Mercurial > hg > xemacs-beta
annotate src/mule-ccl.c @ 4742:4cf435fcebbc
Make #'letf not error if handed a #'values form.
lisp/ChangeLog addition:
2009-11-14 Aidan Kehoe <kehoea@parhasard.net>
* cl-macs.el (letf):
Check whether arguments to #'values are bound, and make them
unbound after evaluating BODY; document the limitations of this
macro.
tests/ChangeLog addition:
2009-11-14 Aidan Kehoe <kehoea@parhasard.net>
* automated/lisp-tests.el:
Don't call Known-Bug-Expect-Failure now that the particular letf
bug it tickled is fixed.
| author | Aidan Kehoe <kehoea@parhasard.net> |
|---|---|
| date | Sat, 14 Nov 2009 11:43:09 +0000 |
| parents | d64f1060cd65 |
| children | 0c54de4c4b9d |
| rev | line source |
|---|---|
| 428 | 1 /* CCL (Code Conversion Language) interpreter. |
| 444 | 2 Copyright (C) 1995, 1997 Electrotechnical Laboratory, JAPAN. |
| 826 | 3 Copyright (C) 2002 Ben Wing. |
| 428 | 4 Licensed to the Free Software Foundation. |
| 5 | |
| 613 | 6 This file is part of XEmacs. |
| 428 | 7 |
| 613 | 8 XEmacs is free software; you can redistribute it and/or modify |
| 428 | 9 it under the terms of the GNU General Public License as published by |
| 10 the Free Software Foundation; either version 2, or (at your option) | |
| 11 any later version. | |
| 12 | |
| 613 | 13 XEmacs is distributed in the hope that it will be useful, |
| 428 | 14 but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
| 16 GNU General Public License for more details. | |
| 17 | |
| 18 You should have received a copy of the GNU General Public License | |
| 613 | 19 along with XEmacs; see the file COPYING. If not, write to |
| 428 | 20 the Free Software Foundation, Inc., 59 Temple Place - Suite 330, |
| 21 Boston, MA 02111-1307, USA. */ | |
| 22 | |
| 444 | 23 /* Synched up with : FSF Emacs 21.0.90 except TranslateCharacter */ |
| 428 | 24 |
| 25 #include <config.h> | |
| 771 | 26 #include "lisp.h" |
| 444 | 27 |
| 428 | 28 #include "buffer.h" |
| 771 | 29 #include "charset.h" |
| 428 | 30 #include "mule-ccl.h" |
| 31 #include "file-coding.h" | |
| 4072 | 32 #include "elhash.h" |
| 428 | 33 |
| 565 | 34 Lisp_Object Qccl_error; |
| 35 | |
| 428 | 36 /* This contains all code conversion map available to CCL. */ |
| 37 Lisp_Object Vcode_conversion_map_vector; | |
| 38 | |
| 444 | 39 /* This symbol is a property which associates with ccl program vector. |
| 3452 | 40 Ex: (get 'ccl-big5-encoder 'ccl-program) returns ccl program vector. |
| 41 Moved to general-slots.h. */ | |
| 42 /* Lisp_Object Qccl_program; */ | |
| 428 | 43 |
| 44 /* These symbols are properties which associate with code conversion | |
| 45 map and their ID respectively. */ | |
| 46 Lisp_Object Qcode_conversion_map; | |
| 47 Lisp_Object Qcode_conversion_map_id; | |
| 48 | |
| 49 /* Symbols of ccl program have this property, a value of the property | |
| 444 | 50 is an index for Vccl_program_table. */ |
| 428 | 51 Lisp_Object Qccl_program_idx; |
| 52 | |
| 444 | 53 /* Table of registered CCL programs. Each element is a vector of |
| 54 NAME, CCL_PROG, and RESOLVEDP where NAME (symbol) is the name of | |
| 55 the program, CCL_PROG (vector) is the compiled code of the program, | |
| 56 RESOLVEDP (t or nil) is the flag to tell if symbols in CCL_PROG is | |
| 57 already resolved to index numbers or not. */ | |
| 428 | 58 Lisp_Object Vccl_program_table; |
| 59 | |
| 4072 | 60 /* Vector of registered hash tables for translation. */ |
| 61 Lisp_Object Vtranslation_hash_table_vector; | |
| 62 | |
| 63 /* Return a hash table of id number ID. */ | |
| 64 #define GET_HASH_TABLE(id) \ | |
| 65 (XHASH_TABLE (XCDR(XVECTOR(Vtranslation_hash_table_vector)->contents[(id)]))) | |
| 66 /* Copied from fns.c. */ | |
| 67 #define HASH_VALUE(H, IDX) AREF ((H)->key_and_value, 2 * (IDX) + 1) | |
| 68 | |
| 428 | 69 /* CCL (Code Conversion Language) is a simple language which has |
| 70 operations on one input buffer, one output buffer, and 7 registers. | |
| 71 The syntax of CCL is described in `ccl.el'. Emacs Lisp function | |
| 72 `ccl-compile' compiles a CCL program and produces a CCL code which | |
| 73 is a vector of integers. The structure of this vector is as | |
| 74 follows: The 1st element: buffer-magnification, a factor for the | |
| 75 size of output buffer compared with the size of input buffer. The | |
| 76 2nd element: address of CCL code to be executed when encountered | |
| 77 with end of input stream. The 3rd and the remaining elements: CCL | |
| 78 codes. */ | |
| 79 | |
| 80 /* Header of CCL compiled code */ | |
| 81 #define CCL_HEADER_BUF_MAG 0 | |
| 82 #define CCL_HEADER_EOF 1 | |
| 83 #define CCL_HEADER_MAIN 2 | |
| 84 | |
| 85 /* CCL code is a sequence of 28-bit non-negative integers (i.e. the | |
| 86 MSB is always 0), each contains CCL command and/or arguments in the | |
| 87 following format: | |
| 88 | |
| 89 |----------------- integer (28-bit) ------------------| | |
| 90 |------- 17-bit ------|- 3-bit --|- 3-bit --|- 5-bit -| | |
| 91 |--constant argument--|-register-|-register-|-command-| | |
| 92 ccccccccccccccccc RRR rrr XXXXX | |
| 93 or | |
| 94 |------- relative address -------|-register-|-command-| | |
| 95 cccccccccccccccccccc rrr XXXXX | |
| 96 or | |
| 97 |------------- constant or other args ----------------| | |
| 98 cccccccccccccccccccccccccccc | |
| 99 | |
| 100 where, `cc...c' is a non-negative integer indicating constant value | |
| 101 (the left most `c' is always 0) or an absolute jump address, `RRR' | |
| 102 and `rrr' are CCL register number, `XXXXX' is one of the following | |
| 103 CCL commands. */ | |
| 104 | |
| 105 /* CCL commands | |
| 106 | |
| 107 Each comment fields shows one or more lines for command syntax and | |
| 108 the following lines for semantics of the command. In semantics, IC | |
| 109 stands for Instruction Counter. */ | |
| 110 | |
| 111 #define CCL_SetRegister 0x00 /* Set register a register value: | |
| 112 1:00000000000000000RRRrrrXXXXX | |
| 113 ------------------------------ | |
| 114 reg[rrr] = reg[RRR]; | |
| 115 */ | |
| 116 | |
| 117 #define CCL_SetShortConst 0x01 /* Set register a short constant value: | |
| 118 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX | |
| 119 ------------------------------ | |
| 120 reg[rrr] = CCCCCCCCCCCCCCCCCCC; | |
| 121 */ | |
| 122 | |
| 123 #define CCL_SetConst 0x02 /* Set register a constant value: | |
| 124 1:00000000000000000000rrrXXXXX | |
| 125 2:CONSTANT | |
| 126 ------------------------------ | |
| 127 reg[rrr] = CONSTANT; | |
| 128 IC++; | |
| 129 */ | |
| 130 | |
| 131 #define CCL_SetArray 0x03 /* Set register an element of array: | |
| 132 1:CCCCCCCCCCCCCCCCCRRRrrrXXXXX | |
| 133 2:ELEMENT[0] | |
| 134 3:ELEMENT[1] | |
| 135 ... | |
| 136 ------------------------------ | |
| 137 if (0 <= reg[RRR] < CC..C) | |
| 138 reg[rrr] = ELEMENT[reg[RRR]]; | |
| 139 IC += CC..C; | |
| 140 */ | |
| 141 | |
| 142 #define CCL_Jump 0x04 /* Jump: | |
| 143 1:A--D--D--R--E--S--S-000XXXXX | |
| 144 ------------------------------ | |
| 145 IC += ADDRESS; | |
| 146 */ | |
| 147 | |
| 148 /* Note: If CC..C is greater than 0, the second code is omitted. */ | |
| 149 | |
| 150 #define CCL_JumpCond 0x05 /* Jump conditional: | |
| 151 1:A--D--D--R--E--S--S-rrrXXXXX | |
| 152 ------------------------------ | |
| 153 if (!reg[rrr]) | |
| 154 IC += ADDRESS; | |
| 155 */ | |
| 156 | |
| 157 | |
| 158 #define CCL_WriteRegisterJump 0x06 /* Write register and jump: | |
| 159 1:A--D--D--R--E--S--S-rrrXXXXX | |
| 160 ------------------------------ | |
| 161 write (reg[rrr]); | |
| 162 IC += ADDRESS; | |
| 163 */ | |
| 164 | |
| 165 #define CCL_WriteRegisterReadJump 0x07 /* Write register, read, and jump: | |
| 166 1:A--D--D--R--E--S--S-rrrXXXXX | |
| 167 2:A--D--D--R--E--S--S-rrrYYYYY | |
| 168 ----------------------------- | |
| 169 write (reg[rrr]); | |
| 170 IC++; | |
| 171 read (reg[rrr]); | |
| 172 IC += ADDRESS; | |
| 173 */ | |
| 174 /* Note: If read is suspended, the resumed execution starts from the | |
| 175 second code (YYYYY == CCL_ReadJump). */ | |
| 176 | |
| 177 #define CCL_WriteConstJump 0x08 /* Write constant and jump: | |
| 178 1:A--D--D--R--E--S--S-000XXXXX | |
| 444 | 179 2:CONST |
| 428 | 180 ------------------------------ |
| 444 | 181 write (CONST); |
| 428 | 182 IC += ADDRESS; |
| 183 */ | |
| 184 | |
| 185 #define CCL_WriteConstReadJump 0x09 /* Write constant, read, and jump: | |
| 186 1:A--D--D--R--E--S--S-rrrXXXXX | |
| 444 | 187 2:CONST |
| 428 | 188 3:A--D--D--R--E--S--S-rrrYYYYY |
| 189 ----------------------------- | |
| 444 | 190 write (CONST); |
| 428 | 191 IC += 2; |
| 192 read (reg[rrr]); | |
| 193 IC += ADDRESS; | |
| 194 */ | |
| 195 /* Note: If read is suspended, the resumed execution starts from the | |
| 196 second code (YYYYY == CCL_ReadJump). */ | |
| 197 | |
| 198 #define CCL_WriteStringJump 0x0A /* Write string and jump: | |
| 199 1:A--D--D--R--E--S--S-000XXXXX | |
| 200 2:LENGTH | |
| 201 3:0000STRIN[0]STRIN[1]STRIN[2] | |
| 202 ... | |
| 203 ------------------------------ | |
| 204 write_string (STRING, LENGTH); | |
| 205 IC += ADDRESS; | |
| 206 */ | |
| 207 | |
| 208 #define CCL_WriteArrayReadJump 0x0B /* Write an array element, read, and jump: | |
| 209 1:A--D--D--R--E--S--S-rrrXXXXX | |
| 210 2:LENGTH | |
| 211 3:ELEMENET[0] | |
| 212 4:ELEMENET[1] | |
| 213 ... | |
| 214 N:A--D--D--R--E--S--S-rrrYYYYY | |
| 215 ------------------------------ | |
| 216 if (0 <= reg[rrr] < LENGTH) | |
| 217 write (ELEMENT[reg[rrr]]); | |
| 218 IC += LENGTH + 2; (... pointing at N+1) | |
| 219 read (reg[rrr]); | |
| 220 IC += ADDRESS; | |
| 221 */ | |
| 222 /* Note: If read is suspended, the resumed execution starts from the | |
| 223 Nth code (YYYYY == CCL_ReadJump). */ | |
| 224 | |
| 225 #define CCL_ReadJump 0x0C /* Read and jump: | |
| 226 1:A--D--D--R--E--S--S-rrrYYYYY | |
| 227 ----------------------------- | |
| 228 read (reg[rrr]); | |
| 229 IC += ADDRESS; | |
| 230 */ | |
| 231 | |
| 232 #define CCL_Branch 0x0D /* Jump by branch table: | |
| 233 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX | |
| 234 2:A--D--D--R--E-S-S[0]000XXXXX | |
| 235 3:A--D--D--R--E-S-S[1]000XXXXX | |
| 236 ... | |
| 237 ------------------------------ | |
| 238 if (0 <= reg[rrr] < CC..C) | |
| 239 IC += ADDRESS[reg[rrr]]; | |
| 240 else | |
| 241 IC += ADDRESS[CC..C]; | |
| 242 */ | |
| 243 | |
| 244 #define CCL_ReadRegister 0x0E /* Read bytes into registers: | |
| 245 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX | |
| 246 2:CCCCCCCCCCCCCCCCCCCCrrrXXXXX | |
| 247 ... | |
| 248 ------------------------------ | |
| 249 while (CCC--) | |
| 250 read (reg[rrr]); | |
| 251 */ | |
| 252 | |
| 253 #define CCL_WriteExprConst 0x0F /* write result of expression: | |
| 254 1:00000OPERATION000RRR000XXXXX | |
| 255 2:CONSTANT | |
| 256 ------------------------------ | |
| 257 write (reg[RRR] OPERATION CONSTANT); | |
| 258 IC++; | |
| 259 */ | |
| 260 | |
| 261 /* Note: If the Nth read is suspended, the resumed execution starts | |
| 262 from the Nth code. */ | |
| 263 | |
| 264 #define CCL_ReadBranch 0x10 /* Read one byte into a register, | |
| 265 and jump by branch table: | |
| 266 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX | |
| 267 2:A--D--D--R--E-S-S[0]000XXXXX | |
| 268 3:A--D--D--R--E-S-S[1]000XXXXX | |
| 269 ... | |
| 270 ------------------------------ | |
| 271 read (read[rrr]); | |
| 272 if (0 <= reg[rrr] < CC..C) | |
| 273 IC += ADDRESS[reg[rrr]]; | |
| 274 else | |
| 275 IC += ADDRESS[CC..C]; | |
| 276 */ | |
| 277 | |
| 278 #define CCL_WriteRegister 0x11 /* Write registers: | |
| 279 1:CCCCCCCCCCCCCCCCCCCrrrXXXXX | |
| 280 2:CCCCCCCCCCCCCCCCCCCrrrXXXXX | |
| 281 ... | |
| 282 ------------------------------ | |
| 283 while (CCC--) | |
| 284 write (reg[rrr]); | |
| 285 ... | |
| 286 */ | |
| 287 | |
| 288 /* Note: If the Nth write is suspended, the resumed execution | |
| 289 starts from the Nth code. */ | |
| 290 | |
| 291 #define CCL_WriteExprRegister 0x12 /* Write result of expression | |
| 292 1:00000OPERATIONRrrRRR000XXXXX | |
| 293 ------------------------------ | |
| 294 write (reg[RRR] OPERATION reg[Rrr]); | |
| 295 */ | |
| 296 | |
| 297 #define CCL_Call 0x13 /* Call the CCL program whose ID is | |
| 444 | 298 CC..C or cc..c. |
| 299 1:CCCCCCCCCCCCCCCCCCCCFFFXXXXX | |
| 300 [2:00000000cccccccccccccccccccc] | |
| 428 | 301 ------------------------------ |
| 444 | 302 if (FFF) |
| 303 call (cc..c) | |
| 304 IC++; | |
| 305 else | |
| 306 call (CC..C) | |
| 428 | 307 */ |
| 308 | |
| 309 #define CCL_WriteConstString 0x14 /* Write a constant or a string: | |
| 310 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX | |
| 311 [2:0000STRIN[0]STRIN[1]STRIN[2]] | |
| 312 [...] | |
| 313 ----------------------------- | |
| 314 if (!rrr) | |
| 315 write (CC..C) | |
| 316 else | |
| 317 write_string (STRING, CC..C); | |
| 318 IC += (CC..C + 2) / 3; | |
| 319 */ | |
| 320 | |
| 321 #define CCL_WriteArray 0x15 /* Write an element of array: | |
| 322 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX | |
| 323 2:ELEMENT[0] | |
| 324 3:ELEMENT[1] | |
| 325 ... | |
| 326 ------------------------------ | |
| 327 if (0 <= reg[rrr] < CC..C) | |
| 328 write (ELEMENT[reg[rrr]]); | |
| 329 IC += CC..C; | |
| 330 */ | |
| 331 | |
| 332 #define CCL_End 0x16 /* Terminate: | |
| 333 1:00000000000000000000000XXXXX | |
| 334 ------------------------------ | |
| 335 terminate (); | |
| 336 */ | |
| 337 | |
| 338 /* The following two codes execute an assignment arithmetic/logical | |
| 339 operation. The form of the operation is like REG OP= OPERAND. */ | |
| 340 | |
| 341 #define CCL_ExprSelfConst 0x17 /* REG OP= constant: | |
| 342 1:00000OPERATION000000rrrXXXXX | |
| 343 2:CONSTANT | |
| 344 ------------------------------ | |
| 345 reg[rrr] OPERATION= CONSTANT; | |
| 346 */ | |
| 347 | |
| 348 #define CCL_ExprSelfReg 0x18 /* REG1 OP= REG2: | |
| 349 1:00000OPERATION000RRRrrrXXXXX | |
| 350 ------------------------------ | |
| 351 reg[rrr] OPERATION= reg[RRR]; | |
| 352 */ | |
| 353 | |
| 354 /* The following codes execute an arithmetic/logical operation. The | |
| 355 form of the operation is like REG_X = REG_Y OP OPERAND2. */ | |
| 356 | |
| 357 #define CCL_SetExprConst 0x19 /* REG_X = REG_Y OP constant: | |
| 358 1:00000OPERATION000RRRrrrXXXXX | |
| 359 2:CONSTANT | |
| 360 ------------------------------ | |
| 361 reg[rrr] = reg[RRR] OPERATION CONSTANT; | |
| 362 IC++; | |
| 363 */ | |
| 364 | |
| 365 #define CCL_SetExprReg 0x1A /* REG1 = REG2 OP REG3: | |
| 366 1:00000OPERATIONRrrRRRrrrXXXXX | |
| 367 ------------------------------ | |
| 368 reg[rrr] = reg[RRR] OPERATION reg[Rrr]; | |
| 369 */ | |
| 370 | |
| 371 #define CCL_JumpCondExprConst 0x1B /* Jump conditional according to | |
| 372 an operation on constant: | |
| 373 1:A--D--D--R--E--S--S-rrrXXXXX | |
| 374 2:OPERATION | |
| 375 3:CONSTANT | |
| 376 ----------------------------- | |
| 377 reg[7] = reg[rrr] OPERATION CONSTANT; | |
| 378 if (!(reg[7])) | |
| 379 IC += ADDRESS; | |
| 380 else | |
| 381 IC += 2 | |
| 382 */ | |
| 383 | |
| 384 #define CCL_JumpCondExprReg 0x1C /* Jump conditional according to | |
| 385 an operation on register: | |
| 386 1:A--D--D--R--E--S--S-rrrXXXXX | |
| 387 2:OPERATION | |
| 388 3:RRR | |
| 389 ----------------------------- | |
| 390 reg[7] = reg[rrr] OPERATION reg[RRR]; | |
| 391 if (!reg[7]) | |
| 392 IC += ADDRESS; | |
| 393 else | |
| 394 IC += 2; | |
| 395 */ | |
| 396 | |
| 397 #define CCL_ReadJumpCondExprConst 0x1D /* Read and jump conditional according | |
| 398 to an operation on constant: | |
| 399 1:A--D--D--R--E--S--S-rrrXXXXX | |
| 400 2:OPERATION | |
| 401 3:CONSTANT | |
| 402 ----------------------------- | |
| 403 read (reg[rrr]); | |
| 404 reg[7] = reg[rrr] OPERATION CONSTANT; | |
| 405 if (!reg[7]) | |
| 406 IC += ADDRESS; | |
| 407 else | |
| 408 IC += 2; | |
| 409 */ | |
| 410 | |
| 411 #define CCL_ReadJumpCondExprReg 0x1E /* Read and jump conditional according | |
| 412 to an operation on register: | |
| 413 1:A--D--D--R--E--S--S-rrrXXXXX | |
| 414 2:OPERATION | |
| 415 3:RRR | |
| 416 ----------------------------- | |
| 417 read (reg[rrr]); | |
| 418 reg[7] = reg[rrr] OPERATION reg[RRR]; | |
| 419 if (!reg[7]) | |
| 420 IC += ADDRESS; | |
| 421 else | |
| 422 IC += 2; | |
| 423 */ | |
| 424 | |
| 456 | 425 #define CCL_Extension 0x1F /* Extended CCL code |
| 428 | 426 1:ExtendedCOMMNDRrrRRRrrrXXXXX |
| 444 | 427 2:ARGUMENT |
| 428 | 428 3:... |
| 429 ------------------------------ | |
| 430 extended_command (rrr,RRR,Rrr,ARGS) | |
| 431 */ | |
| 432 | |
| 442 | 433 /* |
| 428 | 434 Here after, Extended CCL Instructions. |
| 435 Bit length of extended command is 14. | |
| 436 Therefore, the instruction code range is 0..16384(0x3fff). | |
| 437 */ | |
| 438 | |
| 439 /* Read a multibyte characeter. | |
| 440 A code point is stored into reg[rrr]. A charset ID is stored into | |
| 441 reg[RRR]. */ | |
| 442 | |
| 443 #define CCL_ReadMultibyteChar2 0x00 /* Read Multibyte Character | |
| 444 1:ExtendedCOMMNDRrrRRRrrrXXXXX */ | |
| 445 | |
| 446 /* Write a multibyte character. | |
| 447 Write a character whose code point is reg[rrr] and the charset ID | |
| 448 is reg[RRR]. */ | |
| 449 | |
| 450 #define CCL_WriteMultibyteChar2 0x01 /* Write Multibyte Character | |
| 451 1:ExtendedCOMMNDRrrRRRrrrXXXXX */ | |
| 452 | |
| 453 /* Translate a character whose code point is reg[rrr] and the charset | |
| 454 ID is reg[RRR] by a translation table whose ID is reg[Rrr]. | |
| 455 | |
| 456 A translated character is set in reg[rrr] (code point) and reg[RRR] | |
| 457 (charset ID). */ | |
| 458 | |
| 459 #define CCL_TranslateCharacter 0x02 /* Translate a multibyte character | |
| 460 1:ExtendedCOMMNDRrrRRRrrrXXXXX */ | |
| 461 | |
| 462 /* Translate a character whose code point is reg[rrr] and the charset | |
| 463 ID is reg[RRR] by a translation table whose ID is ARGUMENT. | |
| 464 | |
| 465 A translated character is set in reg[rrr] (code point) and reg[RRR] | |
| 466 (charset ID). */ | |
| 467 | |
| 468 #define CCL_TranslateCharacterConstTbl 0x03 /* Translate a multibyte character | |
| 469 1:ExtendedCOMMNDRrrRRRrrrXXXXX | |
| 470 2:ARGUMENT(Translation Table ID) | |
| 471 */ | |
| 3439 | 472 /* Translate a character whose code point is reg[rrr] and charset ID is |
| 473 reg[RRR], into its Unicode code point, which will be written into | |
| 474 reg[rrr]. */ | |
| 475 | |
| 476 #define CCL_MuleToUnicode 0x04 | |
| 477 | |
| 478 /* Translate a Unicode code point, in reg[rrr], into a Mule character, | |
| 479 writing the charset ID into reg[RRR] and the code point into reg[Rrr]. */ | |
| 480 | |
| 481 #define CCL_UnicodeToMule 0x05 | |
| 428 | 482 |
| 483 /* Iterate looking up MAPs for reg[rrr] starting from the Nth (N = | |
| 484 reg[RRR]) MAP until some value is found. | |
| 485 | |
| 486 Each MAP is a Lisp vector whose element is number, nil, t, or | |
| 487 lambda. | |
| 488 If the element is nil, ignore the map and proceed to the next map. | |
| 489 If the element is t or lambda, finish without changing reg[rrr]. | |
| 490 If the element is a number, set reg[rrr] to the number and finish. | |
| 491 | |
| 444 | 492 Detail of the map structure is described in the comment for |
| 428 | 493 CCL_MapMultiple below. */ |
| 494 | |
| 495 #define CCL_IterateMultipleMap 0x10 /* Iterate multiple maps | |
| 496 1:ExtendedCOMMNDXXXRRRrrrXXXXX | |
| 497 2:NUMBER of MAPs | |
| 498 3:MAP-ID1 | |
| 499 4:MAP-ID2 | |
| 500 ... | |
| 442 | 501 */ |
| 428 | 502 |
| 503 /* Map the code in reg[rrr] by MAPs starting from the Nth (N = | |
| 504 reg[RRR]) map. | |
| 505 | |
| 506 MAPs are supplied in the succeeding CCL codes as follows: | |
| 507 | |
| 508 When CCL program gives this nested structure of map to this command: | |
| 509 ((MAP-ID11 | |
| 510 MAP-ID12 | |
| 511 (MAP-ID121 MAP-ID122 MAP-ID123) | |
| 512 MAP-ID13) | |
| 513 (MAP-ID21 | |
| 514 (MAP-ID211 (MAP-ID2111) MAP-ID212) | |
| 515 MAP-ID22)), | |
| 444 | 516 the compiled CCL code has this sequence: |
| 428 | 517 CCL_MapMultiple (CCL code of this command) |
| 518 16 (total number of MAPs and SEPARATORs) | |
| 519 -7 (1st SEPARATOR) | |
| 520 MAP-ID11 | |
| 521 MAP-ID12 | |
| 522 -3 (2nd SEPARATOR) | |
| 523 MAP-ID121 | |
| 524 MAP-ID122 | |
| 525 MAP-ID123 | |
| 526 MAP-ID13 | |
| 527 -7 (3rd SEPARATOR) | |
| 528 MAP-ID21 | |
| 529 -4 (4th SEPARATOR) | |
| 530 MAP-ID211 | |
| 531 -1 (5th SEPARATOR) | |
| 532 MAP_ID2111 | |
| 533 MAP-ID212 | |
| 534 MAP-ID22 | |
| 535 | |
| 536 A value of each SEPARATOR follows this rule: | |
| 537 MAP-SET := SEPARATOR [(MAP-ID | MAP-SET)]+ | |
| 538 SEPARATOR := -(number of MAP-IDs and SEPARATORs in the MAP-SET) | |
| 539 | |
| 540 (*)....Nest level of MAP-SET must not be over than MAX_MAP_SET_LEVEL. | |
| 541 | |
| 542 When some map fails to map (i.e. it doesn't have a value for | |
| 543 reg[rrr]), the mapping is treated as identity. | |
| 544 | |
| 545 The mapping is iterated for all maps in each map set (set of maps | |
| 546 separated by SEPARATOR) except in the case that lambda is | |
| 547 encountered. More precisely, the mapping proceeds as below: | |
| 548 | |
| 549 At first, VAL0 is set to reg[rrr], and it is translated by the | |
| 550 first map to VAL1. Then, VAL1 is translated by the next map to | |
| 551 VAL2. This mapping is iterated until the last map is used. The | |
| 444 | 552 result of the mapping is the last value of VAL?. When the mapping |
| 553 process reached to the end of the map set, it moves to the next | |
| 554 map set. If the next does not exit, the mapping process terminates, | |
| 555 and regard the last value as a result. | |
| 428 | 556 |
| 557 But, when VALm is mapped to VALn and VALn is not a number, the | |
| 444 | 558 mapping proceeds as follows: |
| 428 | 559 |
| 560 If VALn is nil, the lastest map is ignored and the mapping of VALm | |
| 444 | 561 proceeds to the next map. |
| 428 | 562 |
| 563 In VALn is t, VALm is reverted to reg[rrr] and the mapping of VALm | |
| 444 | 564 proceeds to the next map. |
| 428 | 565 |
| 444 | 566 If VALn is lambda, move to the next map set like reaching to the |
| 567 end of the current map set. | |
| 568 | |
| 569 If VALn is a symbol, call the CCL program refered by it. | |
| 570 Then, use reg[rrr] as a mapped value except for -1, -2 and -3. | |
| 571 Such special values are regarded as nil, t, and lambda respectively. | |
| 428 | 572 |
| 573 Each map is a Lisp vector of the following format (a) or (b): | |
| 574 (a)......[STARTPOINT VAL1 VAL2 ...] | |
| 575 (b)......[t VAL STARTPOINT ENDPOINT], | |
| 576 where | |
| 577 STARTPOINT is an offset to be used for indexing a map, | |
| 578 ENDPOINT is a maximum index number of a map, | |
| 442 | 579 VAL and VALn is a number, nil, t, or lambda. |
| 428 | 580 |
| 581 Valid index range of a map of type (a) is: | |
| 582 STARTPOINT <= index < STARTPOINT + map_size - 1 | |
| 583 Valid index range of a map of type (b) is: | |
| 584 STARTPOINT <= index < ENDPOINT */ | |
| 585 | |
| 586 #define CCL_MapMultiple 0x11 /* Mapping by multiple code conversion maps | |
| 587 1:ExtendedCOMMNDXXXRRRrrrXXXXX | |
| 588 2:N-2 | |
| 589 3:SEPARATOR_1 (< 0) | |
| 590 4:MAP-ID_1 | |
| 591 5:MAP-ID_2 | |
| 592 ... | |
| 593 M:SEPARATOR_x (< 0) | |
| 594 M+1:MAP-ID_y | |
| 595 ... | |
| 596 N:SEPARATOR_z (< 0) | |
| 597 */ | |
| 444 | 598 #define MAX_MAP_SET_LEVEL 30 |
| 428 | 599 |
| 600 typedef struct | |
| 601 { | |
| 602 int rest_length; | |
| 603 int orig_val; | |
| 604 } tr_stack; | |
| 605 | |
| 606 static tr_stack mapping_stack[MAX_MAP_SET_LEVEL]; | |
| 607 static tr_stack *mapping_stack_pointer; | |
| 444 | 608 |
| 609 /* If this variable is non-zero, it indicates the stack_idx | |
| 610 of immediately called by CCL_MapMultiple. */ | |
| 450 | 611 static int stack_idx_of_map_multiple; |
| 444 | 612 |
| 613 #define PUSH_MAPPING_STACK(restlen, orig) \ | |
| 614 do { \ | |
| 615 mapping_stack_pointer->rest_length = (restlen); \ | |
| 616 mapping_stack_pointer->orig_val = (orig); \ | |
| 617 mapping_stack_pointer++; \ | |
| 618 } while (0) | |
| 619 | |
| 620 #define POP_MAPPING_STACK(restlen, orig) \ | |
| 621 do { \ | |
| 622 mapping_stack_pointer--; \ | |
| 623 (restlen) = mapping_stack_pointer->rest_length; \ | |
| 624 (orig) = mapping_stack_pointer->orig_val; \ | |
| 625 } while (0) | |
| 428 | 626 |
| 444 | 627 #define CCL_CALL_FOR_MAP_INSTRUCTION(symbol, ret_ic) \ |
| 628 do { \ | |
| 629 struct ccl_program called_ccl; \ | |
| 630 if (stack_idx >= 256 \ | |
| 631 || (setup_ccl_program (&called_ccl, (symbol)) != 0)) \ | |
| 632 { \ | |
| 633 if (stack_idx > 0) \ | |
| 634 { \ | |
| 635 ccl_prog = ccl_prog_stack_struct[0].ccl_prog; \ | |
| 636 ic = ccl_prog_stack_struct[0].ic; \ | |
| 4193 | 637 eof_ic = ccl_prog_stack_struct[0].eof_ic; \ |
| 444 | 638 } \ |
| 639 CCL_INVALID_CMD; \ | |
| 640 } \ | |
| 641 ccl_prog_stack_struct[stack_idx].ccl_prog = ccl_prog; \ | |
| 642 ccl_prog_stack_struct[stack_idx].ic = (ret_ic); \ | |
| 4193 | 643 ccl_prog_stack_struct[stack_idx].eof_ic = eof_ic; \ |
| 444 | 644 stack_idx++; \ |
| 645 ccl_prog = called_ccl.prog; \ | |
| 646 ic = CCL_HEADER_MAIN; \ | |
| 4193 | 647 eof_ic = XINT (ccl_prog[CCL_HEADER_EOF]); \ |
| 456 | 648 /* The "if (1)" prevents warning \ |
| 649 "end-of loop code not reached" */ \ | |
| 650 if (1) goto ccl_repeat; \ | |
| 444 | 651 } while (0) |
| 428 | 652 |
| 653 #define CCL_MapSingle 0x12 /* Map by single code conversion map | |
| 654 1:ExtendedCOMMNDXXXRRRrrrXXXXX | |
| 655 2:MAP-ID | |
| 656 ------------------------------ | |
| 657 Map reg[rrr] by MAP-ID. | |
| 658 If some valid mapping is found, | |
| 659 set reg[rrr] to the result, | |
| 660 else | |
| 661 set reg[RRR] to -1. | |
| 662 */ | |
| 663 | |
| 4072 | 664 #define CCL_LookupIntConstTbl 0x13 /* Lookup multibyte character by |
| 665 integer key. Afterwards R7 set | |
| 666 to 1 iff lookup succeeded. | |
| 667 1:ExtendedCOMMNDRrrRRRXXXXXXXX | |
| 668 2:ARGUMENT(Hash table ID) */ | |
| 669 | |
| 670 #define CCL_LookupCharConstTbl 0x14 /* Lookup integer by multibyte | |
| 671 character key. Afterwards R7 set | |
| 672 to 1 iff lookup succeeded. | |
| 673 1:ExtendedCOMMNDRrrRRRrrrXXXXX | |
| 674 2:ARGUMENT(Hash table ID) */ | |
| 675 | |
| 676 | |
| 428 | 677 /* CCL arithmetic/logical operators. */ |
| 678 #define CCL_PLUS 0x00 /* X = Y + Z */ | |
| 679 #define CCL_MINUS 0x01 /* X = Y - Z */ | |
| 680 #define CCL_MUL 0x02 /* X = Y * Z */ | |
| 681 #define CCL_DIV 0x03 /* X = Y / Z */ | |
| 682 #define CCL_MOD 0x04 /* X = Y % Z */ | |
| 683 #define CCL_AND 0x05 /* X = Y & Z */ | |
| 684 #define CCL_OR 0x06 /* X = Y | Z */ | |
| 685 #define CCL_XOR 0x07 /* X = Y ^ Z */ | |
| 686 #define CCL_LSH 0x08 /* X = Y << Z */ | |
| 687 #define CCL_RSH 0x09 /* X = Y >> Z */ | |
| 688 #define CCL_LSH8 0x0A /* X = (Y << 8) | Z */ | |
| 689 #define CCL_RSH8 0x0B /* X = Y >> 8, r[7] = Y & 0xFF */ | |
| 690 #define CCL_DIVMOD 0x0C /* X = Y / Z, r[7] = Y % Z */ | |
| 691 #define CCL_LS 0x10 /* X = (X < Y) */ | |
| 692 #define CCL_GT 0x11 /* X = (X > Y) */ | |
| 693 #define CCL_EQ 0x12 /* X = (X == Y) */ | |
| 694 #define CCL_LE 0x13 /* X = (X <= Y) */ | |
| 695 #define CCL_GE 0x14 /* X = (X >= Y) */ | |
| 696 #define CCL_NE 0x15 /* X = (X != Y) */ | |
| 697 | |
| 698 #define CCL_DECODE_SJIS 0x16 /* X = HIGHER_BYTE (DE-SJIS (Y, Z)) | |
| 699 r[7] = LOWER_BYTE (DE-SJIS (Y, Z)) */ | |
| 700 #define CCL_ENCODE_SJIS 0x17 /* X = HIGHER_BYTE (SJIS (Y, Z)) | |
| 701 r[7] = LOWER_BYTE (SJIS (Y, Z) */ | |
| 702 | |
| 444 | 703 /* Terminate CCL program successfully. */ |
| 462 | 704 #define CCL_SUCCESS \ |
| 705 do { \ | |
| 706 ccl->status = CCL_STAT_SUCCESS; \ | |
| 456 | 707 /* The "if (1)" inhibits the warning \ |
| 708 "end-of loop code not reached" */ \ | |
| 709 if (1) goto ccl_finish; \ | |
| 462 | 710 } while (0) |
| 444 | 711 |
| 428 | 712 /* Suspend CCL program because of reading from empty input buffer or |
| 713 writing to full output buffer. When this program is resumed, the | |
| 444 | 714 same I/O command is executed. */ |
| 462 | 715 #define CCL_SUSPEND(stat) \ |
| 716 do { \ | |
| 717 ic--; \ | |
| 456 | 718 ccl->status = (stat); \ |
| 719 /* The "if (1)" inhibits the warning \ | |
| 720 "end-of loop code not reached" */ \ | |
| 721 if (1) goto ccl_finish; \ | |
| 462 | 722 } while (0) |
| 428 | 723 |
| 724 /* Terminate CCL program because of invalid command. Should not occur | |
| 444 | 725 in the normal case. */ |
| 771 | 726 #define CCL_INVALID_CMD \ |
| 727 do { \ | |
| 728 ccl->status = CCL_STAT_INVALID_CMD; \ | |
| 729 /* enable this to debug invalid cmd errors */ \ | |
| 730 /* debug_break (); */ \ | |
| 731 /* The "if (1)" inhibits the warning \ | |
| 732 "end-of loop code not reached" */ \ | |
| 733 if (1) goto ccl_error_handler; \ | |
| 462 | 734 } while (0) |
| 428 | 735 |
| 736 /* Encode one character CH to multibyte form and write to the current | |
| 444 | 737 output buffer. At encoding time, if CH is less than 256, CH is |
| 738 written as is. At decoding time, if CH cannot be regarded as an | |
| 739 ASCII character, write it in multibyte form. */ | |
| 740 #define CCL_WRITE_CHAR(ch) \ | |
| 741 do { \ | |
| 742 if (!destination) \ | |
| 743 CCL_INVALID_CMD; \ | |
| 744 if (conversion_mode == CCL_MODE_ENCODING) \ | |
| 745 { \ | |
| 456 | 746 if ((ch) == '\n') \ |
| 444 | 747 { \ |
| 748 if (ccl->eol_type == CCL_CODING_EOL_CRLF) \ | |
| 749 { \ | |
| 750 Dynarr_add (destination, '\r'); \ | |
| 751 Dynarr_add (destination, '\n'); \ | |
| 752 } \ | |
| 753 else if (ccl->eol_type == CCL_CODING_EOL_CR) \ | |
| 754 Dynarr_add (destination, '\r'); \ | |
| 755 else \ | |
| 756 Dynarr_add (destination, '\n'); \ | |
| 757 } \ | |
| 456 | 758 else if ((ch) < 0x100) \ |
| 444 | 759 { \ |
| 760 Dynarr_add (destination, ch); \ | |
| 761 } \ | |
| 762 else \ | |
| 763 { \ | |
| 2286 | 764 Ibyte work[MAX_ICHAR_LEN]; \ |
| 444 | 765 int len; \ |
| 2286 | 766 len = non_ascii_set_itext_ichar (work, ch); \ |
| 444 | 767 Dynarr_add_many (destination, work, len); \ |
| 768 } \ | |
| 769 } \ | |
| 770 else \ | |
| 771 { \ | |
| 867 | 772 if (!ichar_multibyte_p(ch)) \ |
| 444 | 773 { \ |
| 774 Dynarr_add (destination, ch); \ | |
| 775 } \ | |
| 776 else \ | |
| 777 { \ | |
| 2286 | 778 Ibyte work[MAX_ICHAR_LEN]; \ |
| 444 | 779 int len; \ |
| 2286 | 780 len = non_ascii_set_itext_ichar (work, ch); \ |
| 444 | 781 Dynarr_add_many (destination, work, len); \ |
| 782 } \ | |
| 783 } \ | |
| 784 } while (0) | |
| 428 | 785 |
| 786 /* Write a string at ccl_prog[IC] of length LEN to the current output | |
| 444 | 787 buffer. But this macro treat this string as a binary. Therefore, |
| 788 cannot handle a multibyte string except for Control-1 characters. */ | |
| 789 #define CCL_WRITE_STRING(len) \ | |
| 790 do { \ | |
| 2286 | 791 Ibyte work[MAX_ICHAR_LEN]; \ |
| 792 int ch; \ | |
| 444 | 793 if (!destination) \ |
| 794 CCL_INVALID_CMD; \ | |
| 795 else if (conversion_mode == CCL_MODE_ENCODING) \ | |
| 796 { \ | |
| 456 | 797 for (i = 0; i < (len); i++) \ |
| 444 | 798 { \ |
| 4072 | 799 ch = ((XCHAR_OR_INT (ccl_prog[ic + (i / 3)])) \ |
| 444 | 800 >> ((2 - (i % 3)) * 8)) & 0xFF; \ |
| 801 if (ch == '\n') \ | |
| 802 { \ | |
| 803 if (ccl->eol_type == CCL_CODING_EOL_CRLF) \ | |
| 804 { \ | |
| 805 Dynarr_add (destination, '\r'); \ | |
| 806 Dynarr_add (destination, '\n'); \ | |
| 807 } \ | |
| 808 else if (ccl->eol_type == CCL_CODING_EOL_CR) \ | |
| 809 Dynarr_add (destination, '\r'); \ | |
| 810 else \ | |
| 811 Dynarr_add (destination, '\n'); \ | |
| 812 } \ | |
| 813 if (ch < 0x100) \ | |
| 814 { \ | |
| 815 Dynarr_add (destination, ch); \ | |
| 816 } \ | |
| 817 else \ | |
| 818 { \ | |
| 2286 | 819 non_ascii_set_itext_ichar (work, ch); \ |
| 444 | 820 Dynarr_add_many (destination, work, len); \ |
| 821 } \ | |
| 822 } \ | |
| 823 } \ | |
| 824 else \ | |
| 825 { \ | |
| 456 | 826 for (i = 0; i < (len); i++) \ |
| 444 | 827 { \ |
| 4072 | 828 ch = ((XCHAR_OR_INT (ccl_prog[ic + (i / 3)])) \ |
| 444 | 829 >> ((2 - (i % 3)) * 8)) & 0xFF; \ |
| 867 | 830 if (!ichar_multibyte_p(ch)) \ |
| 444 | 831 { \ |
| 832 Dynarr_add (destination, ch); \ | |
| 833 } \ | |
| 834 else \ | |
| 835 { \ | |
| 2286 | 836 non_ascii_set_itext_ichar (work, ch); \ |
| 444 | 837 Dynarr_add_many (destination, work, len); \ |
| 838 } \ | |
| 839 } \ | |
| 840 } \ | |
| 841 } while (0) | |
| 428 | 842 |
| 843 /* Read one byte from the current input buffer into Rth register. */ | |
| 444 | 844 #define CCL_READ_CHAR(r) \ |
| 845 do { \ | |
| 846 if (!src) \ | |
| 847 CCL_INVALID_CMD; \ | |
| 848 if (src < src_end) \ | |
| 456 | 849 (r) = *src++; \ |
| 444 | 850 else \ |
| 851 { \ | |
| 852 if (ccl->last_block) \ | |
| 853 { \ | |
| 854 ic = ccl->eof_ic; \ | |
| 855 goto ccl_repeat; \ | |
| 856 } \ | |
| 857 else \ | |
| 858 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_SRC); \ | |
| 859 } \ | |
| 860 } while (0) | |
| 861 | |
| 2830 | 862 #define POSSIBLE_LEADING_BYTE_P(leading_byte) \ |
| 4072 | 863 ((leading_byte >= MIN_LEADING_BYTE) && \ |
| 2829 | 864 (leading_byte - MIN_LEADING_BYTE) < NUM_LEADING_BYTES) |
| 444 | 865 |
| 866 /* Set C to the character code made from CHARSET and CODE. This is | |
| 867 | 867 like make_ichar but check the validity of CHARSET and CODE. If they |
| 444 | 868 are not valid, set C to (CODE & 0xFF) because that is usually the |
| 869 case that CCL_ReadMultibyteChar2 read an invalid code and it set | |
| 870 CODE to that invalid byte. */ | |
| 871 | |
| 872 /* On XEmacs, TranslateCharacter is not supported. Thus, this | |
| 3439 | 873 macro is only used in the MuleToUnicode transformation. */ |
| 444 | 874 #define CCL_MAKE_CHAR(charset, code, c) \ |
| 875 do { \ | |
| 3690 | 876 \ |
| 877 if (!POSSIBLE_LEADING_BYTE_P(charset)) \ | |
| 878 CCL_INVALID_CMD; \ | |
| 879 \ | |
| 3439 | 880 if ((charset) == LEADING_BYTE_ASCII) \ |
| 881 { \ | |
| 882 c = (code) & 0xFF; \ | |
| 883 } \ | |
| 884 else if ((charset) == LEADING_BYTE_CONTROL_1) \ | |
| 885 { \ | |
| 3690 | 886 c = ((code) & 0x1F) + 0x80; \ |
| 3439 | 887 } \ |
| 888 else if (!NILP(charset_by_leading_byte(charset)) \ | |
| 889 && ((code) >= 32) \ | |
| 4072 | 890 && ((code) < 256 || ((code >> 7) & 0x7F) >= 32)) \ |
| 444 | 891 { \ |
| 3439 | 892 int c1, c2 = 0; \ |
| 444 | 893 \ |
| 3439 | 894 if ((code) < 256) \ |
| 895 { \ | |
| 896 c1 = (code) & 0x7F; \ | |
| 897 c2 = 0; \ | |
| 898 } \ | |
| 899 else \ | |
| 900 { \ | |
| 4072 | 901 c1 = ((code) >> 7) & 0x7F; \ |
| 3439 | 902 c2 = (code) & 0x7F; \ |
| 903 } \ | |
| 904 c = make_ichar (charset_by_leading_byte(charset), \ | |
| 905 c1, c2); \ | |
| 444 | 906 } \ |
| 907 else \ | |
| 3439 | 908 { \ |
| 909 c = (code) & 0xFF; \ | |
| 910 } \ | |
| 911 } while (0) | |
| 428 | 912 |
| 913 | |
| 914 /* Execute CCL code on SRC_BYTES length text at SOURCE. The resulting | |
| 444 | 915 text goes to a place pointed by DESTINATION, the length of which |
| 916 should not exceed DST_BYTES. The bytes actually processed is | |
| 917 returned as *CONSUMED. The return value is the length of the | |
| 918 resulting text. As a side effect, the contents of CCL registers | |
| 428 | 919 are updated. If SOURCE or DESTINATION is NULL, only operations on |
| 920 registers are permitted. */ | |
| 921 | |
| 922 #ifdef CCL_DEBUG | |
| 923 #define CCL_DEBUG_BACKTRACE_LEN 256 | |
| 4072 | 924 int ccl_backtrace_table[CCL_DEBUG_BACKTRACE_LEN]; |
| 428 | 925 int ccl_backtrace_idx; |
| 926 #endif | |
| 927 | |
| 928 struct ccl_prog_stack | |
| 929 { | |
| 930 Lisp_Object *ccl_prog; /* Pointer to an array of CCL code. */ | |
| 931 int ic; /* Instruction Counter. */ | |
| 4193 | 932 int eof_ic; /* Instruction Counter to jump on EOF. */ |
| 428 | 933 }; |
| 934 | |
| 442 | 935 /* For the moment, we only support depth 256 of stack. */ |
| 428 | 936 static struct ccl_prog_stack ccl_prog_stack_struct[256]; |
| 937 | |
| 938 int | |
| 444 | 939 ccl_driver (struct ccl_program *ccl, |
| 940 const unsigned char *source, | |
| 941 unsigned_char_dynarr *destination, | |
| 942 int src_bytes, | |
| 943 int *consumed, | |
| 944 int conversion_mode) | |
| 428 | 945 { |
| 444 | 946 register int *reg = ccl->reg; |
| 947 register int ic = ccl->ic; | |
| 948 register int code = -1; | |
| 949 register int field1, field2; | |
| 950 register Lisp_Object *ccl_prog = ccl->prog; | |
| 442 | 951 const unsigned char *src = source, *src_end = src + src_bytes; |
| 444 | 952 int jump_address; |
| 428 | 953 int i, j, op; |
| 954 int stack_idx = ccl->stack_idx; | |
| 955 /* Instruction counter of the current CCL code. */ | |
| 956 int this_ic = 0; | |
| 4193 | 957 int eof_ic = ccl->eof_ic; |
| 958 int eof_hit = 0; | |
| 428 | 959 |
| 4193 | 960 if (ic >= eof_ic) |
| 428 | 961 ic = CCL_HEADER_MAIN; |
| 962 | |
| 963 if (ccl->buf_magnification ==0) /* We can't produce any bytes. */ | |
| 444 | 964 destination = NULL; |
| 965 | |
| 966 /* Set mapping stack pointer. */ | |
| 967 mapping_stack_pointer = mapping_stack; | |
| 428 | 968 |
| 969 #ifdef CCL_DEBUG | |
| 970 ccl_backtrace_idx = 0; | |
| 971 #endif | |
| 972 | |
| 973 for (;;) | |
| 974 { | |
| 975 ccl_repeat: | |
| 976 #ifdef CCL_DEBUG | |
| 977 ccl_backtrace_table[ccl_backtrace_idx++] = ic; | |
| 978 if (ccl_backtrace_idx >= CCL_DEBUG_BACKTRACE_LEN) | |
| 979 ccl_backtrace_idx = 0; | |
| 980 ccl_backtrace_table[ccl_backtrace_idx] = 0; | |
| 981 #endif | |
| 982 | |
| 983 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit)) | |
| 984 { | |
| 985 /* We can't just signal Qquit, instead break the loop as if | |
| 986 the whole data is processed. Don't reset Vquit_flag, it | |
| 987 must be handled later at a safer place. */ | |
| 988 if (consumed) | |
| 989 src = source + src_bytes; | |
| 990 ccl->status = CCL_STAT_QUIT; | |
| 991 break; | |
| 992 } | |
| 993 | |
| 994 this_ic = ic; | |
| 4072 | 995 code = XCHAR_OR_INT (ccl_prog[ic]); ic++; |
| 428 | 996 field1 = code >> 8; |
| 997 field2 = (code & 0xFF) >> 5; | |
| 998 | |
| 999 #define rrr field2 | |
| 1000 #define RRR (field1 & 7) | |
| 1001 #define Rrr ((field1 >> 3) & 7) | |
| 1002 #define ADDR field1 | |
| 1003 #define EXCMD (field1 >> 6) | |
| 1004 | |
| 1005 switch (code & 0x1F) | |
| 1006 { | |
| 1007 case CCL_SetRegister: /* 00000000000000000RRRrrrXXXXX */ | |
| 1008 reg[rrr] = reg[RRR]; | |
| 1009 break; | |
| 1010 | |
| 1011 case CCL_SetShortConst: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */ | |
| 1012 reg[rrr] = field1; | |
| 1013 break; | |
| 1014 | |
| 1015 case CCL_SetConst: /* 00000000000000000000rrrXXXXX */ | |
| 4072 | 1016 reg[rrr] = XCHAR_OR_INT (ccl_prog[ic]); |
| 428 | 1017 ic++; |
| 1018 break; | |
| 1019 | |
| 1020 case CCL_SetArray: /* CCCCCCCCCCCCCCCCCCCCRRRrrrXXXXX */ | |
| 1021 i = reg[RRR]; | |
| 1022 j = field1 >> 3; | |
| 647 | 1023 /* #### it's non-obvious to me that we need these casts, |
| 1024 but the left one was already there so clearly the intention | |
| 1025 was an unsigned comparison. --ben */ | |
| 1026 if ((unsigned int) i < (unsigned int) j) | |
| 4072 | 1027 reg[rrr] = XCHAR_OR_INT (ccl_prog[ic + i]); |
| 428 | 1028 ic += j; |
| 1029 break; | |
| 1030 | |
| 1031 case CCL_Jump: /* A--D--D--R--E--S--S-000XXXXX */ | |
| 1032 ic += ADDR; | |
| 1033 break; | |
| 1034 | |
| 1035 case CCL_JumpCond: /* A--D--D--R--E--S--S-rrrXXXXX */ | |
| 1036 if (!reg[rrr]) | |
| 1037 ic += ADDR; | |
| 1038 break; | |
| 1039 | |
| 1040 case CCL_WriteRegisterJump: /* A--D--D--R--E--S--S-rrrXXXXX */ | |
| 1041 i = reg[rrr]; | |
| 1042 CCL_WRITE_CHAR (i); | |
| 1043 ic += ADDR; | |
| 1044 break; | |
| 1045 | |
| 1046 case CCL_WriteRegisterReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */ | |
| 1047 i = reg[rrr]; | |
| 1048 CCL_WRITE_CHAR (i); | |
| 1049 ic++; | |
| 1050 CCL_READ_CHAR (reg[rrr]); | |
| 1051 ic += ADDR - 1; | |
| 1052 break; | |
| 1053 | |
| 1054 case CCL_WriteConstJump: /* A--D--D--R--E--S--S-000XXXXX */ | |
| 4072 | 1055 i = XCHAR_OR_INT (ccl_prog[ic]); |
| 428 | 1056 CCL_WRITE_CHAR (i); |
| 1057 ic += ADDR; | |
| 1058 break; | |
| 1059 | |
| 1060 case CCL_WriteConstReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */ | |
| 4072 | 1061 i = XCHAR_OR_INT (ccl_prog[ic]); |
| 428 | 1062 CCL_WRITE_CHAR (i); |
| 1063 ic++; | |
| 1064 CCL_READ_CHAR (reg[rrr]); | |
| 1065 ic += ADDR - 1; | |
| 1066 break; | |
| 1067 | |
| 1068 case CCL_WriteStringJump: /* A--D--D--R--E--S--S-000XXXXX */ | |
| 4072 | 1069 j = XCHAR_OR_INT (ccl_prog[ic]); |
| 428 | 1070 ic++; |
| 1071 CCL_WRITE_STRING (j); | |
| 1072 ic += ADDR - 1; | |
| 1073 break; | |
| 1074 | |
| 1075 case CCL_WriteArrayReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */ | |
| 1076 i = reg[rrr]; | |
| 4072 | 1077 j = XCHAR_OR_INT (ccl_prog[ic]); |
| 647 | 1078 /* #### see comment at CCL_SetArray */ |
| 1079 if ((unsigned int) i < (unsigned int) j) | |
| 428 | 1080 { |
| 4072 | 1081 i = XCHAR_OR_INT (ccl_prog[ic + 1 + i]); |
| 428 | 1082 CCL_WRITE_CHAR (i); |
| 1083 } | |
| 1084 ic += j + 2; | |
| 1085 CCL_READ_CHAR (reg[rrr]); | |
| 1086 ic += ADDR - (j + 2); | |
| 1087 break; | |
| 1088 | |
| 1089 case CCL_ReadJump: /* A--D--D--R--E--S--S-rrrYYYYY */ | |
| 1090 CCL_READ_CHAR (reg[rrr]); | |
| 1091 ic += ADDR; | |
| 1092 break; | |
| 1093 | |
| 1094 case CCL_ReadBranch: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */ | |
| 1095 CCL_READ_CHAR (reg[rrr]); | |
| 1096 /* fall through ... */ | |
| 1097 case CCL_Branch: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */ | |
| 647 | 1098 /* #### see comment at CCL_SetArray */ |
| 1099 if ((unsigned int) reg[rrr] < (unsigned int) field1) | |
| 4072 | 1100 ic += XCHAR_OR_INT (ccl_prog[ic + reg[rrr]]); |
| 428 | 1101 else |
| 4072 | 1102 ic += XCHAR_OR_INT (ccl_prog[ic + field1]); |
| 428 | 1103 break; |
| 1104 | |
| 1105 case CCL_ReadRegister: /* CCCCCCCCCCCCCCCCCCCCrrXXXXX */ | |
| 1106 while (1) | |
| 1107 { | |
| 1108 CCL_READ_CHAR (reg[rrr]); | |
| 1109 if (!field1) break; | |
| 4072 | 1110 code = XCHAR_OR_INT (ccl_prog[ic]); ic++; |
| 428 | 1111 field1 = code >> 8; |
| 1112 field2 = (code & 0xFF) >> 5; | |
| 1113 } | |
| 1114 break; | |
| 1115 | |
| 1116 case CCL_WriteExprConst: /* 1:00000OPERATION000RRR000XXXXX */ | |
| 1117 rrr = 7; | |
| 1118 i = reg[RRR]; | |
| 4072 | 1119 j = XCHAR_OR_INT (ccl_prog[ic]); |
| 428 | 1120 op = field1 >> 6; |
| 444 | 1121 jump_address = ic + 1; |
| 428 | 1122 goto ccl_set_expr; |
| 1123 | |
| 1124 case CCL_WriteRegister: /* CCCCCCCCCCCCCCCCCCCrrrXXXXX */ | |
| 1125 while (1) | |
| 1126 { | |
| 1127 i = reg[rrr]; | |
| 1128 CCL_WRITE_CHAR (i); | |
| 1129 if (!field1) break; | |
| 4072 | 1130 code = XCHAR_OR_INT (ccl_prog[ic]); ic++; |
| 428 | 1131 field1 = code >> 8; |
| 1132 field2 = (code & 0xFF) >> 5; | |
| 1133 } | |
| 1134 break; | |
| 1135 | |
| 1136 case CCL_WriteExprRegister: /* 1:00000OPERATIONRrrRRR000XXXXX */ | |
| 1137 rrr = 7; | |
| 1138 i = reg[RRR]; | |
| 1139 j = reg[Rrr]; | |
| 1140 op = field1 >> 6; | |
| 444 | 1141 jump_address = ic; |
| 428 | 1142 goto ccl_set_expr; |
| 1143 | |
| 444 | 1144 case CCL_Call: /* 1:CCCCCCCCCCCCCCCCCCCCFFFXXXXX */ |
| 428 | 1145 { |
| 1146 Lisp_Object slot; | |
| 444 | 1147 int prog_id; |
| 1148 | |
| 1149 /* If FFF is nonzero, the CCL program ID is in the | |
| 1150 following code. */ | |
| 1151 if (rrr) | |
| 1152 { | |
| 4072 | 1153 prog_id = XCHAR_OR_INT (ccl_prog[ic]); |
| 444 | 1154 ic++; |
| 1155 } | |
| 1156 else | |
| 1157 prog_id = field1; | |
| 428 | 1158 |
| 1159 if (stack_idx >= 256 | |
| 444 | 1160 || prog_id < 0 |
| 1161 || prog_id >= XVECTOR (Vccl_program_table)->size | |
| 1162 || (slot = XVECTOR (Vccl_program_table)->contents[prog_id], | |
| 1163 !VECTORP (slot)) | |
| 1164 || !VECTORP (XVECTOR (slot)->contents[1])) | |
| 428 | 1165 { |
| 1166 if (stack_idx > 0) | |
| 1167 { | |
| 1168 ccl_prog = ccl_prog_stack_struct[0].ccl_prog; | |
| 1169 ic = ccl_prog_stack_struct[0].ic; | |
| 4193 | 1170 eof_ic = ccl_prog_stack_struct[0].eof_ic; |
| 428 | 1171 } |
| 444 | 1172 CCL_INVALID_CMD; |
| 428 | 1173 } |
| 1174 | |
| 1175 ccl_prog_stack_struct[stack_idx].ccl_prog = ccl_prog; | |
| 1176 ccl_prog_stack_struct[stack_idx].ic = ic; | |
| 4193 | 1177 ccl_prog_stack_struct[stack_idx].eof_ic = eof_ic; |
| 428 | 1178 stack_idx++; |
| 444 | 1179 ccl_prog = XVECTOR (XVECTOR (slot)->contents[1])->contents; |
| 428 | 1180 ic = CCL_HEADER_MAIN; |
| 4193 | 1181 eof_ic = XINT (ccl_prog[CCL_HEADER_EOF]); |
| 428 | 1182 } |
| 1183 break; | |
| 1184 | |
| 1185 case CCL_WriteConstString: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */ | |
| 1186 if (!rrr) | |
| 1187 CCL_WRITE_CHAR (field1); | |
| 1188 else | |
| 1189 { | |
| 1190 CCL_WRITE_STRING (field1); | |
| 1191 ic += (field1 + 2) / 3; | |
| 1192 } | |
| 1193 break; | |
| 1194 | |
| 1195 case CCL_WriteArray: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */ | |
| 1196 i = reg[rrr]; | |
| 647 | 1197 /* #### see comment at CCL_SetArray */ |
| 1198 if ((unsigned int) i < (unsigned int) field1) | |
| 428 | 1199 { |
| 4072 | 1200 j = XCHAR_OR_INT (ccl_prog[ic + i]); |
| 428 | 1201 CCL_WRITE_CHAR (j); |
| 1202 } | |
| 1203 ic += field1; | |
| 1204 break; | |
| 1205 | |
| 1206 case CCL_End: /* 0000000000000000000000XXXXX */ | |
| 444 | 1207 if (stack_idx > 0) |
| 428 | 1208 { |
| 444 | 1209 stack_idx--; |
| 428 | 1210 ccl_prog = ccl_prog_stack_struct[stack_idx].ccl_prog; |
| 1211 ic = ccl_prog_stack_struct[stack_idx].ic; | |
| 4193 | 1212 eof_ic = ccl_prog_stack_struct[stack_idx].eof_ic; |
| 1213 if (eof_hit) | |
| 1214 ic = eof_ic; | |
| 428 | 1215 break; |
| 1216 } | |
| 1217 if (src) | |
| 1218 src = src_end; | |
| 1219 /* ccl->ic should points to this command code again to | |
| 1220 suppress further processing. */ | |
| 1221 ic--; | |
| 444 | 1222 CCL_SUCCESS; |
| 428 | 1223 |
| 1224 case CCL_ExprSelfConst: /* 00000OPERATION000000rrrXXXXX */ | |
| 4072 | 1225 i = XCHAR_OR_INT (ccl_prog[ic]); |
| 428 | 1226 ic++; |
| 1227 op = field1 >> 6; | |
| 1228 goto ccl_expr_self; | |
| 1229 | |
| 1230 case CCL_ExprSelfReg: /* 00000OPERATION000RRRrrrXXXXX */ | |
| 1231 i = reg[RRR]; | |
| 1232 op = field1 >> 6; | |
| 1233 | |
| 1234 ccl_expr_self: | |
| 1235 switch (op) | |
| 1236 { | |
| 1237 case CCL_PLUS: reg[rrr] += i; break; | |
| 1238 case CCL_MINUS: reg[rrr] -= i; break; | |
| 1239 case CCL_MUL: reg[rrr] *= i; break; | |
| 1240 case CCL_DIV: reg[rrr] /= i; break; | |
| 1241 case CCL_MOD: reg[rrr] %= i; break; | |
| 1242 case CCL_AND: reg[rrr] &= i; break; | |
| 1243 case CCL_OR: reg[rrr] |= i; break; | |
| 1244 case CCL_XOR: reg[rrr] ^= i; break; | |
| 1245 case CCL_LSH: reg[rrr] <<= i; break; | |
| 1246 case CCL_RSH: reg[rrr] >>= i; break; | |
| 1247 case CCL_LSH8: reg[rrr] <<= 8; reg[rrr] |= i; break; | |
| 1248 case CCL_RSH8: reg[7] = reg[rrr] & 0xFF; reg[rrr] >>= 8; break; | |
| 1249 case CCL_DIVMOD: reg[7] = reg[rrr] % i; reg[rrr] /= i; break; | |
| 1250 case CCL_LS: reg[rrr] = reg[rrr] < i; break; | |
| 1251 case CCL_GT: reg[rrr] = reg[rrr] > i; break; | |
| 1252 case CCL_EQ: reg[rrr] = reg[rrr] == i; break; | |
| 1253 case CCL_LE: reg[rrr] = reg[rrr] <= i; break; | |
| 1254 case CCL_GE: reg[rrr] = reg[rrr] >= i; break; | |
| 1255 case CCL_NE: reg[rrr] = reg[rrr] != i; break; | |
| 444 | 1256 default: CCL_INVALID_CMD; |
| 428 | 1257 } |
| 1258 break; | |
| 1259 | |
| 1260 case CCL_SetExprConst: /* 00000OPERATION000RRRrrrXXXXX */ | |
| 1261 i = reg[RRR]; | |
| 4072 | 1262 j = XCHAR_OR_INT (ccl_prog[ic]); |
| 428 | 1263 op = field1 >> 6; |
| 1264 jump_address = ++ic; | |
| 1265 goto ccl_set_expr; | |
| 1266 | |
| 1267 case CCL_SetExprReg: /* 00000OPERATIONRrrRRRrrrXXXXX */ | |
| 1268 i = reg[RRR]; | |
| 1269 j = reg[Rrr]; | |
| 1270 op = field1 >> 6; | |
| 1271 jump_address = ic; | |
| 1272 goto ccl_set_expr; | |
| 1273 | |
| 1274 case CCL_ReadJumpCondExprConst: /* A--D--D--R--E--S--S-rrrXXXXX */ | |
| 1275 CCL_READ_CHAR (reg[rrr]); | |
| 1276 case CCL_JumpCondExprConst: /* A--D--D--R--E--S--S-rrrXXXXX */ | |
| 1277 i = reg[rrr]; | |
| 4072 | 1278 op = XCHAR_OR_INT (ccl_prog[ic]); |
| 428 | 1279 jump_address = ic++ + ADDR; |
| 4072 | 1280 j = XCHAR_OR_INT (ccl_prog[ic]); |
| 428 | 1281 ic++; |
| 1282 rrr = 7; | |
| 1283 goto ccl_set_expr; | |
| 1284 | |
| 1285 case CCL_ReadJumpCondExprReg: /* A--D--D--R--E--S--S-rrrXXXXX */ | |
| 1286 CCL_READ_CHAR (reg[rrr]); | |
| 1287 case CCL_JumpCondExprReg: | |
| 1288 i = reg[rrr]; | |
| 4072 | 1289 op = XCHAR_OR_INT (ccl_prog[ic]); |
| 428 | 1290 jump_address = ic++ + ADDR; |
| 4072 | 1291 j = reg[XCHAR_OR_INT (ccl_prog[ic])]; |
| 428 | 1292 ic++; |
| 1293 rrr = 7; | |
| 1294 | |
| 1295 ccl_set_expr: | |
| 1296 switch (op) | |
| 1297 { | |
| 1298 case CCL_PLUS: reg[rrr] = i + j; break; | |
| 1299 case CCL_MINUS: reg[rrr] = i - j; break; | |
| 1300 case CCL_MUL: reg[rrr] = i * j; break; | |
| 1301 case CCL_DIV: reg[rrr] = i / j; break; | |
| 1302 case CCL_MOD: reg[rrr] = i % j; break; | |
| 1303 case CCL_AND: reg[rrr] = i & j; break; | |
| 1304 case CCL_OR: reg[rrr] = i | j; break; | |
| 444 | 1305 case CCL_XOR: reg[rrr] = i ^ j;; break; |
| 428 | 1306 case CCL_LSH: reg[rrr] = i << j; break; |
| 1307 case CCL_RSH: reg[rrr] = i >> j; break; | |
| 1308 case CCL_LSH8: reg[rrr] = (i << 8) | j; break; | |
| 1309 case CCL_RSH8: reg[rrr] = i >> 8; reg[7] = i & 0xFF; break; | |
| 1310 case CCL_DIVMOD: reg[rrr] = i / j; reg[7] = i % j; break; | |
| 1311 case CCL_LS: reg[rrr] = i < j; break; | |
| 1312 case CCL_GT: reg[rrr] = i > j; break; | |
| 1313 case CCL_EQ: reg[rrr] = i == j; break; | |
| 1314 case CCL_LE: reg[rrr] = i <= j; break; | |
| 1315 case CCL_GE: reg[rrr] = i >= j; break; | |
| 1316 case CCL_NE: reg[rrr] = i != j; break; | |
| 444 | 1317 case CCL_DECODE_SJIS: |
| 771 | 1318 /* DECODE_SHIFT_JIS set MSB for internal format |
| 444 | 1319 as opposed to Emacs. */ |
| 771 | 1320 DECODE_SHIFT_JIS (i, j, reg[rrr], reg[7]); |
| 444 | 1321 reg[rrr] &= 0x7F; |
| 1322 reg[7] &= 0x7F; | |
| 1323 break; | |
| 1324 case CCL_ENCODE_SJIS: | |
| 771 | 1325 /* ENCODE_SHIFT_JIS assumes MSB of SHIFT-JIS-char is set |
| 444 | 1326 as opposed to Emacs. */ |
| 771 | 1327 ENCODE_SHIFT_JIS (i | 0x80, j | 0x80, reg[rrr], reg[7]); |
| 444 | 1328 break; |
| 1329 default: CCL_INVALID_CMD; | |
| 428 | 1330 } |
| 1331 code &= 0x1F; | |
| 1332 if (code == CCL_WriteExprConst || code == CCL_WriteExprRegister) | |
| 1333 { | |
| 1334 i = reg[rrr]; | |
| 1335 CCL_WRITE_CHAR (i); | |
| 444 | 1336 ic = jump_address; |
| 428 | 1337 } |
| 1338 else if (!reg[rrr]) | |
| 1339 ic = jump_address; | |
| 1340 break; | |
| 1341 | |
| 456 | 1342 case CCL_Extension: |
| 428 | 1343 switch (EXCMD) |
| 1344 { | |
| 1345 case CCL_ReadMultibyteChar2: | |
| 1346 if (!src) | |
| 1347 CCL_INVALID_CMD; | |
| 1348 | |
| 462 | 1349 if (src >= src_end) |
| 1350 { | |
| 1351 src++; | |
| 456 | 1352 goto ccl_read_multibyte_character_suspend; |
| 462 | 1353 } |
| 1354 | |
| 1355 i = *src++; | |
| 1356 if (i < 0x80) | |
| 1357 { | |
| 1358 /* ASCII */ | |
| 1359 reg[rrr] = i; | |
| 1360 reg[RRR] = LEADING_BYTE_ASCII; | |
| 1361 } | |
| 2829 | 1362 /* Previously, these next two elses were reversed in order, |
| 1363 which should have worked fine, but is more fragile than | |
| 1364 this order. */ | |
| 1365 else if (LEADING_BYTE_CONTROL_1 == i) | |
| 1366 { | |
| 1367 if (src >= src_end) | |
| 1368 goto ccl_read_multibyte_character_suspend; | |
| 1369 reg[RRR] = i; | |
| 1370 reg[rrr] = (*src++ - 0xA0); | |
| 1371 } | |
| 462 | 1372 else if (i <= MAX_LEADING_BYTE_OFFICIAL_1) |
| 1373 { | |
| 1374 if (src >= src_end) | |
| 1375 goto ccl_read_multibyte_character_suspend; | |
| 1376 reg[RRR] = i; | |
| 1377 reg[rrr] = (*src++ & 0x7F); | |
| 1378 } | |
| 1379 else if (i <= MAX_LEADING_BYTE_OFFICIAL_2) | |
| 1380 { | |
| 1381 if ((src + 1) >= src_end) | |
| 1382 goto ccl_read_multibyte_character_suspend; | |
| 1383 reg[RRR] = i; | |
| 1384 i = (*src++ & 0x7F); | |
| 1385 reg[rrr] = ((i << 7) | (*src & 0x7F)); | |
| 1386 src++; | |
| 1387 } | |
| 1388 else if (i == PRE_LEADING_BYTE_PRIVATE_1) | |
| 1389 { | |
| 1390 if ((src + 1) >= src_end) | |
| 1391 goto ccl_read_multibyte_character_suspend; | |
| 1392 reg[RRR] = *src++; | |
| 4072 | 1393 reg[rrr] = (*src++ & 0xFF); |
| 462 | 1394 } |
| 1395 else if (i == PRE_LEADING_BYTE_PRIVATE_2) | |
| 1396 { | |
| 1397 if ((src + 2) >= src_end) | |
| 1398 goto ccl_read_multibyte_character_suspend; | |
| 1399 reg[RRR] = *src++; | |
| 1400 i = (*src++ & 0x7F); | |
| 1401 reg[rrr] = ((i << 7) | (*src & 0x7F)); | |
| 1402 src++; | |
| 1403 } | |
| 1404 else | |
| 1405 { | |
| 1406 /* INVALID CODE. Return a single byte character. */ | |
| 1407 reg[RRR] = LEADING_BYTE_ASCII; | |
| 1408 reg[rrr] = i; | |
| 1409 } | |
| 428 | 1410 break; |
| 1411 | |
| 1412 ccl_read_multibyte_character_suspend: | |
| 4193 | 1413 if (src <= src_end && ccl->last_block) |
| 1414 { | |
| 1415 /* #### Unclear when this happens. GNU use | |
| 1416 CHARSET_8_BIT_CONTROL here, which we can't. */ | |
| 1417 if (i < 0x80) | |
| 1418 { | |
| 1419 reg[RRR] = LEADING_BYTE_ASCII; | |
| 1420 reg[rrr] = i; | |
| 1421 } | |
| 1422 else if (i < 0xA0) | |
| 1423 { | |
| 1424 reg[RRR] = LEADING_BYTE_CONTROL_1; | |
| 1425 reg[rrr] = i - 0xA0; | |
| 1426 } | |
| 1427 else | |
| 1428 { | |
| 1429 reg[RRR] = LEADING_BYTE_LATIN_ISO8859_1; | |
| 1430 reg[rrr] = i & 0x7F; | |
| 1431 } | |
| 1432 break; | |
| 1433 } | |
| 428 | 1434 src--; |
| 1435 if (ccl->last_block) | |
| 1436 { | |
| 4193 | 1437 ic = eof_ic; |
| 1438 eof_hit = 1; | |
| 428 | 1439 goto ccl_repeat; |
| 1440 } | |
| 1441 else | |
| 1442 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_SRC); | |
| 1443 | |
| 1444 break; | |
| 1445 | |
| 1446 case CCL_WriteMultibyteChar2: | |
| 1447 i = reg[RRR]; /* charset */ | |
| 2829 | 1448 if (i == LEADING_BYTE_ASCII) |
| 428 | 1449 i = reg[rrr] & 0xFF; |
| 2829 | 1450 else if (LEADING_BYTE_CONTROL_1 == i) |
| 3690 | 1451 i = ((reg[rrr] & 0x1F) + 0x80); |
| 2829 | 1452 else if (POSSIBLE_LEADING_BYTE_P(i) && |
| 2830 | 1453 !NILP(charset_by_leading_byte(i))) |
| 2829 | 1454 { |
| 1455 if (XCHARSET_DIMENSION (charset_by_leading_byte (i)) == 1) | |
| 1456 i = (((i - FIELD2_TO_OFFICIAL_LEADING_BYTE) << 7) | |
| 1457 | (reg[rrr] & 0x7F)); | |
|
4525
d64f1060cd65
Fix off-by-one error in ccl_driver. <87iqr7v7p0.fsf@uwakimon.sk.tsukuba.ac.jp>
Stephen J. Turnbull <stephen@xemacs.org>
parents:
4295
diff
changeset
|
1458 else if (i <= MAX_LEADING_BYTE_OFFICIAL_2) |
| 2829 | 1459 i = ((i - FIELD1_TO_OFFICIAL_LEADING_BYTE) << 14) |
| 1460 | reg[rrr]; | |
| 1461 else | |
| 1462 i = ((i - FIELD1_TO_PRIVATE_LEADING_BYTE) << 14) | reg[rrr]; | |
| 1463 } | |
| 1464 else | |
| 1465 { | |
| 1466 /* No charset we know about; use U+3012 GETA MARK */ | |
| 1467 i = make_ichar | |
| 1468 (charset_by_leading_byte(LEADING_BYTE_JAPANESE_JISX0208), | |
| 1469 34, 46); | |
| 1470 } | |
| 428 | 1471 |
| 1472 CCL_WRITE_CHAR (i); | |
| 1473 | |
| 1474 break; | |
| 1475 | |
| 444 | 1476 case CCL_TranslateCharacter: |
| 428 | 1477 #if 0 |
| 3439 | 1478 /* XEmacs does not have translate_char, nor an |
| 1479 equivalent. We do nothing on this operation. */ | |
| 1480 CCL_MAKE_CHAR(reg[RRR], reg[rrr], op); | |
| 428 | 1481 op = translate_char (GET_TRANSLATION_TABLE (reg[Rrr]), |
| 1482 i, -1, 0, 0); | |
| 1483 SPLIT_CHAR (op, reg[RRR], i, j); | |
| 1484 if (j != -1) | |
| 1485 i = (i << 7) | j; | |
| 442 | 1486 |
| 428 | 1487 reg[rrr] = i; |
| 444 | 1488 #endif |
| 428 | 1489 break; |
| 1490 | |
| 1491 case CCL_TranslateCharacterConstTbl: | |
| 444 | 1492 #if 0 |
| 771 | 1493 /* XEmacs does not have translate_char or an equivalent. We |
| 1494 do nothing on this operation. */ | |
| 4072 | 1495 op = XCHAR_OR_INT (ccl_prog[ic]); /* table */ |
| 428 | 1496 ic++; |
| 444 | 1497 CCL_MAKE_CHAR (reg[RRR], reg[rrr], i); |
| 428 | 1498 op = translate_char (GET_TRANSLATION_TABLE (op), i, -1, 0, 0); |
| 1499 SPLIT_CHAR (op, reg[RRR], i, j); | |
| 1500 if (j != -1) | |
| 1501 i = (i << 7) | j; | |
| 442 | 1502 |
| 428 | 1503 reg[rrr] = i; |
| 444 | 1504 #endif |
| 428 | 1505 break; |
| 1506 | |
| 3439 | 1507 case CCL_MuleToUnicode: |
| 1508 { | |
| 1509 Lisp_Object ucs; | |
| 1510 | |
| 4072 | 1511 CCL_MAKE_CHAR (reg[rrr], reg[RRR], op); |
| 1512 | |
| 3439 | 1513 ucs = Fchar_to_unicode(make_char(op)); |
| 1514 | |
| 1515 if (NILP(ucs)) | |
| 1516 { | |
| 1517 /* Uhh, char-to-unicode doesn't return nil at the | |
| 1518 moment, only ever -1. */ | |
| 1519 reg[rrr] = 0xFFFD; /* REPLACEMENT CHARACTER */ | |
| 1520 } | |
| 1521 else | |
| 1522 { | |
| 4072 | 1523 reg[rrr] = XCHAR_OR_INT(ucs); |
| 3439 | 1524 if (-1 == reg[rrr]) |
| 1525 { | |
| 1526 reg[rrr] = 0xFFFD; /* REPLACEMENT CHARACTER */ | |
| 1527 } | |
| 1528 } | |
| 1529 break; | |
| 1530 } | |
| 1531 | |
| 1532 case CCL_UnicodeToMule: | |
| 1533 { | |
| 1534 Lisp_Object scratch; | |
| 1535 | |
| 1536 scratch = Funicode_to_char(make_int(reg[rrr]), Qnil); | |
| 1537 | |
| 1538 if (!NILP(scratch)) | |
| 1539 { | |
| 1540 op = XCHAR(scratch); | |
| 1541 BREAKUP_ICHAR (op, scratch, i, j); | |
| 1542 reg[RRR] = XCHARSET_ID(scratch); | |
| 1543 | |
| 1544 if (j != 0) | |
| 1545 { | |
| 4072 | 1546 i = (i << 7) | j; |
| 3439 | 1547 } |
| 1548 | |
| 1549 reg[rrr] = i; | |
| 1550 } | |
| 1551 else | |
| 1552 { | |
| 1553 reg[rrr] = reg[RRR] = 0; | |
| 1554 } | |
| 1555 break; | |
| 1556 } | |
| 1557 | |
| 4072 | 1558 case CCL_LookupIntConstTbl: |
| 1559 op = XCHAR_OR_INT (ccl_prog[ic]); /* table */ | |
| 1560 ic++; | |
| 1561 { | |
| 1562 struct Lisp_Hash_Table *h = GET_HASH_TABLE (op); | |
| 1563 htentry *e = find_htentry(make_int (reg[RRR]), h); | |
| 1564 Lisp_Object scratch; | |
| 1565 | |
| 1566 if (!HTENTRY_CLEAR_P(e)) | |
| 1567 { | |
| 1568 op = XCHARVAL (e->value); | |
| 1569 if (!valid_ichar_p(op)) | |
| 1570 { | |
| 1571 CCL_INVALID_CMD; | |
| 1572 } | |
| 1573 | |
| 1574 BREAKUP_ICHAR (op, scratch, i, j); | |
| 1575 reg[RRR] = XCHARSET_ID(scratch); | |
| 1576 | |
| 1577 if (j != 0) | |
| 1578 { | |
| 1579 i = (i << 7) | j; | |
| 1580 } | |
| 1581 reg[rrr] = i; | |
| 1582 reg[7] = 1; /* r7 true for success */ | |
| 1583 } | |
| 1584 else | |
| 1585 reg[7] = 0; | |
| 1586 } | |
| 1587 break; | |
| 1588 | |
| 1589 case CCL_LookupCharConstTbl: | |
| 1590 op = XCHAR_OR_INT (ccl_prog[ic]); /* table */ | |
| 1591 ic++; | |
| 1592 CCL_MAKE_CHAR (reg[RRR], reg[rrr], i); | |
| 1593 { | |
| 1594 struct Lisp_Hash_Table *h = GET_HASH_TABLE (op); | |
| 1595 htentry *e = find_htentry(make_int(i), h); | |
| 1596 | |
| 1597 if (!HTENTRY_CLEAR_P(e)) | |
| 1598 { | |
| 4078 | 1599 if (!INTP (e->value)) |
| 4072 | 1600 CCL_INVALID_CMD; |
| 4078 | 1601 reg[RRR] = XCHAR_OR_INT (e->value); |
| 4072 | 1602 reg[7] = 1; /* r7 true for success */ |
| 1603 } | |
| 1604 else | |
| 1605 reg[7] = 0; | |
| 1606 } | |
| 1607 break; | |
| 1608 | |
| 1609 | |
| 428 | 1610 case CCL_IterateMultipleMap: |
| 1611 { | |
| 1612 Lisp_Object map, content, attrib, value; | |
| 1613 int point, size, fin_ic; | |
| 1614 | |
| 4150 | 1615 j = XCHAR_OR_INT (ccl_prog[ic++]); /* number of maps. */ |
| 428 | 1616 fin_ic = ic + j; |
| 1617 op = reg[rrr]; | |
| 1618 if ((j > reg[RRR]) && (j >= 0)) | |
| 1619 { | |
| 1620 ic += reg[RRR]; | |
| 1621 i = reg[RRR]; | |
| 1622 } | |
| 1623 else | |
| 1624 { | |
| 1625 reg[RRR] = -1; | |
| 1626 ic = fin_ic; | |
| 1627 break; | |
| 1628 } | |
| 1629 | |
| 1630 for (;i < j;i++) | |
| 1631 { | |
| 1632 size = XVECTOR (Vcode_conversion_map_vector)->size; | |
| 4072 | 1633 point = XCHAR_OR_INT (ccl_prog[ic++]); |
| 428 | 1634 if (point >= size) continue; |
| 1635 map = | |
| 1636 XVECTOR (Vcode_conversion_map_vector)->contents[point]; | |
| 1637 | |
| 444 | 1638 /* Check map validity. */ |
| 428 | 1639 if (!CONSP (map)) continue; |
| 444 | 1640 map = XCDR (map); |
| 428 | 1641 if (!VECTORP (map)) continue; |
| 1642 size = XVECTOR (map)->size; | |
| 1643 if (size <= 1) continue; | |
| 1644 | |
| 1645 content = XVECTOR (map)->contents[0]; | |
| 1646 | |
| 1647 /* check map type, | |
| 1648 [STARTPOINT VAL1 VAL2 ...] or | |
| 444 | 1649 [t ELEMENT STARTPOINT ENDPOINT] */ |
| 1650 if (INTP (content)) | |
| 428 | 1651 { |
| 1652 point = XUINT (content); | |
| 1653 point = op - point + 1; | |
| 1654 if (!((point >= 1) && (point < size))) continue; | |
| 1655 content = XVECTOR (map)->contents[point]; | |
| 1656 } | |
| 1657 else if (EQ (content, Qt)) | |
| 1658 { | |
| 1659 if (size != 4) continue; | |
| 647 | 1660 /* #### see comment at CCL_SetArray; in this |
| 1661 case the casts are added but the XUINT was | |
| 1662 already present */ | |
| 1663 if (((unsigned int) op >= | |
| 1664 XUINT (XVECTOR (map)->contents[2])) | |
| 1665 && ((unsigned int) op < | |
| 1666 XUINT (XVECTOR (map)->contents[3]))) | |
| 428 | 1667 content = XVECTOR (map)->contents[1]; |
| 1668 else | |
| 1669 continue; | |
| 1670 } | |
| 442 | 1671 else |
| 428 | 1672 continue; |
| 1673 | |
| 1674 if (NILP (content)) | |
| 1675 continue; | |
| 444 | 1676 else if (INTP (content)) |
| 428 | 1677 { |
| 1678 reg[RRR] = i; | |
| 4072 | 1679 reg[rrr] = XCHAR_OR_INT(content); |
| 428 | 1680 break; |
| 1681 } | |
| 1682 else if (EQ (content, Qt) || EQ (content, Qlambda)) | |
| 1683 { | |
| 1684 reg[RRR] = i; | |
| 1685 break; | |
| 1686 } | |
| 1687 else if (CONSP (content)) | |
| 1688 { | |
| 444 | 1689 attrib = XCAR (content); |
| 1690 value = XCDR (content); | |
| 1691 if (!INTP (attrib) || !INTP (value)) | |
| 428 | 1692 continue; |
| 1693 reg[RRR] = i; | |
| 1694 reg[rrr] = XUINT (value); | |
| 1695 break; | |
| 1696 } | |
| 444 | 1697 else if (SYMBOLP (content)) |
| 1698 CCL_CALL_FOR_MAP_INSTRUCTION (content, fin_ic); | |
| 1699 else | |
| 1700 CCL_INVALID_CMD; | |
| 428 | 1701 } |
| 1702 if (i == j) | |
| 1703 reg[RRR] = -1; | |
| 1704 ic = fin_ic; | |
| 1705 } | |
| 1706 break; | |
| 442 | 1707 |
| 428 | 1708 case CCL_MapMultiple: |
| 1709 { | |
| 1710 Lisp_Object map, content, attrib, value; | |
| 1711 int point, size, map_vector_size; | |
| 1712 int map_set_rest_length, fin_ic; | |
| 444 | 1713 int current_ic = this_ic; |
| 1714 | |
| 1715 /* inhibit recursive call on MapMultiple. */ | |
| 1716 if (stack_idx_of_map_multiple > 0) | |
| 1717 { | |
| 1718 if (stack_idx_of_map_multiple <= stack_idx) | |
| 1719 { | |
| 1720 stack_idx_of_map_multiple = 0; | |
| 1721 mapping_stack_pointer = mapping_stack; | |
| 1722 CCL_INVALID_CMD; | |
| 1723 } | |
| 1724 } | |
| 1725 else | |
| 1726 mapping_stack_pointer = mapping_stack; | |
| 1727 stack_idx_of_map_multiple = 0; | |
| 428 | 1728 |
| 1729 map_set_rest_length = | |
| 4150 | 1730 XCHAR_OR_INT (ccl_prog[ic++]); /* number of maps and separators. */ |
| 428 | 1731 fin_ic = ic + map_set_rest_length; |
| 444 | 1732 op = reg[rrr]; |
| 1733 | |
| 428 | 1734 if ((map_set_rest_length > reg[RRR]) && (reg[RRR] >= 0)) |
| 1735 { | |
| 1736 ic += reg[RRR]; | |
| 1737 i = reg[RRR]; | |
| 1738 map_set_rest_length -= i; | |
| 1739 } | |
| 1740 else | |
| 1741 { | |
| 1742 ic = fin_ic; | |
| 1743 reg[RRR] = -1; | |
| 444 | 1744 mapping_stack_pointer = mapping_stack; |
| 428 | 1745 break; |
| 1746 } | |
| 444 | 1747 |
| 1748 if (mapping_stack_pointer <= (mapping_stack + 1)) | |
| 428 | 1749 { |
| 444 | 1750 /* Set up initial state. */ |
| 1751 mapping_stack_pointer = mapping_stack; | |
| 1752 PUSH_MAPPING_STACK (0, op); | |
| 1753 reg[RRR] = -1; | |
| 1754 } | |
| 1755 else | |
| 1756 { | |
| 1757 /* Recover after calling other ccl program. */ | |
| 1758 int orig_op; | |
| 428 | 1759 |
| 444 | 1760 POP_MAPPING_STACK (map_set_rest_length, orig_op); |
| 1761 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]); | |
| 1762 switch (op) | |
| 428 | 1763 { |
| 444 | 1764 case -1: |
| 1765 /* Regard it as Qnil. */ | |
| 1766 op = orig_op; | |
| 1767 i++; | |
| 1768 ic++; | |
| 1769 map_set_rest_length--; | |
| 1770 break; | |
| 1771 case -2: | |
| 1772 /* Regard it as Qt. */ | |
| 1773 op = reg[rrr]; | |
| 1774 i++; | |
| 1775 ic++; | |
| 1776 map_set_rest_length--; | |
| 1777 break; | |
| 1778 case -3: | |
| 1779 /* Regard it as Qlambda. */ | |
| 1780 op = orig_op; | |
| 428 | 1781 i += map_set_rest_length; |
| 444 | 1782 ic += map_set_rest_length; |
| 1783 map_set_rest_length = 0; | |
| 1784 break; | |
| 1785 default: | |
| 1786 /* Regard it as normal mapping. */ | |
| 428 | 1787 i += map_set_rest_length; |
| 444 | 1788 ic += map_set_rest_length; |
| 428 | 1789 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]); |
| 1790 break; | |
| 1791 } | |
| 1792 } | |
| 444 | 1793 map_vector_size = XVECTOR (Vcode_conversion_map_vector)->size; |
| 1794 | |
| 1795 do { | |
| 1796 for (;map_set_rest_length > 0;i++, ic++, map_set_rest_length--) | |
| 1797 { | |
| 4072 | 1798 point = XCHAR_OR_INT(ccl_prog[ic]); |
| 444 | 1799 if (point < 0) |
| 1800 { | |
| 1801 /* +1 is for including separator. */ | |
| 1802 point = -point + 1; | |
| 1803 if (mapping_stack_pointer | |
| 460 | 1804 >= mapping_stack + countof (mapping_stack)) |
| 444 | 1805 CCL_INVALID_CMD; |
| 1806 PUSH_MAPPING_STACK (map_set_rest_length - point, | |
| 1807 reg[rrr]); | |
| 1808 map_set_rest_length = point; | |
| 1809 reg[rrr] = op; | |
| 1810 continue; | |
| 1811 } | |
| 1812 | |
| 1813 if (point >= map_vector_size) continue; | |
| 1814 map = (XVECTOR (Vcode_conversion_map_vector) | |
| 1815 ->contents[point]); | |
| 1816 | |
| 1817 /* Check map validity. */ | |
| 1818 if (!CONSP (map)) continue; | |
| 1819 map = XCDR (map); | |
| 1820 if (!VECTORP (map)) continue; | |
| 1821 size = XVECTOR (map)->size; | |
| 1822 if (size <= 1) continue; | |
| 1823 | |
| 1824 content = XVECTOR (map)->contents[0]; | |
| 1825 | |
| 1826 /* check map type, | |
| 1827 [STARTPOINT VAL1 VAL2 ...] or | |
| 1828 [t ELEMENT STARTPOINT ENDPOINT] */ | |
| 1829 if (INTP (content)) | |
| 1830 { | |
| 1831 point = XUINT (content); | |
| 1832 point = op - point + 1; | |
| 1833 if (!((point >= 1) && (point < size))) continue; | |
| 1834 content = XVECTOR (map)->contents[point]; | |
| 1835 } | |
| 1836 else if (EQ (content, Qt)) | |
| 1837 { | |
| 1838 if (size != 4) continue; | |
| 647 | 1839 /* #### see comment at CCL_SetArray; in this |
| 1840 case the casts are added but the XUINT was | |
| 1841 already present */ | |
| 1842 if (((unsigned int) op >= | |
| 1843 XUINT (XVECTOR (map)->contents[2])) && | |
| 1844 ((unsigned int) op < | |
| 1845 XUINT (XVECTOR (map)->contents[3]))) | |
| 444 | 1846 content = XVECTOR (map)->contents[1]; |
| 1847 else | |
| 1848 continue; | |
| 1849 } | |
| 1850 else | |
| 1851 continue; | |
| 1852 | |
| 1853 if (NILP (content)) | |
| 1854 continue; | |
| 1855 | |
| 1856 reg[RRR] = i; | |
| 1857 if (INTP (content)) | |
| 1858 { | |
| 4072 | 1859 op = XCHAR_OR_INT (content); |
| 444 | 1860 i += map_set_rest_length - 1; |
| 1861 ic += map_set_rest_length - 1; | |
| 1862 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]); | |
| 1863 map_set_rest_length++; | |
| 1864 } | |
| 1865 else if (CONSP (content)) | |
| 1866 { | |
| 1867 attrib = XCAR (content); | |
| 1868 value = XCDR (content); | |
| 1869 if (!INTP (attrib) || !INTP (value)) | |
| 1870 continue; | |
| 1871 op = XUINT (value); | |
| 1872 i += map_set_rest_length - 1; | |
| 1873 ic += map_set_rest_length - 1; | |
| 1874 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]); | |
| 1875 map_set_rest_length++; | |
| 1876 } | |
| 1877 else if (EQ (content, Qt)) | |
| 1878 { | |
| 1879 op = reg[rrr]; | |
| 1880 } | |
| 1881 else if (EQ (content, Qlambda)) | |
| 1882 { | |
| 1883 i += map_set_rest_length; | |
| 1884 ic += map_set_rest_length; | |
| 1885 break; | |
| 1886 } | |
| 1887 else if (SYMBOLP (content)) | |
| 1888 { | |
| 1889 if (mapping_stack_pointer | |
| 460 | 1890 >= mapping_stack + countof (mapping_stack)) |
| 444 | 1891 CCL_INVALID_CMD; |
| 1892 PUSH_MAPPING_STACK (map_set_rest_length, reg[rrr]); | |
| 1893 PUSH_MAPPING_STACK (map_set_rest_length, op); | |
| 1894 stack_idx_of_map_multiple = stack_idx + 1; | |
| 1895 CCL_CALL_FOR_MAP_INSTRUCTION (content, current_ic); | |
| 1896 } | |
| 1897 else | |
| 1898 CCL_INVALID_CMD; | |
| 1899 } | |
| 1900 if (mapping_stack_pointer <= (mapping_stack + 1)) | |
| 1901 break; | |
| 1902 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]); | |
| 1903 i += map_set_rest_length; | |
| 1904 ic += map_set_rest_length; | |
| 1905 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]); | |
| 1906 } while (1); | |
| 1907 | |
| 428 | 1908 ic = fin_ic; |
| 1909 } | |
| 1910 reg[rrr] = op; | |
| 1911 break; | |
| 1912 | |
| 1913 case CCL_MapSingle: | |
| 1914 { | |
| 1915 Lisp_Object map, attrib, value, content; | |
| 1916 int size, point; | |
| 4150 | 1917 j = XCHAR_OR_INT (ccl_prog[ic++]); /* map_id */ |
| 428 | 1918 op = reg[rrr]; |
| 1919 if (j >= XVECTOR (Vcode_conversion_map_vector)->size) | |
| 1920 { | |
| 1921 reg[RRR] = -1; | |
| 1922 break; | |
| 1923 } | |
| 1924 map = XVECTOR (Vcode_conversion_map_vector)->contents[j]; | |
| 1925 if (!CONSP (map)) | |
| 1926 { | |
| 1927 reg[RRR] = -1; | |
| 1928 break; | |
| 1929 } | |
| 444 | 1930 map = XCDR (map); |
| 428 | 1931 if (!VECTORP (map)) |
| 1932 { | |
| 1933 reg[RRR] = -1; | |
| 1934 break; | |
| 1935 } | |
| 1936 size = XVECTOR (map)->size; | |
| 1937 point = XUINT (XVECTOR (map)->contents[0]); | |
| 1938 point = op - point + 1; | |
| 1939 reg[RRR] = 0; | |
| 1940 if ((size <= 1) || | |
| 1941 (!((point >= 1) && (point < size)))) | |
| 1942 reg[RRR] = -1; | |
| 1943 else | |
| 1944 { | |
| 444 | 1945 reg[RRR] = 0; |
| 428 | 1946 content = XVECTOR (map)->contents[point]; |
| 1947 if (NILP (content)) | |
| 1948 reg[RRR] = -1; | |
| 444 | 1949 else if (INTP (content)) |
| 4072 | 1950 reg[rrr] = XCHAR_OR_INT (content); |
| 444 | 1951 else if (EQ (content, Qt)); |
| 428 | 1952 else if (CONSP (content)) |
| 1953 { | |
| 444 | 1954 attrib = XCAR (content); |
| 1955 value = XCDR (content); | |
| 1956 if (!INTP (attrib) || !INTP (value)) | |
| 428 | 1957 continue; |
| 1958 reg[rrr] = XUINT(value); | |
| 1959 break; | |
| 1960 } | |
| 444 | 1961 else if (SYMBOLP (content)) |
| 1962 CCL_CALL_FOR_MAP_INSTRUCTION (content, ic); | |
| 428 | 1963 else |
| 1964 reg[RRR] = -1; | |
| 1965 } | |
| 1966 } | |
| 1967 break; | |
| 442 | 1968 |
| 428 | 1969 default: |
| 1970 CCL_INVALID_CMD; | |
| 1971 } | |
| 1972 break; | |
| 1973 | |
| 1974 default: | |
| 444 | 1975 CCL_INVALID_CMD; |
| 428 | 1976 } |
| 1977 } | |
| 1978 | |
| 1979 ccl_error_handler: | |
| 1980 if (destination) | |
| 1981 { | |
| 1982 /* We can insert an error message only if DESTINATION is | |
| 1983 specified and we still have a room to store the message | |
| 1984 there. */ | |
| 1985 char msg[256]; | |
| 1986 | |
| 1987 switch (ccl->status) | |
| 1988 { | |
| 1989 case CCL_STAT_INVALID_CMD: | |
| 1990 sprintf(msg, "\nCCL: Invalid command %x (ccl_code = %x) at %d.", | |
| 1991 code & 0x1F, code, this_ic); | |
| 1992 #ifdef CCL_DEBUG | |
| 1993 { | |
| 1994 int i = ccl_backtrace_idx - 1; | |
| 1995 int j; | |
| 1996 | |
| 1997 Dynarr_add_many (destination, (unsigned char *) msg, strlen (msg)); | |
| 1998 | |
| 1999 for (j = 0; j < CCL_DEBUG_BACKTRACE_LEN; j++, i--) | |
| 2000 { | |
| 2001 if (i < 0) i = CCL_DEBUG_BACKTRACE_LEN - 1; | |
| 2002 if (ccl_backtrace_table[i] == 0) | |
| 2003 break; | |
| 2004 sprintf(msg, " %d", ccl_backtrace_table[i]); | |
| 2005 Dynarr_add_many (destination, (unsigned char *) msg, strlen (msg)); | |
| 2006 } | |
| 2007 goto ccl_finish; | |
| 2008 } | |
| 2009 #endif | |
| 2010 break; | |
| 2011 | |
| 2012 case CCL_STAT_QUIT: | |
| 444 | 2013 sprintf(msg, "\nCCL: Exited."); |
| 428 | 2014 break; |
| 2015 | |
| 2016 default: | |
| 2017 sprintf(msg, "\nCCL: Unknown error type (%d).", ccl->status); | |
| 2018 } | |
| 2019 | |
| 2020 Dynarr_add_many (destination, (unsigned char *) msg, strlen (msg)); | |
| 2021 } | |
| 2022 | |
| 2023 ccl_finish: | |
| 2024 ccl->ic = ic; | |
| 2025 ccl->stack_idx = stack_idx; | |
| 2026 ccl->prog = ccl_prog; | |
| 2027 if (consumed) *consumed = src - source; | |
| 444 | 2028 if (!destination) |
| 428 | 2029 return 0; |
| 444 | 2030 return Dynarr_length (destination); |
| 2031 } | |
| 2032 | |
| 2033 /* Resolve symbols in the specified CCL code (Lisp vector). This | |
| 2034 function converts symbols of code conversion maps and character | |
| 2035 translation tables embedded in the CCL code into their ID numbers. | |
| 2036 | |
| 2037 The return value is a vector (CCL itself or a new vector in which | |
| 2038 all symbols are resolved), Qt if resolving of some symbol failed, | |
| 2039 or nil if CCL contains invalid data. */ | |
| 2040 | |
| 2041 static Lisp_Object | |
| 2042 resolve_symbol_ccl_program (Lisp_Object ccl) | |
| 2043 { | |
| 2044 int i, veclen, unresolved = 0; | |
| 2045 Lisp_Object result, contents, val; | |
| 2046 | |
| 2047 result = ccl; | |
| 2048 veclen = XVECTOR (result)->size; | |
| 2049 | |
| 2050 for (i = 0; i < veclen; i++) | |
| 2051 { | |
| 2052 contents = XVECTOR (result)->contents[i]; | |
| 4072 | 2053 /* XEmacs change; accept characters as well as integers, on the basis |
| 2054 that most CCL code written doesn't make a distinction. */ | |
| 2055 if (INTP (contents) || CHARP(contents)) | |
| 444 | 2056 continue; |
| 2057 else if (CONSP (contents) | |
| 2058 && SYMBOLP (XCAR (contents)) | |
| 2059 && SYMBOLP (XCDR (contents))) | |
| 2060 { | |
| 2061 /* This is the new style for embedding symbols. The form is | |
| 2062 (SYMBOL . PROPERTY). (get SYMBOL PROPERTY) should give | |
| 2063 an index number. */ | |
| 2064 | |
| 2065 if (EQ (result, ccl)) | |
| 2066 result = Fcopy_sequence (ccl); | |
| 2067 | |
| 2068 val = Fget (XCAR (contents), XCDR (contents), Qnil); | |
| 2069 if (NATNUMP (val)) | |
| 2070 XVECTOR (result)->contents[i] = val; | |
| 2071 else | |
| 2072 unresolved = 1; | |
| 2073 continue; | |
| 2074 } | |
| 2075 else if (SYMBOLP (contents)) | |
| 2076 { | |
| 2077 /* This is the old style for embedding symbols. This style | |
| 2078 may lead to a bug if, for instance, a translation table | |
| 2079 and a code conversion map have the same name. */ | |
| 2080 if (EQ (result, ccl)) | |
| 2081 result = Fcopy_sequence (ccl); | |
| 2082 | |
| 2083 val = Fget (contents, Qcode_conversion_map_id, Qnil); | |
| 2084 if (NATNUMP (val)) | |
| 2085 XVECTOR (result)->contents[i] = val; | |
| 2086 else | |
| 2087 { | |
| 2088 val = Fget (contents, Qccl_program_idx, Qnil); | |
| 2089 if (NATNUMP (val)) | |
| 2090 XVECTOR (result)->contents[i] = val; | |
| 2091 else | |
| 2092 unresolved = 1; | |
| 2093 } | |
| 2094 continue; | |
| 2095 } | |
| 2096 return Qnil; | |
| 2097 } | |
| 2098 | |
| 2099 return (unresolved ? Qt : result); | |
| 2100 } | |
| 2101 | |
| 2102 /* Return the compiled code (vector) of CCL program CCL_PROG. | |
| 2103 CCL_PROG is a name (symbol) of the program or already compiled | |
| 2104 code. If necessary, resolve symbols in the compiled code to index | |
| 2105 numbers. If we failed to get the compiled code or to resolve | |
| 2106 symbols, return Qnil. */ | |
| 2107 | |
| 2108 static Lisp_Object | |
| 2109 ccl_get_compiled_code (Lisp_Object ccl_prog) | |
| 2110 { | |
| 2111 Lisp_Object val, slot; | |
| 2112 | |
| 2113 if (VECTORP (ccl_prog)) | |
| 2114 { | |
| 2115 val = resolve_symbol_ccl_program (ccl_prog); | |
| 2116 return (VECTORP (val) ? val : Qnil); | |
| 2117 } | |
| 2118 if (!SYMBOLP (ccl_prog)) | |
| 2119 return Qnil; | |
| 2120 | |
| 2121 val = Fget (ccl_prog, Qccl_program_idx, Qnil); | |
| 2122 if (! NATNUMP (val) | |
| 2123 || XINT (val) >= XVECTOR_LENGTH (Vccl_program_table)) | |
| 2124 return Qnil; | |
| 2125 slot = XVECTOR_DATA (Vccl_program_table)[XINT (val)]; | |
| 2126 if (! VECTORP (slot) | |
| 2127 || XVECTOR (slot)->size != 3 | |
| 2128 || ! VECTORP (XVECTOR_DATA (slot)[1])) | |
| 2129 return Qnil; | |
| 2130 if (NILP (XVECTOR_DATA (slot)[2])) | |
| 2131 { | |
| 2132 val = resolve_symbol_ccl_program (XVECTOR_DATA (slot)[1]); | |
| 2133 if (! VECTORP (val)) | |
| 2134 return Qnil; | |
| 2135 XVECTOR_DATA (slot)[1] = val; | |
| 2136 XVECTOR_DATA (slot)[2] = Qt; | |
| 2137 } | |
| 2138 return XVECTOR_DATA (slot)[1]; | |
| 428 | 2139 } |
| 2140 | |
| 2141 /* Setup fields of the structure pointed by CCL appropriately for the | |
| 444 | 2142 execution of CCL program CCL_PROG. CCL_PROG is the name (symbol) |
| 2143 of the CCL program or the already compiled code (vector). | |
| 2144 Return 0 if we succeed this setup, else return -1. | |
| 2145 | |
| 2146 If CCL_PROG is nil, we just reset the structure pointed by CCL. */ | |
| 2147 int | |
| 2148 setup_ccl_program (struct ccl_program *ccl, Lisp_Object ccl_prog) | |
| 428 | 2149 { |
| 771 | 2150 xzero (*ccl); /* XEmacs change */ |
| 444 | 2151 if (! NILP (ccl_prog)) |
| 428 | 2152 { |
| 444 | 2153 ccl_prog = ccl_get_compiled_code (ccl_prog); |
| 2154 if (! VECTORP (ccl_prog)) | |
| 2155 return -1; | |
| 2156 ccl->size = XVECTOR_LENGTH (ccl_prog); | |
| 2157 ccl->prog = XVECTOR_DATA (ccl_prog); | |
| 2158 ccl->eof_ic = XINT (XVECTOR_DATA (ccl_prog)[CCL_HEADER_EOF]); | |
| 2159 ccl->buf_magnification = XINT (XVECTOR_DATA (ccl_prog)[CCL_HEADER_BUF_MAG]); | |
| 428 | 2160 } |
| 2161 ccl->ic = CCL_HEADER_MAIN; | |
| 444 | 2162 ccl->eol_type = CCL_CODING_EOL_LF; |
| 2163 return 0; | |
| 428 | 2164 } |
| 2165 | |
| 444 | 2166 #ifdef emacs |
| 428 | 2167 |
| 444 | 2168 DEFUN ("ccl-program-p", Fccl_program_p, 1, 1, 0, /* |
| 2169 Return t if OBJECT is a CCL program name or a compiled CCL program code. | |
| 2170 See the documentation of `define-ccl-program' for the detail of CCL program. | |
| 2171 */ | |
| 2172 (object)) | |
| 2173 { | |
| 2174 Lisp_Object val; | |
| 428 | 2175 |
| 444 | 2176 if (VECTORP (object)) |
| 2177 { | |
| 2178 val = resolve_symbol_ccl_program (object); | |
| 2179 return (VECTORP (val) ? Qt : Qnil); | |
| 428 | 2180 } |
| 444 | 2181 if (!SYMBOLP (object)) |
| 2182 return Qnil; | |
| 428 | 2183 |
| 444 | 2184 val = Fget (object, Qccl_program_idx, Qnil); |
| 2185 return ((! NATNUMP (val) | |
| 2186 || XINT (val) >= XVECTOR_LENGTH (Vccl_program_table)) | |
| 2187 ? Qnil : Qt); | |
| 428 | 2188 } |
| 2189 | |
| 2190 DEFUN ("ccl-execute", Fccl_execute, 2, 2, 0, /* | |
| 2191 Execute CCL-PROGRAM with registers initialized by REGISTERS. | |
| 2192 | |
| 444 | 2193 CCL-PROGRAM is a CCL program name (symbol) |
| 428 | 2194 or a compiled code generated by `ccl-compile' (for backward compatibility, |
| 444 | 2195 in this case, the overhead of the execution is bigger than the former case). |
| 428 | 2196 No I/O commands should appear in CCL-PROGRAM. |
| 2197 | |
| 2198 REGISTERS is a vector of [R0 R1 ... R7] where RN is an initial value | |
| 2199 of Nth register. | |
| 2200 | |
| 444 | 2201 As side effect, each element of REGISTERS holds the value of |
| 428 | 2202 corresponding register after the execution. |
| 444 | 2203 |
| 2204 See the documentation of `define-ccl-program' for the detail of CCL program. | |
| 428 | 2205 */ |
| 444 | 2206 (ccl_prog, reg)) |
| 428 | 2207 { |
| 2208 struct ccl_program ccl; | |
| 2209 int i; | |
| 2210 | |
| 444 | 2211 if (setup_ccl_program (&ccl, ccl_prog) < 0) |
| 563 | 2212 syntax_error ("Invalid CCL program", Qunbound); |
| 428 | 2213 |
| 2214 CHECK_VECTOR (reg); | |
| 2215 if (XVECTOR_LENGTH (reg) != 8) | |
| 563 | 2216 syntax_error ("Length of vector REGISTERS is not 8", Qunbound); |
| 428 | 2217 |
| 2218 for (i = 0; i < 8; i++) | |
| 4072 | 2219 ccl.reg[i] = (INTP (XVECTOR_DATA (reg)[i]) || CHARP (XVECTOR_DATA (reg)[i]) |
| 2220 ? XCHAR_OR_INT (XVECTOR_DATA (reg)[i]) | |
| 428 | 2221 : 0); |
| 2222 | |
| 444 | 2223 ccl_driver (&ccl, (const unsigned char *)0, |
| 2224 (unsigned_char_dynarr *)0, 0, (int *)0, | |
| 2225 CCL_MODE_ENCODING); | |
| 428 | 2226 QUIT; |
| 2227 if (ccl.status != CCL_STAT_SUCCESS) | |
| 563 | 2228 signal_error (Qccl_error, "Error in CCL program at code numbered ...", make_int (ccl.ic)); |
| 428 | 2229 |
| 2230 for (i = 0; i < 8; i++) | |
| 793 | 2231 XVECTOR (reg)->contents[i] = make_int (ccl.reg[i]); |
| 428 | 2232 return Qnil; |
| 2233 } | |
| 2234 | |
| 444 | 2235 DEFUN ("ccl-execute-on-string", Fccl_execute_on_string, |
| 2236 3, 4, 0, /* | |
| 428 | 2237 Execute CCL-PROGRAM with initial STATUS on STRING. |
| 2238 | |
| 2239 CCL-PROGRAM is a symbol registered by register-ccl-program, | |
| 2240 or a compiled code generated by `ccl-compile' (for backward compatibility, | |
| 2241 in this case, the execution is slower). | |
| 2242 | |
| 2243 Read buffer is set to STRING, and write buffer is allocated automatically. | |
| 2244 | |
| 2245 STATUS is a vector of [R0 R1 ... R7 IC], where | |
| 2246 R0..R7 are initial values of corresponding registers, | |
| 2247 IC is the instruction counter specifying from where to start the program. | |
| 2248 If R0..R7 are nil, they are initialized to 0. | |
| 2249 If IC is nil, it is initialized to head of the CCL program. | |
| 2250 | |
| 2251 If optional 4th arg CONTINUE is non-nil, keep IC on read operation | |
| 444 | 2252 when read buffer is exhausted, else, IC is always set to the end of |
| 428 | 2253 CCL-PROGRAM on exit. |
| 2254 | |
| 2255 It returns the contents of write buffer as a string, | |
| 2256 and as side effect, STATUS is updated. | |
| 444 | 2257 |
| 2258 See the documentation of `define-ccl-program' for the detail of CCL program. | |
| 428 | 2259 */ |
| 444 | 2260 (ccl_prog, status, string, continue_)) |
| 428 | 2261 { |
| 2262 Lisp_Object val; | |
| 2263 struct ccl_program ccl; | |
| 2264 int i, produced; | |
| 2265 unsigned_char_dynarr *outbuf; | |
| 444 | 2266 struct gcpro gcpro1, gcpro2; |
| 428 | 2267 |
| 444 | 2268 if (setup_ccl_program (&ccl, ccl_prog) < 0) |
| 563 | 2269 syntax_error ("Invalid CCL program", Qunbound); |
| 428 | 2270 |
| 2271 CHECK_VECTOR (status); | |
| 444 | 2272 if (XVECTOR (status)->size != 9) |
| 563 | 2273 syntax_error ("Length of vector STATUS is not 9", Qunbound); |
| 444 | 2274 CHECK_STRING (string); |
| 428 | 2275 |
| 444 | 2276 GCPRO2 (status, string); |
| 2277 | |
| 428 | 2278 for (i = 0; i < 8; i++) |
| 2279 { | |
| 2280 if (NILP (XVECTOR_DATA (status)[i])) | |
| 793 | 2281 XVECTOR_DATA (status)[i] = make_int (0); |
| 428 | 2282 if (INTP (XVECTOR_DATA (status)[i])) |
| 2283 ccl.reg[i] = XINT (XVECTOR_DATA (status)[i]); | |
| 4072 | 2284 if (CHARP (XVECTOR_DATA (status)[i])) |
| 2285 ccl.reg[i] = XCHAR (XVECTOR_DATA (status)[i]); | |
| 428 | 2286 } |
| 4072 | 2287 if (INTP (XVECTOR (status)->contents[i]) || |
| 2288 CHARP (XVECTOR (status)->contents[i])) | |
| 428 | 2289 { |
| 4072 | 2290 i = XCHAR_OR_INT (XVECTOR_DATA (status)[8]); |
| 428 | 2291 if (ccl.ic < i && i < ccl.size) |
| 2292 ccl.ic = i; | |
| 2293 } | |
| 2294 outbuf = Dynarr_new (unsigned_char); | |
| 444 | 2295 ccl.last_block = NILP (continue_); |
| 2296 produced = ccl_driver (&ccl, XSTRING_DATA (string), outbuf, | |
| 2297 XSTRING_LENGTH (string), | |
| 2298 (int *) 0, | |
| 2299 CCL_MODE_DECODING); | |
| 428 | 2300 for (i = 0; i < 8; i++) |
| 793 | 2301 XVECTOR_DATA (status)[i] = make_int (ccl.reg[i]); |
| 2302 XVECTOR_DATA (status)[8] = make_int (ccl.ic); | |
| 428 | 2303 UNGCPRO; |
| 2304 | |
| 2305 val = make_string (Dynarr_atp (outbuf, 0), produced); | |
| 2306 Dynarr_free (outbuf); | |
| 2307 QUIT; | |
| 444 | 2308 if (ccl.status == CCL_STAT_SUSPEND_BY_DST) |
| 563 | 2309 signal_error (Qccl_error, "Output buffer for the CCL programs overflow", Qunbound); |
| 428 | 2310 if (ccl.status != CCL_STAT_SUCCESS |
| 444 | 2311 && ccl.status != CCL_STAT_SUSPEND_BY_SRC) |
| 563 | 2312 signal_error (Qccl_error, "Error in CCL program at code numbered...", make_int (ccl.ic)); |
| 428 | 2313 |
| 2314 return val; | |
| 2315 } | |
| 2316 | |
| 444 | 2317 DEFUN ("register-ccl-program", Fregister_ccl_program, |
| 2318 2, 2, 0, /* | |
| 2319 Register CCL program CCL-PROG as NAME in `ccl-program-table'. | |
| 2320 CCL-PROG should be a compiled CCL program (vector), or nil. | |
| 2321 If it is nil, just reserve NAME as a CCL program name. | |
| 428 | 2322 Return index number of the registered CCL program. |
| 2323 */ | |
| 444 | 2324 (name, ccl_prog)) |
| 428 | 2325 { |
| 2326 int len = XVECTOR_LENGTH (Vccl_program_table); | |
| 444 | 2327 int idx; |
| 2328 Lisp_Object resolved; | |
| 428 | 2329 |
| 2330 CHECK_SYMBOL (name); | |
| 444 | 2331 resolved = Qnil; |
| 428 | 2332 if (!NILP (ccl_prog)) |
| 2333 { | |
| 2334 CHECK_VECTOR (ccl_prog); | |
| 444 | 2335 resolved = resolve_symbol_ccl_program (ccl_prog); |
| 2336 if (! NILP (resolved)) | |
| 428 | 2337 { |
| 444 | 2338 ccl_prog = resolved; |
| 2339 resolved = Qt; | |
| 428 | 2340 } |
| 2341 } | |
| 2342 | |
| 444 | 2343 for (idx = 0; idx < len; idx++) |
| 428 | 2344 { |
| 444 | 2345 Lisp_Object slot; |
| 2346 | |
| 2347 slot = XVECTOR_DATA (Vccl_program_table)[idx]; | |
| 2348 if (!VECTORP (slot)) | |
| 2349 /* This is the first unused slot. Register NAME here. */ | |
| 2350 break; | |
| 2351 | |
| 2352 if (EQ (name, XVECTOR_DATA (slot)[0])) | |
| 2353 { | |
| 2354 /* Update this slot. */ | |
| 2355 XVECTOR_DATA (slot)[1] = ccl_prog; | |
| 2356 XVECTOR_DATA (slot)[2] = resolved; | |
| 2357 return make_int (idx); | |
| 2358 } | |
| 2359 } | |
| 2360 | |
| 2361 if (idx == len) | |
| 2362 { | |
| 2363 /* Extend the table. */ | |
| 2364 Lisp_Object new_table; | |
| 428 | 2365 int j; |
| 2366 | |
| 444 | 2367 new_table = Fmake_vector (make_int (len * 2), Qnil); |
| 428 | 2368 for (j = 0; j < len; j++) |
| 2369 XVECTOR_DATA (new_table)[j] | |
| 2370 = XVECTOR_DATA (Vccl_program_table)[j]; | |
| 2371 Vccl_program_table = new_table; | |
| 2372 } | |
| 2373 | |
| 444 | 2374 { |
| 2375 Lisp_Object elt; | |
| 2376 | |
| 2377 elt = Fmake_vector (make_int (3), Qnil); | |
| 2378 XVECTOR_DATA (elt)[0] = name; | |
| 2379 XVECTOR_DATA (elt)[1] = ccl_prog; | |
| 2380 XVECTOR_DATA (elt)[2] = resolved; | |
| 2381 XVECTOR_DATA (Vccl_program_table)[idx] = elt; | |
| 2382 } | |
| 2383 | |
| 2384 Fput (name, Qccl_program_idx, make_int (idx)); | |
| 2385 return make_int (idx); | |
| 428 | 2386 } |
| 2387 | |
| 2388 /* Register code conversion map. | |
| 2389 A code conversion map consists of numbers, Qt, Qnil, and Qlambda. | |
| 2390 The first element is start code point. | |
| 2391 The rest elements are mapped numbers. | |
| 2392 Symbol t means to map to an original number before mapping. | |
| 2393 Symbol nil means that the corresponding element is empty. | |
| 442 | 2394 Symbol lambda means to terminate mapping here. |
| 428 | 2395 */ |
| 2396 | |
| 2397 DEFUN ("register-code-conversion-map", Fregister_code_conversion_map, | |
| 444 | 2398 2, 2, 0, /* |
| 2399 Register SYMBOL as code conversion map MAP. | |
| 2400 Return index number of the registered map. | |
| 2401 */ | |
| 2402 (symbol, map)) | |
| 428 | 2403 { |
| 444 | 2404 int len = XVECTOR_LENGTH (Vcode_conversion_map_vector); |
| 428 | 2405 int i; |
| 444 | 2406 Lisp_Object idx; |
| 428 | 2407 |
| 444 | 2408 CHECK_SYMBOL (symbol); |
| 2409 CHECK_VECTOR (map); | |
| 442 | 2410 |
| 428 | 2411 for (i = 0; i < len; i++) |
| 2412 { | |
| 444 | 2413 Lisp_Object slot = XVECTOR_DATA (Vcode_conversion_map_vector)[i]; |
| 428 | 2414 |
| 2415 if (!CONSP (slot)) | |
| 2416 break; | |
| 2417 | |
| 444 | 2418 if (EQ (symbol, XCAR (slot))) |
| 428 | 2419 { |
| 444 | 2420 idx = make_int (i); |
| 2421 XCDR (slot) = map; | |
| 428 | 2422 Fput (symbol, Qcode_conversion_map, map); |
| 444 | 2423 Fput (symbol, Qcode_conversion_map_id, idx); |
| 2424 return idx; | |
| 428 | 2425 } |
| 2426 } | |
| 2427 | |
| 2428 if (i == len) | |
| 2429 { | |
| 2430 Lisp_Object new_vector = Fmake_vector (make_int (len * 2), Qnil); | |
| 2431 int j; | |
| 2432 | |
| 2433 for (j = 0; j < len; j++) | |
| 444 | 2434 XVECTOR_DATA (new_vector)[j] |
| 2435 = XVECTOR_DATA (Vcode_conversion_map_vector)[j]; | |
| 428 | 2436 Vcode_conversion_map_vector = new_vector; |
| 2437 } | |
| 2438 | |
| 444 | 2439 idx = make_int (i); |
| 428 | 2440 Fput (symbol, Qcode_conversion_map, map); |
| 444 | 2441 Fput (symbol, Qcode_conversion_map_id, idx); |
| 2442 XVECTOR_DATA (Vcode_conversion_map_vector)[i] = Fcons (symbol, map); | |
| 2443 return idx; | |
| 428 | 2444 } |
| 2445 | |
| 2446 | |
| 2447 void | |
| 2448 syms_of_mule_ccl (void) | |
| 2449 { | |
| 565 | 2450 DEFERROR_STANDARD (Qccl_error, Qconversion_error); |
| 2451 | |
| 444 | 2452 DEFSUBR (Fccl_program_p); |
| 428 | 2453 DEFSUBR (Fccl_execute); |
| 2454 DEFSUBR (Fccl_execute_on_string); | |
| 2455 DEFSUBR (Fregister_ccl_program); | |
| 444 | 2456 DEFSUBR (Fregister_code_conversion_map); |
| 428 | 2457 } |
| 2458 | |
| 2459 void | |
| 2460 vars_of_mule_ccl (void) | |
| 2461 { | |
| 4072 | 2462 |
| 428 | 2463 staticpro (&Vccl_program_table); |
| 2464 Vccl_program_table = Fmake_vector (make_int (32), Qnil); | |
| 2465 | |
| 4072 | 2466 #ifdef DEBUG_XEMACS |
| 2467 DEFVAR_LISP ("ccl-program-table", | |
| 2468 &Vccl_program_table /* | |
| 2469 Vector containing all registered CCL programs. | |
| 2470 */ ); | |
| 2471 #endif | |
| 563 | 2472 DEFSYMBOL (Qccl_program); |
| 2473 DEFSYMBOL (Qccl_program_idx); | |
| 2474 DEFSYMBOL (Qcode_conversion_map); | |
| 2475 DEFSYMBOL (Qcode_conversion_map_id); | |
| 428 | 2476 |
| 2477 DEFVAR_LISP ("code-conversion-map-vector", &Vcode_conversion_map_vector /* | |
| 444 | 2478 Vector of code conversion maps. |
| 2479 */ ); | |
| 428 | 2480 Vcode_conversion_map_vector = Fmake_vector (make_int (16), Qnil); |
| 2481 | |
| 4072 | 2482 DEFVAR_LISP ("translation-hash-table-vector", |
| 2483 &Vtranslation_hash_table_vector /* | |
| 2484 Vector containing all translation hash tables ever defined. | |
| 2485 Comprises pairs (SYMBOL . TABLE) where SYMBOL and TABLE were set up by calls | |
| 2486 to `define-translation-hash-table'. The vector is indexed by the table id | |
| 2487 used by CCL. | |
| 428 | 2488 */ ); |
| 4072 | 2489 Vtranslation_hash_table_vector = Qnil; |
| 2490 | |
| 428 | 2491 } |
| 2492 | |
| 2493 #endif /* emacs */ |
