Mercurial > hg > xemacs-beta
annotate src/gc.c @ 4742:4cf435fcebbc
Make #'letf not error if handed a #'values form.
lisp/ChangeLog addition:
2009-11-14 Aidan Kehoe <kehoea@parhasard.net>
* cl-macs.el (letf):
Check whether arguments to #'values are bound, and make them
unbound after evaluating BODY; document the limitations of this
macro.
tests/ChangeLog addition:
2009-11-14 Aidan Kehoe <kehoea@parhasard.net>
* automated/lisp-tests.el:
Don't call Known-Bug-Expect-Failure now that the particular letf
bug it tickled is fixed.
| author | Aidan Kehoe <kehoea@parhasard.net> |
|---|---|
| date | Sat, 14 Nov 2009 11:43:09 +0000 |
| parents | 8748a3f7ceb4 |
| children | 17362f371cc2 714f7c9fabb1 |
| rev | line source |
|---|---|
| 3092 | 1 /* New incremental garbage collector for XEmacs. |
| 2 Copyright (C) 2005 Marcus Crestani. | |
| 3 | |
| 4 This file is part of XEmacs. | |
| 5 | |
| 6 XEmacs is free software; you can redistribute it and/or modify it | |
| 7 under the terms of the GNU General Public License as published by the | |
| 8 Free Software Foundation; either version 2, or (at your option) any | |
| 9 later version. | |
| 10 | |
| 11 XEmacs is distributed in the hope that it will be useful, but WITHOUT | |
| 12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
| 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |
| 14 for more details. | |
| 15 | |
| 16 You should have received a copy of the GNU General Public License | |
| 17 along with XEmacs; see the file COPYING. If not, write to | |
| 18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330, | |
| 19 Boston, MA 02111-1307, USA. */ | |
| 20 | |
| 21 /* Synched up with: Not in FSF. */ | |
| 22 | |
| 23 #include <config.h> | |
| 24 #include "lisp.h" | |
| 25 | |
| 26 #include "backtrace.h" | |
| 27 #include "buffer.h" | |
| 28 #include "bytecode.h" | |
| 29 #include "chartab.h" | |
| 30 #include "console-stream.h" | |
| 31 #include "device.h" | |
| 32 #include "elhash.h" | |
| 33 #include "events.h" | |
| 34 #include "extents-impl.h" | |
| 35 #include "file-coding.h" | |
| 36 #include "frame-impl.h" | |
| 37 #include "gc.h" | |
| 38 #include "glyphs.h" | |
| 39 #include "opaque.h" | |
| 40 #include "lrecord.h" | |
| 41 #include "lstream.h" | |
| 42 #include "process.h" | |
| 43 #include "profile.h" | |
| 44 #include "redisplay.h" | |
| 45 #include "specifier.h" | |
| 46 #include "sysfile.h" | |
| 47 #include "sysdep.h" | |
| 48 #include "window.h" | |
| 49 #include "vdb.h" | |
| 50 | |
| 51 | |
| 52 #define GC_CONS_THRESHOLD 2000000 | |
| 53 #define GC_CONS_INCREMENTAL_THRESHOLD 200000 | |
| 54 #define GC_INCREMENTAL_TRAVERSAL_THRESHOLD 100000 | |
| 55 | |
| 56 /* Number of bytes of consing done since the last GC. */ | |
| 57 EMACS_INT consing_since_gc; | |
| 58 | |
| 59 /* Number of bytes of consing done since startup. */ | |
| 60 EMACS_UINT total_consing; | |
| 61 | |
| 62 /* Number of bytes of current allocated heap objects. */ | |
| 63 EMACS_INT total_gc_usage; | |
| 64 | |
| 65 /* If the above is set. */ | |
| 66 int total_gc_usage_set; | |
| 67 | |
| 68 /* Number of bytes of consing since gc before another gc should be done. */ | |
| 69 EMACS_INT gc_cons_threshold; | |
| 70 | |
| 71 /* Nonzero during gc */ | |
| 72 int gc_in_progress; | |
| 73 | |
| 74 /* Percentage of consing of total data size before another GC. */ | |
| 75 EMACS_INT gc_cons_percentage; | |
| 76 | |
| 77 #ifdef NEW_GC | |
| 78 /* Number of bytes of consing since gc before another cycle of the gc | |
| 79 should be done in incremental mode. */ | |
| 80 EMACS_INT gc_cons_incremental_threshold; | |
| 81 | |
| 82 /* Number of elements marked in one cycle of incremental GC. */ | |
| 83 EMACS_INT gc_incremental_traversal_threshold; | |
| 84 | |
| 85 /* Nonzero during write barrier */ | |
| 86 int write_barrier_enabled; | |
| 87 #endif /* NEW_GC */ | |
| 88 | |
| 89 | |
| 90 | |
| 91 #ifdef NEW_GC | |
| 92 /************************************************************************/ | |
| 93 /* Incremental State and Statistics */ | |
| 94 /************************************************************************/ | |
| 95 | |
| 96 enum gc_phase | |
| 97 { | |
| 98 NONE, | |
| 99 INIT_GC, | |
| 100 PUSH_ROOT_SET, | |
| 101 MARK, | |
| 102 REPUSH_ROOT_SET, | |
| 103 FINISH_MARK, | |
| 104 FINALIZE, | |
| 105 SWEEP, | |
| 106 FINISH_GC | |
| 107 }; | |
| 108 | |
| 109 #ifndef ERROR_CHECK_GC | |
| 4124 | 110 typedef struct gc_state_type |
| 3092 | 111 { |
| 112 enum gc_phase phase; | |
| 4124 | 113 } gc_state_type; |
| 3092 | 114 #else /* ERROR_CHECK_GC */ |
| 115 enum gc_stat_id | |
| 116 { | |
| 117 GC_STAT_TOTAL, | |
| 118 GC_STAT_IN_LAST_GC, | |
| 119 GC_STAT_IN_THIS_GC, | |
| 120 GC_STAT_IN_LAST_CYCLE, | |
| 121 GC_STAT_IN_THIS_CYCLE, | |
| 122 GC_STAT_COUNT /* has to be last */ | |
| 123 }; | |
| 124 | |
| 4124 | 125 typedef struct gc_state_type |
| 3092 | 126 { |
| 127 enum gc_phase phase; | |
| 3313 | 128 double n_gc[GC_STAT_COUNT]; |
| 129 double n_cycles[GC_STAT_COUNT]; | |
| 130 double enqueued[GC_STAT_COUNT]; | |
| 131 double dequeued[GC_STAT_COUNT]; | |
| 132 double repushed[GC_STAT_COUNT]; | |
| 133 double enqueued2[GC_STAT_COUNT]; | |
| 134 double dequeued2[GC_STAT_COUNT]; | |
| 135 double finalized[GC_STAT_COUNT]; | |
| 136 double freed[GC_STAT_COUNT]; | |
| 4124 | 137 } gc_state_type; |
| 3092 | 138 #endif /* ERROR_CHECK_GC */ |
| 139 | |
| 4124 | 140 gc_state_type gc_state; |
| 141 | |
| 3092 | 142 #define GC_PHASE gc_state.phase |
| 143 #define GC_SET_PHASE(p) GC_PHASE = p | |
| 144 | |
| 145 #ifdef ERROR_CHECK_GC | |
| 146 # define GC_STAT_START_NEW_GC gc_stat_start_new_gc () | |
| 147 # define GC_STAT_RESUME_GC gc_stat_resume_gc () | |
| 148 | |
| 149 #define GC_STAT_TICK(STAT) \ | |
| 150 gc_state.STAT[GC_STAT_TOTAL]++; \ | |
| 151 gc_state.STAT[GC_STAT_IN_THIS_GC]++; \ | |
| 152 gc_state.STAT[GC_STAT_IN_THIS_CYCLE]++ | |
| 153 | |
| 154 # define GC_STAT_ENQUEUED \ | |
| 155 if (GC_PHASE == REPUSH_ROOT_SET) \ | |
| 156 { \ | |
| 157 GC_STAT_TICK (enqueued2); \ | |
| 158 } \ | |
| 159 else \ | |
| 160 { \ | |
| 161 GC_STAT_TICK (enqueued); \ | |
| 162 } | |
| 163 | |
| 164 # define GC_STAT_DEQUEUED \ | |
| 165 if (gc_state.phase == REPUSH_ROOT_SET) \ | |
| 166 { \ | |
| 167 GC_STAT_TICK (dequeued2); \ | |
| 168 } \ | |
| 169 else \ | |
| 170 { \ | |
| 171 GC_STAT_TICK (dequeued); \ | |
| 172 } | |
| 173 # define GC_STAT_REPUSHED GC_STAT_TICK (repushed) | |
| 174 | |
| 175 #define GC_STAT_RESUME(stat) \ | |
| 176 gc_state.stat[GC_STAT_IN_LAST_CYCLE] = \ | |
| 177 gc_state.stat[GC_STAT_IN_THIS_CYCLE]; \ | |
| 178 gc_state.stat[GC_STAT_IN_THIS_CYCLE] = 0 | |
| 179 | |
| 180 #define GC_STAT_RESTART(stat) \ | |
| 181 gc_state.stat[GC_STAT_IN_LAST_GC] = \ | |
| 182 gc_state.stat[GC_STAT_IN_THIS_GC]; \ | |
| 183 gc_state.stat[GC_STAT_IN_THIS_GC] = 0; \ | |
| 184 GC_STAT_RESUME (stat) | |
| 185 | |
| 186 void | |
| 187 gc_stat_start_new_gc (void) | |
| 188 { | |
| 189 gc_state.n_gc[GC_STAT_TOTAL]++; | |
| 190 gc_state.n_cycles[GC_STAT_TOTAL]++; | |
| 191 gc_state.n_cycles[GC_STAT_IN_LAST_GC] = gc_state.n_cycles[GC_STAT_IN_THIS_GC]; | |
| 192 gc_state.n_cycles[GC_STAT_IN_THIS_GC] = 1; | |
| 193 | |
| 194 GC_STAT_RESTART (enqueued); | |
| 195 GC_STAT_RESTART (dequeued); | |
| 196 GC_STAT_RESTART (repushed); | |
| 197 GC_STAT_RESTART (finalized); | |
| 198 GC_STAT_RESTART (enqueued2); | |
| 199 GC_STAT_RESTART (dequeued2); | |
| 200 GC_STAT_RESTART (freed); | |
| 201 } | |
| 202 | |
| 203 void | |
| 204 gc_stat_resume_gc (void) | |
| 205 { | |
| 206 gc_state.n_cycles[GC_STAT_TOTAL]++; | |
| 207 gc_state.n_cycles[GC_STAT_IN_THIS_GC]++; | |
| 208 GC_STAT_RESUME (enqueued); | |
| 209 GC_STAT_RESUME (dequeued); | |
| 210 GC_STAT_RESUME (repushed); | |
| 211 GC_STAT_RESUME (finalized); | |
| 212 GC_STAT_RESUME (enqueued2); | |
| 213 GC_STAT_RESUME (dequeued2); | |
| 214 GC_STAT_RESUME (freed); | |
| 215 } | |
| 216 | |
| 217 void | |
| 218 gc_stat_finalized (void) | |
| 219 { | |
| 220 GC_STAT_TICK (finalized); | |
| 221 } | |
| 222 | |
| 223 void | |
| 224 gc_stat_freed (void) | |
| 225 { | |
| 226 GC_STAT_TICK (freed); | |
| 227 } | |
| 228 | |
| 229 DEFUN("gc-stats", Fgc_stats, 0, 0 ,"", /* | |
| 230 Return statistics about garbage collection cycles in a property list. | |
| 231 */ | |
| 232 ()) | |
| 233 { | |
| 234 Lisp_Object pl = Qnil; | |
| 235 #define PL(name,value) \ | |
| 3313 | 236 pl = cons3 (intern (name), make_float (gc_state.value), pl) |
| 3092 | 237 |
| 238 PL ("freed-in-this-cycle", freed[GC_STAT_IN_THIS_CYCLE]); | |
| 239 PL ("freed-in-this-gc", freed[GC_STAT_IN_THIS_GC]); | |
| 240 PL ("freed-in-last-cycle", freed[GC_STAT_IN_LAST_CYCLE]); | |
| 241 PL ("freed-in-last-gc", freed[GC_STAT_IN_LAST_GC]); | |
| 242 PL ("freed-total", freed[GC_STAT_TOTAL]); | |
| 243 PL ("finalized-in-this-cycle", finalized[GC_STAT_IN_THIS_CYCLE]); | |
| 244 PL ("finalized-in-this-gc", finalized[GC_STAT_IN_THIS_GC]); | |
| 245 PL ("finalized-in-last-cycle", finalized[GC_STAT_IN_LAST_CYCLE]); | |
| 246 PL ("finalized-in-last-gc", finalized[GC_STAT_IN_LAST_GC]); | |
| 247 PL ("finalized-total", finalized[GC_STAT_TOTAL]); | |
| 248 PL ("repushed-in-this-cycle", repushed[GC_STAT_IN_THIS_CYCLE]); | |
| 249 PL ("repushed-in-this-gc", repushed[GC_STAT_IN_THIS_GC]); | |
| 250 PL ("repushed-in-last-cycle", repushed[GC_STAT_IN_LAST_CYCLE]); | |
| 251 PL ("repushed-in-last-gc", repushed[GC_STAT_IN_LAST_GC]); | |
| 252 PL ("repushed-total", repushed[GC_STAT_TOTAL]); | |
| 253 PL ("dequeued2-in-this-cycle", dequeued2[GC_STAT_IN_THIS_CYCLE]); | |
| 254 PL ("dequeued2-in-this-gc", dequeued2[GC_STAT_IN_THIS_GC]); | |
| 255 PL ("dequeued2-in-last-cycle", dequeued2[GC_STAT_IN_LAST_CYCLE]); | |
| 256 PL ("dequeued2-in-last-gc", dequeued2[GC_STAT_IN_LAST_GC]); | |
| 257 PL ("dequeued2-total", dequeued2[GC_STAT_TOTAL]); | |
| 258 PL ("enqueued2-in-this-cycle", enqueued2[GC_STAT_IN_THIS_CYCLE]); | |
| 259 PL ("enqueued2-in-this-gc", enqueued2[GC_STAT_IN_THIS_GC]); | |
| 260 PL ("enqueued2-in-last-cycle", enqueued2[GC_STAT_IN_LAST_CYCLE]); | |
| 261 PL ("enqueued2-in-last-gc", enqueued2[GC_STAT_IN_LAST_GC]); | |
| 262 PL ("enqueued2-total", enqueued2[GC_STAT_TOTAL]); | |
| 263 PL ("dequeued-in-this-cycle", dequeued[GC_STAT_IN_THIS_CYCLE]); | |
| 264 PL ("dequeued-in-this-gc", dequeued[GC_STAT_IN_THIS_GC]); | |
| 265 PL ("dequeued-in-last-cycle", dequeued[GC_STAT_IN_LAST_CYCLE]); | |
| 266 PL ("dequeued-in-last-gc", dequeued[GC_STAT_IN_LAST_GC]); | |
| 267 PL ("dequeued-total", dequeued[GC_STAT_TOTAL]); | |
| 268 PL ("enqueued-in-this-cycle", enqueued[GC_STAT_IN_THIS_CYCLE]); | |
| 269 PL ("enqueued-in-this-gc", enqueued[GC_STAT_IN_THIS_GC]); | |
| 270 PL ("enqueued-in-last-cycle", enqueued[GC_STAT_IN_LAST_CYCLE]); | |
| 271 PL ("enqueued-in-last-gc", enqueued[GC_STAT_IN_LAST_GC]); | |
| 272 PL ("enqueued-total", enqueued[GC_STAT_TOTAL]); | |
| 273 PL ("n-cycles-in-this-gc", n_cycles[GC_STAT_IN_THIS_GC]); | |
| 274 PL ("n-cycles-in-last-gc", n_cycles[GC_STAT_IN_LAST_GC]); | |
| 275 PL ("n-cycles-total", n_cycles[GC_STAT_TOTAL]); | |
| 276 PL ("n-gc-total", n_gc[GC_STAT_TOTAL]); | |
| 277 PL ("phase", phase); | |
| 278 return pl; | |
| 279 } | |
| 280 #else /* not ERROR_CHECK_GC */ | |
| 281 # define GC_STAT_START_NEW_GC | |
| 282 # define GC_STAT_RESUME_GC | |
| 283 # define GC_STAT_ENQUEUED | |
| 284 # define GC_STAT_DEQUEUED | |
| 285 # define GC_STAT_REPUSHED | |
| 286 # define GC_STAT_REMOVED | |
| 287 #endif /* not ERROR_CHECK_GC */ | |
| 288 #endif /* NEW_GC */ | |
| 289 | |
| 290 | |
| 291 /************************************************************************/ | |
| 292 /* Recompute need to garbage collect */ | |
| 293 /************************************************************************/ | |
| 294 | |
| 295 int need_to_garbage_collect; | |
| 296 | |
| 297 #ifdef ERROR_CHECK_GC | |
| 298 int always_gc = 0; /* Debugging hack; equivalent to | |
| 299 (setq gc-cons-thresold -1) */ | |
| 300 #else | |
| 301 #define always_gc 0 | |
| 302 #endif | |
| 303 | |
| 304 /* True if it's time to garbage collect now. */ | |
| 305 void | |
| 306 recompute_need_to_garbage_collect (void) | |
| 307 { | |
| 308 if (always_gc) | |
| 309 need_to_garbage_collect = 1; | |
| 310 else | |
| 311 need_to_garbage_collect = | |
| 312 #ifdef NEW_GC | |
| 313 write_barrier_enabled ? | |
| 314 (consing_since_gc > gc_cons_incremental_threshold) : | |
| 315 #endif /* NEW_GC */ | |
| 316 (consing_since_gc > gc_cons_threshold | |
| 317 && | |
| 318 #if 0 /* #### implement this better */ | |
| 4115 | 319 ((double)consing_since_gc) / total_data_usage()) >= |
| 320 ((double)gc_cons_percentage / 100) | |
| 3092 | 321 #else |
| 322 (!total_gc_usage_set || | |
| 4115 | 323 ((double)consing_since_gc / total_gc_usage) >= |
| 324 ((double)gc_cons_percentage / 100)) | |
| 3092 | 325 #endif |
| 326 ); | |
| 327 recompute_funcall_allocation_flag (); | |
| 328 } | |
| 329 | |
| 330 | |
| 331 | |
| 332 /************************************************************************/ | |
| 333 /* Mark Phase */ | |
| 334 /************************************************************************/ | |
| 335 | |
| 336 static const struct memory_description lisp_object_description_1[] = { | |
| 337 { XD_LISP_OBJECT, 0 }, | |
| 338 { XD_END } | |
| 339 }; | |
| 340 | |
| 341 const struct sized_memory_description lisp_object_description = { | |
| 342 sizeof (Lisp_Object), | |
| 343 lisp_object_description_1 | |
| 344 }; | |
| 345 | |
| 346 #if defined (USE_KKCC) || defined (PDUMP) | |
| 347 | |
| 348 /* This function extracts the value of a count variable described somewhere | |
| 349 else in the description. It is converted corresponding to the type */ | |
| 350 EMACS_INT | |
| 351 lispdesc_indirect_count_1 (EMACS_INT code, | |
| 352 const struct memory_description *idesc, | |
| 353 const void *idata) | |
| 354 { | |
| 355 EMACS_INT count; | |
| 356 const void *irdata; | |
| 357 | |
| 358 int line = XD_INDIRECT_VAL (code); | |
| 359 int delta = XD_INDIRECT_DELTA (code); | |
| 360 | |
| 361 irdata = ((char *) idata) + | |
| 362 lispdesc_indirect_count (idesc[line].offset, idesc, idata); | |
| 363 switch (idesc[line].type) | |
| 364 { | |
| 365 case XD_BYTECOUNT: | |
| 366 count = * (Bytecount *) irdata; | |
| 367 break; | |
| 368 case XD_ELEMCOUNT: | |
| 369 count = * (Elemcount *) irdata; | |
| 370 break; | |
| 371 case XD_HASHCODE: | |
| 372 count = * (Hashcode *) irdata; | |
| 373 break; | |
| 374 case XD_INT: | |
| 375 count = * (int *) irdata; | |
| 376 break; | |
| 377 case XD_LONG: | |
| 378 count = * (long *) irdata; | |
| 379 break; | |
| 380 default: | |
| 381 stderr_out ("Unsupported count type : %d (line = %d, code = %ld)\n", | |
| 382 idesc[line].type, line, (long) code); | |
| 383 #if defined(USE_KKCC) && defined(DEBUG_XEMACS) | |
| 384 if (gc_in_progress) | |
| 385 kkcc_backtrace (); | |
| 386 #endif | |
| 387 #ifdef PDUMP | |
| 388 if (in_pdump) | |
| 389 pdump_backtrace (); | |
| 390 #endif | |
| 391 count = 0; /* warning suppression */ | |
| 392 ABORT (); | |
| 393 } | |
| 394 count += delta; | |
| 395 return count; | |
| 396 } | |
| 397 | |
| 398 /* SDESC is a "description map" (basically, a list of offsets used for | |
| 399 successive indirections) and OBJ is the first object to indirect off of. | |
| 400 Return the description ultimately found. */ | |
| 401 | |
| 402 const struct sized_memory_description * | |
| 403 lispdesc_indirect_description_1 (const void *obj, | |
| 404 const struct sized_memory_description *sdesc) | |
| 405 { | |
| 406 int pos; | |
| 407 | |
| 408 for (pos = 0; sdesc[pos].size >= 0; pos++) | |
| 409 obj = * (const void **) ((const char *) obj + sdesc[pos].size); | |
| 410 | |
| 411 return (const struct sized_memory_description *) obj; | |
| 412 } | |
| 413 | |
| 414 /* Compute the size of the data at RDATA, described by a single entry | |
| 415 DESC1 in a description array. OBJ and DESC are used for | |
| 416 XD_INDIRECT references. */ | |
| 417 | |
| 418 static Bytecount | |
| 419 lispdesc_one_description_line_size (void *rdata, | |
| 420 const struct memory_description *desc1, | |
| 421 const void *obj, | |
| 422 const struct memory_description *desc) | |
| 423 { | |
| 424 union_switcheroo: | |
| 425 switch (desc1->type) | |
| 426 { | |
| 427 case XD_LISP_OBJECT_ARRAY: | |
| 428 { | |
| 429 EMACS_INT val = lispdesc_indirect_count (desc1->data1, desc, obj); | |
| 430 return (val * sizeof (Lisp_Object)); | |
| 431 } | |
| 432 case XD_LISP_OBJECT: | |
| 433 case XD_LO_LINK: | |
| 434 return sizeof (Lisp_Object); | |
| 435 case XD_OPAQUE_PTR: | |
| 436 return sizeof (void *); | |
| 437 #ifdef NEW_GC | |
| 438 case XD_LISP_OBJECT_BLOCK_PTR: | |
| 439 #endif /* NEW_GC */ | |
| 440 case XD_BLOCK_PTR: | |
| 441 { | |
| 442 EMACS_INT val = lispdesc_indirect_count (desc1->data1, desc, obj); | |
| 443 return val * sizeof (void *); | |
| 444 } | |
| 445 case XD_BLOCK_ARRAY: | |
| 446 { | |
| 447 EMACS_INT val = lispdesc_indirect_count (desc1->data1, desc, obj); | |
| 448 | |
| 449 return (val * | |
| 450 lispdesc_block_size | |
| 451 (rdata, | |
| 452 lispdesc_indirect_description (obj, desc1->data2.descr))); | |
| 453 } | |
| 454 case XD_OPAQUE_DATA_PTR: | |
| 455 return sizeof (void *); | |
| 456 case XD_UNION_DYNAMIC_SIZE: | |
| 457 { | |
| 458 /* If an explicit size was given in the first-level structure | |
| 459 description, use it; else compute size based on current union | |
| 460 constant. */ | |
| 461 const struct sized_memory_description *sdesc = | |
| 462 lispdesc_indirect_description (obj, desc1->data2.descr); | |
| 463 if (sdesc->size) | |
| 464 return sdesc->size; | |
| 465 else | |
| 466 { | |
| 467 desc1 = lispdesc_process_xd_union (desc1, desc, obj); | |
| 468 if (desc1) | |
| 469 goto union_switcheroo; | |
| 470 break; | |
| 471 } | |
| 472 } | |
| 473 case XD_UNION: | |
| 474 { | |
| 475 /* If an explicit size was given in the first-level structure | |
| 476 description, use it; else compute size based on maximum of all | |
| 477 possible structures. */ | |
| 478 const struct sized_memory_description *sdesc = | |
| 479 lispdesc_indirect_description (obj, desc1->data2.descr); | |
| 480 if (sdesc->size) | |
| 481 return sdesc->size; | |
| 482 else | |
| 483 { | |
| 484 int count; | |
| 485 Bytecount max_size = -1, size; | |
| 486 | |
| 487 desc1 = sdesc->description; | |
| 488 | |
| 489 for (count = 0; desc1[count].type != XD_END; count++) | |
| 490 { | |
| 491 size = lispdesc_one_description_line_size (rdata, | |
| 492 &desc1[count], | |
| 493 obj, desc); | |
| 494 if (size > max_size) | |
| 495 max_size = size; | |
| 496 } | |
| 497 return max_size; | |
| 498 } | |
| 499 } | |
| 500 case XD_ASCII_STRING: | |
| 501 return sizeof (void *); | |
| 502 case XD_DOC_STRING: | |
| 503 return sizeof (void *); | |
| 504 case XD_INT_RESET: | |
| 505 return sizeof (int); | |
| 506 case XD_BYTECOUNT: | |
| 507 return sizeof (Bytecount); | |
| 508 case XD_ELEMCOUNT: | |
| 509 return sizeof (Elemcount); | |
| 510 case XD_HASHCODE: | |
| 511 return sizeof (Hashcode); | |
| 512 case XD_INT: | |
| 513 return sizeof (int); | |
| 514 case XD_LONG: | |
| 515 return sizeof (long); | |
| 516 default: | |
| 517 stderr_out ("Unsupported dump type : %d\n", desc1->type); | |
| 518 ABORT (); | |
| 519 } | |
| 520 | |
| 521 return 0; | |
| 522 } | |
| 523 | |
| 524 | |
| 525 /* Return the size of the memory block (NOT necessarily a structure!) | |
| 526 described by SDESC and pointed to by OBJ. If SDESC records an | |
| 527 explicit size (i.e. non-zero), it is simply returned; otherwise, | |
| 528 the size is calculated by the maximum offset and the size of the | |
| 529 object at that offset, rounded up to the maximum alignment. In | |
| 530 this case, we may need the object, for example when retrieving an | |
| 531 "indirect count" of an inlined array (the count is not constant, | |
| 532 but is specified by one of the elements of the memory block). (It | |
| 533 is generally not a problem if we return an overly large size -- we | |
| 534 will simply end up reserving more space than necessary; but if the | |
| 535 size is too small we could be in serious trouble, in particular | |
| 536 with nested inlined structures, where there may be alignment | |
| 537 padding in the middle of a block. #### In fact there is an (at | |
| 538 least theoretical) problem with an overly large size -- we may | |
| 539 trigger a protection fault when reading from invalid memory. We | |
| 540 need to handle this -- perhaps in a stupid but dependable way, | |
| 541 i.e. by trapping SIGSEGV and SIGBUS.) */ | |
| 542 | |
| 543 Bytecount | |
| 544 lispdesc_block_size_1 (const void *obj, Bytecount size, | |
| 545 const struct memory_description *desc) | |
| 546 { | |
| 547 EMACS_INT max_offset = -1; | |
| 548 int max_offset_pos = -1; | |
| 549 int pos; | |
| 550 | |
| 551 if (size) | |
| 552 return size; | |
| 553 | |
| 554 for (pos = 0; desc[pos].type != XD_END; pos++) | |
| 555 { | |
| 556 EMACS_INT offset = lispdesc_indirect_count (desc[pos].offset, desc, obj); | |
| 557 if (offset == max_offset) | |
| 558 { | |
| 559 stderr_out ("Two relocatable elements at same offset?\n"); | |
| 560 ABORT (); | |
| 561 } | |
| 562 else if (offset > max_offset) | |
| 563 { | |
| 564 max_offset = offset; | |
| 565 max_offset_pos = pos; | |
| 566 } | |
| 567 } | |
| 568 | |
| 569 if (max_offset_pos < 0) | |
| 570 return 0; | |
| 571 | |
| 572 { | |
| 573 Bytecount size_at_max; | |
| 574 size_at_max = | |
| 575 lispdesc_one_description_line_size ((char *) obj + max_offset, | |
| 576 &desc[max_offset_pos], obj, desc); | |
| 577 | |
| 578 /* We have no way of knowing the required alignment for this structure, | |
| 579 so just make it maximally aligned. */ | |
| 580 return MAX_ALIGN_SIZE (max_offset + size_at_max); | |
| 581 } | |
| 582 } | |
| 583 #endif /* defined (USE_KKCC) || defined (PDUMP) */ | |
| 584 | |
| 3263 | 585 #ifdef NEW_GC |
| 3092 | 586 #define GC_CHECK_NOT_FREE(lheader) \ |
| 587 gc_checking_assert (! LRECORD_FREE_P (lheader)); | |
| 3263 | 588 #else /* not NEW_GC */ |
| 3092 | 589 #define GC_CHECK_NOT_FREE(lheader) \ |
| 590 gc_checking_assert (! LRECORD_FREE_P (lheader)); \ | |
| 591 gc_checking_assert (LHEADER_IMPLEMENTATION (lheader)->basic_p || \ | |
| 592 ! ((struct old_lcrecord_header *) lheader)->free) | |
| 3263 | 593 #endif /* not NEW_GC */ |
| 3092 | 594 |
| 595 #ifdef USE_KKCC | |
| 596 /* The following functions implement the new mark algorithm. | |
| 597 They mark objects according to their descriptions. They | |
| 598 are modeled on the corresponding pdumper procedures. */ | |
| 599 | |
| 600 #if 0 | |
| 601 # define KKCC_STACK_AS_QUEUE 1 | |
| 602 #endif | |
| 603 | |
| 604 #ifdef DEBUG_XEMACS | |
| 605 /* The backtrace for the KKCC mark functions. */ | |
| 606 #define KKCC_INIT_BT_STACK_SIZE 4096 | |
| 607 | |
| 608 typedef struct | |
| 609 { | |
| 610 void *obj; | |
| 611 const struct memory_description *desc; | |
| 612 int pos; | |
| 613 } kkcc_bt_stack_entry; | |
| 614 | |
| 615 static kkcc_bt_stack_entry *kkcc_bt; | |
| 616 static int kkcc_bt_stack_size; | |
| 617 static int kkcc_bt_depth = 0; | |
| 618 | |
| 619 static void | |
| 620 kkcc_bt_init (void) | |
| 621 { | |
| 622 kkcc_bt_depth = 0; | |
| 623 kkcc_bt_stack_size = KKCC_INIT_BT_STACK_SIZE; | |
| 624 kkcc_bt = (kkcc_bt_stack_entry *) | |
| 625 xmalloc_and_zero (kkcc_bt_stack_size * sizeof (kkcc_bt_stack_entry)); | |
| 626 if (!kkcc_bt) | |
| 627 { | |
| 628 stderr_out ("KKCC backtrace stack init failed for size %d\n", | |
| 629 kkcc_bt_stack_size); | |
| 630 ABORT (); | |
| 631 } | |
| 632 } | |
| 633 | |
| 634 void | |
| 635 kkcc_backtrace (void) | |
| 636 { | |
| 637 int i; | |
| 638 stderr_out ("KKCC mark stack backtrace :\n"); | |
| 639 for (i = kkcc_bt_depth - 1; i >= 0; i--) | |
| 640 { | |
| 641 Lisp_Object obj = wrap_pointer_1 (kkcc_bt[i].obj); | |
| 642 stderr_out (" [%d]", i); | |
| 643 if ((XRECORD_LHEADER (obj)->type >= lrecord_type_last_built_in_type) | |
| 644 || (!LRECORDP (obj)) | |
| 645 || (!XRECORD_LHEADER_IMPLEMENTATION (obj))) | |
| 646 { | |
| 647 stderr_out (" non Lisp Object"); | |
| 648 } | |
| 649 else | |
| 650 { | |
| 651 stderr_out (" %s", | |
| 652 XRECORD_LHEADER_IMPLEMENTATION (obj)->name); | |
| 653 } | |
| 3519 | 654 stderr_out (" (addr: %p, desc: %p, ", |
| 655 (void *) kkcc_bt[i].obj, | |
| 656 (void *) kkcc_bt[i].desc); | |
| 3092 | 657 if (kkcc_bt[i].pos >= 0) |
| 658 stderr_out ("pos: %d)\n", kkcc_bt[i].pos); | |
| 659 else | |
| 660 if (kkcc_bt[i].pos == -1) | |
| 661 stderr_out ("root set)\n"); | |
| 662 else if (kkcc_bt[i].pos == -2) | |
| 663 stderr_out ("dirty object)\n"); | |
| 664 } | |
| 665 } | |
| 666 | |
| 667 static void | |
| 668 kkcc_bt_stack_realloc (void) | |
| 669 { | |
| 670 kkcc_bt_stack_size *= 2; | |
| 671 kkcc_bt = (kkcc_bt_stack_entry *) | |
| 672 xrealloc (kkcc_bt, kkcc_bt_stack_size * sizeof (kkcc_bt_stack_entry)); | |
| 673 if (!kkcc_bt) | |
| 674 { | |
| 675 stderr_out ("KKCC backtrace stack realloc failed for size %d\n", | |
| 676 kkcc_bt_stack_size); | |
| 677 ABORT (); | |
| 678 } | |
| 679 } | |
| 680 | |
| 681 static void | |
| 682 kkcc_bt_free (void) | |
| 683 { | |
| 684 xfree_1 (kkcc_bt); | |
| 685 kkcc_bt = 0; | |
| 686 kkcc_bt_stack_size = 0; | |
| 687 } | |
| 688 | |
| 689 static void | |
| 690 kkcc_bt_push (void *obj, const struct memory_description *desc, | |
| 691 int level, int pos) | |
| 692 { | |
| 693 kkcc_bt_depth = level; | |
| 694 kkcc_bt[kkcc_bt_depth].obj = obj; | |
| 695 kkcc_bt[kkcc_bt_depth].desc = desc; | |
| 696 kkcc_bt[kkcc_bt_depth].pos = pos; | |
| 697 kkcc_bt_depth++; | |
| 698 if (kkcc_bt_depth >= kkcc_bt_stack_size) | |
| 699 kkcc_bt_stack_realloc (); | |
| 700 } | |
| 701 | |
| 702 #else /* not DEBUG_XEMACS */ | |
| 703 #define kkcc_bt_init() | |
| 704 #define kkcc_bt_push(obj, desc, level, pos) | |
| 705 #endif /* not DEBUG_XEMACS */ | |
| 706 | |
| 707 /* Object memory descriptions are in the lrecord_implementation structure. | |
| 708 But copying them to a parallel array is much more cache-friendly. */ | |
| 709 const struct memory_description *lrecord_memory_descriptions[countof (lrecord_implementations_table)]; | |
| 710 | |
| 711 /* the initial stack size in kkcc_gc_stack_entries */ | |
| 712 #define KKCC_INIT_GC_STACK_SIZE 16384 | |
| 713 | |
| 714 typedef struct | |
| 715 { | |
| 716 void *data; | |
| 717 const struct memory_description *desc; | |
| 718 #ifdef DEBUG_XEMACS | |
| 719 int level; | |
| 720 int pos; | |
| 721 #endif | |
| 722 } kkcc_gc_stack_entry; | |
| 723 | |
| 724 | |
| 725 static kkcc_gc_stack_entry *kkcc_gc_stack_ptr; | |
| 726 static int kkcc_gc_stack_front; | |
| 727 static int kkcc_gc_stack_rear; | |
| 728 static int kkcc_gc_stack_size; | |
| 729 | |
| 730 #define KKCC_INC(i) ((i + 1) % kkcc_gc_stack_size) | |
| 731 #define KKCC_INC2(i) ((i + 2) % kkcc_gc_stack_size) | |
| 732 | |
| 733 #define KKCC_GC_STACK_FULL (KKCC_INC2 (kkcc_gc_stack_rear) == kkcc_gc_stack_front) | |
| 734 #define KKCC_GC_STACK_EMPTY (KKCC_INC (kkcc_gc_stack_rear) == kkcc_gc_stack_front) | |
| 735 | |
| 736 static void | |
| 737 kkcc_gc_stack_init (void) | |
| 738 { | |
| 739 kkcc_gc_stack_size = KKCC_INIT_GC_STACK_SIZE; | |
| 740 kkcc_gc_stack_ptr = (kkcc_gc_stack_entry *) | |
| 741 xmalloc_and_zero (kkcc_gc_stack_size * sizeof (kkcc_gc_stack_entry)); | |
| 742 if (!kkcc_gc_stack_ptr) | |
| 743 { | |
| 744 stderr_out ("stack init failed for size %d\n", kkcc_gc_stack_size); | |
| 745 ABORT (); | |
| 746 } | |
| 747 kkcc_gc_stack_front = 0; | |
| 748 kkcc_gc_stack_rear = kkcc_gc_stack_size - 1; | |
| 749 } | |
| 750 | |
| 751 static void | |
| 752 kkcc_gc_stack_free (void) | |
| 753 { | |
| 754 xfree_1 (kkcc_gc_stack_ptr); | |
| 755 kkcc_gc_stack_ptr = 0; | |
| 756 kkcc_gc_stack_front = 0; | |
| 757 kkcc_gc_stack_rear = 0; | |
| 758 kkcc_gc_stack_size = 0; | |
| 759 } | |
| 760 | |
| 761 static void | |
| 762 kkcc_gc_stack_realloc (void) | |
| 763 { | |
| 764 kkcc_gc_stack_entry *old_ptr = kkcc_gc_stack_ptr; | |
| 765 int old_size = kkcc_gc_stack_size; | |
| 766 kkcc_gc_stack_size *= 2; | |
| 767 kkcc_gc_stack_ptr = (kkcc_gc_stack_entry *) | |
| 768 xmalloc_and_zero (kkcc_gc_stack_size * sizeof (kkcc_gc_stack_entry)); | |
| 769 if (!kkcc_gc_stack_ptr) | |
| 770 { | |
| 771 stderr_out ("stack realloc failed for size %d\n", kkcc_gc_stack_size); | |
| 772 ABORT (); | |
| 773 } | |
| 774 if (kkcc_gc_stack_rear >= kkcc_gc_stack_front) | |
| 775 { | |
| 776 int number_elements = kkcc_gc_stack_rear - kkcc_gc_stack_front + 1; | |
| 777 memcpy (kkcc_gc_stack_ptr, &old_ptr[kkcc_gc_stack_front], | |
| 778 number_elements * sizeof (kkcc_gc_stack_entry)); | |
| 779 kkcc_gc_stack_front = 0; | |
| 780 kkcc_gc_stack_rear = number_elements - 1; | |
| 781 } | |
| 782 else | |
| 783 { | |
| 784 int number_elements = old_size - kkcc_gc_stack_front; | |
| 785 memcpy (kkcc_gc_stack_ptr, &old_ptr[kkcc_gc_stack_front], | |
| 786 number_elements * sizeof (kkcc_gc_stack_entry)); | |
| 787 memcpy (&kkcc_gc_stack_ptr[number_elements], &old_ptr[0], | |
| 788 (kkcc_gc_stack_rear + 1) * sizeof (kkcc_gc_stack_entry)); | |
| 789 kkcc_gc_stack_front = 0; | |
| 790 kkcc_gc_stack_rear = kkcc_gc_stack_rear + number_elements; | |
| 791 } | |
| 792 xfree_1 (old_ptr); | |
| 793 } | |
| 794 | |
| 795 static void | |
| 796 #ifdef DEBUG_XEMACS | |
| 797 kkcc_gc_stack_push_1 (void *data, const struct memory_description *desc, | |
| 798 int level, int pos) | |
| 799 #else | |
| 800 kkcc_gc_stack_push_1 (void *data, const struct memory_description *desc) | |
| 801 #endif | |
| 802 { | |
| 803 #ifdef NEW_GC | |
| 804 GC_STAT_ENQUEUED; | |
| 805 #endif /* NEW_GC */ | |
| 806 if (KKCC_GC_STACK_FULL) | |
| 807 kkcc_gc_stack_realloc(); | |
| 808 kkcc_gc_stack_rear = KKCC_INC (kkcc_gc_stack_rear); | |
| 809 kkcc_gc_stack_ptr[kkcc_gc_stack_rear].data = data; | |
| 810 kkcc_gc_stack_ptr[kkcc_gc_stack_rear].desc = desc; | |
| 811 #ifdef DEBUG_XEMACS | |
| 812 kkcc_gc_stack_ptr[kkcc_gc_stack_rear].level = level; | |
| 813 kkcc_gc_stack_ptr[kkcc_gc_stack_rear].pos = pos; | |
| 814 #endif | |
| 815 } | |
| 816 | |
| 817 #ifdef DEBUG_XEMACS | |
| 818 #define kkcc_gc_stack_push(data, desc, level, pos) \ | |
| 819 kkcc_gc_stack_push_1 (data, desc, level, pos) | |
| 820 #else | |
| 821 #define kkcc_gc_stack_push(data, desc, level, pos) \ | |
| 822 kkcc_gc_stack_push_1 (data, desc) | |
| 823 #endif | |
| 824 | |
| 825 static kkcc_gc_stack_entry * | |
| 826 kkcc_gc_stack_pop (void) | |
| 827 { | |
| 828 if (KKCC_GC_STACK_EMPTY) | |
| 829 return 0; | |
| 830 #ifdef NEW_GC | |
| 831 GC_STAT_DEQUEUED; | |
| 832 #endif /* NEW_GC */ | |
| 833 #ifndef KKCC_STACK_AS_QUEUE | |
| 834 /* stack behaviour */ | |
| 835 return &kkcc_gc_stack_ptr[kkcc_gc_stack_rear--]; | |
| 836 #else | |
| 837 /* queue behaviour */ | |
| 838 { | |
| 839 int old_front = kkcc_gc_stack_front; | |
| 840 kkcc_gc_stack_front = KKCC_INC (kkcc_gc_stack_front); | |
| 841 return &kkcc_gc_stack_ptr[old_front]; | |
| 842 } | |
| 843 #endif | |
| 844 } | |
| 845 | |
| 846 void | |
| 847 #ifdef DEBUG_XEMACS | |
| 848 kkcc_gc_stack_push_lisp_object_1 (Lisp_Object obj, int level, int pos) | |
| 849 #else | |
| 850 kkcc_gc_stack_push_lisp_object_1 (Lisp_Object obj) | |
| 851 #endif | |
| 852 { | |
| 853 if (XTYPE (obj) == Lisp_Type_Record) | |
| 854 { | |
| 855 struct lrecord_header *lheader = XRECORD_LHEADER (obj); | |
| 856 const struct memory_description *desc; | |
| 857 GC_CHECK_LHEADER_INVARIANTS (lheader); | |
| 858 desc = RECORD_DESCRIPTION (lheader); | |
| 859 if (! MARKED_RECORD_HEADER_P (lheader)) | |
| 860 { | |
| 861 #ifdef NEW_GC | |
| 862 MARK_GREY (lheader); | |
| 863 #else /* not NEW_GC */ | |
| 864 MARK_RECORD_HEADER (lheader); | |
| 865 #endif /* not NEW_GC */ | |
| 866 kkcc_gc_stack_push ((void *) lheader, desc, level, pos); | |
| 867 } | |
| 868 } | |
| 869 } | |
| 870 | |
| 871 #ifdef NEW_GC | |
| 872 #ifdef DEBUG_XEMACS | |
| 873 #define kkcc_gc_stack_push_lisp_object(obj, level, pos) \ | |
| 874 kkcc_gc_stack_push_lisp_object_1 (obj, level, pos) | |
| 875 #else | |
| 876 #define kkcc_gc_stack_push_lisp_object(obj, level, pos) \ | |
| 877 kkcc_gc_stack_push_lisp_object_1 (obj) | |
| 878 #endif | |
| 879 | |
| 880 void | |
| 881 #ifdef DEBUG_XEMACS | |
| 882 kkcc_gc_stack_repush_dirty_object_1 (Lisp_Object obj, int level, int pos) | |
| 883 #else | |
| 884 kkcc_gc_stack_repush_dirty_object_1 (Lisp_Object obj) | |
| 885 #endif | |
| 886 { | |
| 887 if (XTYPE (obj) == Lisp_Type_Record) | |
| 888 { | |
| 889 struct lrecord_header *lheader = XRECORD_LHEADER (obj); | |
| 890 const struct memory_description *desc; | |
| 891 GC_STAT_REPUSHED; | |
| 892 GC_CHECK_LHEADER_INVARIANTS (lheader); | |
| 893 desc = RECORD_DESCRIPTION (lheader); | |
| 894 MARK_GREY (lheader); | |
| 895 kkcc_gc_stack_push ((void*) lheader, desc, level, pos); | |
| 896 } | |
| 897 } | |
| 898 #endif /* NEW_GC */ | |
| 899 | |
| 900 #ifdef ERROR_CHECK_GC | |
| 901 #define KKCC_DO_CHECK_FREE(obj, allow_free) \ | |
| 902 do \ | |
| 903 { \ | |
| 904 if (!allow_free && XTYPE (obj) == Lisp_Type_Record) \ | |
| 905 { \ | |
| 906 struct lrecord_header *lheader = XRECORD_LHEADER (obj); \ | |
| 907 GC_CHECK_NOT_FREE (lheader); \ | |
| 908 } \ | |
| 909 } while (0) | |
| 910 #else | |
| 911 #define KKCC_DO_CHECK_FREE(obj, allow_free) | |
| 912 #endif | |
| 913 | |
| 914 #ifdef ERROR_CHECK_GC | |
| 915 #ifdef DEBUG_XEMACS | |
| 916 static void | |
| 917 mark_object_maybe_checking_free_1 (Lisp_Object obj, int allow_free, | |
| 918 int level, int pos) | |
| 919 #else | |
| 920 static void | |
| 921 mark_object_maybe_checking_free_1 (Lisp_Object obj, int allow_free) | |
| 922 #endif | |
| 923 { | |
| 924 KKCC_DO_CHECK_FREE (obj, allow_free); | |
| 925 kkcc_gc_stack_push_lisp_object (obj, level, pos); | |
| 926 } | |
| 927 | |
| 928 #ifdef DEBUG_XEMACS | |
| 929 #define mark_object_maybe_checking_free(obj, allow_free, level, pos) \ | |
| 930 mark_object_maybe_checking_free_1 (obj, allow_free, level, pos) | |
| 931 #else | |
| 932 #define mark_object_maybe_checking_free(obj, allow_free, level, pos) \ | |
| 933 mark_object_maybe_checking_free_1 (obj, allow_free) | |
| 934 #endif | |
| 935 #else /* not ERROR_CHECK_GC */ | |
| 936 #define mark_object_maybe_checking_free(obj, allow_free, level, pos) \ | |
| 937 kkcc_gc_stack_push_lisp_object (obj, level, pos) | |
| 938 #endif /* not ERROR_CHECK_GC */ | |
| 939 | |
| 940 | |
| 941 /* This function loops all elements of a struct pointer and calls | |
| 942 mark_with_description with each element. */ | |
| 943 static void | |
| 944 #ifdef DEBUG_XEMACS | |
| 945 mark_struct_contents_1 (const void *data, | |
| 946 const struct sized_memory_description *sdesc, | |
| 947 int count, int level, int pos) | |
| 948 #else | |
| 949 mark_struct_contents_1 (const void *data, | |
| 950 const struct sized_memory_description *sdesc, | |
| 951 int count) | |
| 952 #endif | |
| 953 { | |
| 954 int i; | |
| 955 Bytecount elsize; | |
| 956 elsize = lispdesc_block_size (data, sdesc); | |
| 957 | |
| 958 for (i = 0; i < count; i++) | |
| 959 { | |
| 960 kkcc_gc_stack_push (((char *) data) + elsize * i, sdesc->description, | |
| 961 level, pos); | |
| 962 } | |
| 963 } | |
| 964 | |
| 965 #ifdef DEBUG_XEMACS | |
| 966 #define mark_struct_contents(data, sdesc, count, level, pos) \ | |
| 967 mark_struct_contents_1 (data, sdesc, count, level, pos) | |
| 968 #else | |
| 969 #define mark_struct_contents(data, sdesc, count, level, pos) \ | |
| 970 mark_struct_contents_1 (data, sdesc, count) | |
| 971 #endif | |
| 972 | |
| 973 | |
| 974 #ifdef NEW_GC | |
| 975 /* This function loops all elements of a struct pointer and calls | |
| 976 mark_with_description with each element. */ | |
| 977 static void | |
| 978 #ifdef DEBUG_XEMACS | |
| 979 mark_lisp_object_block_contents_1 (const void *data, | |
| 980 const struct sized_memory_description *sdesc, | |
| 981 int count, int level, int pos) | |
| 982 #else | |
| 983 mark_lisp_object_block_contents_1 (const void *data, | |
| 984 const struct sized_memory_description *sdesc, | |
| 985 int count) | |
| 986 #endif | |
| 987 { | |
| 988 int i; | |
| 989 Bytecount elsize; | |
| 990 elsize = lispdesc_block_size (data, sdesc); | |
| 991 | |
| 992 for (i = 0; i < count; i++) | |
| 993 { | |
| 994 const Lisp_Object obj = wrap_pointer_1 (((char *) data) + elsize * i); | |
| 995 if (XTYPE (obj) == Lisp_Type_Record) | |
| 996 { | |
| 997 struct lrecord_header *lheader = XRECORD_LHEADER (obj); | |
| 998 const struct memory_description *desc; | |
| 999 GC_CHECK_LHEADER_INVARIANTS (lheader); | |
| 1000 desc = sdesc->description; | |
| 1001 if (! MARKED_RECORD_HEADER_P (lheader)) | |
| 1002 { | |
| 1003 MARK_GREY (lheader); | |
| 1004 kkcc_gc_stack_push ((void *) lheader, desc, level, pos); | |
| 1005 } | |
| 1006 } | |
| 1007 } | |
| 1008 } | |
| 1009 | |
| 1010 #ifdef DEBUG_XEMACS | |
| 1011 #define mark_lisp_object_block_contents(data, sdesc, count, level, pos) \ | |
| 1012 mark_lisp_object_block_contents_1 (data, sdesc, count, level, pos) | |
| 1013 #else | |
| 1014 #define mark_lisp_object_block_contents(data, sdesc, count, level, pos) \ | |
| 1015 mark_lisp_object_block_contents_1 (data, sdesc, count) | |
| 1016 #endif | |
| 1017 #endif /* not NEW_GC */ | |
| 1018 | |
| 1019 /* This function implements the KKCC mark algorithm. | |
| 1020 Instead of calling mark_object, all the alive Lisp_Objects are pushed | |
| 1021 on the kkcc_gc_stack. This function processes all elements on the stack | |
| 1022 according to their descriptions. */ | |
| 1023 static void | |
| 1024 kkcc_marking ( | |
| 1025 #ifdef NEW_GC | |
| 1026 int cnt | |
| 1027 #else /* not NEW_GC */ | |
| 1028 int UNUSED(cnt) | |
| 1029 #endif /* not NEW_GC */ | |
| 1030 ) | |
| 1031 { | |
| 1032 kkcc_gc_stack_entry *stack_entry = 0; | |
| 1033 void *data = 0; | |
| 1034 const struct memory_description *desc = 0; | |
| 1035 int pos; | |
| 1036 #ifdef NEW_GC | |
| 1037 int count = cnt; | |
| 1038 #endif /* NEW_GC */ | |
| 1039 #ifdef DEBUG_XEMACS | |
| 1040 int level = 0; | |
| 1041 #endif | |
| 1042 | |
| 1043 while ((stack_entry = kkcc_gc_stack_pop ()) != 0) | |
| 1044 { | |
| 1045 data = stack_entry->data; | |
| 1046 desc = stack_entry->desc; | |
| 1047 #ifdef DEBUG_XEMACS | |
| 1048 level = stack_entry->level + 1; | |
| 1049 #endif | |
| 1050 kkcc_bt_push (data, desc, stack_entry->level, stack_entry->pos); | |
| 1051 | |
| 1052 #ifdef NEW_GC | |
| 1053 /* Mark black if object is currently grey. This first checks, | |
| 1054 if the object is really allocated on the mc-heap. If it is, | |
| 1055 it can be marked black; if it is not, it cannot be marked. */ | |
| 1056 maybe_mark_black (data); | |
| 1057 #endif /* NEW_GC */ | |
| 1058 | |
| 1059 if (!data) continue; | |
| 1060 | |
| 1061 gc_checking_assert (data); | |
| 1062 gc_checking_assert (desc); | |
| 1063 | |
| 1064 for (pos = 0; desc[pos].type != XD_END; pos++) | |
| 1065 { | |
| 1066 const struct memory_description *desc1 = &desc[pos]; | |
| 1067 const void *rdata = | |
| 1068 (const char *) data + lispdesc_indirect_count (desc1->offset, | |
| 1069 desc, data); | |
| 1070 union_switcheroo: | |
| 1071 | |
| 1072 /* If the flag says don't mark, then don't mark. */ | |
| 1073 if ((desc1->flags) & XD_FLAG_NO_KKCC) | |
| 1074 continue; | |
| 1075 | |
| 1076 switch (desc1->type) | |
| 1077 { | |
| 1078 case XD_BYTECOUNT: | |
| 1079 case XD_ELEMCOUNT: | |
| 1080 case XD_HASHCODE: | |
| 1081 case XD_INT: | |
| 1082 case XD_LONG: | |
| 1083 case XD_INT_RESET: | |
| 1084 case XD_LO_LINK: | |
| 1085 case XD_OPAQUE_PTR: | |
| 1086 case XD_OPAQUE_DATA_PTR: | |
| 1087 case XD_ASCII_STRING: | |
| 1088 case XD_DOC_STRING: | |
| 1089 break; | |
| 1090 case XD_LISP_OBJECT: | |
| 1091 { | |
| 1092 const Lisp_Object *stored_obj = (const Lisp_Object *) rdata; | |
| 1093 | |
| 1094 /* Because of the way that tagged objects work (pointers and | |
| 1095 Lisp_Objects have the same representation), XD_LISP_OBJECT | |
| 1096 can be used for untagged pointers. They might be NULL, | |
| 1097 though. */ | |
| 1098 if (EQ (*stored_obj, Qnull_pointer)) | |
| 1099 break; | |
| 3263 | 1100 #ifdef NEW_GC |
| 3092 | 1101 mark_object_maybe_checking_free (*stored_obj, 0, level, pos); |
| 3263 | 1102 #else /* not NEW_GC */ |
| 3092 | 1103 mark_object_maybe_checking_free |
| 1104 (*stored_obj, (desc1->flags) & XD_FLAG_FREE_LISP_OBJECT, | |
| 1105 level, pos); | |
| 3263 | 1106 #endif /* not NEW_GC */ |
| 3092 | 1107 break; |
| 1108 } | |
| 1109 case XD_LISP_OBJECT_ARRAY: | |
| 1110 { | |
| 1111 int i; | |
| 1112 EMACS_INT count = | |
| 1113 lispdesc_indirect_count (desc1->data1, desc, data); | |
| 1114 | |
| 1115 for (i = 0; i < count; i++) | |
| 1116 { | |
| 1117 const Lisp_Object *stored_obj = | |
| 1118 (const Lisp_Object *) rdata + i; | |
| 1119 | |
| 1120 if (EQ (*stored_obj, Qnull_pointer)) | |
| 1121 break; | |
| 3263 | 1122 #ifdef NEW_GC |
| 3092 | 1123 mark_object_maybe_checking_free |
| 1124 (*stored_obj, 0, level, pos); | |
| 3263 | 1125 #else /* not NEW_GC */ |
| 3092 | 1126 mark_object_maybe_checking_free |
| 1127 (*stored_obj, (desc1->flags) & XD_FLAG_FREE_LISP_OBJECT, | |
| 1128 level, pos); | |
| 3263 | 1129 #endif /* not NEW_GC */ |
| 3092 | 1130 } |
| 1131 break; | |
| 1132 } | |
| 1133 #ifdef NEW_GC | |
| 1134 case XD_LISP_OBJECT_BLOCK_PTR: | |
| 1135 { | |
| 1136 EMACS_INT count = lispdesc_indirect_count (desc1->data1, desc, | |
| 1137 data); | |
| 1138 const struct sized_memory_description *sdesc = | |
| 1139 lispdesc_indirect_description (data, desc1->data2.descr); | |
| 1140 const char *dobj = * (const char **) rdata; | |
| 1141 if (dobj) | |
| 1142 mark_lisp_object_block_contents | |
| 1143 (dobj, sdesc, count, level, pos); | |
| 1144 break; | |
| 1145 } | |
| 1146 #endif /* NEW_GC */ | |
| 1147 case XD_BLOCK_PTR: | |
| 1148 { | |
| 1149 EMACS_INT count = lispdesc_indirect_count (desc1->data1, desc, | |
| 1150 data); | |
| 1151 const struct sized_memory_description *sdesc = | |
| 1152 lispdesc_indirect_description (data, desc1->data2.descr); | |
| 1153 const char *dobj = * (const char **) rdata; | |
| 1154 if (dobj) | |
| 1155 mark_struct_contents (dobj, sdesc, count, level, pos); | |
| 1156 break; | |
| 1157 } | |
| 1158 case XD_BLOCK_ARRAY: | |
| 1159 { | |
| 1160 EMACS_INT count = lispdesc_indirect_count (desc1->data1, desc, | |
| 1161 data); | |
| 1162 const struct sized_memory_description *sdesc = | |
| 1163 lispdesc_indirect_description (data, desc1->data2.descr); | |
| 1164 | |
| 1165 mark_struct_contents (rdata, sdesc, count, level, pos); | |
| 1166 break; | |
| 1167 } | |
| 1168 case XD_UNION: | |
| 1169 case XD_UNION_DYNAMIC_SIZE: | |
| 1170 desc1 = lispdesc_process_xd_union (desc1, desc, data); | |
| 1171 if (desc1) | |
| 1172 goto union_switcheroo; | |
| 1173 break; | |
| 1174 | |
| 1175 default: | |
| 1176 stderr_out ("Unsupported description type : %d\n", desc1->type); | |
| 1177 kkcc_backtrace (); | |
| 1178 ABORT (); | |
| 1179 } | |
| 1180 } | |
| 1181 | |
| 1182 #ifdef NEW_GC | |
| 1183 if (cnt) | |
| 1184 if (!--count) | |
| 1185 break; | |
| 1186 #endif /* NEW_GC */ | |
| 1187 } | |
| 1188 } | |
| 1189 #endif /* USE_KKCC */ | |
| 1190 | |
| 1191 /* I hate duplicating all this crap! */ | |
| 1192 int | |
| 1193 marked_p (Lisp_Object obj) | |
| 1194 { | |
| 1195 /* Checks we used to perform. */ | |
| 1196 /* if (EQ (obj, Qnull_pointer)) return 1; */ | |
| 1197 /* if (!POINTER_TYPE_P (XGCTYPE (obj))) return 1; */ | |
| 1198 /* if (PURIFIED (XPNTR (obj))) return 1; */ | |
| 1199 | |
| 1200 if (XTYPE (obj) == Lisp_Type_Record) | |
| 1201 { | |
| 1202 struct lrecord_header *lheader = XRECORD_LHEADER (obj); | |
| 1203 | |
| 1204 GC_CHECK_LHEADER_INVARIANTS (lheader); | |
| 1205 | |
| 1206 return MARKED_RECORD_HEADER_P (lheader); | |
| 1207 } | |
| 1208 return 1; | |
| 1209 } | |
| 1210 | |
| 1211 | |
| 1212 /* Mark reference to a Lisp_Object. If the object referred to has not been | |
| 1213 seen yet, recursively mark all the references contained in it. */ | |
| 1214 void | |
| 1215 mark_object ( | |
| 1216 #ifdef USE_KKCC | |
| 1217 Lisp_Object UNUSED (obj) | |
| 1218 #else | |
| 1219 Lisp_Object obj | |
| 1220 #endif | |
| 1221 ) | |
| 1222 { | |
| 1223 #ifdef USE_KKCC | |
| 1224 /* this code should never be reached when configured for KKCC */ | |
| 1225 stderr_out ("KKCC: Invalid mark_object call.\n"); | |
| 1226 stderr_out ("Replace mark_object with kkcc_gc_stack_push_lisp_object.\n"); | |
| 1227 ABORT (); | |
| 1228 #else /* not USE_KKCC */ | |
| 1229 | |
| 1230 tail_recurse: | |
| 1231 | |
| 1232 /* Checks we used to perform */ | |
| 1233 /* if (EQ (obj, Qnull_pointer)) return; */ | |
| 1234 /* if (!POINTER_TYPE_P (XGCTYPE (obj))) return; */ | |
| 1235 /* if (PURIFIED (XPNTR (obj))) return; */ | |
| 1236 | |
| 1237 if (XTYPE (obj) == Lisp_Type_Record) | |
| 1238 { | |
| 1239 struct lrecord_header *lheader = XRECORD_LHEADER (obj); | |
| 1240 | |
| 1241 GC_CHECK_LHEADER_INVARIANTS (lheader); | |
| 1242 | |
| 1243 /* We handle this separately, above, so we can mark free objects */ | |
| 1244 GC_CHECK_NOT_FREE (lheader); | |
| 1245 | |
| 1246 /* All c_readonly objects have their mark bit set, | |
| 1247 so that we only need to check the mark bit here. */ | |
| 1248 if (! MARKED_RECORD_HEADER_P (lheader)) | |
| 1249 { | |
| 1250 MARK_RECORD_HEADER (lheader); | |
| 1251 | |
| 1252 if (RECORD_MARKER (lheader)) | |
| 1253 { | |
| 1254 obj = RECORD_MARKER (lheader) (obj); | |
| 1255 if (!NILP (obj)) goto tail_recurse; | |
| 1256 } | |
| 1257 } | |
| 1258 } | |
| 1259 #endif /* not KKCC */ | |
| 1260 } | |
| 1261 | |
| 1262 | |
| 1263 /************************************************************************/ | |
| 1264 /* Hooks */ | |
| 1265 /************************************************************************/ | |
| 1266 | |
| 1267 /* Nonzero when calling certain hooks or doing other things where a GC | |
| 1268 would be bad. It prevents infinite recursive calls to gc. */ | |
| 1269 int gc_currently_forbidden; | |
| 1270 | |
| 1271 int | |
| 1272 begin_gc_forbidden (void) | |
| 1273 { | |
| 1274 return internal_bind_int (&gc_currently_forbidden, 1); | |
| 1275 } | |
| 1276 | |
| 1277 void | |
| 1278 end_gc_forbidden (int count) | |
| 1279 { | |
| 1280 unbind_to (count); | |
| 1281 } | |
| 1282 | |
| 1283 /* Hooks. */ | |
| 1284 Lisp_Object Vpre_gc_hook, Qpre_gc_hook; | |
| 1285 Lisp_Object Vpost_gc_hook, Qpost_gc_hook; | |
| 1286 | |
| 1287 /* Maybe we want to use this when doing a "panic" gc after memory_full()? */ | |
| 1288 static int gc_hooks_inhibited; | |
| 1289 | |
| 1290 struct post_gc_action | |
| 1291 { | |
| 1292 void (*fun) (void *); | |
| 1293 void *arg; | |
| 1294 }; | |
| 1295 | |
| 1296 typedef struct post_gc_action post_gc_action; | |
| 1297 | |
| 1298 typedef struct | |
| 1299 { | |
| 1300 Dynarr_declare (post_gc_action); | |
| 1301 } post_gc_action_dynarr; | |
| 1302 | |
| 1303 static post_gc_action_dynarr *post_gc_actions; | |
| 1304 | |
| 1305 /* Register an action to be called at the end of GC. | |
| 1306 gc_in_progress is 0 when this is called. | |
| 1307 This is used when it is discovered that an action needs to be taken, | |
| 1308 but it's during GC, so it's not safe. (e.g. in a finalize method.) | |
| 1309 | |
| 1310 As a general rule, do not use Lisp objects here. | |
| 1311 And NEVER signal an error. | |
| 1312 */ | |
| 1313 | |
| 1314 void | |
| 1315 register_post_gc_action (void (*fun) (void *), void *arg) | |
| 1316 { | |
| 1317 post_gc_action action; | |
| 1318 | |
| 1319 if (!post_gc_actions) | |
| 1320 post_gc_actions = Dynarr_new (post_gc_action); | |
| 1321 | |
| 1322 action.fun = fun; | |
| 1323 action.arg = arg; | |
| 1324 | |
| 1325 Dynarr_add (post_gc_actions, action); | |
| 1326 } | |
| 1327 | |
| 1328 static void | |
| 1329 run_post_gc_actions (void) | |
| 1330 { | |
| 1331 int i; | |
| 1332 | |
| 1333 if (post_gc_actions) | |
| 1334 { | |
| 1335 for (i = 0; i < Dynarr_length (post_gc_actions); i++) | |
| 1336 { | |
| 1337 post_gc_action action = Dynarr_at (post_gc_actions, i); | |
| 1338 (action.fun) (action.arg); | |
| 1339 } | |
| 1340 | |
| 1341 Dynarr_reset (post_gc_actions); | |
| 1342 } | |
| 1343 } | |
| 1344 | |
| 3263 | 1345 #ifdef NEW_GC |
| 1346 /* Asynchronous finalization. */ | |
| 1347 typedef struct finalize_elem | |
| 1348 { | |
| 1349 Lisp_Object obj; | |
| 1350 struct finalize_elem *next; | |
| 1351 } finalize_elem; | |
| 1352 | |
| 1353 finalize_elem *Vall_finalizable_objs; | |
| 1354 Lisp_Object Vfinalizers_to_run; | |
| 1355 | |
| 1356 void | |
| 1357 add_finalizable_obj (Lisp_Object obj) | |
| 1358 { | |
| 1359 finalize_elem *next = Vall_finalizable_objs; | |
| 1360 Vall_finalizable_objs = | |
| 1361 (finalize_elem *) xmalloc_and_zero (sizeof (finalize_elem)); | |
| 1362 Vall_finalizable_objs->obj = obj; | |
| 1363 Vall_finalizable_objs->next = next; | |
| 1364 } | |
| 1365 | |
| 1366 void | |
| 1367 register_for_finalization (void) | |
| 1368 { | |
| 1369 finalize_elem *rest = Vall_finalizable_objs; | |
| 1370 | |
| 1371 if (!rest) | |
| 1372 return; | |
| 1373 | |
| 1374 while (!marked_p (rest->obj)) | |
| 1375 { | |
| 1376 finalize_elem *temp = rest; | |
| 1377 Vfinalizers_to_run = Fcons (rest->obj, Vfinalizers_to_run); | |
| 1378 Vall_finalizable_objs = rest->next; | |
| 1379 xfree (temp, finalize_elem *); | |
| 1380 rest = Vall_finalizable_objs; | |
| 1381 } | |
| 1382 | |
| 1383 while (rest->next) | |
| 1384 { | |
| 1385 if (LRECORDP (rest->next->obj) | |
| 1386 && !marked_p (rest->next->obj)) | |
| 1387 { | |
| 1388 finalize_elem *temp = rest->next; | |
| 1389 Vfinalizers_to_run = Fcons (rest->next->obj, Vfinalizers_to_run); | |
| 1390 rest->next = rest->next->next; | |
| 1391 xfree (temp, finalize_elem *); | |
| 1392 } | |
| 1393 else | |
| 1394 { | |
| 1395 rest = rest->next; | |
| 1396 } | |
| 1397 } | |
| 1398 /* Keep objects alive that need to be finalized by marking | |
| 1399 Vfinalizers_to_run transitively. */ | |
| 1400 kkcc_gc_stack_push_lisp_object (Vfinalizers_to_run, 0, -1); | |
| 1401 kkcc_marking (0); | |
| 1402 } | |
| 1403 | |
| 1404 void | |
| 1405 run_finalizers (void) | |
| 1406 { | |
| 1407 Lisp_Object rest; | |
| 1408 for (rest = Vfinalizers_to_run; !NILP (rest); rest = XCDR (rest)) | |
| 1409 { | |
| 1410 MC_ALLOC_CALL_FINALIZER (XPNTR (XCAR (rest))); | |
| 1411 } | |
| 1412 Vfinalizers_to_run = Qnil; | |
| 1413 } | |
| 1414 #endif /* not NEW_GC */ | |
| 3092 | 1415 |
| 1416 | |
| 1417 /************************************************************************/ | |
| 1418 /* Garbage Collection */ | |
| 1419 /************************************************************************/ | |
| 1420 | |
| 1421 /* Enable/disable incremental garbage collection during runtime. */ | |
| 1422 int allow_incremental_gc; | |
| 1423 | |
| 1424 /* For profiling. */ | |
| 1425 static Lisp_Object QSin_garbage_collection; | |
| 1426 | |
| 1427 /* Nonzero means display messages at beginning and end of GC. */ | |
| 1428 int garbage_collection_messages; | |
| 1429 | |
| 1430 /* "Garbage collecting" */ | |
| 1431 Lisp_Object Vgc_message; | |
| 1432 Lisp_Object Vgc_pointer_glyph; | |
| 1433 static const Ascbyte gc_default_message[] = "Garbage collecting"; | |
| 1434 Lisp_Object Qgarbage_collecting; | |
| 1435 | |
| 1436 /* "Locals" during GC. */ | |
| 1437 struct frame *f; | |
| 1438 int speccount; | |
| 1439 int cursor_changed; | |
| 1440 Lisp_Object pre_gc_cursor; | |
| 1441 | |
| 1442 /* PROFILE_DECLARE */ | |
| 1443 int do_backtrace; | |
| 1444 struct backtrace backtrace; | |
| 1445 | |
| 1446 /* Maximum amount of C stack to save when a GC happens. */ | |
| 1447 #ifndef MAX_SAVE_STACK | |
| 1448 #define MAX_SAVE_STACK 0 /* 16000 */ | |
| 1449 #endif | |
| 1450 | |
| 1451 void | |
| 3267 | 1452 show_gc_cursor_and_message (void) |
| 3092 | 1453 { |
| 3267 | 1454 /* Now show the GC cursor/message. */ |
| 1455 pre_gc_cursor = Qnil; | |
| 1456 cursor_changed = 0; | |
| 3092 | 1457 |
| 1458 /* We used to call selected_frame() here. | |
| 1459 | |
| 1460 The following functions cannot be called inside GC | |
| 1461 so we move to after the above tests. */ | |
| 1462 { | |
| 1463 Lisp_Object frame; | |
| 1464 Lisp_Object device = Fselected_device (Qnil); | |
| 1465 if (NILP (device)) /* Could happen during startup, eg. if always_gc */ | |
| 1466 return; | |
| 1467 frame = Fselected_frame (device); | |
| 1468 if (NILP (frame)) | |
| 1469 invalid_state ("No frames exist on device", device); | |
| 1470 f = XFRAME (frame); | |
| 1471 } | |
| 1472 | |
| 1473 if (!noninteractive) | |
| 1474 { | |
| 1475 if (FRAME_WIN_P (f)) | |
| 1476 { | |
| 1477 Lisp_Object frame = wrap_frame (f); | |
| 1478 Lisp_Object cursor = glyph_image_instance (Vgc_pointer_glyph, | |
| 1479 FRAME_SELECTED_WINDOW (f), | |
| 1480 ERROR_ME_NOT, 1); | |
| 1481 pre_gc_cursor = f->pointer; | |
| 1482 if (POINTER_IMAGE_INSTANCEP (cursor) | |
| 1483 /* don't change if we don't know how to change back. */ | |
| 1484 && POINTER_IMAGE_INSTANCEP (pre_gc_cursor)) | |
| 1485 { | |
| 1486 cursor_changed = 1; | |
| 1487 Fset_frame_pointer (frame, cursor); | |
| 1488 } | |
| 1489 } | |
| 1490 | |
| 1491 /* Don't print messages to the stream device. */ | |
| 1492 if (!cursor_changed && !FRAME_STREAM_P (f)) | |
| 1493 { | |
| 1494 if (garbage_collection_messages) | |
| 1495 { | |
| 1496 Lisp_Object args[2], whole_msg; | |
| 1497 args[0] = (STRINGP (Vgc_message) ? Vgc_message : | |
| 1498 build_msg_string (gc_default_message)); | |
| 1499 args[1] = build_string ("..."); | |
| 1500 whole_msg = Fconcat (2, args); | |
| 1501 echo_area_message (f, (Ibyte *) 0, whole_msg, 0, -1, | |
| 1502 Qgarbage_collecting); | |
| 1503 } | |
| 1504 } | |
| 1505 } | |
| 3267 | 1506 } |
| 1507 | |
| 1508 void | |
| 1509 remove_gc_cursor_and_message (void) | |
| 1510 { | |
| 1511 /* Now remove the GC cursor/message */ | |
| 1512 if (!noninteractive) | |
| 1513 { | |
| 1514 if (cursor_changed) | |
| 1515 Fset_frame_pointer (wrap_frame (f), pre_gc_cursor); | |
| 1516 else if (!FRAME_STREAM_P (f)) | |
| 1517 { | |
| 1518 /* Show "...done" only if the echo area would otherwise be empty. */ | |
| 1519 if (NILP (clear_echo_area (selected_frame (), | |
| 1520 Qgarbage_collecting, 0))) | |
| 1521 { | |
| 1522 if (garbage_collection_messages) | |
| 1523 { | |
| 1524 Lisp_Object args[2], whole_msg; | |
| 1525 args[0] = (STRINGP (Vgc_message) ? Vgc_message : | |
| 1526 build_msg_string (gc_default_message)); | |
| 1527 args[1] = build_msg_string ("... done"); | |
| 1528 whole_msg = Fconcat (2, args); | |
| 1529 echo_area_message (selected_frame (), (Ibyte *) 0, | |
| 1530 whole_msg, 0, -1, | |
| 1531 Qgarbage_collecting); | |
| 1532 } | |
| 1533 } | |
| 1534 } | |
| 1535 } | |
| 1536 } | |
| 1537 | |
| 1538 void | |
| 1539 gc_prepare (void) | |
| 1540 { | |
| 1541 #if MAX_SAVE_STACK > 0 | |
| 1542 char stack_top_variable; | |
| 1543 extern char *stack_bottom; | |
| 1544 #endif | |
| 1545 | |
| 1546 #ifdef NEW_GC | |
| 1547 GC_STAT_START_NEW_GC; | |
| 1548 GC_SET_PHASE (INIT_GC); | |
| 1549 #endif /* NEW_GC */ | |
| 1550 | |
| 1551 do_backtrace = profiling_active || backtrace_with_internal_sections; | |
| 1552 | |
| 1553 assert (!gc_in_progress); | |
| 1554 assert (!in_display || gc_currently_forbidden); | |
| 1555 | |
| 1556 PROFILE_RECORD_ENTERING_SECTION (QSin_garbage_collection); | |
| 1557 | |
| 1558 need_to_signal_post_gc = 0; | |
| 1559 recompute_funcall_allocation_flag (); | |
| 1560 | |
| 1561 if (!gc_hooks_inhibited) | |
| 1562 run_hook_trapping_problems | |
| 1563 (Qgarbage_collecting, Qpre_gc_hook, | |
| 1564 INHIBIT_EXISTING_PERMANENT_DISPLAY_OBJECT_DELETION); | |
| 3092 | 1565 |
| 1566 /***** Now we actually start the garbage collection. */ | |
| 1567 | |
| 1568 gc_in_progress = 1; | |
| 1569 #ifndef NEW_GC | |
| 1570 inhibit_non_essential_conversion_operations = 1; | |
| 3263 | 1571 #endif /* not NEW_GC */ |
| 3092 | 1572 |
| 1573 #if MAX_SAVE_STACK > 0 | |
| 1574 | |
| 1575 /* Save a copy of the contents of the stack, for debugging. */ | |
| 1576 if (!purify_flag) | |
| 1577 { | |
| 1578 /* Static buffer in which we save a copy of the C stack at each GC. */ | |
| 1579 static char *stack_copy; | |
| 1580 static Bytecount stack_copy_size; | |
| 1581 | |
| 1582 ptrdiff_t stack_diff = &stack_top_variable - stack_bottom; | |
| 1583 Bytecount stack_size = (stack_diff > 0 ? stack_diff : -stack_diff); | |
| 1584 if (stack_size < MAX_SAVE_STACK) | |
| 1585 { | |
| 1586 if (stack_copy_size < stack_size) | |
| 1587 { | |
| 1588 stack_copy = (char *) xrealloc (stack_copy, stack_size); | |
| 1589 stack_copy_size = stack_size; | |
| 1590 } | |
| 1591 | |
| 1592 memcpy (stack_copy, | |
| 1593 stack_diff > 0 ? stack_bottom : &stack_top_variable, | |
| 1594 stack_size); | |
| 1595 } | |
| 1596 } | |
| 1597 #endif /* MAX_SAVE_STACK > 0 */ | |
| 1598 | |
| 1599 /* Do some totally ad-hoc resource clearing. */ | |
| 1600 /* #### generalize this? */ | |
| 1601 clear_event_resource (); | |
| 1602 cleanup_specifiers (); | |
| 1603 cleanup_buffer_undo_lists (); | |
| 1604 } | |
| 1605 | |
| 1606 void | |
| 1607 gc_mark_root_set ( | |
| 1608 #ifdef NEW_GC | |
| 1609 enum gc_phase phase | |
| 1610 #else /* not NEW_GC */ | |
| 1611 void | |
| 1612 #endif /* not NEW_GC */ | |
| 1613 ) | |
| 1614 { | |
| 1615 #ifdef NEW_GC | |
| 1616 GC_SET_PHASE (phase); | |
| 1617 #endif /* NEW_GC */ | |
| 1618 | |
| 1619 /* Mark all the special slots that serve as the roots of accessibility. */ | |
| 1620 | |
| 1621 #ifdef USE_KKCC | |
| 1622 # define mark_object(obj) kkcc_gc_stack_push_lisp_object (obj, 0, -1) | |
| 1623 #endif /* USE_KKCC */ | |
| 1624 | |
| 1625 { /* staticpro() */ | |
| 1626 Lisp_Object **p = Dynarr_begin (staticpros); | |
| 1627 Elemcount count; | |
| 3486 | 1628 for (count = Dynarr_length (staticpros); count; count--, p++) |
| 3092 | 1629 /* Need to check if the pointer in the staticpro array is not |
| 1630 NULL. A gc can occur after variable is added to the staticpro | |
| 1631 array and _before_ it is correctly initialized. In this case | |
| 1632 its value is NULL, which we have to catch here. */ | |
| 1633 if (*p) | |
| 3486 | 1634 mark_object (**p); |
| 3092 | 1635 } |
| 1636 | |
| 1637 { /* staticpro_nodump() */ | |
| 1638 Lisp_Object **p = Dynarr_begin (staticpros_nodump); | |
| 1639 Elemcount count; | |
| 3486 | 1640 for (count = Dynarr_length (staticpros_nodump); count; count--, p++) |
| 3092 | 1641 /* Need to check if the pointer in the staticpro array is not |
| 1642 NULL. A gc can occur after variable is added to the staticpro | |
| 1643 array and _before_ it is correctly initialized. In this case | |
| 1644 its value is NULL, which we have to catch here. */ | |
| 1645 if (*p) | |
| 3486 | 1646 mark_object (**p); |
| 3092 | 1647 } |
| 1648 | |
| 3263 | 1649 #ifdef NEW_GC |
| 3092 | 1650 { /* mcpro () */ |
| 1651 Lisp_Object *p = Dynarr_begin (mcpros); | |
| 1652 Elemcount count; | |
| 1653 for (count = Dynarr_length (mcpros); count; count--) | |
| 1654 mark_object (*p++); | |
| 1655 } | |
| 3263 | 1656 #endif /* NEW_GC */ |
| 3092 | 1657 |
| 1658 { /* GCPRO() */ | |
| 1659 struct gcpro *tail; | |
| 1660 int i; | |
| 1661 for (tail = gcprolist; tail; tail = tail->next) | |
| 1662 for (i = 0; i < tail->nvars; i++) | |
| 1663 mark_object (tail->var[i]); | |
| 1664 } | |
| 1665 | |
| 1666 { /* specbind() */ | |
| 1667 struct specbinding *bind; | |
| 1668 for (bind = specpdl; bind != specpdl_ptr; bind++) | |
| 1669 { | |
| 1670 mark_object (bind->symbol); | |
| 1671 mark_object (bind->old_value); | |
| 1672 } | |
| 1673 } | |
| 1674 | |
| 1675 { | |
| 1676 struct catchtag *c; | |
| 1677 for (c = catchlist; c; c = c->next) | |
| 1678 { | |
| 1679 mark_object (c->tag); | |
| 1680 mark_object (c->val); | |
| 1681 mark_object (c->actual_tag); | |
| 1682 mark_object (c->backtrace); | |
| 1683 } | |
| 1684 } | |
| 1685 | |
| 1686 { | |
| 1687 struct backtrace *backlist; | |
| 1688 for (backlist = backtrace_list; backlist; backlist = backlist->next) | |
| 1689 { | |
| 1690 int nargs = backlist->nargs; | |
| 1691 int i; | |
| 1692 | |
| 1693 mark_object (*backlist->function); | |
| 1694 if (nargs < 0 /* nargs == UNEVALLED || nargs == MANY */ | |
| 1695 /* might be fake (internal profiling entry) */ | |
| 1696 && backlist->args) | |
| 1697 mark_object (backlist->args[0]); | |
| 1698 else | |
| 1699 for (i = 0; i < nargs; i++) | |
| 1700 mark_object (backlist->args[i]); | |
| 1701 } | |
| 1702 } | |
| 1703 | |
| 1704 mark_profiling_info (); | |
| 1705 #ifdef USE_KKCC | |
| 1706 # undef mark_object | |
| 1707 #endif | |
| 1708 } | |
| 1709 | |
| 1710 void | |
| 1711 gc_finish_mark (void) | |
| 1712 { | |
| 1713 #ifdef NEW_GC | |
| 1714 GC_SET_PHASE (FINISH_MARK); | |
| 1715 #endif /* NEW_GC */ | |
| 1716 init_marking_ephemerons (); | |
| 1717 | |
| 1718 while (finish_marking_weak_hash_tables () > 0 || | |
| 1719 finish_marking_weak_lists () > 0 || | |
| 1720 continue_marking_ephemerons () > 0) | |
| 1721 #ifdef USE_KKCC | |
| 1722 { | |
| 1723 kkcc_marking (0); | |
| 1724 } | |
| 1725 #else /* not USE_KKCC */ | |
| 1726 ; | |
| 1727 #endif /* not USE_KKCC */ | |
| 1728 | |
| 1729 /* At this point, we know which objects need to be finalized: we | |
| 1730 still need to resurrect them */ | |
| 1731 | |
| 1732 while (finish_marking_ephemerons () > 0 || | |
| 1733 finish_marking_weak_lists () > 0 || | |
| 1734 finish_marking_weak_hash_tables () > 0) | |
| 1735 #ifdef USE_KKCC | |
| 1736 { | |
| 1737 kkcc_marking (0); | |
| 1738 } | |
| 1739 #else /* not USE_KKCC */ | |
| 1740 ; | |
| 1741 #endif /* not USE_KKCC */ | |
| 1742 | |
| 1743 /* And prune (this needs to be called after everything else has been | |
| 1744 marked and before we do any sweeping). */ | |
| 1745 /* #### this is somewhat ad-hoc and should probably be an object | |
| 1746 method */ | |
| 1747 prune_weak_hash_tables (); | |
| 1748 prune_weak_lists (); | |
| 1749 prune_specifiers (); | |
| 1750 prune_syntax_tables (); | |
| 1751 | |
| 1752 prune_ephemerons (); | |
| 1753 prune_weak_boxes (); | |
| 1754 } | |
| 1755 | |
| 1756 #ifdef NEW_GC | |
| 1757 void | |
| 1758 gc_finalize (void) | |
| 1759 { | |
| 1760 GC_SET_PHASE (FINALIZE); | |
| 3263 | 1761 register_for_finalization (); |
| 3092 | 1762 } |
| 1763 | |
| 1764 void | |
| 1765 gc_sweep (void) | |
| 1766 { | |
| 1767 GC_SET_PHASE (SWEEP); | |
| 1768 mc_sweep (); | |
| 1769 } | |
| 1770 #endif /* NEW_GC */ | |
| 1771 | |
| 1772 | |
| 1773 void | |
| 1774 gc_finish (void) | |
| 1775 { | |
| 1776 #ifdef NEW_GC | |
| 1777 GC_SET_PHASE (FINISH_GC); | |
| 1778 #endif /* NEW_GC */ | |
| 1779 consing_since_gc = 0; | |
| 1780 #ifndef DEBUG_XEMACS | |
| 1781 /* Allow you to set it really fucking low if you really want ... */ | |
| 1782 if (gc_cons_threshold < 10000) | |
| 1783 gc_cons_threshold = 10000; | |
| 1784 #endif | |
| 1785 recompute_need_to_garbage_collect (); | |
| 1786 | |
| 1787 #ifndef NEW_GC | |
| 1788 inhibit_non_essential_conversion_operations = 0; | |
| 1789 #endif /* not NEW_GC */ | |
| 1790 gc_in_progress = 0; | |
| 1791 | |
| 1792 run_post_gc_actions (); | |
| 1793 | |
| 1794 /******* End of garbage collection ********/ | |
| 1795 | |
| 3263 | 1796 #ifndef NEW_GC |
| 3092 | 1797 if (!breathing_space) |
| 1798 { | |
| 1799 breathing_space = malloc (4096 - MALLOC_OVERHEAD); | |
| 1800 } | |
| 3263 | 1801 #endif /* not NEW_GC */ |
| 3092 | 1802 |
| 1803 need_to_signal_post_gc = 1; | |
| 1804 funcall_allocation_flag = 1; | |
| 1805 | |
| 1806 PROFILE_RECORD_EXITING_SECTION (QSin_garbage_collection); | |
| 1807 | |
| 1808 #ifdef NEW_GC | |
| 1809 GC_SET_PHASE (NONE); | |
| 1810 #endif /* NEW_GC */ | |
| 1811 } | |
| 1812 | |
| 1813 #ifdef NEW_GC | |
| 1814 void | |
| 1815 gc_suspend_mark_phase (void) | |
| 1816 { | |
| 1817 PROFILE_RECORD_EXITING_SECTION (QSin_garbage_collection); | |
| 1818 write_barrier_enabled = 1; | |
| 1819 consing_since_gc = 0; | |
| 1820 vdb_start_dirty_bits_recording (); | |
| 1821 } | |
| 1822 | |
| 1823 int | |
| 1824 gc_resume_mark_phase (void) | |
| 1825 { | |
| 1826 PROFILE_RECORD_ENTERING_SECTION (QSin_garbage_collection); | |
| 1827 assert (write_barrier_enabled); | |
| 1828 vdb_stop_dirty_bits_recording (); | |
| 1829 write_barrier_enabled = 0; | |
| 1830 return vdb_read_dirty_bits (); | |
| 1831 } | |
| 1832 | |
| 1833 int | |
| 1834 gc_mark (int incremental) | |
| 1835 { | |
| 1836 GC_SET_PHASE (MARK); | |
| 1837 if (!incremental) | |
| 1838 { | |
| 1839 kkcc_marking (0); | |
| 1840 } | |
| 1841 else | |
| 1842 { | |
| 1843 kkcc_marking (gc_incremental_traversal_threshold); | |
| 1844 if (!KKCC_GC_STACK_EMPTY) | |
| 1845 { | |
| 1846 gc_suspend_mark_phase (); | |
| 1847 return 0; | |
| 1848 } | |
| 1849 } | |
| 1850 return 1; | |
| 1851 } | |
| 1852 | |
| 1853 int | |
| 1854 gc_resume_mark (int incremental) | |
| 1855 { | |
| 1856 if (!incremental) | |
| 1857 { | |
| 1858 if (!KKCC_GC_STACK_EMPTY) | |
| 1859 { | |
| 1860 GC_STAT_RESUME_GC; | |
| 1861 /* An incremental garbage collection is already running --- | |
| 1862 now wrap it up and resume it atomically. */ | |
| 1863 gc_resume_mark_phase (); | |
| 1864 gc_mark_root_set (REPUSH_ROOT_SET); | |
| 1865 kkcc_marking (0); | |
| 1866 } | |
| 1867 } | |
| 1868 else | |
| 1869 { | |
| 1870 int repushed_objects; | |
| 1871 int mark_work; | |
| 1872 GC_STAT_RESUME_GC; | |
| 1873 repushed_objects = gc_resume_mark_phase (); | |
| 1874 mark_work = (gc_incremental_traversal_threshold > repushed_objects) ? | |
| 1875 gc_incremental_traversal_threshold : repushed_objects; | |
| 1876 kkcc_marking (mark_work); | |
| 1877 if (KKCC_GC_STACK_EMPTY) | |
| 1878 { | |
| 1879 /* Mark root set again and finish up marking. */ | |
| 1880 gc_mark_root_set (REPUSH_ROOT_SET); | |
| 1881 kkcc_marking (0); | |
| 1882 } | |
| 1883 else | |
| 1884 { | |
| 1885 gc_suspend_mark_phase (); | |
| 1886 return 0; | |
| 1887 } | |
| 1888 } | |
| 1889 return 1; | |
| 1890 } | |
| 1891 | |
| 1892 | |
| 1893 void | |
| 1894 gc_1 (int incremental) | |
| 1895 { | |
| 1896 switch (GC_PHASE) | |
| 1897 { | |
| 1898 case NONE: | |
| 1899 gc_prepare (); | |
| 1900 kkcc_gc_stack_init(); | |
| 1901 #ifdef DEBUG_XEMACS | |
| 1902 kkcc_bt_init (); | |
| 1903 #endif | |
| 1904 case INIT_GC: | |
| 1905 gc_mark_root_set (PUSH_ROOT_SET); | |
| 1906 case PUSH_ROOT_SET: | |
| 1907 if (!gc_mark (incremental)) | |
| 1908 return; /* suspend gc */ | |
| 1909 case MARK: | |
| 1910 if (!KKCC_GC_STACK_EMPTY) | |
| 1911 if (!gc_resume_mark (incremental)) | |
| 1912 return; /* suspend gc */ | |
| 1913 gc_finish_mark (); | |
| 3263 | 1914 case FINISH_MARK: |
| 1915 gc_finalize (); | |
| 3092 | 1916 kkcc_gc_stack_free (); |
| 1917 #ifdef DEBUG_XEMACS | |
| 1918 kkcc_bt_free (); | |
| 1919 #endif | |
| 1920 case FINALIZE: | |
| 1921 gc_sweep (); | |
| 1922 case SWEEP: | |
| 1923 gc_finish (); | |
| 1924 case FINISH_GC: | |
| 1925 break; | |
| 1926 } | |
| 1927 } | |
| 1928 | |
| 1929 void gc (int incremental) | |
| 1930 { | |
| 1931 if (gc_currently_forbidden | |
| 1932 || in_display | |
| 1933 || preparing_for_armageddon) | |
| 1934 return; | |
| 1935 | |
| 1936 /* Very important to prevent GC during any of the following | |
| 1937 stuff that might run Lisp code; otherwise, we'll likely | |
| 1938 have infinite GC recursion. */ | |
| 1939 speccount = begin_gc_forbidden (); | |
| 1940 | |
| 3267 | 1941 show_gc_cursor_and_message (); |
| 1942 | |
| 3092 | 1943 gc_1 (incremental); |
| 1944 | |
| 3267 | 1945 remove_gc_cursor_and_message (); |
| 1946 | |
| 3092 | 1947 /* now stop inhibiting GC */ |
| 1948 unbind_to (speccount); | |
| 1949 } | |
| 1950 | |
| 1951 void | |
| 1952 gc_full (void) | |
| 1953 { | |
| 1954 gc (0); | |
| 1955 } | |
| 1956 | |
| 1957 DEFUN ("gc-full", Fgc_full, 0, 0, "", /* | |
| 1958 This function performs a full garbage collection. If an incremental | |
| 1959 garbage collection is already running, it completes without any | |
| 1960 further interruption. This function guarantees that unused objects | |
| 1961 are freed when it returns. Garbage collection happens automatically if | |
| 1962 the client allocates more than `gc-cons-threshold' bytes of Lisp data | |
| 1963 since the previous garbage collection. | |
| 1964 */ | |
| 1965 ()) | |
| 1966 { | |
| 1967 gc_full (); | |
| 1968 return Qt; | |
| 1969 } | |
| 1970 | |
| 1971 void | |
| 1972 gc_incremental (void) | |
| 1973 { | |
| 1974 gc (allow_incremental_gc); | |
| 1975 } | |
| 1976 | |
| 1977 DEFUN ("gc-incremental", Fgc_incremental, 0, 0, "", /* | |
| 1978 This function starts an incremental garbage collection. If an | |
| 1979 incremental garbage collection is already running, the next cycle | |
| 1980 starts. Note that this function has not necessarily freed any memory | |
| 1981 when it returns. This function only guarantees, that the traversal of | |
| 1982 the heap makes progress. The next cycle of incremental garbage | |
| 1983 collection happens automatically if the client allocates more than | |
| 1984 `gc-incremental-cons-threshold' bytes of Lisp data since previous | |
| 1985 garbage collection. | |
| 1986 */ | |
| 1987 ()) | |
| 1988 { | |
| 1989 gc_incremental (); | |
| 1990 return Qt; | |
| 1991 } | |
| 1992 #else /* not NEW_GC */ | |
| 1993 void garbage_collect_1 (void) | |
| 1994 { | |
| 1995 if (gc_in_progress | |
| 1996 || gc_currently_forbidden | |
| 1997 || in_display | |
| 1998 || preparing_for_armageddon) | |
| 1999 return; | |
| 2000 | |
| 2001 /* Very important to prevent GC during any of the following | |
| 2002 stuff that might run Lisp code; otherwise, we'll likely | |
| 2003 have infinite GC recursion. */ | |
| 2004 speccount = begin_gc_forbidden (); | |
| 2005 | |
| 3267 | 2006 show_gc_cursor_and_message (); |
| 2007 | |
| 3092 | 2008 gc_prepare (); |
| 2009 #ifdef USE_KKCC | |
| 2010 kkcc_gc_stack_init(); | |
| 2011 #ifdef DEBUG_XEMACS | |
| 2012 kkcc_bt_init (); | |
| 2013 #endif | |
| 2014 #endif /* USE_KKCC */ | |
| 2015 gc_mark_root_set (); | |
| 2016 #ifdef USE_KKCC | |
| 2017 kkcc_marking (0); | |
| 2018 #endif /* USE_KKCC */ | |
| 2019 gc_finish_mark (); | |
| 2020 #ifdef USE_KKCC | |
| 2021 kkcc_gc_stack_free (); | |
| 2022 #ifdef DEBUG_XEMACS | |
| 2023 kkcc_bt_free (); | |
| 2024 #endif | |
| 2025 #endif /* USE_KKCC */ | |
| 2026 gc_sweep_1 (); | |
| 2027 gc_finish (); | |
| 2028 | |
| 3267 | 2029 remove_gc_cursor_and_message (); |
| 2030 | |
| 3092 | 2031 /* now stop inhibiting GC */ |
| 2032 unbind_to (speccount); | |
| 2033 } | |
| 2034 #endif /* not NEW_GC */ | |
| 2035 | |
| 2036 | |
| 2037 /************************************************************************/ | |
| 2038 /* Initializations */ | |
| 2039 /************************************************************************/ | |
| 2040 | |
| 2041 /* Initialization */ | |
| 2042 static void | |
| 2043 common_init_gc_early (void) | |
| 2044 { | |
| 2045 Vgc_message = Qzero; | |
| 2046 | |
| 2047 gc_currently_forbidden = 0; | |
| 2048 gc_hooks_inhibited = 0; | |
| 2049 | |
| 2050 need_to_garbage_collect = always_gc; | |
| 2051 | |
| 2052 gc_cons_threshold = GC_CONS_THRESHOLD; | |
| 2053 gc_cons_percentage = 40; /* #### what is optimal? */ | |
| 2054 total_gc_usage_set = 0; | |
| 2055 #ifdef NEW_GC | |
| 2056 gc_cons_incremental_threshold = GC_CONS_INCREMENTAL_THRESHOLD; | |
| 2057 gc_incremental_traversal_threshold = GC_INCREMENTAL_TRAVERSAL_THRESHOLD; | |
| 3263 | 2058 #endif /* NEW_GC */ |
| 3092 | 2059 } |
| 2060 | |
| 2061 void | |
| 2062 init_gc_early (void) | |
| 2063 { | |
| 3263 | 2064 #ifdef NEW_GC |
| 2065 /* Reset the finalizers_to_run list after pdump_load. */ | |
| 2066 Vfinalizers_to_run = Qnil; | |
| 2067 #endif /* NEW_GC */ | |
| 3092 | 2068 } |
| 2069 | |
| 2070 void | |
| 2071 reinit_gc_early (void) | |
| 2072 { | |
| 2073 common_init_gc_early (); | |
| 2074 } | |
| 2075 | |
| 2076 void | |
| 2077 init_gc_once_early (void) | |
| 2078 { | |
| 2079 common_init_gc_early (); | |
| 2080 } | |
| 2081 | |
| 2082 void | |
| 2083 syms_of_gc (void) | |
| 2084 { | |
| 2085 DEFSYMBOL (Qpre_gc_hook); | |
| 2086 DEFSYMBOL (Qpost_gc_hook); | |
| 2087 #ifdef NEW_GC | |
| 2088 DEFSUBR (Fgc_full); | |
| 2089 DEFSUBR (Fgc_incremental); | |
| 2090 #ifdef ERROR_CHECK_GC | |
| 2091 DEFSUBR (Fgc_stats); | |
| 2092 #endif /* not ERROR_CHECK_GC */ | |
| 2093 #endif /* NEW_GC */ | |
| 2094 } | |
| 2095 | |
| 2096 void | |
| 2097 vars_of_gc (void) | |
| 2098 { | |
| 2099 staticpro_nodump (&pre_gc_cursor); | |
| 2100 | |
| 2101 QSin_garbage_collection = build_msg_string ("(in garbage collection)"); | |
| 2102 staticpro (&QSin_garbage_collection); | |
| 2103 | |
| 2104 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold /* | |
| 2105 *Number of bytes of consing between full garbage collections. | |
| 2106 \"Consing\" is a misnomer in that this actually counts allocation | |
| 2107 of all different kinds of objects, not just conses. | |
| 2108 Garbage collection can happen automatically once this many bytes have been | |
| 2109 allocated since the last garbage collection. All data types count. | |
| 2110 | |
| 2111 Garbage collection happens automatically when `eval' or `funcall' are | |
| 2112 called. (Note that `funcall' is called implicitly as part of evaluation.) | |
| 2113 By binding this temporarily to a large number, you can effectively | |
| 2114 prevent garbage collection during a part of the program. | |
| 2115 | |
| 2116 Normally, you cannot set this value less than 10,000 (if you do, it is | |
| 2117 automatically reset during the next garbage collection). However, if | |
| 2118 XEmacs was compiled with DEBUG_XEMACS, this does not happen, allowing | |
| 2119 you to set this value very low to track down problems with insufficient | |
| 2120 GCPRO'ing. If you set this to a negative number, garbage collection will | |
| 2121 happen at *EVERY* call to `eval' or `funcall'. This is an extremely | |
| 2122 effective way to check GCPRO problems, but be warned that your XEmacs | |
| 2123 will be unusable! You almost certainly won't have the patience to wait | |
| 2124 long enough to be able to set it back. | |
| 2125 | |
| 2126 See also `consing-since-gc' and `gc-cons-percentage'. | |
| 2127 */ ); | |
| 2128 | |
| 2129 DEFVAR_INT ("gc-cons-percentage", &gc_cons_percentage /* | |
| 2130 *Percentage of memory allocated between garbage collections. | |
| 2131 | |
| 2132 Garbage collection will happen if this percentage of the total amount of | |
| 2133 memory used for data (see `lisp-object-memory-usage') has been allocated | |
| 2134 since the last garbage collection. However, it will not happen if less | |
| 2135 than `gc-cons-threshold' bytes have been allocated -- this sets an absolute | |
| 2136 minimum in case very little data has been allocated or the percentage is | |
| 2137 set very low. Set this to 0 to have garbage collection always happen after | |
| 2138 `gc-cons-threshold' bytes have been allocated, regardless of current memory | |
| 2139 usage. | |
| 2140 | |
| 2141 See also `consing-since-gc' and `gc-cons-threshold'. | |
| 2142 */ ); | |
| 2143 | |
| 2144 #ifdef NEW_GC | |
| 2145 DEFVAR_INT ("gc-cons-incremental-threshold", | |
| 2146 &gc_cons_incremental_threshold /* | |
| 2147 *Number of bytes of consing between cycles of incremental garbage | |
| 2148 collections. \"Consing\" is a misnomer in that this actually counts | |
| 2149 allocation of all different kinds of objects, not just conses. The | |
| 2150 next garbage collection cycle can happen automatically once this many | |
| 2151 bytes have been allocated since the last garbage collection cycle. | |
| 2152 All data types count. | |
| 2153 | |
| 2154 See also `gc-cons-threshold'. | |
| 2155 */ ); | |
| 2156 | |
| 2157 DEFVAR_INT ("gc-incremental-traversal-threshold", | |
| 2158 &gc_incremental_traversal_threshold /* | |
| 2159 *Number of elements processed in one cycle of incremental travesal. | |
| 2160 */ ); | |
| 2161 #endif /* NEW_GC */ | |
| 2162 | |
| 2163 DEFVAR_BOOL ("purify-flag", &purify_flag /* | |
| 2164 Non-nil means loading Lisp code in order to dump an executable. | |
| 2165 This means that certain objects should be allocated in readonly space. | |
| 2166 */ ); | |
| 2167 | |
| 2168 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages /* | |
|
4502
8748a3f7ceb4
Handle varalias chains, custom variables in #'user-variable-p.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4124
diff
changeset
|
2169 *Non-nil means display messages at start and end of garbage collection. |
| 3092 | 2170 */ ); |
| 2171 garbage_collection_messages = 0; | |
| 2172 | |
| 2173 DEFVAR_LISP ("pre-gc-hook", &Vpre_gc_hook /* | |
| 2174 Function or functions to be run just before each garbage collection. | |
| 2175 Interrupts, garbage collection, and errors are inhibited while this hook | |
| 2176 runs, so be extremely careful in what you add here. In particular, avoid | |
| 2177 consing, and do not interact with the user. | |
| 2178 */ ); | |
| 2179 Vpre_gc_hook = Qnil; | |
| 2180 | |
| 2181 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook /* | |
| 2182 Function or functions to be run just after each garbage collection. | |
| 2183 Interrupts, garbage collection, and errors are inhibited while this hook | |
| 2184 runs. Each hook is called with one argument which is an alist with | |
| 2185 finalization data. | |
| 2186 */ ); | |
| 2187 Vpost_gc_hook = Qnil; | |
| 2188 | |
| 2189 DEFVAR_LISP ("gc-message", &Vgc_message /* | |
| 2190 String to print to indicate that a garbage collection is in progress. | |
| 2191 This is printed in the echo area. If the selected frame is on a | |
| 2192 window system and `gc-pointer-glyph' specifies a value (i.e. a pointer | |
| 2193 image instance) in the domain of the selected frame, the mouse pointer | |
| 2194 will change instead of this message being printed. | |
| 2195 */ ); | |
| 2196 Vgc_message = build_string (gc_default_message); | |
| 2197 | |
| 2198 DEFVAR_LISP ("gc-pointer-glyph", &Vgc_pointer_glyph /* | |
| 2199 Pointer glyph used to indicate that a garbage collection is in progress. | |
| 2200 If the selected window is on a window system and this glyph specifies a | |
| 2201 value (i.e. a pointer image instance) in the domain of the selected | |
| 2202 window, the pointer will be changed as specified during garbage collection. | |
| 2203 Otherwise, a message will be printed in the echo area, as controlled | |
| 2204 by `gc-message'. | |
| 2205 */ ); | |
| 2206 | |
| 2207 #ifdef NEW_GC | |
| 2208 DEFVAR_BOOL ("allow-incremental-gc", &allow_incremental_gc /* | |
| 2209 *Non-nil means to allow incremental garbage collection. Nil prevents | |
| 2210 *incremental garbage collection, the garbage collector then only does | |
| 2211 *full collects (even if (gc-incremental) is called). | |
| 2212 */ ); | |
| 3263 | 2213 |
| 2214 Vfinalizers_to_run = Qnil; | |
| 2215 staticpro_nodump (&Vfinalizers_to_run); | |
| 3092 | 2216 #endif /* NEW_GC */ |
| 2217 } | |
| 2218 | |
| 2219 void | |
| 2220 complex_vars_of_gc (void) | |
| 2221 { | |
| 2222 Vgc_pointer_glyph = Fmake_glyph_internal (Qpointer); | |
| 2223 } |
