_string (s, bytoff, newlen - oldlen);
|
|
2032 /* Remember, string_data (s) might have changed so we can't cache it. */
|
|
2033 memcpy (string_data (s) + bytoff, newstr, newlen);
|
|
2034 }
|
|
2035
|
|
2036 #endif /* MULE */
|
|
2037
|
|
2038 DEFUN ("make-string", Fmake_string, 2, 2, 0, /*
|
444
|
2039 Return a new string consisting of LENGTH copies of CHARACTER.
|
|
2040 LENGTH must be a non-negative integer.
|
428
|
2041 */
|
444
|
2042 (length, character))
|
428
|
2043 {
|
|
2044 CHECK_NATNUM (length);
|
444
|
2045 CHECK_CHAR_COERCE_INT (character);
|
428
|
2046 {
|
|
2047 Bufbyte init_str[MAX_EMCHAR_LEN];
|
444
|
2048 int len = set_charptr_emchar (init_str, XCHAR (character));
|
428
|
2049 Lisp_Object val = make_uninit_string (len * XINT (length));
|
|
2050
|
|
2051 if (len == 1)
|
|
2052 /* Optimize the single-byte case */
|
444
|
2053 memset (XSTRING_DATA (val), XCHAR (character), XSTRING_LENGTH (val));
|
428
|
2054 else
|
|
2055 {
|
|
2056 size_t i;
|
|
2057 Bufbyte *ptr = XSTRING_DATA (val);
|
|
2058
|
|
2059 for (i = XINT (length); i; i--)
|
|
2060 {
|
|
2061 Bufbyte *init_ptr = init_str;
|
|
2062 switch (len)
|
|
2063 {
|
|
2064 case 4: *ptr++ = *init_ptr++;
|
|
2065 case 3: *ptr++ = *init_ptr++;
|
|
2066 case 2: *ptr++ = *init_ptr++;
|
|
2067 case 1: *ptr++ = *init_ptr++;
|
|
2068 }
|
|
2069 }
|
|
2070 }
|
|
2071 return val;
|
|
2072 }
|
|
2073 }
|
|
2074
|
|
2075 DEFUN ("string", Fstring, 0, MANY, 0, /*
|
|
2076 Concatenate all the argument characters and make the result a string.
|
|
2077 */
|
|
2078 (int nargs, Lisp_Object *args))
|
|
2079 {
|
|
2080 Bufbyte *storage = alloca_array (Bufbyte, nargs * MAX_EMCHAR_LEN);
|
|
2081 Bufbyte *p = storage;
|
|
2082
|
|
2083 for (; nargs; nargs--, args++)
|
|
2084 {
|
|
2085 Lisp_Object lisp_char = *args;
|
|
2086 CHECK_CHAR_COERCE_INT (lisp_char);
|
|
2087 p += set_charptr_emchar (p, XCHAR (lisp_char));
|
|
2088 }
|
|
2089 return make_string (storage, p - storage);
|
|
2090 }
|
|
2091
|
|
2092
|
|
2093 /* Take some raw memory, which MUST already be in internal format,
|
|
2094 and package it up into a Lisp string. */
|
|
2095 Lisp_Object
|
442
|
2096 make_string (const Bufbyte *contents, Bytecount length)
|
428
|
2097 {
|
|
2098 Lisp_Object val;
|
|
2099
|
|
2100 /* Make sure we find out about bad make_string's when they happen */
|
|
2101 #if defined (ERROR_CHECK_BUFPOS) && defined (MULE)
|
|
2102 bytecount_to_charcount (contents, length); /* Just for the assertions */
|
|
2103 #endif
|
|
2104
|
|
2105 val = make_uninit_string (length);
|
|
2106 memcpy (XSTRING_DATA (val), contents, length);
|
|
2107 return val;
|
|
2108 }
|
|
2109
|
|
2110 /* Take some raw memory, encoded in some external data format,
|
|
2111 and convert it into a Lisp string. */
|
|
2112 Lisp_Object
|
442
|
2113 make_ext_string (const Extbyte *contents, EMACS_INT length,
|
440
|
2114 Lisp_Object coding_system)
|
428
|
2115 {
|
440
|
2116 Lisp_Object string;
|
|
2117 TO_INTERNAL_FORMAT (DATA, (contents, length),
|
|
2118 LISP_STRING, string,
|
|
2119 coding_system);
|
|
2120 return string;
|
428
|
2121 }
|
|
2122
|
|
2123 Lisp_Object
|
442
|
2124 build_string (const char *str)
|
428
|
2125 {
|
|
2126 /* Some strlen's crash and burn if passed null. */
|
442
|
2127 return make_string ((const Bufbyte *) str, (str ? strlen(str) : 0));
|
428
|
2128 }
|
|
2129
|
|
2130 Lisp_Object
|
442
|
2131 build_ext_string (const char *str, Lisp_Object coding_system)
|
428
|
2132 {
|
|
2133 /* Some strlen's crash and burn if passed null. */
|
442
|
2134 return make_ext_string ((const Extbyte *) str, (str ? strlen(str) : 0),
|
440
|
2135 coding_system);
|
428
|
2136 }
|
|
2137
|
|
2138 Lisp_Object
|
442
|
2139 build_translated_string (const char *str)
|
428
|
2140 {
|
|
2141 return build_string (GETTEXT (str));
|
|
2142 }
|
|
2143
|
|
2144 Lisp_Object
|
442
|
2145 make_string_nocopy (const Bufbyte *contents, Bytecount length)
|
428
|
2146 {
|
438
|
2147 Lisp_String *s;
|
428
|
2148 Lisp_Object val;
|
|
2149
|
|
2150 /* Make sure we find out about bad make_string_nocopy's when they happen */
|
|
2151 #if defined (ERROR_CHECK_BUFPOS) && defined (MULE)
|
|
2152 bytecount_to_charcount (contents, length); /* Just for the assertions */
|
|
2153 #endif
|
|
2154
|
|
2155 /* Allocate the string header */
|
438
|
2156 ALLOCATE_FIXED_TYPE (string, Lisp_String, s);
|
442
|
2157 set_lheader_implementation (&s->lheader, &lrecord_string);
|
428
|
2158 SET_C_READONLY_RECORD_HEADER (&s->lheader);
|
|
2159 s->plist = Qnil;
|
|
2160 set_string_data (s, (Bufbyte *)contents);
|
|
2161 set_string_length (s, length);
|
|
2162
|
|
2163 XSETSTRING (val, s);
|
|
2164 return val;
|
|
2165 }
|
|
2166
|
|
2167
|
|
2168 /************************************************************************/
|
|
2169 /* lcrecord lists */
|
|
2170 /************************************************************************/
|
|
2171
|
|
2172 /* Lcrecord lists are used to manage the allocation of particular
|
|
2173 sorts of lcrecords, to avoid calling alloc_lcrecord() (and thus
|
|
2174 malloc() and garbage-collection junk) as much as possible.
|
|
2175 It is similar to the Blocktype class.
|
|
2176
|
|
2177 It works like this:
|
|
2178
|
|
2179 1) Create an lcrecord-list object using make_lcrecord_list().
|
|
2180 This is often done at initialization. Remember to staticpro_nodump
|
|
2181 this object! The arguments to make_lcrecord_list() are the
|
|
2182 same as would be passed to alloc_lcrecord().
|
|
2183 2) Instead of calling alloc_lcrecord(), call allocate_managed_lcrecord()
|
|
2184 and pass the lcrecord-list earlier created.
|
|
2185 3) When done with the lcrecord, call free_managed_lcrecord().
|
|
2186 The standard freeing caveats apply: ** make sure there are no
|
|
2187 pointers to the object anywhere! **
|
|
2188 4) Calling free_managed_lcrecord() is just like kissing the
|
|
2189 lcrecord goodbye as if it were garbage-collected. This means:
|
|
2190 -- the contents of the freed lcrecord are undefined, and the
|
|
2191 contents of something produced by allocate_managed_lcrecord()
|
|
2192 are undefined, just like for alloc_lcrecord().
|
|
2193 -- the mark method for the lcrecord's type will *NEVER* be called
|
|
2194 on freed lcrecords.
|
|
2195 -- the finalize method for the lcrecord's type will be called
|
|
2196 at the time that free_managed_lcrecord() is called.
|
|
2197
|
|
2198 */
|
|
2199
|
|
2200 static Lisp_Object
|
|
2201 mark_lcrecord_list (Lisp_Object obj)
|
|
2202 {
|
|
2203 struct lcrecord_list *list = XLCRECORD_LIST (obj);
|
|
2204 Lisp_Object chain = list->free;
|
|
2205
|
|
2206 while (!NILP (chain))
|
|
2207 {
|
|
2208 struct lrecord_header *lheader = XRECORD_LHEADER (chain);
|
|
2209 struct free_lcrecord_header *free_header =
|
|
2210 (struct free_lcrecord_header *) lheader;
|
|
2211
|
442
|
2212 gc_checking_assert
|
|
2213 (/* There should be no other pointers to the free list. */
|
|
2214 ! MARKED_RECORD_HEADER_P (lheader)
|
|
2215 &&
|
|
2216 /* Only lcrecords should be here. */
|
|
2217 ! LHEADER_IMPLEMENTATION (lheader)->basic_p
|
|
2218 &&
|
|
2219 /* Only free lcrecords should be here. */
|
|
2220 free_header->lcheader.free
|
|
2221 &&
|
|
2222 /* The type of the lcrecord must be right. */
|
|
2223 LHEADER_IMPLEMENTATION (lheader) == list->implementation
|
|
2224 &&
|
|
2225 /* So must the size. */
|
|
2226 (LHEADER_IMPLEMENTATION (lheader)->static_size == 0 ||
|
|
2227 LHEADER_IMPLEMENTATION (lheader)->static_size == list->size)
|
|
2228 );
|
428
|
2229
|
|
2230 MARK_RECORD_HEADER (lheader);
|
|
2231 chain = free_header->chain;
|
|
2232 }
|
|
2233
|
|
2234 return Qnil;
|
|
2235 }
|
|
2236
|
|
2237 DEFINE_LRECORD_IMPLEMENTATION ("lcrecord-list", lcrecord_list,
|
|
2238 mark_lcrecord_list, internal_object_printer,
|
|
2239 0, 0, 0, 0, struct lcrecord_list);
|
|
2240 Lisp_Object
|
|
2241 make_lcrecord_list (size_t size,
|
442
|
2242 const struct lrecord_implementation *implementation)
|
428
|
2243 {
|
|
2244 struct lcrecord_list *p = alloc_lcrecord_type (struct lcrecord_list,
|
|
2245 &lrecord_lcrecord_list);
|
|
2246 Lisp_Object val;
|
|
2247
|
|
2248 p->implementation = implementation;
|
|
2249 p->size = size;
|
|
2250 p->free = Qnil;
|
|
2251 XSETLCRECORD_LIST (val, p);
|
|
2252 return val;
|
|
2253 }
|
|
2254
|
|
2255 Lisp_Object
|
|
2256 allocate_managed_lcrecord (Lisp_Object lcrecord_list)
|
|
2257 {
|
|
2258 struct lcrecord_list *list = XLCRECORD_LIST (lcrecord_list);
|
|
2259 if (!NILP (list->free))
|
|
2260 {
|
|
2261 Lisp_Object val = list->free;
|
|
2262 struct free_lcrecord_header *free_header =
|
|
2263 (struct free_lcrecord_header *) XPNTR (val);
|
|
2264
|
|
2265 #ifdef ERROR_CHECK_GC
|
442
|
2266 struct lrecord_header *lheader = &free_header->lcheader.lheader;
|
428
|
2267
|
|
2268 /* There should be no other pointers to the free list. */
|
442
|
2269 assert (! MARKED_RECORD_HEADER_P (lheader));
|
428
|
2270 /* Only lcrecords should be here. */
|
442
|
2271 assert (! LHEADER_IMPLEMENTATION (lheader)->basic_p);
|
428
|
2272 /* Only free lcrecords should be here. */
|
|
2273 assert (free_header->lcheader.free);
|
|
2274 /* The type of the lcrecord must be right. */
|
442
|
2275 assert (LHEADER_IMPLEMENTATION (lheader) == list->implementation);
|
428
|
2276 /* So must the size. */
|
442
|
2277 assert (LHEADER_IMPLEMENTATION (lheader)->static_size == 0 ||
|
|
2278 LHEADER_IMPLEMENTATION (lheader)->static_size == list->size);
|
428
|
2279 #endif /* ERROR_CHECK_GC */
|
442
|
2280
|
428
|
2281 list->free = free_header->chain;
|
|
2282 free_header->lcheader.free = 0;
|
|
2283 return val;
|
|
2284 }
|
|
2285 else
|
|
2286 {
|
|
2287 Lisp_Object val;
|
|
2288
|
442
|
2289 XSETOBJ (val, alloc_lcrecord (list->size, list->implementation));
|
428
|
2290 return val;
|
|
2291 }
|
|
2292 }
|
|
2293
|
|
2294 void
|
|
2295 free_managed_lcrecord (Lisp_Object lcrecord_list, Lisp_Object lcrecord)
|
|
2296 {
|
|
2297 struct lcrecord_list *list = XLCRECORD_LIST (lcrecord_list);
|
|
2298 struct free_lcrecord_header *free_header =
|
|
2299 (struct free_lcrecord_header *) XPNTR (lcrecord);
|
442
|
2300 struct lrecord_header *lheader = &free_header->lcheader.lheader;
|
|
2301 const struct lrecord_implementation *implementation
|
428
|
2302 = LHEADER_IMPLEMENTATION (lheader);
|
|
2303
|
|
2304 /* Make sure the size is correct. This will catch, for example,
|
|
2305 putting a window configuration on the wrong free list. */
|
442
|
2306 gc_checking_assert ((implementation->size_in_bytes_method ?
|
|
2307 implementation->size_in_bytes_method (lheader) :
|
|
2308 implementation->static_size)
|
|
2309 == list->size);
|
428
|
2310
|
|
2311 if (implementation->finalizer)
|
|
2312 implementation->finalizer (lheader, 0);
|
|
2313 free_header->chain = list->free;
|
|
2314 free_header->lcheader.free = 1;
|
|
2315 list->free = lcrecord;
|
|
2316 }
|
|
2317
|
|
2318
|
|
2319
|
|
2320
|
|
2321 DEFUN ("purecopy", Fpurecopy, 1, 1, 0, /*
|
|
2322 Kept for compatibility, returns its argument.
|
|
2323 Old:
|
|
2324 Make a copy of OBJECT in pure storage.
|
|
2325 Recursively copies contents of vectors and cons cells.
|
|
2326 Does not copy symbols.
|
|
2327 */
|
444
|
2328 (object))
|
428
|
2329 {
|
444
|
2330 return object;
|
428
|
2331 }
|
|
2332
|
|
2333
|
|
2334 /************************************************************************/
|
|
2335 /* Garbage Collection */
|
|
2336 /************************************************************************/
|
|
2337
|
442
|
2338 /* All the built-in lisp object types are enumerated in `enum lrecord_type'.
|
|
2339 Additional ones may be defined by a module (none yet). We leave some
|
|
2340 room in `lrecord_implementations_table' for such new lisp object types. */
|
|
2341 const struct lrecord_implementation *lrecord_implementations_table[(unsigned int)lrecord_type_last_built_in_type + MODULE_DEFINABLE_TYPE_COUNT];
|
|
2342 unsigned int lrecord_type_count = (unsigned int)lrecord_type_last_built_in_type;
|
|
2343 /* Object marker functions are in the lrecord_implementation structure.
|
|
2344 But copying them to a parallel array is much more cache-friendly.
|
|
2345 This hack speeds up (garbage-collect) by about 5%. */
|
|
2346 Lisp_Object (*lrecord_markers[countof (lrecord_implementations_table)]) (Lisp_Object);
|
428
|
2347
|
|
2348 struct gcpro *gcprolist;
|
|
2349
|
|
2350 /* 415 used Mly 29-Jun-93 */
|
|
2351 /* 1327 used slb 28-Feb-98 */
|
|
2352 /* 1328 used og 03-Oct-99 (moving slowly, heh?) */
|
|
2353 #ifdef HAVE_SHLIB
|
|
2354 #define NSTATICS 4000
|
|
2355 #else
|
|
2356 #define NSTATICS 2000
|
|
2357 #endif
|
442
|
2358
|
|
2359 /* Not "static" because used by dumper.c */
|
|
2360 Lisp_Object *staticvec[NSTATICS];
|
|
2361 int staticidx;
|
428
|
2362
|
|
2363 /* Put an entry in staticvec, pointing at the variable whose address is given
|
|
2364 */
|
|
2365 void
|
|
2366 staticpro (Lisp_Object *varaddress)
|
|
2367 {
|
442
|
2368 /* #### This is now a dubious assert() since this routine may be called */
|
|
2369 /* by Lisp attempting to load a DLL. */
|
|
2370 assert (staticidx < countof (staticvec));
|
428
|
2371 staticvec[staticidx++] = varaddress;
|
|
2372 }
|
|
2373
|
442
|
2374
|
|
2375 Lisp_Object *staticvec_nodump[200];
|
|
2376 int staticidx_nodump;
|
428
|
2377
|
|
2378 /* Put an entry in staticvec_nodump, pointing at the variable whose address is given
|
|
2379 */
|
|
2380 void
|
|
2381 staticpro_nodump (Lisp_Object *varaddress)
|
|
2382 {
|
442
|
2383 /* #### This is now a dubious assert() since this routine may be called */
|
|
2384 /* by Lisp attempting to load a DLL. */
|
|
2385 assert (staticidx_nodump < countof (staticvec_nodump));
|
428
|
2386 staticvec_nodump[staticidx_nodump++] = varaddress;
|
|
2387 }
|
|
2388
|
442
|
2389
|
|
2390 struct pdump_dumpstructinfo dumpstructvec[200];
|
|
2391 int dumpstructidx;
|
428
|
2392
|
|
2393 /* Put an entry in dumpstructvec, pointing at the variable whose address is given
|
|
2394 */
|
|
2395 void
|
|
2396 dumpstruct (void *varaddress, const struct struct_description *desc)
|
|
2397 {
|
442
|
2398 assert (dumpstructidx < countof (dumpstructvec));
|
428
|
2399 dumpstructvec[dumpstructidx].data = varaddress;
|
|
2400 dumpstructvec[dumpstructidx].desc = desc;
|
|
2401 dumpstructidx++;
|
|
2402 }
|
|
2403
|
442
|
2404 struct pdump_dumpopaqueinfo dumpopaquevec[250];
|
|
2405 int dumpopaqueidx;
|
|
2406
|
|
2407 /* Put an entry in dumpopaquevec, pointing at the variable whose address is given
|
|
2408 */
|
|
2409 void
|
|
2410 dumpopaque (void *varaddress, size_t size)
|
|
2411 {
|
|
2412 assert (dumpopaqueidx < countof (dumpopaquevec));
|
|
2413
|
|
2414 dumpopaquevec[dumpopaqueidx].data = varaddress;
|
|
2415 dumpopaquevec[dumpopaqueidx].size = size;
|
|
2416 dumpopaqueidx++;
|
|
2417 }
|
|
2418
|
428
|
2419 Lisp_Object *pdump_wirevec[50];
|
442
|
2420 int pdump_wireidx;
|
428
|
2421
|
|
2422 /* Put an entry in pdump_wirevec, pointing at the variable whose address is given
|
|
2423 */
|
|
2424 void
|
|
2425 pdump_wire (Lisp_Object *varaddress)
|
|
2426 {
|
442
|
2427 assert (pdump_wireidx < countof (pdump_wirevec));
|
428
|
2428 pdump_wirevec[pdump_wireidx++] = varaddress;
|
|
2429 }
|
|
2430
|
|
2431
|
|
2432 Lisp_Object *pdump_wirevec_list[50];
|
442
|
2433 int pdump_wireidx_list;
|
428
|
2434
|
|
2435 /* Put an entry in pdump_wirevec_list, pointing at the variable whose address is given
|
|
2436 */
|
|
2437 void
|
|
2438 pdump_wire_list (Lisp_Object *varaddress)
|
|
2439 {
|
442
|
2440 assert (pdump_wireidx_list < countof (pdump_wirevec_list));
|
428
|
2441 pdump_wirevec_list[pdump_wireidx_list++] = varaddress;
|
|
2442 }
|
|
2443
|
442
|
2444 #ifdef ERROR_CHECK_GC
|
|
2445 #define GC_CHECK_LHEADER_INVARIANTS(lheader) do { \
|
|
2446 struct lrecord_header * GCLI_lh = (lheader); \
|
|
2447 assert (GCLI_lh != 0); \
|
|
2448 assert (GCLI_lh->type < lrecord_type_count); \
|
|
2449 assert (! C_READONLY_RECORD_HEADER_P (GCLI_lh) || \
|
|
2450 (MARKED_RECORD_HEADER_P (GCLI_lh) && \
|
|
2451 LISP_READONLY_RECORD_HEADER_P (GCLI_lh))); \
|
|
2452 } while (0)
|
|
2453 #else
|
|
2454 #define GC_CHECK_LHEADER_INVARIANTS(lheader)
|
|
2455 #endif
|
|
2456
|
428
|
2457
|
|
2458 /* Mark reference to a Lisp_Object. If the object referred to has not been
|
|
2459 seen yet, recursively mark all the references contained in it. */
|
|
2460
|
|
2461 void
|
|
2462 mark_object (Lisp_Object obj)
|
|
2463 {
|
|
2464 tail_recurse:
|
|
2465
|
|
2466 /* Checks we used to perform */
|
|
2467 /* if (EQ (obj, Qnull_pointer)) return; */
|
|
2468 /* if (!POINTER_TYPE_P (XGCTYPE (obj))) return; */
|
|
2469 /* if (PURIFIED (XPNTR (obj))) return; */
|
|
2470
|
|
2471 if (XTYPE (obj) == Lisp_Type_Record)
|
|
2472 {
|
|
2473 struct lrecord_header *lheader = XRECORD_LHEADER (obj);
|
442
|
2474
|
|
2475 GC_CHECK_LHEADER_INVARIANTS (lheader);
|
|
2476
|
|
2477 gc_checking_assert (LHEADER_IMPLEMENTATION (lheader)->basic_p ||
|
|
2478 ! ((struct lcrecord_header *) lheader)->free);
|
|
2479
|
|
2480 /* All c_readonly objects have their mark bit set,
|
|
2481 so that we only need to check the mark bit here. */
|
|
2482 if (! MARKED_RECORD_HEADER_P (lheader))
|
428
|
2483 {
|
|
2484 MARK_RECORD_HEADER (lheader);
|
442
|
2485
|
|
2486 if (RECORD_MARKER (lheader))
|
428
|
2487 {
|
442
|
2488 obj = RECORD_MARKER (lheader) (obj);
|
428
|
2489 if (!NILP (obj)) goto tail_recurse;
|
|
2490 }
|
|
2491 }
|
|
2492 }
|
|
2493 }
|
|
2494
|
|
2495 /* mark all of the conses in a list and mark the final cdr; but
|
|
2496 DO NOT mark the cars.
|
|
2497
|
|
2498 Use only for internal lists! There should never be other pointers
|
|
2499 to the cons cells, because if so, the cars will remain unmarked
|
|
2500 even when they maybe should be marked. */
|
|
2501 void
|
|
2502 mark_conses_in_list (Lisp_Object obj)
|
|
2503 {
|
|
2504 Lisp_Object rest;
|
|
2505
|
|
2506 for (rest = obj; CONSP (rest); rest = XCDR (rest))
|
|
2507 {
|
|
2508 if (CONS_MARKED_P (XCONS (rest)))
|
|
2509 return;
|
|
2510 MARK_CONS (XCONS (rest));
|
|
2511 }
|
|
2512
|
|
2513 mark_object (rest);
|
|
2514 }
|
|
2515
|
|
2516
|
|
2517 /* Find all structures not marked, and free them. */
|
|
2518
|
|
2519 static int gc_count_num_bit_vector_used, gc_count_bit_vector_total_size;
|
|
2520 static int gc_count_bit_vector_storage;
|
|
2521 static int gc_count_num_short_string_in_use;
|
|
2522 static int gc_count_string_total_size;
|
|
2523 static int gc_count_short_string_total_size;
|
|
2524
|
|
2525 /* static int gc_count_total_records_used, gc_count_records_total_size; */
|
|
2526
|
|
2527
|
|
2528 /* stats on lcrecords in use - kinda kludgy */
|
|
2529
|
|
2530 static struct
|
|
2531 {
|
|
2532 int instances_in_use;
|
|
2533 int bytes_in_use;
|
|
2534 int instances_freed;
|
|
2535 int bytes_freed;
|
|
2536 int instances_on_free_list;
|
|
2537 } lcrecord_stats [countof (lrecord_implementations_table)];
|
|
2538
|
|
2539 static void
|
442
|
2540 tick_lcrecord_stats (const struct lrecord_header *h, int free_p)
|
428
|
2541 {
|
442
|
2542 unsigned int type_index = h->type;
|
428
|
2543
|
|
2544 if (((struct lcrecord_header *) h)->free)
|
|
2545 {
|
442
|
2546 gc_checking_assert (!free_p);
|
428
|
2547 lcrecord_stats[type_index].instances_on_free_list++;
|
|
2548 }
|
|
2549 else
|
|
2550 {
|
442
|
2551 const struct lrecord_implementation *implementation =
|
|
2552 LHEADER_IMPLEMENTATION (h);
|
|
2553
|
|
2554 size_t sz = (implementation->size_in_bytes_method ?
|
|
2555 implementation->size_in_bytes_method (h) :
|
|
2556 implementation->static_size);
|
428
|
2557 if (free_p)
|
|
2558 {
|
|
2559 lcrecord_stats[type_index].instances_freed++;
|
|
2560 lcrecord_stats[type_index].bytes_freed += sz;
|
|
2561 }
|
|
2562 else
|
|
2563 {
|
|
2564 lcrecord_stats[type_index].instances_in_use++;
|
|
2565 lcrecord_stats[type_index].bytes_in_use += sz;
|
|
2566 }
|
|
2567 }
|
|
2568 }
|
|
2569
|
|
2570
|
|
2571 /* Free all unmarked records */
|
|
2572 static void
|
|
2573 sweep_lcrecords_1 (struct lcrecord_header **prev, int *used)
|
|
2574 {
|
|
2575 struct lcrecord_header *header;
|
|
2576 int num_used = 0;
|
|
2577 /* int total_size = 0; */
|
|
2578
|
|
2579 xzero (lcrecord_stats); /* Reset all statistics to 0. */
|
|
2580
|
|
2581 /* First go through and call all the finalize methods.
|
|
2582 Then go through and free the objects. There used to
|
|
2583 be only one loop here, with the call to the finalizer
|
|
2584 occurring directly before the xfree() below. That
|
|
2585 is marginally faster but much less safe -- if the
|
|
2586 finalize method for an object needs to reference any
|
|
2587 other objects contained within it (and many do),
|
|
2588 we could easily be screwed by having already freed that
|
|
2589 other object. */
|
|
2590
|
|
2591 for (header = *prev; header; header = header->next)
|
|
2592 {
|
|
2593 struct lrecord_header *h = &(header->lheader);
|
442
|
2594
|
|
2595 GC_CHECK_LHEADER_INVARIANTS (h);
|
|
2596
|
|
2597 if (! MARKED_RECORD_HEADER_P (h) && ! header->free)
|
428
|
2598 {
|
|
2599 if (LHEADER_IMPLEMENTATION (h)->finalizer)
|
|
2600 LHEADER_IMPLEMENTATION (h)->finalizer (h, 0);
|
|
2601 }
|
|
2602 }
|
|
2603
|
|
2604 for (header = *prev; header; )
|
|
2605 {
|
|
2606 struct lrecord_header *h = &(header->lheader);
|
442
|
2607 if (MARKED_RECORD_HEADER_P (h))
|
428
|
2608 {
|
442
|
2609 if (! C_READONLY_RECORD_HEADER_P (h))
|
428
|
2610 UNMARK_RECORD_HEADER (h);
|
|
2611 num_used++;
|
|
2612 /* total_size += n->implementation->size_in_bytes (h);*/
|
440
|
2613 /* #### May modify header->next on a C_READONLY lcrecord */
|
428
|
2614 prev = &(header->next);
|
|
2615 header = *prev;
|
|
2616 tick_lcrecord_stats (h, 0);
|
|
2617 }
|
|
2618 else
|
|
2619 {
|
|
2620 struct lcrecord_header *next = header->next;
|
|
2621 *prev = next;
|
|
2622 tick_lcrecord_stats (h, 1);
|
|
2623 /* used to call finalizer right here. */
|
|
2624 xfree (header);
|
|
2625 header = next;
|
|
2626 }
|
|
2627 }
|
|
2628 *used = num_used;
|
|
2629 /* *total = total_size; */
|
|
2630 }
|
|
2631
|
|
2632
|
|
2633 static void
|
|
2634 sweep_bit_vectors_1 (Lisp_Object *prev,
|
|
2635 int *used, int *total, int *storage)
|
|
2636 {
|
|
2637 Lisp_Object bit_vector;
|
|
2638 int num_used = 0;
|
|
2639 int total_size = 0;
|
|
2640 int total_storage = 0;
|
|
2641
|
|
2642 /* BIT_VECTORP fails because the objects are marked, which changes
|
|
2643 their implementation */
|
|
2644 for (bit_vector = *prev; !EQ (bit_vector, Qzero); )
|
|
2645 {
|
|
2646 Lisp_Bit_Vector *v = XBIT_VECTOR (bit_vector);
|
|
2647 int len = v->size;
|
442
|
2648 if (MARKED_RECORD_P (bit_vector))
|
428
|
2649 {
|
442
|
2650 if (! C_READONLY_RECORD_HEADER_P(&(v->lheader)))
|
428
|
2651 UNMARK_RECORD_HEADER (&(v->lheader));
|
|
2652 total_size += len;
|
|
2653 total_storage +=
|
|
2654 MALLOC_OVERHEAD +
|
442
|
2655 FLEXIBLE_ARRAY_STRUCT_SIZEOF (Lisp_Bit_Vector, bits,
|
|
2656 BIT_VECTOR_LONG_STORAGE (len));
|
428
|
2657 num_used++;
|
440
|
2658 /* #### May modify next on a C_READONLY bitvector */
|
428
|
2659 prev = &(bit_vector_next (v));
|
|
2660 bit_vector = *prev;
|
|
2661 }
|
|
2662 else
|
|
2663 {
|
|
2664 Lisp_Object next = bit_vector_next (v);
|
|
2665 *prev = next;
|
|
2666 xfree (v);
|
|
2667 bit_vector = next;
|
|
2668 }
|
|
2669 }
|
|
2670 *used = num_used;
|
|
2671 *total = total_size;
|
|
2672 *storage = total_storage;
|
|
2673 }
|
|
2674
|
|
2675 /* And the Lord said: Thou shalt use the `c-backslash-region' command
|
|
2676 to make macros prettier. */
|
|
2677
|
|
2678 #ifdef ERROR_CHECK_GC
|
|
2679
|
|
2680 #define SWEEP_FIXED_TYPE_BLOCK(typename, obj_type) \
|
|
2681 do { \
|
|
2682 struct typename##_block *SFTB_current; \
|
|
2683 int SFTB_limit; \
|
|
2684 int num_free = 0, num_used = 0; \
|
|
2685 \
|
444
|
2686 for (SFTB_current = current_##typename##_block, \
|
428
|
2687 SFTB_limit = current_##typename##_block_index; \
|
|
2688 SFTB_current; \
|
|
2689 ) \
|
|
2690 { \
|
|
2691 int SFTB_iii; \
|
|
2692 \
|
|
2693 for (SFTB_iii = 0; SFTB_iii < SFTB_limit; SFTB_iii++) \
|
|
2694 { \
|
|
2695 obj_type *SFTB_victim = &(SFTB_current->block[SFTB_iii]); \
|
|
2696 \
|
|
2697 if (FREE_STRUCT_P (SFTB_victim)) \
|
|
2698 { \
|
|
2699 num_free++; \
|
|
2700 } \
|
|
2701 else if (C_READONLY_RECORD_HEADER_P (&SFTB_victim->lheader)) \
|
|
2702 { \
|
|
2703 num_used++; \
|
|
2704 } \
|
442
|
2705 else if (! MARKED_RECORD_HEADER_P (&SFTB_victim->lheader)) \
|
428
|
2706 { \
|
|
2707 num_free++; \
|
|
2708 FREE_FIXED_TYPE (typename, obj_type, SFTB_victim); \
|
|
2709 } \
|
|
2710 else \
|
|
2711 { \
|
|
2712 num_used++; \
|
|
2713 UNMARK_##typename (SFTB_victim); \
|
|
2714 } \
|
|
2715 } \
|
|
2716 SFTB_current = SFTB_current->prev; \
|
|
2717 SFTB_limit = countof (current_##typename##_block->block); \
|
|
2718 } \
|
|
2719 \
|
|
2720 gc_count_num_##typename##_in_use = num_used; \
|
|
2721 gc_count_num_##typename##_freelist = num_free; \
|
|
2722 } while (0)
|
|
2723
|
|
2724 #else /* !ERROR_CHECK_GC */
|
|
2725
|
|
2726 #define SWEEP_FIXED_TYPE_BLOCK(typename, obj_type) \
|
|
2727 do { \
|
|
2728 struct typename##_block *SFTB_current; \
|
|
2729 struct typename##_block **SFTB_prev; \
|
|
2730 int SFTB_limit; \
|
|
2731 int num_free = 0, num_used = 0; \
|
|
2732 \
|
|
2733 typename##_free_list = 0; \
|
|
2734 \
|
|
2735 for (SFTB_prev = ¤t_##typename##_block, \
|
|
2736 SFTB_current = current_##typename##_block, \
|
|
2737 SFTB_limit = current_##typename##_block_index; \
|
|
2738 SFTB_current; \
|
|
2739 ) \
|
|
2740 { \
|
|
2741 int SFTB_iii; \
|
|
2742 int SFTB_empty = 1; \
|
|
2743 obj_type *SFTB_old_free_list = typename##_free_list; \
|
|
2744 \
|
|
2745 for (SFTB_iii = 0; SFTB_iii < SFTB_limit; SFTB_iii++) \
|
|
2746 { \
|
|
2747 obj_type *SFTB_victim = &(SFTB_current->block[SFTB_iii]); \
|
|
2748 \
|
|
2749 if (FREE_STRUCT_P (SFTB_victim)) \
|
|
2750 { \
|
|
2751 num_free++; \
|
|
2752 PUT_FIXED_TYPE_ON_FREE_LIST (typename, obj_type, SFTB_victim); \
|
|
2753 } \
|
|
2754 else if (C_READONLY_RECORD_HEADER_P (&SFTB_victim->lheader)) \
|
|
2755 { \
|
|
2756 SFTB_empty = 0; \
|
|
2757 num_used++; \
|
|
2758 } \
|
442
|
2759 else if (! MARKED_RECORD_HEADER_P (&SFTB_victim->lheader)) \
|
428
|
2760 { \
|
|
2761 num_free++; \
|
|
2762 FREE_FIXED_TYPE (typename, obj_type, SFTB_victim); \
|
|
2763 } \
|
|
2764 else \
|
|
2765 { \
|
|
2766 SFTB_empty = 0; \
|
|
2767 num_used++; \
|
|
2768 UNMARK_##typename (SFTB_victim); \
|
|
2769 } \
|
|
2770 } \
|
|
2771 if (!SFTB_empty) \
|
|
2772 { \
|
|
2773 SFTB_prev = &(SFTB_current->prev); \
|
|
2774 SFTB_current = SFTB_current->prev; \
|
|
2775 } \
|
|
2776 else if (SFTB_current == current_##typename##_block \
|
|
2777 && !SFTB_current->prev) \
|
|
2778 { \
|
|
2779 /* No real point in freeing sole allocation block */ \
|
|
2780 break; \
|
|
2781 } \
|
|
2782 else \
|
|
2783 { \
|
|
2784 struct typename##_block *SFTB_victim_block = SFTB_current; \
|
|
2785 if (SFTB_victim_block == current_##typename##_block) \
|
|
2786 current_##typename##_block_index \
|
|
2787 = countof (current_##typename##_block->block); \
|
|
2788 SFTB_current = SFTB_current->prev; \
|
|
2789 { \
|
|
2790 *SFTB_prev = SFTB_current; \
|
|
2791 xfree (SFTB_victim_block); \
|
|
2792 /* Restore free list to what it was before victim was swept */ \
|
|
2793 typename##_free_list = SFTB_old_free_list; \
|
|
2794 num_free -= SFTB_limit; \
|
|
2795 } \
|
|
2796 } \
|
|
2797 SFTB_limit = countof (current_##typename##_block->block); \
|
|
2798 } \
|
|
2799 \
|
|
2800 gc_count_num_##typename##_in_use = num_used; \
|
|
2801 gc_count_num_##typename##_freelist = num_free; \
|
|
2802 } while (0)
|
|
2803
|
|
2804 #endif /* !ERROR_CHECK_GC */
|
|
2805
|
|
2806
|
|
2807
|
|
2808
|
|
2809 static void
|
|
2810 sweep_conses (void)
|
|
2811 {
|
|
2812 #define UNMARK_cons(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
2813 #define ADDITIONAL_FREE_cons(ptr)
|
|
2814
|
440
|
2815 SWEEP_FIXED_TYPE_BLOCK (cons, Lisp_Cons);
|
428
|
2816 }
|
|
2817
|
|
2818 /* Explicitly free a cons cell. */
|
|
2819 void
|
440
|
2820 free_cons (Lisp_Cons *ptr)
|
428
|
2821 {
|
|
2822 #ifdef ERROR_CHECK_GC
|
|
2823 /* If the CAR is not an int, then it will be a pointer, which will
|
|
2824 always be four-byte aligned. If this cons cell has already been
|
|
2825 placed on the free list, however, its car will probably contain
|
|
2826 a chain pointer to the next cons on the list, which has cleverly
|
|
2827 had all its 0's and 1's inverted. This allows for a quick
|
|
2828 check to make sure we're not freeing something already freed. */
|
|
2829 if (POINTER_TYPE_P (XTYPE (ptr->car)))
|
|
2830 ASSERT_VALID_POINTER (XPNTR (ptr->car));
|
|
2831 #endif /* ERROR_CHECK_GC */
|
|
2832
|
|
2833 #ifndef ALLOC_NO_POOLS
|
440
|
2834 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (cons, Lisp_Cons, ptr);
|
428
|
2835 #endif /* ALLOC_NO_POOLS */
|
|
2836 }
|
|
2837
|
|
2838 /* explicitly free a list. You **must make sure** that you have
|
|
2839 created all the cons cells that make up this list and that there
|
|
2840 are no pointers to any of these cons cells anywhere else. If there
|
|
2841 are, you will lose. */
|
|
2842
|
|
2843 void
|
|
2844 free_list (Lisp_Object list)
|
|
2845 {
|
|
2846 Lisp_Object rest, next;
|
|
2847
|
|
2848 for (rest = list; !NILP (rest); rest = next)
|
|
2849 {
|
|
2850 next = XCDR (rest);
|
|
2851 free_cons (XCONS (rest));
|
|
2852 }
|
|
2853 }
|
|
2854
|
|
2855 /* explicitly free an alist. You **must make sure** that you have
|
|
2856 created all the cons cells that make up this alist and that there
|
|
2857 are no pointers to any of these cons cells anywhere else. If there
|
|
2858 are, you will lose. */
|
|
2859
|
|
2860 void
|
|
2861 free_alist (Lisp_Object alist)
|
|
2862 {
|
|
2863 Lisp_Object rest, next;
|
|
2864
|
|
2865 for (rest = alist; !NILP (rest); rest = next)
|
|
2866 {
|
|
2867 next = XCDR (rest);
|
|
2868 free_cons (XCONS (XCAR (rest)));
|
|
2869 free_cons (XCONS (rest));
|
|
2870 }
|
|
2871 }
|
|
2872
|
|
2873 static void
|
|
2874 sweep_compiled_functions (void)
|
|
2875 {
|
|
2876 #define UNMARK_compiled_function(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
2877 #define ADDITIONAL_FREE_compiled_function(ptr)
|
|
2878
|
|
2879 SWEEP_FIXED_TYPE_BLOCK (compiled_function, Lisp_Compiled_Function);
|
|
2880 }
|
|
2881
|
|
2882
|
|
2883 #ifdef LISP_FLOAT_TYPE
|
|
2884 static void
|
|
2885 sweep_floats (void)
|
|
2886 {
|
|
2887 #define UNMARK_float(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
2888 #define ADDITIONAL_FREE_float(ptr)
|
|
2889
|
440
|
2890 SWEEP_FIXED_TYPE_BLOCK (float, Lisp_Float);
|
428
|
2891 }
|
|
2892 #endif /* LISP_FLOAT_TYPE */
|
|
2893
|
|
2894 static void
|
|
2895 sweep_symbols (void)
|
|
2896 {
|
|
2897 #define UNMARK_symbol(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
2898 #define ADDITIONAL_FREE_symbol(ptr)
|
|
2899
|
440
|
2900 SWEEP_FIXED_TYPE_BLOCK (symbol, Lisp_Symbol);
|
428
|
2901 }
|
|
2902
|
|
2903 static void
|
|
2904 sweep_extents (void)
|
|
2905 {
|
|
2906 #define UNMARK_extent(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
2907 #define ADDITIONAL_FREE_extent(ptr)
|
|
2908
|
|
2909 SWEEP_FIXED_TYPE_BLOCK (extent, struct extent);
|
|
2910 }
|
|
2911
|
|
2912 static void
|
|
2913 sweep_events (void)
|
|
2914 {
|
|
2915 #define UNMARK_event(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
2916 #define ADDITIONAL_FREE_event(ptr)
|
|
2917
|
440
|
2918 SWEEP_FIXED_TYPE_BLOCK (event, Lisp_Event);
|
428
|
2919 }
|
|
2920
|
|
2921 static void
|
|
2922 sweep_markers (void)
|
|
2923 {
|
|
2924 #define UNMARK_marker(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
2925 #define ADDITIONAL_FREE_marker(ptr) \
|
|
2926 do { Lisp_Object tem; \
|
|
2927 XSETMARKER (tem, ptr); \
|
|
2928 unchain_marker (tem); \
|
|
2929 } while (0)
|
|
2930
|
440
|
2931 SWEEP_FIXED_TYPE_BLOCK (marker, Lisp_Marker);
|
428
|
2932 }
|
|
2933
|
|
2934 /* Explicitly free a marker. */
|
|
2935 void
|
440
|
2936 free_marker (Lisp_Marker *ptr)
|
428
|
2937 {
|
|
2938 /* Perhaps this will catch freeing an already-freed marker. */
|
444
|
2939 gc_checking_assert (ptr->lheader.type == lrecord_type_marker);
|
428
|
2940
|
|
2941 #ifndef ALLOC_NO_POOLS
|
440
|
2942 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (marker, Lisp_Marker, ptr);
|
428
|
2943 #endif /* ALLOC_NO_POOLS */
|
|
2944 }
|
|
2945
|
|
2946
|
|
2947 #if defined (MULE) && defined (VERIFY_STRING_CHARS_INTEGRITY)
|
|
2948
|
|
2949 static void
|
|
2950 verify_string_chars_integrity (void)
|
|
2951 {
|
|
2952 struct string_chars_block *sb;
|
|
2953
|
|
2954 /* Scan each existing string block sequentially, string by string. */
|
|
2955 for (sb = first_string_chars_block; sb; sb = sb->next)
|
|
2956 {
|
|
2957 int pos = 0;
|
|
2958 /* POS is the index of the next string in the block. */
|
|
2959 while (pos < sb->pos)
|
|
2960 {
|
|
2961 struct string_chars *s_chars =
|
|
2962 (struct string_chars *) &(sb->string_chars[pos]);
|
438
|
2963 Lisp_String *string;
|
428
|
2964 int size;
|
|
2965 int fullsize;
|
|
2966
|
|
2967 /* If the string_chars struct is marked as free (i.e. the STRING
|
|
2968 pointer is 0xFFFFFFFF) then this is an unused chunk of string
|
|
2969 storage. (See below.) */
|
|
2970
|
|
2971 if (FREE_STRUCT_P (s_chars))
|
|
2972 {
|
|
2973 fullsize = ((struct unused_string_chars *) s_chars)->fullsize;
|
|
2974 pos += fullsize;
|
|
2975 continue;
|
|
2976 }
|
|
2977
|
|
2978 string = s_chars->string;
|
|
2979 /* Must be 32-bit aligned. */
|
|
2980 assert ((((int) string) & 3) == 0);
|
|
2981
|
|
2982 size = string_length (string);
|
|
2983 fullsize = STRING_FULLSIZE (size);
|
|
2984
|
|
2985 assert (!BIG_STRING_FULLSIZE_P (fullsize));
|
|
2986 assert (string_data (string) == s_chars->chars);
|
|
2987 pos += fullsize;
|
|
2988 }
|
|
2989 assert (pos == sb->pos);
|
|
2990 }
|
|
2991 }
|
|
2992
|
|
2993 #endif /* MULE && ERROR_CHECK_GC */
|
|
2994
|
|
2995 /* Compactify string chars, relocating the reference to each --
|
|
2996 free any empty string_chars_block we see. */
|
|
2997 static void
|
|
2998 compact_string_chars (void)
|
|
2999 {
|
|
3000 struct string_chars_block *to_sb = first_string_chars_block;
|
|
3001 int to_pos = 0;
|
|
3002 struct string_chars_block *from_sb;
|
|
3003
|
|
3004 /* Scan each existing string block sequentially, string by string. */
|
|
3005 for (from_sb = first_string_chars_block; from_sb; from_sb = from_sb->next)
|
|
3006 {
|
|
3007 int from_pos = 0;
|
|
3008 /* FROM_POS is the index of the next string in the block. */
|
|
3009 while (from_pos < from_sb->pos)
|
|
3010 {
|
|
3011 struct string_chars *from_s_chars =
|
|
3012 (struct string_chars *) &(from_sb->string_chars[from_pos]);
|
|
3013 struct string_chars *to_s_chars;
|
438
|
3014 Lisp_String *string;
|
428
|
3015 int size;
|
|
3016 int fullsize;
|
|
3017
|
|
3018 /* If the string_chars struct is marked as free (i.e. the STRING
|
|
3019 pointer is 0xFFFFFFFF) then this is an unused chunk of string
|
|
3020 storage. This happens under Mule when a string's size changes
|
|
3021 in such a way that its fullsize changes. (Strings can change
|
|
3022 size because a different-length character can be substituted
|
|
3023 for another character.) In this case, after the bogus string
|
|
3024 pointer is the "fullsize" of this entry, i.e. how many bytes
|
|
3025 to skip. */
|
|
3026
|
|
3027 if (FREE_STRUCT_P (from_s_chars))
|
|
3028 {
|
|
3029 fullsize = ((struct unused_string_chars *) from_s_chars)->fullsize;
|
|
3030 from_pos += fullsize;
|
|
3031 continue;
|
|
3032 }
|
|
3033
|
|
3034 string = from_s_chars->string;
|
|
3035 assert (!(FREE_STRUCT_P (string)));
|
|
3036
|
|
3037 size = string_length (string);
|
|
3038 fullsize = STRING_FULLSIZE (size);
|
|
3039
|
442
|
3040 gc_checking_assert (! BIG_STRING_FULLSIZE_P (fullsize));
|
428
|
3041
|
|
3042 /* Just skip it if it isn't marked. */
|
|
3043 if (! MARKED_RECORD_HEADER_P (&(string->lheader)))
|
|
3044 {
|
|
3045 from_pos += fullsize;
|
|
3046 continue;
|
|
3047 }
|
|
3048
|
|
3049 /* If it won't fit in what's left of TO_SB, close TO_SB out
|
|
3050 and go on to the next string_chars_block. We know that TO_SB
|
|
3051 cannot advance past FROM_SB here since FROM_SB is large enough
|
|
3052 to currently contain this string. */
|
|
3053 if ((to_pos + fullsize) > countof (to_sb->string_chars))
|
|
3054 {
|
|
3055 to_sb->pos = to_pos;
|
|
3056 to_sb = to_sb->next;
|
|
3057 to_pos = 0;
|
|
3058 }
|
|
3059
|
|
3060 /* Compute new address of this string
|
|
3061 and update TO_POS for the space being used. */
|
|
3062 to_s_chars = (struct string_chars *) &(to_sb->string_chars[to_pos]);
|
|
3063
|
|
3064 /* Copy the string_chars to the new place. */
|
|
3065 if (from_s_chars != to_s_chars)
|
|
3066 memmove (to_s_chars, from_s_chars, fullsize);
|
|
3067
|
|
3068 /* Relocate FROM_S_CHARS's reference */
|
|
3069 set_string_data (string, &(to_s_chars->chars[0]));
|
|
3070
|
|
3071 from_pos += fullsize;
|
|
3072 to_pos += fullsize;
|
|
3073 }
|
|
3074 }
|
|
3075
|
|
3076 /* Set current to the last string chars block still used and
|
|
3077 free any that follow. */
|
|
3078 {
|
|
3079 struct string_chars_block *victim;
|
|
3080
|
|
3081 for (victim = to_sb->next; victim; )
|
|
3082 {
|
|
3083 struct string_chars_block *next = victim->next;
|
|
3084 xfree (victim);
|
|
3085 victim = next;
|
|
3086 }
|
|
3087
|
|
3088 current_string_chars_block = to_sb;
|
|
3089 current_string_chars_block->pos = to_pos;
|
|
3090 current_string_chars_block->next = 0;
|
|
3091 }
|
|
3092 }
|
|
3093
|
|
3094 #if 1 /* Hack to debug missing purecopy's */
|
|
3095 static int debug_string_purity;
|
|
3096
|
|
3097 static void
|
438
|
3098 debug_string_purity_print (Lisp_String *p)
|
428
|
3099 {
|
|
3100 Charcount i;
|
|
3101 Charcount s = string_char_length (p);
|
442
|
3102 stderr_out ("\"");
|
428
|
3103 for (i = 0; i < s; i++)
|
|
3104 {
|
|
3105 Emchar ch = string_char (p, i);
|
|
3106 if (ch < 32 || ch >= 126)
|
|
3107 stderr_out ("\\%03o", ch);
|
|
3108 else if (ch == '\\' || ch == '\"')
|
|
3109 stderr_out ("\\%c", ch);
|
|
3110 else
|
|
3111 stderr_out ("%c", ch);
|
|
3112 }
|
|
3113 stderr_out ("\"\n");
|
|
3114 }
|
|
3115 #endif /* 1 */
|
|
3116
|
|
3117
|
|
3118 static void
|
|
3119 sweep_strings (void)
|
|
3120 {
|
|
3121 int num_small_used = 0, num_small_bytes = 0, num_bytes = 0;
|
|
3122 int debug = debug_string_purity;
|
|
3123
|
438
|
3124 #define UNMARK_string(ptr) do { \
|
|
3125 Lisp_String *p = (ptr); \
|
|
3126 size_t size = string_length (p); \
|
|
3127 UNMARK_RECORD_HEADER (&(p->lheader)); \
|
|
3128 num_bytes += size; \
|
|
3129 if (!BIG_STRING_SIZE_P (size)) \
|
442
|
3130 { \
|
|
3131 num_small_bytes += size; \
|
|
3132 num_small_used++; \
|
438
|
3133 } \
|
|
3134 if (debug) \
|
|
3135 debug_string_purity_print (p); \
|
|
3136 } while (0)
|
|
3137 #define ADDITIONAL_FREE_string(ptr) do { \
|
|
3138 size_t size = string_length (ptr); \
|
|
3139 if (BIG_STRING_SIZE_P (size)) \
|
|
3140 xfree (ptr->data); \
|
|
3141 } while (0)
|
|
3142
|
|
3143 SWEEP_FIXED_TYPE_BLOCK (string, Lisp_String);
|
428
|
3144
|
|
3145 gc_count_num_short_string_in_use = num_small_used;
|
|
3146 gc_count_string_total_size = num_bytes;
|
|
3147 gc_count_short_string_total_size = num_small_bytes;
|
|
3148 }
|
|
3149
|
|
3150
|
|
3151 /* I hate duplicating all this crap! */
|
|
3152 int
|
|
3153 marked_p (Lisp_Object obj)
|
|
3154 {
|
|
3155 /* Checks we used to perform. */
|
|
3156 /* if (EQ (obj, Qnull_pointer)) return 1; */
|
|
3157 /* if (!POINTER_TYPE_P (XGCTYPE (obj))) return 1; */
|
|
3158 /* if (PURIFIED (XPNTR (obj))) return 1; */
|
|
3159
|
|
3160 if (XTYPE (obj) == Lisp_Type_Record)
|
|
3161 {
|
|
3162 struct lrecord_header *lheader = XRECORD_LHEADER (obj);
|
442
|
3163
|
|
3164 GC_CHECK_LHEADER_INVARIANTS (lheader);
|
|
3165
|
|
3166 return MARKED_RECORD_HEADER_P (lheader);
|
428
|
3167 }
|
|
3168 return 1;
|
|
3169 }
|
|
3170
|
|
3171 static void
|
|
3172 gc_sweep (void)
|
|
3173 {
|
|
3174 /* Free all unmarked records. Do this at the very beginning,
|
|
3175 before anything else, so that the finalize methods can safely
|
|
3176 examine items in the objects. sweep_lcrecords_1() makes
|
|
3177 sure to call all the finalize methods *before* freeing anything,
|
|
3178 to complete the safety. */
|
|
3179 {
|
|
3180 int ignored;
|
|
3181 sweep_lcrecords_1 (&all_lcrecords, &ignored);
|
|
3182 }
|
|
3183
|
|
3184 compact_string_chars ();
|
|
3185
|
|
3186 /* Finalize methods below (called through the ADDITIONAL_FREE_foo
|
|
3187 macros) must be *extremely* careful to make sure they're not
|
|
3188 referencing freed objects. The only two existing finalize
|
|
3189 methods (for strings and markers) pass muster -- the string
|
|
3190 finalizer doesn't look at anything but its own specially-
|
|
3191 created block, and the marker finalizer only looks at live
|
|
3192 buffers (which will never be freed) and at the markers before
|
|
3193 and after it in the chain (which, by induction, will never be
|
|
3194 freed because if so, they would have already removed themselves
|
|
3195 from the chain). */
|
|
3196
|
|
3197 /* Put all unmarked strings on free list, free'ing the string chars
|
|
3198 of large unmarked strings */
|
|
3199 sweep_strings ();
|
|
3200
|
|
3201 /* Put all unmarked conses on free list */
|
|
3202 sweep_conses ();
|
|
3203
|
|
3204 /* Free all unmarked bit vectors */
|
|
3205 sweep_bit_vectors_1 (&all_bit_vectors,
|
|
3206 &gc_count_num_bit_vector_used,
|
|
3207 &gc_count_bit_vector_total_size,
|
|
3208 &gc_count_bit_vector_storage);
|
|
3209
|
|
3210 /* Free all unmarked compiled-function objects */
|
|
3211 sweep_compiled_functions ();
|
|
3212
|
|
3213 #ifdef LISP_FLOAT_TYPE
|
|
3214 /* Put all unmarked floats on free list */
|
|
3215 sweep_floats ();
|
|
3216 #endif
|
|
3217
|
|
3218 /* Put all unmarked symbols on free list */
|
|
3219 sweep_symbols ();
|
|
3220
|
|
3221 /* Put all unmarked extents on free list */
|
|
3222 sweep_extents ();
|
|
3223
|
|
3224 /* Put all unmarked markers on free list.
|
|
3225 Dechain each one first from the buffer into which it points. */
|
|
3226 sweep_markers ();
|
|
3227
|
|
3228 sweep_events ();
|
|
3229
|
|
3230 #ifdef PDUMP
|
442
|
3231 pdump_objects_unmark ();
|
428
|
3232 #endif
|
|
3233 }
|
|
3234
|
|
3235 /* Clearing for disksave. */
|
|
3236
|
|
3237 void
|
|
3238 disksave_object_finalization (void)
|
|
3239 {
|
|
3240 /* It's important that certain information from the environment not get
|
|
3241 dumped with the executable (pathnames, environment variables, etc.).
|
|
3242 To make it easier to tell when this has happened with strings(1) we
|
|
3243 clear some known-to-be-garbage blocks of memory, so that leftover
|
|
3244 results of old evaluation don't look like potential problems.
|
|
3245 But first we set some notable variables to nil and do one more GC,
|
|
3246 to turn those strings into garbage.
|
440
|
3247 */
|
428
|
3248
|
|
3249 /* Yeah, this list is pretty ad-hoc... */
|
|
3250 Vprocess_environment = Qnil;
|
|
3251 Vexec_directory = Qnil;
|
|
3252 Vdata_directory = Qnil;
|
|
3253 Vsite_directory = Qnil;
|
|
3254 Vdoc_directory = Qnil;
|
|
3255 Vconfigure_info_directory = Qnil;
|
|
3256 Vexec_path = Qnil;
|
|
3257 Vload_path = Qnil;
|
|
3258 /* Vdump_load_path = Qnil; */
|
|
3259 /* Release hash tables for locate_file */
|
|
3260 Flocate_file_clear_hashing (Qt);
|
|
3261 uncache_home_directory();
|
|
3262
|
|
3263 #if defined(LOADHIST) && !(defined(LOADHIST_DUMPED) || \
|
|
3264 defined(LOADHIST_BUILTIN))
|
|
3265 Vload_history = Qnil;
|
|
3266 #endif
|
|
3267 Vshell_file_name = Qnil;
|
|
3268
|
|
3269 garbage_collect_1 ();
|
|
3270
|
|
3271 /* Run the disksave finalization methods of all live objects. */
|
|
3272 disksave_object_finalization_1 ();
|
|
3273
|
|
3274 /* Zero out the uninitialized (really, unused) part of the containers
|
|
3275 for the live strings. */
|
|
3276 {
|
|
3277 struct string_chars_block *scb;
|
|
3278 for (scb = first_string_chars_block; scb; scb = scb->next)
|
|
3279 {
|
|
3280 int count = sizeof (scb->string_chars) - scb->pos;
|
|
3281
|
|
3282 assert (count >= 0 && count < STRING_CHARS_BLOCK_SIZE);
|
440
|
3283 if (count != 0)
|
|
3284 {
|
|
3285 /* from the block's fill ptr to the end */
|
|
3286 memset ((scb->string_chars + scb->pos), 0, count);
|
|
3287 }
|
428
|
3288 }
|
|
3289 }
|
|
3290
|
|
3291 /* There, that ought to be enough... */
|
|
3292
|
|
3293 }
|
|
3294
|
|
3295
|
|
3296 Lisp_Object
|
|
3297 restore_gc_inhibit (Lisp_Object val)
|
|
3298 {
|
|
3299 gc_currently_forbidden = XINT (val);
|
|
3300 return val;
|
|
3301 }
|
|
3302
|
|
3303 /* Maybe we want to use this when doing a "panic" gc after memory_full()? */
|
|
3304 static int gc_hooks_inhibited;
|
|
3305
|
|
3306
|
|
3307 void
|
|
3308 garbage_collect_1 (void)
|
|
3309 {
|
|
3310 #if MAX_SAVE_STACK > 0
|
|
3311 char stack_top_variable;
|
|
3312 extern char *stack_bottom;
|
|
3313 #endif
|
|
3314 struct frame *f;
|
|
3315 int speccount;
|
|
3316 int cursor_changed;
|
|
3317 Lisp_Object pre_gc_cursor;
|
|
3318 struct gcpro gcpro1;
|
|
3319
|
|
3320 if (gc_in_progress
|
|
3321 || gc_currently_forbidden
|
|
3322 || in_display
|
|
3323 || preparing_for_armageddon)
|
|
3324 return;
|
|
3325
|
|
3326 /* We used to call selected_frame() here.
|
|
3327
|
|
3328 The following functions cannot be called inside GC
|
|
3329 so we move to after the above tests. */
|
|
3330 {
|
|
3331 Lisp_Object frame;
|
|
3332 Lisp_Object device = Fselected_device (Qnil);
|
|
3333 if (NILP (device)) /* Could happen during startup, eg. if always_gc */
|
|
3334 return;
|
|
3335 frame = DEVICE_SELECTED_FRAME (XDEVICE (device));
|
|
3336 if (NILP (frame))
|
|
3337 signal_simple_error ("No frames exist on device", device);
|
|
3338 f = XFRAME (frame);
|
|
3339 }
|
|
3340
|
|
3341 pre_gc_cursor = Qnil;
|
|
3342 cursor_changed = 0;
|
|
3343
|
|
3344 GCPRO1 (pre_gc_cursor);
|
|
3345
|
|
3346 /* Very important to prevent GC during any of the following
|
|
3347 stuff that might run Lisp code; otherwise, we'll likely
|
|
3348 have infinite GC recursion. */
|
|
3349 speccount = specpdl_depth ();
|
|
3350 record_unwind_protect (restore_gc_inhibit,
|
|
3351 make_int (gc_currently_forbidden));
|
|
3352 gc_currently_forbidden = 1;
|
|
3353
|
|
3354 if (!gc_hooks_inhibited)
|
|
3355 run_hook_trapping_errors ("Error in pre-gc-hook", Qpre_gc_hook);
|
|
3356
|
|
3357 /* Now show the GC cursor/message. */
|
|
3358 if (!noninteractive)
|
|
3359 {
|
|
3360 if (FRAME_WIN_P (f))
|
|
3361 {
|
|
3362 Lisp_Object frame = make_frame (f);
|
|
3363 Lisp_Object cursor = glyph_image_instance (Vgc_pointer_glyph,
|
|
3364 FRAME_SELECTED_WINDOW (f),
|
|
3365 ERROR_ME_NOT, 1);
|
|
3366 pre_gc_cursor = f->pointer;
|
|
3367 if (POINTER_IMAGE_INSTANCEP (cursor)
|
|
3368 /* don't change if we don't know how to change back. */
|
|
3369 && POINTER_IMAGE_INSTANCEP (pre_gc_cursor))
|
|
3370 {
|
|
3371 cursor_changed = 1;
|
|
3372 Fset_frame_pointer (frame, cursor);
|
|
3373 }
|
|
3374 }
|
|
3375
|
|
3376 /* Don't print messages to the stream device. */
|
|
3377 if (!cursor_changed && !FRAME_STREAM_P (f))
|
|
3378 {
|
|
3379 char *msg = (STRINGP (Vgc_message)
|
|
3380 ? GETTEXT ((char *) XSTRING_DATA (Vgc_message))
|
|
3381 : 0);
|
|
3382 Lisp_Object args[2], whole_msg;
|
|
3383 args[0] = build_string (msg ? msg :
|
442
|
3384 GETTEXT ((const char *) gc_default_message));
|
428
|
3385 args[1] = build_string ("...");
|
|
3386 whole_msg = Fconcat (2, args);
|
|
3387 echo_area_message (f, (Bufbyte *) 0, whole_msg, 0, -1,
|
|
3388 Qgarbage_collecting);
|
|
3389 }
|
|
3390 }
|
|
3391
|
|
3392 /***** Now we actually start the garbage collection. */
|
|
3393
|
|
3394 gc_in_progress = 1;
|
|
3395
|
|
3396 gc_generation_number[0]++;
|
|
3397
|
|
3398 #if MAX_SAVE_STACK > 0
|
|
3399
|
|
3400 /* Save a copy of the contents of the stack, for debugging. */
|
|
3401 if (!purify_flag)
|
|
3402 {
|
|
3403 /* Static buffer in which we save a copy of the C stack at each GC. */
|
|
3404 static char *stack_copy;
|
|
3405 static size_t stack_copy_size;
|
|
3406
|
|
3407 ptrdiff_t stack_diff = &stack_top_variable - stack_bottom;
|
|
3408 size_t stack_size = (stack_diff > 0 ? stack_diff : -stack_diff);
|
|
3409 if (stack_size < MAX_SAVE_STACK)
|
|
3410 {
|
|
3411 if (stack_copy_size < stack_size)
|
|
3412 {
|
|
3413 stack_copy = (char *) xrealloc (stack_copy, stack_size);
|
|
3414 stack_copy_size = stack_size;
|
|
3415 }
|
|
3416
|
|
3417 memcpy (stack_copy,
|
|
3418 stack_diff > 0 ? stack_bottom : &stack_top_variable,
|
|
3419 stack_size);
|
|
3420 }
|
|
3421 }
|
|
3422 #endif /* MAX_SAVE_STACK > 0 */
|
|
3423
|
|
3424 /* Do some totally ad-hoc resource clearing. */
|
|
3425 /* #### generalize this? */
|
|
3426 clear_event_resource ();
|
|
3427 cleanup_specifiers ();
|
|
3428
|
|
3429 /* Mark all the special slots that serve as the roots of accessibility. */
|
|
3430
|
|
3431 { /* staticpro() */
|
|
3432 int i;
|
|
3433 for (i = 0; i < staticidx; i++)
|
|
3434 mark_object (*(staticvec[i]));
|
|
3435 for (i = 0; i < staticidx_nodump; i++)
|
438
|
3436 mark_object (*(staticvec_nodump[i]));
|
428
|
3437 }
|
|
3438
|
|
3439 { /* GCPRO() */
|
|
3440 struct gcpro *tail;
|
|
3441 int i;
|
|
3442 for (tail = gcprolist; tail; tail = tail->next)
|
|
3443 for (i = 0; i < tail->nvars; i++)
|
|
3444 mark_object (tail->var[i]);
|
|
3445 }
|
|
3446
|
|
3447 { /* specbind() */
|
|
3448 struct specbinding *bind;
|
|
3449 for (bind = specpdl; bind != specpdl_ptr; bind++)
|
|
3450 {
|
|
3451 mark_object (bind->symbol);
|
|
3452 mark_object (bind->old_value);
|
|
3453 }
|
|
3454 }
|
|
3455
|
|
3456 {
|
|
3457 struct catchtag *catch;
|
|
3458 for (catch = catchlist; catch; catch = catch->next)
|
|
3459 {
|
|
3460 mark_object (catch->tag);
|
|
3461 mark_object (catch->val);
|
|
3462 }
|
|
3463 }
|
|
3464
|
|
3465 {
|
|
3466 struct backtrace *backlist;
|
|
3467 for (backlist = backtrace_list; backlist; backlist = backlist->next)
|
|
3468 {
|
|
3469 int nargs = backlist->nargs;
|
|
3470 int i;
|
|
3471
|
|
3472 mark_object (*backlist->function);
|
|
3473 if (nargs == UNEVALLED || nargs == MANY)
|
|
3474 mark_object (backlist->args[0]);
|
|
3475 else
|
|
3476 for (i = 0; i < nargs; i++)
|
|
3477 mark_object (backlist->args[i]);
|
|
3478 }
|
|
3479 }
|
|
3480
|
|
3481 mark_redisplay ();
|
|
3482 mark_profiling_info ();
|
|
3483
|
|
3484 /* OK, now do the after-mark stuff. This is for things that
|
|
3485 are only marked when something else is marked (e.g. weak hash tables).
|
|
3486 There may be complex dependencies between such objects -- e.g.
|
|
3487 a weak hash table might be unmarked, but after processing a later
|
|
3488 weak hash table, the former one might get marked. So we have to
|
|
3489 iterate until nothing more gets marked. */
|
|
3490
|
|
3491 while (finish_marking_weak_hash_tables () > 0 ||
|
|
3492 finish_marking_weak_lists () > 0)
|
|
3493 ;
|
|
3494
|
|
3495 /* And prune (this needs to be called after everything else has been
|
|
3496 marked and before we do any sweeping). */
|
|
3497 /* #### this is somewhat ad-hoc and should probably be an object
|
|
3498 method */
|
|
3499 prune_weak_hash_tables ();
|
|
3500 prune_weak_lists ();
|
|
3501 prune_specifiers ();
|
|
3502 prune_syntax_tables ();
|
|
3503
|
|
3504 gc_sweep ();
|
|
3505
|
|
3506 consing_since_gc = 0;
|
|
3507 #ifndef DEBUG_XEMACS
|
|
3508 /* Allow you to set it really fucking low if you really want ... */
|
|
3509 if (gc_cons_threshold < 10000)
|
|
3510 gc_cons_threshold = 10000;
|
|
3511 #endif
|
|
3512
|
|
3513 gc_in_progress = 0;
|
|
3514
|
|
3515 /******* End of garbage collection ********/
|
|
3516
|
|
3517 run_hook_trapping_errors ("Error in post-gc-hook", Qpost_gc_hook);
|
|
3518
|
|
3519 /* Now remove the GC cursor/message */
|
|
3520 if (!noninteractive)
|
|
3521 {
|
|
3522 if (cursor_changed)
|
|
3523 Fset_frame_pointer (make_frame (f), pre_gc_cursor);
|
|
3524 else if (!FRAME_STREAM_P (f))
|
|
3525 {
|
|
3526 char *msg = (STRINGP (Vgc_message)
|
|
3527 ? GETTEXT ((char *) XSTRING_DATA (Vgc_message))
|
|
3528 : 0);
|
|
3529
|
|
3530 /* Show "...done" only if the echo area would otherwise be empty. */
|
|
3531 if (NILP (clear_echo_area (selected_frame (),
|
|
3532 Qgarbage_collecting, 0)))
|
|
3533 {
|
|
3534 Lisp_Object args[2], whole_msg;
|
|
3535 args[0] = build_string (msg ? msg :
|
442
|
3536 GETTEXT ((const char *)
|
428
|
3537 gc_default_message));
|
|
3538 args[1] = build_string ("... done");
|
|
3539 whole_msg = Fconcat (2, args);
|
|
3540 echo_area_message (selected_frame (), (Bufbyte *) 0,
|
|
3541 whole_msg, 0, -1,
|
|
3542 Qgarbage_collecting);
|
|
3543 }
|
|
3544 }
|
|
3545 }
|
|
3546
|
|
3547 /* now stop inhibiting GC */
|
|
3548 unbind_to (speccount, Qnil);
|
|
3549
|
|
3550 if (!breathing_space)
|
|
3551 {
|
|
3552 breathing_space = malloc (4096 - MALLOC_OVERHEAD);
|
|
3553 }
|
|
3554
|
|
3555 UNGCPRO;
|
|
3556 return;
|
|
3557 }
|
|
3558
|
|
3559 /* Debugging aids. */
|
|
3560
|
|
3561 static Lisp_Object
|
442
|
3562 gc_plist_hack (const char *name, int value, Lisp_Object tail)
|
428
|
3563 {
|
|
3564 /* C doesn't have local functions (or closures, or GC, or readable syntax,
|
|
3565 or portable numeric datatypes, or bit-vectors, or characters, or
|
|
3566 arrays, or exceptions, or ...) */
|
|
3567 return cons3 (intern (name), make_int (value), tail);
|
|
3568 }
|
|
3569
|
|
3570 #define HACK_O_MATIC(type, name, pl) do { \
|
|
3571 int s = 0; \
|
|
3572 struct type##_block *x = current_##type##_block; \
|
|
3573 while (x) { s += sizeof (*x) + MALLOC_OVERHEAD; x = x->prev; } \
|
|
3574 (pl) = gc_plist_hack ((name), s, (pl)); \
|
|
3575 } while (0)
|
|
3576
|
|
3577 DEFUN ("garbage-collect", Fgarbage_collect, 0, 0, "", /*
|
|
3578 Reclaim storage for Lisp objects no longer needed.
|
|
3579 Return info on amount of space in use:
|
|
3580 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
|
|
3581 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
|
|
3582 PLIST)
|
|
3583 where `PLIST' is a list of alternating keyword/value pairs providing
|
|
3584 more detailed information.
|
|
3585 Garbage collection happens automatically if you cons more than
|
|
3586 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
|
|
3587 */
|
|
3588 ())
|
|
3589 {
|
|
3590 Lisp_Object pl = Qnil;
|
|
3591 int i;
|
|
3592 int gc_count_vector_total_size = 0;
|
|
3593
|
|
3594 garbage_collect_1 ();
|
|
3595
|
442
|
3596 for (i = 0; i < lrecord_type_count; i++)
|
428
|
3597 {
|
|
3598 if (lcrecord_stats[i].bytes_in_use != 0
|
|
3599 || lcrecord_stats[i].bytes_freed != 0
|
|
3600 || lcrecord_stats[i].instances_on_free_list != 0)
|
|
3601 {
|
|
3602 char buf [255];
|
442
|
3603 const char *name = lrecord_implementations_table[i]->name;
|
428
|
3604 int len = strlen (name);
|
|
3605 /* save this for the FSFmacs-compatible part of the summary */
|
442
|
3606 if (i == lrecord_vector.lrecord_type_index)
|
428
|
3607 gc_count_vector_total_size =
|
|
3608 lcrecord_stats[i].bytes_in_use + lcrecord_stats[i].bytes_freed;
|
|
3609
|
|
3610 sprintf (buf, "%s-storage", name);
|
|
3611 pl = gc_plist_hack (buf, lcrecord_stats[i].bytes_in_use, pl);
|
|
3612 /* Okay, simple pluralization check for `symbol-value-varalias' */
|
|
3613 if (name[len-1] == 's')
|
|
3614 sprintf (buf, "%ses-freed", name);
|
|
3615 else
|
|
3616 sprintf (buf, "%ss-freed", name);
|
|
3617 if (lcrecord_stats[i].instances_freed != 0)
|
|
3618 pl = gc_plist_hack (buf, lcrecord_stats[i].instances_freed, pl);
|
|
3619 if (name[len-1] == 's')
|
|
3620 sprintf (buf, "%ses-on-free-list", name);
|
|
3621 else
|
|
3622 sprintf (buf, "%ss-on-free-list", name);
|
|
3623 if (lcrecord_stats[i].instances_on_free_list != 0)
|
|
3624 pl = gc_plist_hack (buf, lcrecord_stats[i].instances_on_free_list,
|
|
3625 pl);
|
|
3626 if (name[len-1] == 's')
|
|
3627 sprintf (buf, "%ses-used", name);
|
|
3628 else
|
|
3629 sprintf (buf, "%ss-used", name);
|
|
3630 pl = gc_plist_hack (buf, lcrecord_stats[i].instances_in_use, pl);
|
|
3631 }
|
|
3632 }
|
|
3633
|
|
3634 HACK_O_MATIC (extent, "extent-storage", pl);
|
|
3635 pl = gc_plist_hack ("extents-free", gc_count_num_extent_freelist, pl);
|
|
3636 pl = gc_plist_hack ("extents-used", gc_count_num_extent_in_use, pl);
|
|
3637 HACK_O_MATIC (event, "event-storage", pl);
|
|
3638 pl = gc_plist_hack ("events-free", gc_count_num_event_freelist, pl);
|
|
3639 pl = gc_plist_hack ("events-used", gc_count_num_event_in_use, pl);
|
|
3640 HACK_O_MATIC (marker, "marker-storage", pl);
|
|
3641 pl = gc_plist_hack ("markers-free", gc_count_num_marker_freelist, pl);
|
|
3642 pl = gc_plist_hack ("markers-used", gc_count_num_marker_in_use, pl);
|
|
3643 #ifdef LISP_FLOAT_TYPE
|
|
3644 HACK_O_MATIC (float, "float-storage", pl);
|
|
3645 pl = gc_plist_hack ("floats-free", gc_count_num_float_freelist, pl);
|
|
3646 pl = gc_plist_hack ("floats-used", gc_count_num_float_in_use, pl);
|
|
3647 #endif /* LISP_FLOAT_TYPE */
|
|
3648 HACK_O_MATIC (string, "string-header-storage", pl);
|
|
3649 pl = gc_plist_hack ("long-strings-total-length",
|
|
3650 gc_count_string_total_size
|
|
3651 - gc_count_short_string_total_size, pl);
|
|
3652 HACK_O_MATIC (string_chars, "short-string-storage", pl);
|
|
3653 pl = gc_plist_hack ("short-strings-total-length",
|
|
3654 gc_count_short_string_total_size, pl);
|
|
3655 pl = gc_plist_hack ("strings-free", gc_count_num_string_freelist, pl);
|
|
3656 pl = gc_plist_hack ("long-strings-used",
|
|
3657 gc_count_num_string_in_use
|
|
3658 - gc_count_num_short_string_in_use, pl);
|
|
3659 pl = gc_plist_hack ("short-strings-used",
|
|
3660 gc_count_num_short_string_in_use, pl);
|
|
3661
|
|
3662 HACK_O_MATIC (compiled_function, "compiled-function-storage", pl);
|
|
3663 pl = gc_plist_hack ("compiled-functions-free",
|
|
3664 gc_count_num_compiled_function_freelist, pl);
|
|
3665 pl = gc_plist_hack ("compiled-functions-used",
|
|
3666 gc_count_num_compiled_function_in_use, pl);
|
|
3667
|
|
3668 pl = gc_plist_hack ("bit-vector-storage", gc_count_bit_vector_storage, pl);
|
|
3669 pl = gc_plist_hack ("bit-vectors-total-length",
|
|
3670 gc_count_bit_vector_total_size, pl);
|
|
3671 pl = gc_plist_hack ("bit-vectors-used", gc_count_num_bit_vector_used, pl);
|
|
3672
|
|
3673 HACK_O_MATIC (symbol, "symbol-storage", pl);
|
|
3674 pl = gc_plist_hack ("symbols-free", gc_count_num_symbol_freelist, pl);
|
|
3675 pl = gc_plist_hack ("symbols-used", gc_count_num_symbol_in_use, pl);
|
|
3676
|
|
3677 HACK_O_MATIC (cons, "cons-storage", pl);
|
|
3678 pl = gc_plist_hack ("conses-free", gc_count_num_cons_freelist, pl);
|
|
3679 pl = gc_plist_hack ("conses-used", gc_count_num_cons_in_use, pl);
|
|
3680
|
|
3681 /* The things we do for backwards-compatibility */
|
|
3682 return
|
|
3683 list6 (Fcons (make_int (gc_count_num_cons_in_use),
|
|
3684 make_int (gc_count_num_cons_freelist)),
|
|
3685 Fcons (make_int (gc_count_num_symbol_in_use),
|
|
3686 make_int (gc_count_num_symbol_freelist)),
|
|
3687 Fcons (make_int (gc_count_num_marker_in_use),
|
|
3688 make_int (gc_count_num_marker_freelist)),
|
|
3689 make_int (gc_count_string_total_size),
|
|
3690 make_int (gc_count_vector_total_size),
|
|
3691 pl);
|
|
3692 }
|
|
3693 #undef HACK_O_MATIC
|
|
3694
|
|
3695 DEFUN ("consing-since-gc", Fconsing_since_gc, 0, 0, "", /*
|
|
3696 Return the number of bytes consed since the last garbage collection.
|
|
3697 \"Consed\" is a misnomer in that this actually counts allocation
|
|
3698 of all different kinds of objects, not just conses.
|
|
3699
|
|
3700 If this value exceeds `gc-cons-threshold', a garbage collection happens.
|
|
3701 */
|
|
3702 ())
|
|
3703 {
|
|
3704 return make_int (consing_since_gc);
|
|
3705 }
|
|
3706
|
440
|
3707 #if 0
|
444
|
3708 DEFUN ("memory-limit", Fmemory_limit, 0, 0, 0, /*
|
428
|
3709 Return the address of the last byte Emacs has allocated, divided by 1024.
|
|
3710 This may be helpful in debugging Emacs's memory usage.
|
|
3711 The value is divided by 1024 to make sure it will fit in a lisp integer.
|
|
3712 */
|
|
3713 ())
|
|
3714 {
|
|
3715 return make_int ((EMACS_INT) sbrk (0) / 1024);
|
|
3716 }
|
440
|
3717 #endif
|
428
|
3718
|
|
3719
|
|
3720 int
|
|
3721 object_dead_p (Lisp_Object obj)
|
|
3722 {
|
|
3723 return ((BUFFERP (obj) && !BUFFER_LIVE_P (XBUFFER (obj))) ||
|
|
3724 (FRAMEP (obj) && !FRAME_LIVE_P (XFRAME (obj))) ||
|
|
3725 (WINDOWP (obj) && !WINDOW_LIVE_P (XWINDOW (obj))) ||
|
|
3726 (DEVICEP (obj) && !DEVICE_LIVE_P (XDEVICE (obj))) ||
|
|
3727 (CONSOLEP (obj) && !CONSOLE_LIVE_P (XCONSOLE (obj))) ||
|
|
3728 (EVENTP (obj) && !EVENT_LIVE_P (XEVENT (obj))) ||
|
|
3729 (EXTENTP (obj) && !EXTENT_LIVE_P (XEXTENT (obj))));
|
|
3730 }
|
|
3731
|
|
3732 #ifdef MEMORY_USAGE_STATS
|
|
3733
|
|
3734 /* Attempt to determine the actual amount of space that is used for
|
|
3735 the block allocated starting at PTR, supposedly of size "CLAIMED_SIZE".
|
|
3736
|
|
3737 It seems that the following holds:
|
|
3738
|
|
3739 1. When using the old allocator (malloc.c):
|
|
3740
|
|
3741 -- blocks are always allocated in chunks of powers of two. For
|
|
3742 each block, there is an overhead of 8 bytes if rcheck is not
|
|
3743 defined, 20 bytes if it is defined. In other words, a
|
|
3744 one-byte allocation needs 8 bytes of overhead for a total of
|
|
3745 9 bytes, and needs to have 16 bytes of memory chunked out for
|
|
3746 it.
|
|
3747
|
|
3748 2. When using the new allocator (gmalloc.c):
|
|
3749
|
|
3750 -- blocks are always allocated in chunks of powers of two up
|
|
3751 to 4096 bytes. Larger blocks are allocated in chunks of
|
|
3752 an integral multiple of 4096 bytes. The minimum block
|
|
3753 size is 2*sizeof (void *), or 16 bytes if SUNOS_LOCALTIME_BUG
|
|
3754 is defined. There is no per-block overhead, but there
|
|
3755 is an overhead of 3*sizeof (size_t) for each 4096 bytes
|
|
3756 allocated.
|
|
3757
|
|
3758 3. When using the system malloc, anything goes, but they are
|
|
3759 generally slower and more space-efficient than the GNU
|
|
3760 allocators. One possibly reasonable assumption to make
|
|
3761 for want of better data is that sizeof (void *), or maybe
|
|
3762 2 * sizeof (void *), is required as overhead and that
|
|
3763 blocks are allocated in the minimum required size except
|
|
3764 that some minimum block size is imposed (e.g. 16 bytes). */
|
|
3765
|
|
3766 size_t
|
|
3767 malloced_storage_size (void *ptr, size_t claimed_size,
|
|
3768 struct overhead_stats *stats)
|
|
3769 {
|
|
3770 size_t orig_claimed_size = claimed_size;
|
|
3771
|
|
3772 #ifdef GNU_MALLOC
|
|
3773
|
|
3774 if (claimed_size < 2 * sizeof (void *))
|
|
3775 claimed_size = 2 * sizeof (void *);
|
|
3776 # ifdef SUNOS_LOCALTIME_BUG
|
|
3777 if (claimed_size < 16)
|
|
3778 claimed_size = 16;
|
|
3779 # endif
|
|
3780 if (claimed_size < 4096)
|
|
3781 {
|
|
3782 int log = 1;
|
|
3783
|
|
3784 /* compute the log base two, more or less, then use it to compute
|
|
3785 the block size needed. */
|
|
3786 claimed_size--;
|
|
3787 /* It's big, it's heavy, it's wood! */
|
|
3788 while ((claimed_size /= 2) != 0)
|
|
3789 ++log;
|
|
3790 claimed_size = 1;
|
|
3791 /* It's better than bad, it's good! */
|
|
3792 while (log > 0)
|
|
3793 {
|
|
3794 claimed_size *= 2;
|
|
3795 log--;
|
|
3796 }
|
|
3797 /* We have to come up with some average about the amount of
|
|
3798 blocks used. */
|
|
3799 if ((size_t) (rand () & 4095) < claimed_size)
|
|
3800 claimed_size += 3 * sizeof (void *);
|
|
3801 }
|
|
3802 else
|
|
3803 {
|
|
3804 claimed_size += 4095;
|
|
3805 claimed_size &= ~4095;
|
|
3806 claimed_size += (claimed_size / 4096) * 3 * sizeof (size_t);
|
|
3807 }
|
|
3808
|
|
3809 #elif defined (SYSTEM_MALLOC)
|
|
3810
|
|
3811 if (claimed_size < 16)
|
|
3812 claimed_size = 16;
|
|
3813 claimed_size += 2 * sizeof (void *);
|
|
3814
|
|
3815 #else /* old GNU allocator */
|
|
3816
|
|
3817 # ifdef rcheck /* #### may not be defined here */
|
|
3818 claimed_size += 20;
|
|
3819 # else
|
|
3820 claimed_size += 8;
|
|
3821 # endif
|
|
3822 {
|
|
3823 int log = 1;
|
|
3824
|
|
3825 /* compute the log base two, more or less, then use it to compute
|
|
3826 the block size needed. */
|
|
3827 claimed_size--;
|
|
3828 /* It's big, it's heavy, it's wood! */
|
|
3829 while ((claimed_size /= 2) != 0)
|
|
3830 ++log;
|
|
3831 claimed_size = 1;
|
|
3832 /* It's better than bad, it's good! */
|
|
3833 while (log > 0)
|
|
3834 {
|
|
3835 claimed_size *= 2;
|
|
3836 log--;
|
|
3837 }
|
|
3838 }
|
|
3839
|
|
3840 #endif /* old GNU allocator */
|
|
3841
|
|
3842 if (stats)
|
|
3843 {
|
|
3844 stats->was_requested += orig_claimed_size;
|
|
3845 stats->malloc_overhead += claimed_size - orig_claimed_size;
|
|
3846 }
|
|
3847 return claimed_size;
|
|
3848 }
|
|
3849
|
|
3850 size_t
|
|
3851 fixed_type_block_overhead (size_t size)
|
|
3852 {
|
|
3853 size_t per_block = TYPE_ALLOC_SIZE (cons, unsigned char);
|
|
3854 size_t overhead = 0;
|
|
3855 size_t storage_size = malloced_storage_size (0, per_block, 0);
|
|
3856 while (size >= per_block)
|
|
3857 {
|
|
3858 size -= per_block;
|
|
3859 overhead += sizeof (void *) + per_block - storage_size;
|
|
3860 }
|
|
3861 if (rand () % per_block < size)
|
|
3862 overhead += sizeof (void *) + per_block - storage_size;
|
|
3863 return overhead;
|
|
3864 }
|
|
3865
|
|
3866 #endif /* MEMORY_USAGE_STATS */
|
|
3867
|
|
3868
|
|
3869 /* Initialization */
|
|
3870 void
|
|
3871 reinit_alloc_once_early (void)
|
|
3872 {
|
|
3873 gc_generation_number[0] = 0;
|
|
3874 breathing_space = 0;
|
|
3875 XSETINT (all_bit_vectors, 0); /* Qzero may not be set yet. */
|
|
3876 XSETINT (Vgc_message, 0);
|
|
3877 all_lcrecords = 0;
|
|
3878 ignore_malloc_warnings = 1;
|
|
3879 #ifdef DOUG_LEA_MALLOC
|
|
3880 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
|
|
3881 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
|
|
3882 #if 0 /* Moved to emacs.c */
|
|
3883 mallopt (M_MMAP_MAX, 64); /* max. number of mmap'ed areas */
|
|
3884 #endif
|
|
3885 #endif
|
|
3886 init_string_alloc ();
|
|
3887 init_string_chars_alloc ();
|
|
3888 init_cons_alloc ();
|
|
3889 init_symbol_alloc ();
|
|
3890 init_compiled_function_alloc ();
|
|
3891 #ifdef LISP_FLOAT_TYPE
|
|
3892 init_float_alloc ();
|
|
3893 #endif /* LISP_FLOAT_TYPE */
|
|
3894 init_marker_alloc ();
|
|
3895 init_extent_alloc ();
|
|
3896 init_event_alloc ();
|
|
3897
|
|
3898 ignore_malloc_warnings = 0;
|
|
3899
|
|
3900 staticidx_nodump = 0;
|
|
3901 dumpstructidx = 0;
|
|
3902 pdump_wireidx = 0;
|
|
3903
|
|
3904 consing_since_gc = 0;
|
|
3905 #if 1
|
|
3906 gc_cons_threshold = 500000; /* XEmacs change */
|
|
3907 #else
|
|
3908 gc_cons_threshold = 15000; /* debugging */
|
|
3909 #endif
|
|
3910 lrecord_uid_counter = 259;
|
|
3911 debug_string_purity = 0;
|
|
3912 gcprolist = 0;
|
|
3913
|
|
3914 gc_currently_forbidden = 0;
|
|
3915 gc_hooks_inhibited = 0;
|
|
3916
|
|
3917 #ifdef ERROR_CHECK_TYPECHECK
|
|
3918 ERROR_ME.really_unlikely_name_to_have_accidentally_in_a_non_errb_structure =
|
|
3919 666;
|
|
3920 ERROR_ME_NOT.
|
|
3921 really_unlikely_name_to_have_accidentally_in_a_non_errb_structure = 42;
|
|
3922 ERROR_ME_WARN.
|
|
3923 really_unlikely_name_to_have_accidentally_in_a_non_errb_structure =
|
|
3924 3333632;
|
|
3925 #endif /* ERROR_CHECK_TYPECHECK */
|
|
3926 }
|
|
3927
|
|
3928 void
|
|
3929 init_alloc_once_early (void)
|
|
3930 {
|
|
3931 reinit_alloc_once_early ();
|
|
3932
|
442
|
3933 {
|
|
3934 int i;
|
|
3935 for (i = 0; i < countof (lrecord_implementations_table); i++)
|
|
3936 lrecord_implementations_table[i] = 0;
|
|
3937 }
|
|
3938
|
|
3939 INIT_LRECORD_IMPLEMENTATION (cons);
|
|
3940 INIT_LRECORD_IMPLEMENTATION (vector);
|
|
3941 INIT_LRECORD_IMPLEMENTATION (string);
|
|
3942 INIT_LRECORD_IMPLEMENTATION (lcrecord_list);
|
428
|
3943
|
|
3944 staticidx = 0;
|
|
3945 }
|
|
3946
|
|
3947 int pure_bytes_used = 0;
|
|
3948
|
|
3949 void
|
|
3950 reinit_alloc (void)
|
|
3951 {
|
|
3952 gcprolist = 0;
|
|
3953 }
|
|
3954
|
|
3955 void
|
|
3956 syms_of_alloc (void)
|
|
3957 {
|
442
|
3958 DEFSYMBOL (Qpre_gc_hook);
|
|
3959 DEFSYMBOL (Qpost_gc_hook);
|
|
3960 DEFSYMBOL (Qgarbage_collecting);
|
428
|
3961
|
|
3962 DEFSUBR (Fcons);
|
|
3963 DEFSUBR (Flist);
|
|
3964 DEFSUBR (Fvector);
|
|
3965 DEFSUBR (Fbit_vector);
|
|
3966 DEFSUBR (Fmake_byte_code);
|
|
3967 DEFSUBR (Fmake_list);
|
|
3968 DEFSUBR (Fmake_vector);
|
|
3969 DEFSUBR (Fmake_bit_vector);
|
|
3970 DEFSUBR (Fmake_string);
|
|
3971 DEFSUBR (Fstring);
|
|
3972 DEFSUBR (Fmake_symbol);
|
|
3973 DEFSUBR (Fmake_marker);
|
|
3974 DEFSUBR (Fpurecopy);
|
|
3975 DEFSUBR (Fgarbage_collect);
|
440
|
3976 #if 0
|
428
|
3977 DEFSUBR (Fmemory_limit);
|
440
|
3978 #endif
|
428
|
3979 DEFSUBR (Fconsing_since_gc);
|
|
3980 }
|
|
3981
|
|
3982 void
|
|
3983 vars_of_alloc (void)
|
|
3984 {
|
|
3985 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold /*
|
|
3986 *Number of bytes of consing between garbage collections.
|
|
3987 \"Consing\" is a misnomer in that this actually counts allocation
|
|
3988 of all different kinds of objects, not just conses.
|
|
3989 Garbage collection can happen automatically once this many bytes have been
|
|
3990 allocated since the last garbage collection. All data types count.
|
|
3991
|
|
3992 Garbage collection happens automatically when `eval' or `funcall' are
|
|
3993 called. (Note that `funcall' is called implicitly as part of evaluation.)
|
|
3994 By binding this temporarily to a large number, you can effectively
|
|
3995 prevent garbage collection during a part of the program.
|
|
3996
|
|
3997 See also `consing-since-gc'.
|
|
3998 */ );
|
|
3999
|
|
4000 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used /*
|
|
4001 Number of bytes of sharable Lisp data allocated so far.
|
|
4002 */ );
|
|
4003
|
|
4004 #ifdef DEBUG_XEMACS
|
|
4005 DEFVAR_INT ("debug-allocation", &debug_allocation /*
|
|
4006 If non-zero, print out information to stderr about all objects allocated.
|
|
4007 See also `debug-allocation-backtrace-length'.
|
|
4008 */ );
|
|
4009 debug_allocation = 0;
|
|
4010
|
|
4011 DEFVAR_INT ("debug-allocation-backtrace-length",
|
|
4012 &debug_allocation_backtrace_length /*
|
|
4013 Length (in stack frames) of short backtrace printed out by `debug-allocation'.
|
|
4014 */ );
|
|
4015 debug_allocation_backtrace_length = 2;
|
|
4016 #endif
|
|
4017
|
|
4018 DEFVAR_BOOL ("purify-flag", &purify_flag /*
|
|
4019 Non-nil means loading Lisp code in order to dump an executable.
|
|
4020 This means that certain objects should be allocated in readonly space.
|
|
4021 */ );
|
|
4022
|
|
4023 DEFVAR_LISP ("pre-gc-hook", &Vpre_gc_hook /*
|
|
4024 Function or functions to be run just before each garbage collection.
|
|
4025 Interrupts, garbage collection, and errors are inhibited while this hook
|
|
4026 runs, so be extremely careful in what you add here. In particular, avoid
|
|
4027 consing, and do not interact with the user.
|
|
4028 */ );
|
|
4029 Vpre_gc_hook = Qnil;
|
|
4030
|
|
4031 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook /*
|
|
4032 Function or functions to be run just after each garbage collection.
|
|
4033 Interrupts, garbage collection, and errors are inhibited while this hook
|
|
4034 runs, so be extremely careful in what you add here. In particular, avoid
|
|
4035 consing, and do not interact with the user.
|
|
4036 */ );
|
|
4037 Vpost_gc_hook = Qnil;
|
|
4038
|
|
4039 DEFVAR_LISP ("gc-message", &Vgc_message /*
|
|
4040 String to print to indicate that a garbage collection is in progress.
|
|
4041 This is printed in the echo area. If the selected frame is on a
|
|
4042 window system and `gc-pointer-glyph' specifies a value (i.e. a pointer
|
|
4043 image instance) in the domain of the selected frame, the mouse pointer
|
|
4044 will change instead of this message being printed.
|
|
4045 */ );
|
|
4046 Vgc_message = build_string (gc_default_message);
|
|
4047
|
|
4048 DEFVAR_LISP ("gc-pointer-glyph", &Vgc_pointer_glyph /*
|
|
4049 Pointer glyph used to indicate that a garbage collection is in progress.
|
|
4050 If the selected window is on a window system and this glyph specifies a
|
|
4051 value (i.e. a pointer image instance) in the domain of the selected
|
|
4052 window, the pointer will be changed as specified during garbage collection.
|
|
4053 Otherwise, a message will be printed in the echo area, as controlled
|
|
4054 by `gc-message'.
|
|
4055 */ );
|
|
4056 }
|
|
4057
|
|
4058 void
|
|
4059 complex_vars_of_alloc (void)
|
|
4060 {
|
|
4061 Vgc_pointer_glyph = Fmake_glyph_internal (Qpointer);
|
|
4062 }
|