70
|
1 /* XEmacs routines to deal with char tables.
|
|
2 Copyright (C) 1992, 1995 Free Software Foundation, Inc.
|
|
3 Copyright (C) 1995 Sun Microsystems, Inc.
|
|
4 Copyright (C) 1995, 1996 Ben Wing.
|
420
|
5 Copyright (C) 1995, 1997, 1999 Electrotechnical Laboratory, JAPAN.
|
|
6 Licensed to the Free Software Foundation.
|
70
|
7
|
|
8 This file is part of XEmacs.
|
|
9
|
|
10 XEmacs is free software; you can redistribute it and/or modify it
|
|
11 under the terms of the GNU General Public License as published by the
|
|
12 Free Software Foundation; either version 2, or (at your option) any
|
|
13 later version.
|
|
14
|
|
15 XEmacs is distributed in the hope that it will be useful, but WITHOUT
|
|
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
18 for more details.
|
|
19
|
|
20 You should have received a copy of the GNU General Public License
|
|
21 along with XEmacs; see the file COPYING. If not, write to
|
|
22 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
23 Boston, MA 02111-1307, USA. */
|
|
24
|
|
25 /* Synched up with: Mule 2.3. Not synched with FSF.
|
|
26
|
|
27 This file was written independently of the FSF implementation,
|
|
28 and is not compatible. */
|
|
29
|
|
30 /* Authorship:
|
|
31
|
|
32 Ben Wing: wrote, for 19.13 (Mule). Some category table stuff
|
|
33 loosely based on the original Mule.
|
104
|
34 Jareth Hein: fixed a couple of bugs in the implementation, and
|
|
35 added regex support for categories with check_category_at
|
70
|
36 */
|
|
37
|
|
38 #include <config.h>
|
|
39 #include "lisp.h"
|
|
40
|
|
41 #include "buffer.h"
|
|
42 #include "chartab.h"
|
|
43 #include "syntax.h"
|
|
44
|
|
45 Lisp_Object Qchar_tablep, Qchar_table;
|
|
46
|
|
47 Lisp_Object Vall_syntax_tables;
|
|
48
|
|
49 #ifdef MULE
|
|
50 Lisp_Object Qcategory_table_p;
|
|
51 Lisp_Object Qcategory_designator_p;
|
|
52 Lisp_Object Qcategory_table_value_p;
|
|
53
|
|
54 Lisp_Object Vstandard_category_table;
|
420
|
55
|
|
56 /* Variables to determine word boundary. */
|
|
57 Lisp_Object Vword_combining_categories, Vword_separating_categories;
|
183
|
58 #endif /* MULE */
|
70
|
59
|
|
60
|
|
61 /* A char table maps from ranges of characters to values.
|
|
62
|
|
63 Implementing a general data structure that maps from arbitrary
|
|
64 ranges of numbers to values is tricky to do efficiently. As it
|
183
|
65 happens, it should suffice (and is usually more convenient, anyway)
|
|
66 when dealing with characters to restrict the sorts of ranges that
|
|
67 can be assigned values, as follows:
|
70
|
68
|
|
69 1) All characters.
|
|
70 2) All characters in a charset.
|
|
71 3) All characters in a particular row of a charset, where a "row"
|
|
72 means all characters with the same first byte.
|
|
73 4) A particular character in a charset.
|
|
74
|
|
75 We use char tables to generalize the 256-element vectors now
|
|
76 littering the Emacs code.
|
|
77
|
|
78 Possible uses (all should be converted at some point):
|
|
79
|
|
80 1) category tables
|
|
81 2) syntax tables
|
|
82 3) display tables
|
|
83 4) case tables
|
|
84 5) keyboard-translate-table?
|
|
85
|
251
|
86 We provide an
|
70
|
87 abstract type to generalize the Emacs vectors and Mule
|
|
88 vectors-of-vectors goo.
|
|
89 */
|
|
90
|
|
91 /************************************************************************/
|
183
|
92 /* Char Table object */
|
70
|
93 /************************************************************************/
|
|
94
|
|
95 #ifdef MULE
|
|
96
|
|
97 static Lisp_Object
|
412
|
98 mark_char_table_entry (Lisp_Object obj, void (*markobj) (Lisp_Object))
|
70
|
99 {
|
412
|
100 struct Lisp_Char_Table_Entry *cte = XCHAR_TABLE_ENTRY (obj);
|
70
|
101 int i;
|
|
102
|
|
103 for (i = 0; i < 96; i++)
|
|
104 {
|
412
|
105 markobj (cte->level2[i]);
|
70
|
106 }
|
|
107 return Qnil;
|
|
108 }
|
|
109
|
|
110 static int
|
|
111 char_table_entry_equal (Lisp_Object obj1, Lisp_Object obj2, int depth)
|
|
112 {
|
412
|
113 struct Lisp_Char_Table_Entry *cte1 = XCHAR_TABLE_ENTRY (obj1);
|
|
114 struct Lisp_Char_Table_Entry *cte2 = XCHAR_TABLE_ENTRY (obj2);
|
70
|
115 int i;
|
|
116
|
|
117 for (i = 0; i < 96; i++)
|
|
118 if (!internal_equal (cte1->level2[i], cte2->level2[i], depth + 1))
|
|
119 return 0;
|
|
120
|
|
121 return 1;
|
|
122 }
|
|
123
|
|
124 static unsigned long
|
|
125 char_table_entry_hash (Lisp_Object obj, int depth)
|
|
126 {
|
412
|
127 struct Lisp_Char_Table_Entry *cte = XCHAR_TABLE_ENTRY (obj);
|
70
|
128
|
|
129 return internal_array_hash (cte->level2, 96, depth);
|
|
130 }
|
|
131
|
420
|
132 static const struct lrecord_description char_table_entry_description[] = {
|
|
133 { XD_LISP_OBJECT, offsetof(struct Lisp_Char_Table_Entry, level2), 96 },
|
|
134 { XD_END }
|
|
135 };
|
|
136
|
272
|
137 DEFINE_LRECORD_IMPLEMENTATION ("char-table-entry", char_table_entry,
|
|
138 mark_char_table_entry, internal_object_printer,
|
|
139 0, char_table_entry_equal,
|
|
140 char_table_entry_hash,
|
420
|
141 char_table_entry_description,
|
412
|
142 struct Lisp_Char_Table_Entry);
|
70
|
143 #endif /* MULE */
|
|
144
|
|
145 static Lisp_Object
|
412
|
146 mark_char_table (Lisp_Object obj, void (*markobj) (Lisp_Object))
|
70
|
147 {
|
412
|
148 struct Lisp_Char_Table *ct = XCHAR_TABLE (obj);
|
70
|
149 int i;
|
|
150
|
|
151 for (i = 0; i < NUM_ASCII_CHARS; i++)
|
412
|
152 markobj (ct->ascii[i]);
|
70
|
153 #ifdef MULE
|
|
154 for (i = 0; i < NUM_LEADING_BYTES; i++)
|
412
|
155 markobj (ct->level1[i]);
|
70
|
156 #endif
|
|
157 return ct->mirror_table;
|
|
158 }
|
|
159
|
|
160 /* WARNING: All functions of this nature need to be written extremely
|
|
161 carefully to avoid crashes during GC. Cf. prune_specifiers()
|
380
|
162 and prune_weak_hash_tables(). */
|
70
|
163
|
|
164 void
|
412
|
165 prune_syntax_tables (int (*obj_marked_p) (Lisp_Object))
|
70
|
166 {
|
|
167 Lisp_Object rest, prev = Qnil;
|
|
168
|
|
169 for (rest = Vall_syntax_tables;
|
412
|
170 !GC_NILP (rest);
|
70
|
171 rest = XCHAR_TABLE (rest)->next_table)
|
|
172 {
|
412
|
173 if (! obj_marked_p (rest))
|
70
|
174 {
|
|
175 /* This table is garbage. Remove it from the list. */
|
412
|
176 if (GC_NILP (prev))
|
70
|
177 Vall_syntax_tables = XCHAR_TABLE (rest)->next_table;
|
|
178 else
|
|
179 XCHAR_TABLE (prev)->next_table =
|
|
180 XCHAR_TABLE (rest)->next_table;
|
|
181 }
|
|
182 }
|
|
183 }
|
|
184
|
|
185 static Lisp_Object
|
|
186 char_table_type_to_symbol (enum char_table_type type)
|
|
187 {
|
|
188 switch (type)
|
|
189 {
|
380
|
190 default: abort();
|
70
|
191 case CHAR_TABLE_TYPE_GENERIC: return Qgeneric;
|
|
192 case CHAR_TABLE_TYPE_SYNTAX: return Qsyntax;
|
|
193 case CHAR_TABLE_TYPE_DISPLAY: return Qdisplay;
|
|
194 case CHAR_TABLE_TYPE_CHAR: return Qchar;
|
|
195 #ifdef MULE
|
|
196 case CHAR_TABLE_TYPE_CATEGORY: return Qcategory;
|
|
197 #endif
|
|
198 }
|
|
199 }
|
|
200
|
|
201 static enum char_table_type
|
|
202 symbol_to_char_table_type (Lisp_Object symbol)
|
|
203 {
|
|
204 CHECK_SYMBOL (symbol);
|
183
|
205
|
70
|
206 if (EQ (symbol, Qgeneric)) return CHAR_TABLE_TYPE_GENERIC;
|
|
207 if (EQ (symbol, Qsyntax)) return CHAR_TABLE_TYPE_SYNTAX;
|
|
208 if (EQ (symbol, Qdisplay)) return CHAR_TABLE_TYPE_DISPLAY;
|
|
209 if (EQ (symbol, Qchar)) return CHAR_TABLE_TYPE_CHAR;
|
|
210 #ifdef MULE
|
|
211 if (EQ (symbol, Qcategory)) return CHAR_TABLE_TYPE_CATEGORY;
|
|
212 #endif
|
183
|
213
|
70
|
214 signal_simple_error ("Unrecognized char table type", symbol);
|
|
215 return CHAR_TABLE_TYPE_GENERIC; /* not reached */
|
|
216 }
|
|
217
|
|
218 static void
|
|
219 print_chartab_range (Emchar first, Emchar last, Lisp_Object val,
|
|
220 Lisp_Object printcharfun)
|
|
221 {
|
|
222 if (first != last)
|
|
223 {
|
|
224 write_c_string (" (", printcharfun);
|
|
225 print_internal (make_char (first), printcharfun, 0);
|
|
226 write_c_string (" ", printcharfun);
|
|
227 print_internal (make_char (last), printcharfun, 0);
|
|
228 write_c_string (") ", printcharfun);
|
|
229 }
|
|
230 else
|
|
231 {
|
|
232 write_c_string (" ", printcharfun);
|
|
233 print_internal (make_char (first), printcharfun, 0);
|
|
234 write_c_string (" ", printcharfun);
|
|
235 }
|
|
236 print_internal (val, printcharfun, 1);
|
|
237 }
|
|
238
|
|
239 #ifdef MULE
|
|
240
|
|
241 static void
|
|
242 print_chartab_charset_row (Lisp_Object charset,
|
|
243 int row,
|
412
|
244 struct Lisp_Char_Table_Entry *cte,
|
70
|
245 Lisp_Object printcharfun)
|
|
246 {
|
|
247 int i;
|
|
248 Lisp_Object cat = Qunbound;
|
|
249 int first = -1;
|
|
250
|
|
251 for (i = 32; i < 128; i++)
|
|
252 {
|
|
253 Lisp_Object pam = cte->level2[i - 32];
|
|
254
|
|
255 if (first == -1)
|
|
256 {
|
|
257 first = i;
|
|
258 cat = pam;
|
|
259 continue;
|
|
260 }
|
|
261
|
|
262 if (!EQ (cat, pam))
|
|
263 {
|
|
264 if (row == -1)
|
|
265 print_chartab_range (MAKE_CHAR (charset, first, 0),
|
|
266 MAKE_CHAR (charset, i - 1, 0),
|
|
267 cat, printcharfun);
|
|
268 else
|
|
269 print_chartab_range (MAKE_CHAR (charset, row, first),
|
|
270 MAKE_CHAR (charset, row, i - 1),
|
|
271 cat, printcharfun);
|
|
272 first = -1;
|
|
273 i--;
|
|
274 }
|
|
275 }
|
183
|
276
|
70
|
277 if (first != -1)
|
|
278 {
|
|
279 if (row == -1)
|
|
280 print_chartab_range (MAKE_CHAR (charset, first, 0),
|
|
281 MAKE_CHAR (charset, i - 1, 0),
|
|
282 cat, printcharfun);
|
|
283 else
|
|
284 print_chartab_range (MAKE_CHAR (charset, row, first),
|
|
285 MAKE_CHAR (charset, row, i - 1),
|
|
286 cat, printcharfun);
|
|
287 }
|
|
288 }
|
|
289
|
|
290 static void
|
|
291 print_chartab_two_byte_charset (Lisp_Object charset,
|
412
|
292 struct Lisp_Char_Table_Entry *cte,
|
70
|
293 Lisp_Object printcharfun)
|
|
294 {
|
|
295 int i;
|
|
296
|
|
297 for (i = 32; i < 128; i++)
|
|
298 {
|
|
299 Lisp_Object jen = cte->level2[i - 32];
|
|
300
|
|
301 if (!CHAR_TABLE_ENTRYP (jen))
|
|
302 {
|
|
303 char buf[100];
|
|
304
|
|
305 write_c_string (" [", printcharfun);
|
|
306 print_internal (XCHARSET_NAME (charset), printcharfun, 0);
|
|
307 sprintf (buf, " %d] ", i);
|
|
308 write_c_string (buf, printcharfun);
|
|
309 print_internal (jen, printcharfun, 0);
|
|
310 }
|
|
311 else
|
|
312 print_chartab_charset_row (charset, i, XCHAR_TABLE_ENTRY (jen),
|
|
313 printcharfun);
|
|
314 }
|
|
315 }
|
|
316
|
|
317 #endif /* MULE */
|
|
318
|
|
319 static void
|
|
320 print_char_table (Lisp_Object obj, Lisp_Object printcharfun, int escapeflag)
|
|
321 {
|
412
|
322 struct Lisp_Char_Table *ct = XCHAR_TABLE (obj);
|
70
|
323 char buf[200];
|
183
|
324
|
70
|
325 sprintf (buf, "#s(char-table type %s data (",
|
|
326 string_data (symbol_name (XSYMBOL
|
|
327 (char_table_type_to_symbol (ct->type)))));
|
|
328 write_c_string (buf, printcharfun);
|
|
329
|
|
330 /* Now write out the ASCII/Control-1 stuff. */
|
|
331 {
|
|
332 int i;
|
|
333 int first = -1;
|
|
334 Lisp_Object val = Qunbound;
|
|
335
|
|
336 for (i = 0; i < NUM_ASCII_CHARS; i++)
|
|
337 {
|
|
338 if (first == -1)
|
|
339 {
|
|
340 first = i;
|
|
341 val = ct->ascii[i];
|
|
342 continue;
|
|
343 }
|
|
344
|
|
345 if (!EQ (ct->ascii[i], val))
|
|
346 {
|
|
347 print_chartab_range (first, i - 1, val, printcharfun);
|
|
348 first = -1;
|
|
349 i--;
|
|
350 }
|
|
351 }
|
|
352
|
|
353 if (first != -1)
|
|
354 print_chartab_range (first, i - 1, val, printcharfun);
|
|
355 }
|
|
356
|
|
357 #ifdef MULE
|
|
358 {
|
|
359 int i;
|
|
360
|
|
361 for (i = MIN_LEADING_BYTE; i < MIN_LEADING_BYTE + NUM_LEADING_BYTES;
|
|
362 i++)
|
|
363 {
|
|
364 Lisp_Object ann = ct->level1[i - MIN_LEADING_BYTE];
|
|
365 Lisp_Object charset = CHARSET_BY_LEADING_BYTE (i);
|
|
366
|
|
367 if (!CHARSETP (charset) || i == LEADING_BYTE_ASCII
|
|
368 || i == LEADING_BYTE_CONTROL_1)
|
|
369 continue;
|
|
370 if (!CHAR_TABLE_ENTRYP (ann))
|
|
371 {
|
|
372 write_c_string (" ", printcharfun);
|
|
373 print_internal (XCHARSET_NAME (charset),
|
|
374 printcharfun, 0);
|
|
375 write_c_string (" ", printcharfun);
|
|
376 print_internal (ann, printcharfun, 0);
|
|
377 }
|
|
378 else
|
|
379 {
|
412
|
380 struct Lisp_Char_Table_Entry *cte = XCHAR_TABLE_ENTRY (ann);
|
70
|
381 if (XCHARSET_DIMENSION (charset) == 1)
|
|
382 print_chartab_charset_row (charset, -1, cte, printcharfun);
|
|
383 else
|
|
384 print_chartab_two_byte_charset (charset, cte, printcharfun);
|
|
385 }
|
|
386 }
|
|
387 }
|
|
388 #endif /* MULE */
|
|
389
|
|
390 write_c_string ("))", printcharfun);
|
|
391 }
|
|
392
|
|
393 static int
|
|
394 char_table_equal (Lisp_Object obj1, Lisp_Object obj2, int depth)
|
|
395 {
|
412
|
396 struct Lisp_Char_Table *ct1 = XCHAR_TABLE (obj1);
|
|
397 struct Lisp_Char_Table *ct2 = XCHAR_TABLE (obj2);
|
70
|
398 int i;
|
|
399
|
|
400 if (CHAR_TABLE_TYPE (ct1) != CHAR_TABLE_TYPE (ct2))
|
|
401 return 0;
|
|
402
|
|
403 for (i = 0; i < NUM_ASCII_CHARS; i++)
|
|
404 if (!internal_equal (ct1->ascii[i], ct2->ascii[i], depth + 1))
|
|
405 return 0;
|
|
406
|
|
407 #ifdef MULE
|
|
408 for (i = 0; i < NUM_LEADING_BYTES; i++)
|
|
409 if (!internal_equal (ct1->level1[i], ct2->level1[i], depth + 1))
|
|
410 return 0;
|
|
411 #endif /* MULE */
|
|
412
|
|
413 return 1;
|
|
414 }
|
|
415
|
|
416 static unsigned long
|
|
417 char_table_hash (Lisp_Object obj, int depth)
|
|
418 {
|
412
|
419 struct Lisp_Char_Table *ct = XCHAR_TABLE (obj);
|
70
|
420 unsigned long hashval = internal_array_hash (ct->ascii, NUM_ASCII_CHARS,
|
|
421 depth);
|
|
422 #ifdef MULE
|
|
423 hashval = HASH2 (hashval,
|
|
424 internal_array_hash (ct->level1, NUM_LEADING_BYTES, depth));
|
|
425 #endif /* MULE */
|
|
426 return hashval;
|
|
427 }
|
|
428
|
420
|
429 static const struct lrecord_description char_table_description[] = {
|
|
430 { XD_LISP_OBJECT, offsetof(struct Lisp_Char_Table, ascii), NUM_ASCII_CHARS },
|
|
431 #ifdef MULE
|
|
432 { XD_LISP_OBJECT, offsetof(struct Lisp_Char_Table, level1), NUM_LEADING_BYTES },
|
|
433 #endif
|
|
434 { XD_END }
|
|
435 };
|
|
436
|
272
|
437 DEFINE_LRECORD_IMPLEMENTATION ("char-table", char_table,
|
|
438 mark_char_table, print_char_table, 0,
|
|
439 char_table_equal, char_table_hash,
|
420
|
440 char_table_description,
|
412
|
441 struct Lisp_Char_Table);
|
272
|
442
|
70
|
443 DEFUN ("char-table-p", Fchar_table_p, 1, 1, 0, /*
|
|
444 Return non-nil if OBJECT is a char table.
|
|
445
|
|
446 A char table is a table that maps characters (or ranges of characters)
|
|
447 to values. Char tables are specialized for characters, only allowing
|
|
448 particular sorts of ranges to be assigned values. Although this
|
|
449 loses in generality, it makes for extremely fast (constant-time)
|
|
450 lookups, and thus is feasible for applications that do an extremely
|
|
451 large number of lookups (e.g. scanning a buffer for a character in
|
|
452 a particular syntax, where a lookup in the syntax table must occur
|
|
453 once per character).
|
|
454
|
|
455 When Mule support exists, the types of ranges that can be assigned
|
|
456 values are
|
|
457
|
|
458 -- all characters
|
|
459 -- an entire charset
|
|
460 -- a single row in a two-octet charset
|
|
461 -- a single character
|
|
462
|
|
463 When Mule support is not present, the types of ranges that can be
|
|
464 assigned values are
|
|
465
|
|
466 -- all characters
|
|
467 -- a single character
|
|
468
|
|
469 To create a char table, use `make-char-table'. To modify a char
|
|
470 table, use `put-char-table' or `remove-char-table'. To retrieve the
|
|
471 value for a particular character, use `get-char-table'. See also
|
|
472 `map-char-table', `clear-char-table', `copy-char-table',
|
|
473 `valid-char-table-type-p', `char-table-type-list', `valid-char-table-value-p',
|
|
474 and `check-char-table-value'.
|
|
475 */
|
|
476 (object))
|
|
477 {
|
181
|
478 return CHAR_TABLEP (object) ? Qt : Qnil;
|
70
|
479 }
|
|
480
|
|
481 DEFUN ("char-table-type-list", Fchar_table_type_list, 0, 0, 0, /*
|
|
482 Return a list of the recognized char table types.
|
|
483 See `valid-char-table-type-p'.
|
|
484 */
|
|
485 ())
|
|
486 {
|
|
487 #ifdef MULE
|
|
488 return list5 (Qchar, Qcategory, Qdisplay, Qgeneric, Qsyntax);
|
|
489 #else
|
|
490 return list4 (Qchar, Qdisplay, Qgeneric, Qsyntax);
|
|
491 #endif
|
|
492 }
|
|
493
|
|
494 DEFUN ("valid-char-table-type-p", Fvalid_char_table_type_p, 1, 1, 0, /*
|
|
495 Return t if TYPE if a recognized char table type.
|
|
496
|
|
497 Each char table type is used for a different purpose and allows different
|
|
498 sorts of values. The different char table types are
|
|
499
|
|
500 `category'
|
|
501 Used for category tables, which specify the regexp categories
|
|
502 that a character is in. The valid values are nil or a
|
|
503 bit vector of 95 elements. Higher-level Lisp functions are
|
|
504 provided for working with category tables. Currently categories
|
|
505 and category tables only exist when Mule support is present.
|
|
506 `char'
|
|
507 A generalized char table, for mapping from one character to
|
|
508 another. Used for case tables, syntax matching tables,
|
|
509 `keyboard-translate-table', etc. The valid values are characters.
|
|
510 `generic'
|
|
511 An even more generalized char table, for mapping from a
|
|
512 character to anything.
|
|
513 `display'
|
|
514 Used for display tables, which specify how a particular character
|
|
515 is to appear when displayed. #### Not yet implemented.
|
|
516 `syntax'
|
|
517 Used for syntax tables, which specify the syntax of a particular
|
|
518 character. Higher-level Lisp functions are provided for
|
|
519 working with syntax tables. The valid values are integers.
|
|
520
|
|
521 */
|
|
522 (type))
|
|
523 {
|
181
|
524 return (EQ (type, Qchar) ||
|
70
|
525 #ifdef MULE
|
181
|
526 EQ (type, Qcategory) ||
|
70
|
527 #endif
|
181
|
528 EQ (type, Qdisplay) ||
|
|
529 EQ (type, Qgeneric) ||
|
|
530 EQ (type, Qsyntax)) ? Qt : Qnil;
|
70
|
531 }
|
|
532
|
|
533 DEFUN ("char-table-type", Fchar_table_type, 1, 1, 0, /*
|
|
534 Return the type of char table TABLE.
|
|
535 See `valid-char-table-type-p'.
|
|
536 */
|
|
537 (table))
|
|
538 {
|
|
539 CHECK_CHAR_TABLE (table);
|
|
540 return char_table_type_to_symbol (XCHAR_TABLE (table)->type);
|
|
541 }
|
|
542
|
|
543 void
|
412
|
544 fill_char_table (struct Lisp_Char_Table *ct, Lisp_Object value)
|
70
|
545 {
|
|
546 int i;
|
|
547
|
|
548 for (i = 0; i < NUM_ASCII_CHARS; i++)
|
|
549 ct->ascii[i] = value;
|
|
550 #ifdef MULE
|
|
551 for (i = 0; i < NUM_LEADING_BYTES; i++)
|
|
552 ct->level1[i] = value;
|
|
553 #endif /* MULE */
|
|
554
|
|
555 if (ct->type == CHAR_TABLE_TYPE_SYNTAX)
|
|
556 update_syntax_table (ct);
|
|
557 }
|
|
558
|
|
559 DEFUN ("reset-char-table", Freset_char_table, 1, 1, 0, /*
|
|
560 Reset a char table to its default state.
|
|
561 */
|
|
562 (table))
|
|
563 {
|
412
|
564 struct Lisp_Char_Table *ct;
|
70
|
565
|
|
566 CHECK_CHAR_TABLE (table);
|
|
567 ct = XCHAR_TABLE (table);
|
|
568
|
|
569 switch (ct->type)
|
|
570 {
|
|
571 case CHAR_TABLE_TYPE_CHAR:
|
377
|
572 fill_char_table (ct, make_char (0));
|
|
573 break;
|
70
|
574 case CHAR_TABLE_TYPE_DISPLAY:
|
|
575 case CHAR_TABLE_TYPE_GENERIC:
|
|
576 #ifdef MULE
|
|
577 case CHAR_TABLE_TYPE_CATEGORY:
|
377
|
578 #endif /* MULE */
|
70
|
579 fill_char_table (ct, Qnil);
|
|
580 break;
|
|
581
|
|
582 case CHAR_TABLE_TYPE_SYNTAX:
|
|
583 fill_char_table (ct, make_int (Sinherit));
|
|
584 break;
|
|
585
|
|
586 default:
|
|
587 abort ();
|
|
588 }
|
|
589
|
|
590 return Qnil;
|
|
591 }
|
|
592
|
|
593 DEFUN ("make-char-table", Fmake_char_table, 1, 1, 0, /*
|
272
|
594 Return a new, empty char table of type TYPE.
|
70
|
595 Currently recognized types are 'char, 'category, 'display, 'generic,
|
|
596 and 'syntax. See `valid-char-table-type-p'.
|
|
597 */
|
|
598 (type))
|
|
599 {
|
412
|
600 struct Lisp_Char_Table *ct;
|
272
|
601 Lisp_Object obj;
|
70
|
602 enum char_table_type ty = symbol_to_char_table_type (type);
|
|
603
|
412
|
604 ct = alloc_lcrecord_type (struct Lisp_Char_Table, &lrecord_char_table);
|
70
|
605 ct->type = ty;
|
|
606 if (ty == CHAR_TABLE_TYPE_SYNTAX)
|
|
607 {
|
|
608 ct->mirror_table = Fmake_char_table (Qgeneric);
|
272
|
609 fill_char_table (XCHAR_TABLE (ct->mirror_table),
|
|
610 make_int (Spunct));
|
70
|
611 }
|
|
612 else
|
|
613 ct->mirror_table = Qnil;
|
|
614 ct->next_table = Qnil;
|
|
615 XSETCHAR_TABLE (obj, ct);
|
|
616 if (ty == CHAR_TABLE_TYPE_SYNTAX)
|
|
617 {
|
|
618 ct->next_table = Vall_syntax_tables;
|
|
619 Vall_syntax_tables = obj;
|
|
620 }
|
|
621 Freset_char_table (obj);
|
|
622 return obj;
|
|
623 }
|
|
624
|
|
625 #ifdef MULE
|
|
626
|
|
627 static Lisp_Object
|
|
628 make_char_table_entry (Lisp_Object initval)
|
|
629 {
|
272
|
630 Lisp_Object obj;
|
70
|
631 int i;
|
412
|
632 struct Lisp_Char_Table_Entry *cte =
|
|
633 alloc_lcrecord_type (struct Lisp_Char_Table_Entry,
|
|
634 &lrecord_char_table_entry);
|
70
|
635
|
|
636 for (i = 0; i < 96; i++)
|
|
637 cte->level2[i] = initval;
|
272
|
638
|
70
|
639 XSETCHAR_TABLE_ENTRY (obj, cte);
|
|
640 return obj;
|
|
641 }
|
|
642
|
|
643 static Lisp_Object
|
|
644 copy_char_table_entry (Lisp_Object entry)
|
|
645 {
|
412
|
646 struct Lisp_Char_Table_Entry *cte = XCHAR_TABLE_ENTRY (entry);
|
272
|
647 Lisp_Object obj;
|
70
|
648 int i;
|
412
|
649 struct Lisp_Char_Table_Entry *ctenew =
|
|
650 alloc_lcrecord_type (struct Lisp_Char_Table_Entry,
|
|
651 &lrecord_char_table_entry);
|
70
|
652
|
|
653 for (i = 0; i < 96; i++)
|
|
654 {
|
|
655 Lisp_Object new = cte->level2[i];
|
|
656 if (CHAR_TABLE_ENTRYP (new))
|
|
657 ctenew->level2[i] = copy_char_table_entry (new);
|
|
658 else
|
|
659 ctenew->level2[i] = new;
|
|
660 }
|
|
661
|
249
|
662 XSETCHAR_TABLE_ENTRY (obj, ctenew);
|
70
|
663 return obj;
|
|
664 }
|
|
665
|
|
666 #endif /* MULE */
|
|
667
|
|
668 DEFUN ("copy-char-table", Fcopy_char_table, 1, 1, 0, /*
|
|
669 Make a new char table which is a copy of OLD-TABLE.
|
|
670 It will contain the same values for the same characters and ranges
|
|
671 as OLD-TABLE. The values will not themselves be copied.
|
|
672 */
|
|
673 (old_table))
|
|
674 {
|
412
|
675 struct Lisp_Char_Table *ct, *ctnew;
|
272
|
676 Lisp_Object obj;
|
70
|
677 int i;
|
|
678
|
|
679 CHECK_CHAR_TABLE (old_table);
|
|
680 ct = XCHAR_TABLE (old_table);
|
412
|
681 ctnew = alloc_lcrecord_type (struct Lisp_Char_Table, &lrecord_char_table);
|
70
|
682 ctnew->type = ct->type;
|
|
683
|
|
684 for (i = 0; i < NUM_ASCII_CHARS; i++)
|
|
685 {
|
|
686 Lisp_Object new = ct->ascii[i];
|
|
687 #ifdef MULE
|
|
688 assert (! (CHAR_TABLE_ENTRYP (new)));
|
|
689 #endif /* MULE */
|
|
690 ctnew->ascii[i] = new;
|
|
691 }
|
|
692
|
|
693 #ifdef MULE
|
|
694
|
|
695 for (i = 0; i < NUM_LEADING_BYTES; i++)
|
|
696 {
|
|
697 Lisp_Object new = ct->level1[i];
|
|
698 if (CHAR_TABLE_ENTRYP (new))
|
|
699 ctnew->level1[i] = copy_char_table_entry (new);
|
|
700 else
|
|
701 ctnew->level1[i] = new;
|
|
702 }
|
|
703
|
|
704 #endif /* MULE */
|
|
705
|
|
706 if (CHAR_TABLEP (ct->mirror_table))
|
|
707 ctnew->mirror_table = Fcopy_char_table (ct->mirror_table);
|
|
708 else
|
|
709 ctnew->mirror_table = ct->mirror_table;
|
|
710 XSETCHAR_TABLE (obj, ctnew);
|
|
711 return obj;
|
|
712 }
|
|
713
|
|
714 static void
|
|
715 decode_char_table_range (Lisp_Object range, struct chartab_range *outrange)
|
|
716 {
|
|
717 if (EQ (range, Qt))
|
|
718 outrange->type = CHARTAB_RANGE_ALL;
|
|
719 else if (CHAR_OR_CHAR_INTP (range))
|
|
720 {
|
|
721 outrange->type = CHARTAB_RANGE_CHAR;
|
|
722 outrange->ch = XCHAR_OR_CHAR_INT (range);
|
|
723 }
|
|
724 #ifndef MULE
|
|
725 else
|
|
726 signal_simple_error ("Range must be t or a character", range);
|
|
727 #else /* MULE */
|
|
728 else if (VECTORP (range))
|
|
729 {
|
412
|
730 struct Lisp_Vector *vec = XVECTOR (range);
|
70
|
731 Lisp_Object *elts = vector_data (vec);
|
|
732 if (vector_length (vec) != 2)
|
|
733 signal_simple_error ("Length of charset row vector must be 2",
|
|
734 range);
|
|
735 outrange->type = CHARTAB_RANGE_ROW;
|
|
736 outrange->charset = Fget_charset (elts[0]);
|
|
737 CHECK_INT (elts[1]);
|
|
738 outrange->row = XINT (elts[1]);
|
|
739 switch (XCHARSET_TYPE (outrange->charset))
|
|
740 {
|
|
741 case CHARSET_TYPE_94:
|
|
742 case CHARSET_TYPE_96:
|
|
743 signal_simple_error ("Charset in row vector must be multi-byte",
|
|
744 outrange->charset);
|
|
745 case CHARSET_TYPE_94X94:
|
|
746 check_int_range (outrange->row, 33, 126);
|
|
747 break;
|
|
748 case CHARSET_TYPE_96X96:
|
|
749 check_int_range (outrange->row, 32, 127);
|
|
750 break;
|
|
751 default:
|
|
752 abort ();
|
|
753 }
|
|
754 }
|
|
755 else
|
|
756 {
|
|
757 if (!CHARSETP (range) && !SYMBOLP (range))
|
|
758 signal_simple_error
|
|
759 ("Char table range must be t, charset, char, or vector", range);
|
|
760 outrange->type = CHARTAB_RANGE_CHARSET;
|
|
761 outrange->charset = Fget_charset (range);
|
|
762 }
|
|
763 #endif /* MULE */
|
|
764 }
|
|
765
|
|
766 #ifdef MULE
|
|
767
|
|
768 /* called from CHAR_TABLE_VALUE(). */
|
|
769 Lisp_Object
|
412
|
770 get_non_ascii_char_table_value (struct Lisp_Char_Table *ct, int leading_byte,
|
70
|
771 Emchar c)
|
|
772 {
|
|
773 Lisp_Object val;
|
|
774 Lisp_Object charset = CHARSET_BY_LEADING_BYTE (leading_byte);
|
|
775 int byte1, byte2;
|
|
776
|
|
777 BREAKUP_CHAR_1_UNSAFE (c, charset, byte1, byte2);
|
|
778 val = ct->level1[leading_byte - MIN_LEADING_BYTE];
|
|
779 if (CHAR_TABLE_ENTRYP (val))
|
|
780 {
|
412
|
781 struct Lisp_Char_Table_Entry *cte = XCHAR_TABLE_ENTRY (val);
|
70
|
782 val = cte->level2[byte1 - 32];
|
|
783 if (CHAR_TABLE_ENTRYP (val))
|
|
784 {
|
|
785 cte = XCHAR_TABLE_ENTRY (val);
|
|
786 assert (byte2 >= 32);
|
|
787 val = cte->level2[byte2 - 32];
|
|
788 assert (!CHAR_TABLE_ENTRYP (val));
|
|
789 }
|
|
790 }
|
|
791
|
|
792 return val;
|
|
793 }
|
|
794
|
|
795 #endif /* MULE */
|
|
796
|
377
|
797 Lisp_Object
|
412
|
798 get_char_table (Emchar ch, struct Lisp_Char_Table *ct)
|
70
|
799 {
|
|
800 #ifdef MULE
|
|
801 {
|
|
802 Lisp_Object charset;
|
|
803 int byte1, byte2;
|
|
804 Lisp_Object val;
|
183
|
805
|
104
|
806 BREAKUP_CHAR (ch, charset, byte1, byte2);
|
183
|
807
|
70
|
808 if (EQ (charset, Vcharset_ascii))
|
|
809 val = ct->ascii[byte1];
|
|
810 else if (EQ (charset, Vcharset_control_1))
|
|
811 val = ct->ascii[byte1 + 128];
|
|
812 else
|
|
813 {
|
|
814 int lb = XCHARSET_LEADING_BYTE (charset) - MIN_LEADING_BYTE;
|
|
815 val = ct->level1[lb];
|
|
816 if (CHAR_TABLE_ENTRYP (val))
|
|
817 {
|
412
|
818 struct Lisp_Char_Table_Entry *cte = XCHAR_TABLE_ENTRY (val);
|
70
|
819 val = cte->level2[byte1 - 32];
|
|
820 if (CHAR_TABLE_ENTRYP (val))
|
|
821 {
|
|
822 cte = XCHAR_TABLE_ENTRY (val);
|
|
823 assert (byte2 >= 32);
|
|
824 val = cte->level2[byte2 - 32];
|
|
825 assert (!CHAR_TABLE_ENTRYP (val));
|
|
826 }
|
|
827 }
|
|
828 }
|
|
829
|
|
830 return val;
|
|
831 }
|
|
832 #else /* not MULE */
|
104
|
833 return ct->ascii[(unsigned char)ch];
|
70
|
834 #endif /* not MULE */
|
|
835 }
|
|
836
|
104
|
837
|
|
838 DEFUN ("get-char-table", Fget_char_table, 2, 2, 0, /*
|
|
839 Find value for char CH in TABLE.
|
|
840 */
|
|
841 (ch, table))
|
|
842 {
|
412
|
843 struct Lisp_Char_Table *ct;
|
183
|
844
|
104
|
845 CHECK_CHAR_TABLE (table);
|
|
846 ct = XCHAR_TABLE (table);
|
|
847 CHECK_CHAR_COERCE_INT (ch);
|
183
|
848
|
|
849 return get_char_table (XCHAR (ch), ct);
|
104
|
850 }
|
|
851
|
70
|
852 DEFUN ("get-range-char-table", Fget_range_char_table, 2, 3, 0, /*
|
|
853 Find value for a range in TABLE.
|
|
854 If there is more than one value, return MULTI (defaults to nil).
|
|
855 */
|
|
856 (range, table, multi))
|
|
857 {
|
412
|
858 struct Lisp_Char_Table *ct;
|
70
|
859 struct chartab_range rainj;
|
|
860
|
|
861 if (CHAR_OR_CHAR_INTP (range))
|
|
862 return Fget_char_table (range, table);
|
|
863 CHECK_CHAR_TABLE (table);
|
|
864 ct = XCHAR_TABLE (table);
|
|
865
|
|
866 decode_char_table_range (range, &rainj);
|
|
867 switch (rainj.type)
|
|
868 {
|
|
869 case CHARTAB_RANGE_ALL:
|
|
870 {
|
|
871 int i;
|
|
872 Lisp_Object first = ct->ascii[0];
|
183
|
873
|
70
|
874 for (i = 1; i < NUM_ASCII_CHARS; i++)
|
|
875 if (!EQ (first, ct->ascii[i]))
|
|
876 return multi;
|
183
|
877
|
70
|
878 #ifdef MULE
|
|
879 for (i = MIN_LEADING_BYTE; i < MIN_LEADING_BYTE + NUM_LEADING_BYTES;
|
|
880 i++)
|
|
881 {
|
|
882 if (!CHARSETP (CHARSET_BY_LEADING_BYTE (i))
|
|
883 || i == LEADING_BYTE_ASCII
|
|
884 || i == LEADING_BYTE_CONTROL_1)
|
|
885 continue;
|
|
886 if (!EQ (first, ct->level1[i - MIN_LEADING_BYTE]))
|
|
887 return multi;
|
|
888 }
|
|
889 #endif /* MULE */
|
|
890
|
|
891 return first;
|
|
892 }
|
|
893
|
|
894 #ifdef MULE
|
|
895 case CHARTAB_RANGE_CHARSET:
|
|
896 if (EQ (rainj.charset, Vcharset_ascii))
|
|
897 {
|
|
898 int i;
|
|
899 Lisp_Object first = ct->ascii[0];
|
183
|
900
|
70
|
901 for (i = 1; i < 128; i++)
|
|
902 if (!EQ (first, ct->ascii[i]))
|
|
903 return multi;
|
|
904 return first;
|
|
905 }
|
183
|
906
|
70
|
907 if (EQ (rainj.charset, Vcharset_control_1))
|
|
908 {
|
|
909 int i;
|
|
910 Lisp_Object first = ct->ascii[128];
|
183
|
911
|
70
|
912 for (i = 129; i < 160; i++)
|
|
913 if (!EQ (first, ct->ascii[i]))
|
|
914 return multi;
|
|
915 return first;
|
|
916 }
|
183
|
917
|
70
|
918 {
|
|
919 Lisp_Object val = ct->level1[XCHARSET_LEADING_BYTE (rainj.charset) -
|
|
920 MIN_LEADING_BYTE];
|
|
921 if (CHAR_TABLE_ENTRYP (val))
|
|
922 return multi;
|
|
923 return val;
|
|
924 }
|
|
925
|
|
926 case CHARTAB_RANGE_ROW:
|
|
927 {
|
|
928 Lisp_Object val = ct->level1[XCHARSET_LEADING_BYTE (rainj.charset) -
|
|
929 MIN_LEADING_BYTE];
|
|
930 if (!CHAR_TABLE_ENTRYP (val))
|
|
931 return val;
|
|
932 val = XCHAR_TABLE_ENTRY (val)->level2[rainj.row - 32];
|
|
933 if (CHAR_TABLE_ENTRYP (val))
|
|
934 return multi;
|
|
935 return val;
|
|
936 }
|
|
937 #endif /* not MULE */
|
|
938
|
|
939 default:
|
|
940 abort ();
|
|
941 }
|
|
942
|
|
943 return Qnil; /* not reached */
|
|
944 }
|
|
945
|
|
946 static int
|
|
947 check_valid_char_table_value (Lisp_Object value, enum char_table_type type,
|
|
948 Error_behavior errb)
|
|
949 {
|
|
950 switch (type)
|
|
951 {
|
|
952 case CHAR_TABLE_TYPE_SYNTAX:
|
|
953 if (!ERRB_EQ (errb, ERROR_ME))
|
|
954 return INTP (value) || (CONSP (value) && INTP (XCAR (value))
|
|
955 && CHAR_OR_CHAR_INTP (XCDR (value)));
|
|
956 if (CONSP (value))
|
|
957 {
|
|
958 Lisp_Object cdr = XCDR (value);
|
|
959 CHECK_INT (XCAR (value));
|
|
960 CHECK_CHAR_COERCE_INT (cdr);
|
|
961 }
|
|
962 else
|
|
963 CHECK_INT (value);
|
|
964 break;
|
|
965
|
|
966 #ifdef MULE
|
|
967 case CHAR_TABLE_TYPE_CATEGORY:
|
|
968 if (!ERRB_EQ (errb, ERROR_ME))
|
|
969 return CATEGORY_TABLE_VALUEP (value);
|
|
970 CHECK_CATEGORY_TABLE_VALUE (value);
|
|
971 break;
|
183
|
972 #endif /* MULE */
|
70
|
973
|
|
974 case CHAR_TABLE_TYPE_GENERIC:
|
|
975 return 1;
|
|
976
|
|
977 case CHAR_TABLE_TYPE_DISPLAY:
|
|
978 /* #### fix this */
|
|
979 maybe_signal_simple_error ("Display char tables not yet implemented",
|
|
980 value, Qchar_table, errb);
|
|
981 return 0;
|
|
982
|
|
983 case CHAR_TABLE_TYPE_CHAR:
|
|
984 if (!ERRB_EQ (errb, ERROR_ME))
|
|
985 return CHAR_OR_CHAR_INTP (value);
|
|
986 CHECK_CHAR_COERCE_INT (value);
|
|
987 break;
|
|
988
|
|
989 default:
|
|
990 abort ();
|
|
991 }
|
|
992
|
|
993 return 0; /* not reached */
|
|
994 }
|
|
995
|
|
996 static Lisp_Object
|
|
997 canonicalize_char_table_value (Lisp_Object value, enum char_table_type type)
|
|
998 {
|
|
999 switch (type)
|
|
1000 {
|
|
1001 case CHAR_TABLE_TYPE_SYNTAX:
|
|
1002 if (CONSP (value))
|
|
1003 {
|
|
1004 Lisp_Object car = XCAR (value);
|
|
1005 Lisp_Object cdr = XCDR (value);
|
|
1006 CHECK_CHAR_COERCE_INT (cdr);
|
|
1007 return Fcons (car, cdr);
|
|
1008 }
|
377
|
1009 break;
|
|
1010 case CHAR_TABLE_TYPE_CHAR:
|
|
1011 CHECK_CHAR_COERCE_INT (value);
|
|
1012 break;
|
70
|
1013 default:
|
|
1014 break;
|
|
1015 }
|
|
1016 return value;
|
|
1017 }
|
|
1018
|
|
1019 DEFUN ("valid-char-table-value-p", Fvalid_char_table_value_p, 2, 2, 0, /*
|
|
1020 Return non-nil if VALUE is a valid value for CHAR-TABLE-TYPE.
|
|
1021 */
|
|
1022 (value, char_table_type))
|
|
1023 {
|
|
1024 enum char_table_type type = symbol_to_char_table_type (char_table_type);
|
|
1025
|
|
1026 return check_valid_char_table_value (value, type, ERROR_ME_NOT) ? Qt : Qnil;
|
|
1027 }
|
|
1028
|
|
1029 DEFUN ("check-valid-char-table-value", Fcheck_valid_char_table_value, 2, 2, 0, /*
|
|
1030 Signal an error if VALUE is not a valid value for CHAR-TABLE-TYPE.
|
|
1031 */
|
|
1032 (value, char_table_type))
|
|
1033 {
|
|
1034 enum char_table_type type = symbol_to_char_table_type (char_table_type);
|
|
1035
|
|
1036 check_valid_char_table_value (value, type, ERROR_ME);
|
|
1037 return Qnil;
|
|
1038 }
|
|
1039
|
|
1040 /* Assign VAL to all characters in RANGE in char table CT. */
|
|
1041
|
|
1042 void
|
412
|
1043 put_char_table (struct Lisp_Char_Table *ct, struct chartab_range *range,
|
70
|
1044 Lisp_Object val)
|
|
1045 {
|
|
1046 switch (range->type)
|
|
1047 {
|
|
1048 case CHARTAB_RANGE_ALL:
|
|
1049 fill_char_table (ct, val);
|
|
1050 return; /* avoid the duplicate call to update_syntax_table() below,
|
|
1051 since fill_char_table() also did that. */
|
|
1052
|
|
1053 #ifdef MULE
|
|
1054 case CHARTAB_RANGE_CHARSET:
|
|
1055 if (EQ (range->charset, Vcharset_ascii))
|
|
1056 {
|
|
1057 int i;
|
|
1058 for (i = 0; i < 128; i++)
|
|
1059 ct->ascii[i] = val;
|
|
1060 }
|
|
1061 else if (EQ (range->charset, Vcharset_control_1))
|
|
1062 {
|
|
1063 int i;
|
|
1064 for (i = 128; i < 160; i++)
|
|
1065 ct->ascii[i] = val;
|
|
1066 }
|
|
1067 else
|
|
1068 {
|
|
1069 int lb = XCHARSET_LEADING_BYTE (range->charset) - MIN_LEADING_BYTE;
|
|
1070 ct->level1[lb] = val;
|
|
1071 }
|
|
1072 break;
|
|
1073
|
|
1074 case CHARTAB_RANGE_ROW:
|
|
1075 {
|
412
|
1076 struct Lisp_Char_Table_Entry *cte;
|
70
|
1077 int lb = XCHARSET_LEADING_BYTE (range->charset) - MIN_LEADING_BYTE;
|
|
1078 /* make sure that there is a separate entry for the row. */
|
|
1079 if (!CHAR_TABLE_ENTRYP (ct->level1[lb]))
|
|
1080 ct->level1[lb] = make_char_table_entry (ct->level1[lb]);
|
|
1081 cte = XCHAR_TABLE_ENTRY (ct->level1[lb]);
|
|
1082 cte->level2[range->row - 32] = val;
|
|
1083 }
|
|
1084 break;
|
|
1085 #endif /* MULE */
|
|
1086
|
|
1087 case CHARTAB_RANGE_CHAR:
|
|
1088 #ifdef MULE
|
|
1089 {
|
|
1090 Lisp_Object charset;
|
|
1091 int byte1, byte2;
|
183
|
1092
|
70
|
1093 BREAKUP_CHAR (range->ch, charset, byte1, byte2);
|
|
1094 if (EQ (charset, Vcharset_ascii))
|
|
1095 ct->ascii[byte1] = val;
|
|
1096 else if (EQ (charset, Vcharset_control_1))
|
|
1097 ct->ascii[byte1 + 128] = val;
|
|
1098 else
|
|
1099 {
|
412
|
1100 struct Lisp_Char_Table_Entry *cte;
|
70
|
1101 int lb = XCHARSET_LEADING_BYTE (charset) - MIN_LEADING_BYTE;
|
|
1102 /* make sure that there is a separate entry for the row. */
|
|
1103 if (!CHAR_TABLE_ENTRYP (ct->level1[lb]))
|
|
1104 ct->level1[lb] = make_char_table_entry (ct->level1[lb]);
|
|
1105 cte = XCHAR_TABLE_ENTRY (ct->level1[lb]);
|
|
1106 /* now CTE is a char table entry for the charset;
|
|
1107 each entry is for a single row (or character of
|
|
1108 a one-octet charset). */
|
|
1109 if (XCHARSET_DIMENSION (charset) == 1)
|
|
1110 cte->level2[byte1 - 32] = val;
|
|
1111 else
|
|
1112 {
|
|
1113 /* assigning to one character in a two-octet charset. */
|
|
1114 /* make sure that the charset row contains a separate
|
|
1115 entry for each character. */
|
|
1116 if (!CHAR_TABLE_ENTRYP (cte->level2[byte1 - 32]))
|
|
1117 cte->level2[byte1 - 32] =
|
|
1118 make_char_table_entry (cte->level2[byte1 - 32]);
|
|
1119 cte = XCHAR_TABLE_ENTRY (cte->level2[byte1 - 32]);
|
|
1120 cte->level2[byte2 - 32] = val;
|
|
1121 }
|
|
1122 }
|
|
1123 }
|
|
1124 #else /* not MULE */
|
|
1125 ct->ascii[(unsigned char) (range->ch)] = val;
|
|
1126 break;
|
|
1127 #endif /* not MULE */
|
|
1128 }
|
|
1129
|
|
1130 if (ct->type == CHAR_TABLE_TYPE_SYNTAX)
|
|
1131 update_syntax_table (ct);
|
|
1132 }
|
|
1133
|
|
1134 DEFUN ("put-char-table", Fput_char_table, 3, 3, 0, /*
|
|
1135 Set the value for chars in RANGE to be VAL in TABLE.
|
|
1136
|
|
1137 RANGE specifies one or more characters to be affected and should be
|
|
1138 one of the following:
|
|
1139
|
|
1140 -- t (all characters are affected)
|
|
1141 -- A charset (only allowed when Mule support is present)
|
|
1142 -- A vector of two elements: a two-octet charset and a row number
|
|
1143 (only allowed when Mule support is present)
|
|
1144 -- A single character
|
|
1145
|
|
1146 VAL must be a value appropriate for the type of TABLE.
|
|
1147 See `valid-char-table-type-p'.
|
|
1148 */
|
|
1149 (range, val, table))
|
|
1150 {
|
412
|
1151 struct Lisp_Char_Table *ct;
|
70
|
1152 struct chartab_range rainj;
|
|
1153
|
|
1154 CHECK_CHAR_TABLE (table);
|
|
1155 ct = XCHAR_TABLE (table);
|
|
1156 check_valid_char_table_value (val, ct->type, ERROR_ME);
|
|
1157 decode_char_table_range (range, &rainj);
|
|
1158 val = canonicalize_char_table_value (val, ct->type);
|
|
1159 put_char_table (ct, &rainj, val);
|
|
1160 return Qnil;
|
|
1161 }
|
|
1162
|
|
1163 /* Map FN over the ASCII chars in CT. */
|
|
1164
|
|
1165 static int
|
412
|
1166 map_over_charset_ascii (struct Lisp_Char_Table *ct,
|
70
|
1167 int (*fn) (struct chartab_range *range,
|
|
1168 Lisp_Object val, void *arg),
|
|
1169 void *arg)
|
|
1170 {
|
183
|
1171 struct chartab_range rainj;
|
|
1172 int i, retval;
|
|
1173 int start = 0;
|
70
|
1174 #ifdef MULE
|
183
|
1175 int stop = 128;
|
70
|
1176 #else
|
183
|
1177 int stop = 256;
|
70
|
1178 #endif
|
183
|
1179
|
|
1180 rainj.type = CHARTAB_RANGE_CHAR;
|
|
1181
|
|
1182 for (i = start, retval = 0; i < stop && retval == 0; i++)
|
70
|
1183 {
|
|
1184 rainj.ch = (Emchar) i;
|
183
|
1185 retval = (fn) (&rainj, ct->ascii[i], arg);
|
70
|
1186 }
|
|
1187
|
183
|
1188 return retval;
|
70
|
1189 }
|
|
1190
|
|
1191 #ifdef MULE
|
|
1192
|
|
1193 /* Map FN over the Control-1 chars in CT. */
|
|
1194
|
|
1195 static int
|
412
|
1196 map_over_charset_control_1 (struct Lisp_Char_Table *ct,
|
70
|
1197 int (*fn) (struct chartab_range *range,
|
|
1198 Lisp_Object val, void *arg),
|
|
1199 void *arg)
|
|
1200 {
|
183
|
1201 struct chartab_range rainj;
|
|
1202 int i, retval;
|
|
1203 int start = 128;
|
|
1204 int stop = start + 32;
|
70
|
1205
|
183
|
1206 rainj.type = CHARTAB_RANGE_CHAR;
|
|
1207
|
|
1208 for (i = start, retval = 0; i < stop && retval == 0; i++)
|
70
|
1209 {
|
183
|
1210 rainj.ch = (Emchar) (i);
|
|
1211 retval = (fn) (&rainj, ct->ascii[i], arg);
|
70
|
1212 }
|
|
1213
|
183
|
1214 return retval;
|
70
|
1215 }
|
|
1216
|
|
1217 /* Map FN over the row ROW of two-byte charset CHARSET.
|
|
1218 There must be a separate value for that row in the char table.
|
|
1219 CTE specifies the char table entry for CHARSET. */
|
|
1220
|
|
1221 static int
|
412
|
1222 map_over_charset_row (struct Lisp_Char_Table_Entry *cte,
|
70
|
1223 Lisp_Object charset, int row,
|
|
1224 int (*fn) (struct chartab_range *range,
|
|
1225 Lisp_Object val, void *arg),
|
|
1226 void *arg)
|
|
1227 {
|
183
|
1228 Lisp_Object val = cte->level2[row - 32];
|
70
|
1229
|
|
1230 if (!CHAR_TABLE_ENTRYP (val))
|
|
1231 {
|
|
1232 struct chartab_range rainj;
|
|
1233
|
|
1234 rainj.type = CHARTAB_RANGE_ROW;
|
|
1235 rainj.charset = charset;
|
|
1236 rainj.row = row;
|
|
1237 return (fn) (&rainj, val, arg);
|
|
1238 }
|
|
1239 else
|
|
1240 {
|
183
|
1241 struct chartab_range rainj;
|
|
1242 int i, retval;
|
|
1243 int charset94_p = (XCHARSET_CHARS (charset) == 94);
|
|
1244 int start = charset94_p ? 33 : 32;
|
|
1245 int stop = charset94_p ? 127 : 128;
|
|
1246
|
70
|
1247 cte = XCHAR_TABLE_ENTRY (val);
|
183
|
1248
|
|
1249 rainj.type = CHARTAB_RANGE_CHAR;
|
|
1250
|
|
1251 for (i = start, retval = 0; i < stop && retval == 0; i++)
|
70
|
1252 {
|
183
|
1253 rainj.ch = MAKE_CHAR (charset, row, i);
|
|
1254 retval = (fn) (&rainj, cte->level2[i - 32], arg);
|
70
|
1255 }
|
183
|
1256 return retval;
|
|
1257 }
|
|
1258 }
|
70
|
1259
|
|
1260
|
|
1261 static int
|
412
|
1262 map_over_other_charset (struct Lisp_Char_Table *ct, int lb,
|
70
|
1263 int (*fn) (struct chartab_range *range,
|
|
1264 Lisp_Object val, void *arg),
|
|
1265 void *arg)
|
|
1266 {
|
181
|
1267 Lisp_Object val = ct->level1[lb - MIN_LEADING_BYTE];
|
|
1268 Lisp_Object charset = CHARSET_BY_LEADING_BYTE (lb);
|
183
|
1269
|
181
|
1270 if (!CHARSETP (charset)
|
|
1271 || lb == LEADING_BYTE_ASCII
|
70
|
1272 || lb == LEADING_BYTE_CONTROL_1)
|
|
1273 return 0;
|
183
|
1274
|
70
|
1275 if (!CHAR_TABLE_ENTRYP (val))
|
|
1276 {
|
|
1277 struct chartab_range rainj;
|
|
1278
|
|
1279 rainj.type = CHARTAB_RANGE_CHARSET;
|
|
1280 rainj.charset = charset;
|
|
1281 return (fn) (&rainj, val, arg);
|
|
1282 }
|
183
|
1283
|
181
|
1284 {
|
412
|
1285 struct Lisp_Char_Table_Entry *cte = XCHAR_TABLE_ENTRY (val);
|
181
|
1286 int charset94_p = (XCHARSET_CHARS (charset) == 94);
|
|
1287 int start = charset94_p ? 33 : 32;
|
|
1288 int stop = charset94_p ? 127 : 128;
|
|
1289 int i, retval;
|
183
|
1290
|
181
|
1291 if (XCHARSET_DIMENSION (charset) == 1)
|
183
|
1292 {
|
|
1293 struct chartab_range rainj;
|
|
1294 rainj.type = CHARTAB_RANGE_CHAR;
|
70
|
1295
|
183
|
1296 for (i = start, retval = 0; i < stop && retval == 0; i++)
|
|
1297 {
|
|
1298 rainj.ch = MAKE_CHAR (charset, i, 0);
|
|
1299 retval = (fn) (&rainj, cte->level2[i - 32], arg);
|
|
1300 }
|
|
1301 }
|
181
|
1302 else
|
183
|
1303 {
|
|
1304 for (i = start, retval = 0; i < stop && retval == 0; i++)
|
181
|
1305 retval = map_over_charset_row (cte, charset, i, fn, arg);
|
183
|
1306 }
|
|
1307
|
|
1308 return retval;
|
181
|
1309 }
|
70
|
1310 }
|
|
1311
|
|
1312 #endif /* MULE */
|
|
1313
|
|
1314 /* Map FN (with client data ARG) over range RANGE in char table CT.
|
|
1315 Mapping stops the first time FN returns non-zero, and that value
|
|
1316 becomes the return value of map_char_table(). */
|
|
1317
|
|
1318 int
|
412
|
1319 map_char_table (struct Lisp_Char_Table *ct,
|
70
|
1320 struct chartab_range *range,
|
|
1321 int (*fn) (struct chartab_range *range,
|
|
1322 Lisp_Object val, void *arg),
|
|
1323 void *arg)
|
|
1324 {
|
|
1325 switch (range->type)
|
|
1326 {
|
|
1327 case CHARTAB_RANGE_ALL:
|
|
1328 {
|
|
1329 int retval;
|
183
|
1330
|
70
|
1331 retval = map_over_charset_ascii (ct, fn, arg);
|
|
1332 if (retval)
|
|
1333 return retval;
|
|
1334 #ifdef MULE
|
|
1335 retval = map_over_charset_control_1 (ct, fn, arg);
|
|
1336 if (retval)
|
|
1337 return retval;
|
|
1338 {
|
|
1339 int i;
|
183
|
1340 int start = MIN_LEADING_BYTE;
|
|
1341 int stop = start + NUM_LEADING_BYTES;
|
|
1342
|
|
1343 for (i = start, retval = 0; i < stop && retval == 0; i++)
|
70
|
1344 {
|
|
1345 retval = map_over_other_charset (ct, i, fn, arg);
|
|
1346 }
|
|
1347 }
|
181
|
1348 #endif /* MULE */
|
183
|
1349 return retval;
|
70
|
1350 }
|
|
1351
|
|
1352 #ifdef MULE
|
|
1353 case CHARTAB_RANGE_CHARSET:
|
|
1354 return map_over_other_charset (ct,
|
|
1355 XCHARSET_LEADING_BYTE (range->charset),
|
|
1356 fn, arg);
|
|
1357
|
|
1358 case CHARTAB_RANGE_ROW:
|
|
1359 {
|
104
|
1360 Lisp_Object val = ct->level1[XCHARSET_LEADING_BYTE (range->charset) - MIN_LEADING_BYTE];
|
70
|
1361 if (!CHAR_TABLE_ENTRYP (val))
|
|
1362 {
|
|
1363 struct chartab_range rainj;
|
|
1364
|
|
1365 rainj.type = CHARTAB_RANGE_ROW;
|
|
1366 rainj.charset = range->charset;
|
|
1367 rainj.row = range->row;
|
|
1368 return (fn) (&rainj, val, arg);
|
|
1369 }
|
|
1370 else
|
|
1371 return map_over_charset_row (XCHAR_TABLE_ENTRY (val),
|
|
1372 range->charset, range->row,
|
|
1373 fn, arg);
|
|
1374 }
|
|
1375 #endif /* MULE */
|
|
1376
|
|
1377 case CHARTAB_RANGE_CHAR:
|
|
1378 {
|
|
1379 Emchar ch = range->ch;
|
|
1380 Lisp_Object val = CHAR_TABLE_VALUE_UNSAFE (ct, ch);
|
|
1381 struct chartab_range rainj;
|
|
1382
|
|
1383 rainj.type = CHARTAB_RANGE_CHAR;
|
|
1384 rainj.ch = ch;
|
|
1385 return (fn) (&rainj, val, arg);
|
|
1386 }
|
|
1387
|
|
1388 default:
|
|
1389 abort ();
|
|
1390 }
|
|
1391
|
|
1392 return 0;
|
|
1393 }
|
|
1394
|
|
1395 struct slow_map_char_table_arg
|
|
1396 {
|
|
1397 Lisp_Object function;
|
|
1398 Lisp_Object retval;
|
|
1399 };
|
|
1400
|
|
1401 static int
|
|
1402 slow_map_char_table_fun (struct chartab_range *range,
|
|
1403 Lisp_Object val, void *arg)
|
|
1404 {
|
|
1405 Lisp_Object ranjarg = Qnil;
|
|
1406 struct slow_map_char_table_arg *closure =
|
|
1407 (struct slow_map_char_table_arg *) arg;
|
|
1408
|
|
1409 switch (range->type)
|
|
1410 {
|
|
1411 case CHARTAB_RANGE_ALL:
|
|
1412 ranjarg = Qt;
|
|
1413 break;
|
|
1414
|
|
1415 #ifdef MULE
|
|
1416 case CHARTAB_RANGE_CHARSET:
|
|
1417 ranjarg = XCHARSET_NAME (range->charset);
|
|
1418 break;
|
|
1419
|
|
1420 case CHARTAB_RANGE_ROW:
|
|
1421 ranjarg = vector2 (XCHARSET_NAME (range->charset),
|
|
1422 make_int (range->row));
|
|
1423 break;
|
183
|
1424 #endif /* MULE */
|
70
|
1425 case CHARTAB_RANGE_CHAR:
|
|
1426 ranjarg = make_char (range->ch);
|
|
1427 break;
|
|
1428 default:
|
|
1429 abort ();
|
|
1430 }
|
|
1431
|
|
1432 closure->retval = call2 (closure->function, ranjarg, val);
|
183
|
1433 return !NILP (closure->retval);
|
70
|
1434 }
|
|
1435
|
|
1436 DEFUN ("map-char-table", Fmap_char_table, 2, 3, 0, /*
|
|
1437 Map FUNCTION over entries in TABLE, calling it with two args,
|
|
1438 each key and value in the table.
|
|
1439
|
|
1440 RANGE specifies a subrange to map over and is in the same format as
|
|
1441 the RANGE argument to `put-range-table'. If omitted or t, it defaults to
|
|
1442 the entire table.
|
|
1443 */
|
|
1444 (function, table, range))
|
|
1445 {
|
412
|
1446 struct Lisp_Char_Table *ct;
|
70
|
1447 struct slow_map_char_table_arg slarg;
|
|
1448 struct gcpro gcpro1, gcpro2;
|
|
1449 struct chartab_range rainj;
|
|
1450
|
|
1451 CHECK_CHAR_TABLE (table);
|
|
1452 ct = XCHAR_TABLE (table);
|
|
1453 if (NILP (range))
|
|
1454 range = Qt;
|
|
1455 decode_char_table_range (range, &rainj);
|
|
1456 slarg.function = function;
|
|
1457 slarg.retval = Qnil;
|
|
1458 GCPRO2 (slarg.function, slarg.retval);
|
|
1459 map_char_table (ct, &rainj, slow_map_char_table_fun, &slarg);
|
|
1460 UNGCPRO;
|
|
1461
|
|
1462 return slarg.retval;
|
|
1463 }
|
|
1464
|
104
|
1465
|
70
|
1466
|
|
1467 /************************************************************************/
|
|
1468 /* Char table read syntax */
|
|
1469 /************************************************************************/
|
|
1470
|
|
1471 static int
|
|
1472 chartab_type_validate (Lisp_Object keyword, Lisp_Object value,
|
|
1473 Error_behavior errb)
|
|
1474 {
|
|
1475 /* #### should deal with ERRB */
|
183
|
1476 symbol_to_char_table_type (value);
|
70
|
1477 return 1;
|
|
1478 }
|
|
1479
|
|
1480 static int
|
|
1481 chartab_data_validate (Lisp_Object keyword, Lisp_Object value,
|
|
1482 Error_behavior errb)
|
|
1483 {
|
|
1484 Lisp_Object rest;
|
|
1485
|
|
1486 /* #### should deal with ERRB */
|
|
1487 EXTERNAL_LIST_LOOP (rest, value)
|
|
1488 {
|
|
1489 Lisp_Object range = XCAR (rest);
|
|
1490 struct chartab_range dummy;
|
|
1491
|
|
1492 rest = XCDR (rest);
|
|
1493 if (!CONSP (rest))
|
|
1494 signal_simple_error ("Invalid list format", value);
|
|
1495 if (CONSP (range))
|
|
1496 {
|
|
1497 if (!CONSP (XCDR (range))
|
|
1498 || !NILP (XCDR (XCDR (range))))
|
|
1499 signal_simple_error ("Invalid range format", range);
|
|
1500 decode_char_table_range (XCAR (range), &dummy);
|
|
1501 decode_char_table_range (XCAR (XCDR (range)), &dummy);
|
|
1502 }
|
|
1503 else
|
|
1504 decode_char_table_range (range, &dummy);
|
|
1505 }
|
|
1506
|
|
1507 return 1;
|
|
1508 }
|
|
1509
|
|
1510 static Lisp_Object
|
|
1511 chartab_instantiate (Lisp_Object data)
|
|
1512 {
|
|
1513 Lisp_Object chartab;
|
|
1514 Lisp_Object type = Qgeneric;
|
|
1515 Lisp_Object dataval = Qnil;
|
|
1516
|
|
1517 while (!NILP (data))
|
|
1518 {
|
|
1519 Lisp_Object keyw = Fcar (data);
|
|
1520 Lisp_Object valw;
|
|
1521
|
|
1522 data = Fcdr (data);
|
|
1523 valw = Fcar (data);
|
|
1524 data = Fcdr (data);
|
|
1525 if (EQ (keyw, Qtype))
|
|
1526 type = valw;
|
|
1527 else if (EQ (keyw, Qdata))
|
|
1528 dataval = valw;
|
|
1529 }
|
|
1530
|
|
1531 chartab = Fmake_char_table (type);
|
|
1532
|
|
1533 data = dataval;
|
|
1534 while (!NILP (data))
|
|
1535 {
|
|
1536 Lisp_Object range = Fcar (data);
|
|
1537 Lisp_Object val = Fcar (Fcdr (data));
|
183
|
1538
|
70
|
1539 data = Fcdr (Fcdr (data));
|
|
1540 if (CONSP (range))
|
|
1541 {
|
|
1542 if (CHAR_OR_CHAR_INTP (XCAR (range)))
|
|
1543 {
|
|
1544 Emchar first = XCHAR_OR_CHAR_INT (Fcar (range));
|
|
1545 Emchar last = XCHAR_OR_CHAR_INT (Fcar (Fcdr (range)));
|
|
1546 Emchar i;
|
|
1547
|
|
1548 for (i = first; i <= last; i++)
|
|
1549 Fput_char_table (make_char (i), val, chartab);
|
|
1550 }
|
|
1551 else
|
|
1552 abort ();
|
|
1553 }
|
|
1554 else
|
|
1555 Fput_char_table (range, val, chartab);
|
|
1556 }
|
|
1557
|
|
1558 return chartab;
|
|
1559 }
|
|
1560
|
|
1561 #ifdef MULE
|
|
1562
|
|
1563
|
|
1564 /************************************************************************/
|
|
1565 /* Category Tables, specifically */
|
|
1566 /************************************************************************/
|
|
1567
|
|
1568 DEFUN ("category-table-p", Fcategory_table_p, 1, 1, 0, /*
|
|
1569 Return t if ARG is a category table.
|
|
1570 A category table is a type of char table used for keeping track of
|
|
1571 categories. Categories are used for classifying characters for use
|
|
1572 in regexps -- you can refer to a category rather than having to use
|
|
1573 a complicated [] expression (and category lookups are significantly
|
|
1574 faster).
|
|
1575
|
|
1576 There are 95 different categories available, one for each printable
|
|
1577 character (including space) in the ASCII charset. Each category
|
185
|
1578 is designated by one such character, called a "category designator".
|
|
1579 They are specified in a regexp using the syntax "\\cX", where X is
|
104
|
1580 a category designator.
|
70
|
1581
|
|
1582 A category table specifies, for each character, the categories that
|
|
1583 the character is in. Note that a character can be in more than one
|
|
1584 category. More specifically, a category table maps from a character
|
|
1585 to either the value nil (meaning the character is in no categories)
|
|
1586 or a 95-element bit vector, specifying for each of the 95 categories
|
|
1587 whether the character is in that category.
|
|
1588
|
|
1589 Special Lisp functions are provided that abstract this, so you do not
|
|
1590 have to directly manipulate bit vectors.
|
|
1591 */
|
|
1592 (obj))
|
|
1593 {
|
183
|
1594 return (CHAR_TABLEP (obj) &&
|
|
1595 XCHAR_TABLE_TYPE (obj) == CHAR_TABLE_TYPE_CATEGORY) ?
|
|
1596 Qt : Qnil;
|
70
|
1597 }
|
|
1598
|
|
1599 static Lisp_Object
|
|
1600 check_category_table (Lisp_Object obj, Lisp_Object def)
|
|
1601 {
|
|
1602 if (NILP (obj))
|
|
1603 obj = def;
|
|
1604 while (NILP (Fcategory_table_p (obj)))
|
|
1605 obj = wrong_type_argument (Qcategory_table_p, obj);
|
183
|
1606 return obj;
|
|
1607 }
|
70
|
1608
|
104
|
1609 int
|
183
|
1610 check_category_char (Emchar ch, Lisp_Object table,
|
|
1611 unsigned int designator, unsigned int not)
|
104
|
1612 {
|
203
|
1613 REGISTER Lisp_Object temp;
|
412
|
1614 struct Lisp_Char_Table *ctbl;
|
110
|
1615 #ifdef ERROR_CHECK_TYPECHECK
|
104
|
1616 if (NILP (Fcategory_table_p (table)))
|
183
|
1617 signal_simple_error ("Expected category table", table);
|
104
|
1618 #endif
|
183
|
1619 ctbl = XCHAR_TABLE (table);
|
|
1620 temp = get_char_table (ch, ctbl);
|
272
|
1621 if (NILP (temp))
|
|
1622 return not;
|
183
|
1623
|
104
|
1624 designator -= ' ';
|
183
|
1625 return bit_vector_bit (XBIT_VECTOR (temp), designator) ? !not : not;
|
104
|
1626 }
|
|
1627
|
|
1628 DEFUN ("check-category-at", Fcheck_category_at, 2, 4, 0, /*
|
110
|
1629 Return t if category of a character at POS includes DESIGNATOR,
|
104
|
1630 else return nil. Optional third arg specifies which buffer
|
272
|
1631 \(defaulting to current), and fourth specifies the CATEGORY-TABLE,
|
|
1632 \(defaulting to the buffer's category table).
|
104
|
1633 */
|
|
1634 (pos, designator, buffer, category_table))
|
|
1635 {
|
|
1636 Lisp_Object ctbl;
|
|
1637 Emchar ch;
|
|
1638 unsigned int des;
|
183
|
1639 struct buffer *buf = decode_buffer (buffer, 0);
|
104
|
1640
|
|
1641 CHECK_INT (pos);
|
|
1642 CHECK_CATEGORY_DESIGNATOR (designator);
|
207
|
1643 des = XCHAR (designator);
|
104
|
1644 ctbl = check_category_table (category_table, Vstandard_category_table);
|
183
|
1645 ch = BUF_FETCH_CHAR (buf, XINT (pos));
|
|
1646 return check_category_char (ch, ctbl, des, 0) ? Qt : Qnil;
|
110
|
1647 }
|
|
1648
|
|
1649 DEFUN ("char-in-category-p", Fchar_in_category_p, 2, 3, 0, /*
|
183
|
1650 Return t if category of character CHR includes DESIGNATOR, else nil.
|
|
1651 Optional third arg specifies the CATEGORY-TABLE to use,
|
110
|
1652 which defaults to the system default table.
|
|
1653 */
|
|
1654 (chr, designator, category_table))
|
|
1655 {
|
|
1656 Lisp_Object ctbl;
|
|
1657 Emchar ch;
|
|
1658 unsigned int des;
|
|
1659
|
|
1660 CHECK_CATEGORY_DESIGNATOR (designator);
|
207
|
1661 des = XCHAR (designator);
|
183
|
1662 CHECK_CHAR (chr);
|
|
1663 ch = XCHAR (chr);
|
110
|
1664 ctbl = check_category_table (category_table, Vstandard_category_table);
|
183
|
1665 return check_category_char (ch, ctbl, des, 0) ? Qt : Qnil;
|
104
|
1666 }
|
|
1667
|
70
|
1668 DEFUN ("category-table", Fcategory_table, 0, 1, 0, /*
|
|
1669 Return the current category table.
|
|
1670 This is the one specified by the current buffer, or by BUFFER if it
|
|
1671 is non-nil.
|
|
1672 */
|
|
1673 (buffer))
|
|
1674 {
|
|
1675 return decode_buffer (buffer, 0)->category_table;
|
|
1676 }
|
|
1677
|
|
1678 DEFUN ("standard-category-table", Fstandard_category_table, 0, 0, 0, /*
|
|
1679 Return the standard category table.
|
|
1680 This is the one used for new buffers.
|
|
1681 */
|
|
1682 ())
|
|
1683 {
|
|
1684 return Vstandard_category_table;
|
|
1685 }
|
|
1686
|
|
1687 DEFUN ("copy-category-table", Fcopy_category_table, 0, 1, 0, /*
|
|
1688 Construct a new category table and return it.
|
|
1689 It is a copy of the TABLE, which defaults to the standard category table.
|
|
1690 */
|
|
1691 (table))
|
|
1692 {
|
|
1693 if (NILP (Vstandard_category_table))
|
|
1694 return Fmake_char_table (Qcategory);
|
|
1695
|
|
1696 table = check_category_table (table, Vstandard_category_table);
|
|
1697 return Fcopy_char_table (table);
|
|
1698 }
|
|
1699
|
|
1700 DEFUN ("set-category-table", Fset_category_table, 1, 2, 0, /*
|
|
1701 Select a new category table for BUFFER.
|
|
1702 One argument, a category table.
|
|
1703 BUFFER defaults to the current buffer if omitted.
|
|
1704 */
|
|
1705 (table, buffer))
|
|
1706 {
|
|
1707 struct buffer *buf = decode_buffer (buffer, 0);
|
|
1708 table = check_category_table (table, Qnil);
|
|
1709 buf->category_table = table;
|
|
1710 /* Indicate that this buffer now has a specified category table. */
|
|
1711 buf->local_var_flags |= XINT (buffer_local_flags.category_table);
|
|
1712 return table;
|
|
1713 }
|
|
1714
|
|
1715 DEFUN ("category-designator-p", Fcategory_designator_p, 1, 1, 0, /*
|
|
1716 Return t if ARG is a category designator (a char in the range ' ' to '~').
|
|
1717 */
|
|
1718 (obj))
|
|
1719 {
|
181
|
1720 return CATEGORY_DESIGNATORP (obj) ? Qt : Qnil;
|
70
|
1721 }
|
|
1722
|
|
1723 DEFUN ("category-table-value-p", Fcategory_table_value_p, 1, 1, 0, /*
|
|
1724 Return t if ARG is a category table value.
|
|
1725 Valid values are nil or a bit vector of size 95.
|
|
1726 */
|
|
1727 (obj))
|
|
1728 {
|
181
|
1729 return CATEGORY_TABLE_VALUEP (obj) ? Qt : Qnil;
|
70
|
1730 }
|
|
1731
|
420
|
1732
|
|
1733 #define CATEGORYP(x) \
|
|
1734 (CHARP ((x)) && XCHAR ((x)) >= 0x20 && XCHAR ((x)) <= 0x7E)
|
|
1735
|
|
1736 #define CATEGORY_SET(c) \
|
|
1737 (get_char_table(c, XCHAR_TABLE(current_buffer->category_table)))
|
|
1738
|
|
1739 /* Return 1 if CATEGORY_SET contains CATEGORY, else return 0.
|
|
1740 The faster version of `!NILP (Faref (category_set, category))'. */
|
|
1741 #define CATEGORY_MEMBER(category, category_set) \
|
|
1742 (bit_vector_bit(XBIT_VECTOR (category_set), category - 32))
|
|
1743
|
|
1744 /* Return 1 if there is a word boundary between two word-constituent
|
|
1745 characters C1 and C2 if they appear in this order, else return 0.
|
|
1746 Use the macro WORD_BOUNDARY_P instead of calling this function
|
|
1747 directly. */
|
|
1748
|
|
1749 int
|
|
1750 word_boundary_p (Emchar c1, Emchar c2)
|
|
1751 {
|
|
1752 Lisp_Object category_set1, category_set2;
|
|
1753 Lisp_Object tail;
|
|
1754 int default_result;
|
|
1755
|
|
1756 #if 0
|
|
1757 if (COMPOSITE_CHAR_P (c1))
|
|
1758 c1 = cmpchar_component (c1, 0, 1);
|
|
1759 if (COMPOSITE_CHAR_P (c2))
|
|
1760 c2 = cmpchar_component (c2, 0, 1);
|
|
1761 #endif
|
|
1762
|
|
1763 if (EQ (CHAR_CHARSET (c1), CHAR_CHARSET (c2)))
|
|
1764 {
|
|
1765 tail = Vword_separating_categories;
|
|
1766 default_result = 0;
|
|
1767 }
|
|
1768 else
|
|
1769 {
|
|
1770 tail = Vword_combining_categories;
|
|
1771 default_result = 1;
|
|
1772 }
|
|
1773
|
|
1774 category_set1 = CATEGORY_SET (c1);
|
|
1775 if (NILP (category_set1))
|
|
1776 return default_result;
|
|
1777 category_set2 = CATEGORY_SET (c2);
|
|
1778 if (NILP (category_set2))
|
|
1779 return default_result;
|
|
1780
|
|
1781 for (; CONSP (tail); tail = XCONS (tail)->cdr)
|
|
1782 {
|
|
1783 Lisp_Object elt = XCONS(tail)->car;
|
|
1784
|
|
1785 if (CONSP (elt)
|
|
1786 && CATEGORYP (XCONS (elt)->car)
|
|
1787 && CATEGORYP (XCONS (elt)->cdr)
|
|
1788 && CATEGORY_MEMBER (XCHAR (XCONS (elt)->car), category_set1)
|
|
1789 && CATEGORY_MEMBER (XCHAR (XCONS (elt)->cdr), category_set2))
|
|
1790 return !default_result;
|
|
1791 }
|
|
1792 return default_result;
|
|
1793 }
|
70
|
1794 #endif /* MULE */
|
|
1795
|
|
1796
|
|
1797 void
|
|
1798 syms_of_chartab (void)
|
|
1799 {
|
|
1800 #ifdef MULE
|
|
1801 defsymbol (&Qcategory_table_p, "category-table-p");
|
|
1802 defsymbol (&Qcategory_designator_p, "category-designator-p");
|
|
1803 defsymbol (&Qcategory_table_value_p, "category-table-value-p");
|
|
1804 #endif /* MULE */
|
|
1805
|
|
1806 defsymbol (&Qchar_table, "char-table");
|
|
1807 defsymbol (&Qchar_tablep, "char-table-p");
|
|
1808
|
|
1809 DEFSUBR (Fchar_table_p);
|
|
1810 DEFSUBR (Fchar_table_type_list);
|
|
1811 DEFSUBR (Fvalid_char_table_type_p);
|
|
1812 DEFSUBR (Fchar_table_type);
|
|
1813 DEFSUBR (Freset_char_table);
|
|
1814 DEFSUBR (Fmake_char_table);
|
|
1815 DEFSUBR (Fcopy_char_table);
|
|
1816 DEFSUBR (Fget_char_table);
|
|
1817 DEFSUBR (Fget_range_char_table);
|
|
1818 DEFSUBR (Fvalid_char_table_value_p);
|
|
1819 DEFSUBR (Fcheck_valid_char_table_value);
|
|
1820 DEFSUBR (Fput_char_table);
|
|
1821 DEFSUBR (Fmap_char_table);
|
|
1822
|
|
1823 #ifdef MULE
|
|
1824 DEFSUBR (Fcategory_table_p);
|
|
1825 DEFSUBR (Fcategory_table);
|
|
1826 DEFSUBR (Fstandard_category_table);
|
|
1827 DEFSUBR (Fcopy_category_table);
|
|
1828 DEFSUBR (Fset_category_table);
|
104
|
1829 DEFSUBR (Fcheck_category_at);
|
110
|
1830 DEFSUBR (Fchar_in_category_p);
|
70
|
1831 DEFSUBR (Fcategory_designator_p);
|
|
1832 DEFSUBR (Fcategory_table_value_p);
|
|
1833 #endif /* MULE */
|
|
1834
|
414
|
1835 }
|
|
1836
|
|
1837 void
|
|
1838 vars_of_chartab (void)
|
|
1839 {
|
70
|
1840 /* DO NOT staticpro this. It works just like Vweak_hash_tables. */
|
|
1841 Vall_syntax_tables = Qnil;
|
|
1842 }
|
|
1843
|
|
1844 void
|
|
1845 structure_type_create_chartab (void)
|
|
1846 {
|
|
1847 struct structure_type *st;
|
|
1848
|
|
1849 st = define_structure_type (Qchar_table, 0, chartab_instantiate);
|
|
1850
|
|
1851 define_structure_type_keyword (st, Qtype, chartab_type_validate);
|
|
1852 define_structure_type_keyword (st, Qdata, chartab_data_validate);
|
|
1853 }
|
|
1854
|
|
1855 void
|
|
1856 complex_vars_of_chartab (void)
|
|
1857 {
|
|
1858 #ifdef MULE
|
|
1859 /* Set this now, so first buffer creation can refer to it. */
|
|
1860 /* Make it nil before calling copy-category-table
|
|
1861 so that copy-category-table will know not to try to copy from garbage */
|
|
1862 Vstandard_category_table = Qnil;
|
|
1863 Vstandard_category_table = Fcopy_category_table (Qnil);
|
|
1864 staticpro (&Vstandard_category_table);
|
420
|
1865
|
|
1866 DEFVAR_LISP ("word-combining-categories", &Vword_combining_categories /*
|
|
1867 List of pair (cons) of categories to determine word boundary.
|
|
1868
|
|
1869 Emacs treats a sequence of word constituent characters as a single
|
|
1870 word (i.e. finds no word boundary between them) iff they belongs to
|
|
1871 the same charset. But, exceptions are allowed in the following cases.
|
|
1872
|
|
1873 (1) The case that characters are in different charsets is controlled
|
|
1874 by the variable `word-combining-categories'.
|
|
1875
|
|
1876 Emacs finds no word boundary between characters of different charsets
|
|
1877 if they have categories matching some element of this list.
|
|
1878
|
|
1879 More precisely, if an element of this list is a cons of category CAT1
|
|
1880 and CAT2, and a multibyte character C1 which has CAT1 is followed by
|
|
1881 C2 which has CAT2, there's no word boundary between C1 and C2.
|
|
1882
|
|
1883 For instance, to tell that ASCII characters and Latin-1 characters can
|
|
1884 form a single word, the element `(?l . ?l)' should be in this list
|
|
1885 because both characters have the category `l' (Latin characters).
|
|
1886
|
|
1887 (2) The case that character are in the same charset is controlled by
|
|
1888 the variable `word-separating-categories'.
|
|
1889
|
|
1890 Emacs find a word boundary between characters of the same charset
|
|
1891 if they have categories matching some element of this list.
|
|
1892
|
|
1893 More precisely, if an element of this list is a cons of category CAT1
|
|
1894 and CAT2, and a multibyte character C1 which has CAT1 is followed by
|
|
1895 C2 which has CAT2, there's a word boundary between C1 and C2.
|
|
1896
|
|
1897 For instance, to tell that there's a word boundary between Japanese
|
|
1898 Hiragana and Japanese Kanji (both are in the same charset), the
|
|
1899 element `(?H . ?C) should be in this list.
|
|
1900 */ );
|
|
1901
|
|
1902 Vword_combining_categories = Qnil;
|
|
1903
|
|
1904 DEFVAR_LISP ("word-separating-categories", &Vword_separating_categories /*
|
|
1905 List of pair (cons) of categories to determine word boundary.
|
|
1906 See the documentation of the variable `word-combining-categories'.
|
|
1907 */ );
|
|
1908
|
|
1909 Vword_separating_categories = Qnil;
|
70
|
1910 #endif /* MULE */
|
|
1911 }
|