428
+ − 1 /* Extended regular expression matching and search library,
+ − 2 version 0.12, extended for XEmacs.
+ − 3 (Implements POSIX draft P10003.2/D11.2, except for
+ − 4 internationalization features.)
+ − 5
+ − 6 Copyright (C) 1993, 1994, 1995 Free Software Foundation, Inc.
+ − 7 Copyright (C) 1995 Sun Microsystems, Inc.
1333
+ − 8 Copyright (C) 1995, 2001, 2002, 2003 Ben Wing.
428
+ − 9
+ − 10 This program is free software; you can redistribute it and/or modify
+ − 11 it under the terms of the GNU General Public License as published by
+ − 12 the Free Software Foundation; either version 2, or (at your option)
+ − 13 any later version.
+ − 14
+ − 15 This program is distributed in the hope that it will be useful,
+ − 16 but WITHOUT ANY WARRANTY; without even the implied warranty of
+ − 17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ − 18 GNU General Public License for more details.
+ − 19
+ − 20 You should have received a copy of the GNU General Public License
+ − 21 along with this program; see the file COPYING. If not, write to
+ − 22 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ − 23 Boston, MA 02111-1307, USA. */
+ − 24
+ − 25 /* Synched up with: FSF 19.29. */
+ − 26
+ − 27 #ifdef HAVE_CONFIG_H
+ − 28 #include <config.h>
+ − 29 #endif
+ − 30
+ − 31 #ifndef _GNU_SOURCE
+ − 32 #define _GNU_SOURCE 1
+ − 33 #endif
+ − 34
+ − 35 /* We assume non-Mule if emacs isn't defined. */
+ − 36 #ifndef emacs
+ − 37 #undef MULE
+ − 38 #endif
+ − 39
771
+ − 40 /* XEmacs addition */
+ − 41 #ifdef REL_ALLOC
+ − 42 #define REGEX_REL_ALLOC /* may be undefined below */
+ − 43 #endif
+ − 44
428
+ − 45 /* XEmacs: define this to add in a speedup for patterns anchored at
+ − 46 the beginning of a line. Keep the ifdefs so that it's easier to
+ − 47 tell where/why this code has diverged from v19. */
+ − 48 #define REGEX_BEGLINE_CHECK
+ − 49
+ − 50 /* XEmacs: the current mmap-based ralloc handles small blocks very
+ − 51 poorly, so we disable it here. */
+ − 52
771
+ − 53 #if defined (HAVE_MMAP) || defined (DOUG_LEA_MALLOC)
+ − 54 # undef REGEX_REL_ALLOC
428
+ − 55 #endif
+ − 56
+ − 57 /* The `emacs' switch turns on certain matching commands
+ − 58 that make sense only in Emacs. */
+ − 59 #ifdef emacs
+ − 60
+ − 61 #include "lisp.h"
+ − 62 #include "buffer.h"
+ − 63 #include "syntax.h"
+ − 64
+ − 65 #if (defined (DEBUG_XEMACS) && !defined (DEBUG))
+ − 66 #define DEBUG
+ − 67 #endif
+ − 68
867
+ − 69 #define RE_TRANSLATE_1(ch) TRT_TABLE_OF (translate, (Ichar) ch)
446
+ − 70 #define TRANSLATE_P(tr) (!NILP (tr))
428
+ − 71
826
+ − 72 /* Converts the pointer to the char to BEG-based offset from the start. */
+ − 73 #define PTR_TO_OFFSET(d) (MATCHING_IN_FIRST_STRING \
+ − 74 ? (d) - string1 : (d) - (string2 - size1))
+ − 75
428
+ − 76 #else /* not emacs */
+ − 77
2367
+ − 78 #include <stdlib.h>
+ − 79 #include <sys/types.h>
+ − 80 #include <stddef.h> /* needed for ptrdiff_t under Solaris */
+ − 81 #include <string.h>
+ − 82
2286
+ − 83 #include "compiler.h" /* Get compiler-specific definitions like UNUSED */
+ − 84
2500
+ − 85 #define ABORT abort
+ − 86
428
+ − 87 /* If we are not linking with Emacs proper,
+ − 88 we can't use the relocating allocator
+ − 89 even if config.h says that we can. */
771
+ − 90 #undef REGEX_REL_ALLOC
428
+ − 91
544
+ − 92 /* defined in lisp.h */
+ − 93 #ifdef REGEX_MALLOC
+ − 94 #ifndef DECLARE_NOTHING
+ − 95 #define DECLARE_NOTHING struct nosuchstruct
+ − 96 #endif
+ − 97 #endif
+ − 98
867
+ − 99 #define itext_ichar(str) ((Ichar) (str)[0])
+ − 100 #define itext_ichar_fmt(str, fmt, object) ((Ichar) (str)[0])
+ − 101 #define itext_ichar_ascii_fmt(str, fmt, object) ((Ichar) (str)[0])
428
+ − 102
+ − 103 #if (LONGBITS > INTBITS)
+ − 104 # define EMACS_INT long
+ − 105 #else
+ − 106 # define EMACS_INT int
+ − 107 #endif
+ − 108
867
+ − 109 typedef int Ichar;
+ − 110
+ − 111 #define INC_IBYTEPTR(p) ((p)++)
+ − 112 #define INC_IBYTEPTR_FMT(p, fmt) ((p)++)
+ − 113 #define DEC_IBYTEPTR(p) ((p)--)
+ − 114 #define DEC_IBYTEPTR_FMT(p, fmt) ((p)--)
+ − 115 #define itext_ichar_len(ptr) 1
+ − 116 #define itext_ichar_len_fmt(ptr, fmt) 1
428
+ − 117
+ − 118 /* Define the syntax stuff for \<, \>, etc. */
+ − 119
+ − 120 /* This must be nonzero for the wordchar and notwordchar pattern
+ − 121 commands in re_match_2. */
+ − 122 #ifndef Sword
+ − 123 #define Sword 1
+ − 124 #endif
+ − 125
+ − 126 #ifdef SYNTAX_TABLE
+ − 127
+ − 128 extern char *re_syntax_table;
+ − 129
+ − 130 #else /* not SYNTAX_TABLE */
+ − 131
+ − 132 /* How many characters in the character set. */
+ − 133 #define CHAR_SET_SIZE 256
+ − 134
+ − 135 static char re_syntax_table[CHAR_SET_SIZE];
+ − 136
+ − 137 static void
+ − 138 init_syntax_once (void)
+ − 139 {
+ − 140 static int done = 0;
+ − 141
+ − 142 if (!done)
+ − 143 {
442
+ − 144 const char *word_syntax_chars =
428
+ − 145 "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789_";
+ − 146
+ − 147 memset (re_syntax_table, 0, sizeof (re_syntax_table));
+ − 148
+ − 149 while (*word_syntax_chars)
647
+ − 150 re_syntax_table[(unsigned int) (*word_syntax_chars++)] = Sword;
428
+ − 151
+ − 152 done = 1;
+ − 153 }
+ − 154 }
+ − 155
446
+ − 156 #endif /* SYNTAX_TABLE */
428
+ − 157
826
+ − 158 #define SYNTAX(ignored, c) re_syntax_table[c]
460
+ − 159 #undef SYNTAX_FROM_CACHE
826
+ − 160 #define SYNTAX_FROM_CACHE SYNTAX
+ − 161
+ − 162 #define RE_TRANSLATE_1(c) translate[(unsigned char) (c)]
446
+ − 163 #define TRANSLATE_P(tr) tr
+ − 164
+ − 165 #endif /* emacs */
428
+ − 166
2201
+ − 167 /* This is for other GNU distributions with internationalized messages. */
+ − 168 #if defined (I18N3) && (defined (HAVE_LIBINTL_H) || defined (_LIBC))
+ − 169 # include <libintl.h>
+ − 170 #else
+ − 171 # define gettext(msgid) (msgid)
+ − 172 #endif
+ − 173
428
+ − 174 /* Under XEmacs, this is needed because we don't define it elsewhere. */
+ − 175 #ifdef SWITCH_ENUM_BUG
+ − 176 #define SWITCH_ENUM_CAST(x) ((int)(x))
+ − 177 #else
+ − 178 #define SWITCH_ENUM_CAST(x) (x)
+ − 179 #endif
+ − 180
+ − 181
+ − 182 /* Get the interface, including the syntax bits. */
+ − 183 #include "regex.h"
+ − 184
+ − 185 /* isalpha etc. are used for the character classes. */
+ − 186 #include <ctype.h>
+ − 187
+ − 188 /* Jim Meyering writes:
+ − 189
+ − 190 "... Some ctype macros are valid only for character codes that
+ − 191 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
+ − 192 using /bin/cc or gcc but without giving an ansi option). So, all
+ − 193 ctype uses should be through macros like ISPRINT... If
+ − 194 STDC_HEADERS is defined, then autoconf has verified that the ctype
+ − 195 macros don't need to be guarded with references to isascii. ...
+ − 196 Defining isascii to 1 should let any compiler worth its salt
+ − 197 eliminate the && through constant folding." */
+ − 198
+ − 199 #if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII))
+ − 200 #define ISASCII_1(c) 1
+ − 201 #else
+ − 202 #define ISASCII_1(c) isascii(c)
+ − 203 #endif
+ − 204
+ − 205 #ifdef MULE
+ − 206 /* The IS*() macros can be passed any character, including an extended
+ − 207 one. We need to make sure there are no crashes, which would occur
+ − 208 otherwise due to out-of-bounds array references. */
+ − 209 #define ISASCII(c) (((EMACS_UINT) (c)) < 0x100 && ISASCII_1 (c))
+ − 210 #else
+ − 211 #define ISASCII(c) ISASCII_1 (c)
+ − 212 #endif /* MULE */
+ − 213
+ − 214 #ifdef isblank
+ − 215 #define ISBLANK(c) (ISASCII (c) && isblank (c))
+ − 216 #else
+ − 217 #define ISBLANK(c) ((c) == ' ' || (c) == '\t')
+ − 218 #endif
+ − 219 #ifdef isgraph
+ − 220 #define ISGRAPH(c) (ISASCII (c) && isgraph (c))
+ − 221 #else
+ − 222 #define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
+ − 223 #endif
+ − 224
+ − 225 #define ISPRINT(c) (ISASCII (c) && isprint (c))
+ − 226 #define ISDIGIT(c) (ISASCII (c) && isdigit (c))
+ − 227 #define ISALNUM(c) (ISASCII (c) && isalnum (c))
+ − 228 #define ISALPHA(c) (ISASCII (c) && isalpha (c))
+ − 229 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
+ − 230 #define ISLOWER(c) (ISASCII (c) && islower (c))
+ − 231 #define ISPUNCT(c) (ISASCII (c) && ispunct (c))
+ − 232 #define ISSPACE(c) (ISASCII (c) && isspace (c))
+ − 233 #define ISUPPER(c) (ISASCII (c) && isupper (c))
+ − 234 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
+ − 235
+ − 236 #ifndef NULL
+ − 237 #define NULL (void *)0
+ − 238 #endif
+ − 239
+ − 240 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
+ − 241 since ours (we hope) works properly with all combinations of
+ − 242 machines, compilers, `char' and `unsigned char' argument types.
+ − 243 (Per Bothner suggested the basic approach.) */
+ − 244 #undef SIGN_EXTEND_CHAR
+ − 245 #if __STDC__
+ − 246 #define SIGN_EXTEND_CHAR(c) ((signed char) (c))
+ − 247 #else /* not __STDC__ */
+ − 248 /* As in Harbison and Steele. */
+ − 249 #define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
+ − 250 #endif
+ − 251
+ − 252 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
+ − 253 use `alloca' instead of `malloc'. This is because using malloc in
+ − 254 re_search* or re_match* could cause memory leaks when C-g is used in
+ − 255 Emacs; also, malloc is slower and causes storage fragmentation. On
+ − 256 the other hand, malloc is more portable, and easier to debug.
+ − 257
+ − 258 Because we sometimes use alloca, some routines have to be macros,
+ − 259 not functions -- `alloca'-allocated space disappears at the end of the
+ − 260 function it is called in. */
+ − 261
1333
+ − 262 #ifndef emacs
+ − 263 #define ALLOCA alloca
+ − 264 #define xmalloc malloc
+ − 265 #define xrealloc realloc
1726
+ − 266 #define xfree(x,type) free (x)
1333
+ − 267 #endif
+ − 268
+ − 269 #ifdef emacs
+ − 270 #define ALLOCA_GARBAGE_COLLECT() \
+ − 271 do \
+ − 272 { \
+ − 273 if (need_to_check_c_alloca) \
+ − 274 xemacs_c_alloca (0); \
+ − 275 } while (0)
+ − 276 #elif defined (C_ALLOCA)
+ − 277 #define ALLOCA_GARBAGE_COLLECT() alloca (0)
+ − 278 #else
+ − 279 #define ALLOCA_GARBAGE_COLLECT()
+ − 280 #endif
+ − 281
+ − 282 #ifndef emacs
+ − 283 /* So we can use just it to conditionalize on */
+ − 284 #undef ERROR_CHECK_MALLOC
+ − 285 #endif
+ − 286
+ − 287 #ifdef ERROR_CHECK_MALLOC
+ − 288 /* When REL_ALLOC, malloc() is problematic because it could potentially
+ − 289 cause all rel-alloc()ed data -- including buffer text -- to be relocated.
+ − 290 We deal with this by checking for such relocation whenever we have
+ − 291 executed a statement that may call malloc() -- or alloca(), which may
+ − 292 end up calling malloc() in some circumstances -- and recomputing all
+ − 293 of our string pointers in re_match_2_internal() and re_search_2().
+ − 294 However, if malloc() or alloca() happens and we don't know about it,
+ − 295 we could still be screwed. So we set up a system where we indicate all
+ − 296 places where we are prepared for malloc() or alloca(), and in any
+ − 297 other circumstances, calls to those functions (from anywhere inside of
2500
+ − 298 XEmacs!) will ABORT(). We do this even when REL_ALLOC is not defined
1333
+ − 299 so that we catch these problems sooner, since many developers and beta
+ − 300 testers will not be running with REL_ALLOC. */
+ − 301 int regex_malloc_disallowed;
+ − 302 #define BEGIN_REGEX_MALLOC_OK() regex_malloc_disallowed = 0
+ − 303 #define END_REGEX_MALLOC_OK() regex_malloc_disallowed = 1
+ − 304 #define UNBIND_REGEX_MALLOC_CHECK() unbind_to (depth)
+ − 305 #else
+ − 306 #define BEGIN_REGEX_MALLOC_OK()
+ − 307 #define END_REGEX_MALLOC_OK()
+ − 308 #define UNBIND_REGEX_MALLOC_CHECK()
+ − 309 #endif
+ − 310
+ − 311
428
+ − 312 #ifdef REGEX_MALLOC
+ − 313
1333
+ − 314 #define REGEX_ALLOCATE xmalloc
+ − 315 #define REGEX_REALLOCATE(source, osize, nsize) xrealloc (source, nsize)
+ − 316 #define REGEX_FREE xfree
428
+ − 317
+ − 318 #else /* not REGEX_MALLOC */
+ − 319
+ − 320 /* Emacs already defines alloca, sometimes. */
+ − 321 #ifndef alloca
+ − 322
+ − 323 /* Make alloca work the best possible way. */
+ − 324 #ifdef __GNUC__
+ − 325 #define alloca __builtin_alloca
771
+ − 326 #elif defined (__DECC) /* XEmacs: added next 3 lines, similar to config.h.in */
+ − 327 #include <alloca.h>
+ − 328 #pragma intrinsic(alloca)
428
+ − 329 #else /* not __GNUC__ */
+ − 330 #if HAVE_ALLOCA_H
+ − 331 #include <alloca.h>
+ − 332 #else /* not __GNUC__ or HAVE_ALLOCA_H */
+ − 333 #ifndef _AIX /* Already did AIX, up at the top. */
444
+ − 334 void *alloca ();
428
+ − 335 #endif /* not _AIX */
446
+ − 336 #endif /* HAVE_ALLOCA_H */
+ − 337 #endif /* __GNUC__ */
428
+ − 338
+ − 339 #endif /* not alloca */
+ − 340
1333
+ − 341 #define REGEX_ALLOCATE ALLOCA
428
+ − 342
2367
+ − 343 /* !!#### Needs review */
428
+ − 344 /* Assumes a `char *destination' variable. */
+ − 345 #define REGEX_REALLOCATE(source, osize, nsize) \
1333
+ − 346 (destination = (char *) ALLOCA (nsize), \
428
+ − 347 memmove (destination, source, osize), \
+ − 348 destination)
+ − 349
1726
+ − 350 /* No need to do anything to free, after alloca.
+ − 351 Do nothing! But inhibit gcc warning. */
+ − 352 #define REGEX_FREE(arg,type) ((void)0)
428
+ − 353
446
+ − 354 #endif /* REGEX_MALLOC */
428
+ − 355
+ − 356 /* Define how to allocate the failure stack. */
+ − 357
771
+ − 358 #ifdef REGEX_REL_ALLOC
428
+ − 359 #define REGEX_ALLOCATE_STACK(size) \
1346
+ − 360 r_alloc ((unsigned char **) &failure_stack_ptr, (size))
428
+ − 361 #define REGEX_REALLOCATE_STACK(source, osize, nsize) \
1346
+ − 362 r_re_alloc ((unsigned char **) &failure_stack_ptr, (nsize))
428
+ − 363 #define REGEX_FREE_STACK(ptr) \
1346
+ − 364 r_alloc_free ((unsigned char **) &failure_stack_ptr)
428
+ − 365
771
+ − 366 #else /* not REGEX_REL_ALLOC */
428
+ − 367
+ − 368 #ifdef REGEX_MALLOC
+ − 369
1333
+ − 370 #define REGEX_ALLOCATE_STACK xmalloc
+ − 371 #define REGEX_REALLOCATE_STACK(source, osize, nsize) xrealloc (source, nsize)
1726
+ − 372 #define REGEX_FREE_STACK(arg) xfree (arg, fail_stack_elt_t *)
428
+ − 373
+ − 374 #else /* not REGEX_MALLOC */
+ − 375
1333
+ − 376 #define REGEX_ALLOCATE_STACK ALLOCA
428
+ − 377
+ − 378 #define REGEX_REALLOCATE_STACK(source, osize, nsize) \
+ − 379 REGEX_REALLOCATE (source, osize, nsize)
+ − 380 /* No need to explicitly free anything. */
+ − 381 #define REGEX_FREE_STACK(arg)
+ − 382
446
+ − 383 #endif /* REGEX_MALLOC */
771
+ − 384 #endif /* REGEX_REL_ALLOC */
428
+ − 385
+ − 386
+ − 387 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
+ − 388 `string1' or just past its end. This works if PTR is NULL, which is
+ − 389 a good thing. */
+ − 390 #define FIRST_STRING_P(ptr) \
+ − 391 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
+ − 392
+ − 393 /* (Re)Allocate N items of type T using malloc, or fail. */
1333
+ − 394 #define TALLOC(n, t) ((t *) xmalloc ((n) * sizeof (t)))
+ − 395 #define RETALLOC(addr, n, t) ((addr) = (t *) xrealloc (addr, (n) * sizeof (t)))
428
+ − 396 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
+ − 397
+ − 398 #define BYTEWIDTH 8 /* In bits. */
+ − 399
434
+ − 400 #define STREQ(s1, s2) (strcmp (s1, s2) == 0)
428
+ − 401
+ − 402 #undef MAX
+ − 403 #undef MIN
+ − 404 #define MAX(a, b) ((a) > (b) ? (a) : (b))
+ − 405 #define MIN(a, b) ((a) < (b) ? (a) : (b))
+ − 406
446
+ − 407 /* Type of source-pattern and string chars. */
+ − 408 typedef const unsigned char re_char;
+ − 409
460
+ − 410 typedef char re_bool;
428
+ − 411 #define false 0
+ − 412 #define true 1
+ − 413
+ − 414
1346
+ − 415 #ifdef emacs
+ − 416
+ − 417 #ifdef MULE
+ − 418
+ − 419 Lisp_Object Vthe_lisp_rangetab;
+ − 420
+ − 421 void
+ − 422 vars_of_regex (void)
+ − 423 {
2421
+ − 424 Vthe_lisp_rangetab = Fmake_range_table (Qstart_closed_end_closed);
1346
+ − 425 staticpro (&Vthe_lisp_rangetab);
+ − 426 }
+ − 427
+ − 428 #else /* not MULE */
+ − 429
+ − 430 void
+ − 431 vars_of_regex (void)
+ − 432 {
+ − 433 }
+ − 434
+ − 435 #endif /* MULE */
+ − 436
+ − 437 /* Convert an offset from the start of the logical text string formed by
+ − 438 concatenating the two strings together into a character position in the
+ − 439 Lisp buffer or string that the text represents. Knows that
+ − 440 when handling buffer text, the "string" we're passed in is always
+ − 441 BEGV - ZV. */
+ − 442
+ − 443 static Charxpos
+ − 444 offset_to_charxpos (Lisp_Object lispobj, int off)
+ − 445 {
+ − 446 if (STRINGP (lispobj))
+ − 447 return string_index_byte_to_char (lispobj, off);
+ − 448 else if (BUFFERP (lispobj))
+ − 449 return bytebpos_to_charbpos (XBUFFER (lispobj),
+ − 450 off + BYTE_BUF_BEGV (XBUFFER (lispobj)));
+ − 451 else
+ − 452 return 0;
+ − 453 }
+ − 454
+ − 455 #ifdef REL_ALLOC
+ − 456
+ − 457 /* STRING1 is the value of STRING1 given to re_match_2(). LISPOBJ is
+ − 458 the Lisp object (if any) from which the string is taken. If LISPOBJ
+ − 459 is a buffer, return a relocation offset to be added to all pointers to
+ − 460 string data so that they will be accurate again, after an allocation or
+ − 461 reallocation that potentially relocated the buffer data.
+ − 462 */
+ − 463 static Bytecount
+ − 464 offset_post_relocation (Lisp_Object lispobj, Ibyte *orig_buftext)
+ − 465 {
+ − 466 if (!BUFFERP (lispobj))
+ − 467 return 0;
+ − 468 return (BYTE_BUF_BYTE_ADDRESS (XBUFFER (lispobj),
+ − 469 BYTE_BUF_BEGV (XBUFFER (lispobj))) -
+ − 470 orig_buftext);
+ − 471 }
+ − 472
+ − 473 #endif /* REL_ALLOC */
+ − 474
+ − 475 #ifdef ERROR_CHECK_MALLOC
+ − 476
+ − 477 /* NOTE that this can run malloc() so you need to adjust afterwards. */
+ − 478
+ − 479 static int
+ − 480 bind_regex_malloc_disallowed (int value)
+ − 481 {
+ − 482 /* Tricky, because the act of binding can run malloc(). */
+ − 483 int old_regex_malloc_disallowed = regex_malloc_disallowed;
+ − 484 int depth;
+ − 485 regex_malloc_disallowed = 0;
+ − 486 depth = record_unwind_protect_restoring_int (®ex_malloc_disallowed,
+ − 487 old_regex_malloc_disallowed);
+ − 488 regex_malloc_disallowed = value;
+ − 489 return depth;
+ − 490 }
+ − 491
+ − 492 #endif /* ERROR_CHECK_MALLOC */
+ − 493
+ − 494 #endif /* emacs */
+ − 495
+ − 496
428
+ − 497 /* These are the command codes that appear in compiled regular
+ − 498 expressions. Some opcodes are followed by argument bytes. A
+ − 499 command code can specify any interpretation whatsoever for its
+ − 500 arguments. Zero bytes may appear in the compiled regular expression. */
+ − 501
+ − 502 typedef enum
+ − 503 {
+ − 504 no_op = 0,
+ − 505
+ − 506 /* Succeed right away--no more backtracking. */
+ − 507 succeed,
+ − 508
+ − 509 /* Followed by one byte giving n, then by n literal bytes. */
+ − 510 exactn,
+ − 511
+ − 512 /* Matches any (more or less) character. */
+ − 513 anychar,
+ − 514
+ − 515 /* Matches any one char belonging to specified set. First
+ − 516 following byte is number of bitmap bytes. Then come bytes
+ − 517 for a bitmap saying which chars are in. Bits in each byte
+ − 518 are ordered low-bit-first. A character is in the set if its
+ − 519 bit is 1. A character too large to have a bit in the map is
+ − 520 automatically not in the set. */
+ − 521 charset,
+ − 522
+ − 523 /* Same parameters as charset, but match any character that is
+ − 524 not one of those specified. */
+ − 525 charset_not,
+ − 526
+ − 527 /* Start remembering the text that is matched, for storing in a
+ − 528 register. Followed by one byte with the register number, in
502
+ − 529 the range 1 to the pattern buffer's re_ngroups
428
+ − 530 field. Then followed by one byte with the number of groups
+ − 531 inner to this one. (This last has to be part of the
+ − 532 start_memory only because we need it in the on_failure_jump
+ − 533 of re_match_2.) */
+ − 534 start_memory,
+ − 535
+ − 536 /* Stop remembering the text that is matched and store it in a
+ − 537 memory register. Followed by one byte with the register
502
+ − 538 number, in the range 1 to `re_ngroups' in the
428
+ − 539 pattern buffer, and one byte with the number of inner groups,
+ − 540 just like `start_memory'. (We need the number of inner
+ − 541 groups here because we don't have any easy way of finding the
+ − 542 corresponding start_memory when we're at a stop_memory.) */
+ − 543 stop_memory,
+ − 544
+ − 545 /* Match a duplicate of something remembered. Followed by one
+ − 546 byte containing the register number. */
+ − 547 duplicate,
+ − 548
+ − 549 /* Fail unless at beginning of line. */
+ − 550 begline,
+ − 551
+ − 552 /* Fail unless at end of line. */
+ − 553 endline,
+ − 554
+ − 555 /* Succeeds if at beginning of buffer (if emacs) or at beginning
+ − 556 of string to be matched (if not). */
+ − 557 begbuf,
+ − 558
+ − 559 /* Analogously, for end of buffer/string. */
+ − 560 endbuf,
+ − 561
+ − 562 /* Followed by two byte relative address to which to jump. */
+ − 563 jump,
+ − 564
+ − 565 /* Same as jump, but marks the end of an alternative. */
+ − 566 jump_past_alt,
+ − 567
+ − 568 /* Followed by two-byte relative address of place to resume at
+ − 569 in case of failure. */
+ − 570 on_failure_jump,
+ − 571
+ − 572 /* Like on_failure_jump, but pushes a placeholder instead of the
+ − 573 current string position when executed. */
+ − 574 on_failure_keep_string_jump,
+ − 575
+ − 576 /* Throw away latest failure point and then jump to following
+ − 577 two-byte relative address. */
+ − 578 pop_failure_jump,
+ − 579
+ − 580 /* Change to pop_failure_jump if know won't have to backtrack to
+ − 581 match; otherwise change to jump. This is used to jump
+ − 582 back to the beginning of a repeat. If what follows this jump
+ − 583 clearly won't match what the repeat does, such that we can be
+ − 584 sure that there is no use backtracking out of repetitions
+ − 585 already matched, then we change it to a pop_failure_jump.
+ − 586 Followed by two-byte address. */
+ − 587 maybe_pop_jump,
+ − 588
+ − 589 /* Jump to following two-byte address, and push a dummy failure
+ − 590 point. This failure point will be thrown away if an attempt
+ − 591 is made to use it for a failure. A `+' construct makes this
+ − 592 before the first repeat. Also used as an intermediary kind
+ − 593 of jump when compiling an alternative. */
+ − 594 dummy_failure_jump,
+ − 595
+ − 596 /* Push a dummy failure point and continue. Used at the end of
+ − 597 alternatives. */
+ − 598 push_dummy_failure,
+ − 599
+ − 600 /* Followed by two-byte relative address and two-byte number n.
+ − 601 After matching N times, jump to the address upon failure. */
+ − 602 succeed_n,
+ − 603
+ − 604 /* Followed by two-byte relative address, and two-byte number n.
+ − 605 Jump to the address N times, then fail. */
+ − 606 jump_n,
+ − 607
+ − 608 /* Set the following two-byte relative address to the
+ − 609 subsequent two-byte number. The address *includes* the two
+ − 610 bytes of number. */
+ − 611 set_number_at,
+ − 612
+ − 613 wordchar, /* Matches any word-constituent character. */
+ − 614 notwordchar, /* Matches any char that is not a word-constituent. */
+ − 615
+ − 616 wordbeg, /* Succeeds if at word beginning. */
+ − 617 wordend, /* Succeeds if at word end. */
+ − 618
+ − 619 wordbound, /* Succeeds if at a word boundary. */
+ − 620 notwordbound /* Succeeds if not at a word boundary. */
+ − 621
+ − 622 #ifdef emacs
+ − 623 ,before_dot, /* Succeeds if before point. */
+ − 624 at_dot, /* Succeeds if at point. */
+ − 625 after_dot, /* Succeeds if after point. */
+ − 626
+ − 627 /* Matches any character whose syntax is specified. Followed by
+ − 628 a byte which contains a syntax code, e.g., Sword. */
+ − 629 syntaxspec,
+ − 630
+ − 631 /* Matches any character whose syntax is not that specified. */
+ − 632 notsyntaxspec
+ − 633
+ − 634 #endif /* emacs */
+ − 635
+ − 636 #ifdef MULE
+ − 637 /* need extra stuff to be able to properly work with XEmacs/Mule
+ − 638 characters (which may take up more than one byte) */
+ − 639
+ − 640 ,charset_mule, /* Matches any character belonging to specified set.
+ − 641 The set is stored in "unified range-table
+ − 642 format"; see rangetab.c. Unlike the `charset'
+ − 643 opcode, this can handle arbitrary characters. */
+ − 644
+ − 645 charset_mule_not /* Same parameters as charset_mule, but match any
+ − 646 character that is not one of those specified. */
+ − 647
+ − 648 /* 97/2/17 jhod: The following two were merged back in from the Mule
+ − 649 2.3 code to enable some language specific processing */
+ − 650 ,categoryspec, /* Matches entries in the character category tables */
+ − 651 notcategoryspec /* The opposite of the above */
+ − 652 #endif /* MULE */
+ − 653
+ − 654 } re_opcode_t;
+ − 655
+ − 656 /* Common operations on the compiled pattern. */
+ − 657
+ − 658 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
+ − 659
+ − 660 #define STORE_NUMBER(destination, number) \
+ − 661 do { \
+ − 662 (destination)[0] = (number) & 0377; \
+ − 663 (destination)[1] = (number) >> 8; \
+ − 664 } while (0)
+ − 665
+ − 666 /* Same as STORE_NUMBER, except increment DESTINATION to
+ − 667 the byte after where the number is stored. Therefore, DESTINATION
+ − 668 must be an lvalue. */
+ − 669
+ − 670 #define STORE_NUMBER_AND_INCR(destination, number) \
+ − 671 do { \
+ − 672 STORE_NUMBER (destination, number); \
+ − 673 (destination) += 2; \
+ − 674 } while (0)
+ − 675
+ − 676 /* Put into DESTINATION a number stored in two contiguous bytes starting
+ − 677 at SOURCE. */
+ − 678
+ − 679 #define EXTRACT_NUMBER(destination, source) \
+ − 680 do { \
+ − 681 (destination) = *(source) & 0377; \
+ − 682 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
+ − 683 } while (0)
+ − 684
+ − 685 #ifdef DEBUG
+ − 686 static void
446
+ − 687 extract_number (int *dest, re_char *source)
428
+ − 688 {
+ − 689 int temp = SIGN_EXTEND_CHAR (*(source + 1));
+ − 690 *dest = *source & 0377;
+ − 691 *dest += temp << 8;
+ − 692 }
+ − 693
+ − 694 #ifndef EXTRACT_MACROS /* To debug the macros. */
+ − 695 #undef EXTRACT_NUMBER
+ − 696 #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
+ − 697 #endif /* not EXTRACT_MACROS */
+ − 698
+ − 699 #endif /* DEBUG */
+ − 700
+ − 701 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
+ − 702 SOURCE must be an lvalue. */
+ − 703
+ − 704 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
+ − 705 do { \
+ − 706 EXTRACT_NUMBER (destination, source); \
+ − 707 (source) += 2; \
+ − 708 } while (0)
+ − 709
+ − 710 #ifdef DEBUG
+ − 711 static void
+ − 712 extract_number_and_incr (int *destination, unsigned char **source)
+ − 713 {
+ − 714 extract_number (destination, *source);
+ − 715 *source += 2;
+ − 716 }
+ − 717
+ − 718 #ifndef EXTRACT_MACROS
+ − 719 #undef EXTRACT_NUMBER_AND_INCR
+ − 720 #define EXTRACT_NUMBER_AND_INCR(dest, src) \
+ − 721 extract_number_and_incr (&dest, &src)
+ − 722 #endif /* not EXTRACT_MACROS */
+ − 723
+ − 724 #endif /* DEBUG */
+ − 725
+ − 726 /* If DEBUG is defined, Regex prints many voluminous messages about what
+ − 727 it is doing (if the variable `debug' is nonzero). If linked with the
+ − 728 main program in `iregex.c', you can enter patterns and strings
+ − 729 interactively. And if linked with the main program in `main.c' and
+ − 730 the other test files, you can run the already-written tests. */
+ − 731
+ − 732 #if defined (DEBUG)
+ − 733
+ − 734 /* We use standard I/O for debugging. */
+ − 735 #include <stdio.h>
+ − 736
+ − 737 #ifndef emacs
+ − 738 /* XEmacs provides its own version of assert() */
+ − 739 /* It is useful to test things that ``must'' be true when debugging. */
+ − 740 #include <assert.h>
+ − 741 #endif
+ − 742
+ − 743 static int debug = 0;
+ − 744
+ − 745 #define DEBUG_STATEMENT(e) e
+ − 746 #define DEBUG_PRINT1(x) if (debug) printf (x)
+ − 747 #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
+ − 748 #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
+ − 749 #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
+ − 750 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
+ − 751 if (debug) print_partial_compiled_pattern (s, e)
+ − 752 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
+ − 753 if (debug) print_double_string (w, s1, sz1, s2, sz2)
+ − 754
+ − 755
+ − 756 /* Print the fastmap in human-readable form. */
+ − 757
+ − 758 static void
+ − 759 print_fastmap (char *fastmap)
+ − 760 {
647
+ − 761 int was_a_range = 0;
+ − 762 int i = 0;
428
+ − 763
+ − 764 while (i < (1 << BYTEWIDTH))
+ − 765 {
+ − 766 if (fastmap[i++])
+ − 767 {
+ − 768 was_a_range = 0;
+ − 769 putchar (i - 1);
+ − 770 while (i < (1 << BYTEWIDTH) && fastmap[i])
+ − 771 {
+ − 772 was_a_range = 1;
+ − 773 i++;
+ − 774 }
+ − 775 if (was_a_range)
+ − 776 {
+ − 777 putchar ('-');
+ − 778 putchar (i - 1);
+ − 779 }
+ − 780 }
+ − 781 }
+ − 782 putchar ('\n');
+ − 783 }
+ − 784
+ − 785
+ − 786 /* Print a compiled pattern string in human-readable form, starting at
+ − 787 the START pointer into it and ending just before the pointer END. */
+ − 788
+ − 789 static void
446
+ − 790 print_partial_compiled_pattern (re_char *start, re_char *end)
428
+ − 791 {
+ − 792 int mcnt, mcnt2;
446
+ − 793 unsigned char *p = (unsigned char *) start;
+ − 794 re_char *pend = end;
428
+ − 795
+ − 796 if (start == NULL)
+ − 797 {
+ − 798 puts ("(null)");
+ − 799 return;
+ − 800 }
+ − 801
+ − 802 /* Loop over pattern commands. */
+ − 803 while (p < pend)
+ − 804 {
+ − 805 printf ("%ld:\t", (long)(p - start));
+ − 806
+ − 807 switch ((re_opcode_t) *p++)
+ − 808 {
+ − 809 case no_op:
+ − 810 printf ("/no_op");
+ − 811 break;
+ − 812
+ − 813 case exactn:
+ − 814 mcnt = *p++;
+ − 815 printf ("/exactn/%d", mcnt);
+ − 816 do
+ − 817 {
+ − 818 putchar ('/');
+ − 819 putchar (*p++);
+ − 820 }
+ − 821 while (--mcnt);
+ − 822 break;
+ − 823
+ − 824 case start_memory:
+ − 825 mcnt = *p++;
+ − 826 printf ("/start_memory/%d/%d", mcnt, *p++);
+ − 827 break;
+ − 828
+ − 829 case stop_memory:
+ − 830 mcnt = *p++;
+ − 831 printf ("/stop_memory/%d/%d", mcnt, *p++);
+ − 832 break;
+ − 833
+ − 834 case duplicate:
+ − 835 printf ("/duplicate/%d", *p++);
+ − 836 break;
+ − 837
+ − 838 case anychar:
+ − 839 printf ("/anychar");
+ − 840 break;
+ − 841
+ − 842 case charset:
+ − 843 case charset_not:
+ − 844 {
+ − 845 REGISTER int c, last = -100;
+ − 846 REGISTER int in_range = 0;
+ − 847
+ − 848 printf ("/charset [%s",
+ − 849 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
+ − 850
+ − 851 assert (p + *p < pend);
+ − 852
+ − 853 for (c = 0; c < 256; c++)
+ − 854 if (((unsigned char) (c / 8) < *p)
+ − 855 && (p[1 + (c/8)] & (1 << (c % 8))))
+ − 856 {
+ − 857 /* Are we starting a range? */
+ − 858 if (last + 1 == c && ! in_range)
+ − 859 {
+ − 860 putchar ('-');
+ − 861 in_range = 1;
+ − 862 }
+ − 863 /* Have we broken a range? */
+ − 864 else if (last + 1 != c && in_range)
+ − 865 {
+ − 866 putchar (last);
+ − 867 in_range = 0;
+ − 868 }
+ − 869
+ − 870 if (! in_range)
+ − 871 putchar (c);
+ − 872
+ − 873 last = c;
+ − 874 }
+ − 875
+ − 876 if (in_range)
+ − 877 putchar (last);
+ − 878
+ − 879 putchar (']');
+ − 880
+ − 881 p += 1 + *p;
+ − 882 }
+ − 883 break;
+ − 884
+ − 885 #ifdef MULE
+ − 886 case charset_mule:
+ − 887 case charset_mule_not:
+ − 888 {
+ − 889 int nentries, i;
+ − 890
+ − 891 printf ("/charset_mule [%s",
+ − 892 (re_opcode_t) *(p - 1) == charset_mule_not ? "^" : "");
+ − 893 nentries = unified_range_table_nentries (p);
+ − 894 for (i = 0; i < nentries; i++)
+ − 895 {
+ − 896 EMACS_INT first, last;
+ − 897 Lisp_Object dummy_val;
+ − 898
+ − 899 unified_range_table_get_range (p, i, &first, &last,
+ − 900 &dummy_val);
+ − 901 if (first < 0x100)
+ − 902 putchar (first);
+ − 903 else
+ − 904 printf ("(0x%lx)", (long)first);
+ − 905 if (first != last)
+ − 906 {
+ − 907 putchar ('-');
+ − 908 if (last < 0x100)
+ − 909 putchar (last);
+ − 910 else
+ − 911 printf ("(0x%lx)", (long)last);
+ − 912 }
+ − 913 }
+ − 914 putchar (']');
+ − 915 p += unified_range_table_bytes_used (p);
+ − 916 }
+ − 917 break;
+ − 918 #endif
+ − 919
+ − 920 case begline:
+ − 921 printf ("/begline");
+ − 922 break;
+ − 923
+ − 924 case endline:
+ − 925 printf ("/endline");
+ − 926 break;
+ − 927
+ − 928 case on_failure_jump:
+ − 929 extract_number_and_incr (&mcnt, &p);
+ − 930 printf ("/on_failure_jump to %ld", (long)(p + mcnt - start));
+ − 931 break;
+ − 932
+ − 933 case on_failure_keep_string_jump:
+ − 934 extract_number_and_incr (&mcnt, &p);
+ − 935 printf ("/on_failure_keep_string_jump to %ld", (long)(p + mcnt - start));
+ − 936 break;
+ − 937
+ − 938 case dummy_failure_jump:
+ − 939 extract_number_and_incr (&mcnt, &p);
+ − 940 printf ("/dummy_failure_jump to %ld", (long)(p + mcnt - start));
+ − 941 break;
+ − 942
+ − 943 case push_dummy_failure:
+ − 944 printf ("/push_dummy_failure");
+ − 945 break;
+ − 946
+ − 947 case maybe_pop_jump:
+ − 948 extract_number_and_incr (&mcnt, &p);
+ − 949 printf ("/maybe_pop_jump to %ld", (long)(p + mcnt - start));
+ − 950 break;
+ − 951
+ − 952 case pop_failure_jump:
+ − 953 extract_number_and_incr (&mcnt, &p);
+ − 954 printf ("/pop_failure_jump to %ld", (long)(p + mcnt - start));
+ − 955 break;
+ − 956
+ − 957 case jump_past_alt:
+ − 958 extract_number_and_incr (&mcnt, &p);
+ − 959 printf ("/jump_past_alt to %ld", (long)(p + mcnt - start));
+ − 960 break;
+ − 961
+ − 962 case jump:
+ − 963 extract_number_and_incr (&mcnt, &p);
+ − 964 printf ("/jump to %ld", (long)(p + mcnt - start));
+ − 965 break;
+ − 966
+ − 967 case succeed_n:
+ − 968 extract_number_and_incr (&mcnt, &p);
+ − 969 extract_number_and_incr (&mcnt2, &p);
+ − 970 printf ("/succeed_n to %ld, %d times", (long)(p + mcnt - start), mcnt2);
+ − 971 break;
+ − 972
+ − 973 case jump_n:
+ − 974 extract_number_and_incr (&mcnt, &p);
+ − 975 extract_number_and_incr (&mcnt2, &p);
+ − 976 printf ("/jump_n to %ld, %d times", (long)(p + mcnt - start), mcnt2);
+ − 977 break;
+ − 978
+ − 979 case set_number_at:
+ − 980 extract_number_and_incr (&mcnt, &p);
+ − 981 extract_number_and_incr (&mcnt2, &p);
+ − 982 printf ("/set_number_at location %ld to %d", (long)(p + mcnt - start), mcnt2);
+ − 983 break;
+ − 984
+ − 985 case wordbound:
+ − 986 printf ("/wordbound");
+ − 987 break;
+ − 988
+ − 989 case notwordbound:
+ − 990 printf ("/notwordbound");
+ − 991 break;
+ − 992
+ − 993 case wordbeg:
+ − 994 printf ("/wordbeg");
+ − 995 break;
+ − 996
+ − 997 case wordend:
+ − 998 printf ("/wordend");
+ − 999
+ − 1000 #ifdef emacs
+ − 1001 case before_dot:
+ − 1002 printf ("/before_dot");
+ − 1003 break;
+ − 1004
+ − 1005 case at_dot:
+ − 1006 printf ("/at_dot");
+ − 1007 break;
+ − 1008
+ − 1009 case after_dot:
+ − 1010 printf ("/after_dot");
+ − 1011 break;
+ − 1012
+ − 1013 case syntaxspec:
+ − 1014 printf ("/syntaxspec");
+ − 1015 mcnt = *p++;
+ − 1016 printf ("/%d", mcnt);
+ − 1017 break;
+ − 1018
+ − 1019 case notsyntaxspec:
+ − 1020 printf ("/notsyntaxspec");
+ − 1021 mcnt = *p++;
+ − 1022 printf ("/%d", mcnt);
+ − 1023 break;
+ − 1024
+ − 1025 #ifdef MULE
+ − 1026 /* 97/2/17 jhod Mule category patch */
+ − 1027 case categoryspec:
+ − 1028 printf ("/categoryspec");
+ − 1029 mcnt = *p++;
+ − 1030 printf ("/%d", mcnt);
+ − 1031 break;
+ − 1032
+ − 1033 case notcategoryspec:
+ − 1034 printf ("/notcategoryspec");
+ − 1035 mcnt = *p++;
+ − 1036 printf ("/%d", mcnt);
+ − 1037 break;
+ − 1038 /* end of category patch */
+ − 1039 #endif /* MULE */
+ − 1040 #endif /* emacs */
+ − 1041
+ − 1042 case wordchar:
+ − 1043 printf ("/wordchar");
+ − 1044 break;
+ − 1045
+ − 1046 case notwordchar:
+ − 1047 printf ("/notwordchar");
+ − 1048 break;
+ − 1049
+ − 1050 case begbuf:
+ − 1051 printf ("/begbuf");
+ − 1052 break;
+ − 1053
+ − 1054 case endbuf:
+ − 1055 printf ("/endbuf");
+ − 1056 break;
+ − 1057
+ − 1058 default:
+ − 1059 printf ("?%d", *(p-1));
+ − 1060 }
+ − 1061
+ − 1062 putchar ('\n');
+ − 1063 }
+ − 1064
+ − 1065 printf ("%ld:\tend of pattern.\n", (long)(p - start));
+ − 1066 }
+ − 1067
+ − 1068
+ − 1069 static void
+ − 1070 print_compiled_pattern (struct re_pattern_buffer *bufp)
+ − 1071 {
446
+ − 1072 re_char *buffer = bufp->buffer;
428
+ − 1073
+ − 1074 print_partial_compiled_pattern (buffer, buffer + bufp->used);
+ − 1075 printf ("%ld bytes used/%ld bytes allocated.\n", bufp->used,
+ − 1076 bufp->allocated);
+ − 1077
+ − 1078 if (bufp->fastmap_accurate && bufp->fastmap)
+ − 1079 {
+ − 1080 printf ("fastmap: ");
+ − 1081 print_fastmap (bufp->fastmap);
+ − 1082 }
+ − 1083
+ − 1084 printf ("re_nsub: %ld\t", (long)bufp->re_nsub);
502
+ − 1085 printf ("re_ngroups: %ld\t", (long)bufp->re_ngroups);
428
+ − 1086 printf ("regs_alloc: %d\t", bufp->regs_allocated);
+ − 1087 printf ("can_be_null: %d\t", bufp->can_be_null);
+ − 1088 printf ("newline_anchor: %d\n", bufp->newline_anchor);
+ − 1089 printf ("no_sub: %d\t", bufp->no_sub);
+ − 1090 printf ("not_bol: %d\t", bufp->not_bol);
+ − 1091 printf ("not_eol: %d\t", bufp->not_eol);
+ − 1092 printf ("syntax: %d\n", bufp->syntax);
+ − 1093 /* Perhaps we should print the translate table? */
+ − 1094 /* and maybe the category table? */
502
+ − 1095
+ − 1096 if (bufp->external_to_internal_register)
+ − 1097 {
+ − 1098 int i;
+ − 1099
+ − 1100 printf ("external_to_internal_register:\n");
+ − 1101 for (i = 0; i <= bufp->re_nsub; i++)
+ − 1102 {
+ − 1103 if (i > 0)
+ − 1104 printf (", ");
+ − 1105 printf ("%d -> %d", i, bufp->external_to_internal_register[i]);
+ − 1106 }
+ − 1107 printf ("\n");
+ − 1108 }
428
+ − 1109 }
+ − 1110
+ − 1111
+ − 1112 static void
446
+ − 1113 print_double_string (re_char *where, re_char *string1, int size1,
+ − 1114 re_char *string2, int size2)
428
+ − 1115 {
+ − 1116 if (where == NULL)
+ − 1117 printf ("(null)");
+ − 1118 else
+ − 1119 {
647
+ − 1120 int this_char;
428
+ − 1121
+ − 1122 if (FIRST_STRING_P (where))
+ − 1123 {
+ − 1124 for (this_char = where - string1; this_char < size1; this_char++)
+ − 1125 putchar (string1[this_char]);
+ − 1126
+ − 1127 where = string2;
+ − 1128 }
+ − 1129
+ − 1130 for (this_char = where - string2; this_char < size2; this_char++)
+ − 1131 putchar (string2[this_char]);
+ − 1132 }
+ − 1133 }
+ − 1134
+ − 1135 #else /* not DEBUG */
+ − 1136
771
+ − 1137 #ifndef emacs
428
+ − 1138 #undef assert
771
+ − 1139 #define assert(e) ((void) (1))
+ − 1140 #endif
428
+ − 1141
+ − 1142 #define DEBUG_STATEMENT(e)
+ − 1143 #define DEBUG_PRINT1(x)
+ − 1144 #define DEBUG_PRINT2(x1, x2)
+ − 1145 #define DEBUG_PRINT3(x1, x2, x3)
+ − 1146 #define DEBUG_PRINT4(x1, x2, x3, x4)
+ − 1147 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
+ − 1148 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
+ − 1149
446
+ − 1150 #endif /* DEBUG */
428
+ − 1151
+ − 1152 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
+ − 1153 also be assigned to arbitrarily: each pattern buffer stores its own
+ − 1154 syntax, so it can be changed between regex compilations. */
+ − 1155 /* This has no initializer because initialized variables in Emacs
+ − 1156 become read-only after dumping. */
+ − 1157 reg_syntax_t re_syntax_options;
+ − 1158
+ − 1159
+ − 1160 /* Specify the precise syntax of regexps for compilation. This provides
+ − 1161 for compatibility for various utilities which historically have
+ − 1162 different, incompatible syntaxes.
+ − 1163
+ − 1164 The argument SYNTAX is a bit mask comprised of the various bits
+ − 1165 defined in regex.h. We return the old syntax. */
+ − 1166
+ − 1167 reg_syntax_t
+ − 1168 re_set_syntax (reg_syntax_t syntax)
+ − 1169 {
+ − 1170 reg_syntax_t ret = re_syntax_options;
+ − 1171
+ − 1172 re_syntax_options = syntax;
+ − 1173 return ret;
+ − 1174 }
+ − 1175
+ − 1176 /* This table gives an error message for each of the error codes listed
+ − 1177 in regex.h. Obviously the order here has to be same as there.
+ − 1178 POSIX doesn't require that we do anything for REG_NOERROR,
+ − 1179 but why not be nice? */
+ − 1180
442
+ − 1181 static const char *re_error_msgid[] =
428
+ − 1182 {
+ − 1183 "Success", /* REG_NOERROR */
+ − 1184 "No match", /* REG_NOMATCH */
+ − 1185 "Invalid regular expression", /* REG_BADPAT */
+ − 1186 "Invalid collation character", /* REG_ECOLLATE */
+ − 1187 "Invalid character class name", /* REG_ECTYPE */
+ − 1188 "Trailing backslash", /* REG_EESCAPE */
+ − 1189 "Invalid back reference", /* REG_ESUBREG */
+ − 1190 "Unmatched [ or [^", /* REG_EBRACK */
+ − 1191 "Unmatched ( or \\(", /* REG_EPAREN */
+ − 1192 "Unmatched \\{", /* REG_EBRACE */
+ − 1193 "Invalid content of \\{\\}", /* REG_BADBR */
+ − 1194 "Invalid range end", /* REG_ERANGE */
+ − 1195 "Memory exhausted", /* REG_ESPACE */
+ − 1196 "Invalid preceding regular expression", /* REG_BADRPT */
+ − 1197 "Premature end of regular expression", /* REG_EEND */
+ − 1198 "Regular expression too big", /* REG_ESIZE */
+ − 1199 "Unmatched ) or \\)", /* REG_ERPAREN */
+ − 1200 #ifdef emacs
+ − 1201 "Invalid syntax designator", /* REG_ESYNTAX */
+ − 1202 #endif
+ − 1203 #ifdef MULE
+ − 1204 "Ranges may not span charsets", /* REG_ERANGESPAN */
+ − 1205 "Invalid category designator", /* REG_ECATEGORY */
+ − 1206 #endif
+ − 1207 };
+ − 1208
+ − 1209 /* Avoiding alloca during matching, to placate r_alloc. */
+ − 1210
1333
+ − 1211 /* About these various flags:
+ − 1212
+ − 1213 MATCH_MAY_ALLOCATE indicates that it's OK to do allocation in the
+ − 1214 searching and matching functions. In this case, we use local variables
+ − 1215 to hold the values allocated. If not, we use *global* variables, which
+ − 1216 are pre-allocated. NOTE: XEmacs ***MUST*** run with MATCH_MAY_ALLOCATE,
+ − 1217 because the regexp routines may get called reentrantly as a result of
+ − 1218 QUIT processing (e.g. under Windows: re_match -> QUIT -> quit_p -> drain
+ − 1219 events -> process WM_INITMENU -> call filter -> re_match; see stack
+ − 1220 trace in signal.c), so we cannot have any global variables (unless we do
+ − 1221 lots of trickiness including some unwind-protects, which isn't worth it
+ − 1222 at this point).
+ − 1223
+ − 1224 REL_ALLOC means that the relocating allocator is in use, for buffers
+ − 1225 and such. REGEX_REL_ALLOC means that we use rel-alloc to manage the
+ − 1226 fail stack, which may grow quite large. REGEX_MALLOC means we use
+ − 1227 malloc() in place of alloca() to allocate the fail stack -- only
+ − 1228 applicable if REGEX_REL_ALLOC is not defined.
+ − 1229 */
+ − 1230
428
+ − 1231 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
+ − 1232 searching and matching functions should not call alloca. On some
+ − 1233 systems, alloca is implemented in terms of malloc, and if we're
+ − 1234 using the relocating allocator routines, then malloc could cause a
+ − 1235 relocation, which might (if the strings being searched are in the
+ − 1236 ralloc heap) shift the data out from underneath the regexp
771
+ − 1237 routines. [To clarify: The purpose of rel-alloc is to allow data to
+ − 1238 be moved in memory from one place to another so that all data
+ − 1239 blocks can be consolidated together and excess memory released back
+ − 1240 to the operating system. This requires that all the blocks that
+ − 1241 are managed by rel-alloc go at the very end of the program's heap,
+ − 1242 after all regularly malloc()ed data. malloc(), however, is used to
+ − 1243 owning the end of the heap, so that when more memory is needed, it
+ − 1244 just expands the heap using sbrk(). This is reconciled by using a
+ − 1245 malloc() (such as malloc.c, gmalloc.c, or recent versions of
+ − 1246 malloc() in libc) where the sbrk() call can be replaced with a
+ − 1247 user-specified call -- in this case, to rel-alloc's r_alloc_sbrk()
+ − 1248 routine. This routine calls the real sbrk(), but then shifts all
+ − 1249 the rel-alloc-managed blocks forward to the end of the heap again,
+ − 1250 so that malloc() gets the memory it needs in the location it needs
+ − 1251 it at. The regex routines may well have pointers to buffer data as
+ − 1252 their arguments, and buffers are managed by rel-alloc if rel-alloc
+ − 1253 has been enabled, so calling malloc() may potentially screw things
+ − 1254 up badly if it runs out of space and asks for more from the OS.]
+ − 1255
+ − 1256 [[Here's another reason to avoid allocation: Emacs processes input
+ − 1257 from X in a signal handler; processing X input may call malloc; if
+ − 1258 input arrives while a matching routine is calling malloc, then
+ − 1259 we're scrod. But Emacs can't just block input while calling
+ − 1260 matching routines; then we don't notice interrupts when they come
+ − 1261 in. So, Emacs blocks input around all regexp calls except the
+ − 1262 matching calls, which it leaves unprotected, in the faith that they
1333
+ − 1263 will not malloc.]] This previous paragraph is irrelevant under XEmacs,
+ − 1264 as we *do not* do anything so stupid as process input from within a
+ − 1265 signal handler.
+ − 1266
+ − 1267 However, the regexp routines may get called reentrantly as a result of
+ − 1268 QUIT processing (e.g. under Windows: re_match -> QUIT -> quit_p -> drain
+ − 1269 events -> process WM_INITMENU -> call filter -> re_match; see stack
+ − 1270 trace in signal.c), so we cannot have any global variables (unless we do
+ − 1271 lots of trickiness including some unwind-protects, which isn't worth it
+ − 1272 at this point). Hence we MUST have MATCH_MAY_ALLOCATE defined.
+ − 1273
+ − 1274 Also, the first paragraph does not make complete sense to me -- what
+ − 1275 about the use of rel-alloc to handle the fail stacks? Shouldn't these
+ − 1276 reallocations potentially cause buffer data to be relocated as well? I
826
+ − 1277 must be missing something, though -- perhaps the writer above is
+ − 1278 assuming that the failure stack(s) will always be allocated after the
+ − 1279 buffer data, and thus reallocating them with rel-alloc won't move buffer
1333
+ − 1280 data. (In fact, a cursory glance at the code in ralloc.c seems to
+ − 1281 confirm this.) --ben */
428
+ − 1282
+ − 1283 /* Normally, this is fine. */
+ − 1284 #define MATCH_MAY_ALLOCATE
+ − 1285
+ − 1286 /* When using GNU C, we are not REALLY using the C alloca, no matter
+ − 1287 what config.h may say. So don't take precautions for it. */
+ − 1288 #ifdef __GNUC__
+ − 1289 #undef C_ALLOCA
+ − 1290 #endif
+ − 1291
+ − 1292 /* The match routines may not allocate if (1) they would do it with malloc
+ − 1293 and (2) it's not safe for them to use malloc.
+ − 1294 Note that if REL_ALLOC is defined, matching would not use malloc for the
+ − 1295 failure stack, but we would still use it for the register vectors;
+ − 1296 so REL_ALLOC should not affect this. */
771
+ − 1297
1333
+ − 1298 /* XEmacs can handle REL_ALLOC and malloc() OK */
+ − 1299 #if !defined (emacs) && (defined (C_ALLOCA) || defined (REGEX_MALLOC)) && defined (REL_ALLOC)
428
+ − 1300 #undef MATCH_MAY_ALLOCATE
+ − 1301 #endif
+ − 1302
1333
+ − 1303 #if !defined (MATCH_MAY_ALLOCATE) && defined (emacs)
771
+ − 1304 #error regex must be handle reentrancy; MATCH_MAY_ALLOCATE must be defined
+ − 1305 #endif
+ − 1306
428
+ − 1307
+ − 1308 /* Failure stack declarations and macros; both re_compile_fastmap and
+ − 1309 re_match_2 use a failure stack. These have to be macros because of
+ − 1310 REGEX_ALLOCATE_STACK. */
+ − 1311
+ − 1312
+ − 1313 /* Number of failure points for which to initially allocate space
+ − 1314 when matching. If this number is exceeded, we allocate more
+ − 1315 space, so it is not a hard limit. */
+ − 1316 #ifndef INIT_FAILURE_ALLOC
+ − 1317 #define INIT_FAILURE_ALLOC 5
+ − 1318 #endif
+ − 1319
+ − 1320 /* Roughly the maximum number of failure points on the stack. Would be
+ − 1321 exactly that if always used MAX_FAILURE_SPACE each time we failed.
+ − 1322 This is a variable only so users of regex can assign to it; we never
+ − 1323 change it ourselves. */
+ − 1324 #if defined (MATCH_MAY_ALLOCATE)
+ − 1325 /* 4400 was enough to cause a crash on Alpha OSF/1,
+ − 1326 whose default stack limit is 2mb. */
+ − 1327 int re_max_failures = 20000;
+ − 1328 #else
+ − 1329 int re_max_failures = 2000;
+ − 1330 #endif
+ − 1331
+ − 1332 union fail_stack_elt
+ − 1333 {
446
+ − 1334 re_char *pointer;
428
+ − 1335 int integer;
+ − 1336 };
+ − 1337
+ − 1338 typedef union fail_stack_elt fail_stack_elt_t;
+ − 1339
+ − 1340 typedef struct
+ − 1341 {
+ − 1342 fail_stack_elt_t *stack;
665
+ − 1343 Elemcount size;
+ − 1344 Elemcount avail; /* Offset of next open position. */
428
+ − 1345 } fail_stack_type;
+ − 1346
+ − 1347 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
+ − 1348 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
+ − 1349 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
+ − 1350
+ − 1351
+ − 1352 /* Define macros to initialize and free the failure stack.
+ − 1353 Do `return -2' if the alloc fails. */
+ − 1354
+ − 1355 #ifdef MATCH_MAY_ALLOCATE
1333
+ − 1356 #define INIT_FAIL_STACK() \
+ − 1357 do { \
+ − 1358 fail_stack.stack = (fail_stack_elt_t *) \
+ − 1359 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * \
+ − 1360 sizeof (fail_stack_elt_t)); \
+ − 1361 \
+ − 1362 if (fail_stack.stack == NULL) \
+ − 1363 { \
+ − 1364 UNBIND_REGEX_MALLOC_CHECK (); \
+ − 1365 return -2; \
+ − 1366 } \
+ − 1367 \
+ − 1368 fail_stack.size = INIT_FAILURE_ALLOC; \
+ − 1369 fail_stack.avail = 0; \
428
+ − 1370 } while (0)
+ − 1371
+ − 1372 #define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
+ − 1373 #else
+ − 1374 #define INIT_FAIL_STACK() \
+ − 1375 do { \
+ − 1376 fail_stack.avail = 0; \
+ − 1377 } while (0)
+ − 1378
+ − 1379 #define RESET_FAIL_STACK()
+ − 1380 #endif
+ − 1381
+ − 1382
+ − 1383 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
+ − 1384
+ − 1385 Return 1 if succeeds, and 0 if either ran out of memory
+ − 1386 allocating space for it or it was already too large.
+ − 1387
+ − 1388 REGEX_REALLOCATE_STACK requires `destination' be declared. */
+ − 1389
+ − 1390 #define DOUBLE_FAIL_STACK(fail_stack) \
+ − 1391 ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \
+ − 1392 ? 0 \
+ − 1393 : ((fail_stack).stack = (fail_stack_elt_t *) \
+ − 1394 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
+ − 1395 (fail_stack).size * sizeof (fail_stack_elt_t), \
+ − 1396 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
+ − 1397 \
+ − 1398 (fail_stack).stack == NULL \
+ − 1399 ? 0 \
+ − 1400 : ((fail_stack).size <<= 1, \
+ − 1401 1)))
+ − 1402
1333
+ − 1403 #if !defined (emacs) || !defined (REL_ALLOC)
+ − 1404 #define RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS()
+ − 1405 #else
+ − 1406 /* Don't change NULL pointers */
+ − 1407 #define ADD_IF_NZ(val) if (val) val += rmdp_offset
1346
+ − 1408 #define RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS() \
+ − 1409 do \
+ − 1410 { \
+ − 1411 Bytecount rmdp_offset = offset_post_relocation (lispobj, orig_buftext); \
+ − 1412 \
+ − 1413 if (rmdp_offset) \
+ − 1414 { \
+ − 1415 int i; \
+ − 1416 \
+ − 1417 ADD_IF_NZ (string1); \
+ − 1418 ADD_IF_NZ (string2); \
+ − 1419 ADD_IF_NZ (d); \
+ − 1420 ADD_IF_NZ (dend); \
+ − 1421 ADD_IF_NZ (end1); \
+ − 1422 ADD_IF_NZ (end2); \
+ − 1423 ADD_IF_NZ (end_match_1); \
+ − 1424 ADD_IF_NZ (end_match_2); \
+ − 1425 \
+ − 1426 if (bufp->re_ngroups) \
+ − 1427 { \
+ − 1428 for (i = 0; i < num_regs; i++) \
+ − 1429 { \
+ − 1430 ADD_IF_NZ (regstart[i]); \
+ − 1431 ADD_IF_NZ (regend[i]); \
+ − 1432 ADD_IF_NZ (old_regstart[i]); \
+ − 1433 ADD_IF_NZ (old_regend[i]); \
+ − 1434 ADD_IF_NZ (best_regstart[i]); \
+ − 1435 ADD_IF_NZ (best_regend[i]); \
+ − 1436 ADD_IF_NZ (reg_dummy[i]); \
+ − 1437 } \
+ − 1438 } \
+ − 1439 \
+ − 1440 ADD_IF_NZ (match_end); \
+ − 1441 } \
1333
+ − 1442 } while (0)
+ − 1443 #endif /* !defined (emacs) || !defined (REL_ALLOC) */
+ − 1444
+ − 1445 #if !defined (emacs) || !defined (REL_ALLOC)
+ − 1446 #define RE_SEARCH_RELOCATE_MOVEABLE_DATA_POINTERS()
+ − 1447 #else
1346
+ − 1448 #define RE_SEARCH_RELOCATE_MOVEABLE_DATA_POINTERS() \
+ − 1449 do \
+ − 1450 { \
+ − 1451 Bytecount rmdp_offset = offset_post_relocation (lispobj, orig_buftext); \
+ − 1452 \
+ − 1453 if (rmdp_offset) \
+ − 1454 { \
+ − 1455 ADD_IF_NZ (str1); \
+ − 1456 ADD_IF_NZ (str2); \
+ − 1457 ADD_IF_NZ (string1); \
+ − 1458 ADD_IF_NZ (string2); \
+ − 1459 ADD_IF_NZ (d); \
+ − 1460 } \
1333
+ − 1461 } while (0)
+ − 1462
+ − 1463 #endif /* emacs */
428
+ − 1464
+ − 1465 /* Push pointer POINTER on FAIL_STACK.
+ − 1466 Return 1 if was able to do so and 0 if ran out of memory allocating
+ − 1467 space to do so. */
+ − 1468 #define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
+ − 1469 ((FAIL_STACK_FULL () \
+ − 1470 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
+ − 1471 ? 0 \
+ − 1472 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
+ − 1473 1))
+ − 1474
+ − 1475 /* Push a pointer value onto the failure stack.
+ − 1476 Assumes the variable `fail_stack'. Probably should only
+ − 1477 be called from within `PUSH_FAILURE_POINT'. */
+ − 1478 #define PUSH_FAILURE_POINTER(item) \
+ − 1479 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
+ − 1480
+ − 1481 /* This pushes an integer-valued item onto the failure stack.
+ − 1482 Assumes the variable `fail_stack'. Probably should only
+ − 1483 be called from within `PUSH_FAILURE_POINT'. */
+ − 1484 #define PUSH_FAILURE_INT(item) \
+ − 1485 fail_stack.stack[fail_stack.avail++].integer = (item)
+ − 1486
+ − 1487 /* Push a fail_stack_elt_t value onto the failure stack.
+ − 1488 Assumes the variable `fail_stack'. Probably should only
+ − 1489 be called from within `PUSH_FAILURE_POINT'. */
+ − 1490 #define PUSH_FAILURE_ELT(item) \
+ − 1491 fail_stack.stack[fail_stack.avail++] = (item)
+ − 1492
+ − 1493 /* These three POP... operations complement the three PUSH... operations.
+ − 1494 All assume that `fail_stack' is nonempty. */
+ − 1495 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
+ − 1496 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
+ − 1497 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
+ − 1498
+ − 1499 /* Used to omit pushing failure point id's when we're not debugging. */
+ − 1500 #ifdef DEBUG
+ − 1501 #define DEBUG_PUSH PUSH_FAILURE_INT
+ − 1502 #define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
+ − 1503 #else
+ − 1504 #define DEBUG_PUSH(item)
+ − 1505 #define DEBUG_POP(item_addr)
+ − 1506 #endif
+ − 1507
+ − 1508
+ − 1509 /* Push the information about the state we will need
+ − 1510 if we ever fail back to it.
+ − 1511
+ − 1512 Requires variables fail_stack, regstart, regend, reg_info, and
+ − 1513 num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be
+ − 1514 declared.
+ − 1515
+ − 1516 Does `return FAILURE_CODE' if runs out of memory. */
+ − 1517
771
+ − 1518 #if !defined (REGEX_MALLOC) && !defined (REGEX_REL_ALLOC)
456
+ − 1519 #define DECLARE_DESTINATION char *destination
428
+ − 1520 #else
456
+ − 1521 #define DECLARE_DESTINATION DECLARE_NOTHING
428
+ − 1522 #endif
+ − 1523
+ − 1524 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
456
+ − 1525 do { \
+ − 1526 DECLARE_DESTINATION; \
+ − 1527 /* Must be int, so when we don't save any registers, the arithmetic \
+ − 1528 of 0 + -1 isn't done as unsigned. */ \
+ − 1529 int this_reg; \
428
+ − 1530 \
456
+ − 1531 DEBUG_STATEMENT (failure_id++); \
+ − 1532 DEBUG_STATEMENT (nfailure_points_pushed++); \
647
+ − 1533 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%d:\n", failure_id); \
+ − 1534 DEBUG_PRINT2 (" Before push, next avail: %ld\n", \
+ − 1535 (long) (fail_stack).avail); \
+ − 1536 DEBUG_PRINT2 (" size: %ld\n", \
+ − 1537 (long) (fail_stack).size); \
456
+ − 1538 \
+ − 1539 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
+ − 1540 DEBUG_PRINT2 (" available: %ld\n", \
+ − 1541 (long) REMAINING_AVAIL_SLOTS); \
428
+ − 1542 \
456
+ − 1543 /* Ensure we have enough space allocated for what we will push. */ \
+ − 1544 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
+ − 1545 { \
1333
+ − 1546 BEGIN_REGEX_MALLOC_OK (); \
456
+ − 1547 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1333
+ − 1548 { \
+ − 1549 END_REGEX_MALLOC_OK (); \
+ − 1550 UNBIND_REGEX_MALLOC_CHECK (); \
+ − 1551 return failure_code; \
+ − 1552 } \
+ − 1553 END_REGEX_MALLOC_OK (); \
647
+ − 1554 DEBUG_PRINT2 ("\n Doubled stack; size now: %ld\n", \
+ − 1555 (long) (fail_stack).size); \
456
+ − 1556 DEBUG_PRINT2 (" slots available: %ld\n", \
+ − 1557 (long) REMAINING_AVAIL_SLOTS); \
1333
+ − 1558 \
+ − 1559 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS (); \
456
+ − 1560 } \
428
+ − 1561 \
456
+ − 1562 /* Push the info, starting with the registers. */ \
+ − 1563 DEBUG_PRINT1 ("\n"); \
428
+ − 1564 \
456
+ − 1565 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
+ − 1566 this_reg++) \
+ − 1567 { \
+ − 1568 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
+ − 1569 DEBUG_STATEMENT (num_regs_pushed++); \
428
+ − 1570 \
456
+ − 1571 DEBUG_PRINT2 (" start: 0x%lx\n", (long) regstart[this_reg]); \
+ − 1572 PUSH_FAILURE_POINTER (regstart[this_reg]); \
+ − 1573 \
+ − 1574 DEBUG_PRINT2 (" end: 0x%lx\n", (long) regend[this_reg]); \
+ − 1575 PUSH_FAILURE_POINTER (regend[this_reg]); \
428
+ − 1576 \
456
+ − 1577 DEBUG_PRINT2 (" info: 0x%lx\n ", \
+ − 1578 * (long *) (®_info[this_reg])); \
+ − 1579 DEBUG_PRINT2 (" match_null=%d", \
+ − 1580 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
+ − 1581 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
+ − 1582 DEBUG_PRINT2 (" matched_something=%d", \
+ − 1583 MATCHED_SOMETHING (reg_info[this_reg])); \
+ − 1584 DEBUG_PRINT2 (" ever_matched_something=%d", \
+ − 1585 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
+ − 1586 DEBUG_PRINT1 ("\n"); \
+ − 1587 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
+ − 1588 } \
428
+ − 1589 \
456
+ − 1590 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg); \
+ − 1591 PUSH_FAILURE_INT (lowest_active_reg); \
428
+ − 1592 \
456
+ − 1593 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg); \
+ − 1594 PUSH_FAILURE_INT (highest_active_reg); \
428
+ − 1595 \
456
+ − 1596 DEBUG_PRINT2 (" Pushing pattern 0x%lx: \n", (long) pattern_place); \
+ − 1597 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
+ − 1598 PUSH_FAILURE_POINTER (pattern_place); \
428
+ − 1599 \
456
+ − 1600 DEBUG_PRINT2 (" Pushing string 0x%lx: `", (long) string_place); \
+ − 1601 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
+ − 1602 size2); \
+ − 1603 DEBUG_PRINT1 ("'\n"); \
+ − 1604 PUSH_FAILURE_POINTER (string_place); \
428
+ − 1605 \
456
+ − 1606 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
+ − 1607 DEBUG_PUSH (failure_id); \
+ − 1608 } while (0)
428
+ − 1609
+ − 1610 /* This is the number of items that are pushed and popped on the stack
+ − 1611 for each register. */
+ − 1612 #define NUM_REG_ITEMS 3
+ − 1613
+ − 1614 /* Individual items aside from the registers. */
+ − 1615 #ifdef DEBUG
+ − 1616 #define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
+ − 1617 #else
+ − 1618 #define NUM_NONREG_ITEMS 4
+ − 1619 #endif
+ − 1620
+ − 1621 /* We push at most this many items on the stack. */
+ − 1622 /* We used to use (num_regs - 1), which is the number of registers
+ − 1623 this regexp will save; but that was changed to 5
+ − 1624 to avoid stack overflow for a regexp with lots of parens. */
+ − 1625 #define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
+ − 1626
+ − 1627 /* We actually push this many items. */
+ − 1628 #define NUM_FAILURE_ITEMS \
+ − 1629 ((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS \
+ − 1630 + NUM_NONREG_ITEMS)
+ − 1631
+ − 1632 /* How many items can still be added to the stack without overflowing it. */
+ − 1633 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
+ − 1634
+ − 1635
+ − 1636 /* Pops what PUSH_FAIL_STACK pushes.
+ − 1637
+ − 1638 We restore into the parameters, all of which should be lvalues:
+ − 1639 STR -- the saved data position.
+ − 1640 PAT -- the saved pattern position.
+ − 1641 LOW_REG, HIGH_REG -- the highest and lowest active registers.
+ − 1642 REGSTART, REGEND -- arrays of string positions.
+ − 1643 REG_INFO -- array of information about each subexpression.
+ − 1644
+ − 1645 Also assumes the variables `fail_stack' and (if debugging), `bufp',
+ − 1646 `pend', `string1', `size1', `string2', and `size2'. */
+ − 1647
456
+ − 1648 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, \
+ − 1649 regstart, regend, reg_info) \
+ − 1650 do { \
428
+ − 1651 DEBUG_STATEMENT (fail_stack_elt_t ffailure_id;) \
+ − 1652 int this_reg; \
442
+ − 1653 const unsigned char *string_temp; \
428
+ − 1654 \
+ − 1655 assert (!FAIL_STACK_EMPTY ()); \
+ − 1656 \
+ − 1657 /* Remove failure points and point to how many regs pushed. */ \
+ − 1658 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
647
+ − 1659 DEBUG_PRINT2 (" Before pop, next avail: %ld\n", \
+ − 1660 (long) fail_stack.avail); \
+ − 1661 DEBUG_PRINT2 (" size: %ld\n", \
+ − 1662 (long) fail_stack.size); \
428
+ − 1663 \
+ − 1664 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
+ − 1665 \
+ − 1666 DEBUG_POP (&ffailure_id.integer); \
647
+ − 1667 DEBUG_PRINT2 (" Popping failure id: %d\n", \
+ − 1668 * (int *) &ffailure_id); \
428
+ − 1669 \
+ − 1670 /* If the saved string location is NULL, it came from an \
+ − 1671 on_failure_keep_string_jump opcode, and we want to throw away the \
+ − 1672 saved NULL, thus retaining our current position in the string. */ \
+ − 1673 string_temp = POP_FAILURE_POINTER (); \
+ − 1674 if (string_temp != NULL) \
446
+ − 1675 str = string_temp; \
428
+ − 1676 \
+ − 1677 DEBUG_PRINT2 (" Popping string 0x%lx: `", (long) str); \
+ − 1678 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
+ − 1679 DEBUG_PRINT1 ("'\n"); \
+ − 1680 \
+ − 1681 pat = (unsigned char *) POP_FAILURE_POINTER (); \
+ − 1682 DEBUG_PRINT2 (" Popping pattern 0x%lx: ", (long) pat); \
+ − 1683 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
+ − 1684 \
+ − 1685 /* Restore register info. */ \
647
+ − 1686 high_reg = POP_FAILURE_INT (); \
428
+ − 1687 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
+ − 1688 \
647
+ − 1689 low_reg = POP_FAILURE_INT (); \
428
+ − 1690 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
+ − 1691 \
+ − 1692 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
+ − 1693 { \
+ − 1694 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
+ − 1695 \
+ − 1696 reg_info[this_reg].word = POP_FAILURE_ELT (); \
+ − 1697 DEBUG_PRINT2 (" info: 0x%lx\n", \
+ − 1698 * (long *) ®_info[this_reg]); \
+ − 1699 \
446
+ − 1700 regend[this_reg] = POP_FAILURE_POINTER (); \
428
+ − 1701 DEBUG_PRINT2 (" end: 0x%lx\n", (long) regend[this_reg]); \
+ − 1702 \
446
+ − 1703 regstart[this_reg] = POP_FAILURE_POINTER (); \
428
+ − 1704 DEBUG_PRINT2 (" start: 0x%lx\n", (long) regstart[this_reg]); \
+ − 1705 } \
+ − 1706 \
+ − 1707 set_regs_matched_done = 0; \
+ − 1708 DEBUG_STATEMENT (nfailure_points_popped++); \
456
+ − 1709 } while (0) /* POP_FAILURE_POINT */
428
+ − 1710
+ − 1711
+ − 1712
+ − 1713 /* Structure for per-register (a.k.a. per-group) information.
+ − 1714 Other register information, such as the
+ − 1715 starting and ending positions (which are addresses), and the list of
+ − 1716 inner groups (which is a bits list) are maintained in separate
+ − 1717 variables.
+ − 1718
+ − 1719 We are making a (strictly speaking) nonportable assumption here: that
+ − 1720 the compiler will pack our bit fields into something that fits into
+ − 1721 the type of `word', i.e., is something that fits into one item on the
+ − 1722 failure stack. */
+ − 1723
+ − 1724 typedef union
+ − 1725 {
+ − 1726 fail_stack_elt_t word;
+ − 1727 struct
+ − 1728 {
+ − 1729 /* This field is one if this group can match the empty string,
+ − 1730 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
+ − 1731 #define MATCH_NULL_UNSET_VALUE 3
647
+ − 1732 unsigned int match_null_string_p : 2;
+ − 1733 unsigned int is_active : 1;
+ − 1734 unsigned int matched_something : 1;
+ − 1735 unsigned int ever_matched_something : 1;
428
+ − 1736 } bits;
+ − 1737 } register_info_type;
+ − 1738
+ − 1739 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
+ − 1740 #define IS_ACTIVE(R) ((R).bits.is_active)
+ − 1741 #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
+ − 1742 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
+ − 1743
+ − 1744
+ − 1745 /* Call this when have matched a real character; it sets `matched' flags
+ − 1746 for the subexpressions which we are currently inside. Also records
+ − 1747 that those subexprs have matched. */
+ − 1748 #define SET_REGS_MATCHED() \
+ − 1749 do \
+ − 1750 { \
+ − 1751 if (!set_regs_matched_done) \
+ − 1752 { \
647
+ − 1753 int r; \
428
+ − 1754 set_regs_matched_done = 1; \
+ − 1755 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
+ − 1756 { \
+ − 1757 MATCHED_SOMETHING (reg_info[r]) \
+ − 1758 = EVER_MATCHED_SOMETHING (reg_info[r]) \
+ − 1759 = 1; \
+ − 1760 } \
+ − 1761 } \
+ − 1762 } \
+ − 1763 while (0)
+ − 1764
+ − 1765 /* Registers are set to a sentinel when they haven't yet matched. */
446
+ − 1766 static unsigned char reg_unset_dummy;
428
+ − 1767 #define REG_UNSET_VALUE (®_unset_dummy)
+ − 1768 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
+ − 1769
+ − 1770 /* Subroutine declarations and macros for regex_compile. */
+ − 1771
+ − 1772 /* Fetch the next character in the uncompiled pattern---translating it
826
+ − 1773 if necessary. */
428
+ − 1774 #define PATFETCH(c) \
446
+ − 1775 do { \
+ − 1776 PATFETCH_RAW (c); \
826
+ − 1777 c = RE_TRANSLATE (c); \
428
+ − 1778 } while (0)
+ − 1779
+ − 1780 /* Fetch the next character in the uncompiled pattern, with no
+ − 1781 translation. */
+ − 1782 #define PATFETCH_RAW(c) \
+ − 1783 do {if (p == pend) return REG_EEND; \
+ − 1784 assert (p < pend); \
867
+ − 1785 c = itext_ichar (p); \
+ − 1786 INC_IBYTEPTR (p); \
428
+ − 1787 } while (0)
+ − 1788
+ − 1789 /* Go backwards one character in the pattern. */
867
+ − 1790 #define PATUNFETCH DEC_IBYTEPTR (p)
428
+ − 1791
+ − 1792 /* If `translate' is non-null, return translate[D], else just D. We
+ − 1793 cast the subscript to translate because some data is declared as
+ − 1794 `char *', to avoid warnings when a string constant is passed. But
+ − 1795 when we use a character as a subscript we must make it unsigned. */
826
+ − 1796 #define RE_TRANSLATE(d) \
+ − 1797 (TRANSLATE_P (translate) ? RE_TRANSLATE_1 (d) : (d))
428
+ − 1798
+ − 1799 /* Macros for outputting the compiled pattern into `buffer'. */
+ − 1800
+ − 1801 /* If the buffer isn't allocated when it comes in, use this. */
+ − 1802 #define INIT_BUF_SIZE 32
+ − 1803
+ − 1804 /* Make sure we have at least N more bytes of space in buffer. */
+ − 1805 #define GET_BUFFER_SPACE(n) \
647
+ − 1806 while (buf_end - bufp->buffer + (n) > (ptrdiff_t) bufp->allocated) \
428
+ − 1807 EXTEND_BUFFER ()
+ − 1808
+ − 1809 /* Make sure we have one more byte of buffer space and then add C to it. */
+ − 1810 #define BUF_PUSH(c) \
+ − 1811 do { \
+ − 1812 GET_BUFFER_SPACE (1); \
446
+ − 1813 *buf_end++ = (unsigned char) (c); \
428
+ − 1814 } while (0)
+ − 1815
+ − 1816
+ − 1817 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
+ − 1818 #define BUF_PUSH_2(c1, c2) \
+ − 1819 do { \
+ − 1820 GET_BUFFER_SPACE (2); \
446
+ − 1821 *buf_end++ = (unsigned char) (c1); \
+ − 1822 *buf_end++ = (unsigned char) (c2); \
428
+ − 1823 } while (0)
+ − 1824
+ − 1825
+ − 1826 /* As with BUF_PUSH_2, except for three bytes. */
+ − 1827 #define BUF_PUSH_3(c1, c2, c3) \
+ − 1828 do { \
+ − 1829 GET_BUFFER_SPACE (3); \
446
+ − 1830 *buf_end++ = (unsigned char) (c1); \
+ − 1831 *buf_end++ = (unsigned char) (c2); \
+ − 1832 *buf_end++ = (unsigned char) (c3); \
428
+ − 1833 } while (0)
+ − 1834
+ − 1835
+ − 1836 /* Store a jump with opcode OP at LOC to location TO. We store a
+ − 1837 relative address offset by the three bytes the jump itself occupies. */
+ − 1838 #define STORE_JUMP(op, loc, to) \
+ − 1839 store_op1 (op, loc, (to) - (loc) - 3)
+ − 1840
+ − 1841 /* Likewise, for a two-argument jump. */
+ − 1842 #define STORE_JUMP2(op, loc, to, arg) \
+ − 1843 store_op2 (op, loc, (to) - (loc) - 3, arg)
+ − 1844
446
+ − 1845 /* Like `STORE_JUMP', but for inserting. Assume `buf_end' is the
+ − 1846 buffer end. */
428
+ − 1847 #define INSERT_JUMP(op, loc, to) \
446
+ − 1848 insert_op1 (op, loc, (to) - (loc) - 3, buf_end)
+ − 1849
+ − 1850 /* Like `STORE_JUMP2', but for inserting. Assume `buf_end' is the
+ − 1851 buffer end. */
428
+ − 1852 #define INSERT_JUMP2(op, loc, to, arg) \
446
+ − 1853 insert_op2 (op, loc, (to) - (loc) - 3, arg, buf_end)
428
+ − 1854
+ − 1855
+ − 1856 /* This is not an arbitrary limit: the arguments which represent offsets
+ − 1857 into the pattern are two bytes long. So if 2^16 bytes turns out to
+ − 1858 be too small, many things would have to change. */
+ − 1859 #define MAX_BUF_SIZE (1L << 16)
+ − 1860
+ − 1861
+ − 1862 /* Extend the buffer by twice its current size via realloc and
+ − 1863 reset the pointers that pointed into the old block to point to the
+ − 1864 correct places in the new one. If extending the buffer results in it
+ − 1865 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1333
+ − 1866 #define EXTEND_BUFFER() \
+ − 1867 do { \
+ − 1868 re_char *old_buffer = bufp->buffer; \
+ − 1869 if (bufp->allocated == MAX_BUF_SIZE) \
+ − 1870 return REG_ESIZE; \
+ − 1871 bufp->allocated <<= 1; \
+ − 1872 if (bufp->allocated > MAX_BUF_SIZE) \
+ − 1873 bufp->allocated = MAX_BUF_SIZE; \
+ − 1874 bufp->buffer = \
+ − 1875 (unsigned char *) xrealloc (bufp->buffer, bufp->allocated); \
+ − 1876 if (bufp->buffer == NULL) \
+ − 1877 return REG_ESPACE; \
+ − 1878 /* If the buffer moved, move all the pointers into it. */ \
+ − 1879 if (old_buffer != bufp->buffer) \
+ − 1880 { \
+ − 1881 buf_end = (buf_end - old_buffer) + bufp->buffer; \
+ − 1882 begalt = (begalt - old_buffer) + bufp->buffer; \
+ − 1883 if (fixup_alt_jump) \
+ − 1884 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer; \
+ − 1885 if (laststart) \
+ − 1886 laststart = (laststart - old_buffer) + bufp->buffer; \
+ − 1887 if (pending_exact) \
+ − 1888 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
+ − 1889 } \
428
+ − 1890 } while (0)
+ − 1891
+ − 1892
+ − 1893 /* Since we have one byte reserved for the register number argument to
+ − 1894 {start,stop}_memory, the maximum number of groups we can report
+ − 1895 things about is what fits in that byte. */
+ − 1896 #define MAX_REGNUM 255
+ − 1897
+ − 1898 /* But patterns can have more than `MAX_REGNUM' registers. We just
502
+ − 1899 ignore the excess.
+ − 1900 #### not true! groups past this will fail in lots of ways, if we
+ − 1901 ever have to backtrack.
+ − 1902 */
647
+ − 1903 typedef int regnum_t;
428
+ − 1904
502
+ − 1905 #define INIT_REG_TRANSLATE_SIZE 5
428
+ − 1906
+ − 1907 /* Macros for the compile stack. */
+ − 1908
+ − 1909 /* Since offsets can go either forwards or backwards, this type needs to
+ − 1910 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
+ − 1911 typedef int pattern_offset_t;
+ − 1912
+ − 1913 typedef struct
+ − 1914 {
+ − 1915 pattern_offset_t begalt_offset;
+ − 1916 pattern_offset_t fixup_alt_jump;
+ − 1917 pattern_offset_t inner_group_offset;
+ − 1918 pattern_offset_t laststart_offset;
+ − 1919 regnum_t regnum;
+ − 1920 } compile_stack_elt_t;
+ − 1921
+ − 1922
+ − 1923 typedef struct
+ − 1924 {
+ − 1925 compile_stack_elt_t *stack;
647
+ − 1926 int size;
+ − 1927 int avail; /* Offset of next open position. */
428
+ − 1928 } compile_stack_type;
+ − 1929
+ − 1930
+ − 1931 #define INIT_COMPILE_STACK_SIZE 32
+ − 1932
+ − 1933 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
+ − 1934 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
+ − 1935
+ − 1936 /* The next available element. */
+ − 1937 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
+ − 1938
+ − 1939
+ − 1940 /* Set the bit for character C in a bit vector. */
+ − 1941 #define SET_LIST_BIT(c) \
446
+ − 1942 (buf_end[((unsigned char) (c)) / BYTEWIDTH] \
428
+ − 1943 |= 1 << (((unsigned char) c) % BYTEWIDTH))
+ − 1944
+ − 1945 #ifdef MULE
+ − 1946
+ − 1947 /* Set the "bit" for character C in a range table. */
+ − 1948 #define SET_RANGETAB_BIT(c) put_range_table (rtab, c, c, Qt)
+ − 1949
+ − 1950 /* Set the "bit" for character c in the appropriate table. */
+ − 1951 #define SET_EITHER_BIT(c) \
+ − 1952 do { \
+ − 1953 if (has_extended_chars) \
+ − 1954 SET_RANGETAB_BIT (c); \
+ − 1955 else \
+ − 1956 SET_LIST_BIT (c); \
+ − 1957 } while (0)
+ − 1958
+ − 1959 #else /* not MULE */
+ − 1960
+ − 1961 #define SET_EITHER_BIT(c) SET_LIST_BIT (c)
+ − 1962
+ − 1963 #endif
+ − 1964
+ − 1965
+ − 1966 /* Get the next unsigned number in the uncompiled pattern. */
+ − 1967 #define GET_UNSIGNED_NUMBER(num) \
+ − 1968 { if (p != pend) \
+ − 1969 { \
+ − 1970 PATFETCH (c); \
+ − 1971 while (ISDIGIT (c)) \
+ − 1972 { \
+ − 1973 if (num < 0) \
+ − 1974 num = 0; \
+ − 1975 num = num * 10 + c - '0'; \
+ − 1976 if (p == pend) \
+ − 1977 break; \
+ − 1978 PATFETCH (c); \
+ − 1979 } \
+ − 1980 } \
+ − 1981 }
+ − 1982
+ − 1983 #define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
+ − 1984
+ − 1985 #define IS_CHAR_CLASS(string) \
+ − 1986 (STREQ (string, "alpha") || STREQ (string, "upper") \
+ − 1987 || STREQ (string, "lower") || STREQ (string, "digit") \
+ − 1988 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
+ − 1989 || STREQ (string, "space") || STREQ (string, "print") \
+ − 1990 || STREQ (string, "punct") || STREQ (string, "graph") \
+ − 1991 || STREQ (string, "cntrl") || STREQ (string, "blank"))
+ − 1992
+ − 1993 static void store_op1 (re_opcode_t op, unsigned char *loc, int arg);
+ − 1994 static void store_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2);
+ − 1995 static void insert_op1 (re_opcode_t op, unsigned char *loc, int arg,
+ − 1996 unsigned char *end);
+ − 1997 static void insert_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2,
+ − 1998 unsigned char *end);
460
+ − 1999 static re_bool at_begline_loc_p (re_char *pattern, re_char *p,
428
+ − 2000 reg_syntax_t syntax);
460
+ − 2001 static re_bool at_endline_loc_p (re_char *p, re_char *pend, int syntax);
+ − 2002 static re_bool group_in_compile_stack (compile_stack_type compile_stack,
428
+ − 2003 regnum_t regnum);
446
+ − 2004 static reg_errcode_t compile_range (re_char **p_ptr, re_char *pend,
+ − 2005 RE_TRANSLATE_TYPE translate,
+ − 2006 reg_syntax_t syntax,
428
+ − 2007 unsigned char *b);
+ − 2008 #ifdef MULE
446
+ − 2009 static reg_errcode_t compile_extended_range (re_char **p_ptr,
+ − 2010 re_char *pend,
+ − 2011 RE_TRANSLATE_TYPE translate,
428
+ − 2012 reg_syntax_t syntax,
+ − 2013 Lisp_Object rtab);
+ − 2014 #endif /* MULE */
460
+ − 2015 static re_bool group_match_null_string_p (unsigned char **p,
428
+ − 2016 unsigned char *end,
+ − 2017 register_info_type *reg_info);
460
+ − 2018 static re_bool alt_match_null_string_p (unsigned char *p, unsigned char *end,
428
+ − 2019 register_info_type *reg_info);
460
+ − 2020 static re_bool common_op_match_null_string_p (unsigned char **p,
428
+ − 2021 unsigned char *end,
+ − 2022 register_info_type *reg_info);
826
+ − 2023 static int bcmp_translate (re_char *s1, re_char *s2,
+ − 2024 REGISTER int len, RE_TRANSLATE_TYPE translate
+ − 2025 #ifdef emacs
+ − 2026 , Internal_Format fmt, Lisp_Object lispobj
+ − 2027 #endif
+ − 2028 );
428
+ − 2029 static int re_match_2_internal (struct re_pattern_buffer *bufp,
446
+ − 2030 re_char *string1, int size1,
+ − 2031 re_char *string2, int size2, int pos,
826
+ − 2032 struct re_registers *regs, int stop
+ − 2033 RE_LISP_CONTEXT_ARGS_DECL);
428
+ − 2034
+ − 2035 #ifndef MATCH_MAY_ALLOCATE
+ − 2036
+ − 2037 /* If we cannot allocate large objects within re_match_2_internal,
+ − 2038 we make the fail stack and register vectors global.
+ − 2039 The fail stack, we grow to the maximum size when a regexp
+ − 2040 is compiled.
+ − 2041 The register vectors, we adjust in size each time we
+ − 2042 compile a regexp, according to the number of registers it needs. */
+ − 2043
+ − 2044 static fail_stack_type fail_stack;
+ − 2045
+ − 2046 /* Size with which the following vectors are currently allocated.
+ − 2047 That is so we can make them bigger as needed,
+ − 2048 but never make them smaller. */
+ − 2049 static int regs_allocated_size;
+ − 2050
446
+ − 2051 static re_char ** regstart, ** regend;
+ − 2052 static re_char ** old_regstart, ** old_regend;
+ − 2053 static re_char **best_regstart, **best_regend;
428
+ − 2054 static register_info_type *reg_info;
446
+ − 2055 static re_char **reg_dummy;
428
+ − 2056 static register_info_type *reg_info_dummy;
+ − 2057
+ − 2058 /* Make the register vectors big enough for NUM_REGS registers,
+ − 2059 but don't make them smaller. */
+ − 2060
+ − 2061 static
+ − 2062 regex_grow_registers (int num_regs)
+ − 2063 {
+ − 2064 if (num_regs > regs_allocated_size)
+ − 2065 {
551
+ − 2066 RETALLOC (regstart, num_regs, re_char *);
+ − 2067 RETALLOC (regend, num_regs, re_char *);
+ − 2068 RETALLOC (old_regstart, num_regs, re_char *);
+ − 2069 RETALLOC (old_regend, num_regs, re_char *);
+ − 2070 RETALLOC (best_regstart, num_regs, re_char *);
+ − 2071 RETALLOC (best_regend, num_regs, re_char *);
+ − 2072 RETALLOC (reg_info, num_regs, register_info_type);
+ − 2073 RETALLOC (reg_dummy, num_regs, re_char *);
+ − 2074 RETALLOC (reg_info_dummy, num_regs, register_info_type);
428
+ − 2075
+ − 2076 regs_allocated_size = num_regs;
+ − 2077 }
+ − 2078 }
+ − 2079
+ − 2080 #endif /* not MATCH_MAY_ALLOCATE */
+ − 2081
+ − 2082 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
+ − 2083 Returns one of error codes defined in `regex.h', or zero for success.
+ − 2084
+ − 2085 Assumes the `allocated' (and perhaps `buffer') and `translate'
+ − 2086 fields are set in BUFP on entry.
+ − 2087
+ − 2088 If it succeeds, results are put in BUFP (if it returns an error, the
+ − 2089 contents of BUFP are undefined):
+ − 2090 `buffer' is the compiled pattern;
+ − 2091 `syntax' is set to SYNTAX;
+ − 2092 `used' is set to the length of the compiled pattern;
+ − 2093 `fastmap_accurate' is zero;
502
+ − 2094 `re_ngroups' is the number of groups/subexpressions (including shy
+ − 2095 groups) in PATTERN;
+ − 2096 `re_nsub' is the number of non-shy groups in PATTERN;
428
+ − 2097 `not_bol' and `not_eol' are zero;
+ − 2098
+ − 2099 The `fastmap' and `newline_anchor' fields are neither
+ − 2100 examined nor set. */
+ − 2101
+ − 2102 /* Return, freeing storage we allocated. */
1726
+ − 2103 #define FREE_STACK_RETURN(value) \
+ − 2104 do \
+ − 2105 { \
+ − 2106 xfree (compile_stack.stack, compile_stack_elt_t *); \
+ − 2107 return value; \
1333
+ − 2108 } while (0)
428
+ − 2109
+ − 2110 static reg_errcode_t
446
+ − 2111 regex_compile (re_char *pattern, int size, reg_syntax_t syntax,
428
+ − 2112 struct re_pattern_buffer *bufp)
+ − 2113 {
+ − 2114 /* We fetch characters from PATTERN here. We declare these as int
+ − 2115 (or possibly long) so that chars above 127 can be used as
+ − 2116 array indices. The macros that fetch a character from the pattern
+ − 2117 make sure to coerce to unsigned char before assigning, so we won't
+ − 2118 get bitten by negative numbers here. */
+ − 2119 /* XEmacs change: used to be unsigned char. */
+ − 2120 REGISTER EMACS_INT c, c1;
+ − 2121
+ − 2122 /* A random temporary spot in PATTERN. */
446
+ − 2123 re_char *p1;
428
+ − 2124
+ − 2125 /* Points to the end of the buffer, where we should append. */
446
+ − 2126 REGISTER unsigned char *buf_end;
428
+ − 2127
+ − 2128 /* Keeps track of unclosed groups. */
+ − 2129 compile_stack_type compile_stack;
+ − 2130
+ − 2131 /* Points to the current (ending) position in the pattern. */
446
+ − 2132 re_char *p = pattern;
+ − 2133 re_char *pend = pattern + size;
428
+ − 2134
+ − 2135 /* How to translate the characters in the pattern. */
446
+ − 2136 RE_TRANSLATE_TYPE translate = bufp->translate;
428
+ − 2137
+ − 2138 /* Address of the count-byte of the most recently inserted `exactn'
+ − 2139 command. This makes it possible to tell if a new exact-match
+ − 2140 character can be added to that command or if the character requires
+ − 2141 a new `exactn' command. */
+ − 2142 unsigned char *pending_exact = 0;
+ − 2143
+ − 2144 /* Address of start of the most recently finished expression.
+ − 2145 This tells, e.g., postfix * where to find the start of its
+ − 2146 operand. Reset at the beginning of groups and alternatives. */
+ − 2147 unsigned char *laststart = 0;
+ − 2148
+ − 2149 /* Address of beginning of regexp, or inside of last group. */
+ − 2150 unsigned char *begalt;
+ − 2151
+ − 2152 /* Place in the uncompiled pattern (i.e., the {) to
+ − 2153 which to go back if the interval is invalid. */
446
+ − 2154 re_char *beg_interval;
428
+ − 2155
+ − 2156 /* Address of the place where a forward jump should go to the end of
+ − 2157 the containing expression. Each alternative of an `or' -- except the
+ − 2158 last -- ends with a forward jump of this sort. */
+ − 2159 unsigned char *fixup_alt_jump = 0;
+ − 2160
+ − 2161 /* Counts open-groups as they are encountered. Remembered for the
+ − 2162 matching close-group on the compile stack, so the same register
+ − 2163 number is put in the stop_memory as the start_memory. */
+ − 2164 regnum_t regnum = 0;
+ − 2165
+ − 2166 #ifdef DEBUG
+ − 2167 DEBUG_PRINT1 ("\nCompiling pattern: ");
+ − 2168 if (debug)
+ − 2169 {
647
+ − 2170 int debug_count;
428
+ − 2171
+ − 2172 for (debug_count = 0; debug_count < size; debug_count++)
+ − 2173 putchar (pattern[debug_count]);
+ − 2174 putchar ('\n');
+ − 2175 }
+ − 2176 #endif /* DEBUG */
+ − 2177
+ − 2178 /* Initialize the compile stack. */
+ − 2179 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
+ − 2180 if (compile_stack.stack == NULL)
+ − 2181 return REG_ESPACE;
+ − 2182
+ − 2183 compile_stack.size = INIT_COMPILE_STACK_SIZE;
+ − 2184 compile_stack.avail = 0;
+ − 2185
+ − 2186 /* Initialize the pattern buffer. */
+ − 2187 bufp->syntax = syntax;
+ − 2188 bufp->fastmap_accurate = 0;
+ − 2189 bufp->not_bol = bufp->not_eol = 0;
+ − 2190
+ − 2191 /* Set `used' to zero, so that if we return an error, the pattern
+ − 2192 printer (for debugging) will think there's no pattern. We reset it
+ − 2193 at the end. */
+ − 2194 bufp->used = 0;
+ − 2195
+ − 2196 /* Always count groups, whether or not bufp->no_sub is set. */
+ − 2197 bufp->re_nsub = 0;
502
+ − 2198 bufp->re_ngroups = 0;
+ − 2199
+ − 2200 bufp->warned_about_incompatible_back_references = 0;
+ − 2201
+ − 2202 if (bufp->external_to_internal_register == 0)
+ − 2203 {
+ − 2204 bufp->external_to_internal_register_size = INIT_REG_TRANSLATE_SIZE;
+ − 2205 RETALLOC (bufp->external_to_internal_register,
+ − 2206 bufp->external_to_internal_register_size,
+ − 2207 int);
+ − 2208 }
+ − 2209
+ − 2210 {
+ − 2211 int i;
+ − 2212
+ − 2213 bufp->external_to_internal_register[0] = 0;
+ − 2214 for (i = 1; i < bufp->external_to_internal_register_size; i++)
+ − 2215 bufp->external_to_internal_register[i] = (int) 0xDEADBEEF;
+ − 2216 }
428
+ − 2217
+ − 2218 #if !defined (emacs) && !defined (SYNTAX_TABLE)
+ − 2219 /* Initialize the syntax table. */
+ − 2220 init_syntax_once ();
+ − 2221 #endif
+ − 2222
+ − 2223 if (bufp->allocated == 0)
+ − 2224 {
+ − 2225 if (bufp->buffer)
+ − 2226 { /* If zero allocated, but buffer is non-null, try to realloc
+ − 2227 enough space. This loses if buffer's address is bogus, but
+ − 2228 that is the user's responsibility. */
+ − 2229 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
+ − 2230 }
+ − 2231 else
+ − 2232 { /* Caller did not allocate a buffer. Do it for them. */
+ − 2233 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
+ − 2234 }
+ − 2235 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
+ − 2236
+ − 2237 bufp->allocated = INIT_BUF_SIZE;
+ − 2238 }
+ − 2239
446
+ − 2240 begalt = buf_end = bufp->buffer;
428
+ − 2241
+ − 2242 /* Loop through the uncompiled pattern until we're at the end. */
+ − 2243 while (p != pend)
+ − 2244 {
+ − 2245 PATFETCH (c);
+ − 2246
+ − 2247 switch (c)
+ − 2248 {
+ − 2249 case '^':
+ − 2250 {
+ − 2251 if ( /* If at start of pattern, it's an operator. */
+ − 2252 p == pattern + 1
+ − 2253 /* If context independent, it's an operator. */
+ − 2254 || syntax & RE_CONTEXT_INDEP_ANCHORS
+ − 2255 /* Otherwise, depends on what's come before. */
+ − 2256 || at_begline_loc_p (pattern, p, syntax))
+ − 2257 BUF_PUSH (begline);
+ − 2258 else
+ − 2259 goto normal_char;
+ − 2260 }
+ − 2261 break;
+ − 2262
+ − 2263
+ − 2264 case '$':
+ − 2265 {
+ − 2266 if ( /* If at end of pattern, it's an operator. */
+ − 2267 p == pend
+ − 2268 /* If context independent, it's an operator. */
+ − 2269 || syntax & RE_CONTEXT_INDEP_ANCHORS
+ − 2270 /* Otherwise, depends on what's next. */
+ − 2271 || at_endline_loc_p (p, pend, syntax))
+ − 2272 BUF_PUSH (endline);
+ − 2273 else
+ − 2274 goto normal_char;
+ − 2275 }
+ − 2276 break;
+ − 2277
+ − 2278
+ − 2279 case '+':
+ − 2280 case '?':
+ − 2281 if ((syntax & RE_BK_PLUS_QM)
+ − 2282 || (syntax & RE_LIMITED_OPS))
+ − 2283 goto normal_char;
+ − 2284 handle_plus:
+ − 2285 case '*':
+ − 2286 /* If there is no previous pattern... */
+ − 2287 if (!laststart)
+ − 2288 {
+ − 2289 if (syntax & RE_CONTEXT_INVALID_OPS)
+ − 2290 FREE_STACK_RETURN (REG_BADRPT);
+ − 2291 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
+ − 2292 goto normal_char;
+ − 2293 }
+ − 2294
+ − 2295 {
+ − 2296 /* true means zero/many matches are allowed. */
460
+ − 2297 re_bool zero_times_ok = c != '+';
+ − 2298 re_bool many_times_ok = c != '?';
428
+ − 2299
+ − 2300 /* true means match shortest string possible. */
460
+ − 2301 re_bool minimal = false;
428
+ − 2302
+ − 2303 /* If there is a sequence of repetition chars, collapse it
+ − 2304 down to just one (the right one). We can't combine
+ − 2305 interval operators with these because of, e.g., `a{2}*',
+ − 2306 which should only match an even number of `a's. */
+ − 2307 while (p != pend)
+ − 2308 {
+ − 2309 PATFETCH (c);
+ − 2310
+ − 2311 if (c == '*' || (!(syntax & RE_BK_PLUS_QM)
+ − 2312 && (c == '+' || c == '?')))
+ − 2313 ;
+ − 2314
+ − 2315 else if (syntax & RE_BK_PLUS_QM && c == '\\')
+ − 2316 {
+ − 2317 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
+ − 2318
+ − 2319 PATFETCH (c1);
+ − 2320 if (!(c1 == '+' || c1 == '?'))
+ − 2321 {
+ − 2322 PATUNFETCH;
+ − 2323 PATUNFETCH;
+ − 2324 break;
+ − 2325 }
+ − 2326
+ − 2327 c = c1;
+ − 2328 }
+ − 2329 else
+ − 2330 {
+ − 2331 PATUNFETCH;
+ − 2332 break;
+ − 2333 }
+ − 2334
+ − 2335 /* If we get here, we found another repeat character. */
+ − 2336 if (!(syntax & RE_NO_MINIMAL_MATCHING))
+ − 2337 {
440
+ − 2338 /* "*?" and "+?" and "??" are okay (and mean match
+ − 2339 minimally), but other sequences (such as "*??" and
+ − 2340 "+++") are rejected (reserved for future use). */
428
+ − 2341 if (minimal || c != '?')
+ − 2342 FREE_STACK_RETURN (REG_BADRPT);
+ − 2343 minimal = true;
+ − 2344 }
+ − 2345 else
+ − 2346 {
+ − 2347 zero_times_ok |= c != '+';
+ − 2348 many_times_ok |= c != '?';
+ − 2349 }
+ − 2350 }
+ − 2351
+ − 2352 /* Star, etc. applied to an empty pattern is equivalent
+ − 2353 to an empty pattern. */
+ − 2354 if (!laststart)
+ − 2355 break;
+ − 2356
+ − 2357 /* Now we know whether zero matches is allowed
+ − 2358 and whether two or more matches is allowed
+ − 2359 and whether we want minimal or maximal matching. */
+ − 2360 if (minimal)
+ − 2361 {
+ − 2362 if (!many_times_ok)
+ − 2363 {
+ − 2364 /* "a??" becomes:
+ − 2365 0: /on_failure_jump to 6
+ − 2366 3: /jump to 9
+ − 2367 6: /exactn/1/A
+ − 2368 9: end of pattern.
+ − 2369 */
+ − 2370 GET_BUFFER_SPACE (6);
446
+ − 2371 INSERT_JUMP (jump, laststart, buf_end + 3);
+ − 2372 buf_end += 3;
428
+ − 2373 INSERT_JUMP (on_failure_jump, laststart, laststart + 6);
446
+ − 2374 buf_end += 3;
428
+ − 2375 }
+ − 2376 else if (zero_times_ok)
+ − 2377 {
+ − 2378 /* "a*?" becomes:
+ − 2379 0: /jump to 6
+ − 2380 3: /exactn/1/A
+ − 2381 6: /on_failure_jump to 3
+ − 2382 9: end of pattern.
+ − 2383 */
+ − 2384 GET_BUFFER_SPACE (6);
446
+ − 2385 INSERT_JUMP (jump, laststart, buf_end + 3);
+ − 2386 buf_end += 3;
+ − 2387 STORE_JUMP (on_failure_jump, buf_end, laststart + 3);
+ − 2388 buf_end += 3;
428
+ − 2389 }
+ − 2390 else
+ − 2391 {
+ − 2392 /* "a+?" becomes:
+ − 2393 0: /exactn/1/A
+ − 2394 3: /on_failure_jump to 0
+ − 2395 6: end of pattern.
+ − 2396 */
+ − 2397 GET_BUFFER_SPACE (3);
446
+ − 2398 STORE_JUMP (on_failure_jump, buf_end, laststart);
+ − 2399 buf_end += 3;
428
+ − 2400 }
+ − 2401 }
+ − 2402 else
+ − 2403 {
+ − 2404 /* Are we optimizing this jump? */
460
+ − 2405 re_bool keep_string_p = false;
428
+ − 2406
+ − 2407 if (many_times_ok)
446
+ − 2408 { /* More than one repetition is allowed, so put in
+ − 2409 at the end a backward relative jump from
+ − 2410 `buf_end' to before the next jump we're going
+ − 2411 to put in below (which jumps from laststart to
+ − 2412 after this jump).
428
+ − 2413
+ − 2414 But if we are at the `*' in the exact sequence `.*\n',
+ − 2415 insert an unconditional jump backwards to the .,
+ − 2416 instead of the beginning of the loop. This way we only
+ − 2417 push a failure point once, instead of every time
+ − 2418 through the loop. */
+ − 2419 assert (p - 1 > pattern);
+ − 2420
+ − 2421 /* Allocate the space for the jump. */
+ − 2422 GET_BUFFER_SPACE (3);
+ − 2423
+ − 2424 /* We know we are not at the first character of the
+ − 2425 pattern, because laststart was nonzero. And we've
+ − 2426 already incremented `p', by the way, to be the
+ − 2427 character after the `*'. Do we have to do something
+ − 2428 analogous here for null bytes, because of
+ − 2429 RE_DOT_NOT_NULL? */
446
+ − 2430 if (*(p - 2) == '.'
428
+ − 2431 && zero_times_ok
446
+ − 2432 && p < pend && *p == '\n'
428
+ − 2433 && !(syntax & RE_DOT_NEWLINE))
+ − 2434 { /* We have .*\n. */
446
+ − 2435 STORE_JUMP (jump, buf_end, laststart);
428
+ − 2436 keep_string_p = true;
+ − 2437 }
+ − 2438 else
+ − 2439 /* Anything else. */
446
+ − 2440 STORE_JUMP (maybe_pop_jump, buf_end, laststart - 3);
428
+ − 2441
+ − 2442 /* We've added more stuff to the buffer. */
446
+ − 2443 buf_end += 3;
428
+ − 2444 }
+ − 2445
446
+ − 2446 /* On failure, jump from laststart to buf_end + 3,
+ − 2447 which will be the end of the buffer after this jump
+ − 2448 is inserted. */
428
+ − 2449 GET_BUFFER_SPACE (3);
+ − 2450 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
+ − 2451 : on_failure_jump,
446
+ − 2452 laststart, buf_end + 3);
+ − 2453 buf_end += 3;
428
+ − 2454
+ − 2455 if (!zero_times_ok)
+ − 2456 {
+ − 2457 /* At least one repetition is required, so insert a
+ − 2458 `dummy_failure_jump' before the initial
+ − 2459 `on_failure_jump' instruction of the loop. This
+ − 2460 effects a skip over that instruction the first time
+ − 2461 we hit that loop. */
+ − 2462 GET_BUFFER_SPACE (3);
+ − 2463 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
446
+ − 2464 buf_end += 3;
428
+ − 2465 }
+ − 2466 }
+ − 2467 pending_exact = 0;
+ − 2468 }
+ − 2469 break;
+ − 2470
+ − 2471
+ − 2472 case '.':
446
+ − 2473 laststart = buf_end;
428
+ − 2474 BUF_PUSH (anychar);
+ − 2475 break;
+ − 2476
+ − 2477
+ − 2478 case '[':
+ − 2479 {
+ − 2480 /* XEmacs change: this whole section */
460
+ − 2481 re_bool had_char_class = false;
428
+ − 2482 #ifdef MULE
460
+ − 2483 re_bool has_extended_chars = false;
428
+ − 2484 REGISTER Lisp_Object rtab = Qnil;
+ − 2485 #endif
+ − 2486
+ − 2487 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
+ − 2488
+ − 2489 /* Ensure that we have enough space to push a charset: the
+ − 2490 opcode, the length count, and the bitset; 34 bytes in all. */
+ − 2491 GET_BUFFER_SPACE (34);
+ − 2492
446
+ − 2493 laststart = buf_end;
428
+ − 2494
+ − 2495 /* We test `*p == '^' twice, instead of using an if
+ − 2496 statement, so we only need one BUF_PUSH. */
+ − 2497 BUF_PUSH (*p == '^' ? charset_not : charset);
+ − 2498 if (*p == '^')
+ − 2499 p++;
+ − 2500
+ − 2501 /* Remember the first position in the bracket expression. */
+ − 2502 p1 = p;
+ − 2503
+ − 2504 /* Push the number of bytes in the bitmap. */
+ − 2505 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
+ − 2506
+ − 2507 /* Clear the whole map. */
446
+ − 2508 memset (buf_end, 0, (1 << BYTEWIDTH) / BYTEWIDTH);
428
+ − 2509
+ − 2510 /* charset_not matches newline according to a syntax bit. */
446
+ − 2511 if ((re_opcode_t) buf_end[-2] == charset_not
428
+ − 2512 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
+ − 2513 SET_LIST_BIT ('\n');
+ − 2514
+ − 2515 #ifdef MULE
+ − 2516 start_over_with_extended:
+ − 2517 if (has_extended_chars)
+ − 2518 {
+ − 2519 /* There are extended chars here, which means we need to start
+ − 2520 over and shift to unified range-table format. */
446
+ − 2521 if (buf_end[-2] == charset)
+ − 2522 buf_end[-2] = charset_mule;
428
+ − 2523 else
446
+ − 2524 buf_end[-2] = charset_mule_not;
+ − 2525 buf_end--;
428
+ − 2526 p = p1; /* go back to the beginning of the charset, after
+ − 2527 a possible ^. */
+ − 2528 rtab = Vthe_lisp_rangetab;
+ − 2529 Fclear_range_table (rtab);
+ − 2530
+ − 2531 /* charset_not matches newline according to a syntax bit. */
446
+ − 2532 if ((re_opcode_t) buf_end[-1] == charset_mule_not
428
+ − 2533 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
+ − 2534 SET_EITHER_BIT ('\n');
+ − 2535 }
+ − 2536 #endif /* MULE */
+ − 2537
+ − 2538 /* Read in characters and ranges, setting map bits. */
+ − 2539 for (;;)
+ − 2540 {
+ − 2541 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
+ − 2542
446
+ − 2543 PATFETCH (c);
428
+ − 2544
+ − 2545 #ifdef MULE
+ − 2546 if (c >= 0x80 && !has_extended_chars)
+ − 2547 {
+ − 2548 has_extended_chars = 1;
+ − 2549 /* Frumble-bumble, we've found some extended chars.
+ − 2550 Need to start over, process everything using
+ − 2551 the general extended-char mechanism, and need
+ − 2552 to use charset_mule and charset_mule_not instead
+ − 2553 of charset and charset_not. */
+ − 2554 goto start_over_with_extended;
+ − 2555 }
+ − 2556 #endif /* MULE */
+ − 2557 /* \ might escape characters inside [...] and [^...]. */
+ − 2558 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
+ − 2559 {
+ − 2560 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
+ − 2561
446
+ − 2562 PATFETCH (c1);
428
+ − 2563 #ifdef MULE
+ − 2564 if (c1 >= 0x80 && !has_extended_chars)
+ − 2565 {
+ − 2566 has_extended_chars = 1;
+ − 2567 goto start_over_with_extended;
+ − 2568 }
+ − 2569 #endif /* MULE */
+ − 2570 SET_EITHER_BIT (c1);
+ − 2571 continue;
+ − 2572 }
+ − 2573
+ − 2574 /* Could be the end of the bracket expression. If it's
+ − 2575 not (i.e., when the bracket expression is `[]' so
+ − 2576 far), the ']' character bit gets set way below. */
+ − 2577 if (c == ']' && p != p1 + 1)
+ − 2578 break;
+ − 2579
+ − 2580 /* Look ahead to see if it's a range when the last thing
+ − 2581 was a character class. */
+ − 2582 if (had_char_class && c == '-' && *p != ']')
+ − 2583 FREE_STACK_RETURN (REG_ERANGE);
+ − 2584
+ − 2585 /* Look ahead to see if it's a range when the last thing
+ − 2586 was a character: if this is a hyphen not at the
+ − 2587 beginning or the end of a list, then it's the range
+ − 2588 operator. */
+ − 2589 if (c == '-'
+ − 2590 && !(p - 2 >= pattern && p[-2] == '[')
446
+ − 2591 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
428
+ − 2592 && *p != ']')
+ − 2593 {
+ − 2594 reg_errcode_t ret;
+ − 2595
+ − 2596 #ifdef MULE
+ − 2597 if (* (unsigned char *) p >= 0x80 && !has_extended_chars)
+ − 2598 {
+ − 2599 has_extended_chars = 1;
+ − 2600 goto start_over_with_extended;
+ − 2601 }
+ − 2602 if (has_extended_chars)
+ − 2603 ret = compile_extended_range (&p, pend, translate,
+ − 2604 syntax, rtab);
+ − 2605 else
+ − 2606 #endif /* MULE */
446
+ − 2607 ret = compile_range (&p, pend, translate, syntax, buf_end);
428
+ − 2608 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
+ − 2609 }
+ − 2610
+ − 2611 else if (p[0] == '-' && p[1] != ']')
+ − 2612 { /* This handles ranges made up of characters only. */
+ − 2613 reg_errcode_t ret;
+ − 2614
+ − 2615 /* Move past the `-'. */
+ − 2616 PATFETCH (c1);
+ − 2617
+ − 2618 #ifdef MULE
+ − 2619 if (* (unsigned char *) p >= 0x80 && !has_extended_chars)
+ − 2620 {
+ − 2621 has_extended_chars = 1;
+ − 2622 goto start_over_with_extended;
+ − 2623 }
+ − 2624 if (has_extended_chars)
+ − 2625 ret = compile_extended_range (&p, pend, translate,
+ − 2626 syntax, rtab);
+ − 2627 else
+ − 2628 #endif /* MULE */
446
+ − 2629 ret = compile_range (&p, pend, translate, syntax, buf_end);
428
+ − 2630 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
+ − 2631 }
+ − 2632
+ − 2633 /* See if we're at the beginning of a possible character
+ − 2634 class. */
+ − 2635
+ − 2636 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
+ − 2637 { /* Leave room for the null. */
+ − 2638 char str[CHAR_CLASS_MAX_LENGTH + 1];
+ − 2639
+ − 2640 PATFETCH (c);
+ − 2641 c1 = 0;
+ − 2642
+ − 2643 /* If pattern is `[[:'. */
+ − 2644 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
+ − 2645
+ − 2646 for (;;)
+ − 2647 {
446
+ − 2648 /* #### This code is unused.
+ − 2649 Correctness is not checked after TRT
+ − 2650 table change. */
428
+ − 2651 PATFETCH (c);
+ − 2652 if (c == ':' || c == ']' || p == pend
+ − 2653 || c1 == CHAR_CLASS_MAX_LENGTH)
+ − 2654 break;
442
+ − 2655 str[c1++] = (char) c;
428
+ − 2656 }
+ − 2657 str[c1] = '\0';
+ − 2658
446
+ − 2659 /* If isn't a word bracketed by `[:' and `:]':
428
+ − 2660 undo the ending character, the letters, and leave
+ − 2661 the leading `:' and `[' (but set bits for them). */
+ − 2662 if (c == ':' && *p == ']')
+ − 2663 {
+ − 2664 int ch;
460
+ − 2665 re_bool is_alnum = STREQ (str, "alnum");
+ − 2666 re_bool is_alpha = STREQ (str, "alpha");
+ − 2667 re_bool is_blank = STREQ (str, "blank");
+ − 2668 re_bool is_cntrl = STREQ (str, "cntrl");
+ − 2669 re_bool is_digit = STREQ (str, "digit");
+ − 2670 re_bool is_graph = STREQ (str, "graph");
+ − 2671 re_bool is_lower = STREQ (str, "lower");
+ − 2672 re_bool is_print = STREQ (str, "print");
+ − 2673 re_bool is_punct = STREQ (str, "punct");
+ − 2674 re_bool is_space = STREQ (str, "space");
+ − 2675 re_bool is_upper = STREQ (str, "upper");
+ − 2676 re_bool is_xdigit = STREQ (str, "xdigit");
428
+ − 2677
+ − 2678 if (!IS_CHAR_CLASS (str))
+ − 2679 FREE_STACK_RETURN (REG_ECTYPE);
+ − 2680
+ − 2681 /* Throw away the ] at the end of the character
+ − 2682 class. */
+ − 2683 PATFETCH (c);
+ − 2684
+ − 2685 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
+ − 2686
+ − 2687 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
+ − 2688 {
+ − 2689 /* This was split into 3 if's to
+ − 2690 avoid an arbitrary limit in some compiler. */
+ − 2691 if ( (is_alnum && ISALNUM (ch))
+ − 2692 || (is_alpha && ISALPHA (ch))
+ − 2693 || (is_blank && ISBLANK (ch))
+ − 2694 || (is_cntrl && ISCNTRL (ch)))
+ − 2695 SET_EITHER_BIT (ch);
+ − 2696 if ( (is_digit && ISDIGIT (ch))
+ − 2697 || (is_graph && ISGRAPH (ch))
+ − 2698 || (is_lower && ISLOWER (ch))
+ − 2699 || (is_print && ISPRINT (ch)))
+ − 2700 SET_EITHER_BIT (ch);
+ − 2701 if ( (is_punct && ISPUNCT (ch))
+ − 2702 || (is_space && ISSPACE (ch))
+ − 2703 || (is_upper && ISUPPER (ch))
+ − 2704 || (is_xdigit && ISXDIGIT (ch)))
+ − 2705 SET_EITHER_BIT (ch);
+ − 2706 }
+ − 2707 had_char_class = true;
+ − 2708 }
+ − 2709 else
+ − 2710 {
+ − 2711 c1++;
+ − 2712 while (c1--)
+ − 2713 PATUNFETCH;
+ − 2714 SET_EITHER_BIT ('[');
+ − 2715 SET_EITHER_BIT (':');
+ − 2716 had_char_class = false;
+ − 2717 }
+ − 2718 }
+ − 2719 else
+ − 2720 {
+ − 2721 had_char_class = false;
+ − 2722 SET_EITHER_BIT (c);
+ − 2723 }
+ − 2724 }
+ − 2725
+ − 2726 #ifdef MULE
+ − 2727 if (has_extended_chars)
+ − 2728 {
+ − 2729 /* We have a range table, not a bit vector. */
+ − 2730 int bytes_needed =
+ − 2731 unified_range_table_bytes_needed (rtab);
+ − 2732 GET_BUFFER_SPACE (bytes_needed);
446
+ − 2733 unified_range_table_copy_data (rtab, buf_end);
+ − 2734 buf_end += unified_range_table_bytes_used (buf_end);
428
+ − 2735 break;
+ − 2736 }
+ − 2737 #endif /* MULE */
+ − 2738 /* Discard any (non)matching list bytes that are all 0 at the
+ − 2739 end of the map. Decrease the map-length byte too. */
446
+ − 2740 while ((int) buf_end[-1] > 0 && buf_end[buf_end[-1] - 1] == 0)
+ − 2741 buf_end[-1]--;
+ − 2742 buf_end += buf_end[-1];
428
+ − 2743 }
+ − 2744 break;
+ − 2745
+ − 2746
+ − 2747 case '(':
+ − 2748 if (syntax & RE_NO_BK_PARENS)
+ − 2749 goto handle_open;
+ − 2750 else
+ − 2751 goto normal_char;
+ − 2752
+ − 2753
+ − 2754 case ')':
+ − 2755 if (syntax & RE_NO_BK_PARENS)
+ − 2756 goto handle_close;
+ − 2757 else
+ − 2758 goto normal_char;
+ − 2759
+ − 2760
+ − 2761 case '\n':
+ − 2762 if (syntax & RE_NEWLINE_ALT)
+ − 2763 goto handle_alt;
+ − 2764 else
+ − 2765 goto normal_char;
+ − 2766
+ − 2767
+ − 2768 case '|':
+ − 2769 if (syntax & RE_NO_BK_VBAR)
+ − 2770 goto handle_alt;
+ − 2771 else
+ − 2772 goto normal_char;
+ − 2773
+ − 2774
+ − 2775 case '{':
+ − 2776 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
+ − 2777 goto handle_interval;
+ − 2778 else
+ − 2779 goto normal_char;
+ − 2780
+ − 2781
+ − 2782 case '\\':
+ − 2783 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
+ − 2784
+ − 2785 /* Do not translate the character after the \, so that we can
+ − 2786 distinguish, e.g., \B from \b, even if we normally would
+ − 2787 translate, e.g., B to b. */
+ − 2788 PATFETCH_RAW (c);
+ − 2789
+ − 2790 switch (c)
+ − 2791 {
+ − 2792 case '(':
+ − 2793 if (syntax & RE_NO_BK_PARENS)
+ − 2794 goto normal_backslash;
+ − 2795
+ − 2796 handle_open:
+ − 2797 {
+ − 2798 regnum_t r;
502
+ − 2799 int shy = 0;
428
+ − 2800
+ − 2801 if (!(syntax & RE_NO_SHY_GROUPS)
+ − 2802 && p != pend
446
+ − 2803 && *p == '?')
428
+ − 2804 {
+ − 2805 p++;
446
+ − 2806 PATFETCH (c);
428
+ − 2807 switch (c)
+ − 2808 {
+ − 2809 case ':': /* shy groups */
502
+ − 2810 shy = 1;
428
+ − 2811 break;
+ − 2812
+ − 2813 /* All others are reserved for future constructs. */
+ − 2814 default:
+ − 2815 FREE_STACK_RETURN (REG_BADPAT);
+ − 2816 }
+ − 2817 }
502
+ − 2818
+ − 2819 r = ++regnum;
+ − 2820 bufp->re_ngroups++;
+ − 2821 if (!shy)
+ − 2822 {
+ − 2823 bufp->re_nsub++;
+ − 2824 while (bufp->external_to_internal_register_size <=
+ − 2825 bufp->re_nsub)
+ − 2826 {
+ − 2827 int i;
+ − 2828 int old_size =
+ − 2829 bufp->external_to_internal_register_size;
+ − 2830 bufp->external_to_internal_register_size += 5;
+ − 2831 RETALLOC (bufp->external_to_internal_register,
+ − 2832 bufp->external_to_internal_register_size,
+ − 2833 int);
+ − 2834 /* debugging */
+ − 2835 for (i = old_size;
+ − 2836 i < bufp->external_to_internal_register_size; i++)
+ − 2837 bufp->external_to_internal_register[i] =
+ − 2838 (int) 0xDEADBEEF;
+ − 2839 }
+ − 2840
+ − 2841 bufp->external_to_internal_register[bufp->re_nsub] =
+ − 2842 bufp->re_ngroups;
+ − 2843 }
428
+ − 2844
+ − 2845 if (COMPILE_STACK_FULL)
+ − 2846 {
+ − 2847 RETALLOC (compile_stack.stack, compile_stack.size << 1,
+ − 2848 compile_stack_elt_t);
+ − 2849 if (compile_stack.stack == NULL) return REG_ESPACE;
+ − 2850
+ − 2851 compile_stack.size <<= 1;
+ − 2852 }
+ − 2853
+ − 2854 /* These are the values to restore when we hit end of this
+ − 2855 group. They are all relative offsets, so that if the
+ − 2856 whole pattern moves because of realloc, they will still
+ − 2857 be valid. */
+ − 2858 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
+ − 2859 COMPILE_STACK_TOP.fixup_alt_jump
+ − 2860 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
446
+ − 2861 COMPILE_STACK_TOP.laststart_offset = buf_end - bufp->buffer;
428
+ − 2862 COMPILE_STACK_TOP.regnum = r;
+ − 2863
+ − 2864 /* We will eventually replace the 0 with the number of
+ − 2865 groups inner to this one. But do not push a
+ − 2866 start_memory for groups beyond the last one we can
502
+ − 2867 represent in the compiled pattern.
+ − 2868 #### bad bad bad. this will fail in lots of ways, if we
+ − 2869 ever have to backtrack for these groups.
+ − 2870 */
428
+ − 2871 if (r <= MAX_REGNUM)
+ − 2872 {
+ − 2873 COMPILE_STACK_TOP.inner_group_offset
446
+ − 2874 = buf_end - bufp->buffer + 2;
428
+ − 2875 BUF_PUSH_3 (start_memory, r, 0);
+ − 2876 }
+ − 2877
+ − 2878 compile_stack.avail++;
+ − 2879
+ − 2880 fixup_alt_jump = 0;
+ − 2881 laststart = 0;
446
+ − 2882 begalt = buf_end;
428
+ − 2883 /* If we've reached MAX_REGNUM groups, then this open
+ − 2884 won't actually generate any code, so we'll have to
+ − 2885 clear pending_exact explicitly. */
+ − 2886 pending_exact = 0;
+ − 2887 }
+ − 2888 break;
+ − 2889
+ − 2890
+ − 2891 case ')':
+ − 2892 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
+ − 2893
+ − 2894 if (COMPILE_STACK_EMPTY) {
+ − 2895 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
+ − 2896 goto normal_backslash;
+ − 2897 else
+ − 2898 FREE_STACK_RETURN (REG_ERPAREN);
+ − 2899 }
+ − 2900
+ − 2901 handle_close:
+ − 2902 if (fixup_alt_jump)
+ − 2903 { /* Push a dummy failure point at the end of the
+ − 2904 alternative for a possible future
+ − 2905 `pop_failure_jump' to pop. See comments at
+ − 2906 `push_dummy_failure' in `re_match_2'. */
+ − 2907 BUF_PUSH (push_dummy_failure);
+ − 2908
+ − 2909 /* We allocated space for this jump when we assigned
+ − 2910 to `fixup_alt_jump', in the `handle_alt' case below. */
446
+ − 2911 STORE_JUMP (jump_past_alt, fixup_alt_jump, buf_end - 1);
428
+ − 2912 }
+ − 2913
+ − 2914 /* See similar code for backslashed left paren above. */
+ − 2915 if (COMPILE_STACK_EMPTY) {
+ − 2916 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
+ − 2917 goto normal_char;
+ − 2918 else
+ − 2919 FREE_STACK_RETURN (REG_ERPAREN);
+ − 2920 }
+ − 2921
+ − 2922 /* Since we just checked for an empty stack above, this
+ − 2923 ``can't happen''. */
+ − 2924 assert (compile_stack.avail != 0);
+ − 2925 {
+ − 2926 /* We don't just want to restore into `regnum', because
+ − 2927 later groups should continue to be numbered higher,
+ − 2928 as in `(ab)c(de)' -- the second group is #2. */
+ − 2929 regnum_t this_group_regnum;
+ − 2930
+ − 2931 compile_stack.avail--;
+ − 2932 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
+ − 2933 fixup_alt_jump
+ − 2934 = COMPILE_STACK_TOP.fixup_alt_jump
+ − 2935 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
+ − 2936 : 0;
+ − 2937 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
+ − 2938 this_group_regnum = COMPILE_STACK_TOP.regnum;
+ − 2939 /* If we've reached MAX_REGNUM groups, then this open
+ − 2940 won't actually generate any code, so we'll have to
+ − 2941 clear pending_exact explicitly. */
+ − 2942 pending_exact = 0;
+ − 2943
+ − 2944 /* We're at the end of the group, so now we know how many
+ − 2945 groups were inside this one. */
+ − 2946 if (this_group_regnum <= MAX_REGNUM)
+ − 2947 {
+ − 2948 unsigned char *inner_group_loc
+ − 2949 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
+ − 2950
+ − 2951 *inner_group_loc = regnum - this_group_regnum;
+ − 2952 BUF_PUSH_3 (stop_memory, this_group_regnum,
+ − 2953 regnum - this_group_regnum);
+ − 2954 }
+ − 2955 }
+ − 2956 break;
+ − 2957
+ − 2958
+ − 2959 case '|': /* `\|'. */
+ − 2960 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
+ − 2961 goto normal_backslash;
+ − 2962 handle_alt:
+ − 2963 if (syntax & RE_LIMITED_OPS)
+ − 2964 goto normal_char;
+ − 2965
+ − 2966 /* Insert before the previous alternative a jump which
+ − 2967 jumps to this alternative if the former fails. */
+ − 2968 GET_BUFFER_SPACE (3);
446
+ − 2969 INSERT_JUMP (on_failure_jump, begalt, buf_end + 6);
428
+ − 2970 pending_exact = 0;
446
+ − 2971 buf_end += 3;
428
+ − 2972
+ − 2973 /* The alternative before this one has a jump after it
+ − 2974 which gets executed if it gets matched. Adjust that
+ − 2975 jump so it will jump to this alternative's analogous
+ − 2976 jump (put in below, which in turn will jump to the next
+ − 2977 (if any) alternative's such jump, etc.). The last such
+ − 2978 jump jumps to the correct final destination. A picture:
+ − 2979 _____ _____
+ − 2980 | | | |
+ − 2981 | v | v
+ − 2982 a | b | c
+ − 2983
+ − 2984 If we are at `b', then fixup_alt_jump right now points to a
+ − 2985 three-byte space after `a'. We'll put in the jump, set
+ − 2986 fixup_alt_jump to right after `b', and leave behind three
+ − 2987 bytes which we'll fill in when we get to after `c'. */
+ − 2988
+ − 2989 if (fixup_alt_jump)
446
+ − 2990 STORE_JUMP (jump_past_alt, fixup_alt_jump, buf_end);
428
+ − 2991
+ − 2992 /* Mark and leave space for a jump after this alternative,
+ − 2993 to be filled in later either by next alternative or
+ − 2994 when know we're at the end of a series of alternatives. */
446
+ − 2995 fixup_alt_jump = buf_end;
428
+ − 2996 GET_BUFFER_SPACE (3);
446
+ − 2997 buf_end += 3;
428
+ − 2998
+ − 2999 laststart = 0;
446
+ − 3000 begalt = buf_end;
428
+ − 3001 break;
+ − 3002
+ − 3003
+ − 3004 case '{':
+ − 3005 /* If \{ is a literal. */
+ − 3006 if (!(syntax & RE_INTERVALS)
+ − 3007 /* If we're at `\{' and it's not the open-interval
+ − 3008 operator. */
+ − 3009 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
+ − 3010 || (p - 2 == pattern && p == pend))
+ − 3011 goto normal_backslash;
+ − 3012
+ − 3013 handle_interval:
+ − 3014 {
+ − 3015 /* If got here, then the syntax allows intervals. */
+ − 3016
+ − 3017 /* At least (most) this many matches must be made. */
+ − 3018 int lower_bound = -1, upper_bound = -1;
+ − 3019
+ − 3020 beg_interval = p - 1;
+ − 3021
+ − 3022 if (p == pend)
+ − 3023 {
+ − 3024 if (syntax & RE_NO_BK_BRACES)
+ − 3025 goto unfetch_interval;
+ − 3026 else
+ − 3027 FREE_STACK_RETURN (REG_EBRACE);
+ − 3028 }
+ − 3029
+ − 3030 GET_UNSIGNED_NUMBER (lower_bound);
+ − 3031
+ − 3032 if (c == ',')
+ − 3033 {
+ − 3034 GET_UNSIGNED_NUMBER (upper_bound);
+ − 3035 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
+ − 3036 }
+ − 3037 else
+ − 3038 /* Interval such as `{1}' => match exactly once. */
+ − 3039 upper_bound = lower_bound;
+ − 3040
+ − 3041 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
+ − 3042 || lower_bound > upper_bound)
+ − 3043 {
+ − 3044 if (syntax & RE_NO_BK_BRACES)
+ − 3045 goto unfetch_interval;
+ − 3046 else
+ − 3047 FREE_STACK_RETURN (REG_BADBR);
+ − 3048 }
+ − 3049
+ − 3050 if (!(syntax & RE_NO_BK_BRACES))
+ − 3051 {
+ − 3052 if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
+ − 3053
+ − 3054 PATFETCH (c);
+ − 3055 }
+ − 3056
+ − 3057 if (c != '}')
+ − 3058 {
+ − 3059 if (syntax & RE_NO_BK_BRACES)
+ − 3060 goto unfetch_interval;
+ − 3061 else
+ − 3062 FREE_STACK_RETURN (REG_BADBR);
+ − 3063 }
+ − 3064
+ − 3065 /* We just parsed a valid interval. */
+ − 3066
+ − 3067 /* If it's invalid to have no preceding re. */
+ − 3068 if (!laststart)
+ − 3069 {
+ − 3070 if (syntax & RE_CONTEXT_INVALID_OPS)
+ − 3071 FREE_STACK_RETURN (REG_BADRPT);
+ − 3072 else if (syntax & RE_CONTEXT_INDEP_OPS)
446
+ − 3073 laststart = buf_end;
428
+ − 3074 else
+ − 3075 goto unfetch_interval;
+ − 3076 }
+ − 3077
+ − 3078 /* If the upper bound is zero, don't want to succeed at
+ − 3079 all; jump from `laststart' to `b + 3', which will be
+ − 3080 the end of the buffer after we insert the jump. */
+ − 3081 if (upper_bound == 0)
+ − 3082 {
+ − 3083 GET_BUFFER_SPACE (3);
446
+ − 3084 INSERT_JUMP (jump, laststart, buf_end + 3);
+ − 3085 buf_end += 3;
428
+ − 3086 }
+ − 3087
+ − 3088 /* Otherwise, we have a nontrivial interval. When
+ − 3089 we're all done, the pattern will look like:
+ − 3090 set_number_at <jump count> <upper bound>
+ − 3091 set_number_at <succeed_n count> <lower bound>
+ − 3092 succeed_n <after jump addr> <succeed_n count>
+ − 3093 <body of loop>
+ − 3094 jump_n <succeed_n addr> <jump count>
+ − 3095 (The upper bound and `jump_n' are omitted if
+ − 3096 `upper_bound' is 1, though.) */
+ − 3097 else
+ − 3098 { /* If the upper bound is > 1, we need to insert
+ − 3099 more at the end of the loop. */
647
+ − 3100 int nbytes = 10 + (upper_bound > 1) * 10;
428
+ − 3101
+ − 3102 GET_BUFFER_SPACE (nbytes);
+ − 3103
+ − 3104 /* Initialize lower bound of the `succeed_n', even
+ − 3105 though it will be set during matching by its
+ − 3106 attendant `set_number_at' (inserted next),
+ − 3107 because `re_compile_fastmap' needs to know.
+ − 3108 Jump to the `jump_n' we might insert below. */
+ − 3109 INSERT_JUMP2 (succeed_n, laststart,
446
+ − 3110 buf_end + 5 + (upper_bound > 1) * 5,
428
+ − 3111 lower_bound);
446
+ − 3112 buf_end += 5;
428
+ − 3113
+ − 3114 /* Code to initialize the lower bound. Insert
+ − 3115 before the `succeed_n'. The `5' is the last two
+ − 3116 bytes of this `set_number_at', plus 3 bytes of
+ − 3117 the following `succeed_n'. */
446
+ − 3118 insert_op2 (set_number_at, laststart, 5, lower_bound, buf_end);
+ − 3119 buf_end += 5;
428
+ − 3120
+ − 3121 if (upper_bound > 1)
+ − 3122 { /* More than one repetition is allowed, so
+ − 3123 append a backward jump to the `succeed_n'
+ − 3124 that starts this interval.
+ − 3125
+ − 3126 When we've reached this during matching,
+ − 3127 we'll have matched the interval once, so
+ − 3128 jump back only `upper_bound - 1' times. */
446
+ − 3129 STORE_JUMP2 (jump_n, buf_end, laststart + 5,
428
+ − 3130 upper_bound - 1);
446
+ − 3131 buf_end += 5;
428
+ − 3132
+ − 3133 /* The location we want to set is the second
+ − 3134 parameter of the `jump_n'; that is `b-2' as
+ − 3135 an absolute address. `laststart' will be
+ − 3136 the `set_number_at' we're about to insert;
+ − 3137 `laststart+3' the number to set, the source
+ − 3138 for the relative address. But we are
+ − 3139 inserting into the middle of the pattern --
+ − 3140 so everything is getting moved up by 5.
+ − 3141 Conclusion: (b - 2) - (laststart + 3) + 5,
+ − 3142 i.e., b - laststart.
+ − 3143
+ − 3144 We insert this at the beginning of the loop
+ − 3145 so that if we fail during matching, we'll
+ − 3146 reinitialize the bounds. */
446
+ − 3147 insert_op2 (set_number_at, laststart,
+ − 3148 buf_end - laststart,
+ − 3149 upper_bound - 1, buf_end);
+ − 3150 buf_end += 5;
428
+ − 3151 }
+ − 3152 }
+ − 3153 pending_exact = 0;
+ − 3154 beg_interval = NULL;
+ − 3155 }
+ − 3156 break;
+ − 3157
+ − 3158 unfetch_interval:
+ − 3159 /* If an invalid interval, match the characters as literals. */
+ − 3160 assert (beg_interval);
+ − 3161 p = beg_interval;
+ − 3162 beg_interval = NULL;
+ − 3163
+ − 3164 /* normal_char and normal_backslash need `c'. */
+ − 3165 PATFETCH (c);
+ − 3166
+ − 3167 if (!(syntax & RE_NO_BK_BRACES))
+ − 3168 {
+ − 3169 if (p > pattern && p[-1] == '\\')
+ − 3170 goto normal_backslash;
+ − 3171 }
+ − 3172 goto normal_char;
+ − 3173
+ − 3174 #ifdef emacs
+ − 3175 /* There is no way to specify the before_dot and after_dot
+ − 3176 operators. rms says this is ok. --karl */
+ − 3177 case '=':
+ − 3178 BUF_PUSH (at_dot);
+ − 3179 break;
+ − 3180
+ − 3181 case 's':
446
+ − 3182 laststart = buf_end;
428
+ − 3183 PATFETCH (c);
+ − 3184 /* XEmacs addition */
+ − 3185 if (c >= 0x80 || syntax_spec_code[c] == 0377)
+ − 3186 FREE_STACK_RETURN (REG_ESYNTAX);
+ − 3187 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
+ − 3188 break;
+ − 3189
+ − 3190 case 'S':
446
+ − 3191 laststart = buf_end;
428
+ − 3192 PATFETCH (c);
+ − 3193 /* XEmacs addition */
+ − 3194 if (c >= 0x80 || syntax_spec_code[c] == 0377)
+ − 3195 FREE_STACK_RETURN (REG_ESYNTAX);
+ − 3196 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
+ − 3197 break;
+ − 3198
+ − 3199 #ifdef MULE
+ − 3200 /* 97.2.17 jhod merged in to XEmacs from mule-2.3 */
+ − 3201 case 'c':
446
+ − 3202 laststart = buf_end;
428
+ − 3203 PATFETCH_RAW (c);
+ − 3204 if (c < 32 || c > 127)
+ − 3205 FREE_STACK_RETURN (REG_ECATEGORY);
+ − 3206 BUF_PUSH_2 (categoryspec, c);
+ − 3207 break;
+ − 3208
+ − 3209 case 'C':
446
+ − 3210 laststart = buf_end;
428
+ − 3211 PATFETCH_RAW (c);
+ − 3212 if (c < 32 || c > 127)
+ − 3213 FREE_STACK_RETURN (REG_ECATEGORY);
+ − 3214 BUF_PUSH_2 (notcategoryspec, c);
+ − 3215 break;
+ − 3216 /* end of category patch */
+ − 3217 #endif /* MULE */
+ − 3218 #endif /* emacs */
+ − 3219
+ − 3220
+ − 3221 case 'w':
446
+ − 3222 laststart = buf_end;
428
+ − 3223 BUF_PUSH (wordchar);
+ − 3224 break;
+ − 3225
+ − 3226
+ − 3227 case 'W':
446
+ − 3228 laststart = buf_end;
428
+ − 3229 BUF_PUSH (notwordchar);
+ − 3230 break;
+ − 3231
+ − 3232
+ − 3233 case '<':
+ − 3234 BUF_PUSH (wordbeg);
+ − 3235 break;
+ − 3236
+ − 3237 case '>':
+ − 3238 BUF_PUSH (wordend);
+ − 3239 break;
+ − 3240
+ − 3241 case 'b':
+ − 3242 BUF_PUSH (wordbound);
+ − 3243 break;
+ − 3244
+ − 3245 case 'B':
+ − 3246 BUF_PUSH (notwordbound);
+ − 3247 break;
+ − 3248
+ − 3249 case '`':
+ − 3250 BUF_PUSH (begbuf);
+ − 3251 break;
+ − 3252
+ − 3253 case '\'':
+ − 3254 BUF_PUSH (endbuf);
+ − 3255 break;
+ − 3256
+ − 3257 case '1': case '2': case '3': case '4': case '5':
+ − 3258 case '6': case '7': case '8': case '9':
446
+ − 3259 {
502
+ − 3260 regnum_t reg, regint;
+ − 3261 int may_need_to_unfetch = 0;
446
+ − 3262 if (syntax & RE_NO_BK_REFS)
+ − 3263 goto normal_char;
+ − 3264
502
+ − 3265 /* This only goes up to 99. It could be extended to work
+ − 3266 up to 255 (the maximum number of registers that can be
+ − 3267 handled by the current regexp engine, because it stores
+ − 3268 its register numbers in the compiled pattern as one byte,
+ − 3269 ugh). Doing that's a bit trickier, because you might
+ − 3270 have the case where \25 a back-ref but \255 is not, ... */
446
+ − 3271 reg = c - '0';
502
+ − 3272 if (p < pend)
+ − 3273 {
+ − 3274 PATFETCH (c);
+ − 3275 if (c >= '0' && c <= '9')
+ − 3276 {
+ − 3277 regnum_t new_reg = reg * 10 + c - '0';
+ − 3278 if (new_reg <= bufp->re_nsub)
+ − 3279 {
+ − 3280 reg = new_reg;
+ − 3281 may_need_to_unfetch = 1;
+ − 3282 }
+ − 3283 else
+ − 3284 PATUNFETCH;
+ − 3285 }
523
+ − 3286 else
+ − 3287 PATUNFETCH;
502
+ − 3288 }
+ − 3289
+ − 3290 if (reg > bufp->re_nsub)
446
+ − 3291 FREE_STACK_RETURN (REG_ESUBREG);
+ − 3292
502
+ − 3293 regint = bufp->external_to_internal_register[reg];
446
+ − 3294 /* Can't back reference to a subexpression if inside of it. */
502
+ − 3295 if (group_in_compile_stack (compile_stack, regint))
+ − 3296 {
+ − 3297 if (may_need_to_unfetch)
+ − 3298 PATUNFETCH;
+ − 3299 goto normal_char;
+ − 3300 }
+ − 3301
+ − 3302 #ifdef emacs
+ − 3303 if (reg > 9 &&
+ − 3304 bufp->warned_about_incompatible_back_references == 0)
+ − 3305 {
+ − 3306 bufp->warned_about_incompatible_back_references = 1;
+ − 3307 warn_when_safe (intern ("regex"), Qinfo,
+ − 3308 "Back reference \\%d now has new "
+ − 3309 "semantics in %s", reg, pattern);
+ − 3310 }
+ − 3311 #endif
446
+ − 3312
+ − 3313 laststart = buf_end;
502
+ − 3314 BUF_PUSH_2 (duplicate, regint);
446
+ − 3315 }
428
+ − 3316 break;
+ − 3317
+ − 3318
+ − 3319 case '+':
+ − 3320 case '?':
+ − 3321 if (syntax & RE_BK_PLUS_QM)
+ − 3322 goto handle_plus;
+ − 3323 else
+ − 3324 goto normal_backslash;
+ − 3325
+ − 3326 default:
+ − 3327 normal_backslash:
+ − 3328 /* You might think it would be useful for \ to mean
+ − 3329 not to translate; but if we don't translate it,
+ − 3330 it will never match anything. */
826
+ − 3331 c = RE_TRANSLATE (c);
428
+ − 3332 goto normal_char;
+ − 3333 }
+ − 3334 break;
+ − 3335
+ − 3336
+ − 3337 default:
+ − 3338 /* Expects the character in `c'. */
+ − 3339 /* `p' points to the location after where `c' came from. */
+ − 3340 normal_char:
+ − 3341 {
+ − 3342 /* XEmacs: modifications here for Mule. */
+ − 3343 /* `q' points to the beginning of the next char. */
446
+ − 3344 re_char *q = p;
428
+ − 3345
+ − 3346 /* If no exactn currently being built. */
+ − 3347 if (!pending_exact
+ − 3348
+ − 3349 /* If last exactn not at current position. */
446
+ − 3350 || pending_exact + *pending_exact + 1 != buf_end
428
+ − 3351
+ − 3352 /* We have only one byte following the exactn for the count. */
+ − 3353 || ((unsigned int) (*pending_exact + (q - p)) >=
+ − 3354 ((unsigned int) (1 << BYTEWIDTH) - 1))
+ − 3355
+ − 3356 /* If followed by a repetition operator. */
+ − 3357 || *q == '*' || *q == '^'
+ − 3358 || ((syntax & RE_BK_PLUS_QM)
+ − 3359 ? *q == '\\' && (q[1] == '+' || q[1] == '?')
+ − 3360 : (*q == '+' || *q == '?'))
+ − 3361 || ((syntax & RE_INTERVALS)
+ − 3362 && ((syntax & RE_NO_BK_BRACES)
+ − 3363 ? *q == '{'
+ − 3364 : (q[0] == '\\' && q[1] == '{'))))
+ − 3365 {
+ − 3366 /* Start building a new exactn. */
+ − 3367
446
+ − 3368 laststart = buf_end;
428
+ − 3369
+ − 3370 BUF_PUSH_2 (exactn, 0);
446
+ − 3371 pending_exact = buf_end - 1;
428
+ − 3372 }
+ − 3373
446
+ − 3374 #ifndef MULE
428
+ − 3375 BUF_PUSH (c);
+ − 3376 (*pending_exact)++;
446
+ − 3377 #else
+ − 3378 {
+ − 3379 Bytecount bt_count;
867
+ − 3380 Ibyte tmp_buf[MAX_ICHAR_LEN];
446
+ − 3381 int i;
+ − 3382
867
+ − 3383 bt_count = set_itext_ichar (tmp_buf, c);
446
+ − 3384
+ − 3385 for (i = 0; i < bt_count; i++)
+ − 3386 {
+ − 3387 BUF_PUSH (tmp_buf[i]);
+ − 3388 (*pending_exact)++;
+ − 3389 }
+ − 3390 }
+ − 3391 #endif
428
+ − 3392 break;
+ − 3393 }
+ − 3394 } /* switch (c) */
+ − 3395 } /* while p != pend */
+ − 3396
+ − 3397
+ − 3398 /* Through the pattern now. */
+ − 3399
+ − 3400 if (fixup_alt_jump)
446
+ − 3401 STORE_JUMP (jump_past_alt, fixup_alt_jump, buf_end);
428
+ − 3402
+ − 3403 if (!COMPILE_STACK_EMPTY)
+ − 3404 FREE_STACK_RETURN (REG_EPAREN);
+ − 3405
+ − 3406 /* If we don't want backtracking, force success
+ − 3407 the first time we reach the end of the compiled pattern. */
+ − 3408 if (syntax & RE_NO_POSIX_BACKTRACKING)
+ − 3409 BUF_PUSH (succeed);
+ − 3410
1726
+ − 3411 xfree (compile_stack.stack, compile_stack_elt_t *);
428
+ − 3412
+ − 3413 /* We have succeeded; set the length of the buffer. */
446
+ − 3414 bufp->used = buf_end - bufp->buffer;
428
+ − 3415
+ − 3416 #ifdef DEBUG
+ − 3417 if (debug)
+ − 3418 {
+ − 3419 DEBUG_PRINT1 ("\nCompiled pattern: \n");
+ − 3420 print_compiled_pattern (bufp);
+ − 3421 }
+ − 3422 #endif /* DEBUG */
+ − 3423
+ − 3424 #ifndef MATCH_MAY_ALLOCATE
+ − 3425 /* Initialize the failure stack to the largest possible stack. This
+ − 3426 isn't necessary unless we're trying to avoid calling alloca in
+ − 3427 the search and match routines. */
+ − 3428 {
502
+ − 3429 int num_regs = bufp->re_ngroups + 1;
428
+ − 3430
+ − 3431 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
+ − 3432 is strictly greater than re_max_failures, the largest possible stack
+ − 3433 is 2 * re_max_failures failure points. */
+ − 3434 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
+ − 3435 {
+ − 3436 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
+ − 3437
+ − 3438 if (! fail_stack.stack)
+ − 3439 fail_stack.stack
+ − 3440 = (fail_stack_elt_t *) xmalloc (fail_stack.size
+ − 3441 * sizeof (fail_stack_elt_t));
+ − 3442 else
+ − 3443 fail_stack.stack
+ − 3444 = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
+ − 3445 (fail_stack.size
+ − 3446 * sizeof (fail_stack_elt_t)));
+ − 3447 }
+ − 3448
+ − 3449 regex_grow_registers (num_regs);
+ − 3450 }
+ − 3451 #endif /* not MATCH_MAY_ALLOCATE */
+ − 3452
+ − 3453 return REG_NOERROR;
+ − 3454 } /* regex_compile */
+ − 3455
+ − 3456 /* Subroutines for `regex_compile'. */
+ − 3457
+ − 3458 /* Store OP at LOC followed by two-byte integer parameter ARG. */
+ − 3459
+ − 3460 static void
+ − 3461 store_op1 (re_opcode_t op, unsigned char *loc, int arg)
+ − 3462 {
+ − 3463 *loc = (unsigned char) op;
+ − 3464 STORE_NUMBER (loc + 1, arg);
+ − 3465 }
+ − 3466
+ − 3467
+ − 3468 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
+ − 3469
+ − 3470 static void
+ − 3471 store_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2)
+ − 3472 {
+ − 3473 *loc = (unsigned char) op;
+ − 3474 STORE_NUMBER (loc + 1, arg1);
+ − 3475 STORE_NUMBER (loc + 3, arg2);
+ − 3476 }
+ − 3477
+ − 3478
+ − 3479 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
+ − 3480 for OP followed by two-byte integer parameter ARG. */
+ − 3481
+ − 3482 static void
+ − 3483 insert_op1 (re_opcode_t op, unsigned char *loc, int arg, unsigned char *end)
+ − 3484 {
+ − 3485 REGISTER unsigned char *pfrom = end;
+ − 3486 REGISTER unsigned char *pto = end + 3;
+ − 3487
+ − 3488 while (pfrom != loc)
+ − 3489 *--pto = *--pfrom;
+ − 3490
+ − 3491 store_op1 (op, loc, arg);
+ − 3492 }
+ − 3493
+ − 3494
+ − 3495 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
+ − 3496
+ − 3497 static void
+ − 3498 insert_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2,
+ − 3499 unsigned char *end)
+ − 3500 {
+ − 3501 REGISTER unsigned char *pfrom = end;
+ − 3502 REGISTER unsigned char *pto = end + 5;
+ − 3503
+ − 3504 while (pfrom != loc)
+ − 3505 *--pto = *--pfrom;
+ − 3506
+ − 3507 store_op2 (op, loc, arg1, arg2);
+ − 3508 }
+ − 3509
+ − 3510
+ − 3511 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
+ − 3512 after an alternative or a begin-subexpression. We assume there is at
+ − 3513 least one character before the ^. */
+ − 3514
460
+ − 3515 static re_bool
446
+ − 3516 at_begline_loc_p (re_char *pattern, re_char *p, reg_syntax_t syntax)
428
+ − 3517 {
446
+ − 3518 re_char *prev = p - 2;
460
+ − 3519 re_bool prev_prev_backslash = prev > pattern && prev[-1] == '\\';
428
+ − 3520
+ − 3521 return
+ − 3522 /* After a subexpression? */
+ − 3523 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
+ − 3524 /* After an alternative? */
+ − 3525 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
+ − 3526 }
+ − 3527
+ − 3528
+ − 3529 /* The dual of at_begline_loc_p. This one is for $. We assume there is
+ − 3530 at least one character after the $, i.e., `P < PEND'. */
+ − 3531
460
+ − 3532 static re_bool
446
+ − 3533 at_endline_loc_p (re_char *p, re_char *pend, int syntax)
428
+ − 3534 {
446
+ − 3535 re_char *next = p;
460
+ − 3536 re_bool next_backslash = *next == '\\';
446
+ − 3537 re_char *next_next = p + 1 < pend ? p + 1 : 0;
428
+ − 3538
+ − 3539 return
+ − 3540 /* Before a subexpression? */
+ − 3541 (syntax & RE_NO_BK_PARENS ? *next == ')'
+ − 3542 : next_backslash && next_next && *next_next == ')')
+ − 3543 /* Before an alternative? */
+ − 3544 || (syntax & RE_NO_BK_VBAR ? *next == '|'
+ − 3545 : next_backslash && next_next && *next_next == '|');
+ − 3546 }
+ − 3547
+ − 3548
+ − 3549 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
+ − 3550 false if it's not. */
+ − 3551
460
+ − 3552 static re_bool
428
+ − 3553 group_in_compile_stack (compile_stack_type compile_stack, regnum_t regnum)
+ − 3554 {
+ − 3555 int this_element;
+ − 3556
+ − 3557 for (this_element = compile_stack.avail - 1;
+ − 3558 this_element >= 0;
+ − 3559 this_element--)
+ − 3560 if (compile_stack.stack[this_element].regnum == regnum)
+ − 3561 return true;
+ − 3562
+ − 3563 return false;
+ − 3564 }
+ − 3565
+ − 3566
+ − 3567 /* Read the ending character of a range (in a bracket expression) from the
+ − 3568 uncompiled pattern *P_PTR (which ends at PEND). We assume the
+ − 3569 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
+ − 3570 Then we set the translation of all bits between the starting and
+ − 3571 ending characters (inclusive) in the compiled pattern B.
+ − 3572
+ − 3573 Return an error code.
+ − 3574
+ − 3575 We use these short variable names so we can use the same macros as
826
+ − 3576 `regex_compile' itself.
+ − 3577
+ − 3578 Under Mule, this is only called when both chars of the range are
+ − 3579 ASCII. */
428
+ − 3580
+ − 3581 static reg_errcode_t
446
+ − 3582 compile_range (re_char **p_ptr, re_char *pend, RE_TRANSLATE_TYPE translate,
+ − 3583 reg_syntax_t syntax, unsigned char *buf_end)
428
+ − 3584 {
867
+ − 3585 Ichar this_char;
428
+ − 3586
446
+ − 3587 re_char *p = *p_ptr;
428
+ − 3588 int range_start, range_end;
+ − 3589
+ − 3590 if (p == pend)
+ − 3591 return REG_ERANGE;
+ − 3592
+ − 3593 /* Even though the pattern is a signed `char *', we need to fetch
+ − 3594 with unsigned char *'s; if the high bit of the pattern character
+ − 3595 is set, the range endpoints will be negative if we fetch using a
+ − 3596 signed char *.
+ − 3597
+ − 3598 We also want to fetch the endpoints without translating them; the
+ − 3599 appropriate translation is done in the bit-setting loop below. */
442
+ − 3600 /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *. */
+ − 3601 range_start = ((const unsigned char *) p)[-2];
+ − 3602 range_end = ((const unsigned char *) p)[0];
428
+ − 3603
+ − 3604 /* Have to increment the pointer into the pattern string, so the
+ − 3605 caller isn't still at the ending character. */
+ − 3606 (*p_ptr)++;
+ − 3607
+ − 3608 /* If the start is after the end, the range is empty. */
+ − 3609 if (range_start > range_end)
+ − 3610 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
+ − 3611
+ − 3612 /* Here we see why `this_char' has to be larger than an `unsigned
+ − 3613 char' -- the range is inclusive, so if `range_end' == 0xff
+ − 3614 (assuming 8-bit characters), we would otherwise go into an infinite
+ − 3615 loop, since all characters <= 0xff. */
+ − 3616 for (this_char = range_start; this_char <= range_end; this_char++)
+ − 3617 {
826
+ − 3618 SET_LIST_BIT (RE_TRANSLATE (this_char));
428
+ − 3619 }
+ − 3620
+ − 3621 return REG_NOERROR;
+ − 3622 }
+ − 3623
+ − 3624 #ifdef MULE
+ − 3625
+ − 3626 static reg_errcode_t
446
+ − 3627 compile_extended_range (re_char **p_ptr, re_char *pend,
+ − 3628 RE_TRANSLATE_TYPE translate,
428
+ − 3629 reg_syntax_t syntax, Lisp_Object rtab)
+ − 3630 {
867
+ − 3631 Ichar this_char, range_start, range_end;
+ − 3632 const Ibyte *p;
428
+ − 3633
+ − 3634 if (*p_ptr == pend)
+ − 3635 return REG_ERANGE;
+ − 3636
867
+ − 3637 p = (const Ibyte *) *p_ptr;
+ − 3638 range_end = itext_ichar (p);
428
+ − 3639 p--; /* back to '-' */
867
+ − 3640 DEC_IBYTEPTR (p); /* back to start of range */
428
+ − 3641 /* We also want to fetch the endpoints without translating them; the
+ − 3642 appropriate translation is done in the bit-setting loop below. */
867
+ − 3643 range_start = itext_ichar (p);
+ − 3644 INC_IBYTEPTR (*p_ptr);
428
+ − 3645
+ − 3646 /* If the start is after the end, the range is empty. */
+ − 3647 if (range_start > range_end)
+ − 3648 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
+ − 3649
+ − 3650 /* Can't have ranges spanning different charsets, except maybe for
+ − 3651 ranges entirely within the first 256 chars. */
+ − 3652
+ − 3653 if ((range_start >= 0x100 || range_end >= 0x100)
867
+ − 3654 && ichar_leading_byte (range_start) !=
+ − 3655 ichar_leading_byte (range_end))
428
+ − 3656 return REG_ERANGESPAN;
+ − 3657
826
+ − 3658 /* #### This might be way inefficient if the range encompasses 10,000
+ − 3659 chars or something. To be efficient, you'd have to do something like
+ − 3660 this:
428
+ − 3661
+ − 3662 range_table a;
+ − 3663 range_table b;
+ − 3664 map over translation table in [range_start, range_end] of
+ − 3665 (put the mapped range in a;
+ − 3666 put the translation in b)
+ − 3667 invert the range in a and truncate to [range_start, range_end]
+ − 3668 compute the union of a, b
+ − 3669 union the result into rtab
+ − 3670 */
826
+ − 3671 for (this_char = range_start; this_char <= range_end; this_char++)
428
+ − 3672 {
826
+ − 3673 SET_RANGETAB_BIT (RE_TRANSLATE (this_char));
428
+ − 3674 }
+ − 3675
+ − 3676 if (this_char <= range_end)
+ − 3677 put_range_table (rtab, this_char, range_end, Qt);
+ − 3678
+ − 3679 return REG_NOERROR;
+ − 3680 }
+ − 3681
+ − 3682 #endif /* MULE */
+ − 3683
+ − 3684 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
+ − 3685 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
+ − 3686 characters can start a string that matches the pattern. This fastmap
+ − 3687 is used by re_search to skip quickly over impossible starting points.
+ − 3688
+ − 3689 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
+ − 3690 area as BUFP->fastmap.
+ − 3691
+ − 3692 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
+ − 3693 the pattern buffer.
+ − 3694
+ − 3695 Returns 0 if we succeed, -2 if an internal error. */
+ − 3696
+ − 3697 int
826
+ − 3698 re_compile_fastmap (struct re_pattern_buffer *bufp
+ − 3699 RE_LISP_SHORT_CONTEXT_ARGS_DECL)
428
+ − 3700 {
+ − 3701 int j, k;
+ − 3702 #ifdef MATCH_MAY_ALLOCATE
+ − 3703 fail_stack_type fail_stack;
+ − 3704 #endif
456
+ − 3705 DECLARE_DESTINATION;
428
+ − 3706 /* We don't push any register information onto the failure stack. */
+ − 3707
826
+ − 3708 /* &&#### this should be changed for 8-bit-fixed, for efficiency. see
+ − 3709 comment marked with &&#### in re_search_2. */
+ − 3710
428
+ − 3711 REGISTER char *fastmap = bufp->fastmap;
+ − 3712 unsigned char *pattern = bufp->buffer;
647
+ − 3713 long size = bufp->used;
428
+ − 3714 unsigned char *p = pattern;
+ − 3715 REGISTER unsigned char *pend = pattern + size;
+ − 3716
771
+ − 3717 #ifdef REGEX_REL_ALLOC
428
+ − 3718 /* This holds the pointer to the failure stack, when
+ − 3719 it is allocated relocatably. */
+ − 3720 fail_stack_elt_t *failure_stack_ptr;
+ − 3721 #endif
+ − 3722
+ − 3723 /* Assume that each path through the pattern can be null until
+ − 3724 proven otherwise. We set this false at the bottom of switch
+ − 3725 statement, to which we get only if a particular path doesn't
+ − 3726 match the empty string. */
460
+ − 3727 re_bool path_can_be_null = true;
428
+ − 3728
+ − 3729 /* We aren't doing a `succeed_n' to begin with. */
460
+ − 3730 re_bool succeed_n_p = false;
428
+ − 3731
1333
+ − 3732 #ifdef ERROR_CHECK_MALLOC
+ − 3733 /* The pattern comes from string data, not buffer data. We don't access
+ − 3734 any buffer data, so we don't have to worry about malloc() (but the
+ − 3735 disallowed flag may have been set by a caller). */
+ − 3736 int depth = bind_regex_malloc_disallowed (0);
+ − 3737 #endif
+ − 3738
428
+ − 3739 assert (fastmap != NULL && p != NULL);
+ − 3740
+ − 3741 INIT_FAIL_STACK ();
+ − 3742 memset (fastmap, 0, 1 << BYTEWIDTH); /* Assume nothing's valid. */
+ − 3743 bufp->fastmap_accurate = 1; /* It will be when we're done. */
+ − 3744 bufp->can_be_null = 0;
+ − 3745
+ − 3746 while (1)
+ − 3747 {
+ − 3748 if (p == pend || *p == succeed)
+ − 3749 {
+ − 3750 /* We have reached the (effective) end of pattern. */
+ − 3751 if (!FAIL_STACK_EMPTY ())
+ − 3752 {
+ − 3753 bufp->can_be_null |= path_can_be_null;
+ − 3754
+ − 3755 /* Reset for next path. */
+ − 3756 path_can_be_null = true;
+ − 3757
446
+ − 3758 p = (unsigned char *) fail_stack.stack[--fail_stack.avail].pointer;
428
+ − 3759
+ − 3760 continue;
+ − 3761 }
+ − 3762 else
+ − 3763 break;
+ − 3764 }
+ − 3765
+ − 3766 /* We should never be about to go beyond the end of the pattern. */
+ − 3767 assert (p < pend);
+ − 3768
+ − 3769 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
+ − 3770 {
+ − 3771
+ − 3772 /* I guess the idea here is to simply not bother with a fastmap
+ − 3773 if a backreference is used, since it's too hard to figure out
+ − 3774 the fastmap for the corresponding group. Setting
+ − 3775 `can_be_null' stops `re_search_2' from using the fastmap, so
+ − 3776 that is all we do. */
+ − 3777 case duplicate:
+ − 3778 bufp->can_be_null = 1;
+ − 3779 goto done;
+ − 3780
+ − 3781
+ − 3782 /* Following are the cases which match a character. These end
+ − 3783 with `break'. */
+ − 3784
+ − 3785 case exactn:
+ − 3786 fastmap[p[1]] = 1;
+ − 3787 break;
+ − 3788
+ − 3789
+ − 3790 case charset:
+ − 3791 /* XEmacs: Under Mule, these bit vectors will
+ − 3792 only contain values for characters below 0x80. */
+ − 3793 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
+ − 3794 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
+ − 3795 fastmap[j] = 1;
+ − 3796 break;
+ − 3797
+ − 3798
+ − 3799 case charset_not:
+ − 3800 /* Chars beyond end of map must be allowed. */
+ − 3801 #ifdef MULE
+ − 3802 for (j = *p * BYTEWIDTH; j < 0x80; j++)
+ − 3803 fastmap[j] = 1;
+ − 3804 /* And all extended characters must be allowed, too. */
+ − 3805 for (j = 0x80; j < 0xA0; j++)
+ − 3806 fastmap[j] = 1;
446
+ − 3807 #else /* not MULE */
428
+ − 3808 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
+ − 3809 fastmap[j] = 1;
446
+ − 3810 #endif /* MULE */
428
+ − 3811
+ − 3812 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
+ − 3813 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
+ − 3814 fastmap[j] = 1;
+ − 3815 break;
+ − 3816
+ − 3817 #ifdef MULE
+ − 3818 case charset_mule:
+ − 3819 {
+ − 3820 int nentries;
+ − 3821 int i;
+ − 3822
+ − 3823 nentries = unified_range_table_nentries (p);
+ − 3824 for (i = 0; i < nentries; i++)
+ − 3825 {
+ − 3826 EMACS_INT first, last;
+ − 3827 Lisp_Object dummy_val;
+ − 3828 int jj;
867
+ − 3829 Ibyte strr[MAX_ICHAR_LEN];
428
+ − 3830
+ − 3831 unified_range_table_get_range (p, i, &first, &last,
+ − 3832 &dummy_val);
+ − 3833 for (jj = first; jj <= last && jj < 0x80; jj++)
+ − 3834 fastmap[jj] = 1;
+ − 3835 /* Ranges below 0x100 can span charsets, but there
+ − 3836 are only two (Control-1 and Latin-1), and
+ − 3837 either first or last has to be in them. */
867
+ − 3838 set_itext_ichar (strr, first);
428
+ − 3839 fastmap[*strr] = 1;
+ − 3840 if (last < 0x100)
+ − 3841 {
867
+ − 3842 set_itext_ichar (strr, last);
428
+ − 3843 fastmap[*strr] = 1;
+ − 3844 }
+ − 3845 }
+ − 3846 }
+ − 3847 break;
+ − 3848
+ − 3849 case charset_mule_not:
+ − 3850 {
+ − 3851 int nentries;
+ − 3852 int i;
+ − 3853
+ − 3854 nentries = unified_range_table_nentries (p);
+ − 3855 for (i = 0; i < nentries; i++)
+ − 3856 {
+ − 3857 EMACS_INT first, last;
+ − 3858 Lisp_Object dummy_val;
+ − 3859 int jj;
+ − 3860 int smallest_prev = 0;
+ − 3861
+ − 3862 unified_range_table_get_range (p, i, &first, &last,
+ − 3863 &dummy_val);
+ − 3864 for (jj = smallest_prev; jj < first && jj < 0x80; jj++)
+ − 3865 fastmap[jj] = 1;
+ − 3866 smallest_prev = last + 1;
+ − 3867 if (smallest_prev >= 0x80)
+ − 3868 break;
+ − 3869 }
+ − 3870 /* Calculating which leading bytes are actually allowed
+ − 3871 here is rather difficult, so we just punt and allow
+ − 3872 all of them. */
+ − 3873 for (i = 0x80; i < 0xA0; i++)
+ − 3874 fastmap[i] = 1;
+ − 3875 }
+ − 3876 break;
+ − 3877 #endif /* MULE */
+ − 3878
+ − 3879
+ − 3880 case anychar:
+ − 3881 {
+ − 3882 int fastmap_newline = fastmap['\n'];
+ − 3883
+ − 3884 /* `.' matches anything ... */
+ − 3885 #ifdef MULE
+ − 3886 /* "anything" only includes bytes that can be the
+ − 3887 first byte of a character. */
+ − 3888 for (j = 0; j < 0xA0; j++)
+ − 3889 fastmap[j] = 1;
+ − 3890 #else
+ − 3891 for (j = 0; j < (1 << BYTEWIDTH); j++)
+ − 3892 fastmap[j] = 1;
+ − 3893 #endif
+ − 3894
+ − 3895 /* ... except perhaps newline. */
+ − 3896 if (!(bufp->syntax & RE_DOT_NEWLINE))
+ − 3897 fastmap['\n'] = fastmap_newline;
+ − 3898
+ − 3899 /* Return if we have already set `can_be_null'; if we have,
+ − 3900 then the fastmap is irrelevant. Something's wrong here. */
+ − 3901 else if (bufp->can_be_null)
+ − 3902 goto done;
+ − 3903
+ − 3904 /* Otherwise, have to check alternative paths. */
+ − 3905 break;
+ − 3906 }
+ − 3907
826
+ − 3908 #ifndef emacs
+ − 3909 case wordchar:
+ − 3910 for (j = 0; j < (1 << BYTEWIDTH); j++)
+ − 3911 if (SYNTAX (ignored, j) == Sword)
+ − 3912 fastmap[j] = 1;
+ − 3913 break;
+ − 3914
+ − 3915 case notwordchar:
+ − 3916 for (j = 0; j < (1 << BYTEWIDTH); j++)
+ − 3917 if (SYNTAX (ignored, j) != Sword)
+ − 3918 fastmap[j] = 1;
+ − 3919 break;
+ − 3920 #else /* emacs */
+ − 3921 case wordchar:
+ − 3922 case notwordchar:
460
+ − 3923 case wordbound:
+ − 3924 case notwordbound:
+ − 3925 case wordbeg:
+ − 3926 case wordend:
+ − 3927 case notsyntaxspec:
+ − 3928 case syntaxspec:
+ − 3929 /* This match depends on text properties. These end with
+ − 3930 aborting optimizations. */
+ − 3931 bufp->can_be_null = 1;
+ − 3932 goto done;
826
+ − 3933 #if 0 /* all of the following code is unused now that the `syntax-table'
+ − 3934 property exists -- it's trickier to do this than just look in
+ − 3935 the buffer. &&#### but we could just use the syntax-cache stuff
+ − 3936 instead; why don't we? --ben */
+ − 3937 case wordchar:
+ − 3938 k = (int) Sword;
+ − 3939 goto matchsyntax;
+ − 3940
+ − 3941 case notwordchar:
+ − 3942 k = (int) Sword;
+ − 3943 goto matchnotsyntax;
+ − 3944
428
+ − 3945 case syntaxspec:
+ − 3946 k = *p++;
826
+ − 3947 matchsyntax:
428
+ − 3948 #ifdef MULE
+ − 3949 for (j = 0; j < 0x80; j++)
826
+ − 3950 if (SYNTAX
+ − 3951 (XCHAR_TABLE (BUFFER_MIRROR_SYNTAX_TABLE (lispbuf)), j) ==
428
+ − 3952 (enum syntaxcode) k)
+ − 3953 fastmap[j] = 1;
+ − 3954 for (j = 0x80; j < 0xA0; j++)
+ − 3955 {
826
+ − 3956 if (leading_byte_prefix_p ((unsigned char) j))
428
+ − 3957 /* too complicated to calculate this right */
+ − 3958 fastmap[j] = 1;
+ − 3959 else
+ − 3960 {
+ − 3961 int multi_p;
+ − 3962 Lisp_Object cset;
+ − 3963
826
+ − 3964 cset = charset_by_leading_byte (j);
428
+ − 3965 if (CHARSETP (cset))
+ − 3966 {
826
+ − 3967 if (charset_syntax (lispbuf, cset, &multi_p)
428
+ − 3968 == Sword || multi_p)
+ − 3969 fastmap[j] = 1;
+ − 3970 }
+ − 3971 }
+ − 3972 }
446
+ − 3973 #else /* not MULE */
428
+ − 3974 for (j = 0; j < (1 << BYTEWIDTH); j++)
826
+ − 3975 if (SYNTAX
+ − 3976 (XCHAR_TABLE (BUFFER_MIRROR_SYNTAX_TABLE (lispbuf)), j) ==
428
+ − 3977 (enum syntaxcode) k)
+ − 3978 fastmap[j] = 1;
446
+ − 3979 #endif /* MULE */
428
+ − 3980 break;
+ − 3981
+ − 3982
+ − 3983 case notsyntaxspec:
+ − 3984 k = *p++;
826
+ − 3985 matchnotsyntax:
428
+ − 3986 #ifdef MULE
+ − 3987 for (j = 0; j < 0x80; j++)
826
+ − 3988 if (SYNTAX
428
+ − 3989 (XCHAR_TABLE
826
+ − 3990 (BUFFER_MIRROR_SYNTAX_TABLE (lispbuf)), j) !=
428
+ − 3991 (enum syntaxcode) k)
+ − 3992 fastmap[j] = 1;
+ − 3993 for (j = 0x80; j < 0xA0; j++)
+ − 3994 {
826
+ − 3995 if (leading_byte_prefix_p ((unsigned char) j))
428
+ − 3996 /* too complicated to calculate this right */
+ − 3997 fastmap[j] = 1;
+ − 3998 else
+ − 3999 {
+ − 4000 int multi_p;
+ − 4001 Lisp_Object cset;
+ − 4002
826
+ − 4003 cset = charset_by_leading_byte (j);
428
+ − 4004 if (CHARSETP (cset))
+ − 4005 {
826
+ − 4006 if (charset_syntax (lispbuf, cset, &multi_p)
428
+ − 4007 != Sword || multi_p)
+ − 4008 fastmap[j] = 1;
+ − 4009 }
+ − 4010 }
+ − 4011 }
446
+ − 4012 #else /* not MULE */
428
+ − 4013 for (j = 0; j < (1 << BYTEWIDTH); j++)
826
+ − 4014 if (SYNTAX
428
+ − 4015 (XCHAR_TABLE
826
+ − 4016 (BUFFER_MIRROR_SYNTAX_TABLE (lispbuf)), j) !=
428
+ − 4017 (enum syntaxcode) k)
+ − 4018 fastmap[j] = 1;
446
+ − 4019 #endif /* MULE */
428
+ − 4020 break;
826
+ − 4021 #endif /* 0 */
428
+ − 4022
+ − 4023 #ifdef MULE
+ − 4024 /* 97/2/17 jhod category patch */
+ − 4025 case categoryspec:
+ − 4026 case notcategoryspec:
+ − 4027 bufp->can_be_null = 1;
1333
+ − 4028 UNBIND_REGEX_MALLOC_CHECK ();
428
+ − 4029 return 0;
+ − 4030 /* end if category patch */
+ − 4031 #endif /* MULE */
+ − 4032
+ − 4033 /* All cases after this match the empty string. These end with
+ − 4034 `continue'. */
+ − 4035 case before_dot:
+ − 4036 case at_dot:
+ − 4037 case after_dot:
+ − 4038 continue;
826
+ − 4039 #endif /* emacs */
428
+ − 4040
+ − 4041
+ − 4042 case no_op:
+ − 4043 case begline:
+ − 4044 case endline:
+ − 4045 case begbuf:
+ − 4046 case endbuf:
460
+ − 4047 #ifndef emacs
428
+ − 4048 case wordbound:
+ − 4049 case notwordbound:
+ − 4050 case wordbeg:
+ − 4051 case wordend:
460
+ − 4052 #endif
428
+ − 4053 case push_dummy_failure:
+ − 4054 continue;
+ − 4055
+ − 4056
+ − 4057 case jump_n:
+ − 4058 case pop_failure_jump:
+ − 4059 case maybe_pop_jump:
+ − 4060 case jump:
+ − 4061 case jump_past_alt:
+ − 4062 case dummy_failure_jump:
+ − 4063 EXTRACT_NUMBER_AND_INCR (j, p);
+ − 4064 p += j;
+ − 4065 if (j > 0)
+ − 4066 continue;
+ − 4067
+ − 4068 /* Jump backward implies we just went through the body of a
+ − 4069 loop and matched nothing. Opcode jumped to should be
+ − 4070 `on_failure_jump' or `succeed_n'. Just treat it like an
+ − 4071 ordinary jump. For a * loop, it has pushed its failure
+ − 4072 point already; if so, discard that as redundant. */
+ − 4073 if ((re_opcode_t) *p != on_failure_jump
+ − 4074 && (re_opcode_t) *p != succeed_n)
+ − 4075 continue;
+ − 4076
+ − 4077 p++;
+ − 4078 EXTRACT_NUMBER_AND_INCR (j, p);
+ − 4079 p += j;
+ − 4080
+ − 4081 /* If what's on the stack is where we are now, pop it. */
+ − 4082 if (!FAIL_STACK_EMPTY ()
+ − 4083 && fail_stack.stack[fail_stack.avail - 1].pointer == p)
+ − 4084 fail_stack.avail--;
+ − 4085
+ − 4086 continue;
+ − 4087
+ − 4088
+ − 4089 case on_failure_jump:
+ − 4090 case on_failure_keep_string_jump:
+ − 4091 handle_on_failure_jump:
+ − 4092 EXTRACT_NUMBER_AND_INCR (j, p);
+ − 4093
+ − 4094 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
+ − 4095 end of the pattern. We don't want to push such a point,
+ − 4096 since when we restore it above, entering the switch will
+ − 4097 increment `p' past the end of the pattern. We don't need
+ − 4098 to push such a point since we obviously won't find any more
+ − 4099 fastmap entries beyond `pend'. Such a pattern can match
+ − 4100 the null string, though. */
+ − 4101 if (p + j < pend)
+ − 4102 {
+ − 4103 if (!PUSH_PATTERN_OP (p + j, fail_stack))
+ − 4104 {
+ − 4105 RESET_FAIL_STACK ();
1333
+ − 4106 UNBIND_REGEX_MALLOC_CHECK ();
428
+ − 4107 return -2;
+ − 4108 }
+ − 4109 }
+ − 4110 else
+ − 4111 bufp->can_be_null = 1;
+ − 4112
+ − 4113 if (succeed_n_p)
+ − 4114 {
+ − 4115 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
+ − 4116 succeed_n_p = false;
+ − 4117 }
+ − 4118
+ − 4119 continue;
+ − 4120
+ − 4121
+ − 4122 case succeed_n:
+ − 4123 /* Get to the number of times to succeed. */
+ − 4124 p += 2;
+ − 4125
+ − 4126 /* Increment p past the n for when k != 0. */
+ − 4127 EXTRACT_NUMBER_AND_INCR (k, p);
+ − 4128 if (k == 0)
+ − 4129 {
+ − 4130 p -= 4;
+ − 4131 succeed_n_p = true; /* Spaghetti code alert. */
+ − 4132 goto handle_on_failure_jump;
+ − 4133 }
+ − 4134 continue;
+ − 4135
+ − 4136
+ − 4137 case set_number_at:
+ − 4138 p += 4;
+ − 4139 continue;
+ − 4140
+ − 4141
+ − 4142 case start_memory:
+ − 4143 case stop_memory:
+ − 4144 p += 2;
+ − 4145 continue;
+ − 4146
+ − 4147
+ − 4148 default:
2500
+ − 4149 ABORT (); /* We have listed all the cases. */
428
+ − 4150 } /* switch *p++ */
+ − 4151
+ − 4152 /* Getting here means we have found the possible starting
+ − 4153 characters for one path of the pattern -- and that the empty
+ − 4154 string does not match. We need not follow this path further.
+ − 4155 Instead, look at the next alternative (remembered on the
+ − 4156 stack), or quit if no more. The test at the top of the loop
+ − 4157 does these things. */
+ − 4158 path_can_be_null = false;
+ − 4159 p = pend;
+ − 4160 } /* while p */
+ − 4161
+ − 4162 /* Set `can_be_null' for the last path (also the first path, if the
+ − 4163 pattern is empty). */
+ − 4164 bufp->can_be_null |= path_can_be_null;
+ − 4165
+ − 4166 done:
+ − 4167 RESET_FAIL_STACK ();
1333
+ − 4168 UNBIND_REGEX_MALLOC_CHECK ();
428
+ − 4169 return 0;
+ − 4170 } /* re_compile_fastmap */
+ − 4171
+ − 4172 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
+ − 4173 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
+ − 4174 this memory for recording register information. STARTS and ENDS
+ − 4175 must be allocated using the malloc library routine, and must each
+ − 4176 be at least NUM_REGS * sizeof (regoff_t) bytes long.
+ − 4177
+ − 4178 If NUM_REGS == 0, then subsequent matches should allocate their own
+ − 4179 register data.
+ − 4180
+ − 4181 Unless this function is called, the first search or match using
+ − 4182 PATTERN_BUFFER will allocate its own register data, without
+ − 4183 freeing the old data. */
+ − 4184
+ − 4185 void
+ − 4186 re_set_registers (struct re_pattern_buffer *bufp, struct re_registers *regs,
647
+ − 4187 int num_regs, regoff_t *starts, regoff_t *ends)
428
+ − 4188 {
+ − 4189 if (num_regs)
+ − 4190 {
+ − 4191 bufp->regs_allocated = REGS_REALLOCATE;
+ − 4192 regs->num_regs = num_regs;
+ − 4193 regs->start = starts;
+ − 4194 regs->end = ends;
+ − 4195 }
+ − 4196 else
+ − 4197 {
+ − 4198 bufp->regs_allocated = REGS_UNALLOCATED;
+ − 4199 regs->num_regs = 0;
+ − 4200 regs->start = regs->end = (regoff_t *) 0;
+ − 4201 }
+ − 4202 }
+ − 4203
+ − 4204 /* Searching routines. */
+ − 4205
+ − 4206 /* Like re_search_2, below, but only one string is specified, and
+ − 4207 doesn't let you say where to stop matching. */
+ − 4208
+ − 4209 int
442
+ − 4210 re_search (struct re_pattern_buffer *bufp, const char *string, int size,
826
+ − 4211 int startpos, int range, struct re_registers *regs
+ − 4212 RE_LISP_CONTEXT_ARGS_DECL)
428
+ − 4213 {
+ − 4214 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
826
+ − 4215 regs, size RE_LISP_CONTEXT_ARGS);
428
+ − 4216 }
+ − 4217
+ − 4218 /* Using the compiled pattern in BUFP->buffer, first tries to match the
+ − 4219 virtual concatenation of STRING1 and STRING2, starting first at index
+ − 4220 STARTPOS, then at STARTPOS + 1, and so on.
+ − 4221
+ − 4222 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
+ − 4223
+ − 4224 RANGE is how far to scan while trying to match. RANGE = 0 means try
+ − 4225 only at STARTPOS; in general, the last start tried is STARTPOS +
+ − 4226 RANGE.
+ − 4227
826
+ − 4228 All sizes and positions refer to bytes (not chars); under Mule, the code
+ − 4229 knows about the format of the text and will only check at positions
+ − 4230 where a character starts.
+ − 4231
428
+ − 4232 With MULE, RANGE is a byte position, not a char position. The last
+ − 4233 start tried is the character starting <= STARTPOS + RANGE.
+ − 4234
+ − 4235 In REGS, return the indices of the virtual concatenation of STRING1
+ − 4236 and STRING2 that matched the entire BUFP->buffer and its contained
+ − 4237 subexpressions.
+ − 4238
+ − 4239 Do not consider matching one past the index STOP in the virtual
+ − 4240 concatenation of STRING1 and STRING2.
+ − 4241
+ − 4242 We return either the position in the strings at which the match was
+ − 4243 found, -1 if no match, or -2 if error (such as failure
+ − 4244 stack overflow). */
+ − 4245
+ − 4246 int
446
+ − 4247 re_search_2 (struct re_pattern_buffer *bufp, const char *str1,
+ − 4248 int size1, const char *str2, int size2, int startpos,
826
+ − 4249 int range, struct re_registers *regs, int stop
+ − 4250 RE_LISP_CONTEXT_ARGS_DECL)
428
+ − 4251 {
+ − 4252 int val;
446
+ − 4253 re_char *string1 = (re_char *) str1;
+ − 4254 re_char *string2 = (re_char *) str2;
428
+ − 4255 REGISTER char *fastmap = bufp->fastmap;
446
+ − 4256 REGISTER RE_TRANSLATE_TYPE translate = bufp->translate;
428
+ − 4257 int total_size = size1 + size2;
+ − 4258 int endpos = startpos + range;
+ − 4259 #ifdef REGEX_BEGLINE_CHECK
+ − 4260 int anchored_at_begline = 0;
+ − 4261 #endif
446
+ − 4262 re_char *d;
826
+ − 4263 #ifdef emacs
+ − 4264 Internal_Format fmt = buffer_or_other_internal_format (lispobj);
1346
+ − 4265 #ifdef REL_ALLOC
+ − 4266 Ibyte *orig_buftext =
+ − 4267 BUFFERP (lispobj) ?
+ − 4268 BYTE_BUF_BYTE_ADDRESS (XBUFFER (lispobj),
+ − 4269 BYTE_BUF_BEGV (XBUFFER (lispobj))) :
+ − 4270 0;
+ − 4271 #endif
1333
+ − 4272 #ifdef ERROR_CHECK_MALLOC
+ − 4273 int depth;
+ − 4274 #endif
826
+ − 4275 #endif /* emacs */
+ − 4276 #if 1
+ − 4277 int forward_search_p;
+ − 4278 #endif
428
+ − 4279
+ − 4280 /* Check for out-of-range STARTPOS. */
+ − 4281 if (startpos < 0 || startpos > total_size)
+ − 4282 return -1;
+ − 4283
+ − 4284 /* Fix up RANGE if it might eventually take us outside
+ − 4285 the virtual concatenation of STRING1 and STRING2. */
+ − 4286 if (endpos < 0)
+ − 4287 range = 0 - startpos;
+ − 4288 else if (endpos > total_size)
+ − 4289 range = total_size - startpos;
+ − 4290
826
+ − 4291 #if 1
+ − 4292 forward_search_p = range > 0;
+ − 4293 #endif
+ − 4294
428
+ − 4295 /* If the search isn't to be a backwards one, don't waste time in a
+ − 4296 search for a pattern that must be anchored. */
+ − 4297 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
+ − 4298 {
+ − 4299 if (startpos > 0)
+ − 4300 return -1;
+ − 4301 else
+ − 4302 {
442
+ − 4303 d = ((const unsigned char *)
428
+ − 4304 (startpos >= size1 ? string2 - size1 : string1) + startpos);
867
+ − 4305 range = itext_ichar_len_fmt (d, fmt);
428
+ − 4306 }
+ − 4307 }
+ − 4308
460
+ − 4309 #ifdef emacs
+ − 4310 /* In a forward search for something that starts with \=.
+ − 4311 don't keep searching past point. */
+ − 4312 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
+ − 4313 {
826
+ − 4314 if (!BUFFERP (lispobj))
+ − 4315 return -1;
+ − 4316 range = (BUF_PT (XBUFFER (lispobj)) - BUF_BEGV (XBUFFER (lispobj))
+ − 4317 - startpos);
460
+ − 4318 if (range < 0)
+ − 4319 return -1;
+ − 4320 }
+ − 4321 #endif /* emacs */
+ − 4322
1333
+ − 4323 #ifdef ERROR_CHECK_MALLOC
+ − 4324 /* Do this after the above return()s. */
+ − 4325 depth = bind_regex_malloc_disallowed (1);
+ − 4326 #endif
+ − 4327
428
+ − 4328 /* Update the fastmap now if not correct already. */
1333
+ − 4329 BEGIN_REGEX_MALLOC_OK ();
428
+ − 4330 if (fastmap && !bufp->fastmap_accurate)
826
+ − 4331 if (re_compile_fastmap (bufp RE_LISP_SHORT_CONTEXT_ARGS) == -2)
1333
+ − 4332 {
+ − 4333 END_REGEX_MALLOC_OK ();
+ − 4334 UNBIND_REGEX_MALLOC_CHECK ();
+ − 4335 return -2;
+ − 4336 }
+ − 4337
+ − 4338 END_REGEX_MALLOC_OK ();
+ − 4339 RE_SEARCH_RELOCATE_MOVEABLE_DATA_POINTERS ();
428
+ − 4340
+ − 4341 #ifdef REGEX_BEGLINE_CHECK
+ − 4342 {
647
+ − 4343 long i = 0;
428
+ − 4344
+ − 4345 while (i < bufp->used)
+ − 4346 {
+ − 4347 if (bufp->buffer[i] == start_memory ||
+ − 4348 bufp->buffer[i] == stop_memory)
+ − 4349 i += 2;
+ − 4350 else
+ − 4351 break;
+ − 4352 }
+ − 4353 anchored_at_begline = i < bufp->used && bufp->buffer[i] == begline;
+ − 4354 }
+ − 4355 #endif
+ − 4356
460
+ − 4357 #ifdef emacs
1333
+ − 4358 BEGIN_REGEX_MALLOC_OK ();
826
+ − 4359 scache = setup_syntax_cache (scache, lispobj, lispbuf,
+ − 4360 offset_to_charxpos (lispobj, startpos),
+ − 4361 1);
1333
+ − 4362 END_REGEX_MALLOC_OK ();
+ − 4363 RE_SEARCH_RELOCATE_MOVEABLE_DATA_POINTERS ();
460
+ − 4364 #endif
+ − 4365
428
+ − 4366 /* Loop through the string, looking for a place to start matching. */
+ − 4367 for (;;)
+ − 4368 {
+ − 4369 #ifdef REGEX_BEGLINE_CHECK
826
+ − 4370 /* If the regex is anchored at the beginning of a line (i.e. with a
+ − 4371 ^), then we can speed things up by skipping to the next
+ − 4372 beginning-of-line. However, to determine "beginning of line" we
+ − 4373 need to look at the previous char, so can't do this check if at
+ − 4374 beginning of either string. (Well, we could if at the beginning of
+ − 4375 the second string, but it would require additional code, and this
+ − 4376 is just an optimization.) */
+ − 4377 if (anchored_at_begline && startpos > 0 && startpos != size1)
428
+ − 4378 {
826
+ − 4379 if (range > 0)
+ − 4380 {
+ − 4381 /* whose stupid idea was it anyway to make this
+ − 4382 function take two strings to match?? */
+ − 4383 int lim = 0;
+ − 4384 re_char *orig_d;
+ − 4385 re_char *stop_d;
+ − 4386
+ − 4387 /* Compute limit as below in fastmap code, so we are guaranteed
+ − 4388 to remain within a single string. */
+ − 4389 if (startpos < size1 && startpos + range >= size1)
+ − 4390 lim = range - (size1 - startpos);
+ − 4391
+ − 4392 d = ((const unsigned char *)
+ − 4393 (startpos >= size1 ? string2 - size1 : string1) + startpos);
+ − 4394 orig_d = d;
+ − 4395 stop_d = d + range - lim;
+ − 4396
+ − 4397 /* We want to find the next location (including the current
+ − 4398 one) where the previous char is a newline, so back up one
+ − 4399 and search forward for a newline. */
867
+ − 4400 DEC_IBYTEPTR_FMT (d, fmt); /* Ok, since startpos != size1. */
826
+ − 4401
+ − 4402 /* Written out as an if-else to avoid testing `translate'
+ − 4403 inside the loop. */
+ − 4404 if (TRANSLATE_P (translate))
+ − 4405 while (d < stop_d &&
867
+ − 4406 RE_TRANSLATE_1 (itext_ichar_fmt (d, fmt, lispobj))
826
+ − 4407 != '\n')
867
+ − 4408 INC_IBYTEPTR_FMT (d, fmt);
826
+ − 4409 else
+ − 4410 while (d < stop_d &&
867
+ − 4411 itext_ichar_ascii_fmt (d, fmt, lispobj) != '\n')
+ − 4412 INC_IBYTEPTR_FMT (d, fmt);
826
+ − 4413
+ − 4414 /* If we were stopped by a newline, skip forward over it.
+ − 4415 Otherwise we will get in an infloop when our start position
+ − 4416 was at begline. */
+ − 4417 if (d < stop_d)
867
+ − 4418 INC_IBYTEPTR_FMT (d, fmt);
826
+ − 4419 range -= d - orig_d;
+ − 4420 startpos += d - orig_d;
+ − 4421 #if 1
+ − 4422 assert (!forward_search_p || range >= 0);
+ − 4423 #endif
+ − 4424 }
+ − 4425 else if (range < 0)
+ − 4426 {
+ − 4427 /* We're lazy, like in the fastmap code below */
867
+ − 4428 Ichar c;
826
+ − 4429
+ − 4430 d = ((const unsigned char *)
+ − 4431 (startpos >= size1 ? string2 - size1 : string1) + startpos);
867
+ − 4432 DEC_IBYTEPTR_FMT (d, fmt);
+ − 4433 c = itext_ichar_fmt (d, fmt, lispobj);
826
+ − 4434 c = RE_TRANSLATE (c);
+ − 4435 if (c != '\n')
+ − 4436 goto advance;
+ − 4437 }
428
+ − 4438 }
+ − 4439 #endif /* REGEX_BEGLINE_CHECK */
+ − 4440
+ − 4441 /* If a fastmap is supplied, skip quickly over characters that
+ − 4442 cannot be the start of a match. If the pattern can match the
+ − 4443 null string, however, we don't need to skip characters; we want
+ − 4444 the first null string. */
+ − 4445 if (fastmap && startpos < total_size && !bufp->can_be_null)
+ − 4446 {
826
+ − 4447 /* For the moment, fastmap always works as if buffer
+ − 4448 is in default format, so convert chars in the search strings
+ − 4449 into default format as we go along, if necessary.
+ − 4450
+ − 4451 &&#### fastmap needs rethinking for 8-bit-fixed so
+ − 4452 it's faster. We need it to reflect the raw
+ − 4453 8-bit-fixed values. That isn't so hard if we assume
+ − 4454 that the top 96 bytes represent a single 1-byte
+ − 4455 charset. For 16-bit/32-bit stuff it's probably not
+ − 4456 worth it to make the fastmap represent the raw, due to
+ − 4457 its nature -- we'd have to use the LSB for the
+ − 4458 fastmap, and that causes lots of problems with Mule
+ − 4459 chars, where it essentially wipes out the usefulness
+ − 4460 of the fastmap entirely. */
428
+ − 4461 if (range > 0) /* Searching forwards. */
+ − 4462 {
+ − 4463 int lim = 0;
+ − 4464 int irange = range;
+ − 4465
+ − 4466 if (startpos < size1 && startpos + range >= size1)
+ − 4467 lim = range - (size1 - startpos);
+ − 4468
442
+ − 4469 d = ((const unsigned char *)
428
+ − 4470 (startpos >= size1 ? string2 - size1 : string1) + startpos);
+ − 4471
+ − 4472 /* Written out as an if-else to avoid testing `translate'
+ − 4473 inside the loop. */
446
+ − 4474 if (TRANSLATE_P (translate))
826
+ − 4475 {
+ − 4476 while (range > lim)
+ − 4477 {
+ − 4478 re_char *old_d = d;
428
+ − 4479 #ifdef MULE
867
+ − 4480 Ibyte tempch[MAX_ICHAR_LEN];
+ − 4481 Ichar buf_ch =
+ − 4482 RE_TRANSLATE_1 (itext_ichar_fmt (d, fmt, lispobj));
+ − 4483 set_itext_ichar (tempch, buf_ch);
826
+ − 4484 if (fastmap[*tempch])
+ − 4485 break;
446
+ − 4486 #else
826
+ − 4487 if (fastmap[(unsigned char) RE_TRANSLATE_1 (*d)])
+ − 4488 break;
446
+ − 4489 #endif /* MULE */
867
+ − 4490 INC_IBYTEPTR_FMT (d, fmt);
826
+ − 4491 range -= (d - old_d);
+ − 4492 #if 1
1333
+ − 4493 assert (!forward_search_p || range >= 0);
826
+ − 4494 #endif
+ − 4495 }
+ − 4496 }
+ − 4497 #ifdef MULE
+ − 4498 else if (fmt != FORMAT_DEFAULT)
+ − 4499 {
+ − 4500 while (range > lim)
+ − 4501 {
+ − 4502 re_char *old_d = d;
867
+ − 4503 Ibyte tempch[MAX_ICHAR_LEN];
+ − 4504 Ichar buf_ch = itext_ichar_fmt (d, fmt, lispobj);
+ − 4505 set_itext_ichar (tempch, buf_ch);
826
+ − 4506 if (fastmap[*tempch])
+ − 4507 break;
867
+ − 4508 INC_IBYTEPTR_FMT (d, fmt);
826
+ − 4509 range -= (d - old_d);
+ − 4510 #if 1
1333
+ − 4511 assert (!forward_search_p || range >= 0);
826
+ − 4512 #endif
+ − 4513 }
+ − 4514 }
+ − 4515 #endif /* MULE */
428
+ − 4516 else
826
+ − 4517 {
+ − 4518 while (range > lim && !fastmap[*d])
+ − 4519 {
+ − 4520 re_char *old_d = d;
867
+ − 4521 INC_IBYTEPTR (d);
826
+ − 4522 range -= (d - old_d);
+ − 4523 #if 1
+ − 4524 assert (!forward_search_p || range >= 0);
+ − 4525 #endif
+ − 4526 }
+ − 4527 }
428
+ − 4528
+ − 4529 startpos += irange - range;
+ − 4530 }
+ − 4531 else /* Searching backwards. */
+ − 4532 {
826
+ − 4533 /* #### It's not clear why we don't just write a loop, like
+ − 4534 for the moving-forward case. Perhaps the writer got lazy,
+ − 4535 since backward searches aren't so common. */
+ − 4536 d = ((const unsigned char *)
+ − 4537 (startpos >= size1 ? string2 - size1 : string1) + startpos);
428
+ − 4538 #ifdef MULE
826
+ − 4539 {
867
+ − 4540 Ibyte tempch[MAX_ICHAR_LEN];
+ − 4541 Ichar buf_ch =
+ − 4542 RE_TRANSLATE (itext_ichar_fmt (d, fmt, lispobj));
+ − 4543 set_itext_ichar (tempch, buf_ch);
826
+ − 4544 if (!fastmap[*tempch])
+ − 4545 goto advance;
+ − 4546 }
428
+ − 4547 #else
826
+ − 4548 if (!fastmap[(unsigned char) RE_TRANSLATE (*d)])
446
+ − 4549 goto advance;
826
+ − 4550 #endif /* MULE */
428
+ − 4551 }
+ − 4552 }
+ − 4553
+ − 4554 /* If can't match the null string, and that's all we have left, fail. */
+ − 4555 if (range >= 0 && startpos == total_size && fastmap
+ − 4556 && !bufp->can_be_null)
1333
+ − 4557 {
+ − 4558 UNBIND_REGEX_MALLOC_CHECK ();
+ − 4559 return -1;
+ − 4560 }
428
+ − 4561
+ − 4562 #ifdef emacs /* XEmacs added, w/removal of immediate_quit */
+ − 4563 if (!no_quit_in_re_search)
1333
+ − 4564 {
+ − 4565 BEGIN_REGEX_MALLOC_OK ();
+ − 4566 QUIT;
+ − 4567 END_REGEX_MALLOC_OK ();
+ − 4568 RE_SEARCH_RELOCATE_MOVEABLE_DATA_POINTERS ();
+ − 4569 }
+ − 4570
428
+ − 4571 #endif
1333
+ − 4572 BEGIN_REGEX_MALLOC_OK ();
428
+ − 4573 val = re_match_2_internal (bufp, string1, size1, string2, size2,
826
+ − 4574 startpos, regs, stop
+ − 4575 RE_LISP_CONTEXT_ARGS);
428
+ − 4576 #ifndef REGEX_MALLOC
1333
+ − 4577 ALLOCA_GARBAGE_COLLECT ();
428
+ − 4578 #endif
1333
+ − 4579 END_REGEX_MALLOC_OK ();
+ − 4580 RE_SEARCH_RELOCATE_MOVEABLE_DATA_POINTERS ();
428
+ − 4581
+ − 4582 if (val >= 0)
1333
+ − 4583 {
+ − 4584 UNBIND_REGEX_MALLOC_CHECK ();
+ − 4585 return startpos;
+ − 4586 }
428
+ − 4587
+ − 4588 if (val == -2)
1333
+ − 4589 {
+ − 4590 UNBIND_REGEX_MALLOC_CHECK ();
+ − 4591 return -2;
+ − 4592 }
+ − 4593
+ − 4594 RE_SEARCH_RELOCATE_MOVEABLE_DATA_POINTERS ();
428
+ − 4595 advance:
+ − 4596 if (!range)
+ − 4597 break;
+ − 4598 else if (range > 0)
+ − 4599 {
826
+ − 4600 Bytecount d_size;
442
+ − 4601 d = ((const unsigned char *)
428
+ − 4602 (startpos >= size1 ? string2 - size1 : string1) + startpos);
867
+ − 4603 d_size = itext_ichar_len_fmt (d, fmt);
428
+ − 4604 range -= d_size;
826
+ − 4605 #if 1
+ − 4606 assert (!forward_search_p || range >= 0);
+ − 4607 #endif
428
+ − 4608 startpos += d_size;
+ − 4609 }
+ − 4610 else
+ − 4611 {
826
+ − 4612 Bytecount d_size;
428
+ − 4613 /* Note startpos > size1 not >=. If we are on the
+ − 4614 string1/string2 boundary, we want to backup into string1. */
442
+ − 4615 d = ((const unsigned char *)
428
+ − 4616 (startpos > size1 ? string2 - size1 : string1) + startpos);
867
+ − 4617 DEC_IBYTEPTR_FMT (d, fmt);
+ − 4618 d_size = itext_ichar_len_fmt (d, fmt);
428
+ − 4619 range += d_size;
826
+ − 4620 #if 1
+ − 4621 assert (!forward_search_p || range >= 0);
+ − 4622 #endif
428
+ − 4623 startpos -= d_size;
+ − 4624 }
+ − 4625 }
1333
+ − 4626 UNBIND_REGEX_MALLOC_CHECK ();
428
+ − 4627 return -1;
+ − 4628 } /* re_search_2 */
826
+ − 4629
428
+ − 4630
+ − 4631 /* Declarations and macros for re_match_2. */
+ − 4632
+ − 4633 /* This converts PTR, a pointer into one of the search strings `string1'
+ − 4634 and `string2' into an offset from the beginning of that string. */
+ − 4635 #define POINTER_TO_OFFSET(ptr) \
+ − 4636 (FIRST_STRING_P (ptr) \
+ − 4637 ? ((regoff_t) ((ptr) - string1)) \
+ − 4638 : ((regoff_t) ((ptr) - string2 + size1)))
+ − 4639
+ − 4640 /* Macros for dealing with the split strings in re_match_2. */
+ − 4641
+ − 4642 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
+ − 4643
+ − 4644 /* Call before fetching a character with *d. This switches over to
+ − 4645 string2 if necessary. */
826
+ − 4646 #define REGEX_PREFETCH() \
428
+ − 4647 while (d == dend) \
+ − 4648 { \
+ − 4649 /* End of string2 => fail. */ \
+ − 4650 if (dend == end_match_2) \
+ − 4651 goto fail; \
+ − 4652 /* End of string1 => advance to string2. */ \
+ − 4653 d = string2; \
+ − 4654 dend = end_match_2; \
+ − 4655 }
+ − 4656
+ − 4657
+ − 4658 /* Test if at very beginning or at very end of the virtual concatenation
+ − 4659 of `string1' and `string2'. If only one string, it's `string2'. */
+ − 4660 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
+ − 4661 #define AT_STRINGS_END(d) ((d) == end2)
+ − 4662
+ − 4663 /* XEmacs change:
+ − 4664 If the given position straddles the string gap, return the equivalent
+ − 4665 position that is before or after the gap, respectively; otherwise,
+ − 4666 return the same position. */
+ − 4667 #define POS_BEFORE_GAP_UNSAFE(d) ((d) == string2 ? end1 : (d))
+ − 4668 #define POS_AFTER_GAP_UNSAFE(d) ((d) == end1 ? string2 : (d))
+ − 4669
+ − 4670 /* Test if CH is a word-constituent character. (XEmacs change) */
826
+ − 4671 #define WORDCHAR_P(ch) \
+ − 4672 (SYNTAX (BUFFER_MIRROR_SYNTAX_TABLE (lispbuf), ch) == Sword)
428
+ − 4673
+ − 4674 /* Free everything we malloc. */
+ − 4675 #ifdef MATCH_MAY_ALLOCATE
1726
+ − 4676 #define FREE_VAR(var,type) if (var) REGEX_FREE (var, type); var = NULL
428
+ − 4677 #define FREE_VARIABLES() \
+ − 4678 do { \
1333
+ − 4679 UNBIND_REGEX_MALLOC_CHECK (); \
428
+ − 4680 REGEX_FREE_STACK (fail_stack.stack); \
1726
+ − 4681 FREE_VAR (regstart, re_char **); \
+ − 4682 FREE_VAR (regend, re_char **); \
+ − 4683 FREE_VAR (old_regstart, re_char **); \
+ − 4684 FREE_VAR (old_regend, re_char **); \
+ − 4685 FREE_VAR (best_regstart, re_char **); \
+ − 4686 FREE_VAR (best_regend, re_char **); \
+ − 4687 FREE_VAR (reg_info, register_info_type *); \
+ − 4688 FREE_VAR (reg_dummy, re_char **); \
+ − 4689 FREE_VAR (reg_info_dummy, register_info_type *); \
428
+ − 4690 } while (0)
446
+ − 4691 #else /* not MATCH_MAY_ALLOCATE */
1333
+ − 4692 #define FREE_VARIABLES() \
+ − 4693 do { \
+ − 4694 UNBIND_REGEX_MALLOC_CHECK (); \
+ − 4695 } while (0)
446
+ − 4696 #endif /* MATCH_MAY_ALLOCATE */
428
+ − 4697
+ − 4698 /* These values must meet several constraints. They must not be valid
+ − 4699 register values; since we have a limit of 255 registers (because
+ − 4700 we use only one byte in the pattern for the register number), we can
+ − 4701 use numbers larger than 255. They must differ by 1, because of
+ − 4702 NUM_FAILURE_ITEMS above. And the value for the lowest register must
+ − 4703 be larger than the value for the highest register, so we do not try
+ − 4704 to actually save any registers when none are active. */
+ − 4705 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
+ − 4706 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
+ − 4707
+ − 4708 /* Matching routines. */
+ − 4709
826
+ − 4710 #ifndef emacs /* XEmacs never uses this. */
428
+ − 4711 /* re_match is like re_match_2 except it takes only a single string. */
+ − 4712
+ − 4713 int
442
+ − 4714 re_match (struct re_pattern_buffer *bufp, const char *string, int size,
826
+ − 4715 int pos, struct re_registers *regs
+ − 4716 RE_LISP_CONTEXT_ARGS_DECL)
428
+ − 4717 {
446
+ − 4718 int result = re_match_2_internal (bufp, NULL, 0, (re_char *) string, size,
826
+ − 4719 pos, regs, size
+ − 4720 RE_LISP_CONTEXT_ARGS);
1333
+ − 4721 ALLOCA_GARBAGE_COLLECT ();
428
+ − 4722 return result;
+ − 4723 }
+ − 4724 #endif /* not emacs */
+ − 4725
+ − 4726 /* re_match_2 matches the compiled pattern in BUFP against the
+ − 4727 (virtual) concatenation of STRING1 and STRING2 (of length SIZE1 and
+ − 4728 SIZE2, respectively). We start matching at POS, and stop matching
+ − 4729 at STOP.
+ − 4730
+ − 4731 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
+ − 4732 store offsets for the substring each group matched in REGS. See the
+ − 4733 documentation for exactly how many groups we fill.
+ − 4734
+ − 4735 We return -1 if no match, -2 if an internal error (such as the
+ − 4736 failure stack overflowing). Otherwise, we return the length of the
+ − 4737 matched substring. */
+ − 4738
+ − 4739 int
442
+ − 4740 re_match_2 (struct re_pattern_buffer *bufp, const char *string1,
+ − 4741 int size1, const char *string2, int size2, int pos,
826
+ − 4742 struct re_registers *regs, int stop
+ − 4743 RE_LISP_CONTEXT_ARGS_DECL)
428
+ − 4744 {
460
+ − 4745 int result;
+ − 4746
+ − 4747 #ifdef emacs
826
+ − 4748 scache = setup_syntax_cache (scache, lispobj, lispbuf,
+ − 4749 offset_to_charxpos (lispobj, pos),
+ − 4750 1);
460
+ − 4751 #endif
+ − 4752
+ − 4753 result = re_match_2_internal (bufp, (re_char *) string1, size1,
+ − 4754 (re_char *) string2, size2,
826
+ − 4755 pos, regs, stop
+ − 4756 RE_LISP_CONTEXT_ARGS);
460
+ − 4757
1333
+ − 4758 ALLOCA_GARBAGE_COLLECT ();
428
+ − 4759 return result;
+ − 4760 }
+ − 4761
+ − 4762 /* This is a separate function so that we can force an alloca cleanup
+ − 4763 afterwards. */
+ − 4764 static int
446
+ − 4765 re_match_2_internal (struct re_pattern_buffer *bufp, re_char *string1,
+ − 4766 int size1, re_char *string2, int size2, int pos,
826
+ − 4767 struct re_registers *regs, int stop
2333
+ − 4768 RE_LISP_CONTEXT_ARGS_MULE_DECL)
428
+ − 4769 {
+ − 4770 /* General temporaries. */
+ − 4771 int mcnt;
+ − 4772 unsigned char *p1;
+ − 4773 int should_succeed; /* XEmacs change */
+ − 4774
+ − 4775 /* Just past the end of the corresponding string. */
446
+ − 4776 re_char *end1, *end2;
428
+ − 4777
+ − 4778 /* Pointers into string1 and string2, just past the last characters in
+ − 4779 each to consider matching. */
446
+ − 4780 re_char *end_match_1, *end_match_2;
428
+ − 4781
+ − 4782 /* Where we are in the data, and the end of the current string. */
446
+ − 4783 re_char *d, *dend;
428
+ − 4784
+ − 4785 /* Where we are in the pattern, and the end of the pattern. */
+ − 4786 unsigned char *p = bufp->buffer;
+ − 4787 REGISTER unsigned char *pend = p + bufp->used;
+ − 4788
+ − 4789 /* Mark the opcode just after a start_memory, so we can test for an
+ − 4790 empty subpattern when we get to the stop_memory. */
446
+ − 4791 re_char *just_past_start_mem = 0;
428
+ − 4792
+ − 4793 /* We use this to map every character in the string. */
446
+ − 4794 RE_TRANSLATE_TYPE translate = bufp->translate;
428
+ − 4795
+ − 4796 /* Failure point stack. Each place that can handle a failure further
+ − 4797 down the line pushes a failure point on this stack. It consists of
+ − 4798 restart, regend, and reg_info for all registers corresponding to
+ − 4799 the subexpressions we're currently inside, plus the number of such
+ − 4800 registers, and, finally, two char *'s. The first char * is where
+ − 4801 to resume scanning the pattern; the second one is where to resume
+ − 4802 scanning the strings. If the latter is zero, the failure point is
+ − 4803 a ``dummy''; if a failure happens and the failure point is a dummy,
+ − 4804 it gets discarded and the next one is tried. */
+ − 4805 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
+ − 4806 fail_stack_type fail_stack;
+ − 4807 #endif
+ − 4808 #ifdef DEBUG
647
+ − 4809 static int failure_id;
+ − 4810 int nfailure_points_pushed = 0, nfailure_points_popped = 0;
428
+ − 4811 #endif
+ − 4812
771
+ − 4813 #ifdef REGEX_REL_ALLOC
428
+ − 4814 /* This holds the pointer to the failure stack, when
+ − 4815 it is allocated relocatably. */
+ − 4816 fail_stack_elt_t *failure_stack_ptr;
+ − 4817 #endif
+ − 4818
+ − 4819 /* We fill all the registers internally, independent of what we
+ − 4820 return, for use in backreferences. The number here includes
+ − 4821 an element for register zero. */
647
+ − 4822 int num_regs = bufp->re_ngroups + 1;
428
+ − 4823
+ − 4824 /* The currently active registers. */
647
+ − 4825 int lowest_active_reg = NO_LOWEST_ACTIVE_REG;
+ − 4826 int highest_active_reg = NO_HIGHEST_ACTIVE_REG;
428
+ − 4827
+ − 4828 /* Information on the contents of registers. These are pointers into
+ − 4829 the input strings; they record just what was matched (on this
+ − 4830 attempt) by a subexpression part of the pattern, that is, the
+ − 4831 regnum-th regstart pointer points to where in the pattern we began
+ − 4832 matching and the regnum-th regend points to right after where we
+ − 4833 stopped matching the regnum-th subexpression. (The zeroth register
+ − 4834 keeps track of what the whole pattern matches.) */
+ − 4835 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
446
+ − 4836 re_char **regstart, **regend;
428
+ − 4837 #endif
+ − 4838
+ − 4839 /* If a group that's operated upon by a repetition operator fails to
+ − 4840 match anything, then the register for its start will need to be
+ − 4841 restored because it will have been set to wherever in the string we
+ − 4842 are when we last see its open-group operator. Similarly for a
+ − 4843 register's end. */
+ − 4844 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
446
+ − 4845 re_char **old_regstart, **old_regend;
428
+ − 4846 #endif
+ − 4847
+ − 4848 /* The is_active field of reg_info helps us keep track of which (possibly
+ − 4849 nested) subexpressions we are currently in. The matched_something
+ − 4850 field of reg_info[reg_num] helps us tell whether or not we have
+ − 4851 matched any of the pattern so far this time through the reg_num-th
+ − 4852 subexpression. These two fields get reset each time through any
+ − 4853 loop their register is in. */
+ − 4854 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
+ − 4855 register_info_type *reg_info;
+ − 4856 #endif
+ − 4857
+ − 4858 /* The following record the register info as found in the above
+ − 4859 variables when we find a match better than any we've seen before.
+ − 4860 This happens as we backtrack through the failure points, which in
+ − 4861 turn happens only if we have not yet matched the entire string. */
647
+ − 4862 int best_regs_set = false;
428
+ − 4863 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
446
+ − 4864 re_char **best_regstart, **best_regend;
428
+ − 4865 #endif
+ − 4866
+ − 4867 /* Logically, this is `best_regend[0]'. But we don't want to have to
+ − 4868 allocate space for that if we're not allocating space for anything
+ − 4869 else (see below). Also, we never need info about register 0 for
+ − 4870 any of the other register vectors, and it seems rather a kludge to
+ − 4871 treat `best_regend' differently than the rest. So we keep track of
+ − 4872 the end of the best match so far in a separate variable. We
+ − 4873 initialize this to NULL so that when we backtrack the first time
+ − 4874 and need to test it, it's not garbage. */
446
+ − 4875 re_char *match_end = NULL;
428
+ − 4876
+ − 4877 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
+ − 4878 int set_regs_matched_done = 0;
+ − 4879
+ − 4880 /* Used when we pop values we don't care about. */
+ − 4881 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
446
+ − 4882 re_char **reg_dummy;
428
+ − 4883 register_info_type *reg_info_dummy;
+ − 4884 #endif
+ − 4885
+ − 4886 #ifdef DEBUG
+ − 4887 /* Counts the total number of registers pushed. */
647
+ − 4888 int num_regs_pushed = 0;
428
+ − 4889 #endif
+ − 4890
+ − 4891 /* 1 if this match ends in the same string (string1 or string2)
+ − 4892 as the best previous match. */
460
+ − 4893 re_bool same_str_p;
428
+ − 4894
+ − 4895 /* 1 if this match is the best seen so far. */
460
+ − 4896 re_bool best_match_p;
428
+ − 4897
826
+ − 4898 #ifdef emacs
+ − 4899 Internal_Format fmt = buffer_or_other_internal_format (lispobj);
1346
+ − 4900 #ifdef REL_ALLOC
+ − 4901 Ibyte *orig_buftext =
+ − 4902 BUFFERP (lispobj) ?
+ − 4903 BYTE_BUF_BYTE_ADDRESS (XBUFFER (lispobj),
+ − 4904 BYTE_BUF_BEGV (XBUFFER (lispobj))) :
+ − 4905 0;
+ − 4906 #endif
+ − 4907
1333
+ − 4908 #ifdef ERROR_CHECK_MALLOC
+ − 4909 int depth = bind_regex_malloc_disallowed (1);
+ − 4910 #endif
826
+ − 4911 #endif /* emacs */
771
+ − 4912
428
+ − 4913 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
+ − 4914
1333
+ − 4915 BEGIN_REGEX_MALLOC_OK ();
428
+ − 4916 INIT_FAIL_STACK ();
1333
+ − 4917 END_REGEX_MALLOC_OK ();
428
+ − 4918
+ − 4919 #ifdef MATCH_MAY_ALLOCATE
+ − 4920 /* Do not bother to initialize all the register variables if there are
+ − 4921 no groups in the pattern, as it takes a fair amount of time. If
+ − 4922 there are groups, we include space for register 0 (the whole
+ − 4923 pattern), even though we never use it, since it simplifies the
+ − 4924 array indexing. We should fix this. */
502
+ − 4925 if (bufp->re_ngroups)
428
+ − 4926 {
1333
+ − 4927 BEGIN_REGEX_MALLOC_OK ();
446
+ − 4928 regstart = REGEX_TALLOC (num_regs, re_char *);
+ − 4929 regend = REGEX_TALLOC (num_regs, re_char *);
+ − 4930 old_regstart = REGEX_TALLOC (num_regs, re_char *);
+ − 4931 old_regend = REGEX_TALLOC (num_regs, re_char *);
+ − 4932 best_regstart = REGEX_TALLOC (num_regs, re_char *);
+ − 4933 best_regend = REGEX_TALLOC (num_regs, re_char *);
428
+ − 4934 reg_info = REGEX_TALLOC (num_regs, register_info_type);
446
+ − 4935 reg_dummy = REGEX_TALLOC (num_regs, re_char *);
428
+ − 4936 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
1333
+ − 4937 END_REGEX_MALLOC_OK ();
428
+ − 4938
+ − 4939 if (!(regstart && regend && old_regstart && old_regend && reg_info
+ − 4940 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
+ − 4941 {
+ − 4942 FREE_VARIABLES ();
+ − 4943 return -2;
+ − 4944 }
+ − 4945 }
+ − 4946 else
+ − 4947 {
+ − 4948 /* We must initialize all our variables to NULL, so that
+ − 4949 `FREE_VARIABLES' doesn't try to free them. */
+ − 4950 regstart = regend = old_regstart = old_regend = best_regstart
+ − 4951 = best_regend = reg_dummy = NULL;
+ − 4952 reg_info = reg_info_dummy = (register_info_type *) NULL;
+ − 4953 }
+ − 4954 #endif /* MATCH_MAY_ALLOCATE */
+ − 4955
1333
+ − 4956 #if defined (emacs) && defined (REL_ALLOC)
+ − 4957 {
+ − 4958 /* If the allocations above (or the call to setup_syntax_cache() in
+ − 4959 re_match_2) caused a rel-alloc relocation, then fix up the data
+ − 4960 pointers */
1346
+ − 4961 Bytecount offset = offset_post_relocation (lispobj, orig_buftext);
1333
+ − 4962 if (offset)
+ − 4963 {
+ − 4964 string1 += offset;
+ − 4965 string2 += offset;
+ − 4966 }
+ − 4967 }
+ − 4968 #endif /* defined (emacs) && defined (REL_ALLOC) */
+ − 4969
428
+ − 4970 /* The starting position is bogus. */
+ − 4971 if (pos < 0 || pos > size1 + size2)
+ − 4972 {
+ − 4973 FREE_VARIABLES ();
+ − 4974 return -1;
+ − 4975 }
+ − 4976
+ − 4977 /* Initialize subexpression text positions to -1 to mark ones that no
+ − 4978 start_memory/stop_memory has been seen for. Also initialize the
+ − 4979 register information struct. */
+ − 4980 for (mcnt = 1; mcnt < num_regs; mcnt++)
+ − 4981 {
+ − 4982 regstart[mcnt] = regend[mcnt]
+ − 4983 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
+ − 4984
+ − 4985 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
+ − 4986 IS_ACTIVE (reg_info[mcnt]) = 0;
+ − 4987 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
+ − 4988 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
+ − 4989 }
+ − 4990 /* We move `string1' into `string2' if the latter's empty -- but not if
+ − 4991 `string1' is null. */
+ − 4992 if (size2 == 0 && string1 != NULL)
+ − 4993 {
+ − 4994 string2 = string1;
+ − 4995 size2 = size1;
+ − 4996 string1 = 0;
+ − 4997 size1 = 0;
+ − 4998 }
+ − 4999 end1 = string1 + size1;
+ − 5000 end2 = string2 + size2;
+ − 5001
+ − 5002 /* Compute where to stop matching, within the two strings. */
+ − 5003 if (stop <= size1)
+ − 5004 {
+ − 5005 end_match_1 = string1 + stop;
+ − 5006 end_match_2 = string2;
+ − 5007 }
+ − 5008 else
+ − 5009 {
+ − 5010 end_match_1 = end1;
+ − 5011 end_match_2 = string2 + stop - size1;
+ − 5012 }
+ − 5013
+ − 5014 /* `p' scans through the pattern as `d' scans through the data.
+ − 5015 `dend' is the end of the input string that `d' points within. `d'
+ − 5016 is advanced into the following input string whenever necessary, but
+ − 5017 this happens before fetching; therefore, at the beginning of the
+ − 5018 loop, `d' can be pointing at the end of a string, but it cannot
+ − 5019 equal `string2'. */
+ − 5020 if (size1 > 0 && pos <= size1)
+ − 5021 {
+ − 5022 d = string1 + pos;
+ − 5023 dend = end_match_1;
+ − 5024 }
+ − 5025 else
+ − 5026 {
+ − 5027 d = string2 + pos - size1;
+ − 5028 dend = end_match_2;
+ − 5029 }
+ − 5030
446
+ − 5031 DEBUG_PRINT1 ("The compiled pattern is: \n");
428
+ − 5032 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
+ − 5033 DEBUG_PRINT1 ("The string to match is: `");
+ − 5034 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
+ − 5035 DEBUG_PRINT1 ("'\n");
+ − 5036
+ − 5037 /* This loops over pattern commands. It exits by returning from the
+ − 5038 function if the match is complete, or it drops through if the match
+ − 5039 fails at this starting point in the input data. */
+ − 5040 for (;;)
+ − 5041 {
+ − 5042 DEBUG_PRINT2 ("\n0x%lx: ", (long) p);
+ − 5043 #ifdef emacs /* XEmacs added, w/removal of immediate_quit */
+ − 5044 if (!no_quit_in_re_search)
1333
+ − 5045 {
+ − 5046 BEGIN_REGEX_MALLOC_OK ();
+ − 5047 QUIT;
+ − 5048 END_REGEX_MALLOC_OK ();
1346
+ − 5049 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS ();
1333
+ − 5050 }
428
+ − 5051 #endif
+ − 5052
+ − 5053 if (p == pend)
+ − 5054 { /* End of pattern means we might have succeeded. */
+ − 5055 DEBUG_PRINT1 ("end of pattern ... ");
+ − 5056
+ − 5057 /* If we haven't matched the entire string, and we want the
+ − 5058 longest match, try backtracking. */
+ − 5059 if (d != end_match_2)
+ − 5060 {
+ − 5061 same_str_p = (FIRST_STRING_P (match_end)
+ − 5062 == MATCHING_IN_FIRST_STRING);
+ − 5063
+ − 5064 /* AIX compiler got confused when this was combined
+ − 5065 with the previous declaration. */
+ − 5066 if (same_str_p)
+ − 5067 best_match_p = d > match_end;
+ − 5068 else
+ − 5069 best_match_p = !MATCHING_IN_FIRST_STRING;
+ − 5070
+ − 5071 DEBUG_PRINT1 ("backtracking.\n");
+ − 5072
+ − 5073 if (!FAIL_STACK_EMPTY ())
+ − 5074 { /* More failure points to try. */
+ − 5075
+ − 5076 /* If exceeds best match so far, save it. */
+ − 5077 if (!best_regs_set || best_match_p)
+ − 5078 {
+ − 5079 best_regs_set = true;
+ − 5080 match_end = d;
+ − 5081
+ − 5082 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
+ − 5083
+ − 5084 for (mcnt = 1; mcnt < num_regs; mcnt++)
+ − 5085 {
+ − 5086 best_regstart[mcnt] = regstart[mcnt];
+ − 5087 best_regend[mcnt] = regend[mcnt];
+ − 5088 }
+ − 5089 }
+ − 5090 goto fail;
+ − 5091 }
+ − 5092
+ − 5093 /* If no failure points, don't restore garbage. And if
+ − 5094 last match is real best match, don't restore second
+ − 5095 best one. */
+ − 5096 else if (best_regs_set && !best_match_p)
+ − 5097 {
+ − 5098 restore_best_regs:
+ − 5099 /* Restore best match. It may happen that `dend ==
+ − 5100 end_match_1' while the restored d is in string2.
+ − 5101 For example, the pattern `x.*y.*z' against the
+ − 5102 strings `x-' and `y-z-', if the two strings are
+ − 5103 not consecutive in memory. */
+ − 5104 DEBUG_PRINT1 ("Restoring best registers.\n");
+ − 5105
+ − 5106 d = match_end;
+ − 5107 dend = ((d >= string1 && d <= end1)
+ − 5108 ? end_match_1 : end_match_2);
+ − 5109
+ − 5110 for (mcnt = 1; mcnt < num_regs; mcnt++)
+ − 5111 {
+ − 5112 regstart[mcnt] = best_regstart[mcnt];
+ − 5113 regend[mcnt] = best_regend[mcnt];
+ − 5114 }
+ − 5115 }
+ − 5116 } /* d != end_match_2 */
+ − 5117
+ − 5118 succeed_label:
+ − 5119 DEBUG_PRINT1 ("Accepting match.\n");
+ − 5120
+ − 5121 /* If caller wants register contents data back, do it. */
1028
+ − 5122 {
+ − 5123 int num_nonshy_regs = bufp->re_nsub + 1;
+ − 5124 if (regs && !bufp->no_sub)
+ − 5125 {
+ − 5126 /* Have the register data arrays been allocated? */
+ − 5127 if (bufp->regs_allocated == REGS_UNALLOCATED)
+ − 5128 { /* No. So allocate them with malloc. We need one
+ − 5129 extra element beyond `num_regs' for the `-1' marker
+ − 5130 GNU code uses. */
+ − 5131 regs->num_regs = MAX (RE_NREGS, num_nonshy_regs + 1);
1333
+ − 5132 BEGIN_REGEX_MALLOC_OK ();
1028
+ − 5133 regs->start = TALLOC (regs->num_regs, regoff_t);
+ − 5134 regs->end = TALLOC (regs->num_regs, regoff_t);
1333
+ − 5135 END_REGEX_MALLOC_OK ();
+ − 5136 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS ();
1028
+ − 5137 if (regs->start == NULL || regs->end == NULL)
+ − 5138 {
+ − 5139 FREE_VARIABLES ();
+ − 5140 return -2;
+ − 5141 }
+ − 5142 bufp->regs_allocated = REGS_REALLOCATE;
+ − 5143 }
+ − 5144 else if (bufp->regs_allocated == REGS_REALLOCATE)
+ − 5145 { /* Yes. If we need more elements than were already
+ − 5146 allocated, reallocate them. If we need fewer, just
+ − 5147 leave it alone. */
+ − 5148 if (regs->num_regs < num_nonshy_regs + 1)
+ − 5149 {
+ − 5150 regs->num_regs = num_nonshy_regs + 1;
1333
+ − 5151 BEGIN_REGEX_MALLOC_OK ();
1028
+ − 5152 RETALLOC (regs->start, regs->num_regs, regoff_t);
+ − 5153 RETALLOC (regs->end, regs->num_regs, regoff_t);
1333
+ − 5154 END_REGEX_MALLOC_OK ();
+ − 5155 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS ();
1028
+ − 5156 if (regs->start == NULL || regs->end == NULL)
+ − 5157 {
+ − 5158 FREE_VARIABLES ();
+ − 5159 return -2;
+ − 5160 }
+ − 5161 }
+ − 5162 }
+ − 5163 else
+ − 5164 {
+ − 5165 /* The braces fend off a "empty body in an else-statement"
+ − 5166 warning under GCC when assert expands to nothing. */
+ − 5167 assert (bufp->regs_allocated == REGS_FIXED);
+ − 5168 }
+ − 5169
+ − 5170 /* Convert the pointer data in `regstart' and `regend' to
+ − 5171 indices. Register zero has to be set differently,
+ − 5172 since we haven't kept track of any info for it. */
+ − 5173 if (regs->num_regs > 0)
+ − 5174 {
+ − 5175 regs->start[0] = pos;
+ − 5176 regs->end[0] = (MATCHING_IN_FIRST_STRING
+ − 5177 ? ((regoff_t) (d - string1))
+ − 5178 : ((regoff_t) (d - string2 + size1)));
+ − 5179 }
+ − 5180
+ − 5181 /* Go through the first `min (num_regs, regs->num_regs)'
+ − 5182 registers, since that is all we initialized. */
+ − 5183 for (mcnt = 1; mcnt < MIN (num_nonshy_regs, regs->num_regs);
+ − 5184 mcnt++)
+ − 5185 {
+ − 5186 int internal_reg = bufp->external_to_internal_register[mcnt];
+ − 5187 if (REG_UNSET (regstart[internal_reg]) ||
+ − 5188 REG_UNSET (regend[internal_reg]))
+ − 5189 regs->start[mcnt] = regs->end[mcnt] = -1;
+ − 5190 else
+ − 5191 {
+ − 5192 regs->start[mcnt] =
+ − 5193 (regoff_t) POINTER_TO_OFFSET (regstart[internal_reg]);
+ − 5194 regs->end[mcnt] =
+ − 5195 (regoff_t) POINTER_TO_OFFSET (regend[internal_reg]);
+ − 5196 }
+ − 5197 }
+ − 5198 } /* regs && !bufp->no_sub */
+ − 5199
+ − 5200 /* If we have regs and the regs structure has more elements than
+ − 5201 were in the pattern, set the extra elements to -1. If we
+ − 5202 (re)allocated the registers, this is the case, because we
+ − 5203 always allocate enough to have at least one -1 at the end.
+ − 5204
+ − 5205 We do this even when no_sub is set because some applications
+ − 5206 (XEmacs) reuse register structures which may contain stale
+ − 5207 information, and permit attempts to access those registers.
+ − 5208
+ − 5209 It would be possible to require the caller to do this, but we'd
+ − 5210 have to change the API for this function to reflect that, and
1425
+ − 5211 audit all callers. Note: as of 2003-04-17 callers in XEmacs
+ − 5212 do clear the registers, but it's safer to leave this code in
+ − 5213 because of reallocation.
+ − 5214 */
1028
+ − 5215 if (regs && regs->num_regs > 0)
+ − 5216 for (mcnt = num_nonshy_regs; mcnt < regs->num_regs; mcnt++)
+ − 5217 regs->start[mcnt] = regs->end[mcnt] = -1;
+ − 5218 }
428
+ − 5219 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
+ − 5220 nfailure_points_pushed, nfailure_points_popped,
+ − 5221 nfailure_points_pushed - nfailure_points_popped);
+ − 5222 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
+ − 5223
+ − 5224 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
+ − 5225 ? string1
+ − 5226 : string2 - size1);
+ − 5227
+ − 5228 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
+ − 5229
+ − 5230 FREE_VARIABLES ();
+ − 5231 return mcnt;
+ − 5232 }
+ − 5233
+ − 5234 /* Otherwise match next pattern command. */
+ − 5235 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
+ − 5236 {
+ − 5237 /* Ignore these. Used to ignore the n of succeed_n's which
+ − 5238 currently have n == 0. */
+ − 5239 case no_op:
+ − 5240 DEBUG_PRINT1 ("EXECUTING no_op.\n");
+ − 5241 break;
+ − 5242
+ − 5243 case succeed:
+ − 5244 DEBUG_PRINT1 ("EXECUTING succeed.\n");
+ − 5245 goto succeed_label;
+ − 5246
826
+ − 5247 /* Match exactly a string of length n in the pattern. The
+ − 5248 following byte in the pattern defines n, and the n bytes after
+ − 5249 that make up the string to match. (Under Mule, this will be in
+ − 5250 the default internal format.) */
428
+ − 5251 case exactn:
+ − 5252 mcnt = *p++;
+ − 5253 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
+ − 5254
+ − 5255 /* This is written out as an if-else so we don't waste time
+ − 5256 testing `translate' inside the loop. */
446
+ − 5257 if (TRANSLATE_P (translate))
428
+ − 5258 {
+ − 5259 do
+ − 5260 {
446
+ − 5261 #ifdef MULE
+ − 5262 Bytecount pat_len;
+ − 5263
450
+ − 5264 REGEX_PREFETCH ();
867
+ − 5265 if (RE_TRANSLATE_1 (itext_ichar_fmt (d, fmt, lispobj))
+ − 5266 != itext_ichar (p))
428
+ − 5267 goto fail;
446
+ − 5268
867
+ − 5269 pat_len = itext_ichar_len (p);
446
+ − 5270 p += pat_len;
867
+ − 5271 INC_IBYTEPTR_FMT (d, fmt);
446
+ − 5272
+ − 5273 mcnt -= pat_len;
+ − 5274 #else /* not MULE */
450
+ − 5275 REGEX_PREFETCH ();
826
+ − 5276 if ((unsigned char) RE_TRANSLATE_1 (*d++) != *p++)
446
+ − 5277 goto fail;
+ − 5278 mcnt--;
+ − 5279 #endif
428
+ − 5280 }
446
+ − 5281 while (mcnt > 0);
428
+ − 5282 }
+ − 5283 else
+ − 5284 {
826
+ − 5285 #ifdef MULE
+ − 5286 /* If buffer format is default, then we can shortcut and just
+ − 5287 compare the text directly, byte by byte. Otherwise, we
+ − 5288 need to go character by character. */
+ − 5289 if (fmt != FORMAT_DEFAULT)
428
+ − 5290 {
826
+ − 5291 do
+ − 5292 {
+ − 5293 Bytecount pat_len;
+ − 5294
+ − 5295 REGEX_PREFETCH ();
867
+ − 5296 if (itext_ichar_fmt (d, fmt, lispobj) !=
+ − 5297 itext_ichar (p))
826
+ − 5298 goto fail;
+ − 5299
867
+ − 5300 pat_len = itext_ichar_len (p);
826
+ − 5301 p += pat_len;
867
+ − 5302 INC_IBYTEPTR_FMT (d, fmt);
826
+ − 5303
+ − 5304 mcnt -= pat_len;
+ − 5305 }
+ − 5306 while (mcnt > 0);
428
+ − 5307 }
826
+ − 5308 else
+ − 5309 #endif
+ − 5310 {
+ − 5311 do
+ − 5312 {
+ − 5313 REGEX_PREFETCH ();
+ − 5314 if (*d++ != *p++) goto fail;
+ − 5315 mcnt--;
+ − 5316 }
+ − 5317 while (mcnt > 0);
+ − 5318 }
428
+ − 5319 }
+ − 5320 SET_REGS_MATCHED ();
+ − 5321 break;
+ − 5322
+ − 5323
+ − 5324 /* Match any character except possibly a newline or a null. */
+ − 5325 case anychar:
+ − 5326 DEBUG_PRINT1 ("EXECUTING anychar.\n");
+ − 5327
450
+ − 5328 REGEX_PREFETCH ();
428
+ − 5329
826
+ − 5330 if ((!(bufp->syntax & RE_DOT_NEWLINE) &&
867
+ − 5331 RE_TRANSLATE (itext_ichar_fmt (d, fmt, lispobj)) == '\n')
826
+ − 5332 || (bufp->syntax & RE_DOT_NOT_NULL &&
867
+ − 5333 RE_TRANSLATE (itext_ichar_fmt (d, fmt, lispobj)) ==
826
+ − 5334 '\000'))
428
+ − 5335 goto fail;
+ − 5336
+ − 5337 SET_REGS_MATCHED ();
+ − 5338 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
867
+ − 5339 INC_IBYTEPTR_FMT (d, fmt); /* XEmacs change */
428
+ − 5340 break;
+ − 5341
+ − 5342
+ − 5343 case charset:
+ − 5344 case charset_not:
+ − 5345 {
1414
+ − 5346 REGISTER Ichar c;
460
+ − 5347 re_bool not_p = (re_opcode_t) *(p - 1) == charset_not;
458
+ − 5348
+ − 5349 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not_p ? "_not" : "");
428
+ − 5350
450
+ − 5351 REGEX_PREFETCH ();
867
+ − 5352 c = itext_ichar_fmt (d, fmt, lispobj);
826
+ − 5353 c = RE_TRANSLATE (c); /* The character to match. */
428
+ − 5354
647
+ − 5355 /* Cast to `unsigned int' instead of `unsigned char' in case the
428
+ − 5356 bit list is a full 32 bytes long. */
1414
+ − 5357 if ((unsigned int)c < (unsigned int) (*p * BYTEWIDTH)
428
+ − 5358 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
458
+ − 5359 not_p = !not_p;
428
+ − 5360
+ − 5361 p += 1 + *p;
+ − 5362
458
+ − 5363 if (!not_p) goto fail;
428
+ − 5364
+ − 5365 SET_REGS_MATCHED ();
867
+ − 5366 INC_IBYTEPTR_FMT (d, fmt); /* XEmacs change */
428
+ − 5367 break;
+ − 5368 }
+ − 5369
+ − 5370 #ifdef MULE
+ − 5371 case charset_mule:
+ − 5372 case charset_mule_not:
+ − 5373 {
867
+ − 5374 REGISTER Ichar c;
460
+ − 5375 re_bool not_p = (re_opcode_t) *(p - 1) == charset_mule_not;
458
+ − 5376
+ − 5377 DEBUG_PRINT2 ("EXECUTING charset_mule%s.\n", not_p ? "_not" : "");
428
+ − 5378
450
+ − 5379 REGEX_PREFETCH ();
867
+ − 5380 c = itext_ichar_fmt (d, fmt, lispobj);
826
+ − 5381 c = RE_TRANSLATE (c); /* The character to match. */
428
+ − 5382
+ − 5383 if (EQ (Qt, unified_range_table_lookup (p, c, Qnil)))
458
+ − 5384 not_p = !not_p;
428
+ − 5385
+ − 5386 p += unified_range_table_bytes_used (p);
+ − 5387
458
+ − 5388 if (!not_p) goto fail;
428
+ − 5389
+ − 5390 SET_REGS_MATCHED ();
867
+ − 5391 INC_IBYTEPTR_FMT (d, fmt);
428
+ − 5392 break;
+ − 5393 }
+ − 5394 #endif /* MULE */
+ − 5395
+ − 5396
+ − 5397 /* The beginning of a group is represented by start_memory.
+ − 5398 The arguments are the register number in the next byte, and the
+ − 5399 number of groups inner to this one in the next. The text
+ − 5400 matched within the group is recorded (in the internal
+ − 5401 registers data structure) under the register number. */
+ − 5402 case start_memory:
+ − 5403 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
+ − 5404
+ − 5405 /* Find out if this group can match the empty string. */
+ − 5406 p1 = p; /* To send to group_match_null_string_p. */
+ − 5407
+ − 5408 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
+ − 5409 REG_MATCH_NULL_STRING_P (reg_info[*p])
+ − 5410 = group_match_null_string_p (&p1, pend, reg_info);
+ − 5411
+ − 5412 /* Save the position in the string where we were the last time
+ − 5413 we were at this open-group operator in case the group is
+ − 5414 operated upon by a repetition operator, e.g., with `(a*)*b'
+ − 5415 against `ab'; then we want to ignore where we are now in
+ − 5416 the string in case this attempt to match fails. */
+ − 5417 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
+ − 5418 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
+ − 5419 : regstart[*p];
+ − 5420 DEBUG_PRINT2 (" old_regstart: %d\n",
+ − 5421 POINTER_TO_OFFSET (old_regstart[*p]));
+ − 5422
+ − 5423 regstart[*p] = d;
+ − 5424 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
+ − 5425
+ − 5426 IS_ACTIVE (reg_info[*p]) = 1;
+ − 5427 MATCHED_SOMETHING (reg_info[*p]) = 0;
+ − 5428
+ − 5429 /* Clear this whenever we change the register activity status. */
+ − 5430 set_regs_matched_done = 0;
+ − 5431
+ − 5432 /* This is the new highest active register. */
+ − 5433 highest_active_reg = *p;
+ − 5434
+ − 5435 /* If nothing was active before, this is the new lowest active
+ − 5436 register. */
+ − 5437 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
+ − 5438 lowest_active_reg = *p;
+ − 5439
+ − 5440 /* Move past the register number and inner group count. */
+ − 5441 p += 2;
+ − 5442 just_past_start_mem = p;
+ − 5443
+ − 5444 break;
+ − 5445
+ − 5446
+ − 5447 /* The stop_memory opcode represents the end of a group. Its
+ − 5448 arguments are the same as start_memory's: the register
+ − 5449 number, and the number of inner groups. */
+ − 5450 case stop_memory:
+ − 5451 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
+ − 5452
+ − 5453 /* We need to save the string position the last time we were at
+ − 5454 this close-group operator in case the group is operated
+ − 5455 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
+ − 5456 against `aba'; then we want to ignore where we are now in
+ − 5457 the string in case this attempt to match fails. */
+ − 5458 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
+ − 5459 ? REG_UNSET (regend[*p]) ? d : regend[*p]
+ − 5460 : regend[*p];
+ − 5461 DEBUG_PRINT2 (" old_regend: %d\n",
+ − 5462 POINTER_TO_OFFSET (old_regend[*p]));
+ − 5463
+ − 5464 regend[*p] = d;
+ − 5465 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
+ − 5466
+ − 5467 /* This register isn't active anymore. */
+ − 5468 IS_ACTIVE (reg_info[*p]) = 0;
+ − 5469
+ − 5470 /* Clear this whenever we change the register activity status. */
+ − 5471 set_regs_matched_done = 0;
+ − 5472
+ − 5473 /* If this was the only register active, nothing is active
+ − 5474 anymore. */
+ − 5475 if (lowest_active_reg == highest_active_reg)
+ − 5476 {
+ − 5477 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
+ − 5478 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
+ − 5479 }
+ − 5480 else
+ − 5481 { /* We must scan for the new highest active register, since
+ − 5482 it isn't necessarily one less than now: consider
+ − 5483 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
+ − 5484 new highest active register is 1. */
+ − 5485 unsigned char r = *p - 1;
+ − 5486 while (r > 0 && !IS_ACTIVE (reg_info[r]))
+ − 5487 r--;
+ − 5488
+ − 5489 /* If we end up at register zero, that means that we saved
+ − 5490 the registers as the result of an `on_failure_jump', not
+ − 5491 a `start_memory', and we jumped to past the innermost
+ − 5492 `stop_memory'. For example, in ((.)*) we save
+ − 5493 registers 1 and 2 as a result of the *, but when we pop
+ − 5494 back to the second ), we are at the stop_memory 1.
+ − 5495 Thus, nothing is active. */
+ − 5496 if (r == 0)
+ − 5497 {
+ − 5498 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
+ − 5499 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
+ − 5500 }
+ − 5501 else
+ − 5502 {
+ − 5503 highest_active_reg = r;
+ − 5504
+ − 5505 /* 98/9/21 jhod: We've also gotta set lowest_active_reg, don't we? */
+ − 5506 r = 1;
+ − 5507 while (r < highest_active_reg && !IS_ACTIVE(reg_info[r]))
+ − 5508 r++;
+ − 5509 lowest_active_reg = r;
+ − 5510 }
+ − 5511 }
+ − 5512
+ − 5513 /* If just failed to match something this time around with a
+ − 5514 group that's operated on by a repetition operator, try to
+ − 5515 force exit from the ``loop'', and restore the register
+ − 5516 information for this group that we had before trying this
+ − 5517 last match. */
+ − 5518 if ((!MATCHED_SOMETHING (reg_info[*p])
+ − 5519 || just_past_start_mem == p - 1)
+ − 5520 && (p + 2) < pend)
+ − 5521 {
460
+ − 5522 re_bool is_a_jump_n = false;
428
+ − 5523
+ − 5524 p1 = p + 2;
+ − 5525 mcnt = 0;
+ − 5526 switch ((re_opcode_t) *p1++)
+ − 5527 {
+ − 5528 case jump_n:
+ − 5529 is_a_jump_n = true;
+ − 5530 case pop_failure_jump:
+ − 5531 case maybe_pop_jump:
+ − 5532 case jump:
+ − 5533 case dummy_failure_jump:
+ − 5534 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
+ − 5535 if (is_a_jump_n)
+ − 5536 p1 += 2;
+ − 5537 break;
+ − 5538
+ − 5539 default:
+ − 5540 /* do nothing */ ;
+ − 5541 }
+ − 5542 p1 += mcnt;
+ − 5543
+ − 5544 /* If the next operation is a jump backwards in the pattern
+ − 5545 to an on_failure_jump right before the start_memory
+ − 5546 corresponding to this stop_memory, exit from the loop
+ − 5547 by forcing a failure after pushing on the stack the
+ − 5548 on_failure_jump's jump in the pattern, and d. */
+ − 5549 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
+ − 5550 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
+ − 5551 {
+ − 5552 /* If this group ever matched anything, then restore
+ − 5553 what its registers were before trying this last
+ − 5554 failed match, e.g., with `(a*)*b' against `ab' for
+ − 5555 regstart[1], and, e.g., with `((a*)*(b*)*)*'
+ − 5556 against `aba' for regend[3].
+ − 5557
+ − 5558 Also restore the registers for inner groups for,
+ − 5559 e.g., `((a*)(b*))*' against `aba' (register 3 would
+ − 5560 otherwise get trashed). */
+ − 5561
+ − 5562 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
+ − 5563 {
647
+ − 5564 int r;
428
+ − 5565
+ − 5566 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
+ − 5567
+ − 5568 /* Restore this and inner groups' (if any) registers. */
+ − 5569 for (r = *p; r < *p + *(p + 1); r++)
+ − 5570 {
+ − 5571 regstart[r] = old_regstart[r];
+ − 5572
+ − 5573 /* xx why this test? */
+ − 5574 if (old_regend[r] >= regstart[r])
+ − 5575 regend[r] = old_regend[r];
+ − 5576 }
+ − 5577 }
+ − 5578 p1++;
+ − 5579 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
+ − 5580 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
+ − 5581
+ − 5582 goto fail;
+ − 5583 }
+ − 5584 }
+ − 5585
+ − 5586 /* Move past the register number and the inner group count. */
+ − 5587 p += 2;
+ − 5588 break;
+ − 5589
+ − 5590
+ − 5591 /* \<digit> has been turned into a `duplicate' command which is
502
+ − 5592 followed by the numeric value of <digit> as the register number.
+ − 5593 (Already passed through external-to-internal-register mapping,
+ − 5594 so it refers to the actual group number, not the non-shy-only
+ − 5595 numbering used in the external world.) */
428
+ − 5596 case duplicate:
+ − 5597 {
446
+ − 5598 REGISTER re_char *d2, *dend2;
502
+ − 5599 /* Get which register to match against. */
+ − 5600 int regno = *p++;
428
+ − 5601 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
+ − 5602
+ − 5603 /* Can't back reference a group which we've never matched. */
+ − 5604 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
+ − 5605 goto fail;
+ − 5606
+ − 5607 /* Where in input to try to start matching. */
+ − 5608 d2 = regstart[regno];
+ − 5609
+ − 5610 /* Where to stop matching; if both the place to start and
+ − 5611 the place to stop matching are in the same string, then
+ − 5612 set to the place to stop, otherwise, for now have to use
+ − 5613 the end of the first string. */
+ − 5614
+ − 5615 dend2 = ((FIRST_STRING_P (regstart[regno])
+ − 5616 == FIRST_STRING_P (regend[regno]))
+ − 5617 ? regend[regno] : end_match_1);
+ − 5618 for (;;)
+ − 5619 {
+ − 5620 /* If necessary, advance to next segment in register
+ − 5621 contents. */
+ − 5622 while (d2 == dend2)
+ − 5623 {
+ − 5624 if (dend2 == end_match_2) break;
+ − 5625 if (dend2 == regend[regno]) break;
+ − 5626
+ − 5627 /* End of string1 => advance to string2. */
+ − 5628 d2 = string2;
+ − 5629 dend2 = regend[regno];
+ − 5630 }
+ − 5631 /* At end of register contents => success */
+ − 5632 if (d2 == dend2) break;
+ − 5633
+ − 5634 /* If necessary, advance to next segment in data. */
450
+ − 5635 REGEX_PREFETCH ();
428
+ − 5636
+ − 5637 /* How many characters left in this segment to match. */
+ − 5638 mcnt = dend - d;
+ − 5639
+ − 5640 /* Want how many consecutive characters we can match in
+ − 5641 one shot, so, if necessary, adjust the count. */
+ − 5642 if (mcnt > dend2 - d2)
+ − 5643 mcnt = dend2 - d2;
+ − 5644
+ − 5645 /* Compare that many; failure if mismatch, else move
+ − 5646 past them. */
446
+ − 5647 if (TRANSLATE_P (translate)
826
+ − 5648 ? bcmp_translate (d, d2, mcnt, translate
+ − 5649 #ifdef emacs
+ − 5650 , fmt, lispobj
+ − 5651 #endif
+ − 5652 )
428
+ − 5653 : memcmp (d, d2, mcnt))
+ − 5654 goto fail;
+ − 5655 d += mcnt, d2 += mcnt;
+ − 5656
+ − 5657 /* Do this because we've match some characters. */
+ − 5658 SET_REGS_MATCHED ();
+ − 5659 }
+ − 5660 }
+ − 5661 break;
+ − 5662
+ − 5663
+ − 5664 /* begline matches the empty string at the beginning of the string
+ − 5665 (unless `not_bol' is set in `bufp'), and, if
+ − 5666 `newline_anchor' is set, after newlines. */
+ − 5667 case begline:
+ − 5668 DEBUG_PRINT1 ("EXECUTING begline.\n");
+ − 5669
+ − 5670 if (AT_STRINGS_BEG (d))
+ − 5671 {
+ − 5672 if (!bufp->not_bol) break;
+ − 5673 }
826
+ − 5674 else
+ − 5675 {
+ − 5676 re_char *d2 = d;
867
+ − 5677 DEC_IBYTEPTR (d2);
+ − 5678 if (itext_ichar_ascii_fmt (d2, fmt, lispobj) == '\n' &&
826
+ − 5679 bufp->newline_anchor)
+ − 5680 break;
+ − 5681 }
428
+ − 5682 /* In all other cases, we fail. */
+ − 5683 goto fail;
+ − 5684
+ − 5685
+ − 5686 /* endline is the dual of begline. */
+ − 5687 case endline:
+ − 5688 DEBUG_PRINT1 ("EXECUTING endline.\n");
+ − 5689
+ − 5690 if (AT_STRINGS_END (d))
+ − 5691 {
+ − 5692 if (!bufp->not_eol) break;
+ − 5693 }
+ − 5694
+ − 5695 /* We have to ``prefetch'' the next character. */
826
+ − 5696 else if ((d == end1 ?
867
+ − 5697 itext_ichar_ascii_fmt (string2, fmt, lispobj) :
+ − 5698 itext_ichar_ascii_fmt (d, fmt, lispobj)) == '\n'
428
+ − 5699 && bufp->newline_anchor)
+ − 5700 {
+ − 5701 break;
+ − 5702 }
+ − 5703 goto fail;
+ − 5704
+ − 5705
+ − 5706 /* Match at the very beginning of the data. */
+ − 5707 case begbuf:
+ − 5708 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
+ − 5709 if (AT_STRINGS_BEG (d))
+ − 5710 break;
+ − 5711 goto fail;
+ − 5712
+ − 5713
+ − 5714 /* Match at the very end of the data. */
+ − 5715 case endbuf:
+ − 5716 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
+ − 5717 if (AT_STRINGS_END (d))
+ − 5718 break;
+ − 5719 goto fail;
+ − 5720
+ − 5721
+ − 5722 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
+ − 5723 pushes NULL as the value for the string on the stack. Then
+ − 5724 `pop_failure_point' will keep the current value for the
+ − 5725 string, instead of restoring it. To see why, consider
+ − 5726 matching `foo\nbar' against `.*\n'. The .* matches the foo;
+ − 5727 then the . fails against the \n. But the next thing we want
+ − 5728 to do is match the \n against the \n; if we restored the
+ − 5729 string value, we would be back at the foo.
+ − 5730
+ − 5731 Because this is used only in specific cases, we don't need to
+ − 5732 check all the things that `on_failure_jump' does, to make
+ − 5733 sure the right things get saved on the stack. Hence we don't
+ − 5734 share its code. The only reason to push anything on the
+ − 5735 stack at all is that otherwise we would have to change
+ − 5736 `anychar's code to do something besides goto fail in this
+ − 5737 case; that seems worse than this. */
+ − 5738 case on_failure_keep_string_jump:
+ − 5739 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
+ − 5740
+ − 5741 EXTRACT_NUMBER_AND_INCR (mcnt, p);
+ − 5742 DEBUG_PRINT3 (" %d (to 0x%lx):\n", mcnt, (long) (p + mcnt));
+ − 5743
446
+ − 5744 PUSH_FAILURE_POINT (p + mcnt, (unsigned char *) 0, -2);
428
+ − 5745 break;
+ − 5746
+ − 5747
+ − 5748 /* Uses of on_failure_jump:
+ − 5749
+ − 5750 Each alternative starts with an on_failure_jump that points
+ − 5751 to the beginning of the next alternative. Each alternative
+ − 5752 except the last ends with a jump that in effect jumps past
+ − 5753 the rest of the alternatives. (They really jump to the
+ − 5754 ending jump of the following alternative, because tensioning
+ − 5755 these jumps is a hassle.)
+ − 5756
+ − 5757 Repeats start with an on_failure_jump that points past both
+ − 5758 the repetition text and either the following jump or
+ − 5759 pop_failure_jump back to this on_failure_jump. */
+ − 5760 case on_failure_jump:
+ − 5761 on_failure:
+ − 5762 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
+ − 5763
+ − 5764 EXTRACT_NUMBER_AND_INCR (mcnt, p);
+ − 5765 DEBUG_PRINT3 (" %d (to 0x%lx)", mcnt, (long) (p + mcnt));
+ − 5766
+ − 5767 /* If this on_failure_jump comes right before a group (i.e.,
+ − 5768 the original * applied to a group), save the information
+ − 5769 for that group and all inner ones, so that if we fail back
+ − 5770 to this point, the group's information will be correct.
+ − 5771 For example, in \(a*\)*\1, we need the preceding group,
+ − 5772 and in \(\(a*\)b*\)\2, we need the inner group. */
+ − 5773
+ − 5774 /* We can't use `p' to check ahead because we push
+ − 5775 a failure point to `p + mcnt' after we do this. */
+ − 5776 p1 = p;
+ − 5777
+ − 5778 /* We need to skip no_op's before we look for the
+ − 5779 start_memory in case this on_failure_jump is happening as
+ − 5780 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
+ − 5781 against aba. */
+ − 5782 while (p1 < pend && (re_opcode_t) *p1 == no_op)
+ − 5783 p1++;
+ − 5784
+ − 5785 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
+ − 5786 {
+ − 5787 /* We have a new highest active register now. This will
+ − 5788 get reset at the start_memory we are about to get to,
+ − 5789 but we will have saved all the registers relevant to
+ − 5790 this repetition op, as described above. */
+ − 5791 highest_active_reg = *(p1 + 1) + *(p1 + 2);
+ − 5792 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
+ − 5793 lowest_active_reg = *(p1 + 1);
+ − 5794 }
+ − 5795
+ − 5796 DEBUG_PRINT1 (":\n");
+ − 5797 PUSH_FAILURE_POINT (p + mcnt, d, -2);
+ − 5798 break;
+ − 5799
+ − 5800
+ − 5801 /* A smart repeat ends with `maybe_pop_jump'.
+ − 5802 We change it to either `pop_failure_jump' or `jump'. */
+ − 5803 case maybe_pop_jump:
+ − 5804 EXTRACT_NUMBER_AND_INCR (mcnt, p);
+ − 5805 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
+ − 5806 {
+ − 5807 REGISTER unsigned char *p2 = p;
+ − 5808
+ − 5809 /* Compare the beginning of the repeat with what in the
+ − 5810 pattern follows its end. If we can establish that there
+ − 5811 is nothing that they would both match, i.e., that we
+ − 5812 would have to backtrack because of (as in, e.g., `a*a')
+ − 5813 then we can change to pop_failure_jump, because we'll
+ − 5814 never have to backtrack.
+ − 5815
+ − 5816 This is not true in the case of alternatives: in
+ − 5817 `(a|ab)*' we do need to backtrack to the `ab' alternative
+ − 5818 (e.g., if the string was `ab'). But instead of trying to
+ − 5819 detect that here, the alternative has put on a dummy
+ − 5820 failure point which is what we will end up popping. */
+ − 5821
+ − 5822 /* Skip over open/close-group commands.
+ − 5823 If what follows this loop is a ...+ construct,
+ − 5824 look at what begins its body, since we will have to
+ − 5825 match at least one of that. */
+ − 5826 while (1)
+ − 5827 {
+ − 5828 if (p2 + 2 < pend
+ − 5829 && ((re_opcode_t) *p2 == stop_memory
+ − 5830 || (re_opcode_t) *p2 == start_memory))
+ − 5831 p2 += 3;
+ − 5832 else if (p2 + 6 < pend
+ − 5833 && (re_opcode_t) *p2 == dummy_failure_jump)
+ − 5834 p2 += 6;
+ − 5835 else
+ − 5836 break;
+ − 5837 }
+ − 5838
+ − 5839 p1 = p + mcnt;
+ − 5840 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
+ − 5841 to the `maybe_finalize_jump' of this case. Examine what
+ − 5842 follows. */
+ − 5843
+ − 5844 /* If we're at the end of the pattern, we can change. */
+ − 5845 if (p2 == pend)
+ − 5846 {
+ − 5847 /* Consider what happens when matching ":\(.*\)"
+ − 5848 against ":/". I don't really understand this code
+ − 5849 yet. */
+ − 5850 p[-3] = (unsigned char) pop_failure_jump;
+ − 5851 DEBUG_PRINT1
+ − 5852 (" End of pattern: change to `pop_failure_jump'.\n");
+ − 5853 }
+ − 5854
+ − 5855 else if ((re_opcode_t) *p2 == exactn
+ − 5856 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
+ − 5857 {
+ − 5858 REGISTER unsigned char c
+ − 5859 = *p2 == (unsigned char) endline ? '\n' : p2[2];
+ − 5860
+ − 5861 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
+ − 5862 {
+ − 5863 p[-3] = (unsigned char) pop_failure_jump;
+ − 5864 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
+ − 5865 c, p1[5]);
+ − 5866 }
+ − 5867
+ − 5868 else if ((re_opcode_t) p1[3] == charset
+ − 5869 || (re_opcode_t) p1[3] == charset_not)
+ − 5870 {
458
+ − 5871 int not_p = (re_opcode_t) p1[3] == charset_not;
428
+ − 5872
+ − 5873 if (c < (unsigned char) (p1[4] * BYTEWIDTH)
+ − 5874 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
458
+ − 5875 not_p = !not_p;
+ − 5876
+ − 5877 /* `not_p' is equal to 1 if c would match, which means
428
+ − 5878 that we can't change to pop_failure_jump. */
458
+ − 5879 if (!not_p)
428
+ − 5880 {
+ − 5881 p[-3] = (unsigned char) pop_failure_jump;
+ − 5882 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
+ − 5883 }
+ − 5884 }
+ − 5885 }
+ − 5886 else if ((re_opcode_t) *p2 == charset)
+ − 5887 {
+ − 5888 #ifdef DEBUG
+ − 5889 REGISTER unsigned char c
+ − 5890 = *p2 == (unsigned char) endline ? '\n' : p2[2];
+ − 5891 #endif
+ − 5892
+ − 5893 if ((re_opcode_t) p1[3] == exactn
+ − 5894 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
+ − 5895 && (p2[2 + p1[5] / BYTEWIDTH]
+ − 5896 & (1 << (p1[5] % BYTEWIDTH)))))
+ − 5897 {
+ − 5898 p[-3] = (unsigned char) pop_failure_jump;
+ − 5899 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
+ − 5900 c, p1[5]);
+ − 5901 }
+ − 5902
+ − 5903 else if ((re_opcode_t) p1[3] == charset_not)
+ − 5904 {
+ − 5905 int idx;
+ − 5906 /* We win if the charset_not inside the loop
+ − 5907 lists every character listed in the charset after. */
+ − 5908 for (idx = 0; idx < (int) p2[1]; idx++)
+ − 5909 if (! (p2[2 + idx] == 0
+ − 5910 || (idx < (int) p1[4]
+ − 5911 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
+ − 5912 break;
+ − 5913
+ − 5914 if (idx == p2[1])
+ − 5915 {
+ − 5916 p[-3] = (unsigned char) pop_failure_jump;
+ − 5917 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
+ − 5918 }
+ − 5919 }
+ − 5920 else if ((re_opcode_t) p1[3] == charset)
+ − 5921 {
+ − 5922 int idx;
+ − 5923 /* We win if the charset inside the loop
+ − 5924 has no overlap with the one after the loop. */
+ − 5925 for (idx = 0;
+ − 5926 idx < (int) p2[1] && idx < (int) p1[4];
+ − 5927 idx++)
+ − 5928 if ((p2[2 + idx] & p1[5 + idx]) != 0)
+ − 5929 break;
+ − 5930
+ − 5931 if (idx == p2[1] || idx == p1[4])
+ − 5932 {
+ − 5933 p[-3] = (unsigned char) pop_failure_jump;
+ − 5934 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
+ − 5935 }
+ − 5936 }
+ − 5937 }
+ − 5938 }
+ − 5939 p -= 2; /* Point at relative address again. */
+ − 5940 if ((re_opcode_t) p[-1] != pop_failure_jump)
+ − 5941 {
+ − 5942 p[-1] = (unsigned char) jump;
+ − 5943 DEBUG_PRINT1 (" Match => jump.\n");
+ − 5944 goto unconditional_jump;
+ − 5945 }
+ − 5946 /* Note fall through. */
+ − 5947
+ − 5948
+ − 5949 /* The end of a simple repeat has a pop_failure_jump back to
+ − 5950 its matching on_failure_jump, where the latter will push a
+ − 5951 failure point. The pop_failure_jump takes off failure
+ − 5952 points put on by this pop_failure_jump's matching
+ − 5953 on_failure_jump; we got through the pattern to here from the
+ − 5954 matching on_failure_jump, so didn't fail. */
+ − 5955 case pop_failure_jump:
+ − 5956 {
+ − 5957 /* We need to pass separate storage for the lowest and
+ − 5958 highest registers, even though we don't care about the
+ − 5959 actual values. Otherwise, we will restore only one
+ − 5960 register from the stack, since lowest will == highest in
+ − 5961 `pop_failure_point'. */
647
+ − 5962 int dummy_low_reg, dummy_high_reg;
428
+ − 5963 unsigned char *pdummy;
446
+ − 5964 re_char *sdummy = NULL;
428
+ − 5965
+ − 5966 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
+ − 5967 POP_FAILURE_POINT (sdummy, pdummy,
+ − 5968 dummy_low_reg, dummy_high_reg,
+ − 5969 reg_dummy, reg_dummy, reg_info_dummy);
+ − 5970 }
+ − 5971 /* Note fall through. */
+ − 5972
+ − 5973
+ − 5974 /* Unconditionally jump (without popping any failure points). */
+ − 5975 case jump:
+ − 5976 unconditional_jump:
+ − 5977 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
+ − 5978 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
+ − 5979 p += mcnt; /* Do the jump. */
+ − 5980 DEBUG_PRINT2 ("(to 0x%lx).\n", (long) p);
+ − 5981 break;
+ − 5982
+ − 5983
+ − 5984 /* We need this opcode so we can detect where alternatives end
+ − 5985 in `group_match_null_string_p' et al. */
+ − 5986 case jump_past_alt:
+ − 5987 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
+ − 5988 goto unconditional_jump;
+ − 5989
+ − 5990
+ − 5991 /* Normally, the on_failure_jump pushes a failure point, which
+ − 5992 then gets popped at pop_failure_jump. We will end up at
+ − 5993 pop_failure_jump, also, and with a pattern of, say, `a+', we
+ − 5994 are skipping over the on_failure_jump, so we have to push
+ − 5995 something meaningless for pop_failure_jump to pop. */
+ − 5996 case dummy_failure_jump:
+ − 5997 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
+ − 5998 /* It doesn't matter what we push for the string here. What
+ − 5999 the code at `fail' tests is the value for the pattern. */
446
+ − 6000 PUSH_FAILURE_POINT ((unsigned char *) 0, (unsigned char *) 0, -2);
428
+ − 6001 goto unconditional_jump;
+ − 6002
+ − 6003
+ − 6004 /* At the end of an alternative, we need to push a dummy failure
+ − 6005 point in case we are followed by a `pop_failure_jump', because
+ − 6006 we don't want the failure point for the alternative to be
+ − 6007 popped. For example, matching `(a|ab)*' against `aab'
+ − 6008 requires that we match the `ab' alternative. */
+ − 6009 case push_dummy_failure:
+ − 6010 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
+ − 6011 /* See comments just above at `dummy_failure_jump' about the
+ − 6012 two zeroes. */
446
+ − 6013 PUSH_FAILURE_POINT ((unsigned char *) 0, (unsigned char *) 0, -2);
428
+ − 6014 break;
+ − 6015
+ − 6016 /* Have to succeed matching what follows at least n times.
+ − 6017 After that, handle like `on_failure_jump'. */
+ − 6018 case succeed_n:
+ − 6019 EXTRACT_NUMBER (mcnt, p + 2);
+ − 6020 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
+ − 6021
+ − 6022 assert (mcnt >= 0);
+ − 6023 /* Originally, this is how many times we HAVE to succeed. */
+ − 6024 if (mcnt > 0)
+ − 6025 {
+ − 6026 mcnt--;
+ − 6027 p += 2;
+ − 6028 STORE_NUMBER_AND_INCR (p, mcnt);
+ − 6029 DEBUG_PRINT3 (" Setting 0x%lx to %d.\n", (long) p, mcnt);
+ − 6030 }
+ − 6031 else if (mcnt == 0)
+ − 6032 {
+ − 6033 DEBUG_PRINT2 (" Setting two bytes from 0x%lx to no_op.\n",
+ − 6034 (long) (p+2));
+ − 6035 p[2] = (unsigned char) no_op;
+ − 6036 p[3] = (unsigned char) no_op;
+ − 6037 goto on_failure;
+ − 6038 }
+ − 6039 break;
+ − 6040
+ − 6041 case jump_n:
+ − 6042 EXTRACT_NUMBER (mcnt, p + 2);
+ − 6043 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
+ − 6044
+ − 6045 /* Originally, this is how many times we CAN jump. */
+ − 6046 if (mcnt)
+ − 6047 {
+ − 6048 mcnt--;
+ − 6049 STORE_NUMBER (p + 2, mcnt);
+ − 6050 goto unconditional_jump;
+ − 6051 }
+ − 6052 /* If don't have to jump any more, skip over the rest of command. */
+ − 6053 else
+ − 6054 p += 4;
+ − 6055 break;
+ − 6056
+ − 6057 case set_number_at:
+ − 6058 {
+ − 6059 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
+ − 6060
+ − 6061 EXTRACT_NUMBER_AND_INCR (mcnt, p);
+ − 6062 p1 = p + mcnt;
+ − 6063 EXTRACT_NUMBER_AND_INCR (mcnt, p);
+ − 6064 DEBUG_PRINT3 (" Setting 0x%lx to %d.\n", (long) p1, mcnt);
+ − 6065 STORE_NUMBER (p1, mcnt);
+ − 6066 break;
+ − 6067 }
+ − 6068
+ − 6069 case wordbound:
+ − 6070 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
+ − 6071 should_succeed = 1;
+ − 6072 matchwordbound:
+ − 6073 {
+ − 6074 /* XEmacs change */
1377
+ − 6075 /* Straightforward and (I hope) correct implementation.
+ − 6076 Probably should be optimized by arranging to compute
1497
+ − 6077 charpos only once. */
1377
+ − 6078 /* emch1 is the character before d, syn1 is the syntax of
+ − 6079 emch1, emch2 is the character at d, and syn2 is the
+ − 6080 syntax of emch2. */
+ − 6081 Ichar emch1, emch2;
1468
+ − 6082 int syn1 = 0,
+ − 6083 syn2 = 0;
1377
+ − 6084 re_char *d_before, *d_after;
+ − 6085 int result,
+ − 6086 at_beg = AT_STRINGS_BEG (d),
+ − 6087 at_end = AT_STRINGS_END (d);
+ − 6088 #ifdef emacs
1497
+ − 6089 Charxpos charpos;
1377
+ − 6090 #endif
+ − 6091
+ − 6092 if (at_beg && at_end)
+ − 6093 {
+ − 6094 result = 0;
+ − 6095 }
428
+ − 6096 else
+ − 6097 {
1377
+ − 6098 if (!at_beg)
+ − 6099 {
+ − 6100 d_before = POS_BEFORE_GAP_UNSAFE (d);
+ − 6101 DEC_IBYTEPTR_FMT (d_before, fmt);
+ − 6102 emch1 = itext_ichar_fmt (d_before, fmt, lispobj);
460
+ − 6103 #ifdef emacs
1497
+ − 6104 charpos = offset_to_charxpos (lispobj,
+ − 6105 PTR_TO_OFFSET (d)) - 1;
1377
+ − 6106 BEGIN_REGEX_MALLOC_OK ();
1497
+ − 6107 UPDATE_SYNTAX_CACHE (scache, charpos);
460
+ − 6108 #endif
1377
+ − 6109 syn1 = SYNTAX_FROM_CACHE (scache, emch1);
+ − 6110 END_REGEX_MALLOC_OK ();
+ − 6111 }
+ − 6112 if (!at_end)
+ − 6113 {
+ − 6114 d_after = POS_AFTER_GAP_UNSAFE (d);
+ − 6115 emch2 = itext_ichar_fmt (d_after, fmt, lispobj);
460
+ − 6116 #ifdef emacs
1497
+ − 6117 charpos = offset_to_charxpos (lispobj, PTR_TO_OFFSET (d));
1377
+ − 6118 BEGIN_REGEX_MALLOC_OK ();
1497
+ − 6119 UPDATE_SYNTAX_CACHE_FORWARD (scache, charpos);
460
+ − 6120 #endif
1377
+ − 6121 syn2 = SYNTAX_FROM_CACHE (scache, emch2);
+ − 6122 END_REGEX_MALLOC_OK ();
+ − 6123 }
1333
+ − 6124 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS ();
1377
+ − 6125
+ − 6126 if (at_beg)
+ − 6127 result = (syn2 == Sword);
+ − 6128 else if (at_end)
+ − 6129 result = (syn1 == Sword);
+ − 6130 else
+ − 6131 result = ((syn1 == Sword) != (syn2 == Sword));
428
+ − 6132 }
1377
+ − 6133
428
+ − 6134 if (result == should_succeed)
+ − 6135 break;
+ − 6136 goto fail;
+ − 6137 }
+ − 6138
+ − 6139 case notwordbound:
+ − 6140 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
+ − 6141 should_succeed = 0;
+ − 6142 goto matchwordbound;
+ − 6143
+ − 6144 case wordbeg:
+ − 6145 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
460
+ − 6146 if (AT_STRINGS_END (d))
+ − 6147 goto fail;
428
+ − 6148 {
+ − 6149 /* XEmacs: this originally read:
+ − 6150
+ − 6151 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
+ − 6152 break;
+ − 6153
+ − 6154 */
460
+ − 6155 re_char *dtmp = POS_AFTER_GAP_UNSAFE (d);
867
+ − 6156 Ichar emch = itext_ichar_fmt (dtmp, fmt, lispobj);
1333
+ − 6157 int tempres;
1347
+ − 6158 #ifdef emacs
+ − 6159 Charxpos charpos = offset_to_charxpos (lispobj, PTR_TO_OFFSET (d));
+ − 6160 #endif
1333
+ − 6161 BEGIN_REGEX_MALLOC_OK ();
460
+ − 6162 #ifdef emacs
826
+ − 6163 UPDATE_SYNTAX_CACHE (scache, charpos);
460
+ − 6164 #endif
1333
+ − 6165 tempres = (SYNTAX_FROM_CACHE (scache, emch) != Sword);
+ − 6166 END_REGEX_MALLOC_OK ();
+ − 6167 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS ();
+ − 6168 if (tempres)
428
+ − 6169 goto fail;
+ − 6170 if (AT_STRINGS_BEG (d))
+ − 6171 break;
460
+ − 6172 dtmp = POS_BEFORE_GAP_UNSAFE (d);
867
+ − 6173 DEC_IBYTEPTR_FMT (dtmp, fmt);
+ − 6174 emch = itext_ichar_fmt (dtmp, fmt, lispobj);
1333
+ − 6175 BEGIN_REGEX_MALLOC_OK ();
460
+ − 6176 #ifdef emacs
826
+ − 6177 UPDATE_SYNTAX_CACHE_BACKWARD (scache, charpos - 1);
460
+ − 6178 #endif
1333
+ − 6179 tempres = (SYNTAX_FROM_CACHE (scache, emch) != Sword);
+ − 6180 END_REGEX_MALLOC_OK ();
+ − 6181 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS ();
+ − 6182 if (tempres)
428
+ − 6183 break;
+ − 6184 goto fail;
+ − 6185 }
+ − 6186
+ − 6187 case wordend:
+ − 6188 DEBUG_PRINT1 ("EXECUTING wordend.\n");
460
+ − 6189 if (AT_STRINGS_BEG (d))
+ − 6190 goto fail;
428
+ − 6191 {
+ − 6192 /* XEmacs: this originally read:
+ − 6193
+ − 6194 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
+ − 6195 && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
+ − 6196 break;
+ − 6197
+ − 6198 The or condition is incorrect (reversed).
+ − 6199 */
460
+ − 6200 re_char *dtmp;
867
+ − 6201 Ichar emch;
1333
+ − 6202 int tempres;
460
+ − 6203 #ifdef emacs
826
+ − 6204 Charxpos charpos = offset_to_charxpos (lispobj, PTR_TO_OFFSET (d));
1347
+ − 6205 BEGIN_REGEX_MALLOC_OK ();
826
+ − 6206 UPDATE_SYNTAX_CACHE (scache, charpos);
1333
+ − 6207 END_REGEX_MALLOC_OK ();
+ − 6208 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS ();
1347
+ − 6209 #endif
460
+ − 6210 dtmp = POS_BEFORE_GAP_UNSAFE (d);
867
+ − 6211 DEC_IBYTEPTR_FMT (dtmp, fmt);
+ − 6212 emch = itext_ichar_fmt (dtmp, fmt, lispobj);
1333
+ − 6213 BEGIN_REGEX_MALLOC_OK ();
+ − 6214 tempres = (SYNTAX_FROM_CACHE (scache, emch) != Sword);
+ − 6215 END_REGEX_MALLOC_OK ();
+ − 6216 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS ();
+ − 6217 if (tempres)
428
+ − 6218 goto fail;
+ − 6219 if (AT_STRINGS_END (d))
+ − 6220 break;
460
+ − 6221 dtmp = POS_AFTER_GAP_UNSAFE (d);
867
+ − 6222 emch = itext_ichar_fmt (dtmp, fmt, lispobj);
1333
+ − 6223 BEGIN_REGEX_MALLOC_OK ();
460
+ − 6224 #ifdef emacs
826
+ − 6225 UPDATE_SYNTAX_CACHE_FORWARD (scache, charpos + 1);
460
+ − 6226 #endif
1333
+ − 6227 tempres = (SYNTAX_FROM_CACHE (scache, emch) != Sword);
+ − 6228 END_REGEX_MALLOC_OK ();
+ − 6229 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS ();
+ − 6230 if (tempres)
428
+ − 6231 break;
+ − 6232 goto fail;
+ − 6233 }
+ − 6234
+ − 6235 #ifdef emacs
+ − 6236 case before_dot:
+ − 6237 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
826
+ − 6238 if (!BUFFERP (lispobj)
+ − 6239 || (BUF_PTR_BYTE_POS (XBUFFER (lispobj), (unsigned char *) d)
+ − 6240 >= BUF_PT (XBUFFER (lispobj))))
428
+ − 6241 goto fail;
+ − 6242 break;
+ − 6243
+ − 6244 case at_dot:
+ − 6245 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
826
+ − 6246 if (!BUFFERP (lispobj)
+ − 6247 || (BUF_PTR_BYTE_POS (XBUFFER (lispobj), (unsigned char *) d)
+ − 6248 != BUF_PT (XBUFFER (lispobj))))
428
+ − 6249 goto fail;
+ − 6250 break;
+ − 6251
+ − 6252 case after_dot:
+ − 6253 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
826
+ − 6254 if (!BUFFERP (lispobj)
+ − 6255 || (BUF_PTR_BYTE_POS (XBUFFER (lispobj), (unsigned char *) d)
+ − 6256 <= BUF_PT (XBUFFER (lispobj))))
428
+ − 6257 goto fail;
+ − 6258 break;
+ − 6259
+ − 6260 case syntaxspec:
+ − 6261 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
+ − 6262 mcnt = *p++;
+ − 6263 goto matchsyntax;
+ − 6264
+ − 6265 case wordchar:
+ − 6266 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
+ − 6267 mcnt = (int) Sword;
+ − 6268 matchsyntax:
+ − 6269 should_succeed = 1;
+ − 6270 matchornotsyntax:
+ − 6271 {
+ − 6272 int matches;
867
+ − 6273 Ichar emch;
428
+ − 6274
450
+ − 6275 REGEX_PREFETCH ();
1333
+ − 6276 BEGIN_REGEX_MALLOC_OK ();
826
+ − 6277 UPDATE_SYNTAX_CACHE
+ − 6278 (scache, offset_to_charxpos (lispobj, PTR_TO_OFFSET (d)));
1333
+ − 6279 END_REGEX_MALLOC_OK ();
+ − 6280 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS ();
826
+ − 6281
867
+ − 6282 emch = itext_ichar_fmt (d, fmt, lispobj);
1333
+ − 6283 BEGIN_REGEX_MALLOC_OK ();
826
+ − 6284 matches = (SYNTAX_FROM_CACHE (scache, emch) ==
+ − 6285 (enum syntaxcode) mcnt);
1333
+ − 6286 END_REGEX_MALLOC_OK ();
+ − 6287 RE_MATCH_RELOCATE_MOVEABLE_DATA_POINTERS ();
867
+ − 6288 INC_IBYTEPTR_FMT (d, fmt);
428
+ − 6289 if (matches != should_succeed)
+ − 6290 goto fail;
+ − 6291 SET_REGS_MATCHED ();
+ − 6292 }
+ − 6293 break;
+ − 6294
+ − 6295 case notsyntaxspec:
+ − 6296 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
+ − 6297 mcnt = *p++;
+ − 6298 goto matchnotsyntax;
+ − 6299
+ − 6300 case notwordchar:
+ − 6301 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
+ − 6302 mcnt = (int) Sword;
+ − 6303 matchnotsyntax:
+ − 6304 should_succeed = 0;
+ − 6305 goto matchornotsyntax;
+ − 6306
+ − 6307 #ifdef MULE
+ − 6308 /* 97/2/17 jhod Mule category code patch */
+ − 6309 case categoryspec:
+ − 6310 should_succeed = 1;
+ − 6311 matchornotcategory:
+ − 6312 {
867
+ − 6313 Ichar emch;
428
+ − 6314
+ − 6315 mcnt = *p++;
450
+ − 6316 REGEX_PREFETCH ();
867
+ − 6317 emch = itext_ichar_fmt (d, fmt, lispobj);
+ − 6318 INC_IBYTEPTR_FMT (d, fmt);
826
+ − 6319 if (check_category_char (emch, BUFFER_CATEGORY_TABLE (lispbuf),
+ − 6320 mcnt, should_succeed))
428
+ − 6321 goto fail;
+ − 6322 SET_REGS_MATCHED ();
+ − 6323 }
+ − 6324 break;
+ − 6325
+ − 6326 case notcategoryspec:
+ − 6327 should_succeed = 0;
+ − 6328 goto matchornotcategory;
+ − 6329 /* end of category patch */
+ − 6330 #endif /* MULE */
+ − 6331 #else /* not emacs */
+ − 6332 case wordchar:
+ − 6333 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
450
+ − 6334 REGEX_PREFETCH ();
826
+ − 6335 if (!WORDCHAR_P ((int) (*d)))
428
+ − 6336 goto fail;
+ − 6337 SET_REGS_MATCHED ();
+ − 6338 d++;
+ − 6339 break;
+ − 6340
+ − 6341 case notwordchar:
+ − 6342 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
450
+ − 6343 REGEX_PREFETCH ();
826
+ − 6344 if (!WORDCHAR_P ((int) (*d)))
428
+ − 6345 goto fail;
+ − 6346 SET_REGS_MATCHED ();
+ − 6347 d++;
+ − 6348 break;
446
+ − 6349 #endif /* emacs */
428
+ − 6350
+ − 6351 default:
2500
+ − 6352 ABORT ();
428
+ − 6353 }
+ − 6354 continue; /* Successfully executed one pattern command; keep going. */
+ − 6355
+ − 6356
+ − 6357 /* We goto here if a matching operation fails. */
+ − 6358 fail:
+ − 6359 if (!FAIL_STACK_EMPTY ())
+ − 6360 { /* A restart point is known. Restore to that state. */
+ − 6361 DEBUG_PRINT1 ("\nFAIL:\n");
+ − 6362 POP_FAILURE_POINT (d, p,
+ − 6363 lowest_active_reg, highest_active_reg,
+ − 6364 regstart, regend, reg_info);
+ − 6365
+ − 6366 /* If this failure point is a dummy, try the next one. */
+ − 6367 if (!p)
+ − 6368 goto fail;
+ − 6369
+ − 6370 /* If we failed to the end of the pattern, don't examine *p. */
+ − 6371 assert (p <= pend);
+ − 6372 if (p < pend)
+ − 6373 {
460
+ − 6374 re_bool is_a_jump_n = false;
428
+ − 6375
+ − 6376 /* If failed to a backwards jump that's part of a repetition
+ − 6377 loop, need to pop this failure point and use the next one. */
+ − 6378 switch ((re_opcode_t) *p)
+ − 6379 {
+ − 6380 case jump_n:
+ − 6381 is_a_jump_n = true;
+ − 6382 case maybe_pop_jump:
+ − 6383 case pop_failure_jump:
+ − 6384 case jump:
+ − 6385 p1 = p + 1;
+ − 6386 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
+ − 6387 p1 += mcnt;
+ − 6388
+ − 6389 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
+ − 6390 || (!is_a_jump_n
+ − 6391 && (re_opcode_t) *p1 == on_failure_jump))
+ − 6392 goto fail;
+ − 6393 break;
+ − 6394 default:
+ − 6395 /* do nothing */ ;
+ − 6396 }
+ − 6397 }
+ − 6398
+ − 6399 if (d >= string1 && d <= end1)
+ − 6400 dend = end_match_1;
+ − 6401 }
+ − 6402 else
+ − 6403 break; /* Matching at this starting point really fails. */
+ − 6404 } /* for (;;) */
+ − 6405
+ − 6406 if (best_regs_set)
+ − 6407 goto restore_best_regs;
+ − 6408
+ − 6409 FREE_VARIABLES ();
+ − 6410
+ − 6411 return -1; /* Failure to match. */
1333
+ − 6412 } /* re_match_2_internal */
428
+ − 6413
+ − 6414 /* Subroutine definitions for re_match_2. */
+ − 6415
+ − 6416
+ − 6417 /* We are passed P pointing to a register number after a start_memory.
+ − 6418
+ − 6419 Return true if the pattern up to the corresponding stop_memory can
+ − 6420 match the empty string, and false otherwise.
+ − 6421
+ − 6422 If we find the matching stop_memory, sets P to point to one past its number.
+ − 6423 Otherwise, sets P to an undefined byte less than or equal to END.
+ − 6424
+ − 6425 We don't handle duplicates properly (yet). */
+ − 6426
460
+ − 6427 static re_bool
428
+ − 6428 group_match_null_string_p (unsigned char **p, unsigned char *end,
+ − 6429 register_info_type *reg_info)
+ − 6430 {
+ − 6431 int mcnt;
+ − 6432 /* Point to after the args to the start_memory. */
+ − 6433 unsigned char *p1 = *p + 2;
+ − 6434
+ − 6435 while (p1 < end)
+ − 6436 {
+ − 6437 /* Skip over opcodes that can match nothing, and return true or
+ − 6438 false, as appropriate, when we get to one that can't, or to the
+ − 6439 matching stop_memory. */
+ − 6440
+ − 6441 switch ((re_opcode_t) *p1)
+ − 6442 {
+ − 6443 /* Could be either a loop or a series of alternatives. */
+ − 6444 case on_failure_jump:
+ − 6445 p1++;
+ − 6446 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
+ − 6447
+ − 6448 /* If the next operation is not a jump backwards in the
+ − 6449 pattern. */
+ − 6450
+ − 6451 if (mcnt >= 0)
+ − 6452 {
+ − 6453 /* Go through the on_failure_jumps of the alternatives,
+ − 6454 seeing if any of the alternatives cannot match nothing.
+ − 6455 The last alternative starts with only a jump,
+ − 6456 whereas the rest start with on_failure_jump and end
+ − 6457 with a jump, e.g., here is the pattern for `a|b|c':
+ − 6458
+ − 6459 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
+ − 6460 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
+ − 6461 /exactn/1/c
+ − 6462
+ − 6463 So, we have to first go through the first (n-1)
+ − 6464 alternatives and then deal with the last one separately. */
+ − 6465
+ − 6466
+ − 6467 /* Deal with the first (n-1) alternatives, which start
+ − 6468 with an on_failure_jump (see above) that jumps to right
+ − 6469 past a jump_past_alt. */
+ − 6470
+ − 6471 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
+ − 6472 {
+ − 6473 /* `mcnt' holds how many bytes long the alternative
+ − 6474 is, including the ending `jump_past_alt' and
+ − 6475 its number. */
+ − 6476
+ − 6477 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
+ − 6478 reg_info))
+ − 6479 return false;
+ − 6480
+ − 6481 /* Move to right after this alternative, including the
+ − 6482 jump_past_alt. */
+ − 6483 p1 += mcnt;
+ − 6484
+ − 6485 /* Break if it's the beginning of an n-th alternative
+ − 6486 that doesn't begin with an on_failure_jump. */
+ − 6487 if ((re_opcode_t) *p1 != on_failure_jump)
+ − 6488 break;
+ − 6489
+ − 6490 /* Still have to check that it's not an n-th
+ − 6491 alternative that starts with an on_failure_jump. */
+ − 6492 p1++;
+ − 6493 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
+ − 6494 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
+ − 6495 {
+ − 6496 /* Get to the beginning of the n-th alternative. */
+ − 6497 p1 -= 3;
+ − 6498 break;
+ − 6499 }
+ − 6500 }
+ − 6501
+ − 6502 /* Deal with the last alternative: go back and get number
+ − 6503 of the `jump_past_alt' just before it. `mcnt' contains
+ − 6504 the length of the alternative. */
+ − 6505 EXTRACT_NUMBER (mcnt, p1 - 2);
+ − 6506
+ − 6507 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
+ − 6508 return false;
+ − 6509
+ − 6510 p1 += mcnt; /* Get past the n-th alternative. */
+ − 6511 } /* if mcnt > 0 */
+ − 6512 break;
+ − 6513
+ − 6514
+ − 6515 case stop_memory:
+ − 6516 assert (p1[1] == **p);
+ − 6517 *p = p1 + 2;
+ − 6518 return true;
+ − 6519
+ − 6520
+ − 6521 default:
+ − 6522 if (!common_op_match_null_string_p (&p1, end, reg_info))
+ − 6523 return false;
+ − 6524 }
+ − 6525 } /* while p1 < end */
+ − 6526
+ − 6527 return false;
+ − 6528 } /* group_match_null_string_p */
+ − 6529
+ − 6530
+ − 6531 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
+ − 6532 It expects P to be the first byte of a single alternative and END one
+ − 6533 byte past the last. The alternative can contain groups. */
+ − 6534
460
+ − 6535 static re_bool
428
+ − 6536 alt_match_null_string_p (unsigned char *p, unsigned char *end,
+ − 6537 register_info_type *reg_info)
+ − 6538 {
+ − 6539 int mcnt;
+ − 6540 unsigned char *p1 = p;
+ − 6541
+ − 6542 while (p1 < end)
+ − 6543 {
+ − 6544 /* Skip over opcodes that can match nothing, and break when we get
+ − 6545 to one that can't. */
+ − 6546
+ − 6547 switch ((re_opcode_t) *p1)
+ − 6548 {
+ − 6549 /* It's a loop. */
+ − 6550 case on_failure_jump:
+ − 6551 p1++;
+ − 6552 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
+ − 6553 p1 += mcnt;
+ − 6554 break;
+ − 6555
+ − 6556 default:
+ − 6557 if (!common_op_match_null_string_p (&p1, end, reg_info))
+ − 6558 return false;
+ − 6559 }
+ − 6560 } /* while p1 < end */
+ − 6561
+ − 6562 return true;
+ − 6563 } /* alt_match_null_string_p */
+ − 6564
+ − 6565
+ − 6566 /* Deals with the ops common to group_match_null_string_p and
+ − 6567 alt_match_null_string_p.
+ − 6568
+ − 6569 Sets P to one after the op and its arguments, if any. */
+ − 6570
460
+ − 6571 static re_bool
428
+ − 6572 common_op_match_null_string_p (unsigned char **p, unsigned char *end,
+ − 6573 register_info_type *reg_info)
+ − 6574 {
+ − 6575 int mcnt;
460
+ − 6576 re_bool ret;
428
+ − 6577 int reg_no;
+ − 6578 unsigned char *p1 = *p;
+ − 6579
+ − 6580 switch ((re_opcode_t) *p1++)
+ − 6581 {
+ − 6582 case no_op:
+ − 6583 case begline:
+ − 6584 case endline:
+ − 6585 case begbuf:
+ − 6586 case endbuf:
+ − 6587 case wordbeg:
+ − 6588 case wordend:
+ − 6589 case wordbound:
+ − 6590 case notwordbound:
+ − 6591 #ifdef emacs
+ − 6592 case before_dot:
+ − 6593 case at_dot:
+ − 6594 case after_dot:
+ − 6595 #endif
+ − 6596 break;
+ − 6597
+ − 6598 case start_memory:
+ − 6599 reg_no = *p1;
+ − 6600 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
+ − 6601 ret = group_match_null_string_p (&p1, end, reg_info);
+ − 6602
+ − 6603 /* Have to set this here in case we're checking a group which
+ − 6604 contains a group and a back reference to it. */
+ − 6605
+ − 6606 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
+ − 6607 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
+ − 6608
+ − 6609 if (!ret)
+ − 6610 return false;
+ − 6611 break;
+ − 6612
+ − 6613 /* If this is an optimized succeed_n for zero times, make the jump. */
+ − 6614 case jump:
+ − 6615 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
+ − 6616 if (mcnt >= 0)
+ − 6617 p1 += mcnt;
+ − 6618 else
+ − 6619 return false;
+ − 6620 break;
+ − 6621
+ − 6622 case succeed_n:
+ − 6623 /* Get to the number of times to succeed. */
+ − 6624 p1 += 2;
+ − 6625 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
+ − 6626
+ − 6627 if (mcnt == 0)
+ − 6628 {
+ − 6629 p1 -= 4;
+ − 6630 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
+ − 6631 p1 += mcnt;
+ − 6632 }
+ − 6633 else
+ − 6634 return false;
+ − 6635 break;
+ − 6636
+ − 6637 case duplicate:
+ − 6638 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
+ − 6639 return false;
+ − 6640 break;
+ − 6641
+ − 6642 case set_number_at:
+ − 6643 p1 += 4;
+ − 6644
+ − 6645 default:
+ − 6646 /* All other opcodes mean we cannot match the empty string. */
+ − 6647 return false;
+ − 6648 }
+ − 6649
+ − 6650 *p = p1;
+ − 6651 return true;
+ − 6652 } /* common_op_match_null_string_p */
+ − 6653
+ − 6654
+ − 6655 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
+ − 6656 bytes; nonzero otherwise. */
+ − 6657
+ − 6658 static int
446
+ − 6659 bcmp_translate (re_char *s1, re_char *s2,
826
+ − 6660 REGISTER int len, RE_TRANSLATE_TYPE translate
+ − 6661 #ifdef emacs
2333
+ − 6662 , Internal_Format USED_IF_MULE (fmt),
+ − 6663 Lisp_Object USED_IF_MULE (lispobj)
826
+ − 6664 #endif
+ − 6665 )
428
+ − 6666 {
826
+ − 6667 REGISTER re_char *p1 = s1, *p2 = s2;
446
+ − 6668 #ifdef MULE
826
+ − 6669 re_char *p1_end = s1 + len;
+ − 6670 re_char *p2_end = s2 + len;
446
+ − 6671
+ − 6672 while (p1 != p1_end && p2 != p2_end)
+ − 6673 {
867
+ − 6674 Ichar p1_ch, p2_ch;
+ − 6675
+ − 6676 p1_ch = itext_ichar_fmt (p1, fmt, lispobj);
+ − 6677 p2_ch = itext_ichar_fmt (p2, fmt, lispobj);
826
+ − 6678
+ − 6679 if (RE_TRANSLATE_1 (p1_ch)
+ − 6680 != RE_TRANSLATE_1 (p2_ch))
446
+ − 6681 return 1;
867
+ − 6682 INC_IBYTEPTR_FMT (p1, fmt);
+ − 6683 INC_IBYTEPTR_FMT (p2, fmt);
446
+ − 6684 }
+ − 6685 #else /* not MULE */
428
+ − 6686 while (len)
+ − 6687 {
826
+ − 6688 if (RE_TRANSLATE_1 (*p1++) != RE_TRANSLATE_1 (*p2++)) return 1;
428
+ − 6689 len--;
+ − 6690 }
446
+ − 6691 #endif /* MULE */
428
+ − 6692 return 0;
+ − 6693 }
+ − 6694
+ − 6695 /* Entry points for GNU code. */
+ − 6696
+ − 6697 /* re_compile_pattern is the GNU regular expression compiler: it
+ − 6698 compiles PATTERN (of length SIZE) and puts the result in BUFP.
+ − 6699 Returns 0 if the pattern was valid, otherwise an error string.
+ − 6700
+ − 6701 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
+ − 6702 are set in BUFP on entry.
+ − 6703
+ − 6704 We call regex_compile to do the actual compilation. */
+ − 6705
442
+ − 6706 const char *
+ − 6707 re_compile_pattern (const char *pattern, int length,
428
+ − 6708 struct re_pattern_buffer *bufp)
+ − 6709 {
+ − 6710 reg_errcode_t ret;
+ − 6711
+ − 6712 /* GNU code is written to assume at least RE_NREGS registers will be set
+ − 6713 (and at least one extra will be -1). */
+ − 6714 bufp->regs_allocated = REGS_UNALLOCATED;
+ − 6715
+ − 6716 /* And GNU code determines whether or not to get register information
+ − 6717 by passing null for the REGS argument to re_match, etc., not by
+ − 6718 setting no_sub. */
+ − 6719 bufp->no_sub = 0;
+ − 6720
+ − 6721 /* Match anchors at newline. */
+ − 6722 bufp->newline_anchor = 1;
+ − 6723
826
+ − 6724 ret = regex_compile ((unsigned char *) pattern, length, re_syntax_options,
+ − 6725 bufp);
428
+ − 6726
+ − 6727 if (!ret)
+ − 6728 return NULL;
+ − 6729 return gettext (re_error_msgid[(int) ret]);
+ − 6730 }
+ − 6731
+ − 6732 /* Entry points compatible with 4.2 BSD regex library. We don't define
+ − 6733 them unless specifically requested. */
+ − 6734
+ − 6735 #ifdef _REGEX_RE_COMP
+ − 6736
+ − 6737 /* BSD has one and only one pattern buffer. */
+ − 6738 static struct re_pattern_buffer re_comp_buf;
+ − 6739
+ − 6740 char *
442
+ − 6741 re_comp (const char *s)
428
+ − 6742 {
+ − 6743 reg_errcode_t ret;
+ − 6744
+ − 6745 if (!s)
+ − 6746 {
+ − 6747 if (!re_comp_buf.buffer)
+ − 6748 return gettext ("No previous regular expression");
+ − 6749 return 0;
+ − 6750 }
+ − 6751
+ − 6752 if (!re_comp_buf.buffer)
+ − 6753 {
1333
+ − 6754 re_comp_buf.buffer = (unsigned char *) xmalloc (200);
428
+ − 6755 if (re_comp_buf.buffer == NULL)
+ − 6756 return gettext (re_error_msgid[(int) REG_ESPACE]);
+ − 6757 re_comp_buf.allocated = 200;
+ − 6758
1333
+ − 6759 re_comp_buf.fastmap = (char *) xmalloc (1 << BYTEWIDTH);
428
+ − 6760 if (re_comp_buf.fastmap == NULL)
+ − 6761 return gettext (re_error_msgid[(int) REG_ESPACE]);
+ − 6762 }
+ − 6763
+ − 6764 /* Since `re_exec' always passes NULL for the `regs' argument, we
+ − 6765 don't need to initialize the pattern buffer fields which affect it. */
+ − 6766
+ − 6767 /* Match anchors at newlines. */
+ − 6768 re_comp_buf.newline_anchor = 1;
+ − 6769
826
+ − 6770 ret = regex_compile ((unsigned char *)s, strlen (s), re_syntax_options,
+ − 6771 &re_comp_buf);
428
+ − 6772
+ − 6773 if (!ret)
+ − 6774 return NULL;
+ − 6775
442
+ − 6776 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
428
+ − 6777 return (char *) gettext (re_error_msgid[(int) ret]);
+ − 6778 }
+ − 6779
+ − 6780
+ − 6781 int
442
+ − 6782 re_exec (const char *s)
428
+ − 6783 {
442
+ − 6784 const int len = strlen (s);
428
+ − 6785 return
+ − 6786 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
+ − 6787 }
+ − 6788 #endif /* _REGEX_RE_COMP */
+ − 6789
+ − 6790 /* POSIX.2 functions. Don't define these for Emacs. */
+ − 6791
+ − 6792 #ifndef emacs
+ − 6793
+ − 6794 /* regcomp takes a regular expression as a string and compiles it.
+ − 6795
+ − 6796 PREG is a regex_t *. We do not expect any fields to be initialized,
+ − 6797 since POSIX says we shouldn't. Thus, we set
+ − 6798
+ − 6799 `buffer' to the compiled pattern;
+ − 6800 `used' to the length of the compiled pattern;
+ − 6801 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
+ − 6802 REG_EXTENDED bit in CFLAGS is set; otherwise, to
+ − 6803 RE_SYNTAX_POSIX_BASIC;
+ − 6804 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
+ − 6805 `fastmap' and `fastmap_accurate' to zero;
+ − 6806 `re_nsub' to the number of subexpressions in PATTERN.
502
+ − 6807 (non-shy of course. POSIX probably doesn't know about
+ − 6808 shy ones, and in any case they should be invisible.)
428
+ − 6809
+ − 6810 PATTERN is the address of the pattern string.
+ − 6811
+ − 6812 CFLAGS is a series of bits which affect compilation.
+ − 6813
+ − 6814 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
+ − 6815 use POSIX basic syntax.
+ − 6816
+ − 6817 If REG_NEWLINE is set, then . and [^...] don't match newline.
+ − 6818 Also, regexec will try a match beginning after every newline.
+ − 6819
+ − 6820 If REG_ICASE is set, then we considers upper- and lowercase
+ − 6821 versions of letters to be equivalent when matching.
+ − 6822
+ − 6823 If REG_NOSUB is set, then when PREG is passed to regexec, that
+ − 6824 routine will report only success or failure, and nothing about the
+ − 6825 registers.
+ − 6826
+ − 6827 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
+ − 6828 the return codes and their meanings.) */
+ − 6829
+ − 6830 int
442
+ − 6831 regcomp (regex_t *preg, const char *pattern, int cflags)
428
+ − 6832 {
+ − 6833 reg_errcode_t ret;
647
+ − 6834 unsigned int syntax
428
+ − 6835 = (cflags & REG_EXTENDED) ?
+ − 6836 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
+ − 6837
+ − 6838 /* regex_compile will allocate the space for the compiled pattern. */
+ − 6839 preg->buffer = 0;
+ − 6840 preg->allocated = 0;
+ − 6841 preg->used = 0;
+ − 6842
+ − 6843 /* Don't bother to use a fastmap when searching. This simplifies the
+ − 6844 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
+ − 6845 characters after newlines into the fastmap. This way, we just try
+ − 6846 every character. */
+ − 6847 preg->fastmap = 0;
+ − 6848
+ − 6849 if (cflags & REG_ICASE)
+ − 6850 {
647
+ − 6851 int i;
428
+ − 6852
1333
+ − 6853 preg->translate = (char *) xmalloc (CHAR_SET_SIZE);
428
+ − 6854 if (preg->translate == NULL)
+ − 6855 return (int) REG_ESPACE;
+ − 6856
+ − 6857 /* Map uppercase characters to corresponding lowercase ones. */
+ − 6858 for (i = 0; i < CHAR_SET_SIZE; i++)
+ − 6859 preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
+ − 6860 }
+ − 6861 else
+ − 6862 preg->translate = NULL;
+ − 6863
+ − 6864 /* If REG_NEWLINE is set, newlines are treated differently. */
+ − 6865 if (cflags & REG_NEWLINE)
+ − 6866 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
+ − 6867 syntax &= ~RE_DOT_NEWLINE;
+ − 6868 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
+ − 6869 /* It also changes the matching behavior. */
+ − 6870 preg->newline_anchor = 1;
+ − 6871 }
+ − 6872 else
+ − 6873 preg->newline_anchor = 0;
+ − 6874
+ − 6875 preg->no_sub = !!(cflags & REG_NOSUB);
+ − 6876
+ − 6877 /* POSIX says a null character in the pattern terminates it, so we
+ − 6878 can use strlen here in compiling the pattern. */
446
+ − 6879 ret = regex_compile ((unsigned char *) pattern, strlen (pattern), syntax, preg);
428
+ − 6880
+ − 6881 /* POSIX doesn't distinguish between an unmatched open-group and an
+ − 6882 unmatched close-group: both are REG_EPAREN. */
+ − 6883 if (ret == REG_ERPAREN) ret = REG_EPAREN;
+ − 6884
+ − 6885 return (int) ret;
+ − 6886 }
+ − 6887
+ − 6888
+ − 6889 /* regexec searches for a given pattern, specified by PREG, in the
+ − 6890 string STRING.
+ − 6891
+ − 6892 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
+ − 6893 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
+ − 6894 least NMATCH elements, and we set them to the offsets of the
+ − 6895 corresponding matched substrings.
+ − 6896
+ − 6897 EFLAGS specifies `execution flags' which affect matching: if
+ − 6898 REG_NOTBOL is set, then ^ does not match at the beginning of the
+ − 6899 string; if REG_NOTEOL is set, then $ does not match at the end.
+ − 6900
+ − 6901 We return 0 if we find a match and REG_NOMATCH if not. */
+ − 6902
+ − 6903 int
442
+ − 6904 regexec (const regex_t *preg, const char *string, size_t nmatch,
428
+ − 6905 regmatch_t pmatch[], int eflags)
+ − 6906 {
+ − 6907 int ret;
+ − 6908 struct re_registers regs;
+ − 6909 regex_t private_preg;
+ − 6910 int len = strlen (string);
460
+ − 6911 re_bool want_reg_info = !preg->no_sub && nmatch > 0;
428
+ − 6912
+ − 6913 private_preg = *preg;
+ − 6914
+ − 6915 private_preg.not_bol = !!(eflags & REG_NOTBOL);
+ − 6916 private_preg.not_eol = !!(eflags & REG_NOTEOL);
+ − 6917
+ − 6918 /* The user has told us exactly how many registers to return
+ − 6919 information about, via `nmatch'. We have to pass that on to the
+ − 6920 matching routines. */
+ − 6921 private_preg.regs_allocated = REGS_FIXED;
+ − 6922
+ − 6923 if (want_reg_info)
+ − 6924 {
647
+ − 6925 regs.num_regs = (int) nmatch;
+ − 6926 regs.start = TALLOC ((int) nmatch, regoff_t);
+ − 6927 regs.end = TALLOC ((int) nmatch, regoff_t);
428
+ − 6928 if (regs.start == NULL || regs.end == NULL)
+ − 6929 return (int) REG_NOMATCH;
+ − 6930 }
+ − 6931
+ − 6932 /* Perform the searching operation. */
+ − 6933 ret = re_search (&private_preg, string, len,
+ − 6934 /* start: */ 0, /* range: */ len,
+ − 6935 want_reg_info ? ®s : (struct re_registers *) 0);
+ − 6936
+ − 6937 /* Copy the register information to the POSIX structure. */
+ − 6938 if (want_reg_info)
+ − 6939 {
+ − 6940 if (ret >= 0)
+ − 6941 {
647
+ − 6942 int r;
+ − 6943
+ − 6944 for (r = 0; r < (int) nmatch; r++)
428
+ − 6945 {
+ − 6946 pmatch[r].rm_so = regs.start[r];
+ − 6947 pmatch[r].rm_eo = regs.end[r];
+ − 6948 }
+ − 6949 }
+ − 6950
+ − 6951 /* If we needed the temporary register info, free the space now. */
1726
+ − 6952 xfree (regs.start, regoff_t *);
+ − 6953 xfree (regs.end, regoff_t *);
428
+ − 6954 }
+ − 6955
+ − 6956 /* We want zero return to mean success, unlike `re_search'. */
+ − 6957 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
+ − 6958 }
+ − 6959
+ − 6960
+ − 6961 /* Returns a message corresponding to an error code, ERRCODE, returned
+ − 6962 from either regcomp or regexec. We don't use PREG here. */
+ − 6963
+ − 6964 size_t
2286
+ − 6965 regerror (int errcode, const regex_t *UNUSED (preg), char *errbuf,
647
+ − 6966 size_t errbuf_size)
428
+ − 6967 {
442
+ − 6968 const char *msg;
665
+ − 6969 Bytecount msg_size;
428
+ − 6970
+ − 6971 if (errcode < 0
647
+ − 6972 || errcode >= (int) (sizeof (re_error_msgid) /
+ − 6973 sizeof (re_error_msgid[0])))
428
+ − 6974 /* Only error codes returned by the rest of the code should be passed
+ − 6975 to this routine. If we are given anything else, or if other regex
+ − 6976 code generates an invalid error code, then the program has a bug.
+ − 6977 Dump core so we can fix it. */
2500
+ − 6978 ABORT ();
428
+ − 6979
+ − 6980 msg = gettext (re_error_msgid[errcode]);
+ − 6981
+ − 6982 msg_size = strlen (msg) + 1; /* Includes the null. */
+ − 6983
+ − 6984 if (errbuf_size != 0)
+ − 6985 {
665
+ − 6986 if (msg_size > (Bytecount) errbuf_size)
428
+ − 6987 {
+ − 6988 strncpy (errbuf, msg, errbuf_size - 1);
+ − 6989 errbuf[errbuf_size - 1] = 0;
+ − 6990 }
+ − 6991 else
+ − 6992 strcpy (errbuf, msg);
+ − 6993 }
+ − 6994
647
+ − 6995 return (size_t) msg_size;
428
+ − 6996 }
+ − 6997
+ − 6998
+ − 6999 /* Free dynamically allocated space used by PREG. */
+ − 7000
+ − 7001 void
+ − 7002 regfree (regex_t *preg)
+ − 7003 {
+ − 7004 if (preg->buffer != NULL)
1726
+ − 7005 xfree (preg->buffer, unsigned char *);
428
+ − 7006 preg->buffer = NULL;
+ − 7007
+ − 7008 preg->allocated = 0;
+ − 7009 preg->used = 0;
+ − 7010
+ − 7011 if (preg->fastmap != NULL)
1726
+ − 7012 xfree (preg->fastmap, char *);
428
+ − 7013 preg->fastmap = NULL;
+ − 7014 preg->fastmap_accurate = 0;
+ − 7015
+ − 7016 if (preg->translate != NULL)
1726
+ − 7017 xfree (preg->translate, RE_TRANSLATE_TYPE);
428
+ − 7018 preg->translate = NULL;
+ − 7019 }
+ − 7020
+ − 7021 #endif /* not emacs */
+ − 7022