428
|
1 /* Header file for the buffer manipulation primitives.
|
|
2 Copyright (C) 1985, 1986, 1992, 1993, 1994, 1995
|
|
3 Free Software Foundation, Inc.
|
|
4 Copyright (C) 1995 Sun Microsystems, Inc.
|
|
5
|
|
6 This file is part of XEmacs.
|
|
7
|
|
8 XEmacs is free software; you can redistribute it and/or modify it
|
|
9 under the terms of the GNU General Public License as published by the
|
|
10 Free Software Foundation; either version 2, or (at your option) any
|
|
11 later version.
|
|
12
|
|
13 XEmacs is distributed in the hope that it will be useful, but WITHOUT
|
|
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
16 for more details.
|
|
17
|
|
18 You should have received a copy of the GNU General Public License
|
|
19 along with XEmacs; see the file COPYING. If not, write to
|
|
20 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
21 Boston, MA 02111-1307, USA. */
|
|
22
|
|
23 /* Synched up with: FSF 19.30. */
|
|
24
|
|
25 /* Authorship:
|
|
26
|
|
27 FSF: long ago.
|
|
28 JWZ: separated out bufslots.h, early in Lemacs.
|
|
29 Ben Wing: almost completely rewritten for Mule, 19.12.
|
|
30 */
|
|
31
|
|
32 #ifndef _XEMACS_BUFFER_H_
|
|
33 #define _XEMACS_BUFFER_H_
|
|
34
|
|
35 #ifdef MULE
|
|
36 #include "mule-charset.h"
|
|
37 #endif
|
|
38
|
|
39 /************************************************************************/
|
|
40 /* */
|
|
41 /* definition of Lisp buffer object */
|
|
42 /* */
|
|
43 /************************************************************************/
|
|
44
|
|
45 /* Note: we keep both Bytind and Bufpos versions of some of the
|
|
46 important buffer positions because they are accessed so much.
|
|
47 If we didn't do this, we would constantly be invalidating the
|
|
48 bufpos<->bytind cache under Mule.
|
|
49
|
|
50 Note that under non-Mule, both versions will always be the
|
|
51 same so we don't really need to keep track of them. But it
|
|
52 simplifies the logic to go ahead and do so all the time and
|
|
53 the memory loss is insignificant. */
|
|
54
|
|
55 /* Formerly, it didn't much matter what went inside the struct buffer_text
|
|
56 and what went outside it. Now it does, with the advent of "indirect
|
|
57 buffers" that share text with another buffer. An indirect buffer
|
|
58 shares the same *text* as another buffer, but has its own buffer-local
|
|
59 variables, its own accessible region, and its own markers and extents.
|
|
60 (Due to the nature of markers, it doesn't actually matter much whether
|
|
61 we stick them inside or out of the struct buffer_text -- the user won't
|
|
62 notice any difference -- but we go ahead and put them outside for
|
|
63 consistency and overall saneness of algorithm.)
|
|
64
|
|
65 FSFmacs gets away with not maintaining any "children" pointers from
|
|
66 a buffer to the indirect buffers that refer to it by putting the
|
|
67 markers inside of the struct buffer_text, using markers to keep track
|
|
68 of BEGV and ZV in indirect buffers, and relying on the fact that
|
|
69 all intervals (text properties and overlays) use markers for their
|
|
70 start and end points. We don't do this for extents (markers are
|
|
71 inefficient anyway and take up space), so we have to maintain
|
|
72 children pointers. This is not terribly hard, though, and the
|
|
73 code to maintain this is just like the code already present in
|
|
74 extent-parent and extent-children.
|
|
75 */
|
|
76
|
|
77 struct buffer_text
|
|
78 {
|
|
79 Bufbyte *beg; /* Actual address of buffer contents. */
|
|
80 Bytind gpt; /* Index of gap in buffer. */
|
|
81 Bytind z; /* Index of end of buffer. */
|
|
82 Bufpos bufz; /* Equivalent as a Bufpos. */
|
|
83 int gap_size; /* Size of buffer's gap */
|
|
84 int end_gap_size; /* Size of buffer's end gap */
|
|
85 long modiff; /* This counts buffer-modification events
|
|
86 for this buffer. It is incremented for
|
|
87 each such event, and never otherwise
|
|
88 changed. */
|
|
89 long save_modiff; /* Previous value of modiff, as of last
|
|
90 time buffer visited or saved a file. */
|
|
91
|
|
92 #ifdef MULE
|
|
93 /* We keep track of a "known" region for very fast access.
|
|
94 This information is text-only so it goes here. */
|
|
95 Bufpos mule_bufmin, mule_bufmax;
|
|
96 Bytind mule_bytmin, mule_bytmax;
|
|
97 int mule_shifter, mule_three_p;
|
|
98
|
|
99 /* And we also cache 16 positions for fairly fast access near those
|
|
100 positions. */
|
|
101 Bufpos mule_bufpos_cache[16];
|
|
102 Bytind mule_bytind_cache[16];
|
|
103 #endif
|
|
104
|
|
105 /* Similar to the above, we keep track of positions for which line
|
|
106 number has last been calculated. See line-number.c. */
|
|
107 Lisp_Object line_number_cache;
|
|
108
|
|
109 /* Change data that goes with the text. */
|
|
110 struct buffer_text_change_data *changes;
|
|
111
|
|
112 };
|
|
113
|
|
114 struct buffer
|
|
115 {
|
|
116 struct lcrecord_header header;
|
|
117
|
|
118 /* This structure holds the coordinates of the buffer contents
|
|
119 in ordinary buffers. In indirect buffers, this is not used. */
|
|
120 struct buffer_text own_text;
|
|
121
|
|
122 /* This points to the `struct buffer_text' that is used for this buffer.
|
|
123 In an ordinary buffer, this is the own_text field above.
|
|
124 In an indirect buffer, this is the own_text field of another buffer. */
|
|
125 struct buffer_text *text;
|
|
126
|
|
127 Bytind pt; /* Position of point in buffer. */
|
|
128 Bufpos bufpt; /* Equivalent as a Bufpos. */
|
|
129 Bytind begv; /* Index of beginning of accessible range. */
|
|
130 Bufpos bufbegv; /* Equivalent as a Bufpos. */
|
|
131 Bytind zv; /* Index of end of accessible range. */
|
|
132 Bufpos bufzv; /* Equivalent as a Bufpos. */
|
|
133
|
|
134 int face_change; /* This is set when a change in how the text should
|
|
135 be displayed (e.g., font, color) is made. */
|
|
136
|
|
137 /* change data indicating what portion of the text has changed
|
|
138 since the last time this was reset. Used by redisplay.
|
|
139 Logically we should keep this with the text structure, but
|
|
140 redisplay resets it for each buffer individually and we don't
|
|
141 want interference between an indirect buffer and its base
|
|
142 buffer. */
|
|
143 struct each_buffer_change_data *changes;
|
|
144
|
|
145 #ifdef REGION_CACHE_NEEDS_WORK
|
|
146 /* If the long line scan cache is enabled (i.e. the buffer-local
|
|
147 variable cache-long-line-scans is non-nil), newline_cache
|
|
148 points to the newline cache, and width_run_cache points to the
|
|
149 width run cache.
|
|
150
|
|
151 The newline cache records which stretches of the buffer are
|
|
152 known *not* to contain newlines, so that they can be skipped
|
|
153 quickly when we search for newlines.
|
|
154
|
|
155 The width run cache records which stretches of the buffer are
|
|
156 known to contain characters whose widths are all the same. If
|
|
157 the width run cache maps a character to a value > 0, that value
|
|
158 is the character's width; if it maps a character to zero, we
|
|
159 don't know what its width is. This allows compute_motion to
|
|
160 process such regions very quickly, using algebra instead of
|
|
161 inspecting each character. See also width_table, below. */
|
|
162 struct region_cache *newline_cache;
|
|
163 struct region_cache *width_run_cache;
|
|
164 #endif /* REGION_CACHE_NEEDS_WORK */
|
|
165
|
|
166 /* The markers that refer to this buffer. This is actually a single
|
|
167 marker -- successive elements in its marker `chain' are the other
|
|
168 markers referring to this buffer */
|
|
169 struct Lisp_Marker *markers;
|
|
170
|
|
171 /* The buffer's extent info. This is its own type, an extent-info
|
|
172 object (done this way for ease in marking / finalizing). */
|
|
173 Lisp_Object extent_info;
|
|
174
|
|
175 /* ----------------------------------------------------------------- */
|
|
176 /* All the stuff above this line is the responsibility of insdel.c,
|
|
177 with some help from marker.c and extents.c.
|
|
178 All the stuff below this line is the responsibility of buffer.c. */
|
|
179
|
|
180 /* In an indirect buffer, this points to the base buffer.
|
|
181 In an ordinary buffer, it is 0.
|
|
182 We DO mark through this slot. */
|
|
183 struct buffer *base_buffer;
|
|
184
|
|
185 /* List of indirect buffers whose base is this buffer.
|
|
186 If we are an indirect buffer, this will be nil.
|
|
187 Do NOT mark through this. */
|
|
188 Lisp_Object indirect_children;
|
|
189
|
|
190 /* Flags saying which DEFVAR_PER_BUFFER variables
|
|
191 are local to this buffer. */
|
|
192 int local_var_flags;
|
|
193
|
|
194 /* Set to the modtime of the visited file when read or written.
|
|
195 -1 means visited file was nonexistent.
|
|
196 0 means visited file modtime unknown; in no case complain
|
|
197 about any mismatch on next save attempt. */
|
|
198 int modtime;
|
|
199
|
|
200 /* the value of text->modiff at the last auto-save. */
|
|
201 int auto_save_modified;
|
|
202
|
|
203 /* The time at which we detected a failure to auto-save,
|
|
204 Or -1 if we didn't have a failure. */
|
|
205 int auto_save_failure_time;
|
|
206
|
|
207 /* Position in buffer at which display started
|
|
208 the last time this buffer was displayed. */
|
|
209 int last_window_start;
|
|
210
|
|
211 /* Everything from here down must be a Lisp_Object */
|
|
212
|
|
213 #define MARKED_SLOT(x) Lisp_Object x
|
|
214 #include "bufslots.h"
|
|
215 #undef MARKED_SLOT
|
|
216 };
|
|
217
|
|
218 DECLARE_LRECORD (buffer, struct buffer);
|
|
219 #define XBUFFER(x) XRECORD (x, buffer, struct buffer)
|
|
220 #define XSETBUFFER(x, p) XSETRECORD (x, p, buffer)
|
|
221 #define BUFFERP(x) RECORDP (x, buffer)
|
|
222 #define CHECK_BUFFER(x) CHECK_RECORD (x, buffer)
|
|
223 #define CONCHECK_BUFFER(x) CONCHECK_RECORD (x, buffer)
|
|
224
|
|
225 #define BUFFER_LIVE_P(b) (!NILP ((b)->name))
|
|
226
|
|
227 #define CHECK_LIVE_BUFFER(x) do { \
|
|
228 CHECK_BUFFER (x); \
|
|
229 if (!BUFFER_LIVE_P (XBUFFER (x))) \
|
|
230 dead_wrong_type_argument (Qbuffer_live_p, (x)); \
|
|
231 } while (0)
|
|
232
|
|
233 #define CONCHECK_LIVE_BUFFER(x) do { \
|
|
234 CONCHECK_BUFFER (x); \
|
|
235 if (!BUFFER_LIVE_P (XBUFFER (x))) \
|
|
236 x = wrong_type_argument (Qbuffer_live_p, (x)); \
|
|
237 } while (0)
|
|
238
|
|
239
|
|
240 #define BUFFER_BASE_BUFFER(b) ((b)->base_buffer ? (b)->base_buffer : (b))
|
|
241
|
|
242 /* Map over buffers sharing the same text as MPS_BUF. MPS_BUFVAR is a
|
|
243 variable that gets the buffer values (beginning with the base
|
|
244 buffer, then the children), and MPS_BUFCONS should be a temporary
|
|
245 Lisp_Object variable. */
|
|
246 #define MAP_INDIRECT_BUFFERS(mps_buf, mps_bufvar, mps_bufcons) \
|
|
247 for (mps_bufcons = Qunbound, \
|
|
248 mps_bufvar = BUFFER_BASE_BUFFER (mps_buf); \
|
|
249 UNBOUNDP (mps_bufcons) ? \
|
|
250 (mps_bufcons = mps_bufvar->indirect_children, \
|
|
251 1) \
|
|
252 : (!NILP (mps_bufcons) \
|
|
253 && (mps_bufvar = XBUFFER (XCAR (mps_bufcons)), 1) \
|
|
254 && (mps_bufcons = XCDR (mps_bufcons), 1)); \
|
|
255 )
|
|
256
|
|
257
|
|
258
|
|
259 /************************************************************************/
|
|
260 /* */
|
|
261 /* working with raw internal-format data */
|
|
262 /* */
|
|
263 /************************************************************************/
|
|
264
|
|
265 /* NOTE: In all the following macros, we follow these rules concerning
|
|
266 multiple evaluation of the arguments:
|
|
267
|
|
268 1) Anything that's an lvalue can be evaluated more than once.
|
|
269 2) Anything that's a Lisp Object can be evaluated more than once.
|
|
270 This should probably be changed, but this follows the way
|
|
271 that all the macros in lisp.h do things.
|
|
272 3) 'struct buffer *' arguments can be evaluated more than once.
|
|
273 4) Nothing else can be evaluated more than once. Use inline
|
|
274 functions, if necessary, to prevent multiple evaluation.
|
|
275 5) An exception to (4) is that there are some macros below that
|
|
276 may evaluate their arguments more than once. They are all
|
|
277 denoted with the word "unsafe" in their name and are generally
|
|
278 meant to be called only by other macros that have already
|
|
279 stored the calling values in temporary variables.
|
|
280
|
|
281
|
|
282 Use the following functions/macros on contiguous strings of data.
|
|
283 If the text you're operating on is known to come from a buffer, use
|
|
284 the buffer-level functions below -- they know about the gap and may
|
|
285 be more efficient.
|
|
286
|
|
287
|
|
288 (A) For working with charptr's (pointers to internally-formatted text):
|
|
289 -----------------------------------------------------------------------
|
|
290
|
|
291 VALID_CHARPTR_P (ptr):
|
|
292 Given a charptr, does it point to the beginning of a character?
|
|
293
|
|
294 ASSERT_VALID_CHARPTR (ptr):
|
|
295 If error-checking is enabled, assert that the given charptr
|
|
296 points to the beginning of a character. Otherwise, do nothing.
|
|
297
|
|
298 INC_CHARPTR (ptr):
|
|
299 Given a charptr (assumed to point at the beginning of a character),
|
|
300 modify that pointer so it points to the beginning of the next
|
|
301 character.
|
|
302
|
|
303 DEC_CHARPTR (ptr):
|
|
304 Given a charptr (assumed to point at the beginning of a
|
|
305 character or at the very end of the text), modify that pointer
|
|
306 so it points to the beginning of the previous character.
|
|
307
|
|
308 VALIDATE_CHARPTR_BACKWARD (ptr):
|
|
309 Make sure that PTR is pointing to the beginning of a character.
|
|
310 If not, back up until this is the case. Note that there are not
|
|
311 too many places where it is legitimate to do this sort of thing.
|
|
312 It's an error if you're passed an "invalid" char * pointer.
|
|
313 NOTE: PTR *must* be pointing to a valid part of the string (i.e.
|
|
314 not the very end, unless the string is zero-terminated or
|
|
315 something) in order for this function to not cause crashes.
|
|
316
|
|
317 VALIDATE_CHARPTR_FORWARD (ptr):
|
|
318 Make sure that PTR is pointing to the beginning of a character.
|
|
319 If not, move forward until this is the case. Note that there
|
|
320 are not too many places where it is legitimate to do this sort
|
|
321 of thing. It's an error if you're passed an "invalid" char *
|
|
322 pointer.
|
|
323
|
|
324
|
|
325 (B) For working with the length (in bytes and characters) of a
|
|
326 section of internally-formatted text:
|
|
327 --------------------------------------------------------------
|
|
328
|
|
329 bytecount_to_charcount (ptr, nbi):
|
|
330 Given a pointer to a text string and a length in bytes,
|
|
331 return the equivalent length in characters.
|
|
332
|
|
333 charcount_to_bytecount (ptr, nch):
|
|
334 Given a pointer to a text string and a length in characters,
|
|
335 return the equivalent length in bytes.
|
|
336
|
|
337 charptr_n_addr (ptr, n):
|
|
338 Return a pointer to the beginning of the character offset N
|
|
339 (in characters) from PTR.
|
|
340
|
|
341
|
|
342 (C) For retrieving or changing the character pointed to by a charptr:
|
|
343 ---------------------------------------------------------------------
|
|
344
|
|
345 charptr_emchar (ptr):
|
|
346 Retrieve the character pointed to by PTR as an Emchar.
|
|
347
|
|
348 charptr_emchar_n (ptr, n):
|
|
349 Retrieve the character at offset N (in characters) from PTR,
|
|
350 as an Emchar.
|
|
351
|
|
352 set_charptr_emchar (ptr, ch):
|
|
353 Store the character CH (an Emchar) as internally-formatted
|
|
354 text starting at PTR. Return the number of bytes stored.
|
|
355
|
|
356 charptr_copy_char (ptr, ptr2):
|
|
357 Retrieve the character pointed to by PTR and store it as
|
|
358 internally-formatted text in PTR2.
|
|
359
|
|
360
|
|
361 (D) For working with Emchars:
|
|
362 -----------------------------
|
|
363
|
|
364 [Note that there are other functions/macros for working with Emchars
|
|
365 in mule-charset.h, for retrieving the charset of an Emchar
|
|
366 and such. These are only valid when MULE is defined.]
|
|
367
|
|
368 valid_char_p (ch):
|
|
369 Return whether the given Emchar is valid.
|
|
370
|
|
371 CHARP (ch):
|
|
372 Return whether the given Lisp_Object is a character.
|
|
373
|
|
374 CHECK_CHAR_COERCE_INT (ch):
|
|
375 Signal an error if CH is not a valid character or integer Lisp_Object.
|
|
376 If CH is an integer Lisp_Object, convert it to a character Lisp_Object,
|
|
377 but merely by repackaging, without performing tests for char validity.
|
|
378
|
|
379 MAX_EMCHAR_LEN:
|
|
380 Maximum number of buffer bytes per Emacs character.
|
|
381
|
|
382 */
|
|
383
|
|
384
|
|
385 /* ---------------------------------------------------------------------- */
|
|
386 /* (A) For working with charptr's (pointers to internally-formatted text) */
|
|
387 /* ---------------------------------------------------------------------- */
|
|
388
|
|
389 #ifdef MULE
|
|
390 # define VALID_CHARPTR_P(ptr) BUFBYTE_FIRST_BYTE_P (* (unsigned char *) ptr)
|
|
391 #else
|
|
392 # define VALID_CHARPTR_P(ptr) 1
|
|
393 #endif
|
|
394
|
|
395 #ifdef ERROR_CHECK_BUFPOS
|
|
396 # define ASSERT_VALID_CHARPTR(ptr) assert (VALID_CHARPTR_P (ptr))
|
|
397 #else
|
|
398 # define ASSERT_VALID_CHARPTR(ptr)
|
|
399 #endif
|
|
400
|
|
401 /* Note that INC_CHARPTR() and DEC_CHARPTR() have to be written in
|
|
402 completely separate ways. INC_CHARPTR() cannot use the DEC_CHARPTR()
|
|
403 trick of looking for a valid first byte because it might run off
|
|
404 the end of the string. DEC_CHARPTR() can't use the INC_CHARPTR()
|
|
405 method because it doesn't have easy access to the first byte of
|
|
406 the character it's moving over. */
|
|
407
|
|
408 #define REAL_INC_CHARPTR(ptr) \
|
|
409 ((void) ((ptr) += REP_BYTES_BY_FIRST_BYTE (* (unsigned char *) (ptr))))
|
|
410
|
|
411 #define REAL_INC_CHARBYTIND(ptr,pos) \
|
|
412 (pos += REP_BYTES_BY_FIRST_BYTE (* (unsigned char *) (ptr)))
|
|
413
|
|
414 #define REAL_DEC_CHARPTR(ptr) do { \
|
|
415 (ptr)--; \
|
|
416 } while (!VALID_CHARPTR_P (ptr))
|
|
417
|
|
418 #ifdef ERROR_CHECK_BUFPOS
|
|
419 #define INC_CHARPTR(ptr) do { \
|
|
420 ASSERT_VALID_CHARPTR (ptr); \
|
|
421 REAL_INC_CHARPTR (ptr); \
|
|
422 } while (0)
|
|
423
|
|
424 #define INC_CHARBYTIND(ptr,pos) do { \
|
|
425 ASSERT_VALID_CHARPTR (ptr); \
|
|
426 REAL_INC_CHARBYTIND (ptr,pos); \
|
|
427 } while (0)
|
|
428
|
|
429 #define DEC_CHARPTR(ptr) do { \
|
|
430 CONST Bufbyte *dc_ptr1 = (ptr); \
|
|
431 CONST Bufbyte *dc_ptr2 = dc_ptr1; \
|
|
432 REAL_DEC_CHARPTR (dc_ptr2); \
|
|
433 assert (dc_ptr1 - dc_ptr2 == \
|
|
434 REP_BYTES_BY_FIRST_BYTE (*dc_ptr2)); \
|
|
435 (ptr) = dc_ptr2; \
|
|
436 } while (0)
|
|
437
|
|
438 #else /* ! ERROR_CHECK_BUFPOS */
|
|
439 #define INC_CHARBYTIND(ptr,pos) REAL_INC_CHARBYTIND (ptr,pos)
|
|
440 #define INC_CHARPTR(ptr) REAL_INC_CHARPTR (ptr)
|
|
441 #define DEC_CHARPTR(ptr) REAL_DEC_CHARPTR (ptr)
|
|
442 #endif /* ! ERROR_CHECK_BUFPOS */
|
|
443
|
|
444 #ifdef MULE
|
|
445
|
|
446 #define VALIDATE_CHARPTR_BACKWARD(ptr) do { \
|
|
447 while (!VALID_CHARPTR_P (ptr)) ptr--; \
|
|
448 } while (0)
|
|
449
|
|
450 /* This needs to be trickier to avoid the possibility of running off
|
|
451 the end of the string. */
|
|
452
|
|
453 #define VALIDATE_CHARPTR_FORWARD(ptr) do { \
|
|
454 Bufbyte *vcf_ptr = (ptr); \
|
|
455 VALIDATE_CHARPTR_BACKWARD (vcf_ptr); \
|
|
456 if (vcf_ptr != (ptr)) \
|
|
457 { \
|
|
458 (ptr) = vcf_ptr; \
|
|
459 INC_CHARPTR (ptr); \
|
|
460 } \
|
|
461 } while (0)
|
|
462
|
|
463 #else /* not MULE */
|
|
464 #define VALIDATE_CHARPTR_BACKWARD(ptr)
|
|
465 #define VALIDATE_CHARPTR_FORWARD(ptr)
|
|
466 #endif /* not MULE */
|
|
467
|
|
468 /* -------------------------------------------------------------- */
|
|
469 /* (B) For working with the length (in bytes and characters) of a */
|
|
470 /* section of internally-formatted text */
|
|
471 /* -------------------------------------------------------------- */
|
|
472
|
|
473 INLINE CONST Bufbyte *charptr_n_addr (CONST Bufbyte *ptr, Charcount offset);
|
|
474 INLINE CONST Bufbyte *
|
|
475 charptr_n_addr (CONST Bufbyte *ptr, Charcount offset)
|
|
476 {
|
|
477 return ptr + charcount_to_bytecount (ptr, offset);
|
|
478 }
|
|
479
|
|
480 /* -------------------------------------------------------------------- */
|
|
481 /* (C) For retrieving or changing the character pointed to by a charptr */
|
|
482 /* -------------------------------------------------------------------- */
|
|
483
|
|
484 #define simple_charptr_emchar(ptr) ((Emchar) (ptr)[0])
|
|
485 #define simple_set_charptr_emchar(ptr, x) ((ptr)[0] = (Bufbyte) (x), 1)
|
|
486 #define simple_charptr_copy_char(ptr, ptr2) ((ptr2)[0] = *(ptr), 1)
|
|
487
|
|
488 #ifdef MULE
|
|
489
|
|
490 Emchar non_ascii_charptr_emchar (CONST Bufbyte *ptr);
|
|
491 Bytecount non_ascii_set_charptr_emchar (Bufbyte *ptr, Emchar c);
|
|
492 Bytecount non_ascii_charptr_copy_char (CONST Bufbyte *ptr, Bufbyte *ptr2);
|
|
493
|
|
494 INLINE Emchar charptr_emchar (CONST Bufbyte *ptr);
|
|
495 INLINE Emchar
|
|
496 charptr_emchar (CONST Bufbyte *ptr)
|
|
497 {
|
|
498 return BYTE_ASCII_P (*ptr) ?
|
|
499 simple_charptr_emchar (ptr) :
|
|
500 non_ascii_charptr_emchar (ptr);
|
|
501 }
|
|
502
|
|
503 INLINE Bytecount set_charptr_emchar (Bufbyte *ptr, Emchar x);
|
|
504 INLINE Bytecount
|
|
505 set_charptr_emchar (Bufbyte *ptr, Emchar x)
|
|
506 {
|
|
507 return !CHAR_MULTIBYTE_P (x) ?
|
|
508 simple_set_charptr_emchar (ptr, x) :
|
|
509 non_ascii_set_charptr_emchar (ptr, x);
|
|
510 }
|
|
511
|
|
512 INLINE Bytecount charptr_copy_char (CONST Bufbyte *ptr, Bufbyte *ptr2);
|
|
513 INLINE Bytecount
|
|
514 charptr_copy_char (CONST Bufbyte *ptr, Bufbyte *ptr2)
|
|
515 {
|
|
516 return BYTE_ASCII_P (*ptr) ?
|
|
517 simple_charptr_copy_char (ptr, ptr2) :
|
|
518 non_ascii_charptr_copy_char (ptr, ptr2);
|
|
519 }
|
|
520
|
|
521 #else /* not MULE */
|
|
522
|
|
523 # define charptr_emchar(ptr) simple_charptr_emchar (ptr)
|
|
524 # define set_charptr_emchar(ptr, x) simple_set_charptr_emchar (ptr, x)
|
|
525 # define charptr_copy_char(ptr, ptr2) simple_charptr_copy_char (ptr, ptr2)
|
|
526
|
|
527 #endif /* not MULE */
|
|
528
|
|
529 #define charptr_emchar_n(ptr, offset) \
|
|
530 charptr_emchar (charptr_n_addr (ptr, offset))
|
|
531
|
|
532
|
|
533 /* ---------------------------- */
|
|
534 /* (D) For working with Emchars */
|
|
535 /* ---------------------------- */
|
|
536
|
|
537 #ifdef MULE
|
|
538
|
|
539 int non_ascii_valid_char_p (Emchar ch);
|
|
540
|
|
541 INLINE int valid_char_p (Emchar ch);
|
|
542 INLINE int
|
|
543 valid_char_p (Emchar ch)
|
|
544 {
|
|
545 return ((unsigned int) (ch) <= 0xff) || non_ascii_valid_char_p (ch);
|
|
546 }
|
|
547
|
|
548 #else /* not MULE */
|
|
549
|
|
550 #define valid_char_p(ch) ((unsigned int) (ch) <= 0xff)
|
|
551
|
|
552 #endif /* not MULE */
|
|
553
|
|
554 #define CHAR_INTP(x) (INTP (x) && valid_char_p (XINT (x)))
|
|
555
|
|
556 #define CHAR_OR_CHAR_INTP(x) (CHARP (x) || CHAR_INTP (x))
|
|
557
|
|
558 #ifdef ERROR_CHECK_TYPECHECK
|
|
559
|
|
560 INLINE Emchar XCHAR_OR_CHAR_INT (Lisp_Object obj);
|
|
561 INLINE Emchar
|
|
562 XCHAR_OR_CHAR_INT (Lisp_Object obj)
|
|
563 {
|
|
564 assert (CHAR_OR_CHAR_INTP (obj));
|
|
565 return CHARP (obj) ? XCHAR (obj) : XINT (obj);
|
|
566 }
|
|
567
|
|
568 #else
|
|
569
|
|
570 #define XCHAR_OR_CHAR_INT(obj) (CHARP (obj) ? XCHAR (obj) : XINT (obj))
|
|
571
|
|
572 #endif
|
|
573
|
|
574 #define CHECK_CHAR_COERCE_INT(x) do { \
|
|
575 if (CHARP (x)) \
|
|
576 ; \
|
|
577 else if (CHAR_INTP (x)) \
|
|
578 x = make_char (XINT (x)); \
|
|
579 else \
|
|
580 x = wrong_type_argument (Qcharacterp, x); \
|
|
581 } while (0)
|
|
582
|
|
583 #ifdef MULE
|
|
584 # define MAX_EMCHAR_LEN 4
|
|
585 #else
|
|
586 # define MAX_EMCHAR_LEN 1
|
|
587 #endif
|
|
588
|
|
589
|
|
590 /*----------------------------------------------------------------------*/
|
|
591 /* Accessor macros for important positions in a buffer */
|
|
592 /*----------------------------------------------------------------------*/
|
|
593
|
|
594 /* We put them here because some stuff below wants them before the
|
|
595 place where we would normally put them. */
|
|
596
|
|
597 /* None of these are lvalues. Use the settor macros below to change
|
|
598 the positions. */
|
|
599
|
|
600 /* Beginning of buffer. */
|
|
601 #define BI_BUF_BEG(buf) ((Bytind) 1)
|
|
602 #define BUF_BEG(buf) ((Bufpos) 1)
|
|
603
|
|
604 /* Beginning of accessible range of buffer. */
|
|
605 #define BI_BUF_BEGV(buf) ((buf)->begv + 0)
|
|
606 #define BUF_BEGV(buf) ((buf)->bufbegv + 0)
|
|
607
|
|
608 /* End of accessible range of buffer. */
|
|
609 #define BI_BUF_ZV(buf) ((buf)->zv + 0)
|
|
610 #define BUF_ZV(buf) ((buf)->bufzv + 0)
|
|
611
|
|
612 /* End of buffer. */
|
|
613 #define BI_BUF_Z(buf) ((buf)->text->z + 0)
|
|
614 #define BUF_Z(buf) ((buf)->text->bufz + 0)
|
|
615
|
|
616 /* Point. */
|
|
617 #define BI_BUF_PT(buf) ((buf)->pt + 0)
|
|
618 #define BUF_PT(buf) ((buf)->bufpt + 0)
|
|
619
|
|
620 /*----------------------------------------------------------------------*/
|
|
621 /* Converting between positions and addresses */
|
|
622 /*----------------------------------------------------------------------*/
|
|
623
|
|
624 /* Convert the address of a byte in the buffer into a position. */
|
|
625 INLINE Bytind BI_BUF_PTR_BYTE_POS (struct buffer *buf, Bufbyte *ptr);
|
|
626 INLINE Bytind
|
|
627 BI_BUF_PTR_BYTE_POS (struct buffer *buf, Bufbyte *ptr)
|
|
628 {
|
|
629 return (ptr - buf->text->beg + 1
|
|
630 - ((ptr - buf->text->beg + 1) > buf->text->gpt
|
|
631 ? buf->text->gap_size : 0));
|
|
632 }
|
|
633
|
|
634 #define BUF_PTR_BYTE_POS(buf, ptr) \
|
|
635 bytind_to_bufpos (buf, BI_BUF_PTR_BYTE_POS (buf, ptr))
|
|
636
|
|
637 /* Address of byte at position POS in buffer. */
|
|
638 INLINE Bufbyte * BI_BUF_BYTE_ADDRESS (struct buffer *buf, Bytind pos);
|
|
639 INLINE Bufbyte *
|
|
640 BI_BUF_BYTE_ADDRESS (struct buffer *buf, Bytind pos)
|
|
641 {
|
|
642 return (buf->text->beg +
|
|
643 ((pos >= buf->text->gpt ? (pos + buf->text->gap_size) : pos)
|
|
644 - 1));
|
|
645 }
|
|
646
|
|
647 #define BUF_BYTE_ADDRESS(buf, pos) \
|
|
648 BI_BUF_BYTE_ADDRESS (buf, bufpos_to_bytind (buf, pos))
|
|
649
|
|
650 /* Address of byte before position POS in buffer. */
|
|
651 INLINE Bufbyte * BI_BUF_BYTE_ADDRESS_BEFORE (struct buffer *buf, Bytind pos);
|
|
652 INLINE Bufbyte *
|
|
653 BI_BUF_BYTE_ADDRESS_BEFORE (struct buffer *buf, Bytind pos)
|
|
654 {
|
|
655 return (buf->text->beg +
|
|
656 ((pos > buf->text->gpt ? (pos + buf->text->gap_size) : pos)
|
|
657 - 2));
|
|
658 }
|
|
659
|
|
660 #define BUF_BYTE_ADDRESS_BEFORE(buf, pos) \
|
|
661 BI_BUF_BYTE_ADDRESS_BEFORE (buf, bufpos_to_bytind (buf, pos))
|
|
662
|
|
663 /*----------------------------------------------------------------------*/
|
|
664 /* Converting between byte indices and memory indices */
|
|
665 /*----------------------------------------------------------------------*/
|
|
666
|
|
667 INLINE int valid_memind_p (struct buffer *buf, Memind x);
|
|
668 INLINE int
|
|
669 valid_memind_p (struct buffer *buf, Memind x)
|
|
670 {
|
|
671 return ((x >= 1 && x <= (Memind) buf->text->gpt) ||
|
|
672 (x > (Memind) (buf->text->gpt + buf->text->gap_size) &&
|
|
673 x <= (Memind) (buf->text->z + buf->text->gap_size)));
|
|
674 }
|
|
675
|
|
676 INLINE Memind bytind_to_memind (struct buffer *buf, Bytind x);
|
|
677 INLINE Memind
|
|
678 bytind_to_memind (struct buffer *buf, Bytind x)
|
|
679 {
|
|
680 return (Memind) ((x > buf->text->gpt) ? (x + buf->text->gap_size) : x);
|
|
681 }
|
|
682
|
|
683
|
|
684 INLINE Bytind memind_to_bytind (struct buffer *buf, Memind x);
|
|
685 INLINE Bytind
|
|
686 memind_to_bytind (struct buffer *buf, Memind x)
|
|
687 {
|
|
688 #ifdef ERROR_CHECK_BUFPOS
|
|
689 assert (valid_memind_p (buf, x));
|
|
690 #endif
|
|
691 return (Bytind) ((x > (Memind) buf->text->gpt) ?
|
|
692 x - buf->text->gap_size :
|
|
693 x);
|
|
694 }
|
|
695
|
|
696 #define memind_to_bufpos(buf, x) \
|
|
697 bytind_to_bufpos (buf, memind_to_bytind (buf, x))
|
|
698 #define bufpos_to_memind(buf, x) \
|
|
699 bytind_to_memind (buf, bufpos_to_bytind (buf, x))
|
|
700
|
|
701 /* These macros generalize many standard buffer-position functions to
|
|
702 either a buffer or a string. */
|
|
703
|
|
704 /* Converting between Meminds and Bytinds, for a buffer-or-string.
|
|
705 For strings, this is a no-op. For buffers, this resolves
|
|
706 to the standard memind<->bytind converters. */
|
|
707
|
|
708 #define buffer_or_string_bytind_to_memind(obj, ind) \
|
|
709 (BUFFERP (obj) ? bytind_to_memind (XBUFFER (obj), ind) : (Memind) ind)
|
|
710
|
|
711 #define buffer_or_string_memind_to_bytind(obj, ind) \
|
|
712 (BUFFERP (obj) ? memind_to_bytind (XBUFFER (obj), ind) : (Bytind) ind)
|
|
713
|
|
714 /* Converting between Bufpos's and Bytinds, for a buffer-or-string.
|
|
715 For strings, this maps to the bytecount<->charcount converters. */
|
|
716
|
|
717 #define buffer_or_string_bufpos_to_bytind(obj, pos) \
|
|
718 (BUFFERP (obj) ? bufpos_to_bytind (XBUFFER (obj), pos) : \
|
|
719 (Bytind) charcount_to_bytecount (XSTRING_DATA (obj), pos))
|
|
720
|
|
721 #define buffer_or_string_bytind_to_bufpos(obj, ind) \
|
|
722 (BUFFERP (obj) ? bytind_to_bufpos (XBUFFER (obj), ind) : \
|
|
723 (Bufpos) bytecount_to_charcount (XSTRING_DATA (obj), ind))
|
|
724
|
|
725 /* Similar for Bufpos's and Meminds. */
|
|
726
|
|
727 #define buffer_or_string_bufpos_to_memind(obj, pos) \
|
|
728 (BUFFERP (obj) ? bufpos_to_memind (XBUFFER (obj), pos) : \
|
|
729 (Memind) charcount_to_bytecount (XSTRING_DATA (obj), pos))
|
|
730
|
|
731 #define buffer_or_string_memind_to_bufpos(obj, ind) \
|
|
732 (BUFFERP (obj) ? memind_to_bufpos (XBUFFER (obj), ind) : \
|
|
733 (Bufpos) bytecount_to_charcount (XSTRING_DATA (obj), ind))
|
|
734
|
|
735 /************************************************************************/
|
|
736 /* */
|
|
737 /* working with buffer-level data */
|
|
738 /* */
|
|
739 /************************************************************************/
|
|
740
|
|
741 /*
|
|
742
|
|
743 (A) Working with byte indices:
|
|
744 ------------------------------
|
|
745
|
|
746 VALID_BYTIND_P(buf, bi):
|
|
747 Given a byte index, does it point to the beginning of a character?
|
|
748
|
|
749 ASSERT_VALID_BYTIND_UNSAFE(buf, bi):
|
|
750 If error-checking is enabled, assert that the given byte index
|
|
751 is within range and points to the beginning of a character
|
|
752 or to the end of the buffer. Otherwise, do nothing.
|
|
753
|
|
754 ASSERT_VALID_BYTIND_BACKWARD_UNSAFE(buf, bi):
|
|
755 If error-checking is enabled, assert that the given byte index
|
|
756 is within range and satisfies ASSERT_VALID_BYTIND() and also
|
|
757 does not refer to the beginning of the buffer. (i.e. movement
|
|
758 backwards is OK.) Otherwise, do nothing.
|
|
759
|
|
760 ASSERT_VALID_BYTIND_FORWARD_UNSAFE(buf, bi):
|
|
761 If error-checking is enabled, assert that the given byte index
|
|
762 is within range and satisfies ASSERT_VALID_BYTIND() and also
|
|
763 does not refer to the end of the buffer. (i.e. movement
|
|
764 forwards is OK.) Otherwise, do nothing.
|
|
765
|
|
766 VALIDATE_BYTIND_BACKWARD(buf, bi):
|
|
767 Make sure that the given byte index is pointing to the beginning
|
|
768 of a character. If not, back up until this is the case. Note
|
|
769 that there are not too many places where it is legitimate to do
|
|
770 this sort of thing. It's an error if you're passed an "invalid"
|
|
771 byte index.
|
|
772
|
|
773 VALIDATE_BYTIND_FORWARD(buf, bi):
|
|
774 Make sure that the given byte index is pointing to the beginning
|
|
775 of a character. If not, move forward until this is the case.
|
|
776 Note that there are not too many places where it is legitimate
|
|
777 to do this sort of thing. It's an error if you're passed an
|
|
778 "invalid" byte index.
|
|
779
|
|
780 INC_BYTIND(buf, bi):
|
|
781 Given a byte index (assumed to point at the beginning of a
|
|
782 character), modify that value so it points to the beginning
|
|
783 of the next character.
|
|
784
|
|
785 DEC_BYTIND(buf, bi):
|
|
786 Given a byte index (assumed to point at the beginning of a
|
|
787 character), modify that value so it points to the beginning
|
|
788 of the previous character. Unlike for DEC_CHARPTR(), we can
|
|
789 do all the assert()s because there are sentinels at the
|
|
790 beginning of the gap and the end of the buffer.
|
|
791
|
|
792 BYTIND_INVALID:
|
|
793 A constant representing an invalid Bytind. Valid Bytinds
|
|
794 can never have this value.
|
|
795
|
|
796
|
|
797 (B) Converting between Bufpos's and Bytinds:
|
|
798 --------------------------------------------
|
|
799
|
|
800 bufpos_to_bytind(buf, bu):
|
|
801 Given a Bufpos, return the equivalent Bytind.
|
|
802
|
|
803 bytind_to_bufpos(buf, bi):
|
|
804 Given a Bytind, return the equivalent Bufpos.
|
|
805
|
|
806 make_bufpos(buf, bi):
|
|
807 Given a Bytind, return the equivalent Bufpos as a Lisp Object.
|
|
808 */
|
|
809
|
|
810
|
|
811 /*----------------------------------------------------------------------*/
|
|
812 /* working with byte indices */
|
|
813 /*----------------------------------------------------------------------*/
|
|
814
|
|
815 #ifdef MULE
|
|
816 # define VALID_BYTIND_P(buf, x) \
|
|
817 BUFBYTE_FIRST_BYTE_P (*BI_BUF_BYTE_ADDRESS (buf, x))
|
|
818 #else
|
|
819 # define VALID_BYTIND_P(buf, x) 1
|
|
820 #endif
|
|
821
|
|
822 #ifdef ERROR_CHECK_BUFPOS
|
|
823
|
|
824 # define ASSERT_VALID_BYTIND_UNSAFE(buf, x) do { \
|
|
825 assert (BUFFER_LIVE_P (buf)); \
|
|
826 assert ((x) >= BI_BUF_BEG (buf) && x <= BI_BUF_Z (buf)); \
|
|
827 assert (VALID_BYTIND_P (buf, x)); \
|
|
828 } while (0)
|
|
829 # define ASSERT_VALID_BYTIND_BACKWARD_UNSAFE(buf, x) do { \
|
|
830 assert (BUFFER_LIVE_P (buf)); \
|
|
831 assert ((x) > BI_BUF_BEG (buf) && x <= BI_BUF_Z (buf)); \
|
|
832 assert (VALID_BYTIND_P (buf, x)); \
|
|
833 } while (0)
|
|
834 # define ASSERT_VALID_BYTIND_FORWARD_UNSAFE(buf, x) do { \
|
|
835 assert (BUFFER_LIVE_P (buf)); \
|
|
836 assert ((x) >= BI_BUF_BEG (buf) && x < BI_BUF_Z (buf)); \
|
|
837 assert (VALID_BYTIND_P (buf, x)); \
|
|
838 } while (0)
|
|
839
|
|
840 #else /* not ERROR_CHECK_BUFPOS */
|
|
841 # define ASSERT_VALID_BYTIND_UNSAFE(buf, x)
|
|
842 # define ASSERT_VALID_BYTIND_BACKWARD_UNSAFE(buf, x)
|
|
843 # define ASSERT_VALID_BYTIND_FORWARD_UNSAFE(buf, x)
|
|
844
|
|
845 #endif /* not ERROR_CHECK_BUFPOS */
|
|
846
|
|
847 /* Note that, although the Mule version will work fine for non-Mule
|
|
848 as well (it should reduce down to nothing), we provide a separate
|
|
849 version to avoid compilation warnings and possible non-optimal
|
|
850 results with stupid compilers. */
|
|
851
|
|
852 #ifdef MULE
|
|
853 # define VALIDATE_BYTIND_BACKWARD(buf, x) do { \
|
|
854 Bufbyte *VBB_ptr = BI_BUF_BYTE_ADDRESS (buf, x); \
|
|
855 while (!BUFBYTE_FIRST_BYTE_P (*VBB_ptr)) \
|
|
856 VBB_ptr--, (x)--; \
|
|
857 } while (0)
|
|
858 #else
|
|
859 # define VALIDATE_BYTIND_BACKWARD(buf, x)
|
|
860 #endif
|
|
861
|
|
862 /* Note that, although the Mule version will work fine for non-Mule
|
|
863 as well (it should reduce down to nothing), we provide a separate
|
|
864 version to avoid compilation warnings and possible non-optimal
|
|
865 results with stupid compilers. */
|
|
866
|
|
867 #ifdef MULE
|
|
868 # define VALIDATE_BYTIND_FORWARD(buf, x) do { \
|
|
869 Bufbyte *VBF_ptr = BI_BUF_BYTE_ADDRESS (buf, x); \
|
|
870 while (!BUFBYTE_FIRST_BYTE_P (*VBF_ptr)) \
|
|
871 VBF_ptr++, (x)++; \
|
|
872 } while (0)
|
|
873 #else
|
|
874 # define VALIDATE_BYTIND_FORWARD(buf, x)
|
|
875 #endif
|
|
876
|
|
877 /* Note that in the simplest case (no MULE, no ERROR_CHECK_BUFPOS),
|
|
878 this crap reduces down to simply (x)++. */
|
|
879
|
|
880 #define INC_BYTIND(buf, x) do \
|
|
881 { \
|
|
882 ASSERT_VALID_BYTIND_FORWARD_UNSAFE (buf, x); \
|
|
883 /* Note that we do the increment first to \
|
|
884 make sure that the pointer in \
|
|
885 VALIDATE_BYTIND_FORWARD() ends up on \
|
|
886 the correct side of the gap */ \
|
|
887 (x)++; \
|
|
888 VALIDATE_BYTIND_FORWARD (buf, x); \
|
|
889 } while (0)
|
|
890
|
|
891 /* Note that in the simplest case (no MULE, no ERROR_CHECK_BUFPOS),
|
|
892 this crap reduces down to simply (x)--. */
|
|
893
|
|
894 #define DEC_BYTIND(buf, x) do \
|
|
895 { \
|
|
896 ASSERT_VALID_BYTIND_BACKWARD_UNSAFE (buf, x); \
|
|
897 /* Note that we do the decrement first to \
|
|
898 make sure that the pointer in \
|
|
899 VALIDATE_BYTIND_BACKWARD() ends up on \
|
|
900 the correct side of the gap */ \
|
|
901 (x)--; \
|
|
902 VALIDATE_BYTIND_BACKWARD (buf, x); \
|
|
903 } while (0)
|
|
904
|
|
905 INLINE Bytind prev_bytind (struct buffer *buf, Bytind x);
|
|
906 INLINE Bytind
|
|
907 prev_bytind (struct buffer *buf, Bytind x)
|
|
908 {
|
|
909 DEC_BYTIND (buf, x);
|
|
910 return x;
|
|
911 }
|
|
912
|
|
913 INLINE Bytind next_bytind (struct buffer *buf, Bytind x);
|
|
914 INLINE Bytind
|
|
915 next_bytind (struct buffer *buf, Bytind x)
|
|
916 {
|
|
917 INC_BYTIND (buf, x);
|
|
918 return x;
|
|
919 }
|
|
920
|
|
921 #define BYTIND_INVALID ((Bytind) -1)
|
|
922
|
|
923 /*----------------------------------------------------------------------*/
|
|
924 /* Converting between buffer positions and byte indices */
|
|
925 /*----------------------------------------------------------------------*/
|
|
926
|
|
927 #ifdef MULE
|
|
928
|
|
929 Bytind bufpos_to_bytind_func (struct buffer *buf, Bufpos x);
|
|
930 Bufpos bytind_to_bufpos_func (struct buffer *buf, Bytind x);
|
|
931
|
|
932 /* The basic algorithm we use is to keep track of a known region of
|
|
933 characters in each buffer, all of which are of the same width. We
|
|
934 keep track of the boundaries of the region in both Bufpos and
|
|
935 Bytind coordinates and also keep track of the char width, which
|
|
936 is 1 - 4 bytes. If the position we're translating is not in
|
|
937 the known region, then we invoke a function to update the known
|
|
938 region to surround the position in question. This assumes
|
|
939 locality of reference, which is usually the case.
|
|
940
|
|
941 Note that the function to update the known region can be simple
|
|
942 or complicated depending on how much information we cache.
|
|
943 For the moment, we don't cache any information, and just move
|
|
944 linearly forward or back from the known region, with a few
|
|
945 shortcuts to catch all-ASCII buffers. (Note that this will
|
|
946 thrash with bad locality of reference.) A smarter method would
|
|
947 be to keep some sort of pseudo-extent layer over the buffer;
|
|
948 maybe keep track of the bufpos/bytind correspondence at the
|
|
949 beginning of each line, which would allow us to do a binary
|
|
950 search over the pseudo-extents to narrow things down to the
|
|
951 correct line, at which point you could use a linear movement
|
|
952 method. This would also mesh well with efficiently
|
|
953 implementing a line-numbering scheme.
|
|
954
|
|
955 Note also that we have to multiply or divide by the char width
|
|
956 in order to convert the positions. We do some tricks to avoid
|
|
957 ever actually having to do a multiply or divide, because that
|
|
958 is typically an expensive operation (esp. divide). Multiplying
|
|
959 or dividing by 1, 2, or 4 can be implemented simply as a
|
|
960 shift left or shift right, and we keep track of a shifter value
|
|
961 (0, 1, or 2) indicating how much to shift. Multiplying by 3
|
|
962 can be implemented by doubling and then adding the original
|
|
963 value. Dividing by 3, alas, cannot be implemented in any
|
|
964 simple shift/subtract method, as far as I know; so we just
|
|
965 do a table lookup. For simplicity, we use a table of size
|
|
966 128K, which indexes the "divide-by-3" values for the first
|
|
967 64K non-negative numbers. (Note that we can increase the
|
|
968 size up to 384K, i.e. indexing the first 192K non-negative
|
|
969 numbers, while still using shorts in the array.) This also
|
|
970 means that the size of the known region can be at most
|
|
971 64K for width-three characters.
|
|
972 */
|
|
973
|
|
974 extern short three_to_one_table[];
|
|
975
|
|
976 INLINE int real_bufpos_to_bytind (struct buffer *buf, Bufpos x);
|
|
977 INLINE int
|
|
978 real_bufpos_to_bytind (struct buffer *buf, Bufpos x)
|
|
979 {
|
|
980 if (x >= buf->text->mule_bufmin && x <= buf->text->mule_bufmax)
|
|
981 return (buf->text->mule_bytmin +
|
|
982 ((x - buf->text->mule_bufmin) << buf->text->mule_shifter) +
|
|
983 (buf->text->mule_three_p ? (x - buf->text->mule_bufmin) : 0));
|
|
984 else
|
|
985 return bufpos_to_bytind_func (buf, x);
|
|
986 }
|
|
987
|
|
988 INLINE int real_bytind_to_bufpos (struct buffer *buf, Bytind x);
|
|
989 INLINE int
|
|
990 real_bytind_to_bufpos (struct buffer *buf, Bytind x)
|
|
991 {
|
|
992 if (x >= buf->text->mule_bytmin && x <= buf->text->mule_bytmax)
|
|
993 return (buf->text->mule_bufmin +
|
|
994 ((buf->text->mule_three_p
|
|
995 ? three_to_one_table[x - buf->text->mule_bytmin]
|
|
996 : (x - buf->text->mule_bytmin) >> buf->text->mule_shifter)));
|
|
997 else
|
|
998 return bytind_to_bufpos_func (buf, x);
|
|
999 }
|
|
1000
|
|
1001 #else /* not MULE */
|
|
1002
|
|
1003 # define real_bufpos_to_bytind(buf, x) ((Bytind) x)
|
|
1004 # define real_bytind_to_bufpos(buf, x) ((Bufpos) x)
|
|
1005
|
|
1006 #endif /* not MULE */
|
|
1007
|
|
1008 #ifdef ERROR_CHECK_BUFPOS
|
|
1009
|
|
1010 Bytind bufpos_to_bytind (struct buffer *buf, Bufpos x);
|
|
1011 Bufpos bytind_to_bufpos (struct buffer *buf, Bytind x);
|
|
1012
|
|
1013 #else /* not ERROR_CHECK_BUFPOS */
|
|
1014
|
|
1015 #define bufpos_to_bytind real_bufpos_to_bytind
|
|
1016 #define bytind_to_bufpos real_bytind_to_bufpos
|
|
1017
|
|
1018 #endif /* not ERROR_CHECK_BUFPOS */
|
|
1019
|
|
1020 #define make_bufpos(buf, ind) make_int (bytind_to_bufpos (buf, ind))
|
|
1021
|
|
1022 /*----------------------------------------------------------------------*/
|
|
1023 /* Converting between buffer bytes and Emacs characters */
|
|
1024 /*----------------------------------------------------------------------*/
|
|
1025
|
|
1026 /* The character at position POS in buffer. */
|
|
1027 #define BI_BUF_FETCH_CHAR(buf, pos) \
|
|
1028 charptr_emchar (BI_BUF_BYTE_ADDRESS (buf, pos))
|
|
1029 #define BUF_FETCH_CHAR(buf, pos) \
|
|
1030 BI_BUF_FETCH_CHAR (buf, bufpos_to_bytind (buf, pos))
|
|
1031
|
|
1032 /* The character at position POS in buffer, as a string. This is
|
|
1033 equivalent to set_charptr_emchar (str, BUF_FETCH_CHAR (buf, pos))
|
|
1034 but is faster for Mule. */
|
|
1035
|
|
1036 # define BI_BUF_CHARPTR_COPY_CHAR(buf, pos, str) \
|
|
1037 charptr_copy_char (BI_BUF_BYTE_ADDRESS (buf, pos), str)
|
|
1038 #define BUF_CHARPTR_COPY_CHAR(buf, pos, str) \
|
|
1039 BI_BUF_CHARPTR_COPY_CHAR (buf, bufpos_to_bytind (buf, pos), str)
|
|
1040
|
|
1041
|
|
1042
|
|
1043
|
|
1044 /************************************************************************/
|
|
1045 /* */
|
|
1046 /* working with externally-formatted data */
|
|
1047 /* */
|
|
1048 /************************************************************************/
|
|
1049
|
|
1050 /* Sometimes strings need to be converted into one or another
|
|
1051 external format, for passing to a library function. (Note
|
|
1052 that we encapsulate and automatically convert the arguments
|
|
1053 of some functions, but not others.) At times this conversion
|
|
1054 also has to go the other way -- i.e. when we get external-
|
|
1055 format strings back from a library function.
|
|
1056 */
|
|
1057
|
|
1058 #ifdef FILE_CODING
|
|
1059
|
|
1060 /* WARNING: These use a static buffer. This can lead to disaster if
|
|
1061 these functions are not used *very* carefully. Under normal
|
|
1062 circumstances, do not call these functions; call the front ends
|
|
1063 below. */
|
|
1064
|
|
1065 Extbyte *convert_to_external_format (CONST Bufbyte *ptr,
|
|
1066 Bytecount len,
|
|
1067 Extcount *len_out,
|
|
1068 enum external_data_format fmt);
|
|
1069 Bufbyte *convert_from_external_format (CONST Extbyte *ptr,
|
|
1070 Extcount len,
|
|
1071 Bytecount *len_out,
|
|
1072 enum external_data_format fmt);
|
|
1073
|
|
1074 #else /* ! MULE */
|
|
1075
|
|
1076 #define convert_to_external_format(ptr, len, len_out, fmt) \
|
|
1077 (*(len_out) = (int) (len), (Extbyte *) (ptr))
|
|
1078 #define convert_from_external_format(ptr, len, len_out, fmt) \
|
|
1079 (*(len_out) = (Bytecount) (len), (Bufbyte *) (ptr))
|
|
1080
|
|
1081 #endif /* ! MULE */
|
|
1082
|
|
1083 /* In all of the following macros we use the following general principles:
|
|
1084
|
|
1085 -- Functions that work with charptr's accept two sorts of charptr's:
|
|
1086
|
|
1087 a) Pointers to memory with a length specified. The pointer will be
|
|
1088 fundamentally of type `unsigned char *' (although labelled
|
|
1089 as `Bufbyte *' for internal-format data and `Extbyte *' for
|
|
1090 external-format data) and the length will be fundamentally of
|
|
1091 type `int' (although labelled as `Bytecount' for internal-format
|
|
1092 data and `Extcount' for external-format data). The length is
|
|
1093 always a count in bytes.
|
|
1094 b) Zero-terminated pointers; no length specified. The pointer
|
|
1095 is of type `char *', whether the data pointed to is internal-format
|
|
1096 or external-format. These sorts of pointers are available for
|
|
1097 convenience in working with C library functions and literal
|
|
1098 strings. In general you should use these sorts of pointers only
|
|
1099 to interface to library routines and not for general manipulation,
|
|
1100 as you are liable to lose embedded nulls and such. This could
|
|
1101 be a big problem for routines that want Unicode-formatted data,
|
|
1102 which is likely to have lots of embedded nulls in it.
|
|
1103 (In the real world, though, external Unicode data will be UTF-8,
|
|
1104 which will not have embedded nulls and is ASCII-compatible - martin)
|
|
1105
|
|
1106 -- Functions that work with Lisp strings accept strings as Lisp Objects
|
|
1107 (as opposed to the `struct Lisp_String *' for some of the other
|
|
1108 string accessors). This is for convenience in working with the
|
|
1109 functions, as otherwise you will almost always have to call
|
|
1110 XSTRING() on the object.
|
|
1111
|
|
1112 -- Functions that work with charptr's are not guaranteed to copy
|
|
1113 their data into alloca()ed space. Functions that work with
|
|
1114 Lisp strings are, however. The reason is that Lisp strings can
|
|
1115 be relocated any time a GC happens, and it could happen at some
|
|
1116 rather unexpected times. The internal-external conversion is
|
|
1117 rarely done in time-critical functions, and so the slight
|
|
1118 extra time required for alloca() and copy is well-worth the
|
|
1119 safety of knowing your string data won't be relocated out from
|
|
1120 under you.
|
|
1121 */
|
|
1122
|
|
1123
|
|
1124 /* Maybe convert charptr's data into ext-format and store the result in
|
|
1125 alloca()'ed space.
|
|
1126
|
|
1127 You may wonder why this is written in this fashion and not as a
|
|
1128 function call. With a little trickery it could certainly be
|
|
1129 written this way, but it won't work because of those DAMN GCC WANKERS
|
|
1130 who couldn't be bothered to handle alloca() properly on the x86
|
|
1131 architecture. (If you put a call to alloca() in the argument to
|
|
1132 a function call, the stack space gets allocated right in the
|
|
1133 middle of the arguments to the function call and you are unbelievably
|
|
1134 hosed.) */
|
|
1135
|
|
1136 #ifdef MULE
|
|
1137
|
|
1138 #define GET_CHARPTR_EXT_DATA_ALLOCA(ptr, len, fmt, ptr_out, len_out) do \
|
|
1139 { \
|
|
1140 Bytecount gceda_len_in = (Bytecount) (len); \
|
|
1141 Extcount gceda_len_out; \
|
|
1142 CONST Bufbyte *gceda_ptr_in = (ptr); \
|
|
1143 Extbyte *gceda_ptr_out = \
|
|
1144 convert_to_external_format (gceda_ptr_in, gceda_len_in, \
|
|
1145 &gceda_len_out, fmt); \
|
|
1146 /* If the new string is identical to the old (will be the case most \
|
|
1147 of the time), just return the same string back. This saves \
|
|
1148 on alloca()ing, which can be useful on C alloca() machines and \
|
|
1149 on stack-space-challenged environments. */ \
|
|
1150 \
|
|
1151 if (gceda_len_in == gceda_len_out && \
|
|
1152 !memcmp (gceda_ptr_in, gceda_ptr_out, gceda_len_out)) \
|
|
1153 { \
|
|
1154 (ptr_out) = (Extbyte *) gceda_ptr_in; \
|
|
1155 } \
|
|
1156 else \
|
|
1157 { \
|
|
1158 (ptr_out) = (Extbyte *) alloca (1 + gceda_len_out); \
|
|
1159 memcpy ((void *) ptr_out, gceda_ptr_out, 1 + gceda_len_out); \
|
|
1160 } \
|
|
1161 (len_out) = gceda_len_out; \
|
|
1162 } while (0)
|
|
1163
|
|
1164 #else /* ! MULE */
|
|
1165
|
|
1166 #define GET_CHARPTR_EXT_DATA_ALLOCA(ptr, len, fmt, ptr_out, len_out) do \
|
|
1167 { \
|
|
1168 (ptr_out) = (Extbyte *) (ptr); \
|
|
1169 (len_out) = (Extcount) (len); \
|
|
1170 } while (0)
|
|
1171
|
|
1172 #endif /* ! MULE */
|
|
1173
|
|
1174 #define GET_C_CHARPTR_EXT_DATA_ALLOCA(ptr, fmt, ptr_out) do \
|
|
1175 { \
|
|
1176 Extcount gcceda_ignored_len; \
|
|
1177 CONST Bufbyte *gcceda_ptr_in = (CONST Bufbyte *) (ptr); \
|
|
1178 Extbyte *gcceda_ptr_out; \
|
|
1179 \
|
|
1180 GET_CHARPTR_EXT_DATA_ALLOCA (gcceda_ptr_in, \
|
|
1181 strlen ((char *) gcceda_ptr_in), \
|
|
1182 fmt, \
|
|
1183 gcceda_ptr_out, \
|
|
1184 gcceda_ignored_len); \
|
|
1185 (ptr_out) = (char *) gcceda_ptr_out; \
|
|
1186 } while (0)
|
|
1187
|
|
1188 #define GET_C_CHARPTR_EXT_BINARY_DATA_ALLOCA(ptr, ptr_out) \
|
|
1189 GET_C_CHARPTR_EXT_DATA_ALLOCA (ptr, FORMAT_BINARY, ptr_out)
|
|
1190 #define GET_CHARPTR_EXT_BINARY_DATA_ALLOCA(ptr, len, ptr_out, len_out) \
|
|
1191 GET_CHARPTR_EXT_DATA_ALLOCA (ptr, len, FORMAT_BINARY, ptr_out, len_out)
|
|
1192
|
|
1193 #define GET_C_CHARPTR_EXT_FILENAME_DATA_ALLOCA(ptr, ptr_out) \
|
|
1194 GET_C_CHARPTR_EXT_DATA_ALLOCA (ptr, FORMAT_FILENAME, ptr_out)
|
|
1195 #define GET_CHARPTR_EXT_FILENAME_DATA_ALLOCA(ptr, len, ptr_out, len_out) \
|
|
1196 GET_CHARPTR_EXT_DATA_ALLOCA (ptr, len, FORMAT_FILENAME, ptr_out, len_out)
|
|
1197
|
|
1198 #define GET_C_CHARPTR_EXT_CTEXT_DATA_ALLOCA(ptr, ptr_out) \
|
|
1199 GET_C_CHARPTR_EXT_DATA_ALLOCA (ptr, FORMAT_CTEXT, ptr_out)
|
|
1200 #define GET_CHARPTR_EXT_CTEXT_DATA_ALLOCA(ptr, len, ptr_out, len_out) \
|
|
1201 GET_CHARPTR_EXT_DATA_ALLOCA (ptr, len, FORMAT_CTEXT, ptr_out, len_out)
|
|
1202
|
|
1203 /* Maybe convert external charptr's data into internal format and store
|
|
1204 the result in alloca()'ed space.
|
|
1205
|
|
1206 You may wonder why this is written in this fashion and not as a
|
|
1207 function call. With a little trickery it could certainly be
|
|
1208 written this way, but it won't work because of those DAMN GCC WANKERS
|
|
1209 who couldn't be bothered to handle alloca() properly on the x86
|
|
1210 architecture. (If you put a call to alloca() in the argument to
|
|
1211 a function call, the stack space gets allocated right in the
|
|
1212 middle of the arguments to the function call and you are unbelievably
|
|
1213 hosed.) */
|
|
1214
|
|
1215 #ifdef MULE
|
|
1216
|
|
1217 #define GET_CHARPTR_INT_DATA_ALLOCA(ptr, len, fmt, ptr_out, len_out) do \
|
|
1218 { \
|
|
1219 Extcount gcida_len_in = (Extcount) (len); \
|
|
1220 Bytecount gcida_len_out; \
|
|
1221 CONST Extbyte *gcida_ptr_in = (ptr); \
|
|
1222 Bufbyte *gcida_ptr_out = \
|
|
1223 convert_from_external_format (gcida_ptr_in, gcida_len_in, \
|
|
1224 &gcida_len_out, fmt); \
|
|
1225 /* If the new string is identical to the old (will be the case most \
|
|
1226 of the time), just return the same string back. This saves \
|
|
1227 on alloca()ing, which can be useful on C alloca() machines and \
|
|
1228 on stack-space-challenged environments. */ \
|
|
1229 \
|
|
1230 if (gcida_len_in == gcida_len_out && \
|
|
1231 !memcmp (gcida_ptr_in, gcida_ptr_out, gcida_len_out)) \
|
|
1232 { \
|
|
1233 (ptr_out) = (Bufbyte *) gcida_ptr_in; \
|
|
1234 } \
|
|
1235 else \
|
|
1236 { \
|
|
1237 (ptr_out) = (Extbyte *) alloca (1 + gcida_len_out); \
|
|
1238 memcpy ((void *) ptr_out, gcida_ptr_out, 1 + gcida_len_out); \
|
|
1239 } \
|
|
1240 (len_out) = gcida_len_out; \
|
|
1241 } while (0)
|
|
1242
|
|
1243 #else /* ! MULE */
|
|
1244
|
|
1245 #define GET_CHARPTR_INT_DATA_ALLOCA(ptr, len, fmt, ptr_out, len_out) do \
|
|
1246 { \
|
|
1247 (ptr_out) = (Bufbyte *) (ptr); \
|
|
1248 (len_out) = (Bytecount) (len); \
|
|
1249 } while (0)
|
|
1250
|
|
1251 #endif /* ! MULE */
|
|
1252
|
|
1253 #define GET_C_CHARPTR_INT_DATA_ALLOCA(ptr, fmt, ptr_out) do \
|
|
1254 { \
|
|
1255 Bytecount gccida_ignored_len; \
|
|
1256 CONST Extbyte *gccida_ptr_in = (CONST Extbyte *) (ptr); \
|
|
1257 Bufbyte *gccida_ptr_out; \
|
|
1258 \
|
|
1259 GET_CHARPTR_INT_DATA_ALLOCA (gccida_ptr_in, \
|
|
1260 strlen ((char *) gccida_ptr_in), \
|
|
1261 fmt, \
|
|
1262 gccida_ptr_out, \
|
|
1263 gccida_ignored_len); \
|
|
1264 (ptr_out) = gccida_ptr_out; \
|
|
1265 } while (0)
|
|
1266
|
|
1267 #define GET_C_CHARPTR_INT_BINARY_DATA_ALLOCA(ptr, ptr_out) \
|
|
1268 GET_C_CHARPTR_INT_DATA_ALLOCA (ptr, FORMAT_BINARY, ptr_out)
|
|
1269 #define GET_CHARPTR_INT_BINARY_DATA_ALLOCA(ptr, len, ptr_out, len_out) \
|
|
1270 GET_CHARPTR_INT_DATA_ALLOCA (ptr, len, FORMAT_BINARY, ptr_out, len_out)
|
|
1271
|
|
1272 #define GET_C_CHARPTR_INT_FILENAME_DATA_ALLOCA(ptr, ptr_out) \
|
|
1273 GET_C_CHARPTR_INT_DATA_ALLOCA (ptr, FORMAT_FILENAME, ptr_out)
|
|
1274 #define GET_CHARPTR_INT_FILENAME_DATA_ALLOCA(ptr, len, ptr_out, len_out) \
|
|
1275 GET_CHARPTR_INT_DATA_ALLOCA (ptr, len, FORMAT_FILENAME, ptr_out, len_out)
|
|
1276
|
|
1277 #define GET_C_CHARPTR_INT_CTEXT_DATA_ALLOCA(ptr, ptr_out) \
|
|
1278 GET_C_CHARPTR_INT_DATA_ALLOCA (ptr, FORMAT_CTEXT, ptr_out)
|
|
1279 #define GET_CHARPTR_INT_CTEXT_DATA_ALLOCA(ptr, len, ptr_out, len_out) \
|
|
1280 GET_CHARPTR_INT_DATA_ALLOCA (ptr, len, FORMAT_CTEXT, ptr_out, len_out)
|
|
1281
|
|
1282
|
|
1283 /* Maybe convert Lisp string's data into ext-format and store the result in
|
|
1284 alloca()'ed space.
|
|
1285
|
|
1286 You may wonder why this is written in this fashion and not as a
|
|
1287 function call. With a little trickery it could certainly be
|
|
1288 written this way, but it won't work because of those DAMN GCC WANKERS
|
|
1289 who couldn't be bothered to handle alloca() properly on the x86
|
|
1290 architecture. (If you put a call to alloca() in the argument to
|
|
1291 a function call, the stack space gets allocated right in the
|
|
1292 middle of the arguments to the function call and you are unbelievably
|
|
1293 hosed.) */
|
|
1294
|
|
1295 #define GET_STRING_EXT_DATA_ALLOCA(s, fmt, ptr_out, len_out) do \
|
|
1296 { \
|
|
1297 Extcount gseda_len_out; \
|
|
1298 struct Lisp_String *gseda_s = XSTRING (s); \
|
|
1299 Extbyte * gseda_ptr_out = \
|
|
1300 convert_to_external_format (string_data (gseda_s), \
|
|
1301 string_length (gseda_s), \
|
|
1302 &gseda_len_out, fmt); \
|
|
1303 (ptr_out) = (Extbyte *) alloca (1 + gseda_len_out); \
|
|
1304 memcpy ((void *) ptr_out, gseda_ptr_out, 1 + gseda_len_out); \
|
|
1305 (len_out) = gseda_len_out; \
|
|
1306 } while (0)
|
|
1307
|
|
1308
|
|
1309 #define GET_C_STRING_EXT_DATA_ALLOCA(s, fmt, ptr_out) do \
|
|
1310 { \
|
|
1311 Extcount gcseda_ignored_len; \
|
|
1312 Extbyte *gcseda_ptr_out; \
|
|
1313 \
|
|
1314 GET_STRING_EXT_DATA_ALLOCA (s, fmt, gcseda_ptr_out, \
|
|
1315 gcseda_ignored_len); \
|
|
1316 (ptr_out) = (char *) gcseda_ptr_out; \
|
|
1317 } while (0)
|
|
1318
|
|
1319 #define GET_STRING_BINARY_DATA_ALLOCA(s, ptr_out, len_out) \
|
|
1320 GET_STRING_EXT_DATA_ALLOCA (s, FORMAT_BINARY, ptr_out, len_out)
|
|
1321 #define GET_C_STRING_BINARY_DATA_ALLOCA(s, ptr_out) \
|
|
1322 GET_C_STRING_EXT_DATA_ALLOCA (s, FORMAT_BINARY, ptr_out)
|
|
1323
|
|
1324 #define GET_STRING_FILENAME_DATA_ALLOCA(s, ptr_out, len_out) \
|
|
1325 GET_STRING_EXT_DATA_ALLOCA (s, FORMAT_FILENAME, ptr_out, len_out)
|
|
1326 #define GET_C_STRING_FILENAME_DATA_ALLOCA(s, ptr_out) \
|
|
1327 GET_C_STRING_EXT_DATA_ALLOCA (s, FORMAT_FILENAME, ptr_out)
|
|
1328
|
|
1329 #define GET_STRING_OS_DATA_ALLOCA(s, ptr_out, len_out) \
|
|
1330 GET_STRING_EXT_DATA_ALLOCA (s, FORMAT_OS, ptr_out, len_out)
|
|
1331 #define GET_C_STRING_OS_DATA_ALLOCA(s, ptr_out) \
|
|
1332 GET_C_STRING_EXT_DATA_ALLOCA (s, FORMAT_OS, ptr_out)
|
|
1333
|
|
1334 #define GET_STRING_CTEXT_DATA_ALLOCA(s, ptr_out, len_out) \
|
|
1335 GET_STRING_EXT_DATA_ALLOCA (s, FORMAT_CTEXT, ptr_out, len_out)
|
|
1336 #define GET_C_STRING_CTEXT_DATA_ALLOCA(s, ptr_out) \
|
|
1337 GET_C_STRING_EXT_DATA_ALLOCA (s, FORMAT_CTEXT, ptr_out)
|
|
1338
|
|
1339
|
|
1340
|
|
1341 /************************************************************************/
|
|
1342 /* */
|
|
1343 /* fake charset functions */
|
|
1344 /* */
|
|
1345 /************************************************************************/
|
|
1346
|
|
1347 /* used when MULE is not defined, so that Charset-type stuff can still
|
|
1348 be done */
|
|
1349
|
|
1350 #ifndef MULE
|
|
1351
|
|
1352 #define Vcharset_ascii Qnil
|
|
1353
|
|
1354 #define CHAR_CHARSET(ch) Vcharset_ascii
|
|
1355 #define CHAR_LEADING_BYTE(ch) LEADING_BYTE_ASCII
|
|
1356 #define LEADING_BYTE_ASCII 0x80
|
|
1357 #define NUM_LEADING_BYTES 1
|
|
1358 #define MIN_LEADING_BYTE 0x80
|
|
1359 #define CHARSETP(cs) 1
|
|
1360 #define CHARSET_BY_LEADING_BYTE(lb) Vcharset_ascii
|
|
1361 #define XCHARSET_LEADING_BYTE(cs) LEADING_BYTE_ASCII
|
|
1362 #define XCHARSET_GRAPHIC(cs) -1
|
|
1363 #define XCHARSET_COLUMNS(cs) 1
|
|
1364 #define XCHARSET_DIMENSION(cs) 1
|
|
1365 #define REP_BYTES_BY_FIRST_BYTE(fb) 1
|
|
1366 #define BREAKUP_CHAR(ch, charset, byte1, byte2) do { \
|
|
1367 (charset) = Vcharset_ascii; \
|
|
1368 (byte1) = (ch); \
|
|
1369 (byte2) = 0; \
|
|
1370 } while (0)
|
|
1371 #define BYTE_ASCII_P(byte) 1
|
|
1372
|
|
1373 #endif /* ! MULE */
|
|
1374
|
|
1375 /************************************************************************/
|
|
1376 /* */
|
|
1377 /* higher-level buffer-position functions */
|
|
1378 /* */
|
|
1379 /************************************************************************/
|
|
1380
|
|
1381 /*----------------------------------------------------------------------*/
|
|
1382 /* Settor macros for important positions in a buffer */
|
|
1383 /*----------------------------------------------------------------------*/
|
|
1384
|
|
1385 /* Set beginning of accessible range of buffer. */
|
|
1386 #define SET_BOTH_BUF_BEGV(buf, val, bival) \
|
|
1387 do \
|
|
1388 { \
|
|
1389 (buf)->begv = (bival); \
|
|
1390 (buf)->bufbegv = (val); \
|
|
1391 } while (0)
|
|
1392
|
|
1393 /* Set end of accessible range of buffer. */
|
|
1394 #define SET_BOTH_BUF_ZV(buf, val, bival) \
|
|
1395 do \
|
|
1396 { \
|
|
1397 (buf)->zv = (bival); \
|
|
1398 (buf)->bufzv = (val); \
|
|
1399 } while (0)
|
|
1400
|
|
1401 /* Set point. */
|
|
1402 /* Since BEGV and ZV are almost never set, it's reasonable to enforce
|
|
1403 the restriction that the Bufpos and Bytind values must both be
|
|
1404 specified. However, point is set in lots and lots of places. So
|
|
1405 we provide the ability to specify both (for efficiency) or just
|
|
1406 one. */
|
|
1407 #define BOTH_BUF_SET_PT(buf, val, bival) set_buffer_point (buf, val, bival)
|
|
1408 #define BI_BUF_SET_PT(buf, bival) \
|
|
1409 BOTH_BUF_SET_PT (buf, bytind_to_bufpos (buf, bival), bival)
|
|
1410 #define BUF_SET_PT(buf, value) \
|
|
1411 BOTH_BUF_SET_PT (buf, value, bufpos_to_bytind (buf, value))
|
|
1412
|
|
1413
|
|
1414 #if 0 /* FSFmacs */
|
|
1415 /* These macros exist in FSFmacs because SET_PT() in FSFmacs incorrectly
|
|
1416 does too much stuff, such as moving out of invisible extents. */
|
|
1417 #define TEMP_SET_PT(position) (temp_set_point ((position), current_buffer))
|
|
1418 #define SET_BUF_PT(buf, value) ((buf)->pt = (value))
|
|
1419 #endif /* FSFmacs */
|
|
1420
|
|
1421 /*----------------------------------------------------------------------*/
|
|
1422 /* Miscellaneous buffer values */
|
|
1423 /*----------------------------------------------------------------------*/
|
|
1424
|
|
1425 /* Number of characters in buffer */
|
|
1426 #define BUF_SIZE(buf) (BUF_Z (buf) - BUF_BEG (buf))
|
|
1427
|
|
1428 /* Is this buffer narrowed? */
|
|
1429 #define BUF_NARROWED(buf) \
|
|
1430 ((BI_BUF_BEGV (buf) != BI_BUF_BEG (buf)) || \
|
|
1431 (BI_BUF_ZV (buf) != BI_BUF_Z (buf)))
|
|
1432
|
|
1433 /* Modification count. */
|
|
1434 #define BUF_MODIFF(buf) ((buf)->text->modiff)
|
|
1435
|
|
1436 /* Saved modification count. */
|
|
1437 #define BUF_SAVE_MODIFF(buf) ((buf)->text->save_modiff)
|
|
1438
|
|
1439 /* Face changed. */
|
|
1440 #define BUF_FACECHANGE(buf) ((buf)->face_change)
|
|
1441
|
|
1442 #define POINT_MARKER_P(marker) \
|
|
1443 (XMARKER (marker)->buffer != 0 && \
|
|
1444 EQ ((marker), XMARKER (marker)->buffer->point_marker))
|
|
1445
|
|
1446 #define BUF_MARKERS(buf) ((buf)->markers)
|
|
1447
|
|
1448 /* WARNING:
|
|
1449
|
|
1450 The new definitions of CEILING_OF() and FLOOR_OF() differ semantically
|
|
1451 from the old ones (in FSF Emacs and XEmacs 19.11 and before).
|
|
1452 Conversion is as follows:
|
|
1453
|
|
1454 OLD_BI_CEILING_OF(n) = NEW_BI_CEILING_OF(n) - 1
|
|
1455 OLD_BI_FLOOR_OF(n) = NEW_BI_FLOOR_OF(n + 1)
|
|
1456
|
|
1457 The definitions were changed because the new definitions are more
|
|
1458 consistent with the way everything else works in Emacs.
|
|
1459 */
|
|
1460
|
|
1461 /* Properties of CEILING_OF and FLOOR_OF (also apply to BI_ variants):
|
|
1462
|
|
1463 1) FLOOR_OF (CEILING_OF (n)) = n
|
|
1464 CEILING_OF (FLOOR_OF (n)) = n
|
|
1465
|
|
1466 2) CEILING_OF (n) = n if and only if n = ZV
|
|
1467 FLOOR_OF (n) = n if and only if n = BEGV
|
|
1468
|
|
1469 3) CEILING_OF (CEILING_OF (n)) = ZV
|
|
1470 FLOOR_OF (FLOOR_OF (n)) = BEGV
|
|
1471
|
|
1472 4) The bytes in the regions
|
|
1473
|
|
1474 [BYTE_ADDRESS (n), BYTE_ADDRESS_BEFORE (CEILING_OF (n))]
|
|
1475
|
|
1476 and
|
|
1477
|
|
1478 [BYTE_ADDRESS (FLOOR_OF (n)), BYTE_ADDRESS_BEFORE (n)]
|
|
1479
|
|
1480 are contiguous.
|
|
1481 */
|
|
1482
|
|
1483
|
|
1484 /* Return the maximum index in the buffer it is safe to scan forwards
|
|
1485 past N to. This is used to prevent buffer scans from running into
|
|
1486 the gap (e.g. search.c). All characters between N and CEILING_OF(N)
|
|
1487 are located contiguous in memory. Note that the character *at*
|
|
1488 CEILING_OF(N) is not contiguous in memory. */
|
|
1489 #define BI_BUF_CEILING_OF(b, n) \
|
|
1490 ((n) < (b)->text->gpt && (b)->text->gpt < BI_BUF_ZV (b) ? \
|
|
1491 (b)->text->gpt : BI_BUF_ZV (b))
|
|
1492 #define BUF_CEILING_OF(b, n) \
|
|
1493 bytind_to_bufpos (b, BI_BUF_CEILING_OF (b, bufpos_to_bytind (b, n)))
|
|
1494
|
|
1495 /* Return the minimum index in the buffer it is safe to scan backwards
|
|
1496 past N to. All characters between FLOOR_OF(N) and N are located
|
|
1497 contiguous in memory. Note that the character *at* N may not be
|
|
1498 contiguous in memory. */
|
|
1499 #define BI_BUF_FLOOR_OF(b, n) \
|
|
1500 (BI_BUF_BEGV (b) < (b)->text->gpt && (b)->text->gpt < (n) ? \
|
|
1501 (b)->text->gpt : BI_BUF_BEGV (b))
|
|
1502 #define BUF_FLOOR_OF(b, n) \
|
|
1503 bytind_to_bufpos (b, BI_BUF_FLOOR_OF (b, bufpos_to_bytind (b, n)))
|
|
1504
|
|
1505 #define BI_BUF_CEILING_OF_IGNORE_ACCESSIBLE(b, n) \
|
|
1506 ((n) < (b)->text->gpt && (b)->text->gpt < BI_BUF_Z (b) ? \
|
|
1507 (b)->text->gpt : BI_BUF_Z (b))
|
|
1508 #define BUF_CEILING_OF_IGNORE_ACCESSIBLE(b, n) \
|
|
1509 bytind_to_bufpos \
|
|
1510 (b, BI_BUF_CEILING_OF_IGNORE_ACCESSIBLE (b, bufpos_to_bytind (b, n)))
|
|
1511
|
|
1512 #define BI_BUF_FLOOR_OF_IGNORE_ACCESSIBLE(b, n) \
|
|
1513 (BI_BUF_BEG (b) < (b)->text->gpt && (b)->text->gpt < (n) ? \
|
|
1514 (b)->text->gpt : BI_BUF_BEG (b))
|
|
1515 #define BUF_FLOOR_OF_IGNORE_ACCESSIBLE(b, n) \
|
|
1516 bytind_to_bufpos \
|
|
1517 (b, BI_BUF_FLOOR_OF_IGNORE_ACCESSIBLE (b, bufpos_to_bytind (b, n)))
|
|
1518
|
|
1519
|
|
1520 extern struct buffer *current_buffer;
|
|
1521
|
|
1522 /* This is the initial (startup) directory, as used for the *scratch* buffer.
|
|
1523 We're making this a global to make others aware of the startup directory.
|
|
1524 `initial_directory' is stored in external format.
|
|
1525 */
|
|
1526 extern char initial_directory[];
|
|
1527 extern void init_initial_directory (void); /* initialize initial_directory */
|
|
1528
|
|
1529 EXFUN (Fbuffer_disable_undo, 1);
|
|
1530 EXFUN (Fbuffer_modified_p, 1);
|
|
1531 EXFUN (Fbuffer_name, 1);
|
|
1532 EXFUN (Fcurrent_buffer, 0);
|
|
1533 EXFUN (Ferase_buffer, 1);
|
|
1534 EXFUN (Fget_buffer, 1);
|
|
1535 EXFUN (Fget_buffer_create, 1);
|
|
1536 EXFUN (Fget_file_buffer, 1);
|
|
1537 EXFUN (Fkill_buffer, 1);
|
|
1538 EXFUN (Fother_buffer, 3);
|
|
1539 EXFUN (Frecord_buffer, 1);
|
|
1540 EXFUN (Fset_buffer, 1);
|
|
1541 EXFUN (Fset_buffer_modified_p, 2);
|
|
1542
|
|
1543 extern Lisp_Object QSscratch, Qafter_change_function, Qafter_change_functions;
|
|
1544 extern Lisp_Object Qbefore_change_function, Qbefore_change_functions;
|
|
1545 extern Lisp_Object Qbuffer_or_string_p, Qdefault_directory, Qfirst_change_hook;
|
|
1546 extern Lisp_Object Qpermanent_local, Vafter_change_function;
|
|
1547 extern Lisp_Object Vafter_change_functions, Vbefore_change_function;
|
|
1548 extern Lisp_Object Vbefore_change_functions, Vbuffer_alist, Vbuffer_defaults;
|
|
1549 extern Lisp_Object Vinhibit_read_only, Vtransient_mark_mode;
|
|
1550
|
|
1551 /* This structure marks which slots in a buffer have corresponding
|
|
1552 default values in Vbuffer_defaults.
|
|
1553 Each such slot has a nonzero value in this structure.
|
|
1554 The value has only one nonzero bit.
|
|
1555
|
|
1556 When a buffer has its own local value for a slot,
|
|
1557 the bit for that slot (found in the same slot in this structure)
|
|
1558 is turned on in the buffer's local_var_flags slot.
|
|
1559
|
|
1560 If a slot in this structure is zero, then even though there may
|
|
1561 be a DEFVAR_BUFFER_LOCAL for the slot, there is no default value for it;
|
|
1562 and the corresponding slot in Vbuffer_defaults is not used. */
|
|
1563
|
|
1564 extern struct buffer buffer_local_flags;
|
|
1565
|
|
1566
|
|
1567 /* Allocation of buffer data. */
|
|
1568
|
|
1569 #ifdef REL_ALLOC
|
|
1570
|
|
1571 char *r_alloc (unsigned char **, unsigned long);
|
|
1572 char *r_re_alloc (unsigned char **, unsigned long);
|
|
1573 void r_alloc_free (unsigned char **);
|
|
1574
|
|
1575 #define BUFFER_ALLOC(data, size) \
|
|
1576 ((Bufbyte *) r_alloc ((unsigned char **) &data, (size) * sizeof(Bufbyte)))
|
|
1577 #define BUFFER_REALLOC(data, size) \
|
|
1578 ((Bufbyte *) r_re_alloc ((unsigned char **) &data, (size) * sizeof(Bufbyte)))
|
|
1579 #define BUFFER_FREE(data) r_alloc_free ((unsigned char **) &(data))
|
|
1580 #define R_ALLOC_DECLARE(var,data) r_alloc_declare (&(var), data)
|
|
1581
|
|
1582 #else /* !REL_ALLOC */
|
|
1583
|
|
1584 #define BUFFER_ALLOC(data,size)\
|
|
1585 (data = xnew_array (Bufbyte, size))
|
|
1586 #define BUFFER_REALLOC(data,size)\
|
|
1587 ((Bufbyte *) xrealloc (data, (size) * sizeof(Bufbyte)))
|
|
1588 /* Avoid excess parentheses, or syntax errors may rear their heads. */
|
|
1589 #define BUFFER_FREE(data) xfree (data)
|
|
1590 #define R_ALLOC_DECLARE(var,data)
|
|
1591
|
|
1592 #endif /* !REL_ALLOC */
|
|
1593
|
|
1594 extern Lisp_Object Vbuffer_alist;
|
|
1595 void set_buffer_internal (struct buffer *b);
|
|
1596 struct buffer *decode_buffer (Lisp_Object buffer, int allow_string);
|
|
1597
|
|
1598 /* from editfns.c */
|
|
1599 void widen_buffer (struct buffer *b, int no_clip);
|
|
1600 int beginning_of_line_p (struct buffer *b, Bufpos pt);
|
|
1601
|
|
1602 /* from insdel.c */
|
|
1603 void set_buffer_point (struct buffer *buf, Bufpos pos, Bytind bipos);
|
|
1604 void find_charsets_in_bufbyte_string (unsigned char *charsets,
|
|
1605 CONST Bufbyte *str,
|
|
1606 Bytecount len);
|
|
1607 void find_charsets_in_emchar_string (unsigned char *charsets,
|
|
1608 CONST Emchar *str,
|
|
1609 Charcount len);
|
|
1610 int bufbyte_string_displayed_columns (CONST Bufbyte *str, Bytecount len);
|
|
1611 int emchar_string_displayed_columns (CONST Emchar *str, Charcount len);
|
|
1612 void convert_bufbyte_string_into_emchar_dynarr (CONST Bufbyte *str,
|
|
1613 Bytecount len,
|
|
1614 Emchar_dynarr *dyn);
|
|
1615 Charcount convert_bufbyte_string_into_emchar_string (CONST Bufbyte *str,
|
|
1616 Bytecount len,
|
|
1617 Emchar *arr);
|
|
1618 void convert_emchar_string_into_bufbyte_dynarr (Emchar *arr, int nels,
|
|
1619 Bufbyte_dynarr *dyn);
|
|
1620 Bufbyte *convert_emchar_string_into_malloced_string (Emchar *arr, int nels,
|
|
1621 Bytecount *len_out);
|
|
1622 /* from marker.c */
|
|
1623 void init_buffer_markers (struct buffer *b);
|
|
1624 void uninit_buffer_markers (struct buffer *b);
|
|
1625
|
|
1626 /* flags for get_buffer_pos_char(), get_buffer_range_char(), etc. */
|
|
1627 /* At most one of GB_COERCE_RANGE and GB_NO_ERROR_IF_BAD should be
|
|
1628 specified. At most one of GB_NEGATIVE_FROM_END and GB_NO_ERROR_IF_BAD
|
|
1629 should be specified. */
|
|
1630
|
|
1631 #define GB_ALLOW_PAST_ACCESSIBLE (1 << 0)
|
|
1632 #define GB_ALLOW_NIL (1 << 1)
|
|
1633 #define GB_CHECK_ORDER (1 << 2)
|
|
1634 #define GB_COERCE_RANGE (1 << 3)
|
|
1635 #define GB_NO_ERROR_IF_BAD (1 << 4)
|
|
1636 #define GB_NEGATIVE_FROM_END (1 << 5)
|
|
1637 #define GB_HISTORICAL_STRING_BEHAVIOR (GB_NEGATIVE_FROM_END | GB_ALLOW_NIL)
|
|
1638
|
|
1639 Bufpos get_buffer_pos_char (struct buffer *b, Lisp_Object pos,
|
|
1640 unsigned int flags);
|
|
1641 Bytind get_buffer_pos_byte (struct buffer *b, Lisp_Object pos,
|
|
1642 unsigned int flags);
|
|
1643 void get_buffer_range_char (struct buffer *b, Lisp_Object from, Lisp_Object to,
|
|
1644 Bufpos *from_out, Bufpos *to_out,
|
|
1645 unsigned int flags);
|
|
1646 void get_buffer_range_byte (struct buffer *b, Lisp_Object from, Lisp_Object to,
|
|
1647 Bytind *from_out, Bytind *to_out,
|
|
1648 unsigned int flags);
|
|
1649 Charcount get_string_pos_char (Lisp_Object string, Lisp_Object pos,
|
|
1650 unsigned int flags);
|
|
1651 Bytecount get_string_pos_byte (Lisp_Object string, Lisp_Object pos,
|
|
1652 unsigned int flags);
|
|
1653 void get_string_range_char (Lisp_Object string, Lisp_Object from,
|
|
1654 Lisp_Object to, Charcount *from_out,
|
|
1655 Charcount *to_out, unsigned int flags);
|
|
1656 void get_string_range_byte (Lisp_Object string, Lisp_Object from,
|
|
1657 Lisp_Object to, Bytecount *from_out,
|
|
1658 Bytecount *to_out, unsigned int flags);
|
|
1659 Bufpos get_buffer_or_string_pos_char (Lisp_Object object, Lisp_Object pos,
|
|
1660 unsigned int flags);
|
|
1661 Bytind get_buffer_or_string_pos_byte (Lisp_Object object, Lisp_Object pos,
|
|
1662 unsigned int flags);
|
|
1663 void get_buffer_or_string_range_char (Lisp_Object object, Lisp_Object from,
|
|
1664 Lisp_Object to, Bufpos *from_out,
|
|
1665 Bufpos *to_out, unsigned int flags);
|
|
1666 void get_buffer_or_string_range_byte (Lisp_Object object, Lisp_Object from,
|
|
1667 Lisp_Object to, Bytind *from_out,
|
|
1668 Bytind *to_out, unsigned int flags);
|
|
1669 Bufpos buffer_or_string_accessible_begin_char (Lisp_Object object);
|
|
1670 Bufpos buffer_or_string_accessible_end_char (Lisp_Object object);
|
|
1671 Bytind buffer_or_string_accessible_begin_byte (Lisp_Object object);
|
|
1672 Bytind buffer_or_string_accessible_end_byte (Lisp_Object object);
|
|
1673 Bufpos buffer_or_string_absolute_begin_char (Lisp_Object object);
|
|
1674 Bufpos buffer_or_string_absolute_end_char (Lisp_Object object);
|
|
1675 Bytind buffer_or_string_absolute_begin_byte (Lisp_Object object);
|
|
1676 Bytind buffer_or_string_absolute_end_byte (Lisp_Object object);
|
|
1677 void record_buffer (Lisp_Object buf);
|
|
1678 Lisp_Object get_buffer (Lisp_Object name,
|
|
1679 int error_if_deleted_or_does_not_exist);
|
|
1680 int map_over_sharing_buffers (struct buffer *buf,
|
|
1681 int (*mapfun) (struct buffer *buf,
|
|
1682 void *closure),
|
|
1683 void *closure);
|
|
1684
|
|
1685
|
|
1686 /************************************************************************/
|
|
1687 /* Case conversion */
|
|
1688 /************************************************************************/
|
|
1689
|
|
1690 /* A "trt" table is a mapping from characters to other characters,
|
|
1691 typically used to convert between uppercase and lowercase. For
|
|
1692 compatibility reasons, trt tables are currently in the form of
|
|
1693 a Lisp string of 256 characters, specifying the conversion for each
|
|
1694 of the first 256 Emacs characters (i.e. the 256 Latin-1 characters).
|
|
1695 This should be generalized at some point to support conversions for
|
|
1696 all of the allowable Mule characters.
|
|
1697 */
|
|
1698
|
|
1699 /* The _1 macros are named as such because they assume that you have
|
|
1700 already guaranteed that the character values are all in the range
|
|
1701 0 - 255. Bad lossage will happen otherwise. */
|
|
1702
|
|
1703 # define MAKE_TRT_TABLE() Fmake_string (make_int (256), make_char (0))
|
|
1704 # define TRT_TABLE_AS_STRING(table) XSTRING_DATA (table)
|
|
1705 # define TRT_TABLE_CHAR_1(table, ch) \
|
|
1706 string_char (XSTRING (table), (Charcount) ch)
|
|
1707 # define SET_TRT_TABLE_CHAR_1(table, ch1, ch2) \
|
|
1708 set_string_char (XSTRING (table), (Charcount) ch1, ch2)
|
|
1709
|
|
1710 #ifdef MULE
|
|
1711 # define MAKE_MIRROR_TRT_TABLE() make_opaque (256, 0)
|
|
1712 # define MIRROR_TRT_TABLE_AS_STRING(table) ((Bufbyte *) XOPAQUE_DATA (table))
|
|
1713 # define MIRROR_TRT_TABLE_CHAR_1(table, ch) \
|
|
1714 ((Emchar) (MIRROR_TRT_TABLE_AS_STRING (table)[ch]))
|
|
1715 # define SET_MIRROR_TRT_TABLE_CHAR_1(table, ch1, ch2) \
|
|
1716 (MIRROR_TRT_TABLE_AS_STRING (table)[ch1] = (Bufbyte) (ch2))
|
|
1717 #endif
|
|
1718
|
|
1719 # define IN_TRT_TABLE_DOMAIN(c) (((EMACS_UINT) (c)) <= 255)
|
|
1720
|
|
1721 #ifdef MULE
|
|
1722 #define MIRROR_DOWNCASE_TABLE_AS_STRING(buf) \
|
|
1723 MIRROR_TRT_TABLE_AS_STRING (buf->mirror_downcase_table)
|
|
1724 #define MIRROR_UPCASE_TABLE_AS_STRING(buf) \
|
|
1725 MIRROR_TRT_TABLE_AS_STRING (buf->mirror_upcase_table)
|
|
1726 #define MIRROR_CANON_TABLE_AS_STRING(buf) \
|
|
1727 MIRROR_TRT_TABLE_AS_STRING (buf->mirror_case_canon_table)
|
|
1728 #define MIRROR_EQV_TABLE_AS_STRING(buf) \
|
|
1729 MIRROR_TRT_TABLE_AS_STRING (buf->mirror_case_eqv_table)
|
|
1730 #else
|
|
1731 #define MIRROR_DOWNCASE_TABLE_AS_STRING(buf) \
|
|
1732 TRT_TABLE_AS_STRING (buf->downcase_table)
|
|
1733 #define MIRROR_UPCASE_TABLE_AS_STRING(buf) \
|
|
1734 TRT_TABLE_AS_STRING (buf->upcase_table)
|
|
1735 #define MIRROR_CANON_TABLE_AS_STRING(buf) \
|
|
1736 TRT_TABLE_AS_STRING (buf->case_canon_table)
|
|
1737 #define MIRROR_EQV_TABLE_AS_STRING(buf) \
|
|
1738 TRT_TABLE_AS_STRING (buf->case_eqv_table)
|
|
1739 #endif
|
|
1740
|
|
1741 INLINE Emchar TRT_TABLE_OF (Lisp_Object trt, Emchar c);
|
|
1742 INLINE Emchar
|
|
1743 TRT_TABLE_OF (Lisp_Object trt, Emchar c)
|
|
1744 {
|
|
1745 return IN_TRT_TABLE_DOMAIN (c) ? TRT_TABLE_CHAR_1 (trt, c) : c;
|
|
1746 }
|
|
1747
|
|
1748 /* Macros used below. */
|
|
1749 #define DOWNCASE_TABLE_OF(buf, c) TRT_TABLE_OF (buf->downcase_table, c)
|
|
1750 #define UPCASE_TABLE_OF(buf, c) TRT_TABLE_OF (buf->upcase_table, c)
|
|
1751
|
|
1752 /* 1 if CH is upper case. */
|
|
1753
|
|
1754 INLINE int UPPERCASEP (struct buffer *buf, Emchar ch);
|
|
1755 INLINE int
|
|
1756 UPPERCASEP (struct buffer *buf, Emchar ch)
|
|
1757 {
|
|
1758 return DOWNCASE_TABLE_OF (buf, ch) != ch;
|
|
1759 }
|
|
1760
|
|
1761 /* 1 if CH is lower case. */
|
|
1762
|
|
1763 INLINE int LOWERCASEP (struct buffer *buf, Emchar ch);
|
|
1764 INLINE int
|
|
1765 LOWERCASEP (struct buffer *buf, Emchar ch)
|
|
1766 {
|
|
1767 return (UPCASE_TABLE_OF (buf, ch) != ch &&
|
|
1768 DOWNCASE_TABLE_OF (buf, ch) == ch);
|
|
1769 }
|
|
1770
|
|
1771 /* 1 if CH is neither upper nor lower case. */
|
|
1772
|
|
1773 INLINE int NOCASEP (struct buffer *buf, Emchar ch);
|
|
1774 INLINE int
|
|
1775 NOCASEP (struct buffer *buf, Emchar ch)
|
|
1776 {
|
|
1777 return UPCASE_TABLE_OF (buf, ch) == ch;
|
|
1778 }
|
|
1779
|
|
1780 /* Upcase a character, or make no change if that cannot be done. */
|
|
1781
|
|
1782 INLINE Emchar UPCASE (struct buffer *buf, Emchar ch);
|
|
1783 INLINE Emchar
|
|
1784 UPCASE (struct buffer *buf, Emchar ch)
|
|
1785 {
|
|
1786 return (DOWNCASE_TABLE_OF (buf, ch) == ch) ? UPCASE_TABLE_OF (buf, ch) : ch;
|
|
1787 }
|
|
1788
|
|
1789 /* Upcase a character known to be not upper case. Unused. */
|
|
1790
|
|
1791 #define UPCASE1(buf, ch) UPCASE_TABLE_OF (buf, ch)
|
|
1792
|
|
1793 /* Downcase a character, or make no change if that cannot be done. */
|
|
1794
|
|
1795 #define DOWNCASE(buf, ch) DOWNCASE_TABLE_OF (buf, ch)
|
|
1796
|
|
1797 #endif /* _XEMACS_BUFFER_H_ */
|