428
|
1 /* Storage allocation and gc for XEmacs Lisp interpreter.
|
|
2 Copyright (C) 1985-1998 Free Software Foundation, Inc.
|
|
3 Copyright (C) 1995 Sun Microsystems, Inc.
|
|
4 Copyright (C) 1995, 1996 Ben Wing.
|
|
5
|
|
6 This file is part of XEmacs.
|
|
7
|
|
8 XEmacs is free software; you can redistribute it and/or modify it
|
|
9 under the terms of the GNU General Public License as published by the
|
|
10 Free Software Foundation; either version 2, or (at your option) any
|
|
11 later version.
|
|
12
|
|
13 XEmacs is distributed in the hope that it will be useful, but WITHOUT
|
|
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
16 for more details.
|
|
17
|
|
18 You should have received a copy of the GNU General Public License
|
|
19 along with XEmacs; see the file COPYING. If not, write to
|
|
20 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
21 Boston, MA 02111-1307, USA. */
|
|
22
|
|
23 /* Synched up with: FSF 19.28, Mule 2.0. Substantially different from
|
|
24 FSF. */
|
|
25
|
|
26 /* Authorship:
|
|
27
|
|
28 FSF: Original version; a long time ago.
|
|
29 Mly: Significantly rewritten to use new 3-bit tags and
|
|
30 nicely abstracted object definitions, for 19.8.
|
|
31 JWZ: Improved code to keep track of purespace usage and
|
|
32 issue nice purespace and GC stats.
|
|
33 Ben Wing: Cleaned up frob-block lrecord code, added error-checking
|
|
34 and various changes for Mule, for 19.12.
|
|
35 Added bit vectors for 19.13.
|
|
36 Added lcrecord lists for 19.14.
|
|
37 slb: Lots of work on the purification and dump time code.
|
|
38 Synched Doug Lea malloc support from Emacs 20.2.
|
|
39 og: Killed the purespace. Portable dumper.
|
|
40 */
|
|
41
|
|
42 #include <config.h>
|
|
43 #include "lisp.h"
|
|
44
|
|
45 #include "backtrace.h"
|
|
46 #include "buffer.h"
|
|
47 #include "bytecode.h"
|
|
48 #include "chartab.h"
|
|
49 #include "device.h"
|
|
50 #include "elhash.h"
|
|
51 #include "events.h"
|
|
52 #include "extents.h"
|
|
53 #include "frame.h"
|
|
54 #include "glyphs.h"
|
|
55 #include "opaque.h"
|
|
56 #include "redisplay.h"
|
|
57 #include "specifier.h"
|
|
58 #include "sysfile.h"
|
|
59 #include "window.h"
|
|
60 #include "console-stream.h"
|
|
61
|
|
62 #ifdef DOUG_LEA_MALLOC
|
|
63 #include <malloc.h>
|
|
64 #endif
|
|
65
|
|
66 #ifdef HAVE_MMAP
|
|
67 #include <unistd.h>
|
|
68 #include <sys/mman.h>
|
|
69 #endif
|
|
70
|
|
71 #ifdef PDUMP
|
|
72 typedef struct
|
|
73 {
|
|
74 const struct lrecord_description *desc;
|
|
75 int count;
|
|
76 } pdump_reloc_table;
|
|
77
|
|
78 static char *pdump_rt_list = 0;
|
|
79 #endif
|
|
80
|
|
81 EXFUN (Fgarbage_collect, 0);
|
|
82
|
|
83 /* Return the true size of a struct with a variable-length array field. */
|
|
84 #define STRETCHY_STRUCT_SIZEOF(stretchy_struct_type, \
|
|
85 stretchy_array_field, \
|
|
86 stretchy_array_length) \
|
|
87 (offsetof (stretchy_struct_type, stretchy_array_field) + \
|
|
88 (offsetof (stretchy_struct_type, stretchy_array_field[1]) - \
|
|
89 offsetof (stretchy_struct_type, stretchy_array_field[0])) * \
|
|
90 (stretchy_array_length))
|
|
91
|
|
92 #if 0 /* this is _way_ too slow to be part of the standard debug options */
|
|
93 #if defined(DEBUG_XEMACS) && defined(MULE)
|
|
94 #define VERIFY_STRING_CHARS_INTEGRITY
|
|
95 #endif
|
|
96 #endif
|
|
97
|
|
98 /* Define this to use malloc/free with no freelist for all datatypes,
|
|
99 the hope being that some debugging tools may help detect
|
|
100 freed memory references */
|
|
101 #ifdef USE_DEBUG_MALLOC /* Taking the above comment at face value -slb */
|
|
102 #include <dmalloc.h>
|
|
103 #define ALLOC_NO_POOLS
|
|
104 #endif
|
|
105
|
|
106 #ifdef DEBUG_XEMACS
|
|
107 static int debug_allocation;
|
|
108 static int debug_allocation_backtrace_length;
|
|
109 #endif
|
|
110
|
|
111 /* Number of bytes of consing done since the last gc */
|
|
112 EMACS_INT consing_since_gc;
|
|
113 #define INCREMENT_CONS_COUNTER_1(size) (consing_since_gc += (size))
|
|
114
|
|
115 #define debug_allocation_backtrace() \
|
|
116 do { \
|
|
117 if (debug_allocation_backtrace_length > 0) \
|
|
118 debug_short_backtrace (debug_allocation_backtrace_length); \
|
|
119 } while (0)
|
|
120
|
|
121 #ifdef DEBUG_XEMACS
|
|
122 #define INCREMENT_CONS_COUNTER(foosize, type) \
|
|
123 do { \
|
|
124 if (debug_allocation) \
|
|
125 { \
|
|
126 stderr_out ("allocating %s (size %ld)\n", type, (long)foosize); \
|
|
127 debug_allocation_backtrace (); \
|
|
128 } \
|
|
129 INCREMENT_CONS_COUNTER_1 (foosize); \
|
|
130 } while (0)
|
|
131 #define NOSEEUM_INCREMENT_CONS_COUNTER(foosize, type) \
|
|
132 do { \
|
|
133 if (debug_allocation > 1) \
|
|
134 { \
|
|
135 stderr_out ("allocating noseeum %s (size %ld)\n", type, (long)foosize); \
|
|
136 debug_allocation_backtrace (); \
|
|
137 } \
|
|
138 INCREMENT_CONS_COUNTER_1 (foosize); \
|
|
139 } while (0)
|
|
140 #else
|
|
141 #define INCREMENT_CONS_COUNTER(size, type) INCREMENT_CONS_COUNTER_1 (size)
|
|
142 #define NOSEEUM_INCREMENT_CONS_COUNTER(size, type) \
|
|
143 INCREMENT_CONS_COUNTER_1 (size)
|
|
144 #endif
|
|
145
|
|
146 #define DECREMENT_CONS_COUNTER(size) do { \
|
|
147 consing_since_gc -= (size); \
|
|
148 if (consing_since_gc < 0) \
|
|
149 consing_since_gc = 0; \
|
|
150 } while (0)
|
|
151
|
|
152 /* Number of bytes of consing since gc before another gc should be done. */
|
|
153 EMACS_INT gc_cons_threshold;
|
|
154
|
|
155 /* Nonzero during gc */
|
|
156 int gc_in_progress;
|
|
157
|
|
158 /* Number of times GC has happened at this level or below.
|
|
159 * Level 0 is most volatile, contrary to usual convention.
|
|
160 * (Of course, there's only one level at present) */
|
|
161 EMACS_INT gc_generation_number[1];
|
|
162
|
|
163 /* This is just for use by the printer, to allow things to print uniquely */
|
|
164 static int lrecord_uid_counter;
|
|
165
|
|
166 /* Nonzero when calling certain hooks or doing other things where
|
|
167 a GC would be bad */
|
|
168 int gc_currently_forbidden;
|
|
169
|
|
170 /* Hooks. */
|
|
171 Lisp_Object Vpre_gc_hook, Qpre_gc_hook;
|
|
172 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
|
|
173
|
|
174 /* "Garbage collecting" */
|
|
175 Lisp_Object Vgc_message;
|
|
176 Lisp_Object Vgc_pointer_glyph;
|
|
177 static CONST char gc_default_message[] = "Garbage collecting";
|
|
178 Lisp_Object Qgarbage_collecting;
|
|
179
|
|
180 #ifndef VIRT_ADDR_VARIES
|
|
181 extern
|
|
182 #endif /* VIRT_ADDR_VARIES */
|
|
183 EMACS_INT malloc_sbrk_used;
|
|
184
|
|
185 #ifndef VIRT_ADDR_VARIES
|
|
186 extern
|
|
187 #endif /* VIRT_ADDR_VARIES */
|
|
188 EMACS_INT malloc_sbrk_unused;
|
|
189
|
|
190 /* Non-zero means we're in the process of doing the dump */
|
|
191 int purify_flag;
|
|
192
|
|
193 #ifdef ERROR_CHECK_TYPECHECK
|
|
194
|
|
195 Error_behavior ERROR_ME, ERROR_ME_NOT, ERROR_ME_WARN;
|
|
196
|
|
197 #endif
|
|
198
|
|
199 int
|
|
200 c_readonly (Lisp_Object obj)
|
|
201 {
|
|
202 return POINTER_TYPE_P (XTYPE (obj)) && C_READONLY (obj);
|
|
203 }
|
|
204
|
|
205 int
|
|
206 lisp_readonly (Lisp_Object obj)
|
|
207 {
|
|
208 return POINTER_TYPE_P (XTYPE (obj)) && LISP_READONLY (obj);
|
|
209 }
|
|
210
|
|
211
|
|
212 /* Maximum amount of C stack to save when a GC happens. */
|
|
213
|
|
214 #ifndef MAX_SAVE_STACK
|
|
215 #define MAX_SAVE_STACK 0 /* 16000 */
|
|
216 #endif
|
|
217
|
|
218 /* Non-zero means ignore malloc warnings. Set during initialization. */
|
|
219 int ignore_malloc_warnings;
|
|
220
|
|
221
|
|
222 static void *breathing_space;
|
|
223
|
|
224 void
|
|
225 release_breathing_space (void)
|
|
226 {
|
|
227 if (breathing_space)
|
|
228 {
|
|
229 void *tmp = breathing_space;
|
|
230 breathing_space = 0;
|
|
231 xfree (tmp);
|
|
232 }
|
|
233 }
|
|
234
|
|
235 /* malloc calls this if it finds we are near exhausting storage */
|
|
236 void
|
|
237 malloc_warning (CONST char *str)
|
|
238 {
|
|
239 if (ignore_malloc_warnings)
|
|
240 return;
|
|
241
|
|
242 warn_when_safe
|
|
243 (Qmemory, Qcritical,
|
|
244 "%s\n"
|
|
245 "Killing some buffers may delay running out of memory.\n"
|
|
246 "However, certainly by the time you receive the 95%% warning,\n"
|
|
247 "you should clean up, kill this Emacs, and start a new one.",
|
|
248 str);
|
|
249 }
|
|
250
|
|
251 /* Called if malloc returns zero */
|
|
252 DOESNT_RETURN
|
|
253 memory_full (void)
|
|
254 {
|
|
255 /* Force a GC next time eval is called.
|
|
256 It's better to loop garbage-collecting (we might reclaim enough
|
|
257 to win) than to loop beeping and barfing "Memory exhausted"
|
|
258 */
|
|
259 consing_since_gc = gc_cons_threshold + 1;
|
|
260 release_breathing_space ();
|
|
261
|
|
262 /* Flush some histories which might conceivably contain garbalogical
|
|
263 inhibitors. */
|
|
264 if (!NILP (Fboundp (Qvalues)))
|
|
265 Fset (Qvalues, Qnil);
|
|
266 Vcommand_history = Qnil;
|
|
267
|
|
268 error ("Memory exhausted");
|
|
269 }
|
|
270
|
|
271 /* like malloc and realloc but check for no memory left, and block input. */
|
|
272
|
|
273 #ifdef xmalloc
|
|
274 #undef xmalloc
|
|
275 #endif
|
|
276
|
|
277 void *
|
|
278 xmalloc (size_t size)
|
|
279 {
|
|
280 void *val = malloc (size);
|
|
281
|
|
282 if (!val && (size != 0)) memory_full ();
|
|
283 return val;
|
|
284 }
|
|
285
|
|
286 #ifdef xcalloc
|
|
287 #undef xcalloc
|
|
288 #endif
|
|
289
|
|
290 static void *
|
|
291 xcalloc (size_t nelem, size_t elsize)
|
|
292 {
|
|
293 void *val = calloc (nelem, elsize);
|
|
294
|
|
295 if (!val && (nelem != 0)) memory_full ();
|
|
296 return val;
|
|
297 }
|
|
298
|
|
299 void *
|
|
300 xmalloc_and_zero (size_t size)
|
|
301 {
|
|
302 return xcalloc (size, sizeof (char));
|
|
303 }
|
|
304
|
|
305 #ifdef xrealloc
|
|
306 #undef xrealloc
|
|
307 #endif
|
|
308
|
|
309 void *
|
|
310 xrealloc (void *block, size_t size)
|
|
311 {
|
|
312 /* We must call malloc explicitly when BLOCK is 0, since some
|
|
313 reallocs don't do this. */
|
|
314 void *val = block ? realloc (block, size) : malloc (size);
|
|
315
|
|
316 if (!val && (size != 0)) memory_full ();
|
|
317 return val;
|
|
318 }
|
|
319
|
|
320 void
|
|
321 #ifdef ERROR_CHECK_MALLOC
|
|
322 xfree_1 (void *block)
|
|
323 #else
|
|
324 xfree (void *block)
|
|
325 #endif
|
|
326 {
|
|
327 #ifdef ERROR_CHECK_MALLOC
|
|
328 /* Unbelievably, calling free() on 0xDEADBEEF doesn't cause an
|
|
329 error until much later on for many system mallocs, such as
|
|
330 the one that comes with Solaris 2.3. FMH!! */
|
|
331 assert (block != (void *) 0xDEADBEEF);
|
|
332 assert (block);
|
|
333 #endif /* ERROR_CHECK_MALLOC */
|
|
334 free (block);
|
|
335 }
|
|
336
|
|
337 #ifdef ERROR_CHECK_GC
|
|
338
|
|
339 #if SIZEOF_INT == 4
|
|
340 typedef unsigned int four_byte_t;
|
|
341 #elif SIZEOF_LONG == 4
|
|
342 typedef unsigned long four_byte_t;
|
|
343 #elif SIZEOF_SHORT == 4
|
|
344 typedef unsigned short four_byte_t;
|
|
345 #else
|
|
346 What kind of strange-ass system are we running on?
|
|
347 #endif
|
|
348
|
|
349 static void
|
|
350 deadbeef_memory (void *ptr, size_t size)
|
|
351 {
|
|
352 four_byte_t *ptr4 = (four_byte_t *) ptr;
|
|
353 size_t beefs = size >> 2;
|
|
354
|
|
355 /* In practice, size will always be a multiple of four. */
|
|
356 while (beefs--)
|
|
357 (*ptr4++) = 0xDEADBEEF;
|
|
358 }
|
|
359
|
|
360 #else /* !ERROR_CHECK_GC */
|
|
361
|
|
362
|
|
363 #define deadbeef_memory(ptr, size)
|
|
364
|
|
365 #endif /* !ERROR_CHECK_GC */
|
|
366
|
|
367 #ifdef xstrdup
|
|
368 #undef xstrdup
|
|
369 #endif
|
|
370
|
|
371 char *
|
|
372 xstrdup (CONST char *str)
|
|
373 {
|
|
374 int len = strlen (str) + 1; /* for stupid terminating 0 */
|
|
375
|
|
376 void *val = xmalloc (len);
|
|
377 if (val == 0) return 0;
|
|
378 return (char *) memcpy (val, str, len);
|
|
379 }
|
|
380
|
|
381 #ifdef NEED_STRDUP
|
|
382 char *
|
|
383 strdup (CONST char *s)
|
|
384 {
|
|
385 return xstrdup (s);
|
|
386 }
|
|
387 #endif /* NEED_STRDUP */
|
|
388
|
|
389
|
|
390 static void *
|
|
391 allocate_lisp_storage (size_t size)
|
|
392 {
|
|
393 return xmalloc (size);
|
|
394 }
|
|
395
|
|
396
|
|
397 /* lrecords are chained together through their "next.v" field.
|
|
398 * After doing the mark phase, the GC will walk this linked
|
|
399 * list and free any record which hasn't been marked.
|
|
400 */
|
|
401 static struct lcrecord_header *all_lcrecords;
|
|
402
|
|
403 void *
|
|
404 alloc_lcrecord (size_t size, CONST struct lrecord_implementation *implementation)
|
|
405 {
|
|
406 struct lcrecord_header *lcheader;
|
|
407
|
|
408 #ifdef ERROR_CHECK_GC
|
|
409 if (implementation->static_size == 0)
|
|
410 assert (implementation->size_in_bytes_method);
|
|
411 else
|
|
412 assert (implementation->static_size == size);
|
|
413 #endif
|
|
414
|
|
415 lcheader = (struct lcrecord_header *) allocate_lisp_storage (size);
|
|
416 set_lheader_implementation (&(lcheader->lheader), implementation);
|
|
417 lcheader->next = all_lcrecords;
|
|
418 #if 1 /* mly prefers to see small ID numbers */
|
|
419 lcheader->uid = lrecord_uid_counter++;
|
|
420 #else /* jwz prefers to see real addrs */
|
|
421 lcheader->uid = (int) &lcheader;
|
|
422 #endif
|
|
423 lcheader->free = 0;
|
|
424 all_lcrecords = lcheader;
|
|
425 INCREMENT_CONS_COUNTER (size, implementation->name);
|
|
426 return lcheader;
|
|
427 }
|
|
428
|
|
429 #if 0 /* Presently unused */
|
|
430 /* Very, very poor man's EGC?
|
|
431 * This may be slow and thrash pages all over the place.
|
|
432 * Only call it if you really feel you must (and if the
|
|
433 * lrecord was fairly recently allocated).
|
|
434 * Otherwise, just let the GC do its job -- that's what it's there for
|
|
435 */
|
|
436 void
|
|
437 free_lcrecord (struct lcrecord_header *lcrecord)
|
|
438 {
|
|
439 if (all_lcrecords == lcrecord)
|
|
440 {
|
|
441 all_lcrecords = lcrecord->next;
|
|
442 }
|
|
443 else
|
|
444 {
|
|
445 struct lrecord_header *header = all_lcrecords;
|
|
446 for (;;)
|
|
447 {
|
|
448 struct lrecord_header *next = header->next;
|
|
449 if (next == lcrecord)
|
|
450 {
|
|
451 header->next = lrecord->next;
|
|
452 break;
|
|
453 }
|
|
454 else if (next == 0)
|
|
455 abort ();
|
|
456 else
|
|
457 header = next;
|
|
458 }
|
|
459 }
|
|
460 if (lrecord->implementation->finalizer)
|
|
461 lrecord->implementation->finalizer (lrecord, 0);
|
|
462 xfree (lrecord);
|
|
463 return;
|
|
464 }
|
|
465 #endif /* Unused */
|
|
466
|
|
467
|
|
468 static void
|
|
469 disksave_object_finalization_1 (void)
|
|
470 {
|
|
471 struct lcrecord_header *header;
|
|
472
|
|
473 for (header = all_lcrecords; header; header = header->next)
|
|
474 {
|
|
475 if (LHEADER_IMPLEMENTATION(&header->lheader)->finalizer &&
|
|
476 !header->free)
|
|
477 ((LHEADER_IMPLEMENTATION(&header->lheader)->finalizer)
|
|
478 (header, 1));
|
|
479 }
|
|
480 }
|
|
481
|
|
482 /* Semi-kludge -- lrecord_symbol_value_forward objects get stuck
|
|
483 in CONST space and you get SEGV's if you attempt to mark them.
|
|
484 This sits in lheader->implementation->marker. */
|
|
485
|
|
486 Lisp_Object
|
|
487 this_one_is_unmarkable (Lisp_Object obj)
|
|
488 {
|
|
489 abort ();
|
|
490 return Qnil;
|
|
491 }
|
|
492
|
|
493
|
|
494 /************************************************************************/
|
|
495 /* Debugger support */
|
|
496 /************************************************************************/
|
|
497 /* Give gdb/dbx enough information to decode Lisp Objects. We make
|
|
498 sure certain symbols are always defined, so gdb doesn't complain
|
|
499 about expressions in src/gdbinit. See src/gdbinit or src/dbxrc to
|
|
500 see how this is used. */
|
|
501
|
|
502 EMACS_UINT dbg_valmask = ((1UL << VALBITS) - 1) << GCBITS;
|
|
503 EMACS_UINT dbg_typemask = (1UL << GCTYPEBITS) - 1;
|
|
504
|
|
505 #ifdef USE_UNION_TYPE
|
|
506 unsigned char dbg_USE_UNION_TYPE = 1;
|
|
507 #else
|
|
508 unsigned char dbg_USE_UNION_TYPE = 0;
|
|
509 #endif
|
|
510
|
|
511 unsigned char Lisp_Type_Int = 100;
|
|
512 unsigned char Lisp_Type_Cons = 101;
|
|
513 unsigned char Lisp_Type_String = 102;
|
|
514 unsigned char Lisp_Type_Vector = 103;
|
|
515 unsigned char Lisp_Type_Symbol = 104;
|
|
516
|
|
517 #ifndef MULE
|
|
518 unsigned char lrecord_char_table_entry;
|
|
519 unsigned char lrecord_charset;
|
|
520 #ifndef FILE_CODING
|
|
521 unsigned char lrecord_coding_system;
|
|
522 #endif
|
|
523 #endif
|
|
524
|
|
525 #ifndef HAVE_TOOLBARS
|
|
526 unsigned char lrecord_toolbar_button;
|
|
527 #endif
|
|
528
|
|
529 #ifndef TOOLTALK
|
|
530 unsigned char lrecord_tooltalk_message;
|
|
531 unsigned char lrecord_tooltalk_pattern;
|
|
532 #endif
|
|
533
|
|
534 #ifndef HAVE_DATABASE
|
|
535 unsigned char lrecord_database;
|
|
536 #endif
|
|
537
|
|
538 unsigned char dbg_valbits = VALBITS;
|
|
539 unsigned char dbg_gctypebits = GCTYPEBITS;
|
|
540
|
|
541 /* Macros turned into functions for ease of debugging.
|
|
542 Debuggers don't know about macros! */
|
|
543 int dbg_eq (Lisp_Object obj1, Lisp_Object obj2);
|
|
544 int
|
|
545 dbg_eq (Lisp_Object obj1, Lisp_Object obj2)
|
|
546 {
|
|
547 return EQ (obj1, obj2);
|
|
548 }
|
|
549
|
|
550
|
|
551 /************************************************************************/
|
|
552 /* Fixed-size type macros */
|
|
553 /************************************************************************/
|
|
554
|
|
555 /* For fixed-size types that are commonly used, we malloc() large blocks
|
|
556 of memory at a time and subdivide them into chunks of the correct
|
|
557 size for an object of that type. This is more efficient than
|
|
558 malloc()ing each object separately because we save on malloc() time
|
|
559 and overhead due to the fewer number of malloc()ed blocks, and
|
|
560 also because we don't need any extra pointers within each object
|
|
561 to keep them threaded together for GC purposes. For less common
|
|
562 (and frequently large-size) types, we use lcrecords, which are
|
|
563 malloc()ed individually and chained together through a pointer
|
|
564 in the lcrecord header. lcrecords do not need to be fixed-size
|
|
565 (i.e. two objects of the same type need not have the same size;
|
|
566 however, the size of a particular object cannot vary dynamically).
|
|
567 It is also much easier to create a new lcrecord type because no
|
|
568 additional code needs to be added to alloc.c. Finally, lcrecords
|
|
569 may be more efficient when there are only a small number of them.
|
|
570
|
|
571 The types that are stored in these large blocks (or "frob blocks")
|
|
572 are cons, float, compiled-function, symbol, marker, extent, event,
|
|
573 and string.
|
|
574
|
|
575 Note that strings are special in that they are actually stored in
|
|
576 two parts: a structure containing information about the string, and
|
|
577 the actual data associated with the string. The former structure
|
|
578 (a struct Lisp_String) is a fixed-size structure and is managed the
|
|
579 same way as all the other such types. This structure contains a
|
|
580 pointer to the actual string data, which is stored in structures of
|
|
581 type struct string_chars_block. Each string_chars_block consists
|
|
582 of a pointer to a struct Lisp_String, followed by the data for that
|
|
583 string, followed by another pointer to a struct Lisp_String,
|
|
584 followed by the data for that string, etc. At GC time, the data in
|
|
585 these blocks is compacted by searching sequentially through all the
|
|
586 blocks and compressing out any holes created by unmarked strings.
|
|
587 Strings that are more than a certain size (bigger than the size of
|
|
588 a string_chars_block, although something like half as big might
|
|
589 make more sense) are malloc()ed separately and not stored in
|
|
590 string_chars_blocks. Furthermore, no one string stretches across
|
|
591 two string_chars_blocks.
|
|
592
|
|
593 Vectors are each malloc()ed separately, similar to lcrecords.
|
|
594
|
|
595 In the following discussion, we use conses, but it applies equally
|
|
596 well to the other fixed-size types.
|
|
597
|
|
598 We store cons cells inside of cons_blocks, allocating a new
|
|
599 cons_block with malloc() whenever necessary. Cons cells reclaimed
|
|
600 by GC are put on a free list to be reallocated before allocating
|
|
601 any new cons cells from the latest cons_block. Each cons_block is
|
|
602 just under 2^n - MALLOC_OVERHEAD bytes long, since malloc (at least
|
|
603 the versions in malloc.c and gmalloc.c) really allocates in units
|
|
604 of powers of two and uses 4 bytes for its own overhead.
|
|
605
|
|
606 What GC actually does is to search through all the cons_blocks,
|
|
607 from the most recently allocated to the oldest, and put all
|
|
608 cons cells that are not marked (whether or not they're already
|
|
609 free) on a cons_free_list. The cons_free_list is a stack, and
|
|
610 so the cons cells in the oldest-allocated cons_block end up
|
|
611 at the head of the stack and are the first to be reallocated.
|
|
612 If any cons_block is entirely free, it is freed with free()
|
|
613 and its cons cells removed from the cons_free_list. Because
|
|
614 the cons_free_list ends up basically in memory order, we have
|
|
615 a high locality of reference (assuming a reasonable turnover
|
|
616 of allocating and freeing) and have a reasonable probability
|
|
617 of entirely freeing up cons_blocks that have been more recently
|
|
618 allocated. This stage is called the "sweep stage" of GC, and
|
|
619 is executed after the "mark stage", which involves starting
|
|
620 from all places that are known to point to in-use Lisp objects
|
|
621 (e.g. the obarray, where are all symbols are stored; the
|
|
622 current catches and condition-cases; the backtrace list of
|
|
623 currently executing functions; the gcpro list; etc.) and
|
|
624 recursively marking all objects that are accessible.
|
|
625
|
|
626 At the beginning of the sweep stage, the conses in the cons
|
|
627 blocks are in one of three states: in use and marked, in use
|
|
628 but not marked, and not in use (already freed). Any conses
|
|
629 that are marked have been marked in the mark stage just
|
|
630 executed, because as part of the sweep stage we unmark any
|
|
631 marked objects. The way we tell whether or not a cons cell
|
|
632 is in use is through the FREE_STRUCT_P macro. This basically
|
|
633 looks at the first 4 bytes (or however many bytes a pointer
|
|
634 fits in) to see if all the bits in those bytes are 1. The
|
|
635 resulting value (0xFFFFFFFF) is not a valid pointer and is
|
|
636 not a valid Lisp_Object. All current fixed-size types have
|
|
637 a pointer or Lisp_Object as their first element with the
|
|
638 exception of strings; they have a size value, which can
|
|
639 never be less than zero, and so 0xFFFFFFFF is invalid for
|
|
640 strings as well. Now assuming that a cons cell is in use,
|
|
641 the way we tell whether or not it is marked is to look at
|
|
642 the mark bit of its car (each Lisp_Object has one bit
|
|
643 reserved as a mark bit, in case it's needed). Note that
|
|
644 different types of objects use different fields to indicate
|
|
645 whether the object is marked, but the principle is the same.
|
|
646
|
|
647 Conses on the free_cons_list are threaded through a pointer
|
|
648 stored in the bytes directly after the bytes that are set
|
|
649 to 0xFFFFFFFF (we cannot overwrite these because the cons
|
|
650 is still in a cons_block and needs to remain marked as
|
|
651 not in use for the next time that GC happens). This
|
|
652 implies that all fixed-size types must be at least big
|
|
653 enough to store two pointers, which is indeed the case
|
|
654 for all current fixed-size types.
|
|
655
|
|
656 Some types of objects need additional "finalization" done
|
|
657 when an object is converted from in use to not in use;
|
|
658 this is the purpose of the ADDITIONAL_FREE_type macro.
|
|
659 For example, markers need to be removed from the chain
|
|
660 of markers that is kept in each buffer. This is because
|
|
661 markers in a buffer automatically disappear if the marker
|
|
662 is no longer referenced anywhere (the same does not
|
|
663 apply to extents, however).
|
|
664
|
|
665 WARNING: Things are in an extremely bizarre state when
|
|
666 the ADDITIONAL_FREE_type macros are called, so beware!
|
|
667
|
|
668 When ERROR_CHECK_GC is defined, we do things differently
|
|
669 so as to maximize our chances of catching places where
|
|
670 there is insufficient GCPROing. The thing we want to
|
|
671 avoid is having an object that we're using but didn't
|
|
672 GCPRO get freed by GC and then reallocated while we're
|
|
673 in the process of using it -- this will result in something
|
|
674 seemingly unrelated getting trashed, and is extremely
|
|
675 difficult to track down. If the object gets freed but
|
|
676 not reallocated, we can usually catch this because we
|
|
677 set all bytes of a freed object to 0xDEADBEEF. (The
|
|
678 first four bytes, however, are 0xFFFFFFFF, and the next
|
|
679 four are a pointer used to chain freed objects together;
|
|
680 we play some tricks with this pointer to make it more
|
|
681 bogus, so crashes are more likely to occur right away.)
|
|
682
|
|
683 We want freed objects to stay free as long as possible,
|
|
684 so instead of doing what we do above, we maintain the
|
|
685 free objects in a first-in first-out queue. We also
|
|
686 don't recompute the free list each GC, unlike above;
|
|
687 this ensures that the queue ordering is preserved.
|
|
688 [This means that we are likely to have worse locality
|
|
689 of reference, and that we can never free a frob block
|
|
690 once it's allocated. (Even if we know that all cells
|
|
691 in it are free, there's no easy way to remove all those
|
|
692 cells from the free list because the objects on the
|
|
693 free list are unlikely to be in memory order.)]
|
|
694 Furthermore, we never take objects off the free list
|
|
695 unless there's a large number (usually 1000, but
|
|
696 varies depending on type) of them already on the list.
|
|
697 This way, we ensure that an object that gets freed will
|
|
698 remain free for the next 1000 (or whatever) times that
|
|
699 an object of that type is allocated.
|
|
700 */
|
|
701
|
|
702 #ifndef MALLOC_OVERHEAD
|
|
703 #ifdef GNU_MALLOC
|
|
704 #define MALLOC_OVERHEAD 0
|
|
705 #elif defined (rcheck)
|
|
706 #define MALLOC_OVERHEAD 20
|
|
707 #else
|
|
708 #define MALLOC_OVERHEAD 8
|
|
709 #endif
|
|
710 #endif /* MALLOC_OVERHEAD */
|
|
711
|
|
712 #if !defined(HAVE_MMAP) || defined(DOUG_LEA_MALLOC)
|
|
713 /* If we released our reserve (due to running out of memory),
|
|
714 and we have a fair amount free once again,
|
|
715 try to set aside another reserve in case we run out once more.
|
|
716
|
|
717 This is called when a relocatable block is freed in ralloc.c. */
|
|
718 void refill_memory_reserve (void);
|
|
719 void
|
|
720 refill_memory_reserve ()
|
|
721 {
|
|
722 if (breathing_space == 0)
|
|
723 breathing_space = (char *) malloc (4096 - MALLOC_OVERHEAD);
|
|
724 }
|
|
725 #endif
|
|
726
|
|
727 #ifdef ALLOC_NO_POOLS
|
|
728 # define TYPE_ALLOC_SIZE(type, structtype) 1
|
|
729 #else
|
|
730 # define TYPE_ALLOC_SIZE(type, structtype) \
|
|
731 ((2048 - MALLOC_OVERHEAD - sizeof (struct type##_block *)) \
|
|
732 / sizeof (structtype))
|
|
733 #endif /* ALLOC_NO_POOLS */
|
|
734
|
|
735 #define DECLARE_FIXED_TYPE_ALLOC(type, structtype) \
|
|
736 \
|
|
737 struct type##_block \
|
|
738 { \
|
|
739 struct type##_block *prev; \
|
|
740 structtype block[TYPE_ALLOC_SIZE (type, structtype)]; \
|
|
741 }; \
|
|
742 \
|
|
743 static struct type##_block *current_##type##_block; \
|
|
744 static int current_##type##_block_index; \
|
|
745 \
|
|
746 static structtype *type##_free_list; \
|
|
747 static structtype *type##_free_list_tail; \
|
|
748 \
|
|
749 static void \
|
|
750 init_##type##_alloc (void) \
|
|
751 { \
|
|
752 current_##type##_block = 0; \
|
|
753 current_##type##_block_index = \
|
|
754 countof (current_##type##_block->block); \
|
|
755 type##_free_list = 0; \
|
|
756 type##_free_list_tail = 0; \
|
|
757 } \
|
|
758 \
|
|
759 static int gc_count_num_##type##_in_use; \
|
|
760 static int gc_count_num_##type##_freelist
|
|
761
|
|
762 #define ALLOCATE_FIXED_TYPE_FROM_BLOCK(type, result) do { \
|
|
763 if (current_##type##_block_index \
|
|
764 == countof (current_##type##_block->block)) \
|
|
765 { \
|
|
766 struct type##_block *AFTFB_new = (struct type##_block *) \
|
|
767 allocate_lisp_storage (sizeof (struct type##_block)); \
|
|
768 AFTFB_new->prev = current_##type##_block; \
|
|
769 current_##type##_block = AFTFB_new; \
|
|
770 current_##type##_block_index = 0; \
|
|
771 } \
|
|
772 (result) = \
|
|
773 &(current_##type##_block->block[current_##type##_block_index++]); \
|
|
774 } while (0)
|
|
775
|
|
776 /* Allocate an instance of a type that is stored in blocks.
|
|
777 TYPE is the "name" of the type, STRUCTTYPE is the corresponding
|
|
778 structure type. */
|
|
779
|
|
780 #ifdef ERROR_CHECK_GC
|
|
781
|
|
782 /* Note: if you get crashes in this function, suspect incorrect calls
|
|
783 to free_cons() and friends. This happened once because the cons
|
|
784 cell was not GC-protected and was getting collected before
|
|
785 free_cons() was called. */
|
|
786
|
|
787 #define ALLOCATE_FIXED_TYPE_1(type, structtype, result) \
|
|
788 do \
|
|
789 { \
|
|
790 if (gc_count_num_##type##_freelist > \
|
|
791 MINIMUM_ALLOWED_FIXED_TYPE_CELLS_##type) \
|
|
792 { \
|
|
793 result = type##_free_list; \
|
|
794 /* Before actually using the chain pointer, we complement all its \
|
|
795 bits; see FREE_FIXED_TYPE(). */ \
|
|
796 type##_free_list = \
|
|
797 (structtype *) ~(unsigned long) \
|
|
798 (* (structtype **) ((char *) result + sizeof (void *))); \
|
|
799 gc_count_num_##type##_freelist--; \
|
|
800 } \
|
|
801 else \
|
|
802 ALLOCATE_FIXED_TYPE_FROM_BLOCK (type, result); \
|
|
803 MARK_STRUCT_AS_NOT_FREE (result); \
|
|
804 } while (0)
|
|
805
|
|
806 #else /* !ERROR_CHECK_GC */
|
|
807
|
|
808 #define ALLOCATE_FIXED_TYPE_1(type, structtype, result) \
|
|
809 do \
|
|
810 { \
|
|
811 if (type##_free_list) \
|
|
812 { \
|
|
813 result = type##_free_list; \
|
|
814 type##_free_list = \
|
|
815 * (structtype **) ((char *) result + sizeof (void *)); \
|
|
816 } \
|
|
817 else \
|
|
818 ALLOCATE_FIXED_TYPE_FROM_BLOCK (type, result); \
|
|
819 MARK_STRUCT_AS_NOT_FREE (result); \
|
|
820 } while (0)
|
|
821
|
|
822 #endif /* !ERROR_CHECK_GC */
|
|
823
|
|
824 #define ALLOCATE_FIXED_TYPE(type, structtype, result) \
|
|
825 do \
|
|
826 { \
|
|
827 ALLOCATE_FIXED_TYPE_1 (type, structtype, result); \
|
|
828 INCREMENT_CONS_COUNTER (sizeof (structtype), #type); \
|
|
829 } while (0)
|
|
830
|
|
831 #define NOSEEUM_ALLOCATE_FIXED_TYPE(type, structtype, result) \
|
|
832 do \
|
|
833 { \
|
|
834 ALLOCATE_FIXED_TYPE_1 (type, structtype, result); \
|
|
835 NOSEEUM_INCREMENT_CONS_COUNTER (sizeof (structtype), #type); \
|
|
836 } while (0)
|
|
837
|
|
838 /* INVALID_POINTER_VALUE should be a value that is invalid as a pointer
|
|
839 to a Lisp object and invalid as an actual Lisp_Object value. We have
|
|
840 to make sure that this value cannot be an integer in Lisp_Object form.
|
|
841 0xFFFFFFFF could be so on a 64-bit system, so we extend it to 64 bits.
|
|
842 On a 32-bit system, the type bits will be non-zero, making the value
|
|
843 be a pointer, and the pointer will be misaligned.
|
|
844
|
|
845 Even if Emacs is run on some weirdo system that allows and allocates
|
|
846 byte-aligned pointers, this pointer is at the very top of the address
|
|
847 space and so it's almost inconceivable that it could ever be valid. */
|
|
848
|
|
849 #if INTBITS == 32
|
|
850 # define INVALID_POINTER_VALUE 0xFFFFFFFF
|
|
851 #elif INTBITS == 48
|
|
852 # define INVALID_POINTER_VALUE 0xFFFFFFFFFFFF
|
|
853 #elif INTBITS == 64
|
|
854 # define INVALID_POINTER_VALUE 0xFFFFFFFFFFFFFFFF
|
|
855 #else
|
|
856 You have some weird system and need to supply a reasonable value here.
|
|
857 #endif
|
|
858
|
|
859 #define FREE_STRUCT_P(ptr) \
|
|
860 (* (void **) ptr == (void *) INVALID_POINTER_VALUE)
|
|
861 #define MARK_STRUCT_AS_FREE(ptr) \
|
|
862 (* (void **) ptr = (void *) INVALID_POINTER_VALUE)
|
|
863 #define MARK_STRUCT_AS_NOT_FREE(ptr) \
|
|
864 (* (void **) ptr = 0)
|
|
865
|
|
866 #ifdef ERROR_CHECK_GC
|
|
867
|
|
868 #define PUT_FIXED_TYPE_ON_FREE_LIST(type, structtype, ptr) \
|
|
869 do { if (type##_free_list_tail) \
|
|
870 { \
|
|
871 /* When we store the chain pointer, we complement all \
|
|
872 its bits; this should significantly increase its \
|
|
873 bogosity in case someone tries to use the value, and \
|
|
874 should make us dump faster if someone stores something \
|
|
875 over the pointer because when it gets un-complemented in \
|
|
876 ALLOCATED_FIXED_TYPE(), the resulting pointer will be \
|
|
877 extremely bogus. */ \
|
|
878 * (structtype **) \
|
|
879 ((char *) type##_free_list_tail + sizeof (void *)) = \
|
|
880 (structtype *) ~(unsigned long) ptr; \
|
|
881 } \
|
|
882 else \
|
|
883 type##_free_list = ptr; \
|
|
884 type##_free_list_tail = ptr; \
|
|
885 } while (0)
|
|
886
|
|
887 #else /* !ERROR_CHECK_GC */
|
|
888
|
|
889 #define PUT_FIXED_TYPE_ON_FREE_LIST(type, structtype, ptr) \
|
|
890 do { * (structtype **) ((char *) (ptr) + sizeof (void *)) = \
|
|
891 type##_free_list; \
|
|
892 type##_free_list = (ptr); \
|
|
893 } while (0)
|
|
894
|
|
895 #endif /* !ERROR_CHECK_GC */
|
|
896
|
|
897 /* TYPE and STRUCTTYPE are the same as in ALLOCATE_FIXED_TYPE(). */
|
|
898
|
|
899 #define FREE_FIXED_TYPE(type, structtype, ptr) do { \
|
|
900 structtype *FFT_ptr = (ptr); \
|
|
901 ADDITIONAL_FREE_##type (FFT_ptr); \
|
|
902 deadbeef_memory (FFT_ptr, sizeof (structtype)); \
|
|
903 PUT_FIXED_TYPE_ON_FREE_LIST (type, structtype, FFT_ptr); \
|
|
904 MARK_STRUCT_AS_FREE (FFT_ptr); \
|
|
905 } while (0)
|
|
906
|
|
907 /* Like FREE_FIXED_TYPE() but used when we are explicitly
|
|
908 freeing a structure through free_cons(), free_marker(), etc.
|
|
909 rather than through the normal process of sweeping.
|
|
910 We attempt to undo the changes made to the allocation counters
|
|
911 as a result of this structure being allocated. This is not
|
|
912 completely necessary but helps keep things saner: e.g. this way,
|
|
913 repeatedly allocating and freeing a cons will not result in
|
|
914 the consing-since-gc counter advancing, which would cause a GC
|
|
915 and somewhat defeat the purpose of explicitly freeing. */
|
|
916
|
|
917 #define FREE_FIXED_TYPE_WHEN_NOT_IN_GC(type, structtype, ptr) \
|
|
918 do { FREE_FIXED_TYPE (type, structtype, ptr); \
|
|
919 DECREMENT_CONS_COUNTER (sizeof (structtype)); \
|
|
920 gc_count_num_##type##_freelist++; \
|
|
921 } while (0)
|
|
922
|
|
923
|
|
924
|
|
925 /************************************************************************/
|
|
926 /* Cons allocation */
|
|
927 /************************************************************************/
|
|
928
|
|
929 DECLARE_FIXED_TYPE_ALLOC (cons, struct Lisp_Cons);
|
|
930 /* conses are used and freed so often that we set this really high */
|
|
931 /* #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_cons 20000 */
|
|
932 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_cons 2000
|
|
933
|
|
934 static Lisp_Object
|
|
935 mark_cons (Lisp_Object obj)
|
|
936 {
|
|
937 if (NILP (XCDR (obj)))
|
|
938 return XCAR (obj);
|
|
939
|
|
940 mark_object (XCAR (obj));
|
|
941 return XCDR (obj);
|
|
942 }
|
|
943
|
|
944 static int
|
|
945 cons_equal (Lisp_Object ob1, Lisp_Object ob2, int depth)
|
|
946 {
|
|
947 while (internal_equal (XCAR (ob1), XCAR (ob2), depth + 1))
|
|
948 {
|
|
949 ob1 = XCDR (ob1);
|
|
950 ob2 = XCDR (ob2);
|
|
951 if (! CONSP (ob1) || ! CONSP (ob2))
|
|
952 return internal_equal (ob1, ob2, depth + 1);
|
|
953 }
|
|
954 return 0;
|
|
955 }
|
|
956
|
|
957 static const struct lrecord_description cons_description[] = {
|
|
958 { XD_LISP_OBJECT, offsetof(struct Lisp_Cons, car), 2 },
|
|
959 { XD_END }
|
|
960 };
|
|
961
|
|
962 DEFINE_BASIC_LRECORD_IMPLEMENTATION ("cons", cons,
|
|
963 mark_cons, print_cons, 0,
|
|
964 cons_equal,
|
|
965 /*
|
|
966 * No `hash' method needed.
|
|
967 * internal_hash knows how to
|
|
968 * handle conses.
|
|
969 */
|
|
970 0,
|
|
971 cons_description,
|
|
972 struct Lisp_Cons);
|
|
973
|
|
974 DEFUN ("cons", Fcons, 2, 2, 0, /*
|
|
975 Create a new cons, give it CAR and CDR as components, and return it.
|
|
976 */
|
|
977 (car, cdr))
|
|
978 {
|
|
979 /* This cannot GC. */
|
|
980 Lisp_Object val;
|
|
981 struct Lisp_Cons *c;
|
|
982
|
|
983 ALLOCATE_FIXED_TYPE (cons, struct Lisp_Cons, c);
|
|
984 set_lheader_implementation (&(c->lheader), &lrecord_cons);
|
|
985 XSETCONS (val, c);
|
|
986 c->car = car;
|
|
987 c->cdr = cdr;
|
|
988 return val;
|
|
989 }
|
|
990
|
|
991 /* This is identical to Fcons() but it used for conses that we're
|
|
992 going to free later, and is useful when trying to track down
|
|
993 "real" consing. */
|
|
994 Lisp_Object
|
|
995 noseeum_cons (Lisp_Object car, Lisp_Object cdr)
|
|
996 {
|
|
997 Lisp_Object val;
|
|
998 struct Lisp_Cons *c;
|
|
999
|
|
1000 NOSEEUM_ALLOCATE_FIXED_TYPE (cons, struct Lisp_Cons, c);
|
|
1001 set_lheader_implementation (&(c->lheader), &lrecord_cons);
|
|
1002 XSETCONS (val, c);
|
|
1003 XCAR (val) = car;
|
|
1004 XCDR (val) = cdr;
|
|
1005 return val;
|
|
1006 }
|
|
1007
|
|
1008 DEFUN ("list", Flist, 0, MANY, 0, /*
|
|
1009 Return a newly created list with specified arguments as elements.
|
|
1010 Any number of arguments, even zero arguments, are allowed.
|
|
1011 */
|
|
1012 (int nargs, Lisp_Object *args))
|
|
1013 {
|
|
1014 Lisp_Object val = Qnil;
|
|
1015 Lisp_Object *argp = args + nargs;
|
|
1016
|
|
1017 while (argp > args)
|
|
1018 val = Fcons (*--argp, val);
|
|
1019 return val;
|
|
1020 }
|
|
1021
|
|
1022 Lisp_Object
|
|
1023 list1 (Lisp_Object obj0)
|
|
1024 {
|
|
1025 /* This cannot GC. */
|
|
1026 return Fcons (obj0, Qnil);
|
|
1027 }
|
|
1028
|
|
1029 Lisp_Object
|
|
1030 list2 (Lisp_Object obj0, Lisp_Object obj1)
|
|
1031 {
|
|
1032 /* This cannot GC. */
|
|
1033 return Fcons (obj0, Fcons (obj1, Qnil));
|
|
1034 }
|
|
1035
|
|
1036 Lisp_Object
|
|
1037 list3 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2)
|
|
1038 {
|
|
1039 /* This cannot GC. */
|
|
1040 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Qnil)));
|
|
1041 }
|
|
1042
|
|
1043 Lisp_Object
|
|
1044 cons3 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2)
|
|
1045 {
|
|
1046 /* This cannot GC. */
|
|
1047 return Fcons (obj0, Fcons (obj1, obj2));
|
|
1048 }
|
|
1049
|
|
1050 Lisp_Object
|
|
1051 acons (Lisp_Object key, Lisp_Object value, Lisp_Object alist)
|
|
1052 {
|
|
1053 return Fcons (Fcons (key, value), alist);
|
|
1054 }
|
|
1055
|
|
1056 Lisp_Object
|
|
1057 list4 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, Lisp_Object obj3)
|
|
1058 {
|
|
1059 /* This cannot GC. */
|
|
1060 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Fcons (obj3, Qnil))));
|
|
1061 }
|
|
1062
|
|
1063 Lisp_Object
|
|
1064 list5 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, Lisp_Object obj3,
|
|
1065 Lisp_Object obj4)
|
|
1066 {
|
|
1067 /* This cannot GC. */
|
|
1068 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Fcons (obj3, Fcons (obj4, Qnil)))));
|
|
1069 }
|
|
1070
|
|
1071 Lisp_Object
|
|
1072 list6 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, Lisp_Object obj3,
|
|
1073 Lisp_Object obj4, Lisp_Object obj5)
|
|
1074 {
|
|
1075 /* This cannot GC. */
|
|
1076 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Fcons (obj3, Fcons (obj4, Fcons (obj5, Qnil))))));
|
|
1077 }
|
|
1078
|
|
1079 DEFUN ("make-list", Fmake_list, 2, 2, 0, /*
|
|
1080 Return a new list of length LENGTH, with each element being INIT.
|
|
1081 */
|
|
1082 (length, init))
|
|
1083 {
|
|
1084 CHECK_NATNUM (length);
|
|
1085
|
|
1086 {
|
|
1087 Lisp_Object val = Qnil;
|
|
1088 size_t size = XINT (length);
|
|
1089
|
|
1090 while (size--)
|
|
1091 val = Fcons (init, val);
|
|
1092 return val;
|
|
1093 }
|
|
1094 }
|
|
1095
|
|
1096
|
|
1097 /************************************************************************/
|
|
1098 /* Float allocation */
|
|
1099 /************************************************************************/
|
|
1100
|
|
1101 #ifdef LISP_FLOAT_TYPE
|
|
1102
|
|
1103 DECLARE_FIXED_TYPE_ALLOC (float, struct Lisp_Float);
|
|
1104 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_float 1000
|
|
1105
|
|
1106 Lisp_Object
|
|
1107 make_float (double float_value)
|
|
1108 {
|
|
1109 Lisp_Object val;
|
|
1110 struct Lisp_Float *f;
|
|
1111
|
|
1112 ALLOCATE_FIXED_TYPE (float, struct Lisp_Float, f);
|
|
1113 set_lheader_implementation (&(f->lheader), &lrecord_float);
|
|
1114 float_data (f) = float_value;
|
|
1115 XSETFLOAT (val, f);
|
|
1116 return val;
|
|
1117 }
|
|
1118
|
|
1119 #endif /* LISP_FLOAT_TYPE */
|
|
1120
|
|
1121
|
|
1122 /************************************************************************/
|
|
1123 /* Vector allocation */
|
|
1124 /************************************************************************/
|
|
1125
|
|
1126 static Lisp_Object
|
|
1127 mark_vector (Lisp_Object obj)
|
|
1128 {
|
|
1129 Lisp_Vector *ptr = XVECTOR (obj);
|
|
1130 int len = vector_length (ptr);
|
|
1131 int i;
|
|
1132
|
|
1133 for (i = 0; i < len - 1; i++)
|
|
1134 mark_object (ptr->contents[i]);
|
|
1135 return (len > 0) ? ptr->contents[len - 1] : Qnil;
|
|
1136 }
|
|
1137
|
|
1138 static size_t
|
|
1139 size_vector (CONST void *lheader)
|
|
1140 {
|
|
1141 return STRETCHY_STRUCT_SIZEOF (Lisp_Vector, contents,
|
|
1142 ((Lisp_Vector *) lheader)->size);
|
|
1143 }
|
|
1144
|
|
1145 static int
|
|
1146 vector_equal (Lisp_Object obj1, Lisp_Object obj2, int depth)
|
|
1147 {
|
|
1148 int len = XVECTOR_LENGTH (obj1);
|
|
1149 if (len != XVECTOR_LENGTH (obj2))
|
|
1150 return 0;
|
|
1151
|
|
1152 {
|
|
1153 Lisp_Object *ptr1 = XVECTOR_DATA (obj1);
|
|
1154 Lisp_Object *ptr2 = XVECTOR_DATA (obj2);
|
|
1155 while (len--)
|
|
1156 if (!internal_equal (*ptr1++, *ptr2++, depth + 1))
|
|
1157 return 0;
|
|
1158 }
|
|
1159 return 1;
|
|
1160 }
|
|
1161
|
|
1162 static const struct lrecord_description vector_description[] = {
|
|
1163 { XD_LONG, offsetof(struct Lisp_Vector, size) },
|
|
1164 { XD_LISP_OBJECT, offsetof(struct Lisp_Vector, contents), XD_INDIRECT(0, 0) },
|
|
1165 { XD_END }
|
|
1166 };
|
|
1167
|
|
1168 DEFINE_LRECORD_SEQUENCE_IMPLEMENTATION("vector", vector,
|
|
1169 mark_vector, print_vector, 0,
|
|
1170 vector_equal,
|
|
1171 /*
|
|
1172 * No `hash' method needed for
|
|
1173 * vectors. internal_hash
|
|
1174 * knows how to handle vectors.
|
|
1175 */
|
|
1176 0,
|
|
1177 vector_description,
|
|
1178 size_vector, Lisp_Vector);
|
|
1179
|
|
1180 /* #### should allocate `small' vectors from a frob-block */
|
|
1181 static Lisp_Vector *
|
|
1182 make_vector_internal (size_t sizei)
|
|
1183 {
|
|
1184 /* no vector_next */
|
|
1185 size_t sizem = STRETCHY_STRUCT_SIZEOF (Lisp_Vector, contents, sizei);
|
|
1186 Lisp_Vector *p = (Lisp_Vector *) alloc_lcrecord (sizem, &lrecord_vector);
|
|
1187
|
|
1188 p->size = sizei;
|
|
1189 return p;
|
|
1190 }
|
|
1191
|
|
1192 Lisp_Object
|
|
1193 make_vector (size_t length, Lisp_Object init)
|
|
1194 {
|
|
1195 Lisp_Vector *vecp = make_vector_internal (length);
|
|
1196 Lisp_Object *p = vector_data (vecp);
|
|
1197
|
|
1198 while (length--)
|
|
1199 *p++ = init;
|
|
1200
|
|
1201 {
|
|
1202 Lisp_Object vector;
|
|
1203 XSETVECTOR (vector, vecp);
|
|
1204 return vector;
|
|
1205 }
|
|
1206 }
|
|
1207
|
|
1208 DEFUN ("make-vector", Fmake_vector, 2, 2, 0, /*
|
|
1209 Return a new vector of length LENGTH, with each element being INIT.
|
|
1210 See also the function `vector'.
|
|
1211 */
|
|
1212 (length, init))
|
|
1213 {
|
|
1214 CONCHECK_NATNUM (length);
|
|
1215 return make_vector (XINT (length), init);
|
|
1216 }
|
|
1217
|
|
1218 DEFUN ("vector", Fvector, 0, MANY, 0, /*
|
|
1219 Return a newly created vector with specified arguments as elements.
|
|
1220 Any number of arguments, even zero arguments, are allowed.
|
|
1221 */
|
|
1222 (int nargs, Lisp_Object *args))
|
|
1223 {
|
|
1224 Lisp_Vector *vecp = make_vector_internal (nargs);
|
|
1225 Lisp_Object *p = vector_data (vecp);
|
|
1226
|
|
1227 while (nargs--)
|
|
1228 *p++ = *args++;
|
|
1229
|
|
1230 {
|
|
1231 Lisp_Object vector;
|
|
1232 XSETVECTOR (vector, vecp);
|
|
1233 return vector;
|
|
1234 }
|
|
1235 }
|
|
1236
|
|
1237 Lisp_Object
|
|
1238 vector1 (Lisp_Object obj0)
|
|
1239 {
|
|
1240 return Fvector (1, &obj0);
|
|
1241 }
|
|
1242
|
|
1243 Lisp_Object
|
|
1244 vector2 (Lisp_Object obj0, Lisp_Object obj1)
|
|
1245 {
|
|
1246 Lisp_Object args[2];
|
|
1247 args[0] = obj0;
|
|
1248 args[1] = obj1;
|
|
1249 return Fvector (2, args);
|
|
1250 }
|
|
1251
|
|
1252 Lisp_Object
|
|
1253 vector3 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2)
|
|
1254 {
|
|
1255 Lisp_Object args[3];
|
|
1256 args[0] = obj0;
|
|
1257 args[1] = obj1;
|
|
1258 args[2] = obj2;
|
|
1259 return Fvector (3, args);
|
|
1260 }
|
|
1261
|
|
1262 #if 0 /* currently unused */
|
|
1263
|
|
1264 Lisp_Object
|
|
1265 vector4 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2,
|
|
1266 Lisp_Object obj3)
|
|
1267 {
|
|
1268 Lisp_Object args[4];
|
|
1269 args[0] = obj0;
|
|
1270 args[1] = obj1;
|
|
1271 args[2] = obj2;
|
|
1272 args[3] = obj3;
|
|
1273 return Fvector (4, args);
|
|
1274 }
|
|
1275
|
|
1276 Lisp_Object
|
|
1277 vector5 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2,
|
|
1278 Lisp_Object obj3, Lisp_Object obj4)
|
|
1279 {
|
|
1280 Lisp_Object args[5];
|
|
1281 args[0] = obj0;
|
|
1282 args[1] = obj1;
|
|
1283 args[2] = obj2;
|
|
1284 args[3] = obj3;
|
|
1285 args[4] = obj4;
|
|
1286 return Fvector (5, args);
|
|
1287 }
|
|
1288
|
|
1289 Lisp_Object
|
|
1290 vector6 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2,
|
|
1291 Lisp_Object obj3, Lisp_Object obj4, Lisp_Object obj5)
|
|
1292 {
|
|
1293 Lisp_Object args[6];
|
|
1294 args[0] = obj0;
|
|
1295 args[1] = obj1;
|
|
1296 args[2] = obj2;
|
|
1297 args[3] = obj3;
|
|
1298 args[4] = obj4;
|
|
1299 args[5] = obj5;
|
|
1300 return Fvector (6, args);
|
|
1301 }
|
|
1302
|
|
1303 Lisp_Object
|
|
1304 vector7 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2,
|
|
1305 Lisp_Object obj3, Lisp_Object obj4, Lisp_Object obj5,
|
|
1306 Lisp_Object obj6)
|
|
1307 {
|
|
1308 Lisp_Object args[7];
|
|
1309 args[0] = obj0;
|
|
1310 args[1] = obj1;
|
|
1311 args[2] = obj2;
|
|
1312 args[3] = obj3;
|
|
1313 args[4] = obj4;
|
|
1314 args[5] = obj5;
|
|
1315 args[6] = obj6;
|
|
1316 return Fvector (7, args);
|
|
1317 }
|
|
1318
|
|
1319 Lisp_Object
|
|
1320 vector8 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2,
|
|
1321 Lisp_Object obj3, Lisp_Object obj4, Lisp_Object obj5,
|
|
1322 Lisp_Object obj6, Lisp_Object obj7)
|
|
1323 {
|
|
1324 Lisp_Object args[8];
|
|
1325 args[0] = obj0;
|
|
1326 args[1] = obj1;
|
|
1327 args[2] = obj2;
|
|
1328 args[3] = obj3;
|
|
1329 args[4] = obj4;
|
|
1330 args[5] = obj5;
|
|
1331 args[6] = obj6;
|
|
1332 args[7] = obj7;
|
|
1333 return Fvector (8, args);
|
|
1334 }
|
|
1335 #endif /* unused */
|
|
1336
|
|
1337 /************************************************************************/
|
|
1338 /* Bit Vector allocation */
|
|
1339 /************************************************************************/
|
|
1340
|
|
1341 static Lisp_Object all_bit_vectors;
|
|
1342
|
|
1343 /* #### should allocate `small' bit vectors from a frob-block */
|
|
1344 static struct Lisp_Bit_Vector *
|
|
1345 make_bit_vector_internal (size_t sizei)
|
|
1346 {
|
|
1347 size_t num_longs = BIT_VECTOR_LONG_STORAGE (sizei);
|
|
1348 size_t sizem = STRETCHY_STRUCT_SIZEOF (Lisp_Bit_Vector, bits, num_longs);
|
|
1349 Lisp_Bit_Vector *p = (Lisp_Bit_Vector *) allocate_lisp_storage (sizem);
|
|
1350 set_lheader_implementation (&(p->lheader), &lrecord_bit_vector);
|
|
1351
|
|
1352 INCREMENT_CONS_COUNTER (sizem, "bit-vector");
|
|
1353
|
|
1354 bit_vector_length (p) = sizei;
|
|
1355 bit_vector_next (p) = all_bit_vectors;
|
|
1356 /* make sure the extra bits in the last long are 0; the calling
|
|
1357 functions might not set them. */
|
|
1358 p->bits[num_longs - 1] = 0;
|
|
1359 XSETBIT_VECTOR (all_bit_vectors, p);
|
|
1360 return p;
|
|
1361 }
|
|
1362
|
|
1363 Lisp_Object
|
|
1364 make_bit_vector (size_t length, Lisp_Object init)
|
|
1365 {
|
|
1366 struct Lisp_Bit_Vector *p = make_bit_vector_internal (length);
|
|
1367 size_t num_longs = BIT_VECTOR_LONG_STORAGE (length);
|
|
1368
|
|
1369 CHECK_BIT (init);
|
|
1370
|
|
1371 if (ZEROP (init))
|
|
1372 memset (p->bits, 0, num_longs * sizeof (long));
|
|
1373 else
|
|
1374 {
|
|
1375 size_t bits_in_last = length & (LONGBITS_POWER_OF_2 - 1);
|
|
1376 memset (p->bits, ~0, num_longs * sizeof (long));
|
|
1377 /* But we have to make sure that the unused bits in the
|
|
1378 last long are 0, so that equal/hash is easy. */
|
|
1379 if (bits_in_last)
|
|
1380 p->bits[num_longs - 1] &= (1 << bits_in_last) - 1;
|
|
1381 }
|
|
1382
|
|
1383 {
|
|
1384 Lisp_Object bit_vector;
|
|
1385 XSETBIT_VECTOR (bit_vector, p);
|
|
1386 return bit_vector;
|
|
1387 }
|
|
1388 }
|
|
1389
|
|
1390 Lisp_Object
|
|
1391 make_bit_vector_from_byte_vector (unsigned char *bytevec, size_t length)
|
|
1392 {
|
|
1393 int i;
|
|
1394 Lisp_Bit_Vector *p = make_bit_vector_internal (length);
|
|
1395
|
|
1396 for (i = 0; i < length; i++)
|
|
1397 set_bit_vector_bit (p, i, bytevec[i]);
|
|
1398
|
|
1399 {
|
|
1400 Lisp_Object bit_vector;
|
|
1401 XSETBIT_VECTOR (bit_vector, p);
|
|
1402 return bit_vector;
|
|
1403 }
|
|
1404 }
|
|
1405
|
|
1406 DEFUN ("make-bit-vector", Fmake_bit_vector, 2, 2, 0, /*
|
|
1407 Return a new bit vector of length LENGTH. with each bit being INIT.
|
|
1408 Each element is set to INIT. See also the function `bit-vector'.
|
|
1409 */
|
|
1410 (length, init))
|
|
1411 {
|
|
1412 CONCHECK_NATNUM (length);
|
|
1413
|
|
1414 return make_bit_vector (XINT (length), init);
|
|
1415 }
|
|
1416
|
|
1417 DEFUN ("bit-vector", Fbit_vector, 0, MANY, 0, /*
|
|
1418 Return a newly created bit vector with specified arguments as elements.
|
|
1419 Any number of arguments, even zero arguments, are allowed.
|
|
1420 */
|
|
1421 (int nargs, Lisp_Object *args))
|
|
1422 {
|
|
1423 int i;
|
|
1424 Lisp_Bit_Vector *p = make_bit_vector_internal (nargs);
|
|
1425
|
|
1426 for (i = 0; i < nargs; i++)
|
|
1427 {
|
|
1428 CHECK_BIT (args[i]);
|
|
1429 set_bit_vector_bit (p, i, !ZEROP (args[i]));
|
|
1430 }
|
|
1431
|
|
1432 {
|
|
1433 Lisp_Object bit_vector;
|
|
1434 XSETBIT_VECTOR (bit_vector, p);
|
|
1435 return bit_vector;
|
|
1436 }
|
|
1437 }
|
|
1438
|
|
1439
|
|
1440 /************************************************************************/
|
|
1441 /* Compiled-function allocation */
|
|
1442 /************************************************************************/
|
|
1443
|
|
1444 DECLARE_FIXED_TYPE_ALLOC (compiled_function, Lisp_Compiled_Function);
|
|
1445 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_compiled_function 1000
|
|
1446
|
|
1447 static Lisp_Object
|
|
1448 make_compiled_function (void)
|
|
1449 {
|
|
1450 Lisp_Compiled_Function *f;
|
|
1451 Lisp_Object fun;
|
|
1452
|
|
1453 ALLOCATE_FIXED_TYPE (compiled_function, Lisp_Compiled_Function, f);
|
|
1454 set_lheader_implementation (&(f->lheader), &lrecord_compiled_function);
|
|
1455
|
|
1456 f->stack_depth = 0;
|
|
1457 f->specpdl_depth = 0;
|
|
1458 f->flags.documentationp = 0;
|
|
1459 f->flags.interactivep = 0;
|
|
1460 f->flags.domainp = 0; /* I18N3 */
|
|
1461 f->instructions = Qzero;
|
|
1462 f->constants = Qzero;
|
|
1463 f->arglist = Qnil;
|
|
1464 f->doc_and_interactive = Qnil;
|
|
1465 #ifdef COMPILED_FUNCTION_ANNOTATION_HACK
|
|
1466 f->annotated = Qnil;
|
|
1467 #endif
|
|
1468 XSETCOMPILED_FUNCTION (fun, f);
|
|
1469 return fun;
|
|
1470 }
|
|
1471
|
|
1472 DEFUN ("make-byte-code", Fmake_byte_code, 4, MANY, 0, /*
|
|
1473 Return a new compiled-function object.
|
|
1474 Usage: (arglist instructions constants stack-depth
|
|
1475 &optional doc-string interactive)
|
|
1476 Note that, unlike all other emacs-lisp functions, calling this with five
|
|
1477 arguments is NOT the same as calling it with six arguments, the last of
|
|
1478 which is nil. If the INTERACTIVE arg is specified as nil, then that means
|
|
1479 that this function was defined with `(interactive)'. If the arg is not
|
|
1480 specified, then that means the function is not interactive.
|
|
1481 This is terrible behavior which is retained for compatibility with old
|
|
1482 `.elc' files which expect these semantics.
|
|
1483 */
|
|
1484 (int nargs, Lisp_Object *args))
|
|
1485 {
|
|
1486 /* In a non-insane world this function would have this arglist...
|
|
1487 (arglist instructions constants stack_depth &optional doc_string interactive)
|
|
1488 */
|
|
1489 Lisp_Object fun = make_compiled_function ();
|
|
1490 Lisp_Compiled_Function *f = XCOMPILED_FUNCTION (fun);
|
|
1491
|
|
1492 Lisp_Object arglist = args[0];
|
|
1493 Lisp_Object instructions = args[1];
|
|
1494 Lisp_Object constants = args[2];
|
|
1495 Lisp_Object stack_depth = args[3];
|
|
1496 Lisp_Object doc_string = (nargs > 4) ? args[4] : Qnil;
|
|
1497 Lisp_Object interactive = (nargs > 5) ? args[5] : Qunbound;
|
|
1498
|
|
1499 if (nargs < 4 || nargs > 6)
|
|
1500 return Fsignal (Qwrong_number_of_arguments,
|
|
1501 list2 (intern ("make-byte-code"), make_int (nargs)));
|
|
1502
|
|
1503 /* Check for valid formal parameter list now, to allow us to use
|
|
1504 SPECBIND_FAST_UNSAFE() later in funcall_compiled_function(). */
|
|
1505 {
|
|
1506 Lisp_Object symbol, tail;
|
|
1507 EXTERNAL_LIST_LOOP_3 (symbol, arglist, tail)
|
|
1508 {
|
|
1509 CHECK_SYMBOL (symbol);
|
|
1510 if (EQ (symbol, Qt) ||
|
|
1511 EQ (symbol, Qnil) ||
|
|
1512 SYMBOL_IS_KEYWORD (symbol))
|
|
1513 signal_simple_error_2
|
|
1514 ("Invalid constant symbol in formal parameter list",
|
|
1515 symbol, arglist);
|
|
1516 }
|
|
1517 }
|
|
1518 f->arglist = arglist;
|
|
1519
|
|
1520 /* `instructions' is a string or a cons (string . int) for a
|
|
1521 lazy-loaded function. */
|
|
1522 if (CONSP (instructions))
|
|
1523 {
|
|
1524 CHECK_STRING (XCAR (instructions));
|
|
1525 CHECK_INT (XCDR (instructions));
|
|
1526 }
|
|
1527 else
|
|
1528 {
|
|
1529 CHECK_STRING (instructions);
|
|
1530 }
|
|
1531 f->instructions = instructions;
|
|
1532
|
|
1533 if (!NILP (constants))
|
|
1534 CHECK_VECTOR (constants);
|
|
1535 f->constants = constants;
|
|
1536
|
|
1537 CHECK_NATNUM (stack_depth);
|
|
1538 f->stack_depth = XINT (stack_depth);
|
|
1539
|
|
1540 #ifdef COMPILED_FUNCTION_ANNOTATION_HACK
|
|
1541 if (!NILP (Vcurrent_compiled_function_annotation))
|
|
1542 f->annotated = Fcopy (Vcurrent_compiled_function_annotation);
|
|
1543 else if (!NILP (Vload_file_name_internal_the_purecopy))
|
|
1544 f->annotated = Vload_file_name_internal_the_purecopy;
|
|
1545 else if (!NILP (Vload_file_name_internal))
|
|
1546 {
|
|
1547 struct gcpro gcpro1;
|
|
1548 GCPRO1 (fun); /* don't let fun get reaped */
|
|
1549 Vload_file_name_internal_the_purecopy =
|
|
1550 Ffile_name_nondirectory (Vload_file_name_internal);
|
|
1551 f->annotated = Vload_file_name_internal_the_purecopy;
|
|
1552 UNGCPRO;
|
|
1553 }
|
|
1554 #endif /* COMPILED_FUNCTION_ANNOTATION_HACK */
|
|
1555
|
|
1556 /* doc_string may be nil, string, int, or a cons (string . int).
|
|
1557 interactive may be list or string (or unbound). */
|
|
1558 f->doc_and_interactive = Qunbound;
|
|
1559 #ifdef I18N3
|
|
1560 if ((f->flags.domainp = !NILP (Vfile_domain)) != 0)
|
|
1561 f->doc_and_interactive = Vfile_domain;
|
|
1562 #endif
|
|
1563 if ((f->flags.interactivep = !UNBOUNDP (interactive)) != 0)
|
|
1564 {
|
|
1565 f->doc_and_interactive
|
|
1566 = (UNBOUNDP (f->doc_and_interactive) ? interactive :
|
|
1567 Fcons (interactive, f->doc_and_interactive));
|
|
1568 }
|
|
1569 if ((f->flags.documentationp = !NILP (doc_string)) != 0)
|
|
1570 {
|
|
1571 f->doc_and_interactive
|
|
1572 = (UNBOUNDP (f->doc_and_interactive) ? doc_string :
|
|
1573 Fcons (doc_string, f->doc_and_interactive));
|
|
1574 }
|
|
1575 if (UNBOUNDP (f->doc_and_interactive))
|
|
1576 f->doc_and_interactive = Qnil;
|
|
1577
|
|
1578 return fun;
|
|
1579 }
|
|
1580
|
|
1581
|
|
1582 /************************************************************************/
|
|
1583 /* Symbol allocation */
|
|
1584 /************************************************************************/
|
|
1585
|
|
1586 DECLARE_FIXED_TYPE_ALLOC (symbol, struct Lisp_Symbol);
|
|
1587 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_symbol 1000
|
|
1588
|
|
1589 DEFUN ("make-symbol", Fmake_symbol, 1, 1, 0, /*
|
|
1590 Return a newly allocated uninterned symbol whose name is NAME.
|
|
1591 Its value and function definition are void, and its property list is nil.
|
|
1592 */
|
|
1593 (name))
|
|
1594 {
|
|
1595 Lisp_Object val;
|
|
1596 struct Lisp_Symbol *p;
|
|
1597
|
|
1598 CHECK_STRING (name);
|
|
1599
|
|
1600 ALLOCATE_FIXED_TYPE (symbol, struct Lisp_Symbol, p);
|
|
1601 set_lheader_implementation (&(p->lheader), &lrecord_symbol);
|
|
1602 p->name = XSTRING (name);
|
|
1603 p->plist = Qnil;
|
|
1604 p->value = Qunbound;
|
|
1605 p->function = Qunbound;
|
|
1606 symbol_next (p) = 0;
|
|
1607 XSETSYMBOL (val, p);
|
|
1608 return val;
|
|
1609 }
|
|
1610
|
|
1611
|
|
1612 /************************************************************************/
|
|
1613 /* Extent allocation */
|
|
1614 /************************************************************************/
|
|
1615
|
|
1616 DECLARE_FIXED_TYPE_ALLOC (extent, struct extent);
|
|
1617 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_extent 1000
|
|
1618
|
|
1619 struct extent *
|
|
1620 allocate_extent (void)
|
|
1621 {
|
|
1622 struct extent *e;
|
|
1623
|
|
1624 ALLOCATE_FIXED_TYPE (extent, struct extent, e);
|
|
1625 set_lheader_implementation (&(e->lheader), &lrecord_extent);
|
|
1626 extent_object (e) = Qnil;
|
|
1627 set_extent_start (e, -1);
|
|
1628 set_extent_end (e, -1);
|
|
1629 e->plist = Qnil;
|
|
1630
|
|
1631 xzero (e->flags);
|
|
1632
|
|
1633 extent_face (e) = Qnil;
|
|
1634 e->flags.end_open = 1; /* default is for endpoints to behave like markers */
|
|
1635 e->flags.detachable = 1;
|
|
1636
|
|
1637 return e;
|
|
1638 }
|
|
1639
|
|
1640
|
|
1641 /************************************************************************/
|
|
1642 /* Event allocation */
|
|
1643 /************************************************************************/
|
|
1644
|
|
1645 DECLARE_FIXED_TYPE_ALLOC (event, struct Lisp_Event);
|
|
1646 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_event 1000
|
|
1647
|
|
1648 Lisp_Object
|
|
1649 allocate_event (void)
|
|
1650 {
|
|
1651 Lisp_Object val;
|
|
1652 struct Lisp_Event *e;
|
|
1653
|
|
1654 ALLOCATE_FIXED_TYPE (event, struct Lisp_Event, e);
|
|
1655 set_lheader_implementation (&(e->lheader), &lrecord_event);
|
|
1656
|
|
1657 XSETEVENT (val, e);
|
|
1658 return val;
|
|
1659 }
|
|
1660
|
|
1661
|
|
1662 /************************************************************************/
|
|
1663 /* Marker allocation */
|
|
1664 /************************************************************************/
|
|
1665
|
|
1666 DECLARE_FIXED_TYPE_ALLOC (marker, struct Lisp_Marker);
|
|
1667 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_marker 1000
|
|
1668
|
|
1669 DEFUN ("make-marker", Fmake_marker, 0, 0, 0, /*
|
|
1670 Return a new marker which does not point at any place.
|
|
1671 */
|
|
1672 ())
|
|
1673 {
|
|
1674 Lisp_Object val;
|
|
1675 struct Lisp_Marker *p;
|
|
1676
|
|
1677 ALLOCATE_FIXED_TYPE (marker, struct Lisp_Marker, p);
|
|
1678 set_lheader_implementation (&(p->lheader), &lrecord_marker);
|
|
1679 p->buffer = 0;
|
|
1680 p->memind = 0;
|
|
1681 marker_next (p) = 0;
|
|
1682 marker_prev (p) = 0;
|
|
1683 p->insertion_type = 0;
|
|
1684 XSETMARKER (val, p);
|
|
1685 return val;
|
|
1686 }
|
|
1687
|
|
1688 Lisp_Object
|
|
1689 noseeum_make_marker (void)
|
|
1690 {
|
|
1691 Lisp_Object val;
|
|
1692 struct Lisp_Marker *p;
|
|
1693
|
|
1694 NOSEEUM_ALLOCATE_FIXED_TYPE (marker, struct Lisp_Marker, p);
|
|
1695 set_lheader_implementation (&(p->lheader), &lrecord_marker);
|
|
1696 p->buffer = 0;
|
|
1697 p->memind = 0;
|
|
1698 marker_next (p) = 0;
|
|
1699 marker_prev (p) = 0;
|
|
1700 p->insertion_type = 0;
|
|
1701 XSETMARKER (val, p);
|
|
1702 return val;
|
|
1703 }
|
|
1704
|
|
1705
|
|
1706 /************************************************************************/
|
|
1707 /* String allocation */
|
|
1708 /************************************************************************/
|
|
1709
|
|
1710 /* The data for "short" strings generally resides inside of structs of type
|
|
1711 string_chars_block. The Lisp_String structure is allocated just like any
|
|
1712 other Lisp object (except for vectors), and these are freelisted when
|
|
1713 they get garbage collected. The data for short strings get compacted,
|
|
1714 but the data for large strings do not.
|
|
1715
|
|
1716 Previously Lisp_String structures were relocated, but this caused a lot
|
|
1717 of bus-errors because the C code didn't include enough GCPRO's for
|
|
1718 strings (since EVERY REFERENCE to a short string needed to be GCPRO'd so
|
|
1719 that the reference would get relocated).
|
|
1720
|
|
1721 This new method makes things somewhat bigger, but it is MUCH safer. */
|
|
1722
|
|
1723 DECLARE_FIXED_TYPE_ALLOC (string, struct Lisp_String);
|
|
1724 /* strings are used and freed quite often */
|
|
1725 /* #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_string 10000 */
|
|
1726 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_string 1000
|
|
1727
|
|
1728 static Lisp_Object
|
|
1729 mark_string (Lisp_Object obj)
|
|
1730 {
|
|
1731 struct Lisp_String *ptr = XSTRING (obj);
|
|
1732
|
|
1733 if (CONSP (ptr->plist) && EXTENT_INFOP (XCAR (ptr->plist)))
|
|
1734 flush_cached_extent_info (XCAR (ptr->plist));
|
|
1735 return ptr->plist;
|
|
1736 }
|
|
1737
|
|
1738 static int
|
|
1739 string_equal (Lisp_Object obj1, Lisp_Object obj2, int depth)
|
|
1740 {
|
|
1741 Bytecount len;
|
|
1742 return (((len = XSTRING_LENGTH (obj1)) == XSTRING_LENGTH (obj2)) &&
|
|
1743 !memcmp (XSTRING_DATA (obj1), XSTRING_DATA (obj2), len));
|
|
1744 }
|
|
1745
|
|
1746 static const struct lrecord_description string_description[] = {
|
|
1747 { XD_BYTECOUNT, offsetof(Lisp_String, size) },
|
|
1748 { XD_OPAQUE_DATA_PTR, offsetof(Lisp_String, data), XD_INDIRECT(0, 1) },
|
|
1749 { XD_LISP_OBJECT, offsetof(Lisp_String, plist), 1 },
|
|
1750 { XD_END }
|
|
1751 };
|
|
1752
|
|
1753 DEFINE_BASIC_LRECORD_IMPLEMENTATION ("string", string,
|
|
1754 mark_string, print_string,
|
|
1755 /*
|
|
1756 * No `finalize', or `hash' methods.
|
|
1757 * internal_hash already knows how
|
|
1758 * to hash strings and finalization
|
|
1759 * is done with the
|
|
1760 * ADDITIONAL_FREE_string macro,
|
|
1761 * which is the standard way to do
|
|
1762 * finalization when using
|
|
1763 * SWEEP_FIXED_TYPE_BLOCK().
|
|
1764 */
|
|
1765 0, string_equal, 0,
|
|
1766 string_description,
|
|
1767 struct Lisp_String);
|
|
1768
|
|
1769 /* String blocks contain this many useful bytes. */
|
|
1770 #define STRING_CHARS_BLOCK_SIZE \
|
|
1771 ((Bytecount) (8192 - MALLOC_OVERHEAD - \
|
|
1772 ((2 * sizeof (struct string_chars_block *)) \
|
|
1773 + sizeof (EMACS_INT))))
|
|
1774 /* Block header for small strings. */
|
|
1775 struct string_chars_block
|
|
1776 {
|
|
1777 EMACS_INT pos;
|
|
1778 struct string_chars_block *next;
|
|
1779 struct string_chars_block *prev;
|
|
1780 /* Contents of string_chars_block->string_chars are interleaved
|
|
1781 string_chars structures (see below) and the actual string data */
|
|
1782 unsigned char string_chars[STRING_CHARS_BLOCK_SIZE];
|
|
1783 };
|
|
1784
|
|
1785 static struct string_chars_block *first_string_chars_block;
|
|
1786 static struct string_chars_block *current_string_chars_block;
|
|
1787
|
|
1788 /* If SIZE is the length of a string, this returns how many bytes
|
|
1789 * the string occupies in string_chars_block->string_chars
|
|
1790 * (including alignment padding).
|
|
1791 */
|
|
1792 #define STRING_FULLSIZE(s) \
|
|
1793 ALIGN_SIZE (((s) + 1 + sizeof (struct Lisp_String *)),\
|
|
1794 ALIGNOF (struct Lisp_String *))
|
|
1795
|
|
1796 #define BIG_STRING_FULLSIZE_P(fullsize) ((fullsize) >= STRING_CHARS_BLOCK_SIZE)
|
|
1797 #define BIG_STRING_SIZE_P(size) (BIG_STRING_FULLSIZE_P (STRING_FULLSIZE(size)))
|
|
1798
|
|
1799 #define CHARS_TO_STRING_CHAR(x) \
|
|
1800 ((struct string_chars *) \
|
|
1801 (((char *) (x)) - (slot_offset (struct string_chars, chars[0]))))
|
|
1802
|
|
1803
|
|
1804 struct string_chars
|
|
1805 {
|
|
1806 struct Lisp_String *string;
|
|
1807 unsigned char chars[1];
|
|
1808 };
|
|
1809
|
|
1810 struct unused_string_chars
|
|
1811 {
|
|
1812 struct Lisp_String *string;
|
|
1813 EMACS_INT fullsize;
|
|
1814 };
|
|
1815
|
|
1816 static void
|
|
1817 init_string_chars_alloc (void)
|
|
1818 {
|
|
1819 first_string_chars_block = xnew (struct string_chars_block);
|
|
1820 first_string_chars_block->prev = 0;
|
|
1821 first_string_chars_block->next = 0;
|
|
1822 first_string_chars_block->pos = 0;
|
|
1823 current_string_chars_block = first_string_chars_block;
|
|
1824 }
|
|
1825
|
|
1826 static struct string_chars *
|
|
1827 allocate_string_chars_struct (struct Lisp_String *string_it_goes_with,
|
|
1828 EMACS_INT fullsize)
|
|
1829 {
|
|
1830 struct string_chars *s_chars;
|
|
1831
|
|
1832 /* Allocate the string's actual data */
|
|
1833 if (BIG_STRING_FULLSIZE_P (fullsize))
|
|
1834 {
|
|
1835 s_chars = (struct string_chars *) xmalloc (fullsize);
|
|
1836 }
|
|
1837 else if (fullsize <=
|
|
1838 (countof (current_string_chars_block->string_chars)
|
|
1839 - current_string_chars_block->pos))
|
|
1840 {
|
|
1841 /* This string can fit in the current string chars block */
|
|
1842 s_chars = (struct string_chars *)
|
|
1843 (current_string_chars_block->string_chars
|
|
1844 + current_string_chars_block->pos);
|
|
1845 current_string_chars_block->pos += fullsize;
|
|
1846 }
|
|
1847 else
|
|
1848 {
|
|
1849 /* Make a new current string chars block */
|
|
1850 struct string_chars_block *new_scb = xnew (struct string_chars_block);
|
|
1851
|
|
1852 current_string_chars_block->next = new_scb;
|
|
1853 new_scb->prev = current_string_chars_block;
|
|
1854 new_scb->next = 0;
|
|
1855 current_string_chars_block = new_scb;
|
|
1856 new_scb->pos = fullsize;
|
|
1857 s_chars = (struct string_chars *)
|
|
1858 current_string_chars_block->string_chars;
|
|
1859 }
|
|
1860
|
|
1861 s_chars->string = string_it_goes_with;
|
|
1862
|
|
1863 INCREMENT_CONS_COUNTER (fullsize, "string chars");
|
|
1864
|
|
1865 return s_chars;
|
|
1866 }
|
|
1867
|
|
1868 Lisp_Object
|
|
1869 make_uninit_string (Bytecount length)
|
|
1870 {
|
|
1871 struct Lisp_String *s;
|
|
1872 struct string_chars *s_chars;
|
|
1873 EMACS_INT fullsize = STRING_FULLSIZE (length);
|
|
1874 Lisp_Object val;
|
|
1875
|
|
1876 if ((length < 0) || (fullsize <= 0))
|
|
1877 abort ();
|
|
1878
|
|
1879 /* Allocate the string header */
|
|
1880 ALLOCATE_FIXED_TYPE (string, struct Lisp_String, s);
|
|
1881 set_lheader_implementation (&(s->lheader), &lrecord_string);
|
|
1882
|
|
1883 s_chars = allocate_string_chars_struct (s, fullsize);
|
|
1884
|
|
1885 set_string_data (s, &(s_chars->chars[0]));
|
|
1886 set_string_length (s, length);
|
|
1887 s->plist = Qnil;
|
|
1888
|
|
1889 set_string_byte (s, length, 0);
|
|
1890
|
|
1891 XSETSTRING (val, s);
|
|
1892 return val;
|
|
1893 }
|
|
1894
|
|
1895 #ifdef VERIFY_STRING_CHARS_INTEGRITY
|
|
1896 static void verify_string_chars_integrity (void);
|
|
1897 #endif
|
|
1898
|
|
1899 /* Resize the string S so that DELTA bytes can be inserted starting
|
|
1900 at POS. If DELTA < 0, it means deletion starting at POS. If
|
|
1901 POS < 0, resize the string but don't copy any characters. Use
|
|
1902 this if you're planning on completely overwriting the string.
|
|
1903 */
|
|
1904
|
|
1905 void
|
|
1906 resize_string (struct Lisp_String *s, Bytecount pos, Bytecount delta)
|
|
1907 {
|
|
1908 #ifdef VERIFY_STRING_CHARS_INTEGRITY
|
|
1909 verify_string_chars_integrity ();
|
|
1910 #endif
|
|
1911
|
|
1912 #ifdef ERROR_CHECK_BUFPOS
|
|
1913 if (pos >= 0)
|
|
1914 {
|
|
1915 assert (pos <= string_length (s));
|
|
1916 if (delta < 0)
|
|
1917 assert (pos + (-delta) <= string_length (s));
|
|
1918 }
|
|
1919 else
|
|
1920 {
|
|
1921 if (delta < 0)
|
|
1922 assert ((-delta) <= string_length (s));
|
|
1923 }
|
|
1924 #endif /* ERROR_CHECK_BUFPOS */
|
|
1925
|
|
1926 if (pos >= 0 && delta < 0)
|
|
1927 /* If DELTA < 0, the functions below will delete the characters
|
|
1928 before POS. We want to delete characters *after* POS, however,
|
|
1929 so convert this to the appropriate form. */
|
|
1930 pos += -delta;
|
|
1931
|
|
1932 if (delta == 0)
|
|
1933 /* simplest case: no size change. */
|
|
1934 return;
|
|
1935 else
|
|
1936 {
|
|
1937 Bytecount oldfullsize = STRING_FULLSIZE (string_length (s));
|
|
1938 Bytecount newfullsize = STRING_FULLSIZE (string_length (s) + delta);
|
|
1939
|
|
1940 if (oldfullsize == newfullsize)
|
|
1941 {
|
|
1942 /* next simplest case; size change but the necessary
|
|
1943 allocation size won't change (up or down; code somewhere
|
|
1944 depends on there not being any unused allocation space,
|
|
1945 modulo any alignment constraints). */
|
|
1946 if (pos >= 0)
|
|
1947 {
|
|
1948 Bufbyte *addroff = pos + string_data (s);
|
|
1949
|
|
1950 memmove (addroff + delta, addroff,
|
|
1951 /* +1 due to zero-termination. */
|
|
1952 string_length (s) + 1 - pos);
|
|
1953 }
|
|
1954 }
|
|
1955 else if (BIG_STRING_FULLSIZE_P (oldfullsize) &&
|
|
1956 BIG_STRING_FULLSIZE_P (newfullsize))
|
|
1957 {
|
|
1958 /* next simplest case; the string is big enough to be malloc()ed
|
|
1959 itself, so we just realloc.
|
|
1960
|
|
1961 It's important not to let the string get below the threshold
|
|
1962 for making big strings and still remain malloc()ed; if that
|
|
1963 were the case, repeated calls to this function on the same
|
|
1964 string could result in memory leakage. */
|
|
1965 set_string_data (s, (Bufbyte *) xrealloc (string_data (s),
|
|
1966 newfullsize));
|
|
1967 if (pos >= 0)
|
|
1968 {
|
|
1969 Bufbyte *addroff = pos + string_data (s);
|
|
1970
|
|
1971 memmove (addroff + delta, addroff,
|
|
1972 /* +1 due to zero-termination. */
|
|
1973 string_length (s) + 1 - pos);
|
|
1974 }
|
|
1975 }
|
|
1976 else
|
|
1977 {
|
|
1978 /* worst case. We make a new string_chars struct and copy
|
|
1979 the string's data into it, inserting/deleting the delta
|
|
1980 in the process. The old string data will either get
|
|
1981 freed by us (if it was malloc()ed) or will be reclaimed
|
|
1982 in the normal course of garbage collection. */
|
|
1983 struct string_chars *s_chars =
|
|
1984 allocate_string_chars_struct (s, newfullsize);
|
|
1985 Bufbyte *new_addr = &(s_chars->chars[0]);
|
|
1986 Bufbyte *old_addr = string_data (s);
|
|
1987 if (pos >= 0)
|
|
1988 {
|
|
1989 memcpy (new_addr, old_addr, pos);
|
|
1990 memcpy (new_addr + pos + delta, old_addr + pos,
|
|
1991 string_length (s) + 1 - pos);
|
|
1992 }
|
|
1993 set_string_data (s, new_addr);
|
|
1994 if (BIG_STRING_FULLSIZE_P (oldfullsize))
|
|
1995 xfree (old_addr);
|
|
1996 else
|
|
1997 {
|
|
1998 /* We need to mark this chunk of the string_chars_block
|
|
1999 as unused so that compact_string_chars() doesn't
|
|
2000 freak. */
|
|
2001 struct string_chars *old_s_chars =
|
|
2002 (struct string_chars *) ((char *) old_addr -
|
|
2003 sizeof (struct Lisp_String *));
|
|
2004 /* Sanity check to make sure we aren't hosed by strange
|
|
2005 alignment/padding. */
|
|
2006 assert (old_s_chars->string == s);
|
|
2007 MARK_STRUCT_AS_FREE (old_s_chars);
|
|
2008 ((struct unused_string_chars *) old_s_chars)->fullsize =
|
|
2009 oldfullsize;
|
|
2010 }
|
|
2011 }
|
|
2012
|
|
2013 set_string_length (s, string_length (s) + delta);
|
|
2014 /* If pos < 0, the string won't be zero-terminated.
|
|
2015 Terminate now just to make sure. */
|
|
2016 string_data (s)[string_length (s)] = '\0';
|
|
2017
|
|
2018 if (pos >= 0)
|
|
2019 {
|
|
2020 Lisp_Object string;
|
|
2021
|
|
2022 XSETSTRING (string, s);
|
|
2023 /* We also have to adjust all of the extent indices after the
|
|
2024 place we did the change. We say "pos - 1" because
|
|
2025 adjust_extents() is exclusive of the starting position
|
|
2026 passed to it. */
|
|
2027 adjust_extents (string, pos - 1, string_length (s),
|
|
2028 delta);
|
|
2029 }
|
|
2030 }
|
|
2031
|
|
2032 #ifdef VERIFY_STRING_CHARS_INTEGRITY
|
|
2033 verify_string_chars_integrity ();
|
|
2034 #endif
|
|
2035 }
|
|
2036
|
|
2037 #ifdef MULE
|
|
2038
|
|
2039 void
|
|
2040 set_string_char (struct Lisp_String *s, Charcount i, Emchar c)
|
|
2041 {
|
|
2042 Bufbyte newstr[MAX_EMCHAR_LEN];
|
|
2043 Bytecount bytoff = charcount_to_bytecount (string_data (s), i);
|
|
2044 Bytecount oldlen = charcount_to_bytecount (string_data (s) + bytoff, 1);
|
|
2045 Bytecount newlen = set_charptr_emchar (newstr, c);
|
|
2046
|
|
2047 if (oldlen != newlen)
|
|
2048 resize_string (s, bytoff, newlen - oldlen);
|
|
2049 /* Remember, string_data (s) might have changed so we can't cache it. */
|
|
2050 memcpy (string_data (s) + bytoff, newstr, newlen);
|
|
2051 }
|
|
2052
|
|
2053 #endif /* MULE */
|
|
2054
|
|
2055 DEFUN ("make-string", Fmake_string, 2, 2, 0, /*
|
|
2056 Return a new string of length LENGTH, with each character being INIT.
|
|
2057 LENGTH must be an integer and INIT must be a character.
|
|
2058 */
|
|
2059 (length, init))
|
|
2060 {
|
|
2061 CHECK_NATNUM (length);
|
|
2062 CHECK_CHAR_COERCE_INT (init);
|
|
2063 {
|
|
2064 Bufbyte init_str[MAX_EMCHAR_LEN];
|
|
2065 int len = set_charptr_emchar (init_str, XCHAR (init));
|
|
2066 Lisp_Object val = make_uninit_string (len * XINT (length));
|
|
2067
|
|
2068 if (len == 1)
|
|
2069 /* Optimize the single-byte case */
|
|
2070 memset (XSTRING_DATA (val), XCHAR (init), XSTRING_LENGTH (val));
|
|
2071 else
|
|
2072 {
|
|
2073 size_t i;
|
|
2074 Bufbyte *ptr = XSTRING_DATA (val);
|
|
2075
|
|
2076 for (i = XINT (length); i; i--)
|
|
2077 {
|
|
2078 Bufbyte *init_ptr = init_str;
|
|
2079 switch (len)
|
|
2080 {
|
|
2081 case 4: *ptr++ = *init_ptr++;
|
|
2082 case 3: *ptr++ = *init_ptr++;
|
|
2083 case 2: *ptr++ = *init_ptr++;
|
|
2084 case 1: *ptr++ = *init_ptr++;
|
|
2085 }
|
|
2086 }
|
|
2087 }
|
|
2088 return val;
|
|
2089 }
|
|
2090 }
|
|
2091
|
|
2092 DEFUN ("string", Fstring, 0, MANY, 0, /*
|
|
2093 Concatenate all the argument characters and make the result a string.
|
|
2094 */
|
|
2095 (int nargs, Lisp_Object *args))
|
|
2096 {
|
|
2097 Bufbyte *storage = alloca_array (Bufbyte, nargs * MAX_EMCHAR_LEN);
|
|
2098 Bufbyte *p = storage;
|
|
2099
|
|
2100 for (; nargs; nargs--, args++)
|
|
2101 {
|
|
2102 Lisp_Object lisp_char = *args;
|
|
2103 CHECK_CHAR_COERCE_INT (lisp_char);
|
|
2104 p += set_charptr_emchar (p, XCHAR (lisp_char));
|
|
2105 }
|
|
2106 return make_string (storage, p - storage);
|
|
2107 }
|
|
2108
|
|
2109
|
|
2110 /* Take some raw memory, which MUST already be in internal format,
|
|
2111 and package it up into a Lisp string. */
|
|
2112 Lisp_Object
|
|
2113 make_string (CONST Bufbyte *contents, Bytecount length)
|
|
2114 {
|
|
2115 Lisp_Object val;
|
|
2116
|
|
2117 /* Make sure we find out about bad make_string's when they happen */
|
|
2118 #if defined (ERROR_CHECK_BUFPOS) && defined (MULE)
|
|
2119 bytecount_to_charcount (contents, length); /* Just for the assertions */
|
|
2120 #endif
|
|
2121
|
|
2122 val = make_uninit_string (length);
|
|
2123 memcpy (XSTRING_DATA (val), contents, length);
|
|
2124 return val;
|
|
2125 }
|
|
2126
|
|
2127 /* Take some raw memory, encoded in some external data format,
|
|
2128 and convert it into a Lisp string. */
|
|
2129 Lisp_Object
|
|
2130 make_ext_string (CONST Extbyte *contents, EMACS_INT length,
|
|
2131 enum external_data_format fmt)
|
|
2132 {
|
|
2133 Bufbyte *intstr;
|
|
2134 Bytecount intlen;
|
|
2135
|
|
2136 GET_CHARPTR_INT_DATA_ALLOCA (contents, length, fmt, intstr, intlen);
|
|
2137 return make_string (intstr, intlen);
|
|
2138 }
|
|
2139
|
|
2140 Lisp_Object
|
|
2141 build_string (CONST char *str)
|
|
2142 {
|
|
2143 /* Some strlen's crash and burn if passed null. */
|
|
2144 return make_string ((CONST Bufbyte *) str, (str ? strlen(str) : 0));
|
|
2145 }
|
|
2146
|
|
2147 Lisp_Object
|
|
2148 build_ext_string (CONST char *str, enum external_data_format fmt)
|
|
2149 {
|
|
2150 /* Some strlen's crash and burn if passed null. */
|
|
2151 return make_ext_string ((CONST Extbyte *) str, (str ? strlen(str) : 0), fmt);
|
|
2152 }
|
|
2153
|
|
2154 Lisp_Object
|
|
2155 build_translated_string (CONST char *str)
|
|
2156 {
|
|
2157 return build_string (GETTEXT (str));
|
|
2158 }
|
|
2159
|
|
2160 Lisp_Object
|
|
2161 make_string_nocopy (CONST Bufbyte *contents, Bytecount length)
|
|
2162 {
|
|
2163 struct Lisp_String *s;
|
|
2164 Lisp_Object val;
|
|
2165
|
|
2166 /* Make sure we find out about bad make_string_nocopy's when they happen */
|
|
2167 #if defined (ERROR_CHECK_BUFPOS) && defined (MULE)
|
|
2168 bytecount_to_charcount (contents, length); /* Just for the assertions */
|
|
2169 #endif
|
|
2170
|
|
2171 /* Allocate the string header */
|
|
2172 ALLOCATE_FIXED_TYPE (string, struct Lisp_String, s);
|
|
2173 set_lheader_implementation (&(s->lheader), &lrecord_string);
|
|
2174 SET_C_READONLY_RECORD_HEADER (&s->lheader);
|
|
2175 s->plist = Qnil;
|
|
2176 set_string_data (s, (Bufbyte *)contents);
|
|
2177 set_string_length (s, length);
|
|
2178
|
|
2179 XSETSTRING (val, s);
|
|
2180 return val;
|
|
2181 }
|
|
2182
|
|
2183
|
|
2184 /************************************************************************/
|
|
2185 /* lcrecord lists */
|
|
2186 /************************************************************************/
|
|
2187
|
|
2188 /* Lcrecord lists are used to manage the allocation of particular
|
|
2189 sorts of lcrecords, to avoid calling alloc_lcrecord() (and thus
|
|
2190 malloc() and garbage-collection junk) as much as possible.
|
|
2191 It is similar to the Blocktype class.
|
|
2192
|
|
2193 It works like this:
|
|
2194
|
|
2195 1) Create an lcrecord-list object using make_lcrecord_list().
|
|
2196 This is often done at initialization. Remember to staticpro_nodump
|
|
2197 this object! The arguments to make_lcrecord_list() are the
|
|
2198 same as would be passed to alloc_lcrecord().
|
|
2199 2) Instead of calling alloc_lcrecord(), call allocate_managed_lcrecord()
|
|
2200 and pass the lcrecord-list earlier created.
|
|
2201 3) When done with the lcrecord, call free_managed_lcrecord().
|
|
2202 The standard freeing caveats apply: ** make sure there are no
|
|
2203 pointers to the object anywhere! **
|
|
2204 4) Calling free_managed_lcrecord() is just like kissing the
|
|
2205 lcrecord goodbye as if it were garbage-collected. This means:
|
|
2206 -- the contents of the freed lcrecord are undefined, and the
|
|
2207 contents of something produced by allocate_managed_lcrecord()
|
|
2208 are undefined, just like for alloc_lcrecord().
|
|
2209 -- the mark method for the lcrecord's type will *NEVER* be called
|
|
2210 on freed lcrecords.
|
|
2211 -- the finalize method for the lcrecord's type will be called
|
|
2212 at the time that free_managed_lcrecord() is called.
|
|
2213
|
|
2214 */
|
|
2215
|
|
2216 static Lisp_Object
|
|
2217 mark_lcrecord_list (Lisp_Object obj)
|
|
2218 {
|
|
2219 struct lcrecord_list *list = XLCRECORD_LIST (obj);
|
|
2220 Lisp_Object chain = list->free;
|
|
2221
|
|
2222 while (!NILP (chain))
|
|
2223 {
|
|
2224 struct lrecord_header *lheader = XRECORD_LHEADER (chain);
|
|
2225 struct free_lcrecord_header *free_header =
|
|
2226 (struct free_lcrecord_header *) lheader;
|
|
2227
|
|
2228 #ifdef ERROR_CHECK_GC
|
|
2229 CONST struct lrecord_implementation *implementation
|
|
2230 = LHEADER_IMPLEMENTATION(lheader);
|
|
2231
|
|
2232 /* There should be no other pointers to the free list. */
|
|
2233 assert (!MARKED_RECORD_HEADER_P (lheader));
|
|
2234 /* Only lcrecords should be here. */
|
|
2235 assert (!implementation->basic_p);
|
|
2236 /* Only free lcrecords should be here. */
|
|
2237 assert (free_header->lcheader.free);
|
|
2238 /* The type of the lcrecord must be right. */
|
|
2239 assert (implementation == list->implementation);
|
|
2240 /* So must the size. */
|
|
2241 assert (implementation->static_size == 0
|
|
2242 || implementation->static_size == list->size);
|
|
2243 #endif /* ERROR_CHECK_GC */
|
|
2244
|
|
2245 MARK_RECORD_HEADER (lheader);
|
|
2246 chain = free_header->chain;
|
|
2247 }
|
|
2248
|
|
2249 return Qnil;
|
|
2250 }
|
|
2251
|
|
2252 DEFINE_LRECORD_IMPLEMENTATION ("lcrecord-list", lcrecord_list,
|
|
2253 mark_lcrecord_list, internal_object_printer,
|
|
2254 0, 0, 0, 0, struct lcrecord_list);
|
|
2255 Lisp_Object
|
|
2256 make_lcrecord_list (size_t size,
|
|
2257 CONST struct lrecord_implementation *implementation)
|
|
2258 {
|
|
2259 struct lcrecord_list *p = alloc_lcrecord_type (struct lcrecord_list,
|
|
2260 &lrecord_lcrecord_list);
|
|
2261 Lisp_Object val;
|
|
2262
|
|
2263 p->implementation = implementation;
|
|
2264 p->size = size;
|
|
2265 p->free = Qnil;
|
|
2266 XSETLCRECORD_LIST (val, p);
|
|
2267 return val;
|
|
2268 }
|
|
2269
|
|
2270 Lisp_Object
|
|
2271 allocate_managed_lcrecord (Lisp_Object lcrecord_list)
|
|
2272 {
|
|
2273 struct lcrecord_list *list = XLCRECORD_LIST (lcrecord_list);
|
|
2274 if (!NILP (list->free))
|
|
2275 {
|
|
2276 Lisp_Object val = list->free;
|
|
2277 struct free_lcrecord_header *free_header =
|
|
2278 (struct free_lcrecord_header *) XPNTR (val);
|
|
2279
|
|
2280 #ifdef ERROR_CHECK_GC
|
|
2281 struct lrecord_header *lheader =
|
|
2282 (struct lrecord_header *) free_header;
|
|
2283 CONST struct lrecord_implementation *implementation
|
|
2284 = LHEADER_IMPLEMENTATION (lheader);
|
|
2285
|
|
2286 /* There should be no other pointers to the free list. */
|
|
2287 assert (!MARKED_RECORD_HEADER_P (lheader));
|
|
2288 /* Only lcrecords should be here. */
|
|
2289 assert (!implementation->basic_p);
|
|
2290 /* Only free lcrecords should be here. */
|
|
2291 assert (free_header->lcheader.free);
|
|
2292 /* The type of the lcrecord must be right. */
|
|
2293 assert (implementation == list->implementation);
|
|
2294 /* So must the size. */
|
|
2295 assert (implementation->static_size == 0
|
|
2296 || implementation->static_size == list->size);
|
|
2297 #endif /* ERROR_CHECK_GC */
|
|
2298 list->free = free_header->chain;
|
|
2299 free_header->lcheader.free = 0;
|
|
2300 return val;
|
|
2301 }
|
|
2302 else
|
|
2303 {
|
|
2304 Lisp_Object val;
|
|
2305
|
|
2306 XSETOBJ (val, Lisp_Type_Record,
|
|
2307 alloc_lcrecord (list->size, list->implementation));
|
|
2308 return val;
|
|
2309 }
|
|
2310 }
|
|
2311
|
|
2312 void
|
|
2313 free_managed_lcrecord (Lisp_Object lcrecord_list, Lisp_Object lcrecord)
|
|
2314 {
|
|
2315 struct lcrecord_list *list = XLCRECORD_LIST (lcrecord_list);
|
|
2316 struct free_lcrecord_header *free_header =
|
|
2317 (struct free_lcrecord_header *) XPNTR (lcrecord);
|
|
2318 struct lrecord_header *lheader =
|
|
2319 (struct lrecord_header *) free_header;
|
|
2320 CONST struct lrecord_implementation *implementation
|
|
2321 = LHEADER_IMPLEMENTATION (lheader);
|
|
2322
|
|
2323 #ifdef ERROR_CHECK_GC
|
|
2324 /* Make sure the size is correct. This will catch, for example,
|
|
2325 putting a window configuration on the wrong free list. */
|
|
2326 if (implementation->size_in_bytes_method)
|
|
2327 assert (implementation->size_in_bytes_method (lheader) == list->size);
|
|
2328 else
|
|
2329 assert (implementation->static_size == list->size);
|
|
2330 #endif /* ERROR_CHECK_GC */
|
|
2331
|
|
2332 if (implementation->finalizer)
|
|
2333 implementation->finalizer (lheader, 0);
|
|
2334 free_header->chain = list->free;
|
|
2335 free_header->lcheader.free = 1;
|
|
2336 list->free = lcrecord;
|
|
2337 }
|
|
2338
|
|
2339
|
|
2340
|
|
2341
|
|
2342 DEFUN ("purecopy", Fpurecopy, 1, 1, 0, /*
|
|
2343 Kept for compatibility, returns its argument.
|
|
2344 Old:
|
|
2345 Make a copy of OBJECT in pure storage.
|
|
2346 Recursively copies contents of vectors and cons cells.
|
|
2347 Does not copy symbols.
|
|
2348 */
|
|
2349 (obj))
|
|
2350 {
|
|
2351 return obj;
|
|
2352 }
|
|
2353
|
|
2354
|
|
2355
|
|
2356 /************************************************************************/
|
|
2357 /* Garbage Collection */
|
|
2358 /************************************************************************/
|
|
2359
|
|
2360 /* This will be used more extensively In The Future */
|
|
2361 static int last_lrecord_type_index_assigned;
|
|
2362
|
|
2363 CONST struct lrecord_implementation *lrecord_implementations_table[128];
|
|
2364 #define max_lrecord_type (countof (lrecord_implementations_table) - 1)
|
|
2365
|
|
2366 struct gcpro *gcprolist;
|
|
2367
|
|
2368 /* 415 used Mly 29-Jun-93 */
|
|
2369 /* 1327 used slb 28-Feb-98 */
|
|
2370 /* 1328 used og 03-Oct-99 (moving slowly, heh?) */
|
|
2371 #ifdef HAVE_SHLIB
|
|
2372 #define NSTATICS 4000
|
|
2373 #else
|
|
2374 #define NSTATICS 2000
|
|
2375 #endif
|
|
2376 /* Not "static" because of linker lossage on some systems */
|
|
2377 Lisp_Object *staticvec[NSTATICS]
|
|
2378 /* Force it into data space! */
|
|
2379 = {0};
|
|
2380 static int staticidx;
|
|
2381
|
|
2382 /* Put an entry in staticvec, pointing at the variable whose address is given
|
|
2383 */
|
|
2384 void
|
|
2385 staticpro (Lisp_Object *varaddress)
|
|
2386 {
|
|
2387 if (staticidx >= countof (staticvec))
|
|
2388 /* #### This is now a dubious abort() since this routine may be called */
|
|
2389 /* by Lisp attempting to load a DLL. */
|
|
2390 abort ();
|
|
2391 staticvec[staticidx++] = varaddress;
|
|
2392 }
|
|
2393
|
|
2394 /* Not "static" because of linker lossage on some systems */
|
|
2395 Lisp_Object *staticvec_nodump[200]
|
|
2396 /* Force it into data space! */
|
|
2397 = {0};
|
|
2398 static int staticidx_nodump;
|
|
2399
|
|
2400 /* Put an entry in staticvec_nodump, pointing at the variable whose address is given
|
|
2401 */
|
|
2402 void
|
|
2403 staticpro_nodump (Lisp_Object *varaddress)
|
|
2404 {
|
|
2405 if (staticidx_nodump >= countof (staticvec_nodump))
|
|
2406 /* #### This is now a dubious abort() since this routine may be called */
|
|
2407 /* by Lisp attempting to load a DLL. */
|
|
2408 abort ();
|
|
2409 staticvec_nodump[staticidx_nodump++] = varaddress;
|
|
2410 }
|
|
2411
|
|
2412 /* Not "static" because of linker lossage on some systems */
|
|
2413 struct {
|
|
2414 void *data;
|
|
2415 const struct struct_description *desc;
|
|
2416 } dumpstructvec[200];
|
|
2417
|
|
2418 static int dumpstructidx;
|
|
2419
|
|
2420 /* Put an entry in dumpstructvec, pointing at the variable whose address is given
|
|
2421 */
|
|
2422 void
|
|
2423 dumpstruct (void *varaddress, const struct struct_description *desc)
|
|
2424 {
|
|
2425 if (dumpstructidx >= countof (dumpstructvec))
|
|
2426 abort ();
|
|
2427 dumpstructvec[dumpstructidx].data = varaddress;
|
|
2428 dumpstructvec[dumpstructidx].desc = desc;
|
|
2429 dumpstructidx++;
|
|
2430 }
|
|
2431
|
|
2432 Lisp_Object *pdump_wirevec[50];
|
|
2433 static int pdump_wireidx;
|
|
2434
|
|
2435 /* Put an entry in pdump_wirevec, pointing at the variable whose address is given
|
|
2436 */
|
|
2437 void
|
|
2438 pdump_wire (Lisp_Object *varaddress)
|
|
2439 {
|
|
2440 if (pdump_wireidx >= countof (pdump_wirevec))
|
|
2441 abort ();
|
|
2442 pdump_wirevec[pdump_wireidx++] = varaddress;
|
|
2443 }
|
|
2444
|
|
2445
|
|
2446 Lisp_Object *pdump_wirevec_list[50];
|
|
2447 static int pdump_wireidx_list;
|
|
2448
|
|
2449 /* Put an entry in pdump_wirevec_list, pointing at the variable whose address is given
|
|
2450 */
|
|
2451 void
|
|
2452 pdump_wire_list (Lisp_Object *varaddress)
|
|
2453 {
|
|
2454 if (pdump_wireidx_list >= countof (pdump_wirevec_list))
|
|
2455 abort ();
|
|
2456 pdump_wirevec_list[pdump_wireidx_list++] = varaddress;
|
|
2457 }
|
|
2458
|
|
2459
|
|
2460 /* Mark reference to a Lisp_Object. If the object referred to has not been
|
|
2461 seen yet, recursively mark all the references contained in it. */
|
|
2462
|
|
2463 void
|
|
2464 mark_object (Lisp_Object obj)
|
|
2465 {
|
|
2466 tail_recurse:
|
|
2467
|
|
2468 #ifdef ERROR_CHECK_GC
|
|
2469 assert (! (EQ (obj, Qnull_pointer)));
|
|
2470 #endif
|
|
2471 /* Checks we used to perform */
|
|
2472 /* if (EQ (obj, Qnull_pointer)) return; */
|
|
2473 /* if (!POINTER_TYPE_P (XGCTYPE (obj))) return; */
|
|
2474 /* if (PURIFIED (XPNTR (obj))) return; */
|
|
2475
|
|
2476 if (XTYPE (obj) == Lisp_Type_Record)
|
|
2477 {
|
|
2478 struct lrecord_header *lheader = XRECORD_LHEADER (obj);
|
|
2479 #if defined (ERROR_CHECK_GC)
|
|
2480 assert (lheader->type <= last_lrecord_type_index_assigned);
|
|
2481 #endif
|
|
2482 if (C_READONLY_RECORD_HEADER_P (lheader))
|
|
2483 return;
|
|
2484
|
|
2485 if (! MARKED_RECORD_HEADER_P (lheader) &&
|
|
2486 ! UNMARKABLE_RECORD_HEADER_P (lheader))
|
|
2487 {
|
|
2488 CONST struct lrecord_implementation *implementation =
|
|
2489 LHEADER_IMPLEMENTATION (lheader);
|
|
2490 MARK_RECORD_HEADER (lheader);
|
|
2491 #ifdef ERROR_CHECK_GC
|
|
2492 if (!implementation->basic_p)
|
|
2493 assert (! ((struct lcrecord_header *) lheader)->free);
|
|
2494 #endif
|
|
2495 if (implementation->marker)
|
|
2496 {
|
|
2497 obj = implementation->marker (obj);
|
|
2498 if (!NILP (obj)) goto tail_recurse;
|
|
2499 }
|
|
2500 }
|
|
2501 }
|
|
2502 }
|
|
2503
|
|
2504 /* mark all of the conses in a list and mark the final cdr; but
|
|
2505 DO NOT mark the cars.
|
|
2506
|
|
2507 Use only for internal lists! There should never be other pointers
|
|
2508 to the cons cells, because if so, the cars will remain unmarked
|
|
2509 even when they maybe should be marked. */
|
|
2510 void
|
|
2511 mark_conses_in_list (Lisp_Object obj)
|
|
2512 {
|
|
2513 Lisp_Object rest;
|
|
2514
|
|
2515 for (rest = obj; CONSP (rest); rest = XCDR (rest))
|
|
2516 {
|
|
2517 if (CONS_MARKED_P (XCONS (rest)))
|
|
2518 return;
|
|
2519 MARK_CONS (XCONS (rest));
|
|
2520 }
|
|
2521
|
|
2522 mark_object (rest);
|
|
2523 }
|
|
2524
|
|
2525
|
|
2526 /* Find all structures not marked, and free them. */
|
|
2527
|
|
2528 static int gc_count_num_bit_vector_used, gc_count_bit_vector_total_size;
|
|
2529 static int gc_count_bit_vector_storage;
|
|
2530 static int gc_count_num_short_string_in_use;
|
|
2531 static int gc_count_string_total_size;
|
|
2532 static int gc_count_short_string_total_size;
|
|
2533
|
|
2534 /* static int gc_count_total_records_used, gc_count_records_total_size; */
|
|
2535
|
|
2536
|
|
2537 int
|
|
2538 lrecord_type_index (CONST struct lrecord_implementation *implementation)
|
|
2539 {
|
|
2540 int type_index = *(implementation->lrecord_type_index);
|
|
2541 /* Have to do this circuitous validation test because of problems
|
|
2542 dumping out initialized variables (ie can't set xxx_type_index to -1
|
|
2543 because that would make xxx_type_index read-only in a dumped emacs. */
|
|
2544 if (type_index < 0 || type_index > max_lrecord_type
|
|
2545 || lrecord_implementations_table[type_index] != implementation)
|
|
2546 {
|
|
2547 assert (last_lrecord_type_index_assigned < max_lrecord_type);
|
|
2548 type_index = ++last_lrecord_type_index_assigned;
|
|
2549 lrecord_implementations_table[type_index] = implementation;
|
|
2550 *(implementation->lrecord_type_index) = type_index;
|
|
2551 }
|
|
2552 return type_index;
|
|
2553 }
|
|
2554
|
|
2555 /* stats on lcrecords in use - kinda kludgy */
|
|
2556
|
|
2557 static struct
|
|
2558 {
|
|
2559 int instances_in_use;
|
|
2560 int bytes_in_use;
|
|
2561 int instances_freed;
|
|
2562 int bytes_freed;
|
|
2563 int instances_on_free_list;
|
|
2564 } lcrecord_stats [countof (lrecord_implementations_table)];
|
|
2565
|
|
2566 static void
|
|
2567 tick_lcrecord_stats (CONST struct lrecord_header *h, int free_p)
|
|
2568 {
|
|
2569 CONST struct lrecord_implementation *implementation =
|
|
2570 LHEADER_IMPLEMENTATION (h);
|
|
2571 int type_index = lrecord_type_index (implementation);
|
|
2572
|
|
2573 if (((struct lcrecord_header *) h)->free)
|
|
2574 {
|
|
2575 assert (!free_p);
|
|
2576 lcrecord_stats[type_index].instances_on_free_list++;
|
|
2577 }
|
|
2578 else
|
|
2579 {
|
|
2580 size_t sz = (implementation->size_in_bytes_method
|
|
2581 ? implementation->size_in_bytes_method (h)
|
|
2582 : implementation->static_size);
|
|
2583
|
|
2584 if (free_p)
|
|
2585 {
|
|
2586 lcrecord_stats[type_index].instances_freed++;
|
|
2587 lcrecord_stats[type_index].bytes_freed += sz;
|
|
2588 }
|
|
2589 else
|
|
2590 {
|
|
2591 lcrecord_stats[type_index].instances_in_use++;
|
|
2592 lcrecord_stats[type_index].bytes_in_use += sz;
|
|
2593 }
|
|
2594 }
|
|
2595 }
|
|
2596
|
|
2597
|
|
2598 /* Free all unmarked records */
|
|
2599 static void
|
|
2600 sweep_lcrecords_1 (struct lcrecord_header **prev, int *used)
|
|
2601 {
|
|
2602 struct lcrecord_header *header;
|
|
2603 int num_used = 0;
|
|
2604 /* int total_size = 0; */
|
|
2605
|
|
2606 xzero (lcrecord_stats); /* Reset all statistics to 0. */
|
|
2607
|
|
2608 /* First go through and call all the finalize methods.
|
|
2609 Then go through and free the objects. There used to
|
|
2610 be only one loop here, with the call to the finalizer
|
|
2611 occurring directly before the xfree() below. That
|
|
2612 is marginally faster but much less safe -- if the
|
|
2613 finalize method for an object needs to reference any
|
|
2614 other objects contained within it (and many do),
|
|
2615 we could easily be screwed by having already freed that
|
|
2616 other object. */
|
|
2617
|
|
2618 for (header = *prev; header; header = header->next)
|
|
2619 {
|
|
2620 struct lrecord_header *h = &(header->lheader);
|
|
2621 if (!C_READONLY_RECORD_HEADER_P(h)
|
|
2622 && !MARKED_RECORD_HEADER_P (h)
|
|
2623 && ! (header->free))
|
|
2624 {
|
|
2625 if (LHEADER_IMPLEMENTATION (h)->finalizer)
|
|
2626 LHEADER_IMPLEMENTATION (h)->finalizer (h, 0);
|
|
2627 }
|
|
2628 }
|
|
2629
|
|
2630 for (header = *prev; header; )
|
|
2631 {
|
|
2632 struct lrecord_header *h = &(header->lheader);
|
|
2633 if (C_READONLY_RECORD_HEADER_P(h) || MARKED_RECORD_HEADER_P (h))
|
|
2634 {
|
|
2635 if (MARKED_RECORD_HEADER_P (h))
|
|
2636 UNMARK_RECORD_HEADER (h);
|
|
2637 num_used++;
|
|
2638 /* total_size += n->implementation->size_in_bytes (h);*/
|
|
2639 /* ### May modify header->next on a C_READONLY lcrecord */
|
|
2640 prev = &(header->next);
|
|
2641 header = *prev;
|
|
2642 tick_lcrecord_stats (h, 0);
|
|
2643 }
|
|
2644 else
|
|
2645 {
|
|
2646 struct lcrecord_header *next = header->next;
|
|
2647 *prev = next;
|
|
2648 tick_lcrecord_stats (h, 1);
|
|
2649 /* used to call finalizer right here. */
|
|
2650 xfree (header);
|
|
2651 header = next;
|
|
2652 }
|
|
2653 }
|
|
2654 *used = num_used;
|
|
2655 /* *total = total_size; */
|
|
2656 }
|
|
2657
|
|
2658
|
|
2659 static void
|
|
2660 sweep_bit_vectors_1 (Lisp_Object *prev,
|
|
2661 int *used, int *total, int *storage)
|
|
2662 {
|
|
2663 Lisp_Object bit_vector;
|
|
2664 int num_used = 0;
|
|
2665 int total_size = 0;
|
|
2666 int total_storage = 0;
|
|
2667
|
|
2668 /* BIT_VECTORP fails because the objects are marked, which changes
|
|
2669 their implementation */
|
|
2670 for (bit_vector = *prev; !EQ (bit_vector, Qzero); )
|
|
2671 {
|
|
2672 Lisp_Bit_Vector *v = XBIT_VECTOR (bit_vector);
|
|
2673 int len = v->size;
|
|
2674 if (C_READONLY_RECORD_HEADER_P(&(v->lheader)) || MARKED_RECORD_P (bit_vector))
|
|
2675 {
|
|
2676 if (MARKED_RECORD_P (bit_vector))
|
|
2677 UNMARK_RECORD_HEADER (&(v->lheader));
|
|
2678 total_size += len;
|
|
2679 total_storage +=
|
|
2680 MALLOC_OVERHEAD +
|
|
2681 STRETCHY_STRUCT_SIZEOF (Lisp_Bit_Vector, bits,
|
|
2682 BIT_VECTOR_LONG_STORAGE (len));
|
|
2683 num_used++;
|
|
2684 /* ### May modify next on a C_READONLY bitvector */
|
|
2685 prev = &(bit_vector_next (v));
|
|
2686 bit_vector = *prev;
|
|
2687 }
|
|
2688 else
|
|
2689 {
|
|
2690 Lisp_Object next = bit_vector_next (v);
|
|
2691 *prev = next;
|
|
2692 xfree (v);
|
|
2693 bit_vector = next;
|
|
2694 }
|
|
2695 }
|
|
2696 *used = num_used;
|
|
2697 *total = total_size;
|
|
2698 *storage = total_storage;
|
|
2699 }
|
|
2700
|
|
2701 /* And the Lord said: Thou shalt use the `c-backslash-region' command
|
|
2702 to make macros prettier. */
|
|
2703
|
|
2704 #ifdef ERROR_CHECK_GC
|
|
2705
|
|
2706 #define SWEEP_FIXED_TYPE_BLOCK(typename, obj_type) \
|
|
2707 do { \
|
|
2708 struct typename##_block *SFTB_current; \
|
|
2709 struct typename##_block **SFTB_prev; \
|
|
2710 int SFTB_limit; \
|
|
2711 int num_free = 0, num_used = 0; \
|
|
2712 \
|
|
2713 for (SFTB_prev = ¤t_##typename##_block, \
|
|
2714 SFTB_current = current_##typename##_block, \
|
|
2715 SFTB_limit = current_##typename##_block_index; \
|
|
2716 SFTB_current; \
|
|
2717 ) \
|
|
2718 { \
|
|
2719 int SFTB_iii; \
|
|
2720 \
|
|
2721 for (SFTB_iii = 0; SFTB_iii < SFTB_limit; SFTB_iii++) \
|
|
2722 { \
|
|
2723 obj_type *SFTB_victim = &(SFTB_current->block[SFTB_iii]); \
|
|
2724 \
|
|
2725 if (FREE_STRUCT_P (SFTB_victim)) \
|
|
2726 { \
|
|
2727 num_free++; \
|
|
2728 } \
|
|
2729 else if (C_READONLY_RECORD_HEADER_P (&SFTB_victim->lheader)) \
|
|
2730 { \
|
|
2731 num_used++; \
|
|
2732 } \
|
|
2733 else if (!MARKED_RECORD_HEADER_P (&SFTB_victim->lheader)) \
|
|
2734 { \
|
|
2735 num_free++; \
|
|
2736 FREE_FIXED_TYPE (typename, obj_type, SFTB_victim); \
|
|
2737 } \
|
|
2738 else \
|
|
2739 { \
|
|
2740 num_used++; \
|
|
2741 UNMARK_##typename (SFTB_victim); \
|
|
2742 } \
|
|
2743 } \
|
|
2744 SFTB_prev = &(SFTB_current->prev); \
|
|
2745 SFTB_current = SFTB_current->prev; \
|
|
2746 SFTB_limit = countof (current_##typename##_block->block); \
|
|
2747 } \
|
|
2748 \
|
|
2749 gc_count_num_##typename##_in_use = num_used; \
|
|
2750 gc_count_num_##typename##_freelist = num_free; \
|
|
2751 } while (0)
|
|
2752
|
|
2753 #else /* !ERROR_CHECK_GC */
|
|
2754
|
|
2755 #define SWEEP_FIXED_TYPE_BLOCK(typename, obj_type) \
|
|
2756 do { \
|
|
2757 struct typename##_block *SFTB_current; \
|
|
2758 struct typename##_block **SFTB_prev; \
|
|
2759 int SFTB_limit; \
|
|
2760 int num_free = 0, num_used = 0; \
|
|
2761 \
|
|
2762 typename##_free_list = 0; \
|
|
2763 \
|
|
2764 for (SFTB_prev = ¤t_##typename##_block, \
|
|
2765 SFTB_current = current_##typename##_block, \
|
|
2766 SFTB_limit = current_##typename##_block_index; \
|
|
2767 SFTB_current; \
|
|
2768 ) \
|
|
2769 { \
|
|
2770 int SFTB_iii; \
|
|
2771 int SFTB_empty = 1; \
|
|
2772 obj_type *SFTB_old_free_list = typename##_free_list; \
|
|
2773 \
|
|
2774 for (SFTB_iii = 0; SFTB_iii < SFTB_limit; SFTB_iii++) \
|
|
2775 { \
|
|
2776 obj_type *SFTB_victim = &(SFTB_current->block[SFTB_iii]); \
|
|
2777 \
|
|
2778 if (FREE_STRUCT_P (SFTB_victim)) \
|
|
2779 { \
|
|
2780 num_free++; \
|
|
2781 PUT_FIXED_TYPE_ON_FREE_LIST (typename, obj_type, SFTB_victim); \
|
|
2782 } \
|
|
2783 else if (C_READONLY_RECORD_HEADER_P (&SFTB_victim->lheader)) \
|
|
2784 { \
|
|
2785 SFTB_empty = 0; \
|
|
2786 num_used++; \
|
|
2787 } \
|
|
2788 else if (!MARKED_RECORD_HEADER_P (&SFTB_victim->lheader)) \
|
|
2789 { \
|
|
2790 num_free++; \
|
|
2791 FREE_FIXED_TYPE (typename, obj_type, SFTB_victim); \
|
|
2792 } \
|
|
2793 else \
|
|
2794 { \
|
|
2795 SFTB_empty = 0; \
|
|
2796 num_used++; \
|
|
2797 UNMARK_##typename (SFTB_victim); \
|
|
2798 } \
|
|
2799 } \
|
|
2800 if (!SFTB_empty) \
|
|
2801 { \
|
|
2802 SFTB_prev = &(SFTB_current->prev); \
|
|
2803 SFTB_current = SFTB_current->prev; \
|
|
2804 } \
|
|
2805 else if (SFTB_current == current_##typename##_block \
|
|
2806 && !SFTB_current->prev) \
|
|
2807 { \
|
|
2808 /* No real point in freeing sole allocation block */ \
|
|
2809 break; \
|
|
2810 } \
|
|
2811 else \
|
|
2812 { \
|
|
2813 struct typename##_block *SFTB_victim_block = SFTB_current; \
|
|
2814 if (SFTB_victim_block == current_##typename##_block) \
|
|
2815 current_##typename##_block_index \
|
|
2816 = countof (current_##typename##_block->block); \
|
|
2817 SFTB_current = SFTB_current->prev; \
|
|
2818 { \
|
|
2819 *SFTB_prev = SFTB_current; \
|
|
2820 xfree (SFTB_victim_block); \
|
|
2821 /* Restore free list to what it was before victim was swept */ \
|
|
2822 typename##_free_list = SFTB_old_free_list; \
|
|
2823 num_free -= SFTB_limit; \
|
|
2824 } \
|
|
2825 } \
|
|
2826 SFTB_limit = countof (current_##typename##_block->block); \
|
|
2827 } \
|
|
2828 \
|
|
2829 gc_count_num_##typename##_in_use = num_used; \
|
|
2830 gc_count_num_##typename##_freelist = num_free; \
|
|
2831 } while (0)
|
|
2832
|
|
2833 #endif /* !ERROR_CHECK_GC */
|
|
2834
|
|
2835
|
|
2836
|
|
2837
|
|
2838 static void
|
|
2839 sweep_conses (void)
|
|
2840 {
|
|
2841 #define UNMARK_cons(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
2842 #define ADDITIONAL_FREE_cons(ptr)
|
|
2843
|
|
2844 SWEEP_FIXED_TYPE_BLOCK (cons, struct Lisp_Cons);
|
|
2845 }
|
|
2846
|
|
2847 /* Explicitly free a cons cell. */
|
|
2848 void
|
|
2849 free_cons (struct Lisp_Cons *ptr)
|
|
2850 {
|
|
2851 #ifdef ERROR_CHECK_GC
|
|
2852 /* If the CAR is not an int, then it will be a pointer, which will
|
|
2853 always be four-byte aligned. If this cons cell has already been
|
|
2854 placed on the free list, however, its car will probably contain
|
|
2855 a chain pointer to the next cons on the list, which has cleverly
|
|
2856 had all its 0's and 1's inverted. This allows for a quick
|
|
2857 check to make sure we're not freeing something already freed. */
|
|
2858 if (POINTER_TYPE_P (XTYPE (ptr->car)))
|
|
2859 ASSERT_VALID_POINTER (XPNTR (ptr->car));
|
|
2860 #endif /* ERROR_CHECK_GC */
|
|
2861
|
|
2862 #ifndef ALLOC_NO_POOLS
|
|
2863 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (cons, struct Lisp_Cons, ptr);
|
|
2864 #endif /* ALLOC_NO_POOLS */
|
|
2865 }
|
|
2866
|
|
2867 /* explicitly free a list. You **must make sure** that you have
|
|
2868 created all the cons cells that make up this list and that there
|
|
2869 are no pointers to any of these cons cells anywhere else. If there
|
|
2870 are, you will lose. */
|
|
2871
|
|
2872 void
|
|
2873 free_list (Lisp_Object list)
|
|
2874 {
|
|
2875 Lisp_Object rest, next;
|
|
2876
|
|
2877 for (rest = list; !NILP (rest); rest = next)
|
|
2878 {
|
|
2879 next = XCDR (rest);
|
|
2880 free_cons (XCONS (rest));
|
|
2881 }
|
|
2882 }
|
|
2883
|
|
2884 /* explicitly free an alist. You **must make sure** that you have
|
|
2885 created all the cons cells that make up this alist and that there
|
|
2886 are no pointers to any of these cons cells anywhere else. If there
|
|
2887 are, you will lose. */
|
|
2888
|
|
2889 void
|
|
2890 free_alist (Lisp_Object alist)
|
|
2891 {
|
|
2892 Lisp_Object rest, next;
|
|
2893
|
|
2894 for (rest = alist; !NILP (rest); rest = next)
|
|
2895 {
|
|
2896 next = XCDR (rest);
|
|
2897 free_cons (XCONS (XCAR (rest)));
|
|
2898 free_cons (XCONS (rest));
|
|
2899 }
|
|
2900 }
|
|
2901
|
|
2902 static void
|
|
2903 sweep_compiled_functions (void)
|
|
2904 {
|
|
2905 #define UNMARK_compiled_function(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
2906 #define ADDITIONAL_FREE_compiled_function(ptr)
|
|
2907
|
|
2908 SWEEP_FIXED_TYPE_BLOCK (compiled_function, Lisp_Compiled_Function);
|
|
2909 }
|
|
2910
|
|
2911
|
|
2912 #ifdef LISP_FLOAT_TYPE
|
|
2913 static void
|
|
2914 sweep_floats (void)
|
|
2915 {
|
|
2916 #define UNMARK_float(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
2917 #define ADDITIONAL_FREE_float(ptr)
|
|
2918
|
|
2919 SWEEP_FIXED_TYPE_BLOCK (float, struct Lisp_Float);
|
|
2920 }
|
|
2921 #endif /* LISP_FLOAT_TYPE */
|
|
2922
|
|
2923 static void
|
|
2924 sweep_symbols (void)
|
|
2925 {
|
|
2926 #define UNMARK_symbol(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
2927 #define ADDITIONAL_FREE_symbol(ptr)
|
|
2928
|
|
2929 SWEEP_FIXED_TYPE_BLOCK (symbol, struct Lisp_Symbol);
|
|
2930 }
|
|
2931
|
|
2932 static void
|
|
2933 sweep_extents (void)
|
|
2934 {
|
|
2935 #define UNMARK_extent(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
2936 #define ADDITIONAL_FREE_extent(ptr)
|
|
2937
|
|
2938 SWEEP_FIXED_TYPE_BLOCK (extent, struct extent);
|
|
2939 }
|
|
2940
|
|
2941 static void
|
|
2942 sweep_events (void)
|
|
2943 {
|
|
2944 #define UNMARK_event(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
2945 #define ADDITIONAL_FREE_event(ptr)
|
|
2946
|
|
2947 SWEEP_FIXED_TYPE_BLOCK (event, struct Lisp_Event);
|
|
2948 }
|
|
2949
|
|
2950 static void
|
|
2951 sweep_markers (void)
|
|
2952 {
|
|
2953 #define UNMARK_marker(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
2954 #define ADDITIONAL_FREE_marker(ptr) \
|
|
2955 do { Lisp_Object tem; \
|
|
2956 XSETMARKER (tem, ptr); \
|
|
2957 unchain_marker (tem); \
|
|
2958 } while (0)
|
|
2959
|
|
2960 SWEEP_FIXED_TYPE_BLOCK (marker, struct Lisp_Marker);
|
|
2961 }
|
|
2962
|
|
2963 /* Explicitly free a marker. */
|
|
2964 void
|
|
2965 free_marker (struct Lisp_Marker *ptr)
|
|
2966 {
|
|
2967 #ifdef ERROR_CHECK_GC
|
|
2968 /* Perhaps this will catch freeing an already-freed marker. */
|
|
2969 Lisp_Object temmy;
|
|
2970 XSETMARKER (temmy, ptr);
|
|
2971 assert (MARKERP (temmy));
|
|
2972 #endif /* ERROR_CHECK_GC */
|
|
2973
|
|
2974 #ifndef ALLOC_NO_POOLS
|
|
2975 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (marker, struct Lisp_Marker, ptr);
|
|
2976 #endif /* ALLOC_NO_POOLS */
|
|
2977 }
|
|
2978
|
|
2979
|
|
2980 #if defined (MULE) && defined (VERIFY_STRING_CHARS_INTEGRITY)
|
|
2981
|
|
2982 static void
|
|
2983 verify_string_chars_integrity (void)
|
|
2984 {
|
|
2985 struct string_chars_block *sb;
|
|
2986
|
|
2987 /* Scan each existing string block sequentially, string by string. */
|
|
2988 for (sb = first_string_chars_block; sb; sb = sb->next)
|
|
2989 {
|
|
2990 int pos = 0;
|
|
2991 /* POS is the index of the next string in the block. */
|
|
2992 while (pos < sb->pos)
|
|
2993 {
|
|
2994 struct string_chars *s_chars =
|
|
2995 (struct string_chars *) &(sb->string_chars[pos]);
|
|
2996 struct Lisp_String *string;
|
|
2997 int size;
|
|
2998 int fullsize;
|
|
2999
|
|
3000 /* If the string_chars struct is marked as free (i.e. the STRING
|
|
3001 pointer is 0xFFFFFFFF) then this is an unused chunk of string
|
|
3002 storage. (See below.) */
|
|
3003
|
|
3004 if (FREE_STRUCT_P (s_chars))
|
|
3005 {
|
|
3006 fullsize = ((struct unused_string_chars *) s_chars)->fullsize;
|
|
3007 pos += fullsize;
|
|
3008 continue;
|
|
3009 }
|
|
3010
|
|
3011 string = s_chars->string;
|
|
3012 /* Must be 32-bit aligned. */
|
|
3013 assert ((((int) string) & 3) == 0);
|
|
3014
|
|
3015 size = string_length (string);
|
|
3016 fullsize = STRING_FULLSIZE (size);
|
|
3017
|
|
3018 assert (!BIG_STRING_FULLSIZE_P (fullsize));
|
|
3019 assert (string_data (string) == s_chars->chars);
|
|
3020 pos += fullsize;
|
|
3021 }
|
|
3022 assert (pos == sb->pos);
|
|
3023 }
|
|
3024 }
|
|
3025
|
|
3026 #endif /* MULE && ERROR_CHECK_GC */
|
|
3027
|
|
3028 /* Compactify string chars, relocating the reference to each --
|
|
3029 free any empty string_chars_block we see. */
|
|
3030 static void
|
|
3031 compact_string_chars (void)
|
|
3032 {
|
|
3033 struct string_chars_block *to_sb = first_string_chars_block;
|
|
3034 int to_pos = 0;
|
|
3035 struct string_chars_block *from_sb;
|
|
3036
|
|
3037 /* Scan each existing string block sequentially, string by string. */
|
|
3038 for (from_sb = first_string_chars_block; from_sb; from_sb = from_sb->next)
|
|
3039 {
|
|
3040 int from_pos = 0;
|
|
3041 /* FROM_POS is the index of the next string in the block. */
|
|
3042 while (from_pos < from_sb->pos)
|
|
3043 {
|
|
3044 struct string_chars *from_s_chars =
|
|
3045 (struct string_chars *) &(from_sb->string_chars[from_pos]);
|
|
3046 struct string_chars *to_s_chars;
|
|
3047 struct Lisp_String *string;
|
|
3048 int size;
|
|
3049 int fullsize;
|
|
3050
|
|
3051 /* If the string_chars struct is marked as free (i.e. the STRING
|
|
3052 pointer is 0xFFFFFFFF) then this is an unused chunk of string
|
|
3053 storage. This happens under Mule when a string's size changes
|
|
3054 in such a way that its fullsize changes. (Strings can change
|
|
3055 size because a different-length character can be substituted
|
|
3056 for another character.) In this case, after the bogus string
|
|
3057 pointer is the "fullsize" of this entry, i.e. how many bytes
|
|
3058 to skip. */
|
|
3059
|
|
3060 if (FREE_STRUCT_P (from_s_chars))
|
|
3061 {
|
|
3062 fullsize = ((struct unused_string_chars *) from_s_chars)->fullsize;
|
|
3063 from_pos += fullsize;
|
|
3064 continue;
|
|
3065 }
|
|
3066
|
|
3067 string = from_s_chars->string;
|
|
3068 assert (!(FREE_STRUCT_P (string)));
|
|
3069
|
|
3070 size = string_length (string);
|
|
3071 fullsize = STRING_FULLSIZE (size);
|
|
3072
|
|
3073 if (BIG_STRING_FULLSIZE_P (fullsize))
|
|
3074 abort ();
|
|
3075
|
|
3076 /* Just skip it if it isn't marked. */
|
|
3077 if (! MARKED_RECORD_HEADER_P (&(string->lheader)))
|
|
3078 {
|
|
3079 from_pos += fullsize;
|
|
3080 continue;
|
|
3081 }
|
|
3082
|
|
3083 /* If it won't fit in what's left of TO_SB, close TO_SB out
|
|
3084 and go on to the next string_chars_block. We know that TO_SB
|
|
3085 cannot advance past FROM_SB here since FROM_SB is large enough
|
|
3086 to currently contain this string. */
|
|
3087 if ((to_pos + fullsize) > countof (to_sb->string_chars))
|
|
3088 {
|
|
3089 to_sb->pos = to_pos;
|
|
3090 to_sb = to_sb->next;
|
|
3091 to_pos = 0;
|
|
3092 }
|
|
3093
|
|
3094 /* Compute new address of this string
|
|
3095 and update TO_POS for the space being used. */
|
|
3096 to_s_chars = (struct string_chars *) &(to_sb->string_chars[to_pos]);
|
|
3097
|
|
3098 /* Copy the string_chars to the new place. */
|
|
3099 if (from_s_chars != to_s_chars)
|
|
3100 memmove (to_s_chars, from_s_chars, fullsize);
|
|
3101
|
|
3102 /* Relocate FROM_S_CHARS's reference */
|
|
3103 set_string_data (string, &(to_s_chars->chars[0]));
|
|
3104
|
|
3105 from_pos += fullsize;
|
|
3106 to_pos += fullsize;
|
|
3107 }
|
|
3108 }
|
|
3109
|
|
3110 /* Set current to the last string chars block still used and
|
|
3111 free any that follow. */
|
|
3112 {
|
|
3113 struct string_chars_block *victim;
|
|
3114
|
|
3115 for (victim = to_sb->next; victim; )
|
|
3116 {
|
|
3117 struct string_chars_block *next = victim->next;
|
|
3118 xfree (victim);
|
|
3119 victim = next;
|
|
3120 }
|
|
3121
|
|
3122 current_string_chars_block = to_sb;
|
|
3123 current_string_chars_block->pos = to_pos;
|
|
3124 current_string_chars_block->next = 0;
|
|
3125 }
|
|
3126 }
|
|
3127
|
|
3128 #if 1 /* Hack to debug missing purecopy's */
|
|
3129 static int debug_string_purity;
|
|
3130
|
|
3131 static void
|
|
3132 debug_string_purity_print (struct Lisp_String *p)
|
|
3133 {
|
|
3134 Charcount i;
|
|
3135 Charcount s = string_char_length (p);
|
|
3136 putc ('\"', stderr);
|
|
3137 for (i = 0; i < s; i++)
|
|
3138 {
|
|
3139 Emchar ch = string_char (p, i);
|
|
3140 if (ch < 32 || ch >= 126)
|
|
3141 stderr_out ("\\%03o", ch);
|
|
3142 else if (ch == '\\' || ch == '\"')
|
|
3143 stderr_out ("\\%c", ch);
|
|
3144 else
|
|
3145 stderr_out ("%c", ch);
|
|
3146 }
|
|
3147 stderr_out ("\"\n");
|
|
3148 }
|
|
3149 #endif /* 1 */
|
|
3150
|
|
3151
|
|
3152 static void
|
|
3153 sweep_strings (void)
|
|
3154 {
|
|
3155 int num_small_used = 0, num_small_bytes = 0, num_bytes = 0;
|
|
3156 int debug = debug_string_purity;
|
|
3157
|
|
3158 #define UNMARK_string(ptr) \
|
|
3159 do { struct Lisp_String *p = (ptr); \
|
|
3160 int size = string_length (p); \
|
|
3161 UNMARK_RECORD_HEADER (&(p->lheader)); \
|
|
3162 num_bytes += size; \
|
|
3163 if (!BIG_STRING_SIZE_P (size)) \
|
|
3164 { num_small_bytes += size; \
|
|
3165 num_small_used++; \
|
|
3166 } \
|
|
3167 if (debug) debug_string_purity_print (p); \
|
|
3168 } while (0)
|
|
3169 #define ADDITIONAL_FREE_string(p) \
|
|
3170 do { int size = string_length (p); \
|
|
3171 if (BIG_STRING_SIZE_P (size)) \
|
|
3172 xfree_1 (CHARS_TO_STRING_CHAR (string_data (p))); \
|
|
3173 } while (0)
|
|
3174
|
|
3175 SWEEP_FIXED_TYPE_BLOCK (string, struct Lisp_String);
|
|
3176
|
|
3177 gc_count_num_short_string_in_use = num_small_used;
|
|
3178 gc_count_string_total_size = num_bytes;
|
|
3179 gc_count_short_string_total_size = num_small_bytes;
|
|
3180 }
|
|
3181
|
|
3182
|
|
3183 /* I hate duplicating all this crap! */
|
|
3184 int
|
|
3185 marked_p (Lisp_Object obj)
|
|
3186 {
|
|
3187 #ifdef ERROR_CHECK_GC
|
|
3188 assert (! (EQ (obj, Qnull_pointer)));
|
|
3189 #endif
|
|
3190 /* Checks we used to perform. */
|
|
3191 /* if (EQ (obj, Qnull_pointer)) return 1; */
|
|
3192 /* if (!POINTER_TYPE_P (XGCTYPE (obj))) return 1; */
|
|
3193 /* if (PURIFIED (XPNTR (obj))) return 1; */
|
|
3194
|
|
3195 if (XTYPE (obj) == Lisp_Type_Record)
|
|
3196 {
|
|
3197 struct lrecord_header *lheader = XRECORD_LHEADER (obj);
|
|
3198 #if defined (ERROR_CHECK_GC)
|
|
3199 assert (lheader->type <= last_lrecord_type_index_assigned);
|
|
3200 #endif
|
|
3201 return C_READONLY_RECORD_HEADER_P (lheader) || MARKED_RECORD_HEADER_P (lheader);
|
|
3202 }
|
|
3203 return 1;
|
|
3204 }
|
|
3205
|
|
3206 static void
|
|
3207 gc_sweep (void)
|
|
3208 {
|
|
3209 /* Free all unmarked records. Do this at the very beginning,
|
|
3210 before anything else, so that the finalize methods can safely
|
|
3211 examine items in the objects. sweep_lcrecords_1() makes
|
|
3212 sure to call all the finalize methods *before* freeing anything,
|
|
3213 to complete the safety. */
|
|
3214 {
|
|
3215 int ignored;
|
|
3216 sweep_lcrecords_1 (&all_lcrecords, &ignored);
|
|
3217 }
|
|
3218
|
|
3219 compact_string_chars ();
|
|
3220
|
|
3221 /* Finalize methods below (called through the ADDITIONAL_FREE_foo
|
|
3222 macros) must be *extremely* careful to make sure they're not
|
|
3223 referencing freed objects. The only two existing finalize
|
|
3224 methods (for strings and markers) pass muster -- the string
|
|
3225 finalizer doesn't look at anything but its own specially-
|
|
3226 created block, and the marker finalizer only looks at live
|
|
3227 buffers (which will never be freed) and at the markers before
|
|
3228 and after it in the chain (which, by induction, will never be
|
|
3229 freed because if so, they would have already removed themselves
|
|
3230 from the chain). */
|
|
3231
|
|
3232 /* Put all unmarked strings on free list, free'ing the string chars
|
|
3233 of large unmarked strings */
|
|
3234 sweep_strings ();
|
|
3235
|
|
3236 /* Put all unmarked conses on free list */
|
|
3237 sweep_conses ();
|
|
3238
|
|
3239 /* Free all unmarked bit vectors */
|
|
3240 sweep_bit_vectors_1 (&all_bit_vectors,
|
|
3241 &gc_count_num_bit_vector_used,
|
|
3242 &gc_count_bit_vector_total_size,
|
|
3243 &gc_count_bit_vector_storage);
|
|
3244
|
|
3245 /* Free all unmarked compiled-function objects */
|
|
3246 sweep_compiled_functions ();
|
|
3247
|
|
3248 #ifdef LISP_FLOAT_TYPE
|
|
3249 /* Put all unmarked floats on free list */
|
|
3250 sweep_floats ();
|
|
3251 #endif
|
|
3252
|
|
3253 /* Put all unmarked symbols on free list */
|
|
3254 sweep_symbols ();
|
|
3255
|
|
3256 /* Put all unmarked extents on free list */
|
|
3257 sweep_extents ();
|
|
3258
|
|
3259 /* Put all unmarked markers on free list.
|
|
3260 Dechain each one first from the buffer into which it points. */
|
|
3261 sweep_markers ();
|
|
3262
|
|
3263 sweep_events ();
|
|
3264
|
|
3265 #ifdef PDUMP
|
|
3266 /* Unmark all dumped objects */
|
|
3267 {
|
|
3268 int i;
|
|
3269 char *p = pdump_rt_list;
|
|
3270 if(p)
|
|
3271 for(;;)
|
|
3272 {
|
|
3273 pdump_reloc_table *rt = (pdump_reloc_table *)p;
|
|
3274 p += sizeof (pdump_reloc_table);
|
|
3275 if (rt->desc) {
|
|
3276 for (i=0; i<rt->count; i++)
|
|
3277 {
|
|
3278 UNMARK_RECORD_HEADER ((struct lrecord_header *)(*(EMACS_INT *)p));
|
|
3279 p += sizeof (EMACS_INT);
|
|
3280 }
|
|
3281 } else
|
|
3282 break;
|
|
3283 }
|
|
3284 }
|
|
3285 #endif
|
|
3286 }
|
|
3287
|
|
3288 /* Clearing for disksave. */
|
|
3289
|
|
3290 void
|
|
3291 disksave_object_finalization (void)
|
|
3292 {
|
|
3293 /* It's important that certain information from the environment not get
|
|
3294 dumped with the executable (pathnames, environment variables, etc.).
|
|
3295 To make it easier to tell when this has happened with strings(1) we
|
|
3296 clear some known-to-be-garbage blocks of memory, so that leftover
|
|
3297 results of old evaluation don't look like potential problems.
|
|
3298 But first we set some notable variables to nil and do one more GC,
|
|
3299 to turn those strings into garbage.
|
|
3300 */
|
|
3301
|
|
3302 /* Yeah, this list is pretty ad-hoc... */
|
|
3303 Vprocess_environment = Qnil;
|
|
3304 Vexec_directory = Qnil;
|
|
3305 Vdata_directory = Qnil;
|
|
3306 Vsite_directory = Qnil;
|
|
3307 Vdoc_directory = Qnil;
|
|
3308 Vconfigure_info_directory = Qnil;
|
|
3309 Vexec_path = Qnil;
|
|
3310 Vload_path = Qnil;
|
|
3311 /* Vdump_load_path = Qnil; */
|
|
3312 /* Release hash tables for locate_file */
|
|
3313 Flocate_file_clear_hashing (Qt);
|
|
3314 uncache_home_directory();
|
|
3315
|
|
3316 #if defined(LOADHIST) && !(defined(LOADHIST_DUMPED) || \
|
|
3317 defined(LOADHIST_BUILTIN))
|
|
3318 Vload_history = Qnil;
|
|
3319 #endif
|
|
3320 Vshell_file_name = Qnil;
|
|
3321
|
|
3322 garbage_collect_1 ();
|
|
3323
|
|
3324 /* Run the disksave finalization methods of all live objects. */
|
|
3325 disksave_object_finalization_1 ();
|
|
3326
|
|
3327 /* Zero out the uninitialized (really, unused) part of the containers
|
|
3328 for the live strings. */
|
|
3329 {
|
|
3330 struct string_chars_block *scb;
|
|
3331 for (scb = first_string_chars_block; scb; scb = scb->next)
|
|
3332 {
|
|
3333 int count = sizeof (scb->string_chars) - scb->pos;
|
|
3334
|
|
3335 assert (count >= 0 && count < STRING_CHARS_BLOCK_SIZE);
|
|
3336 if (count != 0) {
|
|
3337 /* from the block's fill ptr to the end */
|
|
3338 memset ((scb->string_chars + scb->pos), 0, count);
|
|
3339 }
|
|
3340 }
|
|
3341 }
|
|
3342
|
|
3343 /* There, that ought to be enough... */
|
|
3344
|
|
3345 }
|
|
3346
|
|
3347
|
|
3348 Lisp_Object
|
|
3349 restore_gc_inhibit (Lisp_Object val)
|
|
3350 {
|
|
3351 gc_currently_forbidden = XINT (val);
|
|
3352 return val;
|
|
3353 }
|
|
3354
|
|
3355 /* Maybe we want to use this when doing a "panic" gc after memory_full()? */
|
|
3356 static int gc_hooks_inhibited;
|
|
3357
|
|
3358
|
|
3359 void
|
|
3360 garbage_collect_1 (void)
|
|
3361 {
|
|
3362 #if MAX_SAVE_STACK > 0
|
|
3363 char stack_top_variable;
|
|
3364 extern char *stack_bottom;
|
|
3365 #endif
|
|
3366 struct frame *f;
|
|
3367 int speccount;
|
|
3368 int cursor_changed;
|
|
3369 Lisp_Object pre_gc_cursor;
|
|
3370 struct gcpro gcpro1;
|
|
3371
|
|
3372 if (gc_in_progress
|
|
3373 || gc_currently_forbidden
|
|
3374 || in_display
|
|
3375 || preparing_for_armageddon)
|
|
3376 return;
|
|
3377
|
|
3378 /* We used to call selected_frame() here.
|
|
3379
|
|
3380 The following functions cannot be called inside GC
|
|
3381 so we move to after the above tests. */
|
|
3382 {
|
|
3383 Lisp_Object frame;
|
|
3384 Lisp_Object device = Fselected_device (Qnil);
|
|
3385 if (NILP (device)) /* Could happen during startup, eg. if always_gc */
|
|
3386 return;
|
|
3387 frame = DEVICE_SELECTED_FRAME (XDEVICE (device));
|
|
3388 if (NILP (frame))
|
|
3389 signal_simple_error ("No frames exist on device", device);
|
|
3390 f = XFRAME (frame);
|
|
3391 }
|
|
3392
|
|
3393 pre_gc_cursor = Qnil;
|
|
3394 cursor_changed = 0;
|
|
3395
|
|
3396 GCPRO1 (pre_gc_cursor);
|
|
3397
|
|
3398 /* Very important to prevent GC during any of the following
|
|
3399 stuff that might run Lisp code; otherwise, we'll likely
|
|
3400 have infinite GC recursion. */
|
|
3401 speccount = specpdl_depth ();
|
|
3402 record_unwind_protect (restore_gc_inhibit,
|
|
3403 make_int (gc_currently_forbidden));
|
|
3404 gc_currently_forbidden = 1;
|
|
3405
|
|
3406 if (!gc_hooks_inhibited)
|
|
3407 run_hook_trapping_errors ("Error in pre-gc-hook", Qpre_gc_hook);
|
|
3408
|
|
3409 /* Now show the GC cursor/message. */
|
|
3410 if (!noninteractive)
|
|
3411 {
|
|
3412 if (FRAME_WIN_P (f))
|
|
3413 {
|
|
3414 Lisp_Object frame = make_frame (f);
|
|
3415 Lisp_Object cursor = glyph_image_instance (Vgc_pointer_glyph,
|
|
3416 FRAME_SELECTED_WINDOW (f),
|
|
3417 ERROR_ME_NOT, 1);
|
|
3418 pre_gc_cursor = f->pointer;
|
|
3419 if (POINTER_IMAGE_INSTANCEP (cursor)
|
|
3420 /* don't change if we don't know how to change back. */
|
|
3421 && POINTER_IMAGE_INSTANCEP (pre_gc_cursor))
|
|
3422 {
|
|
3423 cursor_changed = 1;
|
|
3424 Fset_frame_pointer (frame, cursor);
|
|
3425 }
|
|
3426 }
|
|
3427
|
|
3428 /* Don't print messages to the stream device. */
|
|
3429 if (!cursor_changed && !FRAME_STREAM_P (f))
|
|
3430 {
|
|
3431 char *msg = (STRINGP (Vgc_message)
|
|
3432 ? GETTEXT ((char *) XSTRING_DATA (Vgc_message))
|
|
3433 : 0);
|
|
3434 Lisp_Object args[2], whole_msg;
|
|
3435 args[0] = build_string (msg ? msg :
|
|
3436 GETTEXT ((CONST char *) gc_default_message));
|
|
3437 args[1] = build_string ("...");
|
|
3438 whole_msg = Fconcat (2, args);
|
|
3439 echo_area_message (f, (Bufbyte *) 0, whole_msg, 0, -1,
|
|
3440 Qgarbage_collecting);
|
|
3441 }
|
|
3442 }
|
|
3443
|
|
3444 /***** Now we actually start the garbage collection. */
|
|
3445
|
|
3446 gc_in_progress = 1;
|
|
3447
|
|
3448 gc_generation_number[0]++;
|
|
3449
|
|
3450 #if MAX_SAVE_STACK > 0
|
|
3451
|
|
3452 /* Save a copy of the contents of the stack, for debugging. */
|
|
3453 if (!purify_flag)
|
|
3454 {
|
|
3455 /* Static buffer in which we save a copy of the C stack at each GC. */
|
|
3456 static char *stack_copy;
|
|
3457 static size_t stack_copy_size;
|
|
3458
|
|
3459 ptrdiff_t stack_diff = &stack_top_variable - stack_bottom;
|
|
3460 size_t stack_size = (stack_diff > 0 ? stack_diff : -stack_diff);
|
|
3461 if (stack_size < MAX_SAVE_STACK)
|
|
3462 {
|
|
3463 if (stack_copy_size < stack_size)
|
|
3464 {
|
|
3465 stack_copy = (char *) xrealloc (stack_copy, stack_size);
|
|
3466 stack_copy_size = stack_size;
|
|
3467 }
|
|
3468
|
|
3469 memcpy (stack_copy,
|
|
3470 stack_diff > 0 ? stack_bottom : &stack_top_variable,
|
|
3471 stack_size);
|
|
3472 }
|
|
3473 }
|
|
3474 #endif /* MAX_SAVE_STACK > 0 */
|
|
3475
|
|
3476 /* Do some totally ad-hoc resource clearing. */
|
|
3477 /* #### generalize this? */
|
|
3478 clear_event_resource ();
|
|
3479 cleanup_specifiers ();
|
|
3480
|
|
3481 /* Mark all the special slots that serve as the roots of accessibility. */
|
|
3482
|
|
3483 { /* staticpro() */
|
|
3484 int i;
|
|
3485 for (i = 0; i < staticidx; i++)
|
|
3486 mark_object (*(staticvec[i]));
|
|
3487 for (i = 0; i < staticidx_nodump; i++)
|
|
3488 mark_object (*(staticvec_nodump[i]));
|
|
3489 }
|
|
3490
|
|
3491 { /* GCPRO() */
|
|
3492 struct gcpro *tail;
|
|
3493 int i;
|
|
3494 for (tail = gcprolist; tail; tail = tail->next)
|
|
3495 for (i = 0; i < tail->nvars; i++)
|
|
3496 mark_object (tail->var[i]);
|
|
3497 }
|
|
3498
|
|
3499 { /* specbind() */
|
|
3500 struct specbinding *bind;
|
|
3501 for (bind = specpdl; bind != specpdl_ptr; bind++)
|
|
3502 {
|
|
3503 mark_object (bind->symbol);
|
|
3504 mark_object (bind->old_value);
|
|
3505 }
|
|
3506 }
|
|
3507
|
|
3508 {
|
|
3509 struct catchtag *catch;
|
|
3510 for (catch = catchlist; catch; catch = catch->next)
|
|
3511 {
|
|
3512 mark_object (catch->tag);
|
|
3513 mark_object (catch->val);
|
|
3514 }
|
|
3515 }
|
|
3516
|
|
3517 {
|
|
3518 struct backtrace *backlist;
|
|
3519 for (backlist = backtrace_list; backlist; backlist = backlist->next)
|
|
3520 {
|
|
3521 int nargs = backlist->nargs;
|
|
3522 int i;
|
|
3523
|
|
3524 mark_object (*backlist->function);
|
|
3525 if (nargs == UNEVALLED || nargs == MANY)
|
|
3526 mark_object (backlist->args[0]);
|
|
3527 else
|
|
3528 for (i = 0; i < nargs; i++)
|
|
3529 mark_object (backlist->args[i]);
|
|
3530 }
|
|
3531 }
|
|
3532
|
|
3533 mark_redisplay ();
|
|
3534 mark_profiling_info ();
|
|
3535
|
|
3536 /* OK, now do the after-mark stuff. This is for things that
|
|
3537 are only marked when something else is marked (e.g. weak hash tables).
|
|
3538 There may be complex dependencies between such objects -- e.g.
|
|
3539 a weak hash table might be unmarked, but after processing a later
|
|
3540 weak hash table, the former one might get marked. So we have to
|
|
3541 iterate until nothing more gets marked. */
|
|
3542
|
|
3543 while (finish_marking_weak_hash_tables () > 0 ||
|
|
3544 finish_marking_weak_lists () > 0)
|
|
3545 ;
|
|
3546
|
|
3547 /* And prune (this needs to be called after everything else has been
|
|
3548 marked and before we do any sweeping). */
|
|
3549 /* #### this is somewhat ad-hoc and should probably be an object
|
|
3550 method */
|
|
3551 prune_weak_hash_tables ();
|
|
3552 prune_weak_lists ();
|
|
3553 prune_specifiers ();
|
|
3554 prune_syntax_tables ();
|
|
3555
|
|
3556 gc_sweep ();
|
|
3557
|
|
3558 consing_since_gc = 0;
|
|
3559 #ifndef DEBUG_XEMACS
|
|
3560 /* Allow you to set it really fucking low if you really want ... */
|
|
3561 if (gc_cons_threshold < 10000)
|
|
3562 gc_cons_threshold = 10000;
|
|
3563 #endif
|
|
3564
|
|
3565 gc_in_progress = 0;
|
|
3566
|
|
3567 /******* End of garbage collection ********/
|
|
3568
|
|
3569 run_hook_trapping_errors ("Error in post-gc-hook", Qpost_gc_hook);
|
|
3570
|
|
3571 /* Now remove the GC cursor/message */
|
|
3572 if (!noninteractive)
|
|
3573 {
|
|
3574 if (cursor_changed)
|
|
3575 Fset_frame_pointer (make_frame (f), pre_gc_cursor);
|
|
3576 else if (!FRAME_STREAM_P (f))
|
|
3577 {
|
|
3578 char *msg = (STRINGP (Vgc_message)
|
|
3579 ? GETTEXT ((char *) XSTRING_DATA (Vgc_message))
|
|
3580 : 0);
|
|
3581
|
|
3582 /* Show "...done" only if the echo area would otherwise be empty. */
|
|
3583 if (NILP (clear_echo_area (selected_frame (),
|
|
3584 Qgarbage_collecting, 0)))
|
|
3585 {
|
|
3586 Lisp_Object args[2], whole_msg;
|
|
3587 args[0] = build_string (msg ? msg :
|
|
3588 GETTEXT ((CONST char *)
|
|
3589 gc_default_message));
|
|
3590 args[1] = build_string ("... done");
|
|
3591 whole_msg = Fconcat (2, args);
|
|
3592 echo_area_message (selected_frame (), (Bufbyte *) 0,
|
|
3593 whole_msg, 0, -1,
|
|
3594 Qgarbage_collecting);
|
|
3595 }
|
|
3596 }
|
|
3597 }
|
|
3598
|
|
3599 /* now stop inhibiting GC */
|
|
3600 unbind_to (speccount, Qnil);
|
|
3601
|
|
3602 if (!breathing_space)
|
|
3603 {
|
|
3604 breathing_space = malloc (4096 - MALLOC_OVERHEAD);
|
|
3605 }
|
|
3606
|
|
3607 UNGCPRO;
|
|
3608 return;
|
|
3609 }
|
|
3610
|
|
3611 /* Debugging aids. */
|
|
3612
|
|
3613 static Lisp_Object
|
|
3614 gc_plist_hack (CONST char *name, int value, Lisp_Object tail)
|
|
3615 {
|
|
3616 /* C doesn't have local functions (or closures, or GC, or readable syntax,
|
|
3617 or portable numeric datatypes, or bit-vectors, or characters, or
|
|
3618 arrays, or exceptions, or ...) */
|
|
3619 return cons3 (intern (name), make_int (value), tail);
|
|
3620 }
|
|
3621
|
|
3622 #define HACK_O_MATIC(type, name, pl) do { \
|
|
3623 int s = 0; \
|
|
3624 struct type##_block *x = current_##type##_block; \
|
|
3625 while (x) { s += sizeof (*x) + MALLOC_OVERHEAD; x = x->prev; } \
|
|
3626 (pl) = gc_plist_hack ((name), s, (pl)); \
|
|
3627 } while (0)
|
|
3628
|
|
3629 DEFUN ("garbage-collect", Fgarbage_collect, 0, 0, "", /*
|
|
3630 Reclaim storage for Lisp objects no longer needed.
|
|
3631 Return info on amount of space in use:
|
|
3632 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
|
|
3633 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
|
|
3634 PLIST)
|
|
3635 where `PLIST' is a list of alternating keyword/value pairs providing
|
|
3636 more detailed information.
|
|
3637 Garbage collection happens automatically if you cons more than
|
|
3638 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
|
|
3639 */
|
|
3640 ())
|
|
3641 {
|
|
3642 Lisp_Object pl = Qnil;
|
|
3643 int i;
|
|
3644 int gc_count_vector_total_size = 0;
|
|
3645
|
|
3646 garbage_collect_1 ();
|
|
3647
|
|
3648 for (i = 0; i <= last_lrecord_type_index_assigned; i++)
|
|
3649 {
|
|
3650 if (lcrecord_stats[i].bytes_in_use != 0
|
|
3651 || lcrecord_stats[i].bytes_freed != 0
|
|
3652 || lcrecord_stats[i].instances_on_free_list != 0)
|
|
3653 {
|
|
3654 char buf [255];
|
|
3655 CONST char *name = lrecord_implementations_table[i]->name;
|
|
3656 int len = strlen (name);
|
|
3657 /* save this for the FSFmacs-compatible part of the summary */
|
|
3658 if (i == *lrecord_vector.lrecord_type_index)
|
|
3659 gc_count_vector_total_size =
|
|
3660 lcrecord_stats[i].bytes_in_use + lcrecord_stats[i].bytes_freed;
|
|
3661
|
|
3662 sprintf (buf, "%s-storage", name);
|
|
3663 pl = gc_plist_hack (buf, lcrecord_stats[i].bytes_in_use, pl);
|
|
3664 /* Okay, simple pluralization check for `symbol-value-varalias' */
|
|
3665 if (name[len-1] == 's')
|
|
3666 sprintf (buf, "%ses-freed", name);
|
|
3667 else
|
|
3668 sprintf (buf, "%ss-freed", name);
|
|
3669 if (lcrecord_stats[i].instances_freed != 0)
|
|
3670 pl = gc_plist_hack (buf, lcrecord_stats[i].instances_freed, pl);
|
|
3671 if (name[len-1] == 's')
|
|
3672 sprintf (buf, "%ses-on-free-list", name);
|
|
3673 else
|
|
3674 sprintf (buf, "%ss-on-free-list", name);
|
|
3675 if (lcrecord_stats[i].instances_on_free_list != 0)
|
|
3676 pl = gc_plist_hack (buf, lcrecord_stats[i].instances_on_free_list,
|
|
3677 pl);
|
|
3678 if (name[len-1] == 's')
|
|
3679 sprintf (buf, "%ses-used", name);
|
|
3680 else
|
|
3681 sprintf (buf, "%ss-used", name);
|
|
3682 pl = gc_plist_hack (buf, lcrecord_stats[i].instances_in_use, pl);
|
|
3683 }
|
|
3684 }
|
|
3685
|
|
3686 HACK_O_MATIC (extent, "extent-storage", pl);
|
|
3687 pl = gc_plist_hack ("extents-free", gc_count_num_extent_freelist, pl);
|
|
3688 pl = gc_plist_hack ("extents-used", gc_count_num_extent_in_use, pl);
|
|
3689 HACK_O_MATIC (event, "event-storage", pl);
|
|
3690 pl = gc_plist_hack ("events-free", gc_count_num_event_freelist, pl);
|
|
3691 pl = gc_plist_hack ("events-used", gc_count_num_event_in_use, pl);
|
|
3692 HACK_O_MATIC (marker, "marker-storage", pl);
|
|
3693 pl = gc_plist_hack ("markers-free", gc_count_num_marker_freelist, pl);
|
|
3694 pl = gc_plist_hack ("markers-used", gc_count_num_marker_in_use, pl);
|
|
3695 #ifdef LISP_FLOAT_TYPE
|
|
3696 HACK_O_MATIC (float, "float-storage", pl);
|
|
3697 pl = gc_plist_hack ("floats-free", gc_count_num_float_freelist, pl);
|
|
3698 pl = gc_plist_hack ("floats-used", gc_count_num_float_in_use, pl);
|
|
3699 #endif /* LISP_FLOAT_TYPE */
|
|
3700 HACK_O_MATIC (string, "string-header-storage", pl);
|
|
3701 pl = gc_plist_hack ("long-strings-total-length",
|
|
3702 gc_count_string_total_size
|
|
3703 - gc_count_short_string_total_size, pl);
|
|
3704 HACK_O_MATIC (string_chars, "short-string-storage", pl);
|
|
3705 pl = gc_plist_hack ("short-strings-total-length",
|
|
3706 gc_count_short_string_total_size, pl);
|
|
3707 pl = gc_plist_hack ("strings-free", gc_count_num_string_freelist, pl);
|
|
3708 pl = gc_plist_hack ("long-strings-used",
|
|
3709 gc_count_num_string_in_use
|
|
3710 - gc_count_num_short_string_in_use, pl);
|
|
3711 pl = gc_plist_hack ("short-strings-used",
|
|
3712 gc_count_num_short_string_in_use, pl);
|
|
3713
|
|
3714 HACK_O_MATIC (compiled_function, "compiled-function-storage", pl);
|
|
3715 pl = gc_plist_hack ("compiled-functions-free",
|
|
3716 gc_count_num_compiled_function_freelist, pl);
|
|
3717 pl = gc_plist_hack ("compiled-functions-used",
|
|
3718 gc_count_num_compiled_function_in_use, pl);
|
|
3719
|
|
3720 pl = gc_plist_hack ("bit-vector-storage", gc_count_bit_vector_storage, pl);
|
|
3721 pl = gc_plist_hack ("bit-vectors-total-length",
|
|
3722 gc_count_bit_vector_total_size, pl);
|
|
3723 pl = gc_plist_hack ("bit-vectors-used", gc_count_num_bit_vector_used, pl);
|
|
3724
|
|
3725 HACK_O_MATIC (symbol, "symbol-storage", pl);
|
|
3726 pl = gc_plist_hack ("symbols-free", gc_count_num_symbol_freelist, pl);
|
|
3727 pl = gc_plist_hack ("symbols-used", gc_count_num_symbol_in_use, pl);
|
|
3728
|
|
3729 HACK_O_MATIC (cons, "cons-storage", pl);
|
|
3730 pl = gc_plist_hack ("conses-free", gc_count_num_cons_freelist, pl);
|
|
3731 pl = gc_plist_hack ("conses-used", gc_count_num_cons_in_use, pl);
|
|
3732
|
|
3733 /* The things we do for backwards-compatibility */
|
|
3734 return
|
|
3735 list6 (Fcons (make_int (gc_count_num_cons_in_use),
|
|
3736 make_int (gc_count_num_cons_freelist)),
|
|
3737 Fcons (make_int (gc_count_num_symbol_in_use),
|
|
3738 make_int (gc_count_num_symbol_freelist)),
|
|
3739 Fcons (make_int (gc_count_num_marker_in_use),
|
|
3740 make_int (gc_count_num_marker_freelist)),
|
|
3741 make_int (gc_count_string_total_size),
|
|
3742 make_int (gc_count_vector_total_size),
|
|
3743 pl);
|
|
3744 }
|
|
3745 #undef HACK_O_MATIC
|
|
3746
|
|
3747 DEFUN ("consing-since-gc", Fconsing_since_gc, 0, 0, "", /*
|
|
3748 Return the number of bytes consed since the last garbage collection.
|
|
3749 \"Consed\" is a misnomer in that this actually counts allocation
|
|
3750 of all different kinds of objects, not just conses.
|
|
3751
|
|
3752 If this value exceeds `gc-cons-threshold', a garbage collection happens.
|
|
3753 */
|
|
3754 ())
|
|
3755 {
|
|
3756 return make_int (consing_since_gc);
|
|
3757 }
|
|
3758
|
|
3759 DEFUN ("memory-limit", Fmemory_limit, 0, 0, "", /*
|
|
3760 Return the address of the last byte Emacs has allocated, divided by 1024.
|
|
3761 This may be helpful in debugging Emacs's memory usage.
|
|
3762 The value is divided by 1024 to make sure it will fit in a lisp integer.
|
|
3763 */
|
|
3764 ())
|
|
3765 {
|
|
3766 return make_int ((EMACS_INT) sbrk (0) / 1024);
|
|
3767 }
|
|
3768
|
|
3769
|
|
3770
|
|
3771 int
|
|
3772 object_dead_p (Lisp_Object obj)
|
|
3773 {
|
|
3774 return ((BUFFERP (obj) && !BUFFER_LIVE_P (XBUFFER (obj))) ||
|
|
3775 (FRAMEP (obj) && !FRAME_LIVE_P (XFRAME (obj))) ||
|
|
3776 (WINDOWP (obj) && !WINDOW_LIVE_P (XWINDOW (obj))) ||
|
|
3777 (DEVICEP (obj) && !DEVICE_LIVE_P (XDEVICE (obj))) ||
|
|
3778 (CONSOLEP (obj) && !CONSOLE_LIVE_P (XCONSOLE (obj))) ||
|
|
3779 (EVENTP (obj) && !EVENT_LIVE_P (XEVENT (obj))) ||
|
|
3780 (EXTENTP (obj) && !EXTENT_LIVE_P (XEXTENT (obj))));
|
|
3781 }
|
|
3782
|
|
3783 #ifdef MEMORY_USAGE_STATS
|
|
3784
|
|
3785 /* Attempt to determine the actual amount of space that is used for
|
|
3786 the block allocated starting at PTR, supposedly of size "CLAIMED_SIZE".
|
|
3787
|
|
3788 It seems that the following holds:
|
|
3789
|
|
3790 1. When using the old allocator (malloc.c):
|
|
3791
|
|
3792 -- blocks are always allocated in chunks of powers of two. For
|
|
3793 each block, there is an overhead of 8 bytes if rcheck is not
|
|
3794 defined, 20 bytes if it is defined. In other words, a
|
|
3795 one-byte allocation needs 8 bytes of overhead for a total of
|
|
3796 9 bytes, and needs to have 16 bytes of memory chunked out for
|
|
3797 it.
|
|
3798
|
|
3799 2. When using the new allocator (gmalloc.c):
|
|
3800
|
|
3801 -- blocks are always allocated in chunks of powers of two up
|
|
3802 to 4096 bytes. Larger blocks are allocated in chunks of
|
|
3803 an integral multiple of 4096 bytes. The minimum block
|
|
3804 size is 2*sizeof (void *), or 16 bytes if SUNOS_LOCALTIME_BUG
|
|
3805 is defined. There is no per-block overhead, but there
|
|
3806 is an overhead of 3*sizeof (size_t) for each 4096 bytes
|
|
3807 allocated.
|
|
3808
|
|
3809 3. When using the system malloc, anything goes, but they are
|
|
3810 generally slower and more space-efficient than the GNU
|
|
3811 allocators. One possibly reasonable assumption to make
|
|
3812 for want of better data is that sizeof (void *), or maybe
|
|
3813 2 * sizeof (void *), is required as overhead and that
|
|
3814 blocks are allocated in the minimum required size except
|
|
3815 that some minimum block size is imposed (e.g. 16 bytes). */
|
|
3816
|
|
3817 size_t
|
|
3818 malloced_storage_size (void *ptr, size_t claimed_size,
|
|
3819 struct overhead_stats *stats)
|
|
3820 {
|
|
3821 size_t orig_claimed_size = claimed_size;
|
|
3822
|
|
3823 #ifdef GNU_MALLOC
|
|
3824
|
|
3825 if (claimed_size < 2 * sizeof (void *))
|
|
3826 claimed_size = 2 * sizeof (void *);
|
|
3827 # ifdef SUNOS_LOCALTIME_BUG
|
|
3828 if (claimed_size < 16)
|
|
3829 claimed_size = 16;
|
|
3830 # endif
|
|
3831 if (claimed_size < 4096)
|
|
3832 {
|
|
3833 int log = 1;
|
|
3834
|
|
3835 /* compute the log base two, more or less, then use it to compute
|
|
3836 the block size needed. */
|
|
3837 claimed_size--;
|
|
3838 /* It's big, it's heavy, it's wood! */
|
|
3839 while ((claimed_size /= 2) != 0)
|
|
3840 ++log;
|
|
3841 claimed_size = 1;
|
|
3842 /* It's better than bad, it's good! */
|
|
3843 while (log > 0)
|
|
3844 {
|
|
3845 claimed_size *= 2;
|
|
3846 log--;
|
|
3847 }
|
|
3848 /* We have to come up with some average about the amount of
|
|
3849 blocks used. */
|
|
3850 if ((size_t) (rand () & 4095) < claimed_size)
|
|
3851 claimed_size += 3 * sizeof (void *);
|
|
3852 }
|
|
3853 else
|
|
3854 {
|
|
3855 claimed_size += 4095;
|
|
3856 claimed_size &= ~4095;
|
|
3857 claimed_size += (claimed_size / 4096) * 3 * sizeof (size_t);
|
|
3858 }
|
|
3859
|
|
3860 #elif defined (SYSTEM_MALLOC)
|
|
3861
|
|
3862 if (claimed_size < 16)
|
|
3863 claimed_size = 16;
|
|
3864 claimed_size += 2 * sizeof (void *);
|
|
3865
|
|
3866 #else /* old GNU allocator */
|
|
3867
|
|
3868 # ifdef rcheck /* #### may not be defined here */
|
|
3869 claimed_size += 20;
|
|
3870 # else
|
|
3871 claimed_size += 8;
|
|
3872 # endif
|
|
3873 {
|
|
3874 int log = 1;
|
|
3875
|
|
3876 /* compute the log base two, more or less, then use it to compute
|
|
3877 the block size needed. */
|
|
3878 claimed_size--;
|
|
3879 /* It's big, it's heavy, it's wood! */
|
|
3880 while ((claimed_size /= 2) != 0)
|
|
3881 ++log;
|
|
3882 claimed_size = 1;
|
|
3883 /* It's better than bad, it's good! */
|
|
3884 while (log > 0)
|
|
3885 {
|
|
3886 claimed_size *= 2;
|
|
3887 log--;
|
|
3888 }
|
|
3889 }
|
|
3890
|
|
3891 #endif /* old GNU allocator */
|
|
3892
|
|
3893 if (stats)
|
|
3894 {
|
|
3895 stats->was_requested += orig_claimed_size;
|
|
3896 stats->malloc_overhead += claimed_size - orig_claimed_size;
|
|
3897 }
|
|
3898 return claimed_size;
|
|
3899 }
|
|
3900
|
|
3901 size_t
|
|
3902 fixed_type_block_overhead (size_t size)
|
|
3903 {
|
|
3904 size_t per_block = TYPE_ALLOC_SIZE (cons, unsigned char);
|
|
3905 size_t overhead = 0;
|
|
3906 size_t storage_size = malloced_storage_size (0, per_block, 0);
|
|
3907 while (size >= per_block)
|
|
3908 {
|
|
3909 size -= per_block;
|
|
3910 overhead += sizeof (void *) + per_block - storage_size;
|
|
3911 }
|
|
3912 if (rand () % per_block < size)
|
|
3913 overhead += sizeof (void *) + per_block - storage_size;
|
|
3914 return overhead;
|
|
3915 }
|
|
3916
|
|
3917 #endif /* MEMORY_USAGE_STATS */
|
|
3918
|
|
3919
|
|
3920 /* Initialization */
|
|
3921 void
|
|
3922 reinit_alloc_once_early (void)
|
|
3923 {
|
|
3924 gc_generation_number[0] = 0;
|
|
3925 breathing_space = 0;
|
|
3926 XSETINT (all_bit_vectors, 0); /* Qzero may not be set yet. */
|
|
3927 XSETINT (Vgc_message, 0);
|
|
3928 all_lcrecords = 0;
|
|
3929 ignore_malloc_warnings = 1;
|
|
3930 #ifdef DOUG_LEA_MALLOC
|
|
3931 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
|
|
3932 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
|
|
3933 #if 0 /* Moved to emacs.c */
|
|
3934 mallopt (M_MMAP_MAX, 64); /* max. number of mmap'ed areas */
|
|
3935 #endif
|
|
3936 #endif
|
|
3937 init_string_alloc ();
|
|
3938 init_string_chars_alloc ();
|
|
3939 init_cons_alloc ();
|
|
3940 init_symbol_alloc ();
|
|
3941 init_compiled_function_alloc ();
|
|
3942 #ifdef LISP_FLOAT_TYPE
|
|
3943 init_float_alloc ();
|
|
3944 #endif /* LISP_FLOAT_TYPE */
|
|
3945 init_marker_alloc ();
|
|
3946 init_extent_alloc ();
|
|
3947 init_event_alloc ();
|
|
3948
|
|
3949 ignore_malloc_warnings = 0;
|
|
3950
|
|
3951 staticidx_nodump = 0;
|
|
3952 dumpstructidx = 0;
|
|
3953 pdump_wireidx = 0;
|
|
3954
|
|
3955 consing_since_gc = 0;
|
|
3956 #if 1
|
|
3957 gc_cons_threshold = 500000; /* XEmacs change */
|
|
3958 #else
|
|
3959 gc_cons_threshold = 15000; /* debugging */
|
|
3960 #endif
|
|
3961 #ifdef VIRT_ADDR_VARIES
|
|
3962 malloc_sbrk_unused = 1<<22; /* A large number */
|
|
3963 malloc_sbrk_used = 100000; /* as reasonable as any number */
|
|
3964 #endif /* VIRT_ADDR_VARIES */
|
|
3965 lrecord_uid_counter = 259;
|
|
3966 debug_string_purity = 0;
|
|
3967 gcprolist = 0;
|
|
3968
|
|
3969 gc_currently_forbidden = 0;
|
|
3970 gc_hooks_inhibited = 0;
|
|
3971
|
|
3972 #ifdef ERROR_CHECK_TYPECHECK
|
|
3973 ERROR_ME.really_unlikely_name_to_have_accidentally_in_a_non_errb_structure =
|
|
3974 666;
|
|
3975 ERROR_ME_NOT.
|
|
3976 really_unlikely_name_to_have_accidentally_in_a_non_errb_structure = 42;
|
|
3977 ERROR_ME_WARN.
|
|
3978 really_unlikely_name_to_have_accidentally_in_a_non_errb_structure =
|
|
3979 3333632;
|
|
3980 #endif /* ERROR_CHECK_TYPECHECK */
|
|
3981 }
|
|
3982
|
|
3983 void
|
|
3984 init_alloc_once_early (void)
|
|
3985 {
|
|
3986 int iii;
|
|
3987
|
|
3988 reinit_alloc_once_early ();
|
|
3989
|
|
3990 last_lrecord_type_index_assigned = -1;
|
|
3991 for (iii = 0; iii < countof (lrecord_implementations_table); iii++)
|
|
3992 {
|
|
3993 lrecord_implementations_table[iii] = 0;
|
|
3994 }
|
|
3995
|
|
3996 /*
|
|
3997 * All the staticly
|
|
3998 * defined subr lrecords were initialized with lheader->type == 0.
|
|
3999 * See subr_lheader_initializer in lisp.h. Force type index 0 to be
|
|
4000 * assigned to lrecord_subr so that those predefined indexes match
|
|
4001 * reality.
|
|
4002 */
|
|
4003 lrecord_type_index (&lrecord_subr);
|
|
4004 assert (*(lrecord_subr.lrecord_type_index) == 0);
|
|
4005 /*
|
|
4006 * The same is true for symbol_value_forward objects, except the
|
|
4007 * type is 1.
|
|
4008 */
|
|
4009 lrecord_type_index (&lrecord_symbol_value_forward);
|
|
4010 assert (*(lrecord_symbol_value_forward.lrecord_type_index) == 1);
|
|
4011
|
|
4012 staticidx = 0;
|
|
4013 }
|
|
4014
|
|
4015 int pure_bytes_used = 0;
|
|
4016
|
|
4017 void
|
|
4018 reinit_alloc (void)
|
|
4019 {
|
|
4020 gcprolist = 0;
|
|
4021 }
|
|
4022
|
|
4023 void
|
|
4024 syms_of_alloc (void)
|
|
4025 {
|
|
4026 defsymbol (&Qpre_gc_hook, "pre-gc-hook");
|
|
4027 defsymbol (&Qpost_gc_hook, "post-gc-hook");
|
|
4028 defsymbol (&Qgarbage_collecting, "garbage-collecting");
|
|
4029
|
|
4030 DEFSUBR (Fcons);
|
|
4031 DEFSUBR (Flist);
|
|
4032 DEFSUBR (Fvector);
|
|
4033 DEFSUBR (Fbit_vector);
|
|
4034 DEFSUBR (Fmake_byte_code);
|
|
4035 DEFSUBR (Fmake_list);
|
|
4036 DEFSUBR (Fmake_vector);
|
|
4037 DEFSUBR (Fmake_bit_vector);
|
|
4038 DEFSUBR (Fmake_string);
|
|
4039 DEFSUBR (Fstring);
|
|
4040 DEFSUBR (Fmake_symbol);
|
|
4041 DEFSUBR (Fmake_marker);
|
|
4042 DEFSUBR (Fpurecopy);
|
|
4043 DEFSUBR (Fgarbage_collect);
|
|
4044 DEFSUBR (Fmemory_limit);
|
|
4045 DEFSUBR (Fconsing_since_gc);
|
|
4046 }
|
|
4047
|
|
4048 void
|
|
4049 vars_of_alloc (void)
|
|
4050 {
|
|
4051 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold /*
|
|
4052 *Number of bytes of consing between garbage collections.
|
|
4053 \"Consing\" is a misnomer in that this actually counts allocation
|
|
4054 of all different kinds of objects, not just conses.
|
|
4055 Garbage collection can happen automatically once this many bytes have been
|
|
4056 allocated since the last garbage collection. All data types count.
|
|
4057
|
|
4058 Garbage collection happens automatically when `eval' or `funcall' are
|
|
4059 called. (Note that `funcall' is called implicitly as part of evaluation.)
|
|
4060 By binding this temporarily to a large number, you can effectively
|
|
4061 prevent garbage collection during a part of the program.
|
|
4062
|
|
4063 See also `consing-since-gc'.
|
|
4064 */ );
|
|
4065
|
|
4066 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used /*
|
|
4067 Number of bytes of sharable Lisp data allocated so far.
|
|
4068 */ );
|
|
4069
|
|
4070 #if 0
|
|
4071 DEFVAR_INT ("data-bytes-used", &malloc_sbrk_used /*
|
|
4072 Number of bytes of unshared memory allocated in this session.
|
|
4073 */ );
|
|
4074
|
|
4075 DEFVAR_INT ("data-bytes-free", &malloc_sbrk_unused /*
|
|
4076 Number of bytes of unshared memory remaining available in this session.
|
|
4077 */ );
|
|
4078 #endif
|
|
4079
|
|
4080 #ifdef DEBUG_XEMACS
|
|
4081 DEFVAR_INT ("debug-allocation", &debug_allocation /*
|
|
4082 If non-zero, print out information to stderr about all objects allocated.
|
|
4083 See also `debug-allocation-backtrace-length'.
|
|
4084 */ );
|
|
4085 debug_allocation = 0;
|
|
4086
|
|
4087 DEFVAR_INT ("debug-allocation-backtrace-length",
|
|
4088 &debug_allocation_backtrace_length /*
|
|
4089 Length (in stack frames) of short backtrace printed out by `debug-allocation'.
|
|
4090 */ );
|
|
4091 debug_allocation_backtrace_length = 2;
|
|
4092 #endif
|
|
4093
|
|
4094 DEFVAR_BOOL ("purify-flag", &purify_flag /*
|
|
4095 Non-nil means loading Lisp code in order to dump an executable.
|
|
4096 This means that certain objects should be allocated in readonly space.
|
|
4097 */ );
|
|
4098
|
|
4099 DEFVAR_LISP ("pre-gc-hook", &Vpre_gc_hook /*
|
|
4100 Function or functions to be run just before each garbage collection.
|
|
4101 Interrupts, garbage collection, and errors are inhibited while this hook
|
|
4102 runs, so be extremely careful in what you add here. In particular, avoid
|
|
4103 consing, and do not interact with the user.
|
|
4104 */ );
|
|
4105 Vpre_gc_hook = Qnil;
|
|
4106
|
|
4107 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook /*
|
|
4108 Function or functions to be run just after each garbage collection.
|
|
4109 Interrupts, garbage collection, and errors are inhibited while this hook
|
|
4110 runs, so be extremely careful in what you add here. In particular, avoid
|
|
4111 consing, and do not interact with the user.
|
|
4112 */ );
|
|
4113 Vpost_gc_hook = Qnil;
|
|
4114
|
|
4115 DEFVAR_LISP ("gc-message", &Vgc_message /*
|
|
4116 String to print to indicate that a garbage collection is in progress.
|
|
4117 This is printed in the echo area. If the selected frame is on a
|
|
4118 window system and `gc-pointer-glyph' specifies a value (i.e. a pointer
|
|
4119 image instance) in the domain of the selected frame, the mouse pointer
|
|
4120 will change instead of this message being printed.
|
|
4121 */ );
|
|
4122 Vgc_message = build_string (gc_default_message);
|
|
4123
|
|
4124 DEFVAR_LISP ("gc-pointer-glyph", &Vgc_pointer_glyph /*
|
|
4125 Pointer glyph used to indicate that a garbage collection is in progress.
|
|
4126 If the selected window is on a window system and this glyph specifies a
|
|
4127 value (i.e. a pointer image instance) in the domain of the selected
|
|
4128 window, the pointer will be changed as specified during garbage collection.
|
|
4129 Otherwise, a message will be printed in the echo area, as controlled
|
|
4130 by `gc-message'.
|
|
4131 */ );
|
|
4132 }
|
|
4133
|
|
4134 void
|
|
4135 complex_vars_of_alloc (void)
|
|
4136 {
|
|
4137 Vgc_pointer_glyph = Fmake_glyph_internal (Qpointer);
|
|
4138 }
|
|
4139
|
|
4140
|
|
4141 #ifdef PDUMP
|
|
4142
|
|
4143 /* The structure of the file
|
|
4144 *
|
|
4145 * 0 - header
|
|
4146 * 256 - dumped objects
|
|
4147 * stab_offset - nb_staticpro*(Lisp_Object *) from staticvec
|
|
4148 * - nb_staticpro*(relocated Lisp_Object) pointed to by staticpro
|
|
4149 * - nb_structdmp*pair(void *, adr) for pointers to structures
|
|
4150 * - lrecord_implementations_table[]
|
|
4151 * - relocation table
|
|
4152 * - wired variable address/value couples with the count preceding the list
|
|
4153 */
|
|
4154 typedef struct
|
|
4155 {
|
|
4156 char signature[8];
|
|
4157 EMACS_UINT stab_offset;
|
|
4158 EMACS_UINT reloc_address;
|
|
4159 int nb_staticpro;
|
|
4160 int nb_structdmp;
|
|
4161 int last_type;
|
|
4162 } dump_header;
|
|
4163
|
|
4164 char *pdump_start, *pdump_end;
|
|
4165
|
|
4166 static const unsigned char align_table[256] =
|
|
4167 {
|
|
4168 8, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
|
|
4169 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
|
|
4170 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
|
|
4171 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
|
|
4172 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
|
|
4173 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
|
|
4174 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
|
|
4175 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
|
|
4176 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
|
|
4177 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
|
|
4178 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
|
|
4179 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
|
|
4180 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
|
|
4181 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
|
|
4182 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
|
|
4183 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
|
|
4184 };
|
|
4185
|
|
4186 typedef struct pdump_entry_list_elmt
|
|
4187 {
|
|
4188 struct pdump_entry_list_elmt *next;
|
|
4189 const void *obj;
|
|
4190 size_t size;
|
|
4191 int count;
|
|
4192 int is_lrecord;
|
|
4193 EMACS_INT save_offset;
|
|
4194 } pdump_entry_list_elmt;
|
|
4195
|
|
4196 typedef struct
|
|
4197 {
|
|
4198 pdump_entry_list_elmt *first;
|
|
4199 int align;
|
|
4200 int count;
|
|
4201 } pdump_entry_list;
|
|
4202
|
|
4203 typedef struct pdump_struct_list_elmt
|
|
4204 {
|
|
4205 pdump_entry_list list;
|
|
4206 const struct struct_description *sdesc;
|
|
4207 } pdump_struct_list_elmt;
|
|
4208
|
|
4209 typedef struct
|
|
4210 {
|
|
4211 pdump_struct_list_elmt *list;
|
|
4212 int count;
|
|
4213 int size;
|
|
4214 } pdump_struct_list;
|
|
4215
|
|
4216 static pdump_entry_list pdump_object_table[256];
|
|
4217 static pdump_entry_list pdump_opaque_data_list;
|
|
4218 static pdump_struct_list pdump_struct_table;
|
|
4219 static pdump_entry_list_elmt *pdump_qnil;
|
|
4220
|
|
4221 static int pdump_alert_undump_object[256];
|
|
4222
|
|
4223 static unsigned long cur_offset;
|
|
4224 static size_t max_size;
|
|
4225 static int pdump_fd;
|
|
4226 static void *pdump_buf;
|
|
4227
|
|
4228 #define PDUMP_HASHSIZE 200001
|
|
4229
|
|
4230 static pdump_entry_list_elmt **pdump_hash;
|
|
4231
|
|
4232 /* Since most pointers are eight bytes aligned, the >>3 allows for a better hash */
|
|
4233 static int
|
|
4234 pdump_make_hash (const void *obj)
|
|
4235 {
|
|
4236 return ((unsigned long)(obj)>>3) % PDUMP_HASHSIZE;
|
|
4237 }
|
|
4238
|
|
4239 static pdump_entry_list_elmt *
|
|
4240 pdump_get_entry (const void *obj)
|
|
4241 {
|
|
4242 int pos = pdump_make_hash(obj);
|
|
4243 pdump_entry_list_elmt *e;
|
|
4244 while ((e = pdump_hash[pos]) != 0)
|
|
4245 {
|
|
4246 if (e->obj == obj)
|
|
4247 return e;
|
|
4248
|
|
4249 pos++;
|
|
4250 if (pos == PDUMP_HASHSIZE)
|
|
4251 pos = 0;
|
|
4252 }
|
|
4253 return 0;
|
|
4254 }
|
|
4255
|
|
4256 static void
|
|
4257 pdump_add_entry (pdump_entry_list *list, const void *obj, size_t size, int count, int is_lrecord)
|
|
4258 {
|
|
4259 pdump_entry_list_elmt *e;
|
|
4260 int align;
|
|
4261 int pos = pdump_make_hash (obj);
|
|
4262
|
|
4263 while ((e = pdump_hash[pos]) != 0)
|
|
4264 {
|
|
4265 if (e->obj == obj)
|
|
4266 return;
|
|
4267
|
|
4268 pos++;
|
|
4269 if (pos == PDUMP_HASHSIZE)
|
|
4270 pos = 0;
|
|
4271 }
|
|
4272
|
|
4273 e = malloc (sizeof (pdump_entry_list_elmt));
|
|
4274
|
|
4275 e->next = list->first;
|
|
4276 e->obj = obj;
|
|
4277 e->size = size;
|
|
4278 e->count = count;
|
|
4279 e->is_lrecord = is_lrecord;
|
|
4280 list->first = e;
|
|
4281
|
|
4282 list->count += count;
|
|
4283 pdump_hash[pos] = e;
|
|
4284
|
|
4285 align = align_table[size & 255];
|
|
4286 if (align<2 && is_lrecord)
|
|
4287 align = 2;
|
|
4288
|
|
4289 if(align < list->align)
|
|
4290 list->align = align;
|
|
4291 }
|
|
4292
|
|
4293 static pdump_entry_list *
|
|
4294 pdump_get_entry_list(const struct struct_description *sdesc)
|
|
4295 {
|
|
4296 int i;
|
|
4297 for(i=0; i<pdump_struct_table.count; i++)
|
|
4298 if (pdump_struct_table.list[i].sdesc == sdesc)
|
|
4299 return &pdump_struct_table.list[i].list;
|
|
4300
|
|
4301 if (pdump_struct_table.size <= pdump_struct_table.count)
|
|
4302 {
|
|
4303 if (pdump_struct_table.size == -1)
|
|
4304 pdump_struct_table.size = 10;
|
|
4305 else
|
|
4306 pdump_struct_table.size = pdump_struct_table.size * 2;
|
|
4307 pdump_struct_table.list = xrealloc (pdump_struct_table.list,
|
|
4308 pdump_struct_table.size*sizeof (pdump_struct_list_elmt));
|
|
4309 }
|
|
4310 pdump_struct_table.list[pdump_struct_table.count].list.first = 0;
|
|
4311 pdump_struct_table.list[pdump_struct_table.count].list.align = 8;
|
|
4312 pdump_struct_table.list[pdump_struct_table.count].list.count = 0;
|
|
4313 pdump_struct_table.list[pdump_struct_table.count].sdesc = sdesc;
|
|
4314
|
|
4315 return &pdump_struct_table.list[pdump_struct_table.count++].list;
|
|
4316 }
|
|
4317
|
|
4318 static struct {
|
|
4319 Lisp_Object obj;
|
|
4320 int position;
|
|
4321 int offset;
|
|
4322 } backtrace[65536];
|
|
4323
|
|
4324 static int depth;
|
|
4325
|
|
4326 static void pdump_backtrace (void)
|
|
4327 {
|
|
4328 int i;
|
|
4329 fprintf (stderr, "pdump backtrace :\n");
|
|
4330 for (i=0;i<depth;i++)
|
|
4331 {
|
|
4332 if (!backtrace[i].obj)
|
|
4333 fprintf (stderr, " - ind. (%d, %d)\n", backtrace[i].position, backtrace[i].offset);
|
|
4334 else
|
|
4335 {
|
|
4336 fprintf (stderr, " - %s (%d, %d)\n",
|
|
4337 XRECORD_LHEADER_IMPLEMENTATION (backtrace[i].obj)->name,
|
|
4338 backtrace[i].position,
|
|
4339 backtrace[i].offset);
|
|
4340 }
|
|
4341 }
|
|
4342 }
|
|
4343
|
|
4344 static void pdump_register_object (Lisp_Object obj);
|
|
4345 static void pdump_register_struct (const void *data, const struct struct_description *sdesc, int count);
|
|
4346
|
|
4347 static EMACS_INT
|
|
4348 pdump_get_indirect_count (EMACS_INT code, const struct lrecord_description *idesc, const void *idata)
|
|
4349 {
|
|
4350 EMACS_INT count;
|
|
4351 const void *irdata;
|
|
4352
|
|
4353 int line = XD_INDIRECT_VAL (code);
|
|
4354 int delta = XD_INDIRECT_DELTA (code);
|
|
4355
|
|
4356 irdata = ((char *)idata) + idesc[line].offset;
|
|
4357 switch (idesc[line].type) {
|
|
4358 case XD_SIZE_T:
|
|
4359 count = *(size_t *)irdata;
|
|
4360 break;
|
|
4361 case XD_INT:
|
|
4362 count = *(int *)irdata;
|
|
4363 break;
|
|
4364 case XD_LONG:
|
|
4365 count = *(long *)irdata;
|
|
4366 break;
|
|
4367 case XD_BYTECOUNT:
|
|
4368 count = *(Bytecount *)irdata;
|
|
4369 break;
|
|
4370 default:
|
|
4371 fprintf (stderr, "Unsupported count type : %d (line = %d, code=%ld)\n", idesc[line].type, line, (long)code);
|
|
4372 pdump_backtrace ();
|
|
4373 abort ();
|
|
4374 }
|
|
4375 count += delta;
|
|
4376 return count;
|
|
4377 }
|
|
4378
|
|
4379 static void
|
|
4380 pdump_register_sub (const void *data, const struct lrecord_description *desc, int me)
|
|
4381 {
|
|
4382 int pos;
|
|
4383 const void *rdata;
|
|
4384
|
|
4385 restart:
|
|
4386 for (pos = 0; desc[pos].type != XD_END; pos++)
|
|
4387 {
|
|
4388 backtrace[me].position = pos;
|
|
4389 backtrace[me].offset = desc[pos].offset;
|
|
4390
|
|
4391 rdata = ((const char *)data) + desc[pos].offset;
|
|
4392 switch(desc[pos].type)
|
|
4393 {
|
|
4394 case XD_SPECIFIER_END:
|
|
4395 pos = 0;
|
|
4396 desc = ((const struct Lisp_Specifier *)data)->methods->extra_description;
|
|
4397 goto restart;
|
|
4398 case XD_SIZE_T:
|
|
4399 case XD_INT:
|
|
4400 case XD_LONG:
|
|
4401 case XD_BYTECOUNT:
|
|
4402 case XD_LO_RESET_NIL:
|
|
4403 case XD_INT_RESET:
|
|
4404 case XD_LO_LINK:
|
|
4405 break;
|
|
4406 case XD_OPAQUE_DATA_PTR:
|
|
4407 {
|
|
4408 EMACS_INT count = desc[pos].data1;
|
|
4409 if (XD_IS_INDIRECT(count))
|
|
4410 count = pdump_get_indirect_count (count, desc, data);
|
|
4411
|
|
4412 pdump_add_entry (&pdump_opaque_data_list,
|
|
4413 *(void **)rdata,
|
|
4414 count,
|
|
4415 1,
|
|
4416 0);
|
|
4417 break;
|
|
4418 }
|
|
4419 case XD_C_STRING:
|
|
4420 {
|
|
4421 const char *str = *(const char **)rdata;
|
|
4422 if (str)
|
|
4423 pdump_add_entry (&pdump_opaque_data_list, str, strlen (str)+1, 1, 0);
|
|
4424 break;
|
|
4425 }
|
|
4426 case XD_DOC_STRING:
|
|
4427 {
|
|
4428 const char *str = *(const char **)rdata;
|
|
4429 if ((EMACS_INT)str > 0)
|
|
4430 pdump_add_entry (&pdump_opaque_data_list, str, strlen (str)+1, 1, 0);
|
|
4431 break;
|
|
4432 }
|
|
4433 case XD_LISP_OBJECT:
|
|
4434 {
|
|
4435 EMACS_INT count = desc[pos].data1;
|
|
4436 int i;
|
|
4437 if (XD_IS_INDIRECT (count))
|
|
4438 count = pdump_get_indirect_count (count, desc, data);
|
|
4439
|
|
4440 for(i=0;i<count;i++) {
|
|
4441 const Lisp_Object *pobj = ((const Lisp_Object *)rdata) + i;
|
|
4442 Lisp_Object dobj = *pobj;
|
|
4443
|
|
4444 backtrace[me].offset = (const char *)pobj - (const char *)data;
|
|
4445 pdump_register_object (dobj);
|
|
4446 }
|
|
4447 break;
|
|
4448 }
|
|
4449 case XD_STRUCT_PTR:
|
|
4450 {
|
|
4451 EMACS_INT count = desc[pos].data1;
|
|
4452 const struct struct_description *sdesc = desc[pos].data2;
|
|
4453 const char *dobj = *(const char **)rdata;
|
|
4454 if (dobj) {
|
|
4455 if (XD_IS_INDIRECT (count))
|
|
4456 count = pdump_get_indirect_count (count, desc, data);
|
|
4457
|
|
4458 pdump_register_struct (dobj, sdesc, count);
|
|
4459 }
|
|
4460 break;
|
|
4461 }
|
|
4462 default:
|
|
4463 fprintf (stderr, "Unsupported dump type : %d\n", desc[pos].type);
|
|
4464 pdump_backtrace ();
|
|
4465 abort ();
|
|
4466 };
|
|
4467 }
|
|
4468 }
|
|
4469
|
|
4470 static void
|
|
4471 pdump_register_object (Lisp_Object obj)
|
|
4472 {
|
|
4473 if (!obj ||
|
|
4474 !POINTER_TYPE_P (XTYPE (obj)) ||
|
|
4475 pdump_get_entry (XRECORD_LHEADER (obj)))
|
|
4476 return;
|
|
4477
|
|
4478 if (XRECORD_LHEADER_IMPLEMENTATION (obj)->description)
|
|
4479 {
|
|
4480 int me = depth++;
|
|
4481 if (me>65536)
|
|
4482 {
|
|
4483 fprintf (stderr, "Backtrace overflow, loop ?\n");
|
|
4484 abort ();
|
|
4485 }
|
|
4486 backtrace[me].obj = obj;
|
|
4487 backtrace[me].position = 0;
|
|
4488 backtrace[me].offset = 0;
|
|
4489
|
|
4490 pdump_add_entry (pdump_object_table + XRECORD_LHEADER (obj)->type,
|
|
4491 XRECORD_LHEADER (obj),
|
|
4492 XRECORD_LHEADER_IMPLEMENTATION (obj)->static_size ?
|
|
4493 XRECORD_LHEADER_IMPLEMENTATION (obj)->static_size :
|
|
4494 XRECORD_LHEADER_IMPLEMENTATION (obj)->size_in_bytes_method (XRECORD_LHEADER (obj)),
|
|
4495 1,
|
|
4496 1);
|
|
4497 pdump_register_sub (XRECORD_LHEADER (obj),
|
|
4498 XRECORD_LHEADER_IMPLEMENTATION (obj)->description,
|
|
4499 me);
|
|
4500 --depth;
|
|
4501 }
|
|
4502 else
|
|
4503 {
|
|
4504 pdump_alert_undump_object[XRECORD_LHEADER (obj)->type]++;
|
|
4505 fprintf (stderr, "Undumpable object type : %s\n", XRECORD_LHEADER_IMPLEMENTATION (obj)->name);
|
|
4506 pdump_backtrace ();
|
|
4507 }
|
|
4508 }
|
|
4509
|
|
4510 static void
|
|
4511 pdump_register_struct (const void *data, const struct struct_description *sdesc, int count)
|
|
4512 {
|
|
4513 if (data && !pdump_get_entry (data))
|
|
4514 {
|
|
4515 int me = depth++;
|
|
4516 int i;
|
|
4517 if (me>65536)
|
|
4518 {
|
|
4519 fprintf (stderr, "Backtrace overflow, loop ?\n");
|
|
4520 abort ();
|
|
4521 }
|
|
4522 backtrace[me].obj = 0;
|
|
4523 backtrace[me].position = 0;
|
|
4524 backtrace[me].offset = 0;
|
|
4525
|
|
4526 pdump_add_entry (pdump_get_entry_list (sdesc),
|
|
4527 data,
|
|
4528 sdesc->size,
|
|
4529 count,
|
|
4530 0);
|
|
4531 for (i=0; i<count; i++)
|
|
4532 {
|
|
4533 pdump_register_sub (((char *)data) + sdesc->size*i,
|
|
4534 sdesc->description,
|
|
4535 me);
|
|
4536 }
|
|
4537 --depth;
|
|
4538 }
|
|
4539 }
|
|
4540
|
|
4541 static void
|
|
4542 pdump_dump_data (pdump_entry_list_elmt *elmt, const struct lrecord_description *desc)
|
|
4543 {
|
|
4544 size_t size = elmt->size;
|
|
4545 int count = elmt->count;
|
|
4546 if (desc)
|
|
4547 {
|
|
4548 int pos, i;
|
|
4549 void *rdata;
|
|
4550 memcpy (pdump_buf, elmt->obj, size*count);
|
|
4551
|
|
4552 for (i=0; i<count; i++)
|
|
4553 {
|
|
4554 char *cur = ((char *)pdump_buf) + i*size;
|
|
4555 restart:
|
|
4556 for (pos = 0; desc[pos].type != XD_END; pos++)
|
|
4557 {
|
|
4558 rdata = cur + desc[pos].offset;
|
|
4559 switch (desc[pos].type)
|
|
4560 {
|
|
4561 case XD_SPECIFIER_END:
|
|
4562 pos = 0;
|
|
4563 desc = ((const struct Lisp_Specifier *)(elmt->obj))->methods->extra_description;
|
|
4564 goto restart;
|
|
4565 case XD_SIZE_T:
|
|
4566 case XD_INT:
|
|
4567 case XD_LONG:
|
|
4568 case XD_BYTECOUNT:
|
|
4569 break;
|
|
4570 case XD_LO_RESET_NIL:
|
|
4571 {
|
|
4572 EMACS_INT count = desc[pos].data1;
|
|
4573 int i;
|
|
4574 if (XD_IS_INDIRECT (count))
|
|
4575 count = pdump_get_indirect_count (count, desc, elmt->obj);
|
|
4576 for (i=0; i<count; i++)
|
|
4577 ((EMACS_INT *)rdata)[i] = pdump_qnil->save_offset;
|
|
4578 break;
|
|
4579 }
|
|
4580 case XD_INT_RESET:
|
|
4581 {
|
|
4582 EMACS_INT val = desc[pos].data1;
|
|
4583 if (XD_IS_INDIRECT (val))
|
|
4584 val = pdump_get_indirect_count (val, desc, elmt->obj);
|
|
4585 *(int *)rdata = val;
|
|
4586 break;
|
|
4587 }
|
|
4588 case XD_OPAQUE_DATA_PTR:
|
|
4589 case XD_C_STRING:
|
|
4590 case XD_STRUCT_PTR:
|
|
4591 {
|
|
4592 void *ptr = *(void **)rdata;
|
|
4593 if (ptr)
|
|
4594 *(EMACS_INT *)rdata = pdump_get_entry (ptr)->save_offset;
|
|
4595 break;
|
|
4596 }
|
|
4597 case XD_LO_LINK:
|
|
4598 {
|
|
4599 Lisp_Object obj = *(Lisp_Object *)rdata;
|
|
4600 pdump_entry_list_elmt *elmt1;
|
|
4601 for(;;)
|
|
4602 {
|
|
4603 elmt1 = pdump_get_entry (XRECORD_LHEADER(obj));
|
|
4604 if (elmt1)
|
|
4605 break;
|
|
4606 obj = *(Lisp_Object *)(desc[pos].offset + (char *)(XRECORD_LHEADER (obj)));
|
|
4607 }
|
|
4608 *(EMACS_INT *)rdata = elmt1->save_offset;
|
|
4609 break;
|
|
4610 }
|
|
4611 case XD_LISP_OBJECT:
|
|
4612 {
|
|
4613 EMACS_INT count = desc[pos].data1;
|
|
4614 int i;
|
|
4615 if (XD_IS_INDIRECT (count))
|
|
4616 count = pdump_get_indirect_count (count, desc, elmt->obj);
|
|
4617
|
|
4618 for(i=0; i<count; i++)
|
|
4619 {
|
|
4620 Lisp_Object *pobj = ((Lisp_Object *)rdata) + i;
|
|
4621 Lisp_Object dobj = *pobj;
|
|
4622 if (dobj && POINTER_TYPE_P (XTYPE (dobj)))
|
|
4623 *pobj = pdump_get_entry (XRECORD_LHEADER (dobj))->save_offset;
|
|
4624 }
|
|
4625 break;
|
|
4626 }
|
|
4627 case XD_DOC_STRING:
|
|
4628 {
|
|
4629 EMACS_INT str = *(EMACS_INT *)rdata;
|
|
4630 if (str > 0)
|
|
4631 *(EMACS_INT *)rdata = pdump_get_entry ((void *)str)->save_offset;
|
|
4632 break;
|
|
4633 }
|
|
4634 default:
|
|
4635 fprintf (stderr, "Unsupported dump type : %d\n", desc[pos].type);
|
|
4636 abort ();
|
|
4637 };
|
|
4638 }
|
|
4639 }
|
|
4640 }
|
|
4641 write (pdump_fd, desc ? pdump_buf : elmt->obj, size*count);
|
|
4642 if (elmt->is_lrecord && ((size*count) & 3))
|
|
4643 write (pdump_fd, "\0\0\0", 4-((size*count) & 3));
|
|
4644 }
|
|
4645
|
|
4646 static void
|
|
4647 pdump_reloc_one (void *data, EMACS_INT delta, const struct lrecord_description *desc)
|
|
4648 {
|
|
4649 int pos;
|
|
4650 void *rdata;
|
|
4651
|
|
4652 restart:
|
|
4653 for (pos = 0; desc[pos].type != XD_END; pos++)
|
|
4654 {
|
|
4655 rdata = ((char *)data) + desc[pos].offset;
|
|
4656 switch (desc[pos].type) {
|
|
4657 case XD_SPECIFIER_END:
|
|
4658 pos = 0;
|
|
4659 desc = ((const struct Lisp_Specifier *)data)->methods->extra_description;
|
|
4660 goto restart;
|
|
4661 case XD_SIZE_T:
|
|
4662 case XD_INT:
|
|
4663 case XD_LONG:
|
|
4664 case XD_BYTECOUNT:
|
|
4665 case XD_INT_RESET:
|
|
4666 break;
|
|
4667 case XD_OPAQUE_DATA_PTR:
|
|
4668 case XD_C_STRING:
|
|
4669 case XD_STRUCT_PTR:
|
|
4670 case XD_LO_LINK:
|
|
4671 {
|
|
4672 EMACS_INT ptr = *(EMACS_INT *)rdata;
|
|
4673 if (ptr)
|
|
4674 *(EMACS_INT *)rdata = ptr+delta;
|
|
4675 break;
|
|
4676 }
|
|
4677 case XD_LISP_OBJECT:
|
|
4678 case XD_LO_RESET_NIL:
|
|
4679 {
|
|
4680 EMACS_INT count = desc[pos].data1;
|
|
4681 int i;
|
|
4682 if (XD_IS_INDIRECT (count))
|
|
4683 count = pdump_get_indirect_count (count, desc, data);
|
|
4684
|
|
4685 for (i=0; i<count; i++)
|
|
4686 {
|
|
4687 Lisp_Object *pobj = ((Lisp_Object *)rdata) + i;
|
|
4688 Lisp_Object dobj = *pobj;
|
|
4689 if (dobj && POINTER_TYPE_P (XTYPE (dobj)))
|
|
4690 *pobj = dobj + delta;
|
|
4691 }
|
|
4692 break;
|
|
4693 }
|
|
4694 case XD_DOC_STRING:
|
|
4695 {
|
|
4696 EMACS_INT str = *(EMACS_INT *)rdata;
|
|
4697 if (str > 0)
|
|
4698 *(EMACS_INT *)rdata = str + delta;
|
|
4699 break;
|
|
4700 }
|
|
4701 default:
|
|
4702 fprintf (stderr, "Unsupported dump type : %d\n", desc[pos].type);
|
|
4703 abort ();
|
|
4704 };
|
|
4705 }
|
|
4706 }
|
|
4707
|
|
4708 static void
|
|
4709 pdump_allocate_offset (pdump_entry_list_elmt *elmt, const struct lrecord_description *desc)
|
|
4710 {
|
|
4711 size_t size = (elmt->is_lrecord ? (elmt->size + 3) & ~3 : elmt->size)*elmt->count;
|
|
4712 elmt->save_offset = cur_offset;
|
|
4713 if (size>max_size)
|
|
4714 max_size = size;
|
|
4715 cur_offset += size;
|
|
4716 }
|
|
4717
|
|
4718 static void
|
|
4719 pdump_scan_by_alignement (void (*f)(pdump_entry_list_elmt *, const struct lrecord_description *))
|
|
4720 {
|
|
4721 int align, i;
|
|
4722 const struct lrecord_description *idesc;
|
|
4723 pdump_entry_list_elmt *elmt;
|
|
4724 for (align=8; align>=0; align--)
|
|
4725 {
|
|
4726 for (i=0; i<=last_lrecord_type_index_assigned; i++)
|
|
4727 if (pdump_object_table[i].align == align)
|
|
4728 {
|
|
4729 elmt = pdump_object_table[i].first;
|
|
4730 if (!elmt)
|
|
4731 continue;
|
|
4732 idesc = lrecord_implementations_table[i]->description;
|
|
4733 while (elmt)
|
|
4734 {
|
|
4735 f (elmt, idesc);
|
|
4736 elmt = elmt->next;
|
|
4737 }
|
|
4738 }
|
|
4739
|
|
4740 for (i=0; i<pdump_struct_table.count; i++)
|
|
4741 if (pdump_struct_table.list[i].list.align == align) {
|
|
4742 elmt = pdump_struct_table.list[i].list.first;
|
|
4743 idesc = pdump_struct_table.list[i].sdesc->description;
|
|
4744 while (elmt)
|
|
4745 {
|
|
4746 f (elmt, idesc);
|
|
4747 elmt = elmt->next;
|
|
4748 }
|
|
4749 }
|
|
4750
|
|
4751 elmt = pdump_opaque_data_list.first;
|
|
4752 while (elmt)
|
|
4753 {
|
|
4754 if (align_table[elmt->size & 255] == align)
|
|
4755 f (elmt, 0);
|
|
4756 elmt = elmt->next;
|
|
4757 }
|
|
4758 }
|
|
4759 }
|
|
4760
|
|
4761 static void
|
|
4762 pdump_dump_staticvec (void)
|
|
4763 {
|
|
4764 Lisp_Object *reloc = malloc (staticidx*sizeof (Lisp_Object));
|
|
4765 int i;
|
|
4766 write (pdump_fd, staticvec, staticidx*sizeof (Lisp_Object *));
|
|
4767
|
|
4768 for(i=0; i<staticidx; i++)
|
|
4769 {
|
|
4770 Lisp_Object obj = *staticvec[i];
|
|
4771 if (obj && POINTER_TYPE_P (XTYPE (obj)))
|
|
4772 reloc[i] = pdump_get_entry (XRECORD_LHEADER (obj))->save_offset;
|
|
4773 else
|
|
4774 reloc[i] = obj;
|
|
4775 }
|
|
4776 write (pdump_fd, reloc, staticidx*sizeof (Lisp_Object));
|
|
4777 free (reloc);
|
|
4778 }
|
|
4779
|
|
4780 static void
|
|
4781 pdump_dump_structvec (void)
|
|
4782 {
|
|
4783 int i;
|
|
4784 for (i=0; i<dumpstructidx; i++)
|
|
4785 {
|
|
4786 EMACS_INT adr;
|
|
4787 write (pdump_fd, &(dumpstructvec[i].data), sizeof (void *));
|
|
4788 adr = pdump_get_entry (*(void **)(dumpstructvec[i].data))->save_offset;
|
|
4789 write (pdump_fd, &adr, sizeof (adr));
|
|
4790 }
|
|
4791 }
|
|
4792
|
|
4793 static void
|
|
4794 pdump_dump_itable (void)
|
|
4795 {
|
|
4796 write (pdump_fd, lrecord_implementations_table, sizeof (lrecord_implementations_table));
|
|
4797 }
|
|
4798
|
|
4799 static void
|
|
4800 pdump_dump_rtables (void)
|
|
4801 {
|
|
4802 int i, j;
|
|
4803 pdump_entry_list_elmt *elmt;
|
|
4804 pdump_reloc_table rt;
|
|
4805
|
|
4806 for (i=0; i<=last_lrecord_type_index_assigned; i++)
|
|
4807 {
|
|
4808 elmt = pdump_object_table[i].first;
|
|
4809 if(!elmt)
|
|
4810 continue;
|
|
4811 rt.desc = lrecord_implementations_table[i]->description;
|
|
4812 rt.count = pdump_object_table[i].count;
|
|
4813 write (pdump_fd, &rt, sizeof (rt));
|
|
4814 while (elmt)
|
|
4815 {
|
|
4816 EMACS_INT rdata = pdump_get_entry (XRECORD_LHEADER (elmt->obj))->save_offset;
|
|
4817 write (pdump_fd, &rdata, sizeof (rdata));
|
|
4818 elmt = elmt->next;
|
|
4819 }
|
|
4820 }
|
|
4821
|
|
4822 rt.desc = 0;
|
|
4823 rt.count = 0;
|
|
4824 write (pdump_fd, &rt, sizeof (rt));
|
|
4825
|
|
4826 for (i=0; i<pdump_struct_table.count; i++)
|
|
4827 {
|
|
4828 elmt = pdump_struct_table.list[i].list.first;
|
|
4829 rt.desc = pdump_struct_table.list[i].sdesc->description;
|
|
4830 rt.count = pdump_struct_table.list[i].list.count;
|
|
4831 write (pdump_fd, &rt, sizeof (rt));
|
|
4832 while (elmt)
|
|
4833 {
|
|
4834 EMACS_INT rdata = pdump_get_entry (XRECORD_LHEADER (elmt->obj))->save_offset;
|
|
4835 for (j=0; j<elmt->count; j++) {
|
|
4836 write (pdump_fd, &rdata, sizeof (rdata));
|
|
4837 rdata += elmt->size;
|
|
4838 }
|
|
4839 elmt = elmt->next;
|
|
4840 }
|
|
4841 }
|
|
4842 rt.desc = 0;
|
|
4843 rt.count = 0;
|
|
4844 write (pdump_fd, &rt, sizeof (rt));
|
|
4845 }
|
|
4846
|
|
4847 static void
|
|
4848 pdump_dump_wired (void)
|
|
4849 {
|
|
4850 EMACS_INT count = pdump_wireidx + pdump_wireidx_list;
|
|
4851 int i;
|
|
4852
|
|
4853 write (pdump_fd, &count, sizeof (count));
|
|
4854
|
|
4855 for (i=0; i<pdump_wireidx; i++)
|
|
4856 {
|
|
4857 Lisp_Object obj = pdump_get_entry (XRECORD_LHEADER (*(pdump_wirevec[i])))->save_offset;
|
|
4858 write (pdump_fd, &pdump_wirevec[i], sizeof (pdump_wirevec[i]));
|
|
4859 write (pdump_fd, &obj, sizeof (obj));
|
|
4860 }
|
|
4861
|
|
4862 for (i=0; i<pdump_wireidx_list; i++)
|
|
4863 {
|
|
4864 Lisp_Object obj = *(pdump_wirevec_list[i]);
|
|
4865 pdump_entry_list_elmt *elmt;
|
|
4866 EMACS_INT res;
|
|
4867
|
|
4868 for(;;)
|
|
4869 {
|
|
4870 const struct lrecord_description *desc;
|
|
4871 int pos;
|
|
4872 elmt = pdump_get_entry (XRECORD_LHEADER (obj));
|
|
4873 if (elmt)
|
|
4874 break;
|
|
4875 desc = XRECORD_LHEADER_IMPLEMENTATION (obj)->description;
|
|
4876 for (pos = 0; desc[pos].type != XD_LO_LINK; pos++)
|
|
4877 if (desc[pos].type == XD_END)
|
|
4878 abort ();
|
|
4879
|
|
4880 obj = *(Lisp_Object *)(desc[pos].offset + (char *)(XRECORD_LHEADER (obj)));
|
|
4881 }
|
|
4882 res = elmt->save_offset;
|
|
4883
|
|
4884 write (pdump_fd, &pdump_wirevec_list[i], sizeof (pdump_wirevec_list[i]));
|
|
4885 write (pdump_fd, &res, sizeof (res));
|
|
4886 }
|
|
4887 }
|
|
4888
|
|
4889 void
|
|
4890 pdump (void)
|
|
4891 {
|
|
4892 int i;
|
|
4893 Lisp_Object t_console, t_device, t_frame;
|
|
4894 int none;
|
|
4895 dump_header hd;
|
|
4896
|
|
4897 /* These appear in a DEFVAR_LISP, which does a staticpro() */
|
|
4898 t_console = Vterminal_console;
|
|
4899 t_frame = Vterminal_frame;
|
|
4900 t_device = Vterminal_device;
|
|
4901
|
|
4902 Vterminal_console = Qnil;
|
|
4903 Vterminal_frame = Qnil;
|
|
4904 Vterminal_device = Qnil;
|
|
4905
|
|
4906 pdump_hash = malloc (PDUMP_HASHSIZE*sizeof (pdump_entry_list_elmt *));
|
|
4907 memset (pdump_hash, 0, PDUMP_HASHSIZE*sizeof (pdump_entry_list_elmt *));
|
|
4908
|
|
4909 for (i=0; i<=last_lrecord_type_index_assigned; i++)
|
|
4910 {
|
|
4911 pdump_object_table[i].first = 0;
|
|
4912 pdump_object_table[i].align = 8;
|
|
4913 pdump_object_table[i].count = 0;
|
|
4914 pdump_alert_undump_object[i] = 0;
|
|
4915 }
|
|
4916 pdump_struct_table.count = 0;
|
|
4917 pdump_struct_table.size = -1;
|
|
4918
|
|
4919 pdump_opaque_data_list.first = 0;
|
|
4920 pdump_opaque_data_list.align = 8;
|
|
4921 pdump_opaque_data_list.count = 0;
|
|
4922 depth = 0;
|
|
4923
|
|
4924 for (i=0; i<staticidx; i++)
|
|
4925 pdump_register_object (*staticvec[i]);
|
|
4926 for (i=0; i<pdump_wireidx; i++)
|
|
4927 pdump_register_object (*pdump_wirevec[i]);
|
|
4928
|
|
4929 none = 1;
|
|
4930 for(i=0;i<=last_lrecord_type_index_assigned;i++)
|
|
4931 if (pdump_alert_undump_object[i])
|
|
4932 {
|
|
4933 if (none)
|
|
4934 printf ("Undumpable types list :\n");
|
|
4935 none = 0;
|
|
4936 printf (" - %s (%d)\n", lrecord_implementations_table[i]->name, pdump_alert_undump_object[i]);
|
|
4937 }
|
|
4938 if (!none)
|
|
4939 return;
|
|
4940
|
|
4941 for (i=0; i<dumpstructidx; i++)
|
|
4942 pdump_register_struct (*(void **)(dumpstructvec[i].data), dumpstructvec[i].desc, 1);
|
|
4943
|
|
4944 memcpy (hd.signature, "XEmacsDP", 8);
|
|
4945 hd.reloc_address = 0;
|
|
4946 hd.nb_staticpro = staticidx;
|
|
4947 hd.nb_structdmp = dumpstructidx;
|
|
4948 hd.last_type = last_lrecord_type_index_assigned;
|
|
4949
|
|
4950 cur_offset = 256;
|
|
4951 max_size = 0;
|
|
4952
|
|
4953 pdump_scan_by_alignement (pdump_allocate_offset);
|
|
4954 pdump_qnil = pdump_get_entry (XRECORD_LHEADER (Qnil));
|
|
4955
|
|
4956 pdump_buf = malloc (max_size);
|
|
4957 pdump_fd = open ("xemacs.dmp", O_WRONLY|O_CREAT|O_TRUNC, 0666);
|
|
4958 hd.stab_offset = (cur_offset + 3) & ~3;
|
|
4959
|
|
4960 write (pdump_fd, &hd, sizeof (hd));
|
|
4961 lseek (pdump_fd, 256, SEEK_SET);
|
|
4962
|
|
4963 pdump_scan_by_alignement (pdump_dump_data);
|
|
4964
|
|
4965 lseek (pdump_fd, hd.stab_offset, SEEK_SET);
|
|
4966
|
|
4967 pdump_dump_staticvec ();
|
|
4968 pdump_dump_structvec ();
|
|
4969 pdump_dump_itable ();
|
|
4970 pdump_dump_rtables ();
|
|
4971 pdump_dump_wired ();
|
|
4972
|
|
4973 close (pdump_fd);
|
|
4974 free (pdump_buf);
|
|
4975
|
|
4976 free (pdump_hash);
|
|
4977
|
|
4978 Vterminal_console = t_console;
|
|
4979 Vterminal_frame = t_frame;
|
|
4980 Vterminal_device = t_device;
|
|
4981 }
|
|
4982
|
|
4983 int
|
|
4984 pdump_load (void)
|
|
4985 {
|
|
4986 size_t length;
|
|
4987 int i;
|
|
4988 char *p;
|
|
4989 EMACS_INT delta;
|
|
4990 EMACS_INT count;
|
|
4991
|
|
4992 pdump_start = pdump_end = 0;
|
|
4993
|
|
4994 pdump_fd = open ("xemacs.dmp", O_RDONLY);
|
|
4995 if (pdump_fd<0)
|
|
4996 return 0;
|
|
4997
|
|
4998 length = lseek (pdump_fd, 0, SEEK_END);
|
|
4999 lseek (pdump_fd, 0, SEEK_SET);
|
|
5000
|
|
5001 #ifdef HAVE_MMAP
|
|
5002 pdump_start = mmap (0, length, PROT_READ|PROT_WRITE, MAP_PRIVATE, pdump_fd, 0);
|
|
5003 if (pdump_start == MAP_FAILED)
|
|
5004 pdump_start = 0;
|
|
5005 #endif
|
|
5006
|
|
5007 if (!pdump_start)
|
|
5008 {
|
|
5009 pdump_start = (void *)((((unsigned long)(malloc(length+255))) + 255) & ~255);
|
|
5010 read(pdump_fd, pdump_start, length);
|
|
5011 }
|
|
5012
|
|
5013 close (pdump_fd);
|
|
5014
|
|
5015 pdump_end = pdump_start + length;
|
|
5016
|
|
5017 staticidx = ((dump_header *)(pdump_start))->nb_staticpro;
|
|
5018 last_lrecord_type_index_assigned = ((dump_header *)(pdump_start))->last_type;
|
|
5019 delta = ((EMACS_INT)pdump_start) - ((dump_header *)pdump_start)->reloc_address;
|
|
5020 p = pdump_start + ((dump_header *)pdump_start)->stab_offset;
|
|
5021
|
|
5022 /* Put back the staticvec in place */
|
|
5023 memcpy (staticvec, p, staticidx*sizeof (Lisp_Object *));
|
|
5024 p += staticidx*sizeof (Lisp_Object *);
|
|
5025 for (i=0; i<staticidx; i++)
|
|
5026 {
|
|
5027 Lisp_Object obj = *(Lisp_Object *)p;
|
|
5028 p += sizeof (Lisp_Object);
|
|
5029 if (obj && POINTER_TYPE_P (XTYPE (obj)))
|
|
5030 obj += delta;
|
|
5031 *staticvec[i] = obj;
|
|
5032 }
|
|
5033
|
|
5034 /* Put back the dumpstructs */
|
|
5035 for (i=0; i<((dump_header *)pdump_start)->nb_structdmp; i++)
|
|
5036 {
|
|
5037 void **adr = *(void **)p;
|
|
5038 p += sizeof (void *);
|
|
5039 *adr = (void *)((*(EMACS_INT *)p) + delta);
|
|
5040 p += sizeof (EMACS_INT);
|
|
5041 }
|
|
5042
|
|
5043 /* Put back the lrecord_implementations_table */
|
|
5044 memcpy (lrecord_implementations_table, p, sizeof (lrecord_implementations_table));
|
|
5045 p += sizeof (lrecord_implementations_table);
|
|
5046
|
|
5047 /* Give back their numbers to the lrecord implementations */
|
|
5048 for (i=0; i<sizeof(lrecord_implementations_table)/sizeof(lrecord_implementations_table[0]); i++)
|
|
5049 if (lrecord_implementations_table[i])
|
|
5050 {
|
|
5051 *(lrecord_implementations_table[i]->lrecord_type_index) = i;
|
|
5052 last_lrecord_type_index_assigned = i;
|
|
5053 }
|
|
5054
|
|
5055 /* Do the relocations */
|
|
5056 pdump_rt_list = p;
|
|
5057 count = 2;
|
|
5058 for(;;)
|
|
5059 {
|
|
5060 pdump_reloc_table *rt = (pdump_reloc_table *)p;
|
|
5061 p += sizeof (pdump_reloc_table);
|
|
5062 if (rt->desc) {
|
|
5063 for (i=0; i<rt->count; i++)
|
|
5064 {
|
|
5065 EMACS_INT adr = delta + *(EMACS_INT *)p;
|
|
5066 *(EMACS_INT *)p = adr;
|
|
5067 pdump_reloc_one ((void *)adr, delta, rt->desc);
|
|
5068 p += sizeof (EMACS_INT);
|
|
5069 }
|
|
5070 } else
|
|
5071 if(!(--count))
|
|
5072 break;
|
|
5073 }
|
|
5074
|
|
5075 /* Put the pdump_wire variables in place */
|
|
5076 count = *(EMACS_INT *)p;
|
|
5077 p += sizeof(EMACS_INT);
|
|
5078
|
|
5079 for (i=0; i<count; i++)
|
|
5080 {
|
|
5081 Lisp_Object *var, obj;
|
|
5082 var = *(Lisp_Object **)p;
|
|
5083 p += sizeof (Lisp_Object *);
|
|
5084
|
|
5085 obj = *(Lisp_Object *)p;
|
|
5086 p += sizeof (Lisp_Object);
|
|
5087
|
|
5088 if (obj && POINTER_TYPE_P (XTYPE (obj)))
|
|
5089 obj += delta;
|
|
5090 *var = obj;
|
|
5091 }
|
|
5092
|
|
5093 /* Final cleanups */
|
|
5094 /* reorganize hash tables */
|
|
5095 p = pdump_rt_list;
|
|
5096 for(;;)
|
|
5097 {
|
|
5098 pdump_reloc_table *rt = (pdump_reloc_table *)p;
|
|
5099 p += sizeof (pdump_reloc_table);
|
|
5100 if (!rt->desc)
|
|
5101 break;
|
|
5102 if (rt->desc == hash_table_description)
|
|
5103 {
|
|
5104 for (i=0; i<rt->count; i++)
|
|
5105 {
|
|
5106 struct Lisp_Hash_Table *ht = XHASH_TABLE (*(EMACS_INT *)p);
|
|
5107 reorganize_hash_table (ht);
|
|
5108 p += sizeof (EMACS_INT);
|
|
5109 }
|
|
5110 break;
|
|
5111 } else
|
|
5112 p += sizeof (EMACS_INT)*rt->count;
|
|
5113 }
|
|
5114 return 1;
|
|
5115 }
|
|
5116
|
|
5117 #endif
|