428
|
1 /* Header file for the buffer manipulation primitives.
|
|
2 Copyright (C) 1985, 1986, 1992, 1993, 1994, 1995
|
|
3 Free Software Foundation, Inc.
|
|
4 Copyright (C) 1995 Sun Microsystems, Inc.
|
|
5
|
|
6 This file is part of XEmacs.
|
|
7
|
|
8 XEmacs is free software; you can redistribute it and/or modify it
|
|
9 under the terms of the GNU General Public License as published by the
|
|
10 Free Software Foundation; either version 2, or (at your option) any
|
|
11 later version.
|
|
12
|
|
13 XEmacs is distributed in the hope that it will be useful, but WITHOUT
|
|
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
16 for more details.
|
|
17
|
|
18 You should have received a copy of the GNU General Public License
|
|
19 along with XEmacs; see the file COPYING. If not, write to
|
|
20 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
21 Boston, MA 02111-1307, USA. */
|
|
22
|
|
23 /* Synched up with: FSF 19.30. */
|
|
24
|
|
25 /* Authorship:
|
|
26
|
|
27 FSF: long ago.
|
|
28 JWZ: separated out bufslots.h, early in Lemacs.
|
|
29 Ben Wing: almost completely rewritten for Mule, 19.12.
|
|
30 */
|
|
31
|
440
|
32 #ifndef INCLUDED_buffer_h_
|
|
33 #define INCLUDED_buffer_h_
|
428
|
34
|
|
35 #ifdef MULE
|
|
36 #include "mule-charset.h"
|
|
37 #endif
|
|
38
|
446
|
39 #include "casetab.h"
|
|
40 #include "chartab.h"
|
|
41
|
428
|
42 /************************************************************************/
|
|
43 /* */
|
|
44 /* definition of Lisp buffer object */
|
|
45 /* */
|
|
46 /************************************************************************/
|
|
47
|
|
48 /* Note: we keep both Bytind and Bufpos versions of some of the
|
|
49 important buffer positions because they are accessed so much.
|
|
50 If we didn't do this, we would constantly be invalidating the
|
|
51 bufpos<->bytind cache under Mule.
|
|
52
|
|
53 Note that under non-Mule, both versions will always be the
|
|
54 same so we don't really need to keep track of them. But it
|
|
55 simplifies the logic to go ahead and do so all the time and
|
|
56 the memory loss is insignificant. */
|
|
57
|
|
58 /* Formerly, it didn't much matter what went inside the struct buffer_text
|
|
59 and what went outside it. Now it does, with the advent of "indirect
|
|
60 buffers" that share text with another buffer. An indirect buffer
|
|
61 shares the same *text* as another buffer, but has its own buffer-local
|
|
62 variables, its own accessible region, and its own markers and extents.
|
|
63 (Due to the nature of markers, it doesn't actually matter much whether
|
|
64 we stick them inside or out of the struct buffer_text -- the user won't
|
|
65 notice any difference -- but we go ahead and put them outside for
|
|
66 consistency and overall saneness of algorithm.)
|
|
67
|
|
68 FSFmacs gets away with not maintaining any "children" pointers from
|
|
69 a buffer to the indirect buffers that refer to it by putting the
|
|
70 markers inside of the struct buffer_text, using markers to keep track
|
|
71 of BEGV and ZV in indirect buffers, and relying on the fact that
|
|
72 all intervals (text properties and overlays) use markers for their
|
|
73 start and end points. We don't do this for extents (markers are
|
|
74 inefficient anyway and take up space), so we have to maintain
|
|
75 children pointers. This is not terribly hard, though, and the
|
|
76 code to maintain this is just like the code already present in
|
|
77 extent-parent and extent-children.
|
|
78 */
|
|
79
|
|
80 struct buffer_text
|
|
81 {
|
|
82 Bufbyte *beg; /* Actual address of buffer contents. */
|
|
83 Bytind gpt; /* Index of gap in buffer. */
|
|
84 Bytind z; /* Index of end of buffer. */
|
|
85 Bufpos bufz; /* Equivalent as a Bufpos. */
|
|
86 int gap_size; /* Size of buffer's gap */
|
|
87 int end_gap_size; /* Size of buffer's end gap */
|
|
88 long modiff; /* This counts buffer-modification events
|
|
89 for this buffer. It is incremented for
|
|
90 each such event, and never otherwise
|
|
91 changed. */
|
|
92 long save_modiff; /* Previous value of modiff, as of last
|
|
93 time buffer visited or saved a file. */
|
|
94
|
|
95 #ifdef MULE
|
|
96 /* We keep track of a "known" region for very fast access.
|
|
97 This information is text-only so it goes here. */
|
|
98 Bufpos mule_bufmin, mule_bufmax;
|
|
99 Bytind mule_bytmin, mule_bytmax;
|
|
100 int mule_shifter, mule_three_p;
|
|
101
|
|
102 /* And we also cache 16 positions for fairly fast access near those
|
|
103 positions. */
|
|
104 Bufpos mule_bufpos_cache[16];
|
|
105 Bytind mule_bytind_cache[16];
|
|
106 #endif
|
|
107
|
|
108 /* Similar to the above, we keep track of positions for which line
|
|
109 number has last been calculated. See line-number.c. */
|
|
110 Lisp_Object line_number_cache;
|
|
111
|
|
112 /* Change data that goes with the text. */
|
|
113 struct buffer_text_change_data *changes;
|
|
114
|
|
115 };
|
|
116
|
|
117 struct buffer
|
|
118 {
|
|
119 struct lcrecord_header header;
|
|
120
|
|
121 /* This structure holds the coordinates of the buffer contents
|
|
122 in ordinary buffers. In indirect buffers, this is not used. */
|
|
123 struct buffer_text own_text;
|
|
124
|
|
125 /* This points to the `struct buffer_text' that is used for this buffer.
|
|
126 In an ordinary buffer, this is the own_text field above.
|
|
127 In an indirect buffer, this is the own_text field of another buffer. */
|
|
128 struct buffer_text *text;
|
|
129
|
|
130 Bytind pt; /* Position of point in buffer. */
|
|
131 Bufpos bufpt; /* Equivalent as a Bufpos. */
|
|
132 Bytind begv; /* Index of beginning of accessible range. */
|
|
133 Bufpos bufbegv; /* Equivalent as a Bufpos. */
|
|
134 Bytind zv; /* Index of end of accessible range. */
|
|
135 Bufpos bufzv; /* Equivalent as a Bufpos. */
|
|
136
|
|
137 int face_change; /* This is set when a change in how the text should
|
|
138 be displayed (e.g., font, color) is made. */
|
|
139
|
448
|
140 /* Whether buffer specific face is specified. */
|
|
141 int buffer_local_face_property;
|
|
142
|
428
|
143 /* change data indicating what portion of the text has changed
|
|
144 since the last time this was reset. Used by redisplay.
|
|
145 Logically we should keep this with the text structure, but
|
|
146 redisplay resets it for each buffer individually and we don't
|
|
147 want interference between an indirect buffer and its base
|
|
148 buffer. */
|
|
149 struct each_buffer_change_data *changes;
|
|
150
|
|
151 #ifdef REGION_CACHE_NEEDS_WORK
|
|
152 /* If the long line scan cache is enabled (i.e. the buffer-local
|
|
153 variable cache-long-line-scans is non-nil), newline_cache
|
|
154 points to the newline cache, and width_run_cache points to the
|
|
155 width run cache.
|
|
156
|
|
157 The newline cache records which stretches of the buffer are
|
|
158 known *not* to contain newlines, so that they can be skipped
|
|
159 quickly when we search for newlines.
|
|
160
|
|
161 The width run cache records which stretches of the buffer are
|
|
162 known to contain characters whose widths are all the same. If
|
|
163 the width run cache maps a character to a value > 0, that value
|
|
164 is the character's width; if it maps a character to zero, we
|
|
165 don't know what its width is. This allows compute_motion to
|
|
166 process such regions very quickly, using algebra instead of
|
|
167 inspecting each character. See also width_table, below. */
|
|
168 struct region_cache *newline_cache;
|
|
169 struct region_cache *width_run_cache;
|
|
170 #endif /* REGION_CACHE_NEEDS_WORK */
|
|
171
|
|
172 /* The markers that refer to this buffer. This is actually a single
|
|
173 marker -- successive elements in its marker `chain' are the other
|
|
174 markers referring to this buffer */
|
440
|
175 Lisp_Marker *markers;
|
428
|
176
|
|
177 /* The buffer's extent info. This is its own type, an extent-info
|
|
178 object (done this way for ease in marking / finalizing). */
|
|
179 Lisp_Object extent_info;
|
|
180
|
|
181 /* ----------------------------------------------------------------- */
|
|
182 /* All the stuff above this line is the responsibility of insdel.c,
|
|
183 with some help from marker.c and extents.c.
|
|
184 All the stuff below this line is the responsibility of buffer.c. */
|
|
185
|
|
186 /* In an indirect buffer, this points to the base buffer.
|
|
187 In an ordinary buffer, it is 0.
|
|
188 We DO mark through this slot. */
|
|
189 struct buffer *base_buffer;
|
|
190
|
|
191 /* List of indirect buffers whose base is this buffer.
|
|
192 If we are an indirect buffer, this will be nil.
|
|
193 Do NOT mark through this. */
|
|
194 Lisp_Object indirect_children;
|
|
195
|
|
196 /* Flags saying which DEFVAR_PER_BUFFER variables
|
|
197 are local to this buffer. */
|
|
198 int local_var_flags;
|
|
199
|
|
200 /* Set to the modtime of the visited file when read or written.
|
|
201 -1 means visited file was nonexistent.
|
|
202 0 means visited file modtime unknown; in no case complain
|
|
203 about any mismatch on next save attempt. */
|
|
204 int modtime;
|
|
205
|
|
206 /* the value of text->modiff at the last auto-save. */
|
442
|
207 long auto_save_modified;
|
428
|
208
|
|
209 /* The time at which we detected a failure to auto-save,
|
|
210 Or -1 if we didn't have a failure. */
|
|
211 int auto_save_failure_time;
|
|
212
|
|
213 /* Position in buffer at which display started
|
|
214 the last time this buffer was displayed. */
|
|
215 int last_window_start;
|
|
216
|
|
217 /* Everything from here down must be a Lisp_Object */
|
|
218
|
|
219 #define MARKED_SLOT(x) Lisp_Object x
|
|
220 #include "bufslots.h"
|
|
221 #undef MARKED_SLOT
|
|
222 };
|
|
223
|
|
224 DECLARE_LRECORD (buffer, struct buffer);
|
|
225 #define XBUFFER(x) XRECORD (x, buffer, struct buffer)
|
|
226 #define XSETBUFFER(x, p) XSETRECORD (x, p, buffer)
|
|
227 #define BUFFERP(x) RECORDP (x, buffer)
|
|
228 #define CHECK_BUFFER(x) CHECK_RECORD (x, buffer)
|
|
229 #define CONCHECK_BUFFER(x) CONCHECK_RECORD (x, buffer)
|
|
230
|
|
231 #define BUFFER_LIVE_P(b) (!NILP ((b)->name))
|
|
232
|
|
233 #define CHECK_LIVE_BUFFER(x) do { \
|
|
234 CHECK_BUFFER (x); \
|
|
235 if (!BUFFER_LIVE_P (XBUFFER (x))) \
|
|
236 dead_wrong_type_argument (Qbuffer_live_p, (x)); \
|
|
237 } while (0)
|
|
238
|
|
239 #define CONCHECK_LIVE_BUFFER(x) do { \
|
|
240 CONCHECK_BUFFER (x); \
|
|
241 if (!BUFFER_LIVE_P (XBUFFER (x))) \
|
|
242 x = wrong_type_argument (Qbuffer_live_p, (x)); \
|
|
243 } while (0)
|
|
244
|
|
245
|
|
246 #define BUFFER_BASE_BUFFER(b) ((b)->base_buffer ? (b)->base_buffer : (b))
|
|
247
|
|
248 /* Map over buffers sharing the same text as MPS_BUF. MPS_BUFVAR is a
|
|
249 variable that gets the buffer values (beginning with the base
|
|
250 buffer, then the children), and MPS_BUFCONS should be a temporary
|
|
251 Lisp_Object variable. */
|
|
252 #define MAP_INDIRECT_BUFFERS(mps_buf, mps_bufvar, mps_bufcons) \
|
|
253 for (mps_bufcons = Qunbound, \
|
|
254 mps_bufvar = BUFFER_BASE_BUFFER (mps_buf); \
|
|
255 UNBOUNDP (mps_bufcons) ? \
|
|
256 (mps_bufcons = mps_bufvar->indirect_children, \
|
|
257 1) \
|
|
258 : (!NILP (mps_bufcons) \
|
|
259 && (mps_bufvar = XBUFFER (XCAR (mps_bufcons)), 1) \
|
|
260 && (mps_bufcons = XCDR (mps_bufcons), 1)); \
|
|
261 )
|
|
262
|
|
263
|
|
264
|
|
265 /************************************************************************/
|
|
266 /* */
|
|
267 /* working with raw internal-format data */
|
|
268 /* */
|
|
269 /************************************************************************/
|
|
270
|
|
271 /* NOTE: In all the following macros, we follow these rules concerning
|
|
272 multiple evaluation of the arguments:
|
|
273
|
|
274 1) Anything that's an lvalue can be evaluated more than once.
|
|
275 2) Anything that's a Lisp Object can be evaluated more than once.
|
|
276 This should probably be changed, but this follows the way
|
|
277 that all the macros in lisp.h do things.
|
|
278 3) 'struct buffer *' arguments can be evaluated more than once.
|
|
279 4) Nothing else can be evaluated more than once. Use inline
|
|
280 functions, if necessary, to prevent multiple evaluation.
|
|
281 5) An exception to (4) is that there are some macros below that
|
|
282 may evaluate their arguments more than once. They are all
|
|
283 denoted with the word "unsafe" in their name and are generally
|
|
284 meant to be called only by other macros that have already
|
|
285 stored the calling values in temporary variables.
|
|
286
|
|
287
|
|
288 Use the following functions/macros on contiguous strings of data.
|
|
289 If the text you're operating on is known to come from a buffer, use
|
|
290 the buffer-level functions below -- they know about the gap and may
|
|
291 be more efficient.
|
|
292
|
|
293
|
|
294 (A) For working with charptr's (pointers to internally-formatted text):
|
|
295 -----------------------------------------------------------------------
|
|
296
|
|
297 VALID_CHARPTR_P (ptr):
|
|
298 Given a charptr, does it point to the beginning of a character?
|
|
299
|
|
300 ASSERT_VALID_CHARPTR (ptr):
|
|
301 If error-checking is enabled, assert that the given charptr
|
|
302 points to the beginning of a character. Otherwise, do nothing.
|
|
303
|
|
304 INC_CHARPTR (ptr):
|
|
305 Given a charptr (assumed to point at the beginning of a character),
|
|
306 modify that pointer so it points to the beginning of the next
|
|
307 character.
|
|
308
|
|
309 DEC_CHARPTR (ptr):
|
|
310 Given a charptr (assumed to point at the beginning of a
|
|
311 character or at the very end of the text), modify that pointer
|
|
312 so it points to the beginning of the previous character.
|
|
313
|
|
314 VALIDATE_CHARPTR_BACKWARD (ptr):
|
|
315 Make sure that PTR is pointing to the beginning of a character.
|
|
316 If not, back up until this is the case. Note that there are not
|
|
317 too many places where it is legitimate to do this sort of thing.
|
|
318 It's an error if you're passed an "invalid" char * pointer.
|
|
319 NOTE: PTR *must* be pointing to a valid part of the string (i.e.
|
|
320 not the very end, unless the string is zero-terminated or
|
|
321 something) in order for this function to not cause crashes.
|
|
322
|
|
323 VALIDATE_CHARPTR_FORWARD (ptr):
|
|
324 Make sure that PTR is pointing to the beginning of a character.
|
|
325 If not, move forward until this is the case. Note that there
|
|
326 are not too many places where it is legitimate to do this sort
|
|
327 of thing. It's an error if you're passed an "invalid" char *
|
|
328 pointer.
|
|
329
|
|
330
|
|
331 (B) For working with the length (in bytes and characters) of a
|
|
332 section of internally-formatted text:
|
|
333 --------------------------------------------------------------
|
|
334
|
|
335 bytecount_to_charcount (ptr, nbi):
|
|
336 Given a pointer to a text string and a length in bytes,
|
|
337 return the equivalent length in characters.
|
|
338
|
|
339 charcount_to_bytecount (ptr, nch):
|
|
340 Given a pointer to a text string and a length in characters,
|
|
341 return the equivalent length in bytes.
|
|
342
|
|
343 charptr_n_addr (ptr, n):
|
|
344 Return a pointer to the beginning of the character offset N
|
|
345 (in characters) from PTR.
|
|
346
|
|
347
|
|
348 (C) For retrieving or changing the character pointed to by a charptr:
|
|
349 ---------------------------------------------------------------------
|
|
350
|
|
351 charptr_emchar (ptr):
|
|
352 Retrieve the character pointed to by PTR as an Emchar.
|
|
353
|
|
354 charptr_emchar_n (ptr, n):
|
|
355 Retrieve the character at offset N (in characters) from PTR,
|
|
356 as an Emchar.
|
|
357
|
|
358 set_charptr_emchar (ptr, ch):
|
|
359 Store the character CH (an Emchar) as internally-formatted
|
|
360 text starting at PTR. Return the number of bytes stored.
|
|
361
|
|
362 charptr_copy_char (ptr, ptr2):
|
|
363 Retrieve the character pointed to by PTR and store it as
|
|
364 internally-formatted text in PTR2.
|
|
365
|
|
366
|
|
367 (D) For working with Emchars:
|
|
368 -----------------------------
|
|
369
|
|
370 [Note that there are other functions/macros for working with Emchars
|
|
371 in mule-charset.h, for retrieving the charset of an Emchar
|
|
372 and such. These are only valid when MULE is defined.]
|
|
373
|
|
374 valid_char_p (ch):
|
|
375 Return whether the given Emchar is valid.
|
|
376
|
|
377 CHARP (ch):
|
|
378 Return whether the given Lisp_Object is a character.
|
|
379
|
|
380 CHECK_CHAR_COERCE_INT (ch):
|
|
381 Signal an error if CH is not a valid character or integer Lisp_Object.
|
|
382 If CH is an integer Lisp_Object, convert it to a character Lisp_Object,
|
|
383 but merely by repackaging, without performing tests for char validity.
|
|
384
|
|
385 MAX_EMCHAR_LEN:
|
|
386 Maximum number of buffer bytes per Emacs character.
|
|
387
|
|
388 */
|
|
389
|
|
390
|
|
391 /* ---------------------------------------------------------------------- */
|
|
392 /* (A) For working with charptr's (pointers to internally-formatted text) */
|
|
393 /* ---------------------------------------------------------------------- */
|
|
394
|
|
395 #ifdef MULE
|
|
396 # define VALID_CHARPTR_P(ptr) BUFBYTE_FIRST_BYTE_P (* (unsigned char *) ptr)
|
|
397 #else
|
|
398 # define VALID_CHARPTR_P(ptr) 1
|
|
399 #endif
|
|
400
|
|
401 #ifdef ERROR_CHECK_BUFPOS
|
|
402 # define ASSERT_VALID_CHARPTR(ptr) assert (VALID_CHARPTR_P (ptr))
|
|
403 #else
|
|
404 # define ASSERT_VALID_CHARPTR(ptr)
|
|
405 #endif
|
|
406
|
|
407 /* Note that INC_CHARPTR() and DEC_CHARPTR() have to be written in
|
|
408 completely separate ways. INC_CHARPTR() cannot use the DEC_CHARPTR()
|
|
409 trick of looking for a valid first byte because it might run off
|
|
410 the end of the string. DEC_CHARPTR() can't use the INC_CHARPTR()
|
|
411 method because it doesn't have easy access to the first byte of
|
|
412 the character it's moving over. */
|
|
413
|
|
414 #define REAL_INC_CHARPTR(ptr) \
|
|
415 ((void) ((ptr) += REP_BYTES_BY_FIRST_BYTE (* (unsigned char *) (ptr))))
|
|
416
|
444
|
417 #define REAL_INC_CHARBYTIND(ptr, pos) \
|
428
|
418 (pos += REP_BYTES_BY_FIRST_BYTE (* (unsigned char *) (ptr)))
|
|
419
|
|
420 #define REAL_DEC_CHARPTR(ptr) do { \
|
|
421 (ptr)--; \
|
|
422 } while (!VALID_CHARPTR_P (ptr))
|
|
423
|
|
424 #ifdef ERROR_CHECK_BUFPOS
|
|
425 #define INC_CHARPTR(ptr) do { \
|
|
426 ASSERT_VALID_CHARPTR (ptr); \
|
|
427 REAL_INC_CHARPTR (ptr); \
|
|
428 } while (0)
|
|
429
|
444
|
430 #define INC_CHARBYTIND(ptr, pos) do { \
|
|
431 ASSERT_VALID_CHARPTR (ptr); \
|
|
432 REAL_INC_CHARBYTIND (ptr, pos); \
|
428
|
433 } while (0)
|
|
434
|
|
435 #define DEC_CHARPTR(ptr) do { \
|
442
|
436 const Bufbyte *dc_ptr1 = (ptr); \
|
|
437 const Bufbyte *dc_ptr2 = dc_ptr1; \
|
428
|
438 REAL_DEC_CHARPTR (dc_ptr2); \
|
|
439 assert (dc_ptr1 - dc_ptr2 == \
|
|
440 REP_BYTES_BY_FIRST_BYTE (*dc_ptr2)); \
|
444
|
441 (ptr) = (Bufbyte *) dc_ptr2; \
|
428
|
442 } while (0)
|
|
443
|
|
444 #else /* ! ERROR_CHECK_BUFPOS */
|
444
|
445 #define INC_CHARBYTIND(ptr, pos) REAL_INC_CHARBYTIND (ptr, pos)
|
428
|
446 #define INC_CHARPTR(ptr) REAL_INC_CHARPTR (ptr)
|
|
447 #define DEC_CHARPTR(ptr) REAL_DEC_CHARPTR (ptr)
|
|
448 #endif /* ! ERROR_CHECK_BUFPOS */
|
|
449
|
|
450 #ifdef MULE
|
|
451
|
|
452 #define VALIDATE_CHARPTR_BACKWARD(ptr) do { \
|
|
453 while (!VALID_CHARPTR_P (ptr)) ptr--; \
|
|
454 } while (0)
|
|
455
|
|
456 /* This needs to be trickier to avoid the possibility of running off
|
|
457 the end of the string. */
|
|
458
|
|
459 #define VALIDATE_CHARPTR_FORWARD(ptr) do { \
|
|
460 Bufbyte *vcf_ptr = (ptr); \
|
|
461 VALIDATE_CHARPTR_BACKWARD (vcf_ptr); \
|
|
462 if (vcf_ptr != (ptr)) \
|
|
463 { \
|
|
464 (ptr) = vcf_ptr; \
|
|
465 INC_CHARPTR (ptr); \
|
|
466 } \
|
|
467 } while (0)
|
|
468
|
|
469 #else /* not MULE */
|
|
470 #define VALIDATE_CHARPTR_BACKWARD(ptr)
|
|
471 #define VALIDATE_CHARPTR_FORWARD(ptr)
|
|
472 #endif /* not MULE */
|
|
473
|
|
474 /* -------------------------------------------------------------- */
|
|
475 /* (B) For working with the length (in bytes and characters) of a */
|
|
476 /* section of internally-formatted text */
|
|
477 /* -------------------------------------------------------------- */
|
|
478
|
442
|
479 INLINE_HEADER const Bufbyte *
|
|
480 charptr_n_addr (const Bufbyte *ptr, Charcount offset);
|
|
481 INLINE_HEADER const Bufbyte *
|
|
482 charptr_n_addr (const Bufbyte *ptr, Charcount offset)
|
428
|
483 {
|
|
484 return ptr + charcount_to_bytecount (ptr, offset);
|
|
485 }
|
|
486
|
|
487 /* -------------------------------------------------------------------- */
|
|
488 /* (C) For retrieving or changing the character pointed to by a charptr */
|
|
489 /* -------------------------------------------------------------------- */
|
|
490
|
|
491 #define simple_charptr_emchar(ptr) ((Emchar) (ptr)[0])
|
|
492 #define simple_set_charptr_emchar(ptr, x) ((ptr)[0] = (Bufbyte) (x), 1)
|
|
493 #define simple_charptr_copy_char(ptr, ptr2) ((ptr2)[0] = *(ptr), 1)
|
|
494
|
|
495 #ifdef MULE
|
|
496
|
442
|
497 Emchar non_ascii_charptr_emchar (const Bufbyte *ptr);
|
428
|
498 Bytecount non_ascii_set_charptr_emchar (Bufbyte *ptr, Emchar c);
|
444
|
499 Bytecount non_ascii_charptr_copy_char (const Bufbyte *src, Bufbyte *dst);
|
428
|
500
|
442
|
501 INLINE_HEADER Emchar charptr_emchar (const Bufbyte *ptr);
|
|
502 INLINE_HEADER Emchar
|
|
503 charptr_emchar (const Bufbyte *ptr)
|
428
|
504 {
|
|
505 return BYTE_ASCII_P (*ptr) ?
|
|
506 simple_charptr_emchar (ptr) :
|
|
507 non_ascii_charptr_emchar (ptr);
|
|
508 }
|
|
509
|
442
|
510 INLINE_HEADER Bytecount set_charptr_emchar (Bufbyte *ptr, Emchar x);
|
|
511 INLINE_HEADER Bytecount
|
428
|
512 set_charptr_emchar (Bufbyte *ptr, Emchar x)
|
|
513 {
|
|
514 return !CHAR_MULTIBYTE_P (x) ?
|
|
515 simple_set_charptr_emchar (ptr, x) :
|
|
516 non_ascii_set_charptr_emchar (ptr, x);
|
|
517 }
|
|
518
|
444
|
519 /* Copy the character pointed to by SRC into DST.
|
|
520 Return the number of bytes copied. */
|
442
|
521 INLINE_HEADER Bytecount
|
444
|
522 charptr_copy_char (const Bufbyte *src, Bufbyte *dst);
|
442
|
523 INLINE_HEADER Bytecount
|
444
|
524 charptr_copy_char (const Bufbyte *src, Bufbyte *dst)
|
428
|
525 {
|
444
|
526 return BYTE_ASCII_P (*src) ?
|
|
527 simple_charptr_copy_char (src, dst) :
|
|
528 non_ascii_charptr_copy_char (src, dst);
|
428
|
529 }
|
|
530
|
|
531 #else /* not MULE */
|
|
532
|
|
533 # define charptr_emchar(ptr) simple_charptr_emchar (ptr)
|
|
534 # define set_charptr_emchar(ptr, x) simple_set_charptr_emchar (ptr, x)
|
|
535 # define charptr_copy_char(ptr, ptr2) simple_charptr_copy_char (ptr, ptr2)
|
|
536
|
|
537 #endif /* not MULE */
|
|
538
|
|
539 #define charptr_emchar_n(ptr, offset) \
|
|
540 charptr_emchar (charptr_n_addr (ptr, offset))
|
|
541
|
|
542
|
|
543 /* ---------------------------- */
|
|
544 /* (D) For working with Emchars */
|
|
545 /* ---------------------------- */
|
|
546
|
|
547 #ifdef MULE
|
|
548
|
|
549 int non_ascii_valid_char_p (Emchar ch);
|
|
550
|
442
|
551 INLINE_HEADER int valid_char_p (Emchar ch);
|
|
552 INLINE_HEADER int
|
428
|
553 valid_char_p (Emchar ch)
|
|
554 {
|
|
555 return ((unsigned int) (ch) <= 0xff) || non_ascii_valid_char_p (ch);
|
|
556 }
|
|
557
|
|
558 #else /* not MULE */
|
|
559
|
|
560 #define valid_char_p(ch) ((unsigned int) (ch) <= 0xff)
|
|
561
|
|
562 #endif /* not MULE */
|
|
563
|
|
564 #define CHAR_INTP(x) (INTP (x) && valid_char_p (XINT (x)))
|
|
565
|
|
566 #define CHAR_OR_CHAR_INTP(x) (CHARP (x) || CHAR_INTP (x))
|
|
567
|
442
|
568 INLINE_HEADER Emchar XCHAR_OR_CHAR_INT (Lisp_Object obj);
|
|
569 INLINE_HEADER Emchar
|
428
|
570 XCHAR_OR_CHAR_INT (Lisp_Object obj)
|
|
571 {
|
|
572 return CHARP (obj) ? XCHAR (obj) : XINT (obj);
|
|
573 }
|
|
574
|
|
575 #define CHECK_CHAR_COERCE_INT(x) do { \
|
|
576 if (CHARP (x)) \
|
|
577 ; \
|
|
578 else if (CHAR_INTP (x)) \
|
|
579 x = make_char (XINT (x)); \
|
|
580 else \
|
|
581 x = wrong_type_argument (Qcharacterp, x); \
|
|
582 } while (0)
|
|
583
|
|
584 #ifdef MULE
|
|
585 # define MAX_EMCHAR_LEN 4
|
|
586 #else
|
|
587 # define MAX_EMCHAR_LEN 1
|
|
588 #endif
|
|
589
|
|
590
|
|
591 /*----------------------------------------------------------------------*/
|
|
592 /* Accessor macros for important positions in a buffer */
|
|
593 /*----------------------------------------------------------------------*/
|
|
594
|
|
595 /* We put them here because some stuff below wants them before the
|
|
596 place where we would normally put them. */
|
|
597
|
|
598 /* None of these are lvalues. Use the settor macros below to change
|
|
599 the positions. */
|
|
600
|
|
601 /* Beginning of buffer. */
|
|
602 #define BI_BUF_BEG(buf) ((Bytind) 1)
|
|
603 #define BUF_BEG(buf) ((Bufpos) 1)
|
|
604
|
|
605 /* Beginning of accessible range of buffer. */
|
|
606 #define BI_BUF_BEGV(buf) ((buf)->begv + 0)
|
|
607 #define BUF_BEGV(buf) ((buf)->bufbegv + 0)
|
|
608
|
|
609 /* End of accessible range of buffer. */
|
|
610 #define BI_BUF_ZV(buf) ((buf)->zv + 0)
|
|
611 #define BUF_ZV(buf) ((buf)->bufzv + 0)
|
|
612
|
|
613 /* End of buffer. */
|
|
614 #define BI_BUF_Z(buf) ((buf)->text->z + 0)
|
|
615 #define BUF_Z(buf) ((buf)->text->bufz + 0)
|
|
616
|
|
617 /* Point. */
|
|
618 #define BI_BUF_PT(buf) ((buf)->pt + 0)
|
|
619 #define BUF_PT(buf) ((buf)->bufpt + 0)
|
|
620
|
|
621 /*----------------------------------------------------------------------*/
|
|
622 /* Converting between positions and addresses */
|
|
623 /*----------------------------------------------------------------------*/
|
|
624
|
|
625 /* Convert the address of a byte in the buffer into a position. */
|
442
|
626 INLINE_HEADER Bytind BI_BUF_PTR_BYTE_POS (struct buffer *buf, Bufbyte *ptr);
|
|
627 INLINE_HEADER Bytind
|
428
|
628 BI_BUF_PTR_BYTE_POS (struct buffer *buf, Bufbyte *ptr)
|
|
629 {
|
|
630 return (ptr - buf->text->beg + 1
|
|
631 - ((ptr - buf->text->beg + 1) > buf->text->gpt
|
|
632 ? buf->text->gap_size : 0));
|
|
633 }
|
|
634
|
|
635 #define BUF_PTR_BYTE_POS(buf, ptr) \
|
|
636 bytind_to_bufpos (buf, BI_BUF_PTR_BYTE_POS (buf, ptr))
|
|
637
|
|
638 /* Address of byte at position POS in buffer. */
|
442
|
639 INLINE_HEADER Bufbyte * BI_BUF_BYTE_ADDRESS (struct buffer *buf, Bytind pos);
|
|
640 INLINE_HEADER Bufbyte *
|
428
|
641 BI_BUF_BYTE_ADDRESS (struct buffer *buf, Bytind pos)
|
|
642 {
|
|
643 return (buf->text->beg +
|
|
644 ((pos >= buf->text->gpt ? (pos + buf->text->gap_size) : pos)
|
|
645 - 1));
|
|
646 }
|
|
647
|
|
648 #define BUF_BYTE_ADDRESS(buf, pos) \
|
|
649 BI_BUF_BYTE_ADDRESS (buf, bufpos_to_bytind (buf, pos))
|
|
650
|
|
651 /* Address of byte before position POS in buffer. */
|
442
|
652 INLINE_HEADER Bufbyte * BI_BUF_BYTE_ADDRESS_BEFORE (struct buffer *buf, Bytind pos);
|
|
653 INLINE_HEADER Bufbyte *
|
428
|
654 BI_BUF_BYTE_ADDRESS_BEFORE (struct buffer *buf, Bytind pos)
|
|
655 {
|
|
656 return (buf->text->beg +
|
|
657 ((pos > buf->text->gpt ? (pos + buf->text->gap_size) : pos)
|
|
658 - 2));
|
|
659 }
|
|
660
|
|
661 #define BUF_BYTE_ADDRESS_BEFORE(buf, pos) \
|
|
662 BI_BUF_BYTE_ADDRESS_BEFORE (buf, bufpos_to_bytind (buf, pos))
|
|
663
|
|
664 /*----------------------------------------------------------------------*/
|
|
665 /* Converting between byte indices and memory indices */
|
|
666 /*----------------------------------------------------------------------*/
|
|
667
|
442
|
668 INLINE_HEADER int valid_memind_p (struct buffer *buf, Memind x);
|
|
669 INLINE_HEADER int
|
428
|
670 valid_memind_p (struct buffer *buf, Memind x)
|
|
671 {
|
|
672 return ((x >= 1 && x <= (Memind) buf->text->gpt) ||
|
|
673 (x > (Memind) (buf->text->gpt + buf->text->gap_size) &&
|
|
674 x <= (Memind) (buf->text->z + buf->text->gap_size)));
|
|
675 }
|
|
676
|
442
|
677 INLINE_HEADER Memind bytind_to_memind (struct buffer *buf, Bytind x);
|
|
678 INLINE_HEADER Memind
|
428
|
679 bytind_to_memind (struct buffer *buf, Bytind x)
|
|
680 {
|
|
681 return (Memind) ((x > buf->text->gpt) ? (x + buf->text->gap_size) : x);
|
|
682 }
|
|
683
|
|
684
|
442
|
685 INLINE_HEADER Bytind memind_to_bytind (struct buffer *buf, Memind x);
|
|
686 INLINE_HEADER Bytind
|
428
|
687 memind_to_bytind (struct buffer *buf, Memind x)
|
|
688 {
|
|
689 #ifdef ERROR_CHECK_BUFPOS
|
|
690 assert (valid_memind_p (buf, x));
|
|
691 #endif
|
|
692 return (Bytind) ((x > (Memind) buf->text->gpt) ?
|
|
693 x - buf->text->gap_size :
|
|
694 x);
|
|
695 }
|
|
696
|
|
697 #define memind_to_bufpos(buf, x) \
|
|
698 bytind_to_bufpos (buf, memind_to_bytind (buf, x))
|
|
699 #define bufpos_to_memind(buf, x) \
|
|
700 bytind_to_memind (buf, bufpos_to_bytind (buf, x))
|
|
701
|
|
702 /* These macros generalize many standard buffer-position functions to
|
|
703 either a buffer or a string. */
|
|
704
|
|
705 /* Converting between Meminds and Bytinds, for a buffer-or-string.
|
|
706 For strings, this is a no-op. For buffers, this resolves
|
|
707 to the standard memind<->bytind converters. */
|
|
708
|
|
709 #define buffer_or_string_bytind_to_memind(obj, ind) \
|
|
710 (BUFFERP (obj) ? bytind_to_memind (XBUFFER (obj), ind) : (Memind) ind)
|
|
711
|
|
712 #define buffer_or_string_memind_to_bytind(obj, ind) \
|
|
713 (BUFFERP (obj) ? memind_to_bytind (XBUFFER (obj), ind) : (Bytind) ind)
|
|
714
|
|
715 /* Converting between Bufpos's and Bytinds, for a buffer-or-string.
|
|
716 For strings, this maps to the bytecount<->charcount converters. */
|
|
717
|
|
718 #define buffer_or_string_bufpos_to_bytind(obj, pos) \
|
|
719 (BUFFERP (obj) ? bufpos_to_bytind (XBUFFER (obj), pos) : \
|
|
720 (Bytind) charcount_to_bytecount (XSTRING_DATA (obj), pos))
|
|
721
|
|
722 #define buffer_or_string_bytind_to_bufpos(obj, ind) \
|
|
723 (BUFFERP (obj) ? bytind_to_bufpos (XBUFFER (obj), ind) : \
|
|
724 (Bufpos) bytecount_to_charcount (XSTRING_DATA (obj), ind))
|
|
725
|
|
726 /* Similar for Bufpos's and Meminds. */
|
|
727
|
|
728 #define buffer_or_string_bufpos_to_memind(obj, pos) \
|
|
729 (BUFFERP (obj) ? bufpos_to_memind (XBUFFER (obj), pos) : \
|
|
730 (Memind) charcount_to_bytecount (XSTRING_DATA (obj), pos))
|
|
731
|
|
732 #define buffer_or_string_memind_to_bufpos(obj, ind) \
|
|
733 (BUFFERP (obj) ? memind_to_bufpos (XBUFFER (obj), ind) : \
|
|
734 (Bufpos) bytecount_to_charcount (XSTRING_DATA (obj), ind))
|
|
735
|
|
736 /************************************************************************/
|
|
737 /* */
|
|
738 /* working with buffer-level data */
|
|
739 /* */
|
|
740 /************************************************************************/
|
|
741
|
|
742 /*
|
|
743
|
|
744 (A) Working with byte indices:
|
|
745 ------------------------------
|
|
746
|
|
747 VALID_BYTIND_P(buf, bi):
|
|
748 Given a byte index, does it point to the beginning of a character?
|
|
749
|
|
750 ASSERT_VALID_BYTIND_UNSAFE(buf, bi):
|
|
751 If error-checking is enabled, assert that the given byte index
|
|
752 is within range and points to the beginning of a character
|
|
753 or to the end of the buffer. Otherwise, do nothing.
|
|
754
|
|
755 ASSERT_VALID_BYTIND_BACKWARD_UNSAFE(buf, bi):
|
|
756 If error-checking is enabled, assert that the given byte index
|
|
757 is within range and satisfies ASSERT_VALID_BYTIND() and also
|
|
758 does not refer to the beginning of the buffer. (i.e. movement
|
|
759 backwards is OK.) Otherwise, do nothing.
|
|
760
|
|
761 ASSERT_VALID_BYTIND_FORWARD_UNSAFE(buf, bi):
|
|
762 If error-checking is enabled, assert that the given byte index
|
|
763 is within range and satisfies ASSERT_VALID_BYTIND() and also
|
|
764 does not refer to the end of the buffer. (i.e. movement
|
|
765 forwards is OK.) Otherwise, do nothing.
|
|
766
|
|
767 VALIDATE_BYTIND_BACKWARD(buf, bi):
|
|
768 Make sure that the given byte index is pointing to the beginning
|
|
769 of a character. If not, back up until this is the case. Note
|
|
770 that there are not too many places where it is legitimate to do
|
|
771 this sort of thing. It's an error if you're passed an "invalid"
|
|
772 byte index.
|
|
773
|
|
774 VALIDATE_BYTIND_FORWARD(buf, bi):
|
|
775 Make sure that the given byte index is pointing to the beginning
|
|
776 of a character. If not, move forward until this is the case.
|
|
777 Note that there are not too many places where it is legitimate
|
|
778 to do this sort of thing. It's an error if you're passed an
|
|
779 "invalid" byte index.
|
|
780
|
|
781 INC_BYTIND(buf, bi):
|
|
782 Given a byte index (assumed to point at the beginning of a
|
|
783 character), modify that value so it points to the beginning
|
|
784 of the next character.
|
|
785
|
|
786 DEC_BYTIND(buf, bi):
|
|
787 Given a byte index (assumed to point at the beginning of a
|
|
788 character), modify that value so it points to the beginning
|
|
789 of the previous character. Unlike for DEC_CHARPTR(), we can
|
|
790 do all the assert()s because there are sentinels at the
|
|
791 beginning of the gap and the end of the buffer.
|
|
792
|
|
793 BYTIND_INVALID:
|
|
794 A constant representing an invalid Bytind. Valid Bytinds
|
|
795 can never have this value.
|
|
796
|
|
797
|
|
798 (B) Converting between Bufpos's and Bytinds:
|
|
799 --------------------------------------------
|
|
800
|
|
801 bufpos_to_bytind(buf, bu):
|
|
802 Given a Bufpos, return the equivalent Bytind.
|
|
803
|
|
804 bytind_to_bufpos(buf, bi):
|
|
805 Given a Bytind, return the equivalent Bufpos.
|
|
806
|
|
807 make_bufpos(buf, bi):
|
|
808 Given a Bytind, return the equivalent Bufpos as a Lisp Object.
|
|
809 */
|
|
810
|
|
811
|
|
812 /*----------------------------------------------------------------------*/
|
|
813 /* working with byte indices */
|
|
814 /*----------------------------------------------------------------------*/
|
|
815
|
|
816 #ifdef MULE
|
|
817 # define VALID_BYTIND_P(buf, x) \
|
|
818 BUFBYTE_FIRST_BYTE_P (*BI_BUF_BYTE_ADDRESS (buf, x))
|
|
819 #else
|
|
820 # define VALID_BYTIND_P(buf, x) 1
|
|
821 #endif
|
|
822
|
|
823 #ifdef ERROR_CHECK_BUFPOS
|
|
824
|
|
825 # define ASSERT_VALID_BYTIND_UNSAFE(buf, x) do { \
|
|
826 assert (BUFFER_LIVE_P (buf)); \
|
|
827 assert ((x) >= BI_BUF_BEG (buf) && x <= BI_BUF_Z (buf)); \
|
|
828 assert (VALID_BYTIND_P (buf, x)); \
|
|
829 } while (0)
|
|
830 # define ASSERT_VALID_BYTIND_BACKWARD_UNSAFE(buf, x) do { \
|
|
831 assert (BUFFER_LIVE_P (buf)); \
|
|
832 assert ((x) > BI_BUF_BEG (buf) && x <= BI_BUF_Z (buf)); \
|
|
833 assert (VALID_BYTIND_P (buf, x)); \
|
|
834 } while (0)
|
|
835 # define ASSERT_VALID_BYTIND_FORWARD_UNSAFE(buf, x) do { \
|
|
836 assert (BUFFER_LIVE_P (buf)); \
|
|
837 assert ((x) >= BI_BUF_BEG (buf) && x < BI_BUF_Z (buf)); \
|
|
838 assert (VALID_BYTIND_P (buf, x)); \
|
|
839 } while (0)
|
|
840
|
|
841 #else /* not ERROR_CHECK_BUFPOS */
|
|
842 # define ASSERT_VALID_BYTIND_UNSAFE(buf, x)
|
|
843 # define ASSERT_VALID_BYTIND_BACKWARD_UNSAFE(buf, x)
|
|
844 # define ASSERT_VALID_BYTIND_FORWARD_UNSAFE(buf, x)
|
|
845
|
|
846 #endif /* not ERROR_CHECK_BUFPOS */
|
|
847
|
|
848 /* Note that, although the Mule version will work fine for non-Mule
|
|
849 as well (it should reduce down to nothing), we provide a separate
|
|
850 version to avoid compilation warnings and possible non-optimal
|
|
851 results with stupid compilers. */
|
|
852
|
|
853 #ifdef MULE
|
|
854 # define VALIDATE_BYTIND_BACKWARD(buf, x) do { \
|
|
855 Bufbyte *VBB_ptr = BI_BUF_BYTE_ADDRESS (buf, x); \
|
|
856 while (!BUFBYTE_FIRST_BYTE_P (*VBB_ptr)) \
|
|
857 VBB_ptr--, (x)--; \
|
|
858 } while (0)
|
|
859 #else
|
|
860 # define VALIDATE_BYTIND_BACKWARD(buf, x)
|
|
861 #endif
|
|
862
|
|
863 /* Note that, although the Mule version will work fine for non-Mule
|
|
864 as well (it should reduce down to nothing), we provide a separate
|
|
865 version to avoid compilation warnings and possible non-optimal
|
|
866 results with stupid compilers. */
|
|
867
|
|
868 #ifdef MULE
|
|
869 # define VALIDATE_BYTIND_FORWARD(buf, x) do { \
|
|
870 Bufbyte *VBF_ptr = BI_BUF_BYTE_ADDRESS (buf, x); \
|
|
871 while (!BUFBYTE_FIRST_BYTE_P (*VBF_ptr)) \
|
|
872 VBF_ptr++, (x)++; \
|
|
873 } while (0)
|
|
874 #else
|
|
875 # define VALIDATE_BYTIND_FORWARD(buf, x)
|
|
876 #endif
|
|
877
|
|
878 /* Note that in the simplest case (no MULE, no ERROR_CHECK_BUFPOS),
|
|
879 this crap reduces down to simply (x)++. */
|
|
880
|
|
881 #define INC_BYTIND(buf, x) do \
|
|
882 { \
|
|
883 ASSERT_VALID_BYTIND_FORWARD_UNSAFE (buf, x); \
|
|
884 /* Note that we do the increment first to \
|
|
885 make sure that the pointer in \
|
|
886 VALIDATE_BYTIND_FORWARD() ends up on \
|
|
887 the correct side of the gap */ \
|
|
888 (x)++; \
|
|
889 VALIDATE_BYTIND_FORWARD (buf, x); \
|
|
890 } while (0)
|
|
891
|
|
892 /* Note that in the simplest case (no MULE, no ERROR_CHECK_BUFPOS),
|
|
893 this crap reduces down to simply (x)--. */
|
|
894
|
|
895 #define DEC_BYTIND(buf, x) do \
|
|
896 { \
|
|
897 ASSERT_VALID_BYTIND_BACKWARD_UNSAFE (buf, x); \
|
|
898 /* Note that we do the decrement first to \
|
|
899 make sure that the pointer in \
|
|
900 VALIDATE_BYTIND_BACKWARD() ends up on \
|
|
901 the correct side of the gap */ \
|
|
902 (x)--; \
|
|
903 VALIDATE_BYTIND_BACKWARD (buf, x); \
|
|
904 } while (0)
|
|
905
|
442
|
906 INLINE_HEADER Bytind prev_bytind (struct buffer *buf, Bytind x);
|
|
907 INLINE_HEADER Bytind
|
428
|
908 prev_bytind (struct buffer *buf, Bytind x)
|
|
909 {
|
|
910 DEC_BYTIND (buf, x);
|
|
911 return x;
|
|
912 }
|
|
913
|
442
|
914 INLINE_HEADER Bytind next_bytind (struct buffer *buf, Bytind x);
|
|
915 INLINE_HEADER Bytind
|
428
|
916 next_bytind (struct buffer *buf, Bytind x)
|
|
917 {
|
|
918 INC_BYTIND (buf, x);
|
|
919 return x;
|
|
920 }
|
|
921
|
|
922 #define BYTIND_INVALID ((Bytind) -1)
|
|
923
|
|
924 /*----------------------------------------------------------------------*/
|
|
925 /* Converting between buffer positions and byte indices */
|
|
926 /*----------------------------------------------------------------------*/
|
|
927
|
|
928 #ifdef MULE
|
|
929
|
|
930 Bytind bufpos_to_bytind_func (struct buffer *buf, Bufpos x);
|
|
931 Bufpos bytind_to_bufpos_func (struct buffer *buf, Bytind x);
|
|
932
|
|
933 /* The basic algorithm we use is to keep track of a known region of
|
|
934 characters in each buffer, all of which are of the same width. We
|
|
935 keep track of the boundaries of the region in both Bufpos and
|
|
936 Bytind coordinates and also keep track of the char width, which
|
|
937 is 1 - 4 bytes. If the position we're translating is not in
|
|
938 the known region, then we invoke a function to update the known
|
|
939 region to surround the position in question. This assumes
|
|
940 locality of reference, which is usually the case.
|
|
941
|
|
942 Note that the function to update the known region can be simple
|
|
943 or complicated depending on how much information we cache.
|
|
944 For the moment, we don't cache any information, and just move
|
|
945 linearly forward or back from the known region, with a few
|
|
946 shortcuts to catch all-ASCII buffers. (Note that this will
|
|
947 thrash with bad locality of reference.) A smarter method would
|
|
948 be to keep some sort of pseudo-extent layer over the buffer;
|
|
949 maybe keep track of the bufpos/bytind correspondence at the
|
|
950 beginning of each line, which would allow us to do a binary
|
|
951 search over the pseudo-extents to narrow things down to the
|
|
952 correct line, at which point you could use a linear movement
|
|
953 method. This would also mesh well with efficiently
|
|
954 implementing a line-numbering scheme.
|
|
955
|
|
956 Note also that we have to multiply or divide by the char width
|
|
957 in order to convert the positions. We do some tricks to avoid
|
|
958 ever actually having to do a multiply or divide, because that
|
|
959 is typically an expensive operation (esp. divide). Multiplying
|
|
960 or dividing by 1, 2, or 4 can be implemented simply as a
|
|
961 shift left or shift right, and we keep track of a shifter value
|
|
962 (0, 1, or 2) indicating how much to shift. Multiplying by 3
|
|
963 can be implemented by doubling and then adding the original
|
|
964 value. Dividing by 3, alas, cannot be implemented in any
|
|
965 simple shift/subtract method, as far as I know; so we just
|
|
966 do a table lookup. For simplicity, we use a table of size
|
|
967 128K, which indexes the "divide-by-3" values for the first
|
|
968 64K non-negative numbers. (Note that we can increase the
|
|
969 size up to 384K, i.e. indexing the first 192K non-negative
|
|
970 numbers, while still using shorts in the array.) This also
|
|
971 means that the size of the known region can be at most
|
|
972 64K for width-three characters.
|
|
973 */
|
|
974
|
|
975 extern short three_to_one_table[];
|
|
976
|
442
|
977 INLINE_HEADER int real_bufpos_to_bytind (struct buffer *buf, Bufpos x);
|
|
978 INLINE_HEADER int
|
428
|
979 real_bufpos_to_bytind (struct buffer *buf, Bufpos x)
|
|
980 {
|
|
981 if (x >= buf->text->mule_bufmin && x <= buf->text->mule_bufmax)
|
|
982 return (buf->text->mule_bytmin +
|
|
983 ((x - buf->text->mule_bufmin) << buf->text->mule_shifter) +
|
|
984 (buf->text->mule_three_p ? (x - buf->text->mule_bufmin) : 0));
|
|
985 else
|
|
986 return bufpos_to_bytind_func (buf, x);
|
|
987 }
|
|
988
|
442
|
989 INLINE_HEADER int real_bytind_to_bufpos (struct buffer *buf, Bytind x);
|
|
990 INLINE_HEADER int
|
428
|
991 real_bytind_to_bufpos (struct buffer *buf, Bytind x)
|
|
992 {
|
|
993 if (x >= buf->text->mule_bytmin && x <= buf->text->mule_bytmax)
|
|
994 return (buf->text->mule_bufmin +
|
|
995 ((buf->text->mule_three_p
|
|
996 ? three_to_one_table[x - buf->text->mule_bytmin]
|
|
997 : (x - buf->text->mule_bytmin) >> buf->text->mule_shifter)));
|
|
998 else
|
|
999 return bytind_to_bufpos_func (buf, x);
|
|
1000 }
|
|
1001
|
|
1002 #else /* not MULE */
|
|
1003
|
|
1004 # define real_bufpos_to_bytind(buf, x) ((Bytind) x)
|
|
1005 # define real_bytind_to_bufpos(buf, x) ((Bufpos) x)
|
|
1006
|
|
1007 #endif /* not MULE */
|
|
1008
|
|
1009 #ifdef ERROR_CHECK_BUFPOS
|
|
1010
|
|
1011 Bytind bufpos_to_bytind (struct buffer *buf, Bufpos x);
|
|
1012 Bufpos bytind_to_bufpos (struct buffer *buf, Bytind x);
|
|
1013
|
|
1014 #else /* not ERROR_CHECK_BUFPOS */
|
|
1015
|
|
1016 #define bufpos_to_bytind real_bufpos_to_bytind
|
|
1017 #define bytind_to_bufpos real_bytind_to_bufpos
|
|
1018
|
|
1019 #endif /* not ERROR_CHECK_BUFPOS */
|
|
1020
|
|
1021 #define make_bufpos(buf, ind) make_int (bytind_to_bufpos (buf, ind))
|
|
1022
|
|
1023 /*----------------------------------------------------------------------*/
|
|
1024 /* Converting between buffer bytes and Emacs characters */
|
|
1025 /*----------------------------------------------------------------------*/
|
|
1026
|
|
1027 /* The character at position POS in buffer. */
|
|
1028 #define BI_BUF_FETCH_CHAR(buf, pos) \
|
|
1029 charptr_emchar (BI_BUF_BYTE_ADDRESS (buf, pos))
|
|
1030 #define BUF_FETCH_CHAR(buf, pos) \
|
|
1031 BI_BUF_FETCH_CHAR (buf, bufpos_to_bytind (buf, pos))
|
|
1032
|
|
1033 /* The character at position POS in buffer, as a string. This is
|
|
1034 equivalent to set_charptr_emchar (str, BUF_FETCH_CHAR (buf, pos))
|
|
1035 but is faster for Mule. */
|
|
1036
|
|
1037 # define BI_BUF_CHARPTR_COPY_CHAR(buf, pos, str) \
|
|
1038 charptr_copy_char (BI_BUF_BYTE_ADDRESS (buf, pos), str)
|
|
1039 #define BUF_CHARPTR_COPY_CHAR(buf, pos, str) \
|
|
1040 BI_BUF_CHARPTR_COPY_CHAR (buf, bufpos_to_bytind (buf, pos), str)
|
|
1041
|
|
1042
|
|
1043 /************************************************************************/
|
440
|
1044 /* */
|
|
1045 /* Converting between internal and external format */
|
|
1046 /* */
|
428
|
1047 /************************************************************************/
|
440
|
1048 /*
|
|
1049 All client code should use only the two macros
|
428
|
1050
|
440
|
1051 TO_EXTERNAL_FORMAT (source_type, source, sink_type, sink, coding_system)
|
|
1052 TO_INTERNAL_FORMAT (source_type, source, sink_type, sink, coding_system)
|
|
1053
|
|
1054 Typical use is
|
428
|
1055
|
440
|
1056 TO_EXTERNAL_FORMAT (DATA, (ptr, len),
|
|
1057 LISP_BUFFER, buffer,
|
|
1058 Qfile_name);
|
428
|
1059
|
440
|
1060 The source or sink can be specified in one of these ways:
|
428
|
1061
|
440
|
1062 DATA, (ptr, len), // input data is a fixed buffer of size len
|
|
1063 ALLOCA, (ptr, len), // output data is in a alloca()ed buffer of size len
|
|
1064 MALLOC, (ptr, len), // output data is in a malloc()ed buffer of size len
|
444
|
1065 C_STRING_ALLOCA, ptr, // equivalent to ALLOCA (ptr, len_ignored) on output
|
|
1066 C_STRING_MALLOC, ptr, // equivalent to MALLOC (ptr, len_ignored) on output
|
440
|
1067 C_STRING, ptr, // equivalent to DATA, (ptr, strlen (ptr) + 1) on input
|
|
1068 LISP_STRING, string, // input or output is a Lisp_Object of type string
|
|
1069 LISP_BUFFER, buffer, // output is written to (point) in lisp buffer
|
|
1070 LISP_LSTREAM, lstream, // input or output is a Lisp_Object of type lstream
|
|
1071 LISP_OPAQUE, object, // input or output is a Lisp_Object of type opaque
|
428
|
1072
|
440
|
1073 When specifying the sink, use lvalues, since the macro will assign to them,
|
|
1074 except when the sink is an lstream or a lisp buffer.
|
428
|
1075
|
440
|
1076 The macros accept the kinds of sources and sinks appropriate for
|
|
1077 internal and external data representation. See the type_checking_assert
|
|
1078 macros below for the actual allowed types.
|
428
|
1079
|
440
|
1080 Since some sources and sinks use one argument (a Lisp_Object) to
|
|
1081 specify them, while others take a (pointer, length) pair, we use
|
|
1082 some C preprocessor trickery to allow pair arguments to be specified
|
|
1083 by parenthesizing them, as in the examples above.
|
428
|
1084
|
440
|
1085 Anything prefixed by dfc_ (`data format conversion') is private.
|
|
1086 They are only used to implement these macros.
|
428
|
1087
|
440
|
1088 Using C_STRING* is appropriate for using with external APIs that take
|
|
1089 null-terminated strings. For internal data, we should try to be
|
|
1090 '\0'-clean - i.e. allow arbitrary data to contain embedded '\0'.
|
428
|
1091
|
440
|
1092 Sometime in the future we might allow output to C_STRING_ALLOCA or
|
|
1093 C_STRING_MALLOC _only_ with TO_EXTERNAL_FORMAT(), not
|
|
1094 TO_INTERNAL_FORMAT(). */
|
428
|
1095
|
440
|
1096 #define TO_EXTERNAL_FORMAT(source_type, source, sink_type, sink, coding_system) \
|
|
1097 do { \
|
|
1098 dfc_conversion_type dfc_simplified_source_type; \
|
|
1099 dfc_conversion_type dfc_simplified_sink_type; \
|
|
1100 dfc_conversion_data dfc_source; \
|
|
1101 dfc_conversion_data dfc_sink; \
|
|
1102 \
|
|
1103 type_checking_assert \
|
|
1104 ((DFC_TYPE_##source_type == DFC_TYPE_DATA || \
|
|
1105 DFC_TYPE_##source_type == DFC_TYPE_C_STRING || \
|
|
1106 DFC_TYPE_##source_type == DFC_TYPE_LISP_STRING || \
|
|
1107 DFC_TYPE_##source_type == DFC_TYPE_LISP_OPAQUE || \
|
|
1108 DFC_TYPE_##source_type == DFC_TYPE_LISP_LSTREAM) \
|
|
1109 && \
|
|
1110 (DFC_TYPE_##sink_type == DFC_TYPE_ALLOCA || \
|
|
1111 DFC_TYPE_##sink_type == DFC_TYPE_MALLOC || \
|
|
1112 DFC_TYPE_##sink_type == DFC_TYPE_C_STRING_ALLOCA || \
|
|
1113 DFC_TYPE_##sink_type == DFC_TYPE_C_STRING_MALLOC || \
|
|
1114 DFC_TYPE_##sink_type == DFC_TYPE_LISP_LSTREAM || \
|
|
1115 DFC_TYPE_##sink_type == DFC_TYPE_LISP_OPAQUE)); \
|
|
1116 \
|
|
1117 DFC_SOURCE_##source_type##_TO_ARGS (source); \
|
|
1118 DFC_SINK_##sink_type##_TO_ARGS (sink); \
|
|
1119 \
|
|
1120 DFC_CONVERT_TO_EXTERNAL_FORMAT (dfc_simplified_source_type, &dfc_source, \
|
|
1121 coding_system, \
|
|
1122 dfc_simplified_sink_type, &dfc_sink); \
|
|
1123 \
|
|
1124 DFC_##sink_type##_USE_CONVERTED_DATA (sink); \
|
428
|
1125 } while (0)
|
|
1126
|
440
|
1127 #define TO_INTERNAL_FORMAT(source_type, source, sink_type, sink, coding_system) \
|
|
1128 do { \
|
|
1129 dfc_conversion_type dfc_simplified_source_type; \
|
|
1130 dfc_conversion_type dfc_simplified_sink_type; \
|
|
1131 dfc_conversion_data dfc_source; \
|
|
1132 dfc_conversion_data dfc_sink; \
|
|
1133 \
|
|
1134 type_checking_assert \
|
|
1135 ((DFC_TYPE_##source_type == DFC_TYPE_DATA || \
|
|
1136 DFC_TYPE_##source_type == DFC_TYPE_C_STRING || \
|
|
1137 DFC_TYPE_##source_type == DFC_TYPE_LISP_OPAQUE || \
|
|
1138 DFC_TYPE_##source_type == DFC_TYPE_LISP_LSTREAM) \
|
|
1139 && \
|
|
1140 (DFC_TYPE_##sink_type == DFC_TYPE_ALLOCA || \
|
|
1141 DFC_TYPE_##sink_type == DFC_TYPE_MALLOC || \
|
|
1142 DFC_TYPE_##sink_type == DFC_TYPE_C_STRING_ALLOCA || \
|
|
1143 DFC_TYPE_##sink_type == DFC_TYPE_C_STRING_MALLOC || \
|
|
1144 DFC_TYPE_##sink_type == DFC_TYPE_LISP_STRING || \
|
|
1145 DFC_TYPE_##sink_type == DFC_TYPE_LISP_LSTREAM || \
|
|
1146 DFC_TYPE_##sink_type == DFC_TYPE_LISP_BUFFER)); \
|
|
1147 \
|
|
1148 DFC_SOURCE_##source_type##_TO_ARGS (source); \
|
|
1149 DFC_SINK_##sink_type##_TO_ARGS (sink); \
|
|
1150 \
|
|
1151 DFC_CONVERT_TO_INTERNAL_FORMAT (dfc_simplified_source_type, &dfc_source, \
|
|
1152 coding_system, \
|
|
1153 dfc_simplified_sink_type, &dfc_sink); \
|
|
1154 \
|
|
1155 DFC_##sink_type##_USE_CONVERTED_DATA (sink); \
|
428
|
1156 } while (0)
|
|
1157
|
440
|
1158 #ifdef FILE_CODING
|
|
1159 #define DFC_CONVERT_TO_EXTERNAL_FORMAT dfc_convert_to_external_format
|
|
1160 #define DFC_CONVERT_TO_INTERNAL_FORMAT dfc_convert_to_internal_format
|
|
1161 #else
|
|
1162 /* ignore coding_system argument */
|
|
1163 #define DFC_CONVERT_TO_EXTERNAL_FORMAT(a, b, coding_system, c, d) \
|
|
1164 dfc_convert_to_external_format (a, b, c, d)
|
|
1165 #define DFC_CONVERT_TO_INTERNAL_FORMAT(a, b, coding_system, c, d) \
|
|
1166 dfc_convert_to_internal_format (a, b, c, d)
|
|
1167 #endif
|
428
|
1168
|
440
|
1169 typedef union
|
|
1170 {
|
|
1171 struct { const void *ptr; size_t len; } data;
|
|
1172 Lisp_Object lisp_object;
|
|
1173 } dfc_conversion_data;
|
428
|
1174
|
440
|
1175 enum dfc_conversion_type
|
|
1176 {
|
|
1177 DFC_TYPE_DATA,
|
|
1178 DFC_TYPE_ALLOCA,
|
|
1179 DFC_TYPE_MALLOC,
|
|
1180 DFC_TYPE_C_STRING,
|
|
1181 DFC_TYPE_C_STRING_ALLOCA,
|
|
1182 DFC_TYPE_C_STRING_MALLOC,
|
|
1183 DFC_TYPE_LISP_STRING,
|
|
1184 DFC_TYPE_LISP_LSTREAM,
|
|
1185 DFC_TYPE_LISP_OPAQUE,
|
|
1186 DFC_TYPE_LISP_BUFFER
|
|
1187 };
|
|
1188 typedef enum dfc_conversion_type dfc_conversion_type;
|
428
|
1189
|
440
|
1190 /* WARNING: These use a static buffer. This can lead to disaster if
|
|
1191 these functions are not used *very* carefully. Another reason to only use
|
442
|
1192 TO_EXTERNAL_FORMAT() and TO_INTERNAL_FORMAT(). */
|
440
|
1193 void
|
|
1194 dfc_convert_to_external_format (dfc_conversion_type source_type,
|
|
1195 dfc_conversion_data *source,
|
|
1196 #ifdef FILE_CODING
|
|
1197 Lisp_Object coding_system,
|
|
1198 #endif
|
|
1199 dfc_conversion_type sink_type,
|
|
1200 dfc_conversion_data *sink);
|
|
1201 void
|
|
1202 dfc_convert_to_internal_format (dfc_conversion_type source_type,
|
|
1203 dfc_conversion_data *source,
|
|
1204 #ifdef FILE_CODING
|
|
1205 Lisp_Object coding_system,
|
|
1206 #endif
|
|
1207 dfc_conversion_type sink_type,
|
|
1208 dfc_conversion_data *sink);
|
|
1209 /* CPP Trickery */
|
|
1210 #define DFC_CPP_CAR(x,y) (x)
|
|
1211 #define DFC_CPP_CDR(x,y) (y)
|
|
1212
|
|
1213 /* Convert `source' to args for dfc_convert_to_*_format() */
|
|
1214 #define DFC_SOURCE_DATA_TO_ARGS(val) do { \
|
|
1215 dfc_source.data.ptr = DFC_CPP_CAR val; \
|
|
1216 dfc_source.data.len = DFC_CPP_CDR val; \
|
|
1217 dfc_simplified_source_type = DFC_TYPE_DATA; \
|
428
|
1218 } while (0)
|
440
|
1219 #define DFC_SOURCE_C_STRING_TO_ARGS(val) do { \
|
|
1220 dfc_source.data.len = \
|
|
1221 strlen ((char *) (dfc_source.data.ptr = (val))); \
|
|
1222 dfc_simplified_source_type = DFC_TYPE_DATA; \
|
|
1223 } while (0)
|
|
1224 #define DFC_SOURCE_LISP_STRING_TO_ARGS(val) do { \
|
|
1225 Lisp_Object dfc_slsta = (val); \
|
|
1226 type_checking_assert (STRINGP (dfc_slsta)); \
|
|
1227 dfc_source.lisp_object = dfc_slsta; \
|
|
1228 dfc_simplified_source_type = DFC_TYPE_LISP_STRING; \
|
|
1229 } while (0)
|
|
1230 #define DFC_SOURCE_LISP_LSTREAM_TO_ARGS(val) do { \
|
|
1231 Lisp_Object dfc_sllta = (val); \
|
|
1232 type_checking_assert (LSTREAMP (dfc_sllta)); \
|
|
1233 dfc_source.lisp_object = dfc_sllta; \
|
|
1234 dfc_simplified_source_type = DFC_TYPE_LISP_LSTREAM; \
|
|
1235 } while (0)
|
|
1236 #define DFC_SOURCE_LISP_OPAQUE_TO_ARGS(val) do { \
|
|
1237 Lisp_Opaque *dfc_slota = XOPAQUE (val); \
|
|
1238 dfc_source.data.ptr = OPAQUE_DATA (dfc_slota); \
|
|
1239 dfc_source.data.len = OPAQUE_SIZE (dfc_slota); \
|
|
1240 dfc_simplified_source_type = DFC_TYPE_DATA; \
|
428
|
1241 } while (0)
|
|
1242
|
440
|
1243 /* Convert `sink' to args for dfc_convert_to_*_format() */
|
|
1244 #define DFC_SINK_ALLOCA_TO_ARGS(val) \
|
|
1245 dfc_simplified_sink_type = DFC_TYPE_DATA
|
|
1246 #define DFC_SINK_C_STRING_ALLOCA_TO_ARGS(val) \
|
|
1247 dfc_simplified_sink_type = DFC_TYPE_DATA
|
|
1248 #define DFC_SINK_MALLOC_TO_ARGS(val) \
|
|
1249 dfc_simplified_sink_type = DFC_TYPE_DATA
|
|
1250 #define DFC_SINK_C_STRING_MALLOC_TO_ARGS(val) \
|
|
1251 dfc_simplified_sink_type = DFC_TYPE_DATA
|
|
1252 #define DFC_SINK_LISP_STRING_TO_ARGS(val) \
|
|
1253 dfc_simplified_sink_type = DFC_TYPE_DATA
|
|
1254 #define DFC_SINK_LISP_OPAQUE_TO_ARGS(val) \
|
|
1255 dfc_simplified_sink_type = DFC_TYPE_DATA
|
|
1256 #define DFC_SINK_LISP_LSTREAM_TO_ARGS(val) do { \
|
|
1257 Lisp_Object dfc_sllta = (val); \
|
|
1258 type_checking_assert (LSTREAMP (dfc_sllta)); \
|
|
1259 dfc_sink.lisp_object = dfc_sllta; \
|
|
1260 dfc_simplified_sink_type = DFC_TYPE_LISP_LSTREAM; \
|
|
1261 } while (0)
|
|
1262 #define DFC_SINK_LISP_BUFFER_TO_ARGS(val) do { \
|
|
1263 struct buffer *dfc_slbta = XBUFFER (val); \
|
|
1264 dfc_sink.lisp_object = \
|
|
1265 make_lisp_buffer_output_stream \
|
|
1266 (dfc_slbta, BUF_PT (dfc_slbta), 0); \
|
|
1267 dfc_simplified_sink_type = DFC_TYPE_LISP_LSTREAM; \
|
428
|
1268 } while (0)
|
|
1269
|
440
|
1270 /* Assign to the `sink' lvalue(s) using the converted data. */
|
442
|
1271 typedef union { char c; void *p; } *dfc_aliasing_voidpp;
|
440
|
1272 #define DFC_ALLOCA_USE_CONVERTED_DATA(sink) do { \
|
|
1273 void * dfc_sink_ret = alloca (dfc_sink.data.len + 1); \
|
|
1274 memcpy (dfc_sink_ret, dfc_sink.data.ptr, dfc_sink.data.len + 1); \
|
442
|
1275 ((dfc_aliasing_voidpp) &(DFC_CPP_CAR sink))->p = dfc_sink_ret; \
|
440
|
1276 (DFC_CPP_CDR sink) = dfc_sink.data.len; \
|
|
1277 } while (0)
|
|
1278 #define DFC_MALLOC_USE_CONVERTED_DATA(sink) do { \
|
|
1279 void * dfc_sink_ret = xmalloc (dfc_sink.data.len + 1); \
|
|
1280 memcpy (dfc_sink_ret, dfc_sink.data.ptr, dfc_sink.data.len + 1); \
|
442
|
1281 ((dfc_aliasing_voidpp) &(DFC_CPP_CAR sink))->p = dfc_sink_ret; \
|
440
|
1282 (DFC_CPP_CDR sink) = dfc_sink.data.len; \
|
|
1283 } while (0)
|
|
1284 #define DFC_C_STRING_ALLOCA_USE_CONVERTED_DATA(sink) do { \
|
|
1285 void * dfc_sink_ret = alloca (dfc_sink.data.len + 1); \
|
|
1286 memcpy (dfc_sink_ret, dfc_sink.data.ptr, dfc_sink.data.len + 1); \
|
578
|
1287 ((dfc_aliasing_voidpp) &(sink))->p = dfc_sink_ret; \
|
440
|
1288 } while (0)
|
|
1289 #define DFC_C_STRING_MALLOC_USE_CONVERTED_DATA(sink) do { \
|
|
1290 void * dfc_sink_ret = xmalloc (dfc_sink.data.len + 1); \
|
|
1291 memcpy (dfc_sink_ret, dfc_sink.data.ptr, dfc_sink.data.len + 1); \
|
578
|
1292 ((dfc_aliasing_voidpp) &(sink))->p = dfc_sink_ret; \
|
440
|
1293 } while (0)
|
|
1294 #define DFC_LISP_STRING_USE_CONVERTED_DATA(sink) \
|
|
1295 sink = make_string ((Bufbyte *) dfc_sink.data.ptr, dfc_sink.data.len)
|
|
1296 #define DFC_LISP_OPAQUE_USE_CONVERTED_DATA(sink) \
|
|
1297 sink = make_opaque (dfc_sink.data.ptr, dfc_sink.data.len)
|
|
1298 #define DFC_LISP_LSTREAM_USE_CONVERTED_DATA(sink) /* data already used */
|
|
1299 #define DFC_LISP_BUFFER_USE_CONVERTED_DATA(sink) \
|
|
1300 Lstream_delete (XLSTREAM (dfc_sink.lisp_object))
|
428
|
1301
|
440
|
1302 /* Someday we might want to distinguish between Qnative and Qfile_name
|
|
1303 by using coding-system aliases, but for now it suffices to have
|
|
1304 these be identical. Qnative can be used as the coding_system
|
|
1305 argument to TO_EXTERNAL_FORMAT() and TO_INTERNAL_FORMAT(). */
|
|
1306 #define Qnative Qfile_name
|
428
|
1307
|
442
|
1308 #if defined (WIN32_NATIVE) || defined (CYGWIN)
|
|
1309 /* #### kludge!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
|
1310 Remove this as soon as my Mule code is integrated. */
|
|
1311 #define Qmswindows_tstr Qnative
|
|
1312 #endif
|
|
1313
|
|
1314 /* More stand-ins */
|
|
1315 #define Qcommand_argument_encoding Qnative
|
|
1316 #define Qenvironment_variable_encoding Qnative
|
|
1317
|
|
1318 /* Convenience macros for extremely common invocations */
|
|
1319 #define C_STRING_TO_EXTERNAL(in, out, coding_system) \
|
|
1320 TO_EXTERNAL_FORMAT (C_STRING, in, C_STRING_ALLOCA, out, coding_system)
|
|
1321 #define C_STRING_TO_EXTERNAL_MALLOC(in, out, coding_system) \
|
|
1322 TO_EXTERNAL_FORMAT (C_STRING, in, C_STRING_MALLOC, out, coding_system)
|
|
1323 #define EXTERNAL_TO_C_STRING(in, out, coding_system) \
|
|
1324 TO_INTERNAL_FORMAT (C_STRING, in, C_STRING_ALLOCA, out, coding_system)
|
|
1325 #define EXTERNAL_TO_C_STRING_MALLOC(in, out, coding_system) \
|
|
1326 TO_INTERNAL_FORMAT (C_STRING, in, C_STRING_MALLOC, out, coding_system)
|
|
1327 #define LISP_STRING_TO_EXTERNAL(in, out, coding_system) \
|
|
1328 TO_EXTERNAL_FORMAT (LISP_STRING, in, C_STRING_ALLOCA, out, coding_system)
|
|
1329 #define LISP_STRING_TO_EXTERNAL_MALLOC(in, out, coding_system) \
|
|
1330 TO_EXTERNAL_FORMAT (LISP_STRING, in, C_STRING_MALLOC, out, coding_system)
|
|
1331
|
428
|
1332
|
|
1333 /************************************************************************/
|
|
1334 /* */
|
|
1335 /* fake charset functions */
|
|
1336 /* */
|
|
1337 /************************************************************************/
|
|
1338
|
|
1339 /* used when MULE is not defined, so that Charset-type stuff can still
|
|
1340 be done */
|
|
1341
|
|
1342 #ifndef MULE
|
|
1343
|
|
1344 #define Vcharset_ascii Qnil
|
|
1345
|
|
1346 #define CHAR_CHARSET(ch) Vcharset_ascii
|
|
1347 #define CHAR_LEADING_BYTE(ch) LEADING_BYTE_ASCII
|
|
1348 #define LEADING_BYTE_ASCII 0x80
|
|
1349 #define NUM_LEADING_BYTES 1
|
|
1350 #define MIN_LEADING_BYTE 0x80
|
|
1351 #define CHARSETP(cs) 1
|
|
1352 #define CHARSET_BY_LEADING_BYTE(lb) Vcharset_ascii
|
|
1353 #define XCHARSET_LEADING_BYTE(cs) LEADING_BYTE_ASCII
|
|
1354 #define XCHARSET_GRAPHIC(cs) -1
|
|
1355 #define XCHARSET_COLUMNS(cs) 1
|
|
1356 #define XCHARSET_DIMENSION(cs) 1
|
|
1357 #define REP_BYTES_BY_FIRST_BYTE(fb) 1
|
|
1358 #define BREAKUP_CHAR(ch, charset, byte1, byte2) do { \
|
|
1359 (charset) = Vcharset_ascii; \
|
|
1360 (byte1) = (ch); \
|
|
1361 (byte2) = 0; \
|
|
1362 } while (0)
|
|
1363 #define BYTE_ASCII_P(byte) 1
|
|
1364
|
|
1365 #endif /* ! MULE */
|
|
1366
|
|
1367 /************************************************************************/
|
|
1368 /* */
|
|
1369 /* higher-level buffer-position functions */
|
|
1370 /* */
|
|
1371 /************************************************************************/
|
|
1372
|
|
1373 /*----------------------------------------------------------------------*/
|
|
1374 /* Settor macros for important positions in a buffer */
|
|
1375 /*----------------------------------------------------------------------*/
|
|
1376
|
|
1377 /* Set beginning of accessible range of buffer. */
|
|
1378 #define SET_BOTH_BUF_BEGV(buf, val, bival) \
|
|
1379 do \
|
|
1380 { \
|
|
1381 (buf)->begv = (bival); \
|
|
1382 (buf)->bufbegv = (val); \
|
|
1383 } while (0)
|
|
1384
|
|
1385 /* Set end of accessible range of buffer. */
|
|
1386 #define SET_BOTH_BUF_ZV(buf, val, bival) \
|
|
1387 do \
|
|
1388 { \
|
|
1389 (buf)->zv = (bival); \
|
|
1390 (buf)->bufzv = (val); \
|
|
1391 } while (0)
|
|
1392
|
|
1393 /* Set point. */
|
|
1394 /* Since BEGV and ZV are almost never set, it's reasonable to enforce
|
|
1395 the restriction that the Bufpos and Bytind values must both be
|
|
1396 specified. However, point is set in lots and lots of places. So
|
|
1397 we provide the ability to specify both (for efficiency) or just
|
|
1398 one. */
|
|
1399 #define BOTH_BUF_SET_PT(buf, val, bival) set_buffer_point (buf, val, bival)
|
|
1400 #define BI_BUF_SET_PT(buf, bival) \
|
|
1401 BOTH_BUF_SET_PT (buf, bytind_to_bufpos (buf, bival), bival)
|
|
1402 #define BUF_SET_PT(buf, value) \
|
|
1403 BOTH_BUF_SET_PT (buf, value, bufpos_to_bytind (buf, value))
|
|
1404
|
|
1405
|
|
1406 #if 0 /* FSFmacs */
|
|
1407 /* These macros exist in FSFmacs because SET_PT() in FSFmacs incorrectly
|
|
1408 does too much stuff, such as moving out of invisible extents. */
|
|
1409 #define TEMP_SET_PT(position) (temp_set_point ((position), current_buffer))
|
|
1410 #define SET_BUF_PT(buf, value) ((buf)->pt = (value))
|
|
1411 #endif /* FSFmacs */
|
|
1412
|
|
1413 /*----------------------------------------------------------------------*/
|
|
1414 /* Miscellaneous buffer values */
|
|
1415 /*----------------------------------------------------------------------*/
|
|
1416
|
|
1417 /* Number of characters in buffer */
|
|
1418 #define BUF_SIZE(buf) (BUF_Z (buf) - BUF_BEG (buf))
|
|
1419
|
|
1420 /* Is this buffer narrowed? */
|
|
1421 #define BUF_NARROWED(buf) \
|
|
1422 ((BI_BUF_BEGV (buf) != BI_BUF_BEG (buf)) || \
|
|
1423 (BI_BUF_ZV (buf) != BI_BUF_Z (buf)))
|
|
1424
|
|
1425 /* Modification count. */
|
|
1426 #define BUF_MODIFF(buf) ((buf)->text->modiff)
|
|
1427
|
|
1428 /* Saved modification count. */
|
|
1429 #define BUF_SAVE_MODIFF(buf) ((buf)->text->save_modiff)
|
|
1430
|
|
1431 /* Face changed. */
|
|
1432 #define BUF_FACECHANGE(buf) ((buf)->face_change)
|
|
1433
|
|
1434 #define POINT_MARKER_P(marker) \
|
|
1435 (XMARKER (marker)->buffer != 0 && \
|
434
|
1436 EQ (marker, XMARKER (marker)->buffer->point_marker))
|
428
|
1437
|
|
1438 #define BUF_MARKERS(buf) ((buf)->markers)
|
|
1439
|
|
1440 /* WARNING:
|
|
1441
|
|
1442 The new definitions of CEILING_OF() and FLOOR_OF() differ semantically
|
|
1443 from the old ones (in FSF Emacs and XEmacs 19.11 and before).
|
|
1444 Conversion is as follows:
|
|
1445
|
|
1446 OLD_BI_CEILING_OF(n) = NEW_BI_CEILING_OF(n) - 1
|
|
1447 OLD_BI_FLOOR_OF(n) = NEW_BI_FLOOR_OF(n + 1)
|
|
1448
|
|
1449 The definitions were changed because the new definitions are more
|
|
1450 consistent with the way everything else works in Emacs.
|
|
1451 */
|
|
1452
|
|
1453 /* Properties of CEILING_OF and FLOOR_OF (also apply to BI_ variants):
|
|
1454
|
|
1455 1) FLOOR_OF (CEILING_OF (n)) = n
|
|
1456 CEILING_OF (FLOOR_OF (n)) = n
|
|
1457
|
|
1458 2) CEILING_OF (n) = n if and only if n = ZV
|
|
1459 FLOOR_OF (n) = n if and only if n = BEGV
|
|
1460
|
|
1461 3) CEILING_OF (CEILING_OF (n)) = ZV
|
|
1462 FLOOR_OF (FLOOR_OF (n)) = BEGV
|
|
1463
|
|
1464 4) The bytes in the regions
|
|
1465
|
|
1466 [BYTE_ADDRESS (n), BYTE_ADDRESS_BEFORE (CEILING_OF (n))]
|
|
1467
|
|
1468 and
|
|
1469
|
|
1470 [BYTE_ADDRESS (FLOOR_OF (n)), BYTE_ADDRESS_BEFORE (n)]
|
|
1471
|
|
1472 are contiguous.
|
|
1473 */
|
|
1474
|
|
1475
|
|
1476 /* Return the maximum index in the buffer it is safe to scan forwards
|
|
1477 past N to. This is used to prevent buffer scans from running into
|
|
1478 the gap (e.g. search.c). All characters between N and CEILING_OF(N)
|
|
1479 are located contiguous in memory. Note that the character *at*
|
|
1480 CEILING_OF(N) is not contiguous in memory. */
|
|
1481 #define BI_BUF_CEILING_OF(b, n) \
|
|
1482 ((n) < (b)->text->gpt && (b)->text->gpt < BI_BUF_ZV (b) ? \
|
|
1483 (b)->text->gpt : BI_BUF_ZV (b))
|
|
1484 #define BUF_CEILING_OF(b, n) \
|
|
1485 bytind_to_bufpos (b, BI_BUF_CEILING_OF (b, bufpos_to_bytind (b, n)))
|
|
1486
|
|
1487 /* Return the minimum index in the buffer it is safe to scan backwards
|
|
1488 past N to. All characters between FLOOR_OF(N) and N are located
|
|
1489 contiguous in memory. Note that the character *at* N may not be
|
|
1490 contiguous in memory. */
|
|
1491 #define BI_BUF_FLOOR_OF(b, n) \
|
|
1492 (BI_BUF_BEGV (b) < (b)->text->gpt && (b)->text->gpt < (n) ? \
|
|
1493 (b)->text->gpt : BI_BUF_BEGV (b))
|
|
1494 #define BUF_FLOOR_OF(b, n) \
|
|
1495 bytind_to_bufpos (b, BI_BUF_FLOOR_OF (b, bufpos_to_bytind (b, n)))
|
|
1496
|
|
1497 #define BI_BUF_CEILING_OF_IGNORE_ACCESSIBLE(b, n) \
|
|
1498 ((n) < (b)->text->gpt && (b)->text->gpt < BI_BUF_Z (b) ? \
|
|
1499 (b)->text->gpt : BI_BUF_Z (b))
|
|
1500 #define BUF_CEILING_OF_IGNORE_ACCESSIBLE(b, n) \
|
|
1501 bytind_to_bufpos \
|
|
1502 (b, BI_BUF_CEILING_OF_IGNORE_ACCESSIBLE (b, bufpos_to_bytind (b, n)))
|
|
1503
|
|
1504 #define BI_BUF_FLOOR_OF_IGNORE_ACCESSIBLE(b, n) \
|
|
1505 (BI_BUF_BEG (b) < (b)->text->gpt && (b)->text->gpt < (n) ? \
|
|
1506 (b)->text->gpt : BI_BUF_BEG (b))
|
|
1507 #define BUF_FLOOR_OF_IGNORE_ACCESSIBLE(b, n) \
|
|
1508 bytind_to_bufpos \
|
|
1509 (b, BI_BUF_FLOOR_OF_IGNORE_ACCESSIBLE (b, bufpos_to_bytind (b, n)))
|
|
1510
|
|
1511
|
|
1512 extern struct buffer *current_buffer;
|
|
1513
|
|
1514 /* This is the initial (startup) directory, as used for the *scratch* buffer.
|
|
1515 We're making this a global to make others aware of the startup directory.
|
|
1516 `initial_directory' is stored in external format.
|
|
1517 */
|
|
1518 extern char initial_directory[];
|
|
1519 extern void init_initial_directory (void); /* initialize initial_directory */
|
|
1520
|
|
1521 EXFUN (Fbuffer_disable_undo, 1);
|
|
1522 EXFUN (Fbuffer_modified_p, 1);
|
|
1523 EXFUN (Fbuffer_name, 1);
|
|
1524 EXFUN (Fcurrent_buffer, 0);
|
|
1525 EXFUN (Ferase_buffer, 1);
|
|
1526 EXFUN (Fget_buffer, 1);
|
|
1527 EXFUN (Fget_buffer_create, 1);
|
|
1528 EXFUN (Fget_file_buffer, 1);
|
|
1529 EXFUN (Fkill_buffer, 1);
|
|
1530 EXFUN (Fother_buffer, 3);
|
|
1531 EXFUN (Frecord_buffer, 1);
|
|
1532 EXFUN (Fset_buffer, 1);
|
|
1533 EXFUN (Fset_buffer_modified_p, 2);
|
|
1534
|
|
1535 extern Lisp_Object QSscratch, Qafter_change_function, Qafter_change_functions;
|
|
1536 extern Lisp_Object Qbefore_change_function, Qbefore_change_functions;
|
|
1537 extern Lisp_Object Qbuffer_or_string_p, Qdefault_directory, Qfirst_change_hook;
|
|
1538 extern Lisp_Object Qpermanent_local, Vafter_change_function;
|
|
1539 extern Lisp_Object Vafter_change_functions, Vbefore_change_function;
|
|
1540 extern Lisp_Object Vbefore_change_functions, Vbuffer_alist, Vbuffer_defaults;
|
|
1541 extern Lisp_Object Vinhibit_read_only, Vtransient_mark_mode;
|
|
1542
|
|
1543 /* This structure marks which slots in a buffer have corresponding
|
|
1544 default values in Vbuffer_defaults.
|
|
1545 Each such slot has a nonzero value in this structure.
|
|
1546 The value has only one nonzero bit.
|
|
1547
|
|
1548 When a buffer has its own local value for a slot,
|
|
1549 the bit for that slot (found in the same slot in this structure)
|
|
1550 is turned on in the buffer's local_var_flags slot.
|
|
1551
|
|
1552 If a slot in this structure is zero, then even though there may
|
|
1553 be a DEFVAR_BUFFER_LOCAL for the slot, there is no default value for it;
|
|
1554 and the corresponding slot in Vbuffer_defaults is not used. */
|
|
1555
|
|
1556 extern struct buffer buffer_local_flags;
|
|
1557
|
|
1558
|
|
1559 /* Allocation of buffer data. */
|
|
1560
|
|
1561 #ifdef REL_ALLOC
|
|
1562
|
440
|
1563 char *r_alloc (unsigned char **, size_t);
|
|
1564 char *r_re_alloc (unsigned char **, size_t);
|
428
|
1565 void r_alloc_free (unsigned char **);
|
|
1566
|
|
1567 #define BUFFER_ALLOC(data, size) \
|
|
1568 ((Bufbyte *) r_alloc ((unsigned char **) &data, (size) * sizeof(Bufbyte)))
|
|
1569 #define BUFFER_REALLOC(data, size) \
|
|
1570 ((Bufbyte *) r_re_alloc ((unsigned char **) &data, (size) * sizeof(Bufbyte)))
|
|
1571 #define BUFFER_FREE(data) r_alloc_free ((unsigned char **) &(data))
|
|
1572 #define R_ALLOC_DECLARE(var,data) r_alloc_declare (&(var), data)
|
|
1573
|
|
1574 #else /* !REL_ALLOC */
|
|
1575
|
|
1576 #define BUFFER_ALLOC(data,size)\
|
|
1577 (data = xnew_array (Bufbyte, size))
|
|
1578 #define BUFFER_REALLOC(data,size)\
|
|
1579 ((Bufbyte *) xrealloc (data, (size) * sizeof(Bufbyte)))
|
|
1580 /* Avoid excess parentheses, or syntax errors may rear their heads. */
|
|
1581 #define BUFFER_FREE(data) xfree (data)
|
|
1582 #define R_ALLOC_DECLARE(var,data)
|
|
1583
|
|
1584 #endif /* !REL_ALLOC */
|
|
1585
|
|
1586 extern Lisp_Object Vbuffer_alist;
|
|
1587 void set_buffer_internal (struct buffer *b);
|
|
1588 struct buffer *decode_buffer (Lisp_Object buffer, int allow_string);
|
|
1589
|
|
1590 /* from editfns.c */
|
|
1591 void widen_buffer (struct buffer *b, int no_clip);
|
|
1592 int beginning_of_line_p (struct buffer *b, Bufpos pt);
|
|
1593
|
|
1594 /* from insdel.c */
|
|
1595 void set_buffer_point (struct buffer *buf, Bufpos pos, Bytind bipos);
|
|
1596 void find_charsets_in_bufbyte_string (unsigned char *charsets,
|
442
|
1597 const Bufbyte *str,
|
428
|
1598 Bytecount len);
|
|
1599 void find_charsets_in_emchar_string (unsigned char *charsets,
|
442
|
1600 const Emchar *str,
|
428
|
1601 Charcount len);
|
442
|
1602 int bufbyte_string_displayed_columns (const Bufbyte *str, Bytecount len);
|
|
1603 int emchar_string_displayed_columns (const Emchar *str, Charcount len);
|
|
1604 void convert_bufbyte_string_into_emchar_dynarr (const Bufbyte *str,
|
428
|
1605 Bytecount len,
|
|
1606 Emchar_dynarr *dyn);
|
442
|
1607 Charcount convert_bufbyte_string_into_emchar_string (const Bufbyte *str,
|
428
|
1608 Bytecount len,
|
|
1609 Emchar *arr);
|
|
1610 void convert_emchar_string_into_bufbyte_dynarr (Emchar *arr, int nels,
|
|
1611 Bufbyte_dynarr *dyn);
|
|
1612 Bufbyte *convert_emchar_string_into_malloced_string (Emchar *arr, int nels,
|
|
1613 Bytecount *len_out);
|
|
1614 /* from marker.c */
|
|
1615 void init_buffer_markers (struct buffer *b);
|
|
1616 void uninit_buffer_markers (struct buffer *b);
|
|
1617
|
|
1618 /* flags for get_buffer_pos_char(), get_buffer_range_char(), etc. */
|
|
1619 /* At most one of GB_COERCE_RANGE and GB_NO_ERROR_IF_BAD should be
|
|
1620 specified. At most one of GB_NEGATIVE_FROM_END and GB_NO_ERROR_IF_BAD
|
|
1621 should be specified. */
|
|
1622
|
|
1623 #define GB_ALLOW_PAST_ACCESSIBLE (1 << 0)
|
|
1624 #define GB_ALLOW_NIL (1 << 1)
|
|
1625 #define GB_CHECK_ORDER (1 << 2)
|
|
1626 #define GB_COERCE_RANGE (1 << 3)
|
|
1627 #define GB_NO_ERROR_IF_BAD (1 << 4)
|
|
1628 #define GB_NEGATIVE_FROM_END (1 << 5)
|
|
1629 #define GB_HISTORICAL_STRING_BEHAVIOR (GB_NEGATIVE_FROM_END | GB_ALLOW_NIL)
|
|
1630
|
|
1631 Bufpos get_buffer_pos_char (struct buffer *b, Lisp_Object pos,
|
|
1632 unsigned int flags);
|
|
1633 Bytind get_buffer_pos_byte (struct buffer *b, Lisp_Object pos,
|
|
1634 unsigned int flags);
|
|
1635 void get_buffer_range_char (struct buffer *b, Lisp_Object from, Lisp_Object to,
|
|
1636 Bufpos *from_out, Bufpos *to_out,
|
|
1637 unsigned int flags);
|
|
1638 void get_buffer_range_byte (struct buffer *b, Lisp_Object from, Lisp_Object to,
|
|
1639 Bytind *from_out, Bytind *to_out,
|
|
1640 unsigned int flags);
|
|
1641 Charcount get_string_pos_char (Lisp_Object string, Lisp_Object pos,
|
|
1642 unsigned int flags);
|
|
1643 Bytecount get_string_pos_byte (Lisp_Object string, Lisp_Object pos,
|
|
1644 unsigned int flags);
|
|
1645 void get_string_range_char (Lisp_Object string, Lisp_Object from,
|
|
1646 Lisp_Object to, Charcount *from_out,
|
|
1647 Charcount *to_out, unsigned int flags);
|
|
1648 void get_string_range_byte (Lisp_Object string, Lisp_Object from,
|
|
1649 Lisp_Object to, Bytecount *from_out,
|
|
1650 Bytecount *to_out, unsigned int flags);
|
|
1651 Bufpos get_buffer_or_string_pos_char (Lisp_Object object, Lisp_Object pos,
|
|
1652 unsigned int flags);
|
|
1653 Bytind get_buffer_or_string_pos_byte (Lisp_Object object, Lisp_Object pos,
|
|
1654 unsigned int flags);
|
|
1655 void get_buffer_or_string_range_char (Lisp_Object object, Lisp_Object from,
|
|
1656 Lisp_Object to, Bufpos *from_out,
|
|
1657 Bufpos *to_out, unsigned int flags);
|
|
1658 void get_buffer_or_string_range_byte (Lisp_Object object, Lisp_Object from,
|
|
1659 Lisp_Object to, Bytind *from_out,
|
|
1660 Bytind *to_out, unsigned int flags);
|
|
1661 Bufpos buffer_or_string_accessible_begin_char (Lisp_Object object);
|
|
1662 Bufpos buffer_or_string_accessible_end_char (Lisp_Object object);
|
|
1663 Bytind buffer_or_string_accessible_begin_byte (Lisp_Object object);
|
|
1664 Bytind buffer_or_string_accessible_end_byte (Lisp_Object object);
|
|
1665 Bufpos buffer_or_string_absolute_begin_char (Lisp_Object object);
|
|
1666 Bufpos buffer_or_string_absolute_end_char (Lisp_Object object);
|
|
1667 Bytind buffer_or_string_absolute_begin_byte (Lisp_Object object);
|
|
1668 Bytind buffer_or_string_absolute_end_byte (Lisp_Object object);
|
|
1669 void record_buffer (Lisp_Object buf);
|
|
1670 Lisp_Object get_buffer (Lisp_Object name,
|
|
1671 int error_if_deleted_or_does_not_exist);
|
|
1672 int map_over_sharing_buffers (struct buffer *buf,
|
|
1673 int (*mapfun) (struct buffer *buf,
|
|
1674 void *closure),
|
|
1675 void *closure);
|
|
1676
|
|
1677
|
|
1678 /************************************************************************/
|
|
1679 /* Case conversion */
|
|
1680 /************************************************************************/
|
|
1681
|
|
1682 /* A "trt" table is a mapping from characters to other characters,
|
|
1683 typically used to convert between uppercase and lowercase. For
|
|
1684 compatibility reasons, trt tables are currently in the form of
|
|
1685 a Lisp string of 256 characters, specifying the conversion for each
|
|
1686 of the first 256 Emacs characters (i.e. the 256 Latin-1 characters).
|
|
1687 This should be generalized at some point to support conversions for
|
|
1688 all of the allowable Mule characters.
|
|
1689 */
|
|
1690
|
|
1691 /* The _1 macros are named as such because they assume that you have
|
|
1692 already guaranteed that the character values are all in the range
|
|
1693 0 - 255. Bad lossage will happen otherwise. */
|
|
1694
|
446
|
1695 #define MAKE_TRT_TABLE() Fmake_char_table (Qgeneric)
|
|
1696 INLINE_HEADER Emchar TRT_TABLE_CHAR_1 (Lisp_Object table, Emchar c);
|
|
1697 INLINE_HEADER Emchar
|
|
1698 TRT_TABLE_CHAR_1 (Lisp_Object table, Emchar ch)
|
|
1699 {
|
|
1700 Lisp_Object TRT_char;
|
|
1701 TRT_char = get_char_table (ch, XCHAR_TABLE (table));
|
|
1702 if (NILP (TRT_char))
|
|
1703 return ch;
|
|
1704 else
|
|
1705 return XCHAR (TRT_char);
|
|
1706 }
|
|
1707 #define SET_TRT_TABLE_CHAR_1(table, ch1, ch2) \
|
|
1708 Fput_char_table (make_char (ch1), make_char (ch2), table);
|
428
|
1709
|
442
|
1710 INLINE_HEADER Emchar TRT_TABLE_OF (Lisp_Object trt, Emchar c);
|
|
1711 INLINE_HEADER Emchar
|
428
|
1712 TRT_TABLE_OF (Lisp_Object trt, Emchar c)
|
|
1713 {
|
446
|
1714 return TRT_TABLE_CHAR_1 (trt, c);
|
428
|
1715 }
|
|
1716
|
|
1717 /* Macros used below. */
|
446
|
1718 #define DOWNCASE_TABLE_OF(buf, c) \
|
|
1719 TRT_TABLE_OF (XCASE_TABLE_DOWNCASE (buf->case_table), c)
|
|
1720 #define UPCASE_TABLE_OF(buf, c) \
|
|
1721 TRT_TABLE_OF (XCASE_TABLE_UPCASE (buf->case_table), c)
|
428
|
1722
|
|
1723 /* 1 if CH is upper case. */
|
|
1724
|
442
|
1725 INLINE_HEADER int UPPERCASEP (struct buffer *buf, Emchar ch);
|
|
1726 INLINE_HEADER int
|
428
|
1727 UPPERCASEP (struct buffer *buf, Emchar ch)
|
|
1728 {
|
|
1729 return DOWNCASE_TABLE_OF (buf, ch) != ch;
|
|
1730 }
|
|
1731
|
|
1732 /* 1 if CH is lower case. */
|
|
1733
|
442
|
1734 INLINE_HEADER int LOWERCASEP (struct buffer *buf, Emchar ch);
|
|
1735 INLINE_HEADER int
|
428
|
1736 LOWERCASEP (struct buffer *buf, Emchar ch)
|
|
1737 {
|
|
1738 return (UPCASE_TABLE_OF (buf, ch) != ch &&
|
|
1739 DOWNCASE_TABLE_OF (buf, ch) == ch);
|
|
1740 }
|
|
1741
|
|
1742 /* 1 if CH is neither upper nor lower case. */
|
|
1743
|
442
|
1744 INLINE_HEADER int NOCASEP (struct buffer *buf, Emchar ch);
|
|
1745 INLINE_HEADER int
|
428
|
1746 NOCASEP (struct buffer *buf, Emchar ch)
|
|
1747 {
|
|
1748 return UPCASE_TABLE_OF (buf, ch) == ch;
|
|
1749 }
|
|
1750
|
|
1751 /* Upcase a character, or make no change if that cannot be done. */
|
|
1752
|
442
|
1753 INLINE_HEADER Emchar UPCASE (struct buffer *buf, Emchar ch);
|
|
1754 INLINE_HEADER Emchar
|
428
|
1755 UPCASE (struct buffer *buf, Emchar ch)
|
|
1756 {
|
|
1757 return (DOWNCASE_TABLE_OF (buf, ch) == ch) ? UPCASE_TABLE_OF (buf, ch) : ch;
|
|
1758 }
|
|
1759
|
|
1760 /* Upcase a character known to be not upper case. Unused. */
|
|
1761
|
|
1762 #define UPCASE1(buf, ch) UPCASE_TABLE_OF (buf, ch)
|
|
1763
|
|
1764 /* Downcase a character, or make no change if that cannot be done. */
|
|
1765
|
|
1766 #define DOWNCASE(buf, ch) DOWNCASE_TABLE_OF (buf, ch)
|
|
1767
|
444
|
1768 /************************************************************************/
|
|
1769 /* Lisp string representation convenience functions */
|
|
1770 /************************************************************************/
|
|
1771 /* Because the representation of internally formatted data is subject to change,
|
|
1772 It's bad style to do something like strcmp (XSTRING_DATA (s), "foo")
|
|
1773 Instead, use the portable: bufbyte_strcmp (XSTRING_DATA (s), "foo")
|
|
1774 or bufbyte_memcmp (XSTRING_DATA (s), "foo", 3) */
|
|
1775
|
|
1776 /* Like strcmp, except first arg points at internally formatted data,
|
|
1777 while the second points at a string of only ASCII chars. */
|
|
1778 INLINE_HEADER int
|
|
1779 bufbyte_strcmp (const Bufbyte *bp, const char *ascii_string);
|
|
1780 INLINE_HEADER int
|
|
1781 bufbyte_strcmp (const Bufbyte *bp, const char *ascii_string)
|
|
1782 {
|
|
1783 #ifdef MULE
|
|
1784 while (1)
|
|
1785 {
|
|
1786 int diff;
|
|
1787 type_checking_assert (BYTE_ASCII_P (*ascii_string));
|
|
1788 if ((diff = charptr_emchar (bp) - *(Bufbyte *) ascii_string) != 0)
|
|
1789 return diff;
|
|
1790 if (*ascii_string == '\0')
|
|
1791 return 0;
|
|
1792 ascii_string++;
|
|
1793 INC_CHARPTR (bp);
|
|
1794 }
|
|
1795 #else
|
|
1796 return strcmp ((char *)bp, ascii_string);
|
|
1797 #endif
|
|
1798 }
|
|
1799
|
|
1800
|
|
1801 /* Like memcmp, except first arg points at internally formatted data,
|
|
1802 while the second points at a string of only ASCII chars. */
|
|
1803 INLINE_HEADER int
|
|
1804 bufbyte_memcmp (const Bufbyte *bp, const char *ascii_string, size_t len);
|
|
1805 INLINE_HEADER int
|
|
1806 bufbyte_memcmp (const Bufbyte *bp, const char *ascii_string, size_t len)
|
|
1807 {
|
|
1808 #ifdef MULE
|
|
1809 while (len--)
|
|
1810 {
|
|
1811 int diff = charptr_emchar (bp) - *(Bufbyte *) ascii_string;
|
|
1812 type_checking_assert (BYTE_ASCII_P (*ascii_string));
|
|
1813 if (diff != 0)
|
|
1814 return diff;
|
|
1815 ascii_string++;
|
|
1816 INC_CHARPTR (bp);
|
|
1817 }
|
|
1818 return 0;
|
|
1819 #else
|
|
1820 return memcmp (bp, ascii_string, len);
|
|
1821 #endif
|
|
1822 }
|
|
1823
|
440
|
1824 #endif /* INCLUDED_buffer_h_ */
|