428
|
1 /* Primitive operations on floating point for XEmacs Lisp interpreter.
|
|
2 Copyright (C) 1988, 1993, 1994 Free Software Foundation, Inc.
|
|
3
|
|
4 This file is part of XEmacs.
|
|
5
|
|
6 XEmacs is free software; you can redistribute it and/or modify it
|
|
7 under the terms of the GNU General Public License as published by the
|
|
8 Free Software Foundation; either version 2, or (at your option) any
|
|
9 later version.
|
|
10
|
|
11 XEmacs is distributed in the hope that it will be useful, but WITHOUT
|
|
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
14 for more details.
|
|
15
|
|
16 You should have received a copy of the GNU General Public License
|
|
17 along with XEmacs; see the file COPYING. If not, write to
|
|
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
19 Boston, MA 02111-1307, USA. */
|
|
20
|
|
21 /* Synched up with: FSF 19.30. */
|
|
22
|
|
23 /* ANSI C requires only these float functions:
|
|
24 acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor, fmod,
|
|
25 frexp, ldexp, log, log10, modf, pow, sin, sinh, sqrt, tan, tanh.
|
|
26
|
|
27 Define HAVE_INVERSE_HYPERBOLIC if you have acosh, asinh, and atanh.
|
|
28 Define HAVE_CBRT if you have cbrt().
|
|
29 Define HAVE_RINT if you have rint().
|
|
30 If you don't define these, then the appropriate routines will be simulated.
|
|
31
|
|
32 Define HAVE_MATHERR if on a system supporting the SysV matherr() callback.
|
|
33 (This should happen automatically.)
|
|
34
|
|
35 Define FLOAT_CHECK_ERRNO if the float library routines set errno.
|
|
36 This has no effect if HAVE_MATHERR is defined.
|
|
37
|
|
38 Define FLOAT_CATCH_SIGILL if the float library routines signal SIGILL.
|
|
39 (What systems actually do this? Let me know. -jwz)
|
|
40
|
|
41 Define FLOAT_CHECK_DOMAIN if the float library doesn't handle errors by
|
|
42 either setting errno, or signalling SIGFPE/SIGILL. Otherwise, domain and
|
|
43 range checking will happen before calling the float routines. This has
|
|
44 no effect if HAVE_MATHERR is defined (since matherr will be called when
|
|
45 a domain error occurs).
|
|
46 */
|
|
47
|
|
48 #include <config.h>
|
|
49 #include "lisp.h"
|
|
50 #include "syssignal.h"
|
|
51
|
|
52 #ifdef LISP_FLOAT_TYPE
|
|
53
|
|
54 /* Need to define a differentiating symbol -- see sysfloat.h */
|
|
55 #define THIS_FILENAME floatfns
|
|
56 #include "sysfloat.h"
|
|
57
|
|
58 #ifndef HAVE_RINT
|
|
59 static double
|
|
60 rint (double x)
|
|
61 {
|
|
62 double r = floor (x + 0.5);
|
|
63 double diff = fabs (r - x);
|
|
64 /* Round to even and correct for any roundoff errors. */
|
|
65 if (diff >= 0.5 && (diff > 0.5 || r != 2.0 * floor (r / 2.0)))
|
|
66 r += r < x ? 1.0 : -1.0;
|
|
67 return r;
|
|
68 }
|
|
69 #endif
|
|
70
|
|
71 /* Nonzero while executing in floating point.
|
|
72 This tells float_error what to do. */
|
|
73 static int in_float;
|
|
74
|
|
75 /* If an argument is out of range for a mathematical function,
|
|
76 here is the actual argument value to use in the error message. */
|
|
77 static Lisp_Object float_error_arg, float_error_arg2;
|
|
78 static CONST char *float_error_fn_name;
|
|
79
|
|
80 /* Evaluate the floating point expression D, recording NUM
|
|
81 as the original argument for error messages.
|
|
82 D is normally an assignment expression.
|
|
83 Handle errors which may result in signals or may set errno.
|
|
84
|
|
85 Note that float_error may be declared to return void, so you can't
|
|
86 just cast the zero after the colon to (SIGTYPE) to make the types
|
|
87 check properly. */
|
|
88 #ifdef FLOAT_CHECK_ERRNO
|
|
89 #define IN_FLOAT(d, name, num) \
|
|
90 do { \
|
|
91 float_error_arg = num; \
|
|
92 float_error_fn_name = name; \
|
|
93 in_float = 1; errno = 0; (d); in_float = 0; \
|
|
94 if (errno != 0) in_float_error (); \
|
|
95 } while (0)
|
|
96 #define IN_FLOAT2(d, name, num, num2) \
|
|
97 do { \
|
|
98 float_error_arg = num; \
|
|
99 float_error_arg2 = num2; \
|
|
100 float_error_fn_name = name; \
|
|
101 in_float = 2; errno = 0; (d); in_float = 0; \
|
|
102 if (errno != 0) in_float_error (); \
|
|
103 } while (0)
|
|
104 #else
|
|
105 #define IN_FLOAT(d, name, num) (in_float = 1, (d), in_float = 0)
|
|
106 #define IN_FLOAT2(d, name, num, num2) (in_float = 2, (d), in_float = 0)
|
|
107 #endif
|
|
108
|
|
109
|
|
110 #define arith_error(op,arg) \
|
|
111 Fsignal (Qarith_error, list2 (build_string (op), arg))
|
|
112 #define range_error(op,arg) \
|
|
113 Fsignal (Qrange_error, list2 (build_string (op), arg))
|
|
114 #define range_error2(op,a1,a2) \
|
|
115 Fsignal (Qrange_error, list3 (build_string (op), a1, a2))
|
|
116 #define domain_error(op,arg) \
|
|
117 Fsignal (Qdomain_error, list2 (build_string (op), arg))
|
|
118 #define domain_error2(op,a1,a2) \
|
|
119 Fsignal (Qdomain_error, list3 (build_string (op), a1, a2))
|
|
120
|
|
121
|
|
122 /* Convert float to Lisp Integer if it fits, else signal a range
|
|
123 error using the given arguments. */
|
|
124 static Lisp_Object
|
|
125 float_to_int (double x, CONST char *name, Lisp_Object num, Lisp_Object num2)
|
|
126 {
|
|
127 if (x >= ((EMACS_INT) 1 << (VALBITS-1))
|
|
128 || x <= - ((EMACS_INT) 1 << (VALBITS-1)) - (EMACS_INT) 1)
|
|
129 {
|
|
130 if (!UNBOUNDP (num2))
|
|
131 range_error2 (name, num, num2);
|
|
132 else
|
|
133 range_error (name, num);
|
|
134 }
|
|
135 return (make_int ((EMACS_INT) x));
|
|
136 }
|
|
137
|
|
138
|
|
139 static void
|
|
140 in_float_error (void)
|
|
141 {
|
|
142 switch (errno)
|
|
143 {
|
|
144 case 0:
|
|
145 break;
|
|
146 case EDOM:
|
|
147 if (in_float == 2)
|
|
148 domain_error2 (float_error_fn_name, float_error_arg, float_error_arg2);
|
|
149 else
|
|
150 domain_error (float_error_fn_name, float_error_arg);
|
|
151 break;
|
|
152 case ERANGE:
|
|
153 range_error (float_error_fn_name, float_error_arg);
|
|
154 break;
|
|
155 default:
|
|
156 arith_error (float_error_fn_name, float_error_arg);
|
|
157 break;
|
|
158 }
|
|
159 }
|
|
160
|
|
161
|
|
162 static Lisp_Object
|
|
163 mark_float (Lisp_Object obj)
|
|
164 {
|
|
165 return Qnil;
|
|
166 }
|
|
167
|
|
168 static int
|
|
169 float_equal (Lisp_Object obj1, Lisp_Object obj2, int depth)
|
|
170 {
|
|
171 return (extract_float (obj1) == extract_float (obj2));
|
|
172 }
|
|
173
|
|
174 static unsigned long
|
|
175 float_hash (Lisp_Object obj, int depth)
|
|
176 {
|
|
177 /* mod the value down to 32-bit range */
|
|
178 /* #### change for 64-bit machines */
|
|
179 return (unsigned long) fmod (extract_float (obj), 4e9);
|
|
180 }
|
|
181
|
|
182 static const struct lrecord_description float_description[] = {
|
|
183 { XD_END }
|
|
184 };
|
|
185
|
|
186 DEFINE_BASIC_LRECORD_IMPLEMENTATION ("float", float,
|
|
187 mark_float, print_float, 0, float_equal,
|
|
188 float_hash, float_description,
|
|
189 struct Lisp_Float);
|
|
190
|
|
191 /* Extract a Lisp number as a `double', or signal an error. */
|
|
192
|
|
193 double
|
|
194 extract_float (Lisp_Object num)
|
|
195 {
|
|
196 if (FLOATP (num))
|
|
197 return XFLOAT_DATA (num);
|
|
198
|
|
199 if (INTP (num))
|
|
200 return (double) XINT (num);
|
|
201
|
|
202 return extract_float (wrong_type_argument (Qnumberp, num));
|
|
203 }
|
|
204 #endif /* LISP_FLOAT_TYPE */
|
|
205
|
|
206
|
|
207 /* Trig functions. */
|
|
208 #ifdef LISP_FLOAT_TYPE
|
|
209
|
|
210 DEFUN ("acos", Facos, 1, 1, 0, /*
|
|
211 Return the inverse cosine of ARG.
|
|
212 */
|
|
213 (arg))
|
|
214 {
|
|
215 double d = extract_float (arg);
|
|
216 #ifdef FLOAT_CHECK_DOMAIN
|
|
217 if (d > 1.0 || d < -1.0)
|
|
218 domain_error ("acos", arg);
|
|
219 #endif
|
|
220 IN_FLOAT (d = acos (d), "acos", arg);
|
|
221 return make_float (d);
|
|
222 }
|
|
223
|
|
224 DEFUN ("asin", Fasin, 1, 1, 0, /*
|
|
225 Return the inverse sine of ARG.
|
|
226 */
|
|
227 (arg))
|
|
228 {
|
|
229 double d = extract_float (arg);
|
|
230 #ifdef FLOAT_CHECK_DOMAIN
|
|
231 if (d > 1.0 || d < -1.0)
|
|
232 domain_error ("asin", arg);
|
|
233 #endif
|
|
234 IN_FLOAT (d = asin (d), "asin", arg);
|
|
235 return make_float (d);
|
|
236 }
|
|
237
|
|
238 DEFUN ("atan", Fatan, 1, 2, 0, /*
|
|
239 Return the inverse tangent of ARG.
|
|
240 */
|
|
241 (arg1, arg2))
|
|
242 {
|
|
243 double d = extract_float (arg1);
|
|
244
|
|
245 if (NILP (arg2))
|
|
246 IN_FLOAT (d = atan (d), "atan", arg1);
|
|
247 else
|
|
248 {
|
|
249 double d2 = extract_float (arg2);
|
|
250 #ifdef FLOAT_CHECK_DOMAIN
|
|
251 if (d == 0.0 && d2 == 0.0)
|
|
252 domain_error2 ("atan", arg1, arg2);
|
|
253 #endif
|
|
254 IN_FLOAT2 (d = atan2 (d, d2), "atan", arg1, arg2);
|
|
255 }
|
|
256 return make_float (d);
|
|
257 }
|
|
258
|
|
259 DEFUN ("cos", Fcos, 1, 1, 0, /*
|
|
260 Return the cosine of ARG.
|
|
261 */
|
|
262 (arg))
|
|
263 {
|
|
264 double d = extract_float (arg);
|
|
265 IN_FLOAT (d = cos (d), "cos", arg);
|
|
266 return make_float (d);
|
|
267 }
|
|
268
|
|
269 DEFUN ("sin", Fsin, 1, 1, 0, /*
|
|
270 Return the sine of ARG.
|
|
271 */
|
|
272 (arg))
|
|
273 {
|
|
274 double d = extract_float (arg);
|
|
275 IN_FLOAT (d = sin (d), "sin", arg);
|
|
276 return make_float (d);
|
|
277 }
|
|
278
|
|
279 DEFUN ("tan", Ftan, 1, 1, 0, /*
|
|
280 Return the tangent of ARG.
|
|
281 */
|
|
282 (arg))
|
|
283 {
|
|
284 double d = extract_float (arg);
|
|
285 double c = cos (d);
|
|
286 #ifdef FLOAT_CHECK_DOMAIN
|
|
287 if (c == 0.0)
|
|
288 domain_error ("tan", arg);
|
|
289 #endif
|
|
290 IN_FLOAT (d = (sin (d) / c), "tan", arg);
|
|
291 return make_float (d);
|
|
292 }
|
|
293 #endif /* LISP_FLOAT_TYPE (trig functions) */
|
|
294
|
|
295
|
|
296 /* Bessel functions */
|
|
297 #if 0 /* Leave these out unless we find there's a reason for them. */
|
|
298 /* #ifdef LISP_FLOAT_TYPE */
|
|
299
|
|
300 DEFUN ("bessel-j0", Fbessel_j0, 1, 1, 0, /*
|
|
301 Return the bessel function j0 of ARG.
|
|
302 */
|
|
303 (arg))
|
|
304 {
|
|
305 double d = extract_float (arg);
|
|
306 IN_FLOAT (d = j0 (d), "bessel-j0", arg);
|
|
307 return make_float (d);
|
|
308 }
|
|
309
|
|
310 DEFUN ("bessel-j1", Fbessel_j1, 1, 1, 0, /*
|
|
311 Return the bessel function j1 of ARG.
|
|
312 */
|
|
313 (arg))
|
|
314 {
|
|
315 double d = extract_float (arg);
|
|
316 IN_FLOAT (d = j1 (d), "bessel-j1", arg);
|
|
317 return make_float (d);
|
|
318 }
|
|
319
|
|
320 DEFUN ("bessel-jn", Fbessel_jn, 2, 2, 0, /*
|
|
321 Return the order N bessel function output jn of ARG.
|
|
322 The first arg (the order) is truncated to an integer.
|
|
323 */
|
|
324 (arg1, arg2))
|
|
325 {
|
|
326 int i1 = extract_float (arg1);
|
|
327 double f2 = extract_float (arg2);
|
|
328
|
|
329 IN_FLOAT (f2 = jn (i1, f2), "bessel-jn", arg1);
|
|
330 return make_float (f2);
|
|
331 }
|
|
332
|
|
333 DEFUN ("bessel-y0", Fbessel_y0, 1, 1, 0, /*
|
|
334 Return the bessel function y0 of ARG.
|
|
335 */
|
|
336 (arg))
|
|
337 {
|
|
338 double d = extract_float (arg);
|
|
339 IN_FLOAT (d = y0 (d), "bessel-y0", arg);
|
|
340 return make_float (d);
|
|
341 }
|
|
342
|
|
343 DEFUN ("bessel-y1", Fbessel_y1, 1, 1, 0, /*
|
|
344 Return the bessel function y1 of ARG.
|
|
345 */
|
|
346 (arg))
|
|
347 {
|
|
348 double d = extract_float (arg);
|
|
349 IN_FLOAT (d = y1 (d), "bessel-y0", arg);
|
|
350 return make_float (d);
|
|
351 }
|
|
352
|
|
353 DEFUN ("bessel-yn", Fbessel_yn, 2, 2, 0, /*
|
|
354 Return the order N bessel function output yn of ARG.
|
|
355 The first arg (the order) is truncated to an integer.
|
|
356 */
|
|
357 (arg1, arg2))
|
|
358 {
|
|
359 int i1 = extract_float (arg1);
|
|
360 double f2 = extract_float (arg2);
|
|
361
|
|
362 IN_FLOAT (f2 = yn (i1, f2), "bessel-yn", arg1);
|
|
363 return make_float (f2);
|
|
364 }
|
|
365
|
|
366 #endif /* 0 (bessel functions) */
|
|
367
|
|
368 /* Error functions. */
|
|
369 #if 0 /* Leave these out unless we see they are worth having. */
|
|
370 /* #ifdef LISP_FLOAT_TYPE */
|
|
371
|
|
372 DEFUN ("erf", Ferf, 1, 1, 0, /*
|
|
373 Return the mathematical error function of ARG.
|
|
374 */
|
|
375 (arg))
|
|
376 {
|
|
377 double d = extract_float (arg);
|
|
378 IN_FLOAT (d = erf (d), "erf", arg);
|
|
379 return make_float (d);
|
|
380 }
|
|
381
|
|
382 DEFUN ("erfc", Ferfc, 1, 1, 0, /*
|
|
383 Return the complementary error function of ARG.
|
|
384 */
|
|
385 (arg))
|
|
386 {
|
|
387 double d = extract_float (arg);
|
|
388 IN_FLOAT (d = erfc (d), "erfc", arg);
|
|
389 return make_float (d);
|
|
390 }
|
|
391
|
|
392 DEFUN ("log-gamma", Flog_gamma, 1, 1, 0, /*
|
|
393 Return the log gamma of ARG.
|
|
394 */
|
|
395 (arg))
|
|
396 {
|
|
397 double d = extract_float (arg);
|
|
398 IN_FLOAT (d = lgamma (d), "log-gamma", arg);
|
|
399 return make_float (d);
|
|
400 }
|
|
401
|
|
402 #endif /* 0 (error functions) */
|
|
403
|
|
404
|
|
405 /* Root and Log functions. */
|
|
406
|
|
407 #ifdef LISP_FLOAT_TYPE
|
|
408 DEFUN ("exp", Fexp, 1, 1, 0, /*
|
|
409 Return the exponential base e of ARG.
|
|
410 */
|
|
411 (arg))
|
|
412 {
|
|
413 double d = extract_float (arg);
|
|
414 #ifdef FLOAT_CHECK_DOMAIN
|
|
415 if (d > 709.7827) /* Assume IEEE doubles here */
|
|
416 range_error ("exp", arg);
|
|
417 else if (d < -709.0)
|
|
418 return make_float (0.0);
|
|
419 else
|
|
420 #endif
|
|
421 IN_FLOAT (d = exp (d), "exp", arg);
|
|
422 return make_float (d);
|
|
423 }
|
|
424 #endif /* LISP_FLOAT_TYPE */
|
|
425
|
|
426
|
|
427 DEFUN ("expt", Fexpt, 2, 2, 0, /*
|
|
428 Return the exponential ARG1 ** ARG2.
|
|
429 */
|
|
430 (arg1, arg2))
|
|
431 {
|
|
432 if (INTP (arg1) && /* common lisp spec */
|
|
433 INTP (arg2)) /* don't promote, if both are ints */
|
|
434 {
|
|
435 EMACS_INT retval;
|
|
436 EMACS_INT x = XINT (arg1);
|
|
437 EMACS_INT y = XINT (arg2);
|
|
438
|
|
439 if (y < 0)
|
|
440 {
|
|
441 if (x == 1)
|
|
442 retval = 1;
|
|
443 else if (x == -1)
|
|
444 retval = (y & 1) ? -1 : 1;
|
|
445 else
|
|
446 retval = 0;
|
|
447 }
|
|
448 else
|
|
449 {
|
|
450 retval = 1;
|
|
451 while (y > 0)
|
|
452 {
|
|
453 if (y & 1)
|
|
454 retval *= x;
|
|
455 x *= x;
|
|
456 y = (EMACS_UINT) y >> 1;
|
|
457 }
|
|
458 }
|
|
459 return make_int (retval);
|
|
460 }
|
|
461
|
|
462 #ifdef LISP_FLOAT_TYPE
|
|
463 {
|
|
464 double f1 = extract_float (arg1);
|
|
465 double f2 = extract_float (arg2);
|
|
466 /* Really should check for overflow, too */
|
|
467 if (f1 == 0.0 && f2 == 0.0)
|
|
468 f1 = 1.0;
|
|
469 # ifdef FLOAT_CHECK_DOMAIN
|
|
470 else if ((f1 == 0.0 && f2 < 0.0) || (f1 < 0 && f2 != floor(f2)))
|
|
471 domain_error2 ("expt", arg1, arg2);
|
|
472 # endif /* FLOAT_CHECK_DOMAIN */
|
|
473 IN_FLOAT2 (f1 = pow (f1, f2), "expt", arg1, arg2);
|
|
474 return make_float (f1);
|
|
475 }
|
|
476 #else
|
|
477 CHECK_INT_OR_FLOAT (arg1);
|
|
478 CHECK_INT_OR_FLOAT (arg2);
|
|
479 return Fexpt (arg1, arg2);
|
|
480 #endif /* LISP_FLOAT_TYPE */
|
|
481 }
|
|
482
|
|
483 #ifdef LISP_FLOAT_TYPE
|
|
484 DEFUN ("log", Flog, 1, 2, 0, /*
|
|
485 Return the natural logarithm of ARG.
|
|
486 If second optional argument BASE is given, return log ARG using that base.
|
|
487 */
|
|
488 (arg, base))
|
|
489 {
|
|
490 double d = extract_float (arg);
|
|
491 #ifdef FLOAT_CHECK_DOMAIN
|
|
492 if (d <= 0.0)
|
|
493 domain_error2 ("log", arg, base);
|
|
494 #endif
|
|
495 if (NILP (base))
|
|
496 IN_FLOAT (d = log (d), "log", arg);
|
|
497 else
|
|
498 {
|
|
499 double b = extract_float (base);
|
|
500 #ifdef FLOAT_CHECK_DOMAIN
|
|
501 if (b <= 0.0 || b == 1.0)
|
|
502 domain_error2 ("log", arg, base);
|
|
503 #endif
|
|
504 if (b == 10.0)
|
|
505 IN_FLOAT2 (d = log10 (d), "log", arg, base);
|
|
506 else
|
|
507 IN_FLOAT2 (d = (log (d) / log (b)), "log", arg, base);
|
|
508 }
|
|
509 return make_float (d);
|
|
510 }
|
|
511
|
|
512
|
|
513 DEFUN ("log10", Flog10, 1, 1, 0, /*
|
|
514 Return the logarithm base 10 of ARG.
|
|
515 */
|
|
516 (arg))
|
|
517 {
|
|
518 double d = extract_float (arg);
|
|
519 #ifdef FLOAT_CHECK_DOMAIN
|
|
520 if (d <= 0.0)
|
|
521 domain_error ("log10", arg);
|
|
522 #endif
|
|
523 IN_FLOAT (d = log10 (d), "log10", arg);
|
|
524 return make_float (d);
|
|
525 }
|
|
526
|
|
527
|
|
528 DEFUN ("sqrt", Fsqrt, 1, 1, 0, /*
|
|
529 Return the square root of ARG.
|
|
530 */
|
|
531 (arg))
|
|
532 {
|
|
533 double d = extract_float (arg);
|
|
534 #ifdef FLOAT_CHECK_DOMAIN
|
|
535 if (d < 0.0)
|
|
536 domain_error ("sqrt", arg);
|
|
537 #endif
|
|
538 IN_FLOAT (d = sqrt (d), "sqrt", arg);
|
|
539 return make_float (d);
|
|
540 }
|
|
541
|
|
542
|
|
543 DEFUN ("cube-root", Fcube_root, 1, 1, 0, /*
|
|
544 Return the cube root of ARG.
|
|
545 */
|
|
546 (arg))
|
|
547 {
|
|
548 double d = extract_float (arg);
|
|
549 #ifdef HAVE_CBRT
|
|
550 IN_FLOAT (d = cbrt (d), "cube-root", arg);
|
|
551 #else
|
|
552 if (d >= 0.0)
|
|
553 IN_FLOAT (d = pow (d, 1.0/3.0), "cube-root", arg);
|
|
554 else
|
|
555 IN_FLOAT (d = -pow (-d, 1.0/3.0), "cube-root", arg);
|
|
556 #endif
|
|
557 return make_float (d);
|
|
558 }
|
|
559 #endif /* LISP_FLOAT_TYPE */
|
|
560
|
|
561
|
|
562 /* Inverse trig functions. */
|
|
563 #ifdef LISP_FLOAT_TYPE
|
|
564 /* #if 0 Not clearly worth adding... */
|
|
565
|
|
566 DEFUN ("acosh", Facosh, 1, 1, 0, /*
|
|
567 Return the inverse hyperbolic cosine of ARG.
|
|
568 */
|
|
569 (arg))
|
|
570 {
|
|
571 double d = extract_float (arg);
|
|
572 #ifdef FLOAT_CHECK_DOMAIN
|
|
573 if (d < 1.0)
|
|
574 domain_error ("acosh", arg);
|
|
575 #endif
|
|
576 #ifdef HAVE_INVERSE_HYPERBOLIC
|
|
577 IN_FLOAT (d = acosh (d), "acosh", arg);
|
|
578 #else
|
|
579 IN_FLOAT (d = log (d + sqrt (d*d - 1.0)), "acosh", arg);
|
|
580 #endif
|
|
581 return make_float (d);
|
|
582 }
|
|
583
|
|
584 DEFUN ("asinh", Fasinh, 1, 1, 0, /*
|
|
585 Return the inverse hyperbolic sine of ARG.
|
|
586 */
|
|
587 (arg))
|
|
588 {
|
|
589 double d = extract_float (arg);
|
|
590 #ifdef HAVE_INVERSE_HYPERBOLIC
|
|
591 IN_FLOAT (d = asinh (d), "asinh", arg);
|
|
592 #else
|
|
593 IN_FLOAT (d = log (d + sqrt (d*d + 1.0)), "asinh", arg);
|
|
594 #endif
|
|
595 return make_float (d);
|
|
596 }
|
|
597
|
|
598 DEFUN ("atanh", Fatanh, 1, 1, 0, /*
|
|
599 Return the inverse hyperbolic tangent of ARG.
|
|
600 */
|
|
601 (arg))
|
|
602 {
|
|
603 double d = extract_float (arg);
|
|
604 #ifdef FLOAT_CHECK_DOMAIN
|
|
605 if (d >= 1.0 || d <= -1.0)
|
|
606 domain_error ("atanh", arg);
|
|
607 #endif
|
|
608 #ifdef HAVE_INVERSE_HYPERBOLIC
|
|
609 IN_FLOAT (d = atanh (d), "atanh", arg);
|
|
610 #else
|
|
611 IN_FLOAT (d = 0.5 * log ((1.0 + d) / (1.0 - d)), "atanh", arg);
|
|
612 #endif
|
|
613 return make_float (d);
|
|
614 }
|
|
615
|
|
616 DEFUN ("cosh", Fcosh, 1, 1, 0, /*
|
|
617 Return the hyperbolic cosine of ARG.
|
|
618 */
|
|
619 (arg))
|
|
620 {
|
|
621 double d = extract_float (arg);
|
|
622 #ifdef FLOAT_CHECK_DOMAIN
|
|
623 if (d > 710.0 || d < -710.0)
|
|
624 range_error ("cosh", arg);
|
|
625 #endif
|
|
626 IN_FLOAT (d = cosh (d), "cosh", arg);
|
|
627 return make_float (d);
|
|
628 }
|
|
629
|
|
630 DEFUN ("sinh", Fsinh, 1, 1, 0, /*
|
|
631 Return the hyperbolic sine of ARG.
|
|
632 */
|
|
633 (arg))
|
|
634 {
|
|
635 double d = extract_float (arg);
|
|
636 #ifdef FLOAT_CHECK_DOMAIN
|
|
637 if (d > 710.0 || d < -710.0)
|
|
638 range_error ("sinh", arg);
|
|
639 #endif
|
|
640 IN_FLOAT (d = sinh (d), "sinh", arg);
|
|
641 return make_float (d);
|
|
642 }
|
|
643
|
|
644 DEFUN ("tanh", Ftanh, 1, 1, 0, /*
|
|
645 Return the hyperbolic tangent of ARG.
|
|
646 */
|
|
647 (arg))
|
|
648 {
|
|
649 double d = extract_float (arg);
|
|
650 IN_FLOAT (d = tanh (d), "tanh", arg);
|
|
651 return make_float (d);
|
|
652 }
|
|
653 #endif /* LISP_FLOAT_TYPE (inverse trig functions) */
|
|
654
|
|
655 /* Rounding functions */
|
|
656
|
|
657 DEFUN ("abs", Fabs, 1, 1, 0, /*
|
|
658 Return the absolute value of ARG.
|
|
659 */
|
|
660 (arg))
|
|
661 {
|
|
662 #ifdef LISP_FLOAT_TYPE
|
|
663 if (FLOATP (arg))
|
|
664 {
|
|
665 IN_FLOAT (arg = make_float (fabs (XFLOAT_DATA (arg))),
|
|
666 "abs", arg);
|
|
667 return arg;
|
|
668 }
|
|
669 #endif /* LISP_FLOAT_TYPE */
|
|
670
|
|
671 if (INTP (arg))
|
|
672 return (XINT (arg) >= 0) ? arg : make_int (- XINT (arg));
|
|
673
|
|
674 return Fabs (wrong_type_argument (Qnumberp, arg));
|
|
675 }
|
|
676
|
|
677 #ifdef LISP_FLOAT_TYPE
|
|
678 DEFUN ("float", Ffloat, 1, 1, 0, /*
|
|
679 Return the floating point number numerically equal to ARG.
|
|
680 */
|
|
681 (arg))
|
|
682 {
|
|
683 if (INTP (arg))
|
|
684 return make_float ((double) XINT (arg));
|
|
685
|
|
686 if (FLOATP (arg)) /* give 'em the same float back */
|
|
687 return arg;
|
|
688
|
|
689 return Ffloat (wrong_type_argument (Qnumberp, arg));
|
|
690 }
|
|
691 #endif /* LISP_FLOAT_TYPE */
|
|
692
|
|
693
|
|
694 #ifdef LISP_FLOAT_TYPE
|
|
695 DEFUN ("logb", Flogb, 1, 1, 0, /*
|
|
696 Return largest integer <= the base 2 log of the magnitude of ARG.
|
|
697 This is the same as the exponent of a float.
|
|
698 */
|
|
699 (arg))
|
|
700 {
|
|
701 double f = extract_float (arg);
|
|
702
|
|
703 if (f == 0.0)
|
|
704 return make_int (- (int)((((EMACS_UINT) 1) << (VALBITS - 1)))); /* most-negative-fixnum */
|
|
705 #ifdef HAVE_LOGB
|
|
706 {
|
|
707 Lisp_Object val;
|
|
708 IN_FLOAT (val = make_int ((int) logb (f)), "logb", arg);
|
|
709 return (val);
|
|
710 }
|
|
711 #else
|
|
712 #ifdef HAVE_FREXP
|
|
713 {
|
|
714 int exqp;
|
|
715 IN_FLOAT (frexp (f, &exqp), "logb", arg);
|
|
716 return (make_int (exqp - 1));
|
|
717 }
|
|
718 #else
|
|
719 {
|
|
720 int i;
|
|
721 double d;
|
|
722 EMACS_INT val;
|
|
723 if (f < 0.0)
|
|
724 f = -f;
|
|
725 val = -1;
|
|
726 while (f < 0.5)
|
|
727 {
|
|
728 for (i = 1, d = 0.5; d * d >= f; i += i)
|
|
729 d *= d;
|
|
730 f /= d;
|
|
731 val -= i;
|
|
732 }
|
|
733 while (f >= 1.0)
|
|
734 {
|
|
735 for (i = 1, d = 2.0; d * d <= f; i += i)
|
|
736 d *= d;
|
|
737 f /= d;
|
|
738 val += i;
|
|
739 }
|
|
740 return (make_int (val));
|
|
741 }
|
|
742 #endif /* ! HAVE_FREXP */
|
|
743 #endif /* ! HAVE_LOGB */
|
|
744 }
|
|
745 #endif /* LISP_FLOAT_TYPE */
|
|
746
|
|
747
|
|
748 DEFUN ("ceiling", Fceiling, 1, 1, 0, /*
|
|
749 Return the smallest integer no less than ARG. (Round toward +inf.)
|
|
750 */
|
|
751 (arg))
|
|
752 {
|
|
753 #ifdef LISP_FLOAT_TYPE
|
|
754 if (FLOATP (arg))
|
|
755 {
|
|
756 double d;
|
|
757 IN_FLOAT ((d = ceil (XFLOAT_DATA (arg))), "ceiling", arg);
|
|
758 return (float_to_int (d, "ceiling", arg, Qunbound));
|
|
759 }
|
|
760 #endif /* LISP_FLOAT_TYPE */
|
|
761
|
|
762 if (INTP (arg))
|
|
763 return arg;
|
|
764
|
|
765 return Fceiling (wrong_type_argument (Qnumberp, arg));
|
|
766 }
|
|
767
|
|
768
|
|
769 DEFUN ("floor", Ffloor, 1, 2, 0, /*
|
|
770 Return the largest integer no greater than ARG. (Round towards -inf.)
|
|
771 With optional DIVISOR, return the largest integer no greater than ARG/DIVISOR.
|
|
772 */
|
|
773 (arg, divisor))
|
|
774 {
|
|
775 CHECK_INT_OR_FLOAT (arg);
|
|
776
|
|
777 if (! NILP (divisor))
|
|
778 {
|
|
779 EMACS_INT i1, i2;
|
|
780
|
|
781 CHECK_INT_OR_FLOAT (divisor);
|
|
782
|
|
783 #ifdef LISP_FLOAT_TYPE
|
|
784 if (FLOATP (arg) || FLOATP (divisor))
|
|
785 {
|
|
786 double f1 = extract_float (arg);
|
|
787 double f2 = extract_float (divisor);
|
|
788
|
|
789 if (f2 == 0)
|
|
790 Fsignal (Qarith_error, Qnil);
|
|
791
|
|
792 IN_FLOAT2 (f1 = floor (f1 / f2), "floor", arg, divisor);
|
|
793 return float_to_int (f1, "floor", arg, divisor);
|
|
794 }
|
|
795 #endif /* LISP_FLOAT_TYPE */
|
|
796
|
|
797 i1 = XINT (arg);
|
|
798 i2 = XINT (divisor);
|
|
799
|
|
800 if (i2 == 0)
|
|
801 Fsignal (Qarith_error, Qnil);
|
|
802
|
|
803 /* With C's /, the result is implementation-defined if either operand
|
|
804 is negative, so use only nonnegative operands. */
|
|
805 i1 = (i2 < 0
|
|
806 ? (i1 <= 0 ? -i1 / -i2 : -1 - ((i1 - 1) / -i2))
|
|
807 : (i1 < 0 ? -1 - ((-1 - i1) / i2) : i1 / i2));
|
|
808
|
|
809 return (make_int (i1));
|
|
810 }
|
|
811
|
|
812 #ifdef LISP_FLOAT_TYPE
|
|
813 if (FLOATP (arg))
|
|
814 {
|
|
815 double d;
|
|
816 IN_FLOAT ((d = floor (XFLOAT_DATA (arg))), "floor", arg);
|
|
817 return (float_to_int (d, "floor", arg, Qunbound));
|
|
818 }
|
|
819 #endif /* LISP_FLOAT_TYPE */
|
|
820
|
|
821 return arg;
|
|
822 }
|
|
823
|
|
824 DEFUN ("round", Fround, 1, 1, 0, /*
|
|
825 Return the nearest integer to ARG.
|
|
826 */
|
|
827 (arg))
|
|
828 {
|
|
829 #ifdef LISP_FLOAT_TYPE
|
|
830 if (FLOATP (arg))
|
|
831 {
|
|
832 double d;
|
|
833 /* Screw the prevailing rounding mode. */
|
|
834 IN_FLOAT ((d = rint (XFLOAT_DATA (arg))), "round", arg);
|
|
835 return (float_to_int (d, "round", arg, Qunbound));
|
|
836 }
|
|
837 #endif /* LISP_FLOAT_TYPE */
|
|
838
|
|
839 if (INTP (arg))
|
|
840 return arg;
|
|
841
|
|
842 return Fround (wrong_type_argument (Qnumberp, arg));
|
|
843 }
|
|
844
|
|
845 DEFUN ("truncate", Ftruncate, 1, 1, 0, /*
|
|
846 Truncate a floating point number to an integer.
|
|
847 Rounds the value toward zero.
|
|
848 */
|
|
849 (arg))
|
|
850 {
|
|
851 #ifdef LISP_FLOAT_TYPE
|
|
852 if (FLOATP (arg))
|
|
853 return float_to_int (XFLOAT_DATA (arg), "truncate", arg, Qunbound);
|
|
854 #endif /* LISP_FLOAT_TYPE */
|
|
855
|
|
856 if (INTP (arg))
|
|
857 return arg;
|
|
858
|
|
859 return Ftruncate (wrong_type_argument (Qnumberp, arg));
|
|
860 }
|
|
861
|
|
862 /* Float-rounding functions. */
|
|
863 #ifdef LISP_FLOAT_TYPE
|
|
864 /* #if 1 It's not clear these are worth adding... */
|
|
865
|
|
866 DEFUN ("fceiling", Ffceiling, 1, 1, 0, /*
|
|
867 Return the smallest integer no less than ARG, as a float.
|
|
868 \(Round toward +inf.\)
|
|
869 */
|
|
870 (arg))
|
|
871 {
|
|
872 double d = extract_float (arg);
|
|
873 IN_FLOAT (d = ceil (d), "fceiling", arg);
|
|
874 return make_float (d);
|
|
875 }
|
|
876
|
|
877 DEFUN ("ffloor", Fffloor, 1, 1, 0, /*
|
|
878 Return the largest integer no greater than ARG, as a float.
|
|
879 \(Round towards -inf.\)
|
|
880 */
|
|
881 (arg))
|
|
882 {
|
|
883 double d = extract_float (arg);
|
|
884 IN_FLOAT (d = floor (d), "ffloor", arg);
|
|
885 return make_float (d);
|
|
886 }
|
|
887
|
|
888 DEFUN ("fround", Ffround, 1, 1, 0, /*
|
|
889 Return the nearest integer to ARG, as a float.
|
|
890 */
|
|
891 (arg))
|
|
892 {
|
|
893 double d = extract_float (arg);
|
|
894 IN_FLOAT (d = rint (d), "fround", arg);
|
|
895 return make_float (d);
|
|
896 }
|
|
897
|
|
898 DEFUN ("ftruncate", Fftruncate, 1, 1, 0, /*
|
|
899 Truncate a floating point number to an integral float value.
|
|
900 Rounds the value toward zero.
|
|
901 */
|
|
902 (arg))
|
|
903 {
|
|
904 double d = extract_float (arg);
|
|
905 if (d >= 0.0)
|
|
906 IN_FLOAT (d = floor (d), "ftruncate", arg);
|
|
907 else
|
|
908 IN_FLOAT (d = ceil (d), "ftruncate", arg);
|
|
909 return make_float (d);
|
|
910 }
|
|
911
|
|
912 #endif /* LISP_FLOAT_TYPE (float-rounding functions) */
|
|
913
|
|
914
|
|
915 #ifdef LISP_FLOAT_TYPE
|
|
916 #ifdef FLOAT_CATCH_SIGILL
|
|
917 static SIGTYPE
|
|
918 float_error (int signo)
|
|
919 {
|
|
920 if (! in_float)
|
|
921 fatal_error_signal (signo);
|
|
922
|
|
923 EMACS_REESTABLISH_SIGNAL (signo, arith_error);
|
|
924 EMACS_UNBLOCK_SIGNAL (signo);
|
|
925
|
|
926 in_float = 0;
|
|
927
|
|
928 /* Was Fsignal(), but it just doesn't make sense for an error
|
|
929 occurring inside a signal handler to be restartable, considering
|
|
930 that anything could happen when the error is signaled and trapped
|
|
931 and considering the asynchronous nature of signal handlers. */
|
|
932 signal_error (Qarith_error, list1 (float_error_arg));
|
|
933 }
|
|
934
|
|
935 /* Another idea was to replace the library function `infnan'
|
|
936 where SIGILL is signaled. */
|
|
937
|
|
938 #endif /* FLOAT_CATCH_SIGILL */
|
|
939
|
|
940 /* In C++, it is impossible to determine what type matherr expects
|
|
941 without some more configure magic.
|
|
942 We shouldn't be using matherr anyways - it's a non-standard SYSVism. */
|
|
943 #if defined (HAVE_MATHERR) && !defined(__cplusplus)
|
|
944 int
|
|
945 matherr (struct exception *x)
|
|
946 {
|
|
947 Lisp_Object args;
|
|
948 if (! in_float)
|
|
949 /* Not called from emacs-lisp float routines; do the default thing. */
|
|
950 return 0;
|
|
951
|
|
952 /* if (!strcmp (x->name, "pow")) x->name = "expt"; */
|
|
953
|
|
954 args = Fcons (build_string (x->name),
|
|
955 Fcons (make_float (x->arg1),
|
|
956 ((in_float == 2)
|
|
957 ? Fcons (make_float (x->arg2), Qnil)
|
|
958 : Qnil)));
|
|
959 switch (x->type)
|
|
960 {
|
|
961 case DOMAIN: Fsignal (Qdomain_error, args); break;
|
|
962 case SING: Fsignal (Qsingularity_error, args); break;
|
|
963 case OVERFLOW: Fsignal (Qoverflow_error, args); break;
|
|
964 case UNDERFLOW: Fsignal (Qunderflow_error, args); break;
|
|
965 default: Fsignal (Qarith_error, args); break;
|
|
966 }
|
|
967 return 1; /* don't set errno or print a message */
|
|
968 }
|
|
969 #endif /* HAVE_MATHERR */
|
|
970 #endif /* LISP_FLOAT_TYPE */
|
|
971
|
|
972
|
|
973 void
|
|
974 init_floatfns_very_early (void)
|
|
975 {
|
|
976 #ifdef LISP_FLOAT_TYPE
|
|
977 # ifdef FLOAT_CATCH_SIGILL
|
|
978 signal (SIGILL, float_error);
|
|
979 # endif
|
|
980 in_float = 0;
|
|
981 #endif /* LISP_FLOAT_TYPE */
|
|
982 }
|
|
983
|
|
984 void
|
|
985 syms_of_floatfns (void)
|
|
986 {
|
|
987
|
|
988 /* Trig functions. */
|
|
989
|
|
990 #ifdef LISP_FLOAT_TYPE
|
|
991 DEFSUBR (Facos);
|
|
992 DEFSUBR (Fasin);
|
|
993 DEFSUBR (Fatan);
|
|
994 DEFSUBR (Fcos);
|
|
995 DEFSUBR (Fsin);
|
|
996 DEFSUBR (Ftan);
|
|
997 #endif /* LISP_FLOAT_TYPE */
|
|
998
|
|
999 /* Bessel functions */
|
|
1000
|
|
1001 #if 0
|
|
1002 DEFSUBR (Fbessel_y0);
|
|
1003 DEFSUBR (Fbessel_y1);
|
|
1004 DEFSUBR (Fbessel_yn);
|
|
1005 DEFSUBR (Fbessel_j0);
|
|
1006 DEFSUBR (Fbessel_j1);
|
|
1007 DEFSUBR (Fbessel_jn);
|
|
1008 #endif /* 0 */
|
|
1009
|
|
1010 /* Error functions. */
|
|
1011
|
|
1012 #if 0
|
|
1013 DEFSUBR (Ferf);
|
|
1014 DEFSUBR (Ferfc);
|
|
1015 DEFSUBR (Flog_gamma);
|
|
1016 #endif /* 0 */
|
|
1017
|
|
1018 /* Root and Log functions. */
|
|
1019
|
|
1020 #ifdef LISP_FLOAT_TYPE
|
|
1021 DEFSUBR (Fexp);
|
|
1022 #endif /* LISP_FLOAT_TYPE */
|
|
1023 DEFSUBR (Fexpt);
|
|
1024 #ifdef LISP_FLOAT_TYPE
|
|
1025 DEFSUBR (Flog);
|
|
1026 DEFSUBR (Flog10);
|
|
1027 DEFSUBR (Fsqrt);
|
|
1028 DEFSUBR (Fcube_root);
|
|
1029 #endif /* LISP_FLOAT_TYPE */
|
|
1030
|
|
1031 /* Inverse trig functions. */
|
|
1032
|
|
1033 #ifdef LISP_FLOAT_TYPE
|
|
1034 DEFSUBR (Facosh);
|
|
1035 DEFSUBR (Fasinh);
|
|
1036 DEFSUBR (Fatanh);
|
|
1037 DEFSUBR (Fcosh);
|
|
1038 DEFSUBR (Fsinh);
|
|
1039 DEFSUBR (Ftanh);
|
|
1040 #endif /* LISP_FLOAT_TYPE */
|
|
1041
|
|
1042 /* Rounding functions */
|
|
1043
|
|
1044 DEFSUBR (Fabs);
|
|
1045 #ifdef LISP_FLOAT_TYPE
|
|
1046 DEFSUBR (Ffloat);
|
|
1047 DEFSUBR (Flogb);
|
|
1048 #endif /* LISP_FLOAT_TYPE */
|
|
1049 DEFSUBR (Fceiling);
|
|
1050 DEFSUBR (Ffloor);
|
|
1051 DEFSUBR (Fround);
|
|
1052 DEFSUBR (Ftruncate);
|
|
1053
|
|
1054 /* Float-rounding functions. */
|
|
1055
|
|
1056 #ifdef LISP_FLOAT_TYPE
|
|
1057 DEFSUBR (Ffceiling);
|
|
1058 DEFSUBR (Fffloor);
|
|
1059 DEFSUBR (Ffround);
|
|
1060 DEFSUBR (Fftruncate);
|
|
1061 #endif /* LISP_FLOAT_TYPE */
|
|
1062 }
|
|
1063
|
|
1064 void
|
|
1065 vars_of_floatfns (void)
|
|
1066 {
|
|
1067 #ifdef LISP_FLOAT_TYPE
|
|
1068 Fprovide (intern ("lisp-float-type"));
|
|
1069 #endif
|
|
1070 }
|