0
|
1 /* Primitive operations on Lisp data types for XEmacs Lisp interpreter.
|
|
2 Copyright (C) 1985, 1986, 1988, 1992, 1993, 1994, 1995
|
|
3 Free Software Foundation, Inc.
|
|
4
|
|
5 This file is part of XEmacs.
|
|
6
|
|
7 XEmacs is free software; you can redistribute it and/or modify it
|
|
8 under the terms of the GNU General Public License as published by the
|
|
9 Free Software Foundation; either version 2, or (at your option) any
|
|
10 later version.
|
|
11
|
|
12 XEmacs is distributed in the hope that it will be useful, but WITHOUT
|
|
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
15 for more details.
|
|
16
|
|
17 You should have received a copy of the GNU General Public License
|
|
18 along with XEmacs; see the file COPYING. If not, write to
|
|
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
20 Boston, MA 02111-1307, USA. */
|
|
21
|
|
22 /* Synched up with: Mule 2.0, FSF 19.30. Some of FSF's data.c is in
|
|
23 XEmacs' symbols.c. */
|
|
24
|
|
25 /* This file has been Mule-ized. */
|
|
26
|
|
27 #include <config.h>
|
|
28 #include "lisp.h"
|
|
29
|
|
30 #include "buffer.h"
|
|
31 #include "bytecode.h"
|
|
32
|
|
33 #include "syssignal.h"
|
|
34 #ifdef LISP_FLOAT_TYPE
|
|
35 /* Need to define a differentiating symbol -- see sysfloat.h */
|
|
36 # define THIS_FILENAME data_c
|
|
37 # include "sysfloat.h"
|
|
38 #endif /* LISP_FLOAT_TYPE */
|
|
39
|
|
40 Lisp_Object Qnil, Qt, Qquote, Qlambda, Qunbound;
|
|
41 Lisp_Object Qerror_conditions, Qerror_message, Qtop_level;
|
|
42 Lisp_Object Qsignal, Qerror, Qquit, Qwrong_type_argument, Qargs_out_of_range;
|
|
43 Lisp_Object Qvoid_variable, Qcyclic_variable_indirection;
|
|
44 Lisp_Object Qvoid_function, Qcyclic_function_indirection;
|
|
45 Lisp_Object Qsetting_constant, Qinvalid_read_syntax;
|
|
46 Lisp_Object Qmalformed_list, Qmalformed_property_list;
|
|
47 Lisp_Object Qcircular_list, Qcircular_property_list;
|
|
48 Lisp_Object Qinvalid_function, Qwrong_number_of_arguments, Qno_catch;
|
|
49 Lisp_Object Qio_error, Qend_of_file;
|
|
50 Lisp_Object Qarith_error, Qrange_error, Qdomain_error;
|
|
51 Lisp_Object Qsingularity_error, Qoverflow_error, Qunderflow_error;
|
|
52 Lisp_Object Qbeginning_of_buffer, Qend_of_buffer, Qbuffer_read_only;
|
|
53 Lisp_Object Qintegerp, Qnatnump, Qsymbolp, Qkeywordp, Qlistp, Qconsp, Qsubrp;
|
|
54 Lisp_Object Qcharacterp, Qstringp, Qarrayp, Qsequencep, Qbufferp;
|
|
55 Lisp_Object Qcompiled_functionp;
|
|
56 Lisp_Object Qchar_or_string_p, Qmarkerp, Qinteger_or_marker_p, Qvectorp;
|
|
57 Lisp_Object Qinteger_or_char_p, Qinteger_char_or_marker_p;
|
|
58 Lisp_Object Qbit_vectorp, Qbitp;
|
|
59
|
|
60 /* Qstring, Qinteger, Qsymbol, Qvector defined in general.c */
|
|
61 Lisp_Object Qcons, Qkeyword;
|
|
62
|
|
63 Lisp_Object Qcdr;
|
|
64
|
|
65 Lisp_Object Qignore;
|
|
66
|
|
67 #ifdef LISP_FLOAT_TYPE
|
|
68 Lisp_Object Qfloatp;
|
|
69 #endif
|
|
70 Lisp_Object Qnumberp, Qnumber_or_marker_p, Qnumber_char_or_marker_p;
|
|
71
|
|
72 Lisp_Object Qweak_listp;
|
|
73
|
|
74 Lisp_Object
|
|
75 wrong_type_argument (Lisp_Object predicate, Lisp_Object value)
|
|
76 {
|
|
77 /* This function can GC */
|
|
78 REGISTER Lisp_Object tem;
|
|
79 do
|
|
80 {
|
|
81 #ifdef MOCKLISP_SUPPORT
|
|
82 if (!EQ (Vmocklisp_arguments, Qt))
|
|
83 {
|
|
84 if (STRINGP (value) &&
|
|
85 (EQ (predicate, Qintegerp) ||
|
|
86 EQ (predicate, Qinteger_or_marker_p) ||
|
|
87 EQ (predicate, Qinteger_char_or_marker_p)))
|
|
88 return Fstring_to_number (value);
|
|
89 if (INTP (value) && EQ (predicate, Qstringp))
|
|
90 return Fnumber_to_string (value);
|
|
91 if (CHARP (value) && EQ (predicate, Qstringp))
|
|
92 return Fchar_to_string (value);
|
|
93 }
|
|
94 #endif
|
|
95 value = Fsignal (Qwrong_type_argument, list2 (predicate, value));
|
|
96 tem = call1 (predicate, value);
|
|
97 }
|
|
98 while (NILP (tem));
|
|
99 return value;
|
|
100 }
|
|
101
|
|
102 DOESNT_RETURN
|
|
103 dead_wrong_type_argument (Lisp_Object predicate, Lisp_Object value)
|
|
104 {
|
|
105 signal_error (Qwrong_type_argument, list2 (predicate, value));
|
|
106 }
|
|
107
|
|
108 DEFUN ("wrong-type-argument", Fwrong_type_argument, Swrong_type_argument,
|
|
109 2, 2, 0 /*
|
|
110 Signal an error until the correct type value is given by the user.
|
|
111 This function loops, signalling a continuable `wrong-type-argument' error
|
|
112 with PREDICATE and VALUE as the data associated with the error and then
|
|
113 calling PREDICATE on the returned value, until the value gotten satisfies
|
|
114 PREDICATE. At that point, the gotten value is returned.
|
|
115 */ )
|
|
116 (predicate, value)
|
|
117 Lisp_Object predicate, value;
|
|
118 {
|
|
119 return wrong_type_argument (predicate, value);
|
|
120 }
|
|
121
|
|
122 DOESNT_RETURN
|
|
123 pure_write_error (void)
|
|
124 {
|
|
125 error ("Attempt to modify read-only object");
|
|
126 }
|
|
127
|
|
128 DOESNT_RETURN
|
|
129 args_out_of_range (Lisp_Object a1, Lisp_Object a2)
|
|
130 {
|
|
131 signal_error (Qargs_out_of_range, list2 (a1, a2));
|
|
132 }
|
|
133
|
|
134 DOESNT_RETURN
|
|
135 args_out_of_range_3 (Lisp_Object a1, Lisp_Object a2, Lisp_Object a3)
|
|
136 {
|
|
137 signal_error (Qargs_out_of_range, list3 (a1, a2, a3));
|
|
138 }
|
|
139
|
|
140 void
|
|
141 check_int_range (int val, int min, int max)
|
|
142 {
|
|
143 if (val < min || val > max)
|
|
144 args_out_of_range_3 (make_int (val), make_int (min),
|
|
145 make_int (max));
|
|
146 }
|
|
147
|
|
148 #ifndef make_int
|
|
149 Lisp_Object
|
|
150 make_int (EMACS_INT num)
|
|
151 {
|
|
152 Lisp_Object val;
|
|
153 /* Don't use XSETINT here -- it's defined in terms of make_int (). */
|
|
154 XSETOBJ (val, Lisp_Int, num);
|
|
155 return val;
|
|
156 }
|
|
157 #endif /* ! defined (make_int) */
|
|
158
|
|
159 /* On some machines, XINT needs a temporary location.
|
|
160 Here it is, in case it is needed. */
|
|
161
|
|
162 EMACS_INT sign_extend_temp;
|
|
163
|
|
164 /* On a few machines, XINT can only be done by calling this. */
|
|
165 /* XEmacs: only used by m/convex.h */
|
|
166 int sign_extend_lisp_int (EMACS_INT num);
|
|
167 int
|
|
168 sign_extend_lisp_int (EMACS_INT num)
|
|
169 {
|
|
170 if (num & (1L << (VALBITS - 1)))
|
|
171 return num | ((-1L) << VALBITS);
|
|
172 else
|
|
173 return num & ((1L << VALBITS) - 1);
|
|
174 }
|
|
175
|
|
176 /* characters do not need to sign extend so there's no need for special
|
|
177 futzing like with ints. */
|
|
178 Lisp_Object
|
|
179 make_char (Emchar num)
|
|
180 {
|
|
181 return make_int (num);
|
|
182 }
|
|
183
|
|
184 /* Data type predicates */
|
|
185
|
|
186 DEFUN ("eq", Feq, Seq, 2, 2, 0 /*
|
|
187 T if the two args are the same Lisp object.
|
|
188 */ )
|
|
189 (obj1, obj2)
|
|
190 Lisp_Object obj1, obj2;
|
|
191 {
|
|
192 if (EQ (obj1, obj2))
|
|
193 return Qt;
|
|
194 return Qnil;
|
|
195 }
|
|
196
|
|
197 DEFUN ("null", Fnull, Snull, 1, 1, 0 /*
|
|
198 T if OBJECT is nil.
|
|
199 */ )
|
|
200 (object)
|
|
201 Lisp_Object object;
|
|
202 {
|
|
203 if (NILP (object))
|
|
204 return Qt;
|
|
205 return Qnil;
|
|
206 }
|
|
207
|
|
208 DEFUN ("consp", Fconsp, Sconsp, 1, 1, 0 /*
|
|
209 T if OBJECT is a cons cell.
|
|
210 */ )
|
|
211 (object)
|
|
212 Lisp_Object object;
|
|
213 {
|
|
214 if (CONSP (object))
|
|
215 return Qt;
|
|
216 return Qnil;
|
|
217 }
|
|
218
|
|
219 DEFUN ("atom", Fatom, Satom, 1, 1, 0 /*
|
|
220 T if OBJECT is not a cons cell. This includes nil.
|
|
221 */ )
|
|
222 (object)
|
|
223 Lisp_Object object;
|
|
224 {
|
|
225 if (CONSP (object))
|
|
226 return Qnil;
|
|
227 return Qt;
|
|
228 }
|
|
229
|
|
230 DEFUN ("listp", Flistp, Slistp, 1, 1, 0 /*
|
|
231 T if OBJECT is a list. This includes nil.
|
|
232 */ )
|
|
233 (object)
|
|
234 Lisp_Object object;
|
|
235 {
|
|
236 if (CONSP (object) || NILP (object))
|
|
237 return Qt;
|
|
238 return Qnil;
|
|
239 }
|
|
240
|
|
241 DEFUN ("nlistp", Fnlistp, Snlistp, 1, 1, 0 /*
|
|
242 T if OBJECT is not a list. Lists include nil.
|
|
243 */ )
|
|
244 (object)
|
|
245 Lisp_Object object;
|
|
246 {
|
|
247 if (CONSP (object) || NILP (object))
|
|
248 return Qnil;
|
|
249 return Qt;
|
|
250 }
|
|
251
|
|
252 DEFUN ("symbolp", Fsymbolp, Ssymbolp, 1, 1, 0 /*
|
|
253 T if OBJECT is a symbol.
|
|
254 */ )
|
|
255 (object)
|
|
256 Lisp_Object object;
|
|
257 {
|
|
258 if (SYMBOLP (object))
|
|
259 return Qt;
|
|
260 return Qnil;
|
|
261 }
|
|
262
|
|
263 DEFUN ("keywordp", Fkeywordp, Skeywordp, 1, 1, 0 /*
|
|
264 T if OBJECT is a keyword.
|
|
265 */ )
|
|
266 (object)
|
|
267 Lisp_Object object;
|
|
268 {
|
|
269 if (KEYWORDP (object))
|
|
270 return Qt;
|
|
271 return Qnil;
|
|
272 }
|
|
273
|
|
274 DEFUN ("vectorp", Fvectorp, Svectorp, 1, 1, 0 /*
|
|
275 T if OBJECT is a vector.
|
|
276 */ )
|
|
277 (object)
|
|
278 Lisp_Object object;
|
|
279 {
|
|
280 if (VECTORP (object))
|
|
281 return Qt;
|
|
282 return Qnil;
|
|
283 }
|
|
284
|
|
285 DEFUN ("bit-vector-p", Fbit_vector_p, Sbit_vector_p, 1, 1, 0 /*
|
|
286 T if OBJECT is a bit vector.
|
|
287 */ )
|
|
288 (object)
|
|
289 Lisp_Object object;
|
|
290 {
|
|
291 if (BIT_VECTORP (object))
|
|
292 return Qt;
|
|
293 return Qnil;
|
|
294 }
|
|
295
|
|
296 DEFUN ("stringp", Fstringp, Sstringp, 1, 1, 0 /*
|
|
297 T if OBJECT is a string.
|
|
298 */ )
|
|
299 (object)
|
|
300 Lisp_Object object;
|
|
301 {
|
|
302 if (STRINGP (object))
|
|
303 return Qt;
|
|
304 return Qnil;
|
|
305 }
|
|
306
|
|
307 DEFUN ("arrayp", Farrayp, Sarrayp, 1, 1, 0 /*
|
|
308 T if OBJECT is an array (string, vector, or bit vector).
|
|
309 */ )
|
|
310 (object)
|
|
311 Lisp_Object object;
|
|
312 {
|
|
313 if (VECTORP (object) || STRINGP (object) || BIT_VECTORP (object))
|
|
314 return Qt;
|
|
315 return Qnil;
|
|
316 }
|
|
317
|
|
318 DEFUN ("sequencep", Fsequencep, Ssequencep, 1, 1, 0 /*
|
|
319 T if OBJECT is a sequence (list or array).
|
|
320 */ )
|
|
321 (object)
|
|
322 Lisp_Object object;
|
|
323 {
|
|
324 if (CONSP (object) || NILP (object)
|
|
325 || VECTORP (object) || STRINGP (object) || BIT_VECTORP (object))
|
|
326 return Qt;
|
|
327 return Qnil;
|
|
328 }
|
|
329
|
|
330 DEFUN ("markerp", Fmarkerp, Smarkerp, 1, 1, 0 /*
|
|
331 T if OBJECT is a marker (editor pointer).
|
|
332 */ )
|
|
333 (object)
|
|
334 Lisp_Object object;
|
|
335 {
|
|
336 if (MARKERP (object))
|
|
337 return Qt;
|
|
338 return Qnil;
|
|
339 }
|
|
340
|
|
341 DEFUN ("subrp", Fsubrp, Ssubrp, 1, 1, 0 /*
|
|
342 T if OBJECT is a built-in function.
|
|
343 */ )
|
|
344 (object)
|
|
345 Lisp_Object object;
|
|
346 {
|
|
347 if (SUBRP (object))
|
|
348 return Qt;
|
|
349 return Qnil;
|
|
350 }
|
|
351
|
|
352 DEFUN ("subr-min-args", Fsubr_min_args, Ssubr_min_args, 1, 1, 0 /*
|
|
353 Return minimum number of args built-in function SUBR may be called with.
|
|
354 */ )
|
|
355 (subr)
|
|
356 Lisp_Object subr;
|
|
357 {
|
|
358 CHECK_SUBR (subr);
|
|
359 return make_int (XSUBR (subr)->min_args);
|
|
360 }
|
|
361
|
|
362 DEFUN ("subr-max-args", Fsubr_max_args, Ssubr_max_args, 1, 1, 0 /*
|
|
363 Return maximum number of args built-in function SUBR may be called with,
|
|
364 or nil if it takes an arbitrary number of arguments (or is a special form).
|
|
365 */ )
|
|
366 (subr)
|
|
367 Lisp_Object subr;
|
|
368 {
|
|
369 int nargs;
|
|
370 CHECK_SUBR (subr);
|
|
371 nargs = XSUBR (subr)->max_args;
|
|
372 if (nargs == MANY || nargs == UNEVALLED)
|
|
373 return Qnil;
|
|
374 else
|
|
375 return make_int (nargs);
|
|
376 }
|
|
377
|
|
378 DEFUN ("compiled-function-p", Fcompiled_function_p, Scompiled_function_p, 1, 1, 0 /*
|
|
379 t if OBJECT is a byte-compiled function object.
|
|
380 */ )
|
|
381 (object)
|
|
382 Lisp_Object object;
|
|
383 {
|
|
384 if (COMPILED_FUNCTIONP (object))
|
|
385 return Qt;
|
|
386 return Qnil;
|
|
387 }
|
|
388
|
|
389
|
|
390 DEFUN ("characterp", Fcharacterp, Scharacterp, 1, 1, 0 /*
|
|
391 t if OBJECT is a character.
|
|
392 A character is an integer that can be inserted into a buffer with
|
|
393 `insert-char'. All integers are considered valid characters and are
|
|
394 modded with 256 to get the actual character to use.
|
|
395 */ )
|
|
396 (object)
|
|
397 Lisp_Object object;
|
|
398 {
|
|
399 if (CHARP (object))
|
|
400 return Qt;
|
|
401 return Qnil;
|
|
402 }
|
|
403
|
|
404 DEFUN ("char-or-string-p", Fchar_or_string_p, Schar_or_string_p, 1, 1, 0 /*
|
|
405 t if OBJECT is a character or a string.
|
|
406 */ )
|
|
407 (object)
|
|
408 Lisp_Object object;
|
|
409 {
|
|
410 if (CHAR_OR_CHAR_INTP (object) || STRINGP (object))
|
|
411 return Qt;
|
|
412 return Qnil;
|
|
413 }
|
|
414
|
|
415 DEFUN ("integerp", Fintegerp, Sintegerp, 1, 1, 0 /*
|
|
416 t if OBJECT is an integer.
|
|
417 */ )
|
|
418 (object)
|
|
419 Lisp_Object object;
|
|
420 {
|
|
421 if (INTP (object))
|
|
422 return Qt;
|
|
423 return Qnil;
|
|
424 }
|
|
425
|
|
426 DEFUN ("integer-or-marker-p", Finteger_or_marker_p, Sinteger_or_marker_p,
|
|
427 1, 1, 0 /*
|
|
428 t if OBJECT is an integer or a marker (editor pointer).
|
|
429 */ )
|
|
430 (object)
|
|
431 Lisp_Object object;
|
|
432 {
|
|
433 if (INTP (object) || MARKERP (object))
|
|
434 return Qt;
|
|
435 return Qnil;
|
|
436 }
|
|
437
|
|
438 DEFUN ("natnump", Fnatnump, Snatnump, 1, 1, 0 /*
|
|
439 t if OBJECT is a nonnegative integer.
|
|
440 */ )
|
|
441 (object)
|
|
442 Lisp_Object object;
|
|
443 {
|
|
444 if (NATNUMP (object))
|
|
445 return Qt;
|
|
446 return Qnil;
|
|
447 }
|
|
448
|
|
449 DEFUN ("bitp", Fbitp, Sbitp, 1, 1, 0 /*
|
|
450 t if OBJECT is a bit (0 or 1).
|
|
451 */ )
|
|
452 (object)
|
|
453 Lisp_Object object;
|
|
454 {
|
|
455 if (BITP (object))
|
|
456 return Qt;
|
|
457 return Qnil;
|
|
458 }
|
|
459
|
|
460 DEFUN ("numberp", Fnumberp, Snumberp, 1, 1, 0 /*
|
|
461 t if OBJECT is a number (floating point or integer).
|
|
462 */ )
|
|
463 (object)
|
|
464 Lisp_Object object;
|
|
465 {
|
|
466 if (INT_OR_FLOATP (object))
|
|
467 return Qt;
|
|
468 return Qnil;
|
|
469 }
|
|
470
|
|
471 DEFUN ("number-or-marker-p", Fnumber_or_marker_p, Snumber_or_marker_p, 1, 1, 0 /*
|
|
472 t if OBJECT is a number or a marker.
|
|
473 */ )
|
|
474 (object)
|
|
475 Lisp_Object object;
|
|
476 {
|
|
477 if (INT_OR_FLOATP (object)
|
|
478 || MARKERP (object))
|
|
479 return Qt;
|
|
480 return Qnil;
|
|
481 }
|
|
482
|
|
483 #ifdef LISP_FLOAT_TYPE
|
|
484 DEFUN ("floatp", Ffloatp, Sfloatp, 1, 1, 0 /*
|
|
485 t if OBJECT is a floating point number.
|
|
486 */ )
|
|
487 (object)
|
|
488 Lisp_Object object;
|
|
489 {
|
|
490 if (FLOATP (object))
|
|
491 return Qt;
|
|
492 return Qnil;
|
|
493 }
|
|
494 #endif /* LISP_FLOAT_TYPE */
|
|
495
|
|
496 DEFUN ("type-of", Ftype_of, Stype_of, 1, 1, 0 /*
|
|
497 Return a symbol representing the type of OBJECT.
|
|
498 */ )
|
|
499 (object)
|
|
500 Lisp_Object object;
|
|
501 {
|
|
502 if (CONSP (object))
|
|
503 return Qcons;
|
|
504 if (SYMBOLP (object))
|
|
505 return Qsymbol;
|
|
506 if (KEYWORDP (object))
|
|
507 return Qkeyword;
|
|
508 if (INTP (object))
|
|
509 return Qinteger;
|
|
510 if (STRINGP (object))
|
|
511 return Qstring;
|
|
512 if (VECTORP (object))
|
|
513 return Qvector;
|
|
514 assert (LRECORDP (object));
|
|
515 return intern (XRECORD_LHEADER (object)->implementation->name);
|
|
516 }
|
|
517
|
|
518
|
|
519 /* Extract and set components of lists */
|
|
520
|
|
521 DEFUN ("car", Fcar, Scar, 1, 1, 0 /*
|
|
522 Return the car of LIST. If arg is nil, return nil.
|
|
523 Error if arg is not nil and not a cons cell. See also `car-safe'.
|
|
524 */ )
|
|
525 (list)
|
|
526 Lisp_Object list;
|
|
527 {
|
|
528 while (1)
|
|
529 {
|
|
530 if (CONSP (list))
|
|
531 return XCAR (list);
|
|
532 else if (NILP (list))
|
|
533 return Qnil;
|
|
534 else
|
|
535 list = wrong_type_argument (Qconsp, list);
|
|
536 }
|
|
537 }
|
|
538
|
|
539 DEFUN ("car-safe", Fcar_safe, Scar_safe, 1, 1, 0 /*
|
|
540 Return the car of OBJECT if it is a cons cell, or else nil.
|
|
541 */ )
|
|
542 (object)
|
|
543 Lisp_Object object;
|
|
544 {
|
|
545 if (CONSP (object))
|
|
546 return XCAR (object);
|
|
547 else
|
|
548 return Qnil;
|
|
549 }
|
|
550
|
|
551 DEFUN ("cdr", Fcdr, Scdr, 1, 1, 0 /*
|
|
552 Return the cdr of LIST. If arg is nil, return nil.
|
|
553 Error if arg is not nil and not a cons cell. See also `cdr-safe'.
|
|
554 */ )
|
|
555 (list)
|
|
556 Lisp_Object list;
|
|
557 {
|
|
558 while (1)
|
|
559 {
|
|
560 if (CONSP (list))
|
|
561 return XCDR (list);
|
|
562 else if (NILP (list))
|
|
563 return Qnil;
|
|
564 else
|
|
565 list = wrong_type_argument (Qconsp, list);
|
|
566 }
|
|
567 }
|
|
568
|
|
569 DEFUN ("cdr-safe", Fcdr_safe, Scdr_safe, 1, 1, 0 /*
|
|
570 Return the cdr of OBJECT if it is a cons cell, or else nil.
|
|
571 */ )
|
|
572 (object)
|
|
573 Lisp_Object object;
|
|
574 {
|
|
575 if (CONSP (object))
|
|
576 return XCDR (object);
|
|
577 else
|
|
578 return Qnil;
|
|
579 }
|
|
580
|
|
581 DEFUN ("setcar", Fsetcar, Ssetcar, 2, 2, 0 /*
|
|
582 Set the car of CONSCELL to be NEWCAR. Returns NEWCAR.
|
|
583 */ )
|
|
584 (conscell, newcar)
|
|
585 Lisp_Object conscell, newcar;
|
|
586 {
|
|
587 if (!CONSP (conscell))
|
|
588 conscell = wrong_type_argument (Qconsp, conscell);
|
|
589
|
|
590 CHECK_IMPURE (conscell);
|
|
591 XCAR (conscell) = newcar;
|
|
592 return newcar;
|
|
593 }
|
|
594
|
|
595 DEFUN ("setcdr", Fsetcdr, Ssetcdr, 2, 2, 0 /*
|
|
596 Set the cdr of CONSCELL to be NEWCDR. Returns NEWCDR.
|
|
597 */ )
|
|
598 (conscell, newcdr)
|
|
599 Lisp_Object conscell, newcdr;
|
|
600 {
|
|
601 if (!CONSP (conscell))
|
|
602 conscell = wrong_type_argument (Qconsp, conscell);
|
|
603
|
|
604 CHECK_IMPURE (conscell);
|
|
605 XCDR (conscell) = newcdr;
|
|
606 return newcdr;
|
|
607 }
|
|
608
|
|
609 /* Find the function at the end of a chain of symbol function indirections. */
|
|
610
|
|
611 /* If OBJECT is a symbol, find the end of its function chain and
|
|
612 return the value found there. If OBJECT is not a symbol, just
|
|
613 return it. If there is a cycle in the function chain, signal a
|
|
614 cyclic-function-indirection error.
|
|
615
|
|
616 This is like Findirect_function, except that it doesn't signal an
|
|
617 error if the chain ends up unbound. */
|
|
618 Lisp_Object
|
|
619 indirect_function (Lisp_Object object, int errorp)
|
|
620 {
|
|
621 Lisp_Object tortoise = object;
|
|
622 Lisp_Object hare = object;
|
|
623
|
|
624 for (;;)
|
|
625 {
|
|
626 if (!SYMBOLP (hare) || UNBOUNDP (hare))
|
|
627 break;
|
|
628 hare = XSYMBOL (hare)->function;
|
|
629 if (!SYMBOLP (hare) || UNBOUNDP (hare))
|
|
630 break;
|
|
631 hare = XSYMBOL (hare)->function;
|
|
632
|
|
633 tortoise = XSYMBOL (tortoise)->function;
|
|
634
|
|
635 if (EQ (hare, tortoise))
|
|
636 return (Fsignal (Qcyclic_function_indirection, list1 (object)));
|
|
637 }
|
|
638
|
|
639 if (UNBOUNDP (hare) && errorp)
|
|
640 return Fsignal (Qvoid_function, list1 (object));
|
|
641 return hare;
|
|
642 }
|
|
643
|
|
644 DEFUN ("indirect-function", Findirect_function, Sindirect_function, 1, 1, 0 /*
|
|
645 Return the function at the end of OBJECT's function chain.
|
|
646 If OBJECT is a symbol, follow all function indirections and return
|
|
647 the final function binding.
|
|
648 If OBJECT is not a symbol, just return it.
|
|
649 Signal a void-function error if the final symbol is unbound.
|
|
650 Signal a cyclic-function-indirection error if there is a loop in the
|
|
651 function chain of symbols.
|
|
652 */ )
|
|
653 (object)
|
|
654 Lisp_Object object;
|
|
655 {
|
|
656 return indirect_function (object, 1);
|
|
657 }
|
|
658
|
|
659 /* Extract and set vector and string elements */
|
|
660
|
|
661 DEFUN ("aref", Faref, Saref, 2, 2, 0 /*
|
|
662 Return the element of ARRAY at index INDEX.
|
|
663 ARRAY may be a vector, bit vector, string, or byte-code object.
|
|
664 IDX starts at 0.
|
|
665 */ )
|
|
666 (array, idx)
|
|
667 Lisp_Object array;
|
|
668 Lisp_Object idx;
|
|
669 {
|
|
670 int idxval;
|
|
671
|
|
672 retry:
|
|
673 CHECK_INT_COERCE_CHAR (idx); /* yuck! */
|
|
674 idxval = XINT (idx);
|
|
675 if (idxval < 0)
|
|
676 {
|
|
677 lose:
|
|
678 args_out_of_range (array, idx);
|
|
679 }
|
|
680 if (VECTORP (array))
|
|
681 {
|
|
682 if (idxval >= vector_length (XVECTOR (array))) goto lose;
|
|
683 return vector_data (XVECTOR (array))[idxval];
|
|
684 }
|
|
685 else if (BIT_VECTORP (array))
|
|
686 {
|
|
687 if (idxval >= bit_vector_length (XBIT_VECTOR (array))) goto lose;
|
|
688 return make_int (bit_vector_bit (XBIT_VECTOR (array), idxval));
|
|
689 }
|
|
690 else if (STRINGP (array))
|
|
691 {
|
|
692 if (idxval >= string_char_length (XSTRING (array))) goto lose;
|
|
693 return (make_char (string_char (XSTRING (array), idxval)));
|
|
694 }
|
|
695 #ifdef LOSING_BYTECODE
|
|
696 else if (COMPILED_FUNCTIONP (array))
|
|
697 {
|
|
698 /* Weird, gross compatibility kludge */
|
|
699 return (Felt (array, idx));
|
|
700 }
|
|
701 #endif
|
|
702 else
|
|
703 {
|
|
704 check_losing_bytecode ("aref", array);
|
|
705 array = wrong_type_argument (Qarrayp, array);
|
|
706 goto retry;
|
|
707 }
|
|
708 }
|
|
709
|
|
710 DEFUN ("aset", Faset, Saset, 3, 3, 0 /*
|
|
711 Store into the element of ARRAY at index IDX the value NEWVAL.
|
|
712 ARRAY may be a vector, bit vector, or string. IDX starts at 0.
|
|
713 */ )
|
|
714 (array, idx, newval)
|
|
715 Lisp_Object array;
|
|
716 Lisp_Object idx, newval;
|
|
717 {
|
|
718 int idxval;
|
|
719
|
|
720 CHECK_INT_COERCE_CHAR (idx); /* yuck! */
|
|
721 if (!VECTORP (array) && !BIT_VECTORP (array) && !STRINGP (array))
|
|
722 array = wrong_type_argument (Qarrayp, array);
|
|
723
|
|
724 idxval = XINT (idx);
|
|
725 if (idxval < 0)
|
|
726 {
|
|
727 lose:
|
|
728 args_out_of_range (array, idx);
|
|
729 }
|
|
730 CHECK_IMPURE (array);
|
|
731
|
|
732 if (VECTORP (array))
|
|
733 {
|
|
734 if (idxval >= vector_length (XVECTOR (array))) goto lose;
|
|
735 vector_data (XVECTOR (array))[idxval] = newval;
|
|
736 }
|
|
737 else if (BIT_VECTORP (array))
|
|
738 {
|
|
739 if (idxval >= bit_vector_length (XBIT_VECTOR (array))) goto lose;
|
|
740 CHECK_BIT (newval);
|
|
741 set_bit_vector_bit (XBIT_VECTOR (array), idxval, !ZEROP (newval));
|
|
742 }
|
|
743 else /* string */
|
|
744 {
|
|
745 CHECK_CHAR_COERCE_INT (newval);
|
|
746 if (idxval >= string_char_length (XSTRING (array))) goto lose;
|
|
747 set_string_char (XSTRING (array), idxval, XCHAR (newval));
|
|
748 bump_string_modiff (array);
|
|
749 }
|
|
750
|
|
751 return newval;
|
|
752 }
|
|
753
|
|
754
|
|
755 /**********************************************************************/
|
|
756 /* Compiled-function objects */
|
|
757 /**********************************************************************/
|
|
758
|
|
759 /* The compiled_function->doc_and_interactive slot uses the minimal
|
|
760 number of conses, based on compiled_function->flags; it may take
|
|
761 any of the following forms:
|
|
762
|
|
763 doc
|
|
764 interactive
|
|
765 domain
|
|
766 (doc . interactive)
|
|
767 (doc . domain)
|
|
768 (interactive . domain)
|
|
769 (doc . (interactive . domain))
|
|
770 */
|
|
771
|
|
772 /* Caller must check flags.interactivep first */
|
|
773 Lisp_Object
|
|
774 compiled_function_interactive (struct Lisp_Compiled_Function *b)
|
|
775 {
|
|
776 assert (b->flags.interactivep);
|
|
777 if (b->flags.documentationp && b->flags.domainp)
|
|
778 return (XCAR (XCDR (b->doc_and_interactive)));
|
|
779 else if (b->flags.documentationp)
|
|
780 return (XCDR (b->doc_and_interactive));
|
|
781 else if (b->flags.domainp)
|
|
782 return (XCAR (b->doc_and_interactive));
|
|
783
|
|
784 /* if all else fails... */
|
|
785 return (b->doc_and_interactive);
|
|
786 }
|
|
787
|
|
788 /* Caller need not check flags.documentationp first */
|
|
789 Lisp_Object
|
|
790 compiled_function_documentation (struct Lisp_Compiled_Function *b)
|
|
791 {
|
|
792 if (! b->flags.documentationp)
|
|
793 return Qnil;
|
|
794 else if (b->flags.interactivep && b->flags.domainp)
|
|
795 return (XCAR (b->doc_and_interactive));
|
|
796 else if (b->flags.interactivep)
|
|
797 return (XCAR (b->doc_and_interactive));
|
|
798 else if (b->flags.domainp)
|
|
799 return (XCAR (b->doc_and_interactive));
|
|
800 else
|
|
801 return (b->doc_and_interactive);
|
|
802 }
|
|
803
|
|
804 /* Caller need not check flags.domainp first */
|
|
805 Lisp_Object
|
|
806 compiled_function_domain (struct Lisp_Compiled_Function *b)
|
|
807 {
|
|
808 if (! b->flags.domainp)
|
|
809 return Qnil;
|
|
810 else if (b->flags.documentationp && b->flags.interactivep)
|
|
811 return (XCDR (XCDR (b->doc_and_interactive)));
|
|
812 else if (b->flags.documentationp)
|
|
813 return (XCDR (b->doc_and_interactive));
|
|
814 else if (b->flags.interactivep)
|
|
815 return (XCDR (b->doc_and_interactive));
|
|
816 else
|
|
817 return (b->doc_and_interactive);
|
|
818 }
|
|
819
|
|
820 #ifdef COMPILED_FUNCTION_ANNOTATION_HACK
|
|
821
|
|
822 Lisp_Object
|
|
823 compiled_function_annotation (struct Lisp_Compiled_Function *b)
|
|
824 {
|
|
825 return b->annotated;
|
|
826 }
|
|
827
|
|
828 #endif
|
|
829
|
|
830 /* used only by Snarf-documentation; there must be doc already. */
|
|
831 void
|
|
832 set_compiled_function_documentation (struct Lisp_Compiled_Function *b,
|
|
833 Lisp_Object new)
|
|
834 {
|
|
835 assert (b->flags.documentationp);
|
|
836 assert (INTP (new) || STRINGP (new));
|
|
837
|
|
838 if (b->flags.interactivep && b->flags.domainp)
|
|
839 XCAR (b->doc_and_interactive) = new;
|
|
840 else if (b->flags.interactivep)
|
|
841 XCAR (b->doc_and_interactive) = new;
|
|
842 else if (b->flags.domainp)
|
|
843 XCAR (b->doc_and_interactive) = new;
|
|
844 else
|
|
845 b->doc_and_interactive = new;
|
|
846 }
|
|
847
|
|
848 DEFUN ("compiled-function-instructions", Fcompiled_function_instructions,
|
|
849 Scompiled_function_instructions, 1, 1, 0 /*
|
|
850 Return the byte-opcode string of the compiled-function object.
|
|
851 */ )
|
|
852 (function)
|
|
853 Lisp_Object function;
|
|
854 {
|
|
855 CHECK_COMPILED_FUNCTION (function);
|
|
856 return (XCOMPILED_FUNCTION (function)->bytecodes);
|
|
857 }
|
|
858
|
|
859 DEFUN ("compiled-function-constants", Fcompiled_function_constants,
|
|
860 Scompiled_function_constants, 1, 1, 0 /*
|
|
861 Return the constants vector of the compiled-function object.
|
|
862 */ )
|
|
863 (function)
|
|
864 Lisp_Object function;
|
|
865 {
|
|
866 CHECK_COMPILED_FUNCTION (function);
|
|
867 return (XCOMPILED_FUNCTION (function)->constants);
|
|
868 }
|
|
869
|
|
870 DEFUN ("compiled-function-stack-depth", Fcompiled_function_stack_depth,
|
|
871 Scompiled_function_stack_depth, 1, 1, 0 /*
|
|
872 Return the max stack depth of the compiled-function object.
|
|
873 */ )
|
|
874 (function)
|
|
875 Lisp_Object function;
|
|
876 {
|
|
877 CHECK_COMPILED_FUNCTION (function);
|
|
878 return (make_int (XCOMPILED_FUNCTION (function)->maxdepth));
|
|
879 }
|
|
880
|
|
881 DEFUN ("compiled-function-arglist", Fcompiled_function_arglist,
|
|
882 Scompiled_function_arglist, 1, 1, 0 /*
|
|
883 Return the argument list of the compiled-function object.
|
|
884 */ )
|
|
885 (function)
|
|
886 Lisp_Object function;
|
|
887 {
|
|
888 CHECK_COMPILED_FUNCTION (function);
|
|
889 return (XCOMPILED_FUNCTION (function)->arglist);
|
|
890 }
|
|
891
|
|
892 DEFUN ("compiled-function-interactive", Fcompiled_function_interactive,
|
|
893 Scompiled_function_interactive, 1, 1, 0 /*
|
|
894 Return the interactive spec of the compiled-function object, or nil.
|
|
895 If non-nil, the return value will be a list whose first element is
|
|
896 `interactive' and whose second element is the interactive spec.
|
|
897 */ )
|
|
898 (function)
|
|
899 Lisp_Object function;
|
|
900 {
|
|
901 CHECK_COMPILED_FUNCTION (function);
|
|
902 if (!XCOMPILED_FUNCTION (function)->flags.interactivep)
|
|
903 return Qnil;
|
|
904 return (list2 (Qinteractive,
|
|
905 compiled_function_interactive
|
|
906 (XCOMPILED_FUNCTION (function))));
|
|
907 }
|
|
908
|
|
909 DEFUN ("compiled-function-doc-string", Fcompiled_function_doc_string,
|
|
910 Scompiled_function_doc_string, 1, 1, 0 /*
|
|
911 Return the doc string of the compiled-function object, if available.
|
|
912 */ )
|
|
913 (function)
|
|
914 Lisp_Object function;
|
|
915 {
|
|
916 CHECK_COMPILED_FUNCTION (function);
|
|
917 if (!XCOMPILED_FUNCTION (function)->flags.interactivep)
|
|
918 return Qnil;
|
|
919 return (list2 (Qinteractive,
|
|
920 compiled_function_interactive
|
|
921 (XCOMPILED_FUNCTION (function))));
|
|
922 }
|
|
923
|
|
924 #ifdef COMPILED_FUNCTION_ANNOTATION_HACK
|
|
925
|
|
926 DEFUN ("compiled-function-annotation", Fcompiled_function_annotation,
|
|
927 Scompiled_function_annotation, 1, 1, 0 /*
|
|
928 Return the annotation of the compiled-function object, or nil.
|
|
929 The annotation is a piece of information indicating where this
|
|
930 compiled-function object came from. Generally this will be
|
|
931 a symbol naming a function; or a string naming a file, if the
|
|
932 compiled-function object was not defined in a function; or nil,
|
|
933 if the compiled-function object was not created as a result of
|
|
934 a `load'.
|
|
935 */ )
|
|
936 (function)
|
|
937 Lisp_Object function;
|
|
938 {
|
|
939 CHECK_COMPILED_FUNCTION (function);
|
|
940 return (compiled_function_annotation (XCOMPILED_FUNCTION (function)));
|
|
941 }
|
|
942
|
|
943 #endif /* COMPILED_FUNCTION_ANNOTATION_HACK */
|
|
944
|
|
945 DEFUN ("compiled-function-domain", Fcompiled_function_domain,
|
|
946 Scompiled_function_domain, 1, 1, 0 /*
|
|
947 Return the domain of the compiled-function object, or nil.
|
|
948 This is only meaningful if I18N3 was enabled when emacs was compiled.
|
|
949 */ )
|
|
950 (function)
|
|
951 Lisp_Object function;
|
|
952 {
|
|
953 CHECK_COMPILED_FUNCTION (function);
|
|
954 if (!XCOMPILED_FUNCTION (function)->flags.domainp)
|
|
955 return Qnil;
|
|
956 return (compiled_function_domain (XCOMPILED_FUNCTION (function)));
|
|
957 }
|
|
958
|
|
959
|
|
960 /**********************************************************************/
|
|
961 /* Arithmetic functions */
|
|
962 /**********************************************************************/
|
|
963
|
|
964 enum comparison { equal, notequal, less, grtr, less_or_equal, grtr_or_equal };
|
|
965
|
|
966 static Lisp_Object
|
|
967 arithcompare (Lisp_Object num1, Lisp_Object num2,
|
|
968 enum comparison comparison)
|
|
969 {
|
|
970 int floatp = 0;
|
|
971
|
|
972 CHECK_INT_OR_FLOAT_COERCE_CHAR_OR_MARKER (num1);
|
|
973 CHECK_INT_OR_FLOAT_COERCE_CHAR_OR_MARKER (num2);
|
|
974
|
|
975 #ifdef LISP_FLOAT_TYPE
|
|
976 if (FLOATP (num1) || FLOATP (num2))
|
|
977 {
|
|
978 double f1, f2;
|
|
979
|
|
980 floatp = 1;
|
|
981 f1 = (FLOATP (num1)) ? float_data (XFLOAT (num1)) : XINT (num1);
|
|
982 f2 = (FLOATP (num2)) ? float_data (XFLOAT (num2)) : XINT (num2);
|
|
983
|
|
984 switch (comparison)
|
|
985 {
|
|
986 case equal:
|
|
987 if (f1 == f2)
|
|
988 return Qt;
|
|
989 return Qnil;
|
|
990
|
|
991 case notequal:
|
|
992 if (f1 != f2)
|
|
993 return Qt;
|
|
994 return Qnil;
|
|
995
|
|
996 case less:
|
|
997 if (f1 < f2)
|
|
998 return Qt;
|
|
999 return Qnil;
|
|
1000
|
|
1001 case less_or_equal:
|
|
1002 if (f1 <= f2)
|
|
1003 return Qt;
|
|
1004 return Qnil;
|
|
1005
|
|
1006 case grtr:
|
|
1007 if (f1 > f2)
|
|
1008 return Qt;
|
|
1009 return Qnil;
|
|
1010
|
|
1011 case grtr_or_equal:
|
|
1012 if (f1 >= f2)
|
|
1013 return Qt;
|
|
1014 return Qnil;
|
|
1015 }
|
|
1016 }
|
|
1017 #endif /* LISP_FLOAT_TYPE */
|
|
1018 else
|
|
1019 {
|
|
1020 switch (comparison)
|
|
1021 {
|
|
1022 case equal:
|
|
1023 if (XINT (num1) == XINT (num2))
|
|
1024 return Qt;
|
|
1025 return Qnil;
|
|
1026
|
|
1027 case notequal:
|
|
1028 if (XINT (num1) != XINT (num2))
|
|
1029 return Qt;
|
|
1030 return Qnil;
|
|
1031
|
|
1032 case less:
|
|
1033 if (XINT (num1) < XINT (num2))
|
|
1034 return Qt;
|
|
1035 return Qnil;
|
|
1036
|
|
1037 case less_or_equal:
|
|
1038 if (XINT (num1) <= XINT (num2))
|
|
1039 return Qt;
|
|
1040 return Qnil;
|
|
1041
|
|
1042 case grtr:
|
|
1043 if (XINT (num1) > XINT (num2))
|
|
1044 return Qt;
|
|
1045 return Qnil;
|
|
1046
|
|
1047 case grtr_or_equal:
|
|
1048 if (XINT (num1) >= XINT (num2))
|
|
1049 return Qt;
|
|
1050 return Qnil;
|
|
1051 }
|
|
1052 }
|
|
1053 abort ();
|
|
1054 return Qnil; /* suppress compiler warning */
|
|
1055 }
|
|
1056
|
|
1057 DEFUN ("=", Feqlsign, Seqlsign, 2, 2, 0 /*
|
|
1058 T if two args, both numbers or markers, are equal.
|
|
1059 */ )
|
|
1060 (num1, num2)
|
|
1061 Lisp_Object num1, num2;
|
|
1062 {
|
|
1063 return arithcompare (num1, num2, equal);
|
|
1064 }
|
|
1065
|
|
1066 DEFUN ("<", Flss, Slss, 2, 2, 0 /*
|
|
1067 T if first arg is less than second arg. Both must be numbers or markers.
|
|
1068 */ )
|
|
1069 (num1, num2)
|
|
1070 Lisp_Object num1, num2;
|
|
1071 {
|
|
1072 return arithcompare (num1, num2, less);
|
|
1073 }
|
|
1074
|
|
1075 DEFUN (">", Fgtr, Sgtr, 2, 2, 0 /*
|
|
1076 T if first arg is greater than second arg. Both must be numbers or markers.
|
|
1077 */ )
|
|
1078 (num1, num2)
|
|
1079 Lisp_Object num1, num2;
|
|
1080 {
|
|
1081 return arithcompare (num1, num2, grtr);
|
|
1082 }
|
|
1083
|
|
1084 DEFUN ("<=", Fleq, Sleq, 2, 2, 0 /*
|
|
1085 T if first arg is less than or equal to second arg.
|
|
1086 Both must be numbers or markers.
|
|
1087 */ )
|
|
1088 (num1, num2)
|
|
1089 Lisp_Object num1, num2;
|
|
1090 {
|
|
1091 return arithcompare (num1, num2, less_or_equal);
|
|
1092 }
|
|
1093
|
|
1094 DEFUN (">=", Fgeq, Sgeq, 2, 2, 0 /*
|
|
1095 T if first arg is greater than or equal to second arg.
|
|
1096 Both must be numbers or markers.
|
|
1097 */ )
|
|
1098 (num1, num2)
|
|
1099 Lisp_Object num1, num2;
|
|
1100 {
|
|
1101 return arithcompare (num1, num2, grtr_or_equal);
|
|
1102 }
|
|
1103
|
|
1104 DEFUN ("/=", Fneq, Sneq, 2, 2, 0 /*
|
|
1105 T if first arg is not equal to second arg. Both must be numbers or markers.
|
|
1106 */ )
|
|
1107 (num1, num2)
|
|
1108 Lisp_Object num1, num2;
|
|
1109 {
|
|
1110 return arithcompare (num1, num2, notequal);
|
|
1111 }
|
|
1112
|
|
1113 DEFUN ("zerop", Fzerop, Szerop, 1, 1, 0 /*
|
|
1114 T if NUMBER is zero.
|
|
1115 */ )
|
|
1116 (number)
|
|
1117 Lisp_Object number;
|
|
1118 {
|
|
1119 CHECK_INT_OR_FLOAT (number);
|
|
1120
|
|
1121 #ifdef LISP_FLOAT_TYPE
|
|
1122 if (FLOATP (number))
|
|
1123 {
|
|
1124 if (float_data (XFLOAT (number)) == 0.0)
|
|
1125 return Qt;
|
|
1126 return Qnil;
|
|
1127 }
|
|
1128 #endif /* LISP_FLOAT_TYPE */
|
|
1129
|
|
1130 if (XINT (number) == 0)
|
|
1131 return Qt;
|
|
1132 return Qnil;
|
|
1133 }
|
|
1134
|
|
1135 /* Convert between a 32-bit value and a cons of two 16-bit values.
|
|
1136 This is used to pass 32-bit integers to and from the user.
|
|
1137 Use time_to_lisp() and lisp_to_time() for time values.
|
|
1138
|
|
1139 If you're thinking of using this to store a pointer into a Lisp Object
|
|
1140 for internal purposes (such as when calling record_unwind_protect()),
|
|
1141 try using make_opaque_ptr()/get_opaque_ptr() instead. */
|
|
1142 Lisp_Object
|
|
1143 word_to_lisp (unsigned int item)
|
|
1144 {
|
|
1145 return Fcons (make_int (item >> 16), make_int (item & 0xffff));
|
|
1146 }
|
|
1147
|
|
1148 unsigned int
|
|
1149 lisp_to_word (Lisp_Object item)
|
|
1150 {
|
|
1151 if (INTP (item))
|
|
1152 return XINT (item);
|
|
1153 else
|
|
1154 {
|
|
1155 Lisp_Object top = Fcar (item);
|
|
1156 Lisp_Object bot = Fcdr (item);
|
|
1157 CHECK_INT (top);
|
|
1158 CHECK_INT (bot);
|
|
1159 return (XINT (top) << 16) | (XINT (bot) & 0xffff);
|
|
1160 }
|
|
1161 }
|
|
1162
|
|
1163
|
|
1164 DEFUN ("number-to-string", Fnumber_to_string, Snumber_to_string, 1, 1, 0 /*
|
|
1165 Convert NUM to a string by printing it in decimal.
|
|
1166 Uses a minus sign if negative.
|
|
1167 NUM may be an integer or a floating point number.
|
|
1168 */ )
|
|
1169 (num)
|
|
1170 Lisp_Object num;
|
|
1171 {
|
|
1172 char buffer[VALBITS];
|
|
1173
|
|
1174 CHECK_INT_OR_FLOAT (num);
|
|
1175
|
|
1176 #ifdef LISP_FLOAT_TYPE
|
|
1177 if (FLOATP (num))
|
|
1178 {
|
|
1179 char pigbuf[350]; /* see comments in float_to_string */
|
|
1180
|
|
1181 float_to_string (pigbuf, float_data (XFLOAT (num)));
|
|
1182 return build_string (pigbuf);
|
|
1183 }
|
|
1184 #endif /* LISP_FLOAT_TYPE */
|
|
1185
|
|
1186 if (sizeof (int) == sizeof (EMACS_INT))
|
|
1187 sprintf (buffer, "%d", XINT (num));
|
|
1188 else if (sizeof (long) == sizeof (EMACS_INT))
|
|
1189 sprintf (buffer, "%ld", (long) XINT (num));
|
|
1190 else
|
|
1191 abort ();
|
|
1192 return build_string (buffer);
|
|
1193 }
|
|
1194
|
|
1195 DEFUN ("string-to-number", Fstring_to_number, Sstring_to_number, 1, 1, 0 /*
|
|
1196 Convert STRING to a number by parsing it as a decimal number.
|
|
1197 This parses both integers and floating point numbers.
|
|
1198 It ignores leading spaces and tabs.
|
|
1199 */ )
|
|
1200 (string)
|
|
1201 Lisp_Object string;
|
|
1202 {
|
|
1203 Lisp_Object value;
|
|
1204 char *p;
|
|
1205 CHECK_STRING (string);
|
|
1206
|
|
1207 p = (char *) string_data (XSTRING (string));
|
|
1208 /* Skip any whitespace at the front of the number. Some versions of
|
|
1209 atoi do this anyway, so we might as well make Emacs lisp consistent. */
|
|
1210 while (*p == ' ' || *p == '\t')
|
|
1211 p++;
|
|
1212
|
|
1213 #ifdef LISP_FLOAT_TYPE
|
|
1214 if (isfloat_string (p))
|
|
1215 return make_float (atof (p));
|
|
1216 #endif /* LISP_FLOAT_TYPE */
|
|
1217
|
|
1218 if (sizeof (int) == sizeof (EMACS_INT))
|
|
1219 XSETINT (value, atoi (p));
|
|
1220 else if (sizeof (long) == sizeof (EMACS_INT))
|
|
1221 XSETINT (value, atol (p));
|
|
1222 else
|
|
1223 abort ();
|
|
1224 return value;
|
|
1225 }
|
|
1226
|
|
1227 enum arithop
|
|
1228 { Aadd, Asub, Amult, Adiv, Alogand, Alogior, Alogxor, Amax, Amin };
|
|
1229
|
|
1230 #ifdef LISP_FLOAT_TYPE
|
|
1231 static Lisp_Object float_arith_driver (double accum, int argnum,
|
|
1232 enum arithop code,
|
|
1233 int nargs, Lisp_Object *args);
|
|
1234 #endif
|
|
1235
|
|
1236
|
|
1237 static Lisp_Object
|
|
1238 arith_driver (enum arithop code, int nargs, Lisp_Object *args)
|
|
1239 {
|
|
1240 Lisp_Object val;
|
|
1241 REGISTER int argnum;
|
|
1242 REGISTER EMACS_INT accum = 0;
|
|
1243 REGISTER EMACS_INT next;
|
|
1244
|
|
1245 switch (code)
|
|
1246 {
|
|
1247 case Alogior:
|
|
1248 case Alogxor:
|
|
1249 case Aadd:
|
|
1250 case Asub:
|
|
1251 accum = 0; break;
|
|
1252 case Amult:
|
|
1253 accum = 1; break;
|
|
1254 case Alogand:
|
|
1255 accum = -1; break;
|
|
1256 case Adiv:
|
|
1257 case Amax:
|
|
1258 case Amin:
|
|
1259 accum = 0;
|
|
1260 break;
|
|
1261 default:
|
|
1262 abort ();
|
|
1263 }
|
|
1264
|
|
1265 for (argnum = 0; argnum < nargs; argnum++)
|
|
1266 {
|
|
1267 val = args[argnum]; /* using args[argnum] as argument to CHECK_INT_OR_FLOAT_... */
|
|
1268 CHECK_INT_OR_FLOAT_COERCE_CHAR_OR_MARKER (val);
|
|
1269
|
|
1270 #ifdef LISP_FLOAT_TYPE
|
|
1271 if (FLOATP (val)) /* time to do serious math */
|
|
1272 return (float_arith_driver ((double) accum, argnum, code,
|
|
1273 nargs, args));
|
|
1274 #endif /* LISP_FLOAT_TYPE */
|
|
1275 args[argnum] = val; /* runs into a compiler bug. */
|
|
1276 next = XINT (args[argnum]);
|
|
1277 switch (code)
|
|
1278 {
|
|
1279 case Aadd: accum += next; break;
|
|
1280 case Asub:
|
|
1281 if (!argnum && nargs != 1)
|
|
1282 next = - next;
|
|
1283 accum -= next;
|
|
1284 break;
|
|
1285 case Amult: accum *= next; break;
|
|
1286 case Adiv:
|
|
1287 if (!argnum) accum = next;
|
|
1288 else
|
|
1289 {
|
|
1290 if (next == 0)
|
|
1291 Fsignal (Qarith_error, Qnil);
|
|
1292 accum /= next;
|
|
1293 }
|
|
1294 break;
|
|
1295 case Alogand: accum &= next; break;
|
|
1296 case Alogior: accum |= next; break;
|
|
1297 case Alogxor: accum ^= next; break;
|
|
1298 case Amax: if (!argnum || next > accum) accum = next; break;
|
|
1299 case Amin: if (!argnum || next < accum) accum = next; break;
|
|
1300 }
|
|
1301 }
|
|
1302
|
|
1303 XSETINT (val, accum);
|
|
1304 return val;
|
|
1305 }
|
|
1306
|
|
1307 #ifdef LISP_FLOAT_TYPE
|
|
1308 static Lisp_Object
|
|
1309 float_arith_driver (double accum, int argnum, enum arithop code, int nargs,
|
|
1310 Lisp_Object *args)
|
|
1311 {
|
|
1312 REGISTER Lisp_Object val;
|
|
1313 double next;
|
|
1314
|
|
1315 for (; argnum < nargs; argnum++)
|
|
1316 {
|
|
1317 val = args[argnum]; /* using args[argnum] as argument to CHECK_INT_OR_FLOAT_... */
|
|
1318 CHECK_INT_OR_FLOAT_COERCE_CHAR_OR_MARKER (val);
|
|
1319
|
|
1320 if (FLOATP (val))
|
|
1321 {
|
|
1322 next = float_data (XFLOAT (val));
|
|
1323 }
|
|
1324 else
|
|
1325 {
|
|
1326 args[argnum] = val; /* runs into a compiler bug. */
|
|
1327 next = XINT (args[argnum]);
|
|
1328 }
|
|
1329 switch (code)
|
|
1330 {
|
|
1331 case Aadd:
|
|
1332 accum += next;
|
|
1333 break;
|
|
1334 case Asub:
|
|
1335 if (!argnum && nargs != 1)
|
|
1336 next = - next;
|
|
1337 accum -= next;
|
|
1338 break;
|
|
1339 case Amult:
|
|
1340 accum *= next;
|
|
1341 break;
|
|
1342 case Adiv:
|
|
1343 if (!argnum)
|
|
1344 accum = next;
|
|
1345 else
|
|
1346 {
|
|
1347 if (next == 0)
|
|
1348 Fsignal (Qarith_error, Qnil);
|
|
1349 accum /= next;
|
|
1350 }
|
|
1351 break;
|
|
1352 case Alogand:
|
|
1353 case Alogior:
|
|
1354 case Alogxor:
|
|
1355 return wrong_type_argument (Qinteger_or_marker_p, val);
|
|
1356 case Amax:
|
|
1357 if (!argnum || isnan (next) || next > accum)
|
|
1358 accum = next;
|
|
1359 break;
|
|
1360 case Amin:
|
|
1361 if (!argnum || isnan (next) || next < accum)
|
|
1362 accum = next;
|
|
1363 break;
|
|
1364 }
|
|
1365 }
|
|
1366
|
|
1367 return make_float (accum);
|
|
1368 }
|
|
1369 #endif /* LISP_FLOAT_TYPE */
|
|
1370
|
|
1371 DEFUN ("+", Fplus, Splus, 0, MANY, 0 /*
|
|
1372 Return sum of any number of arguments, which are numbers or markers.
|
|
1373 */ )
|
|
1374 (nargs, args)
|
|
1375 int nargs;
|
|
1376 Lisp_Object *args;
|
|
1377 {
|
|
1378 return arith_driver (Aadd, nargs, args);
|
|
1379 }
|
|
1380
|
|
1381 DEFUN ("-", Fminus, Sminus, 0, MANY, 0 /*
|
|
1382 Negate number or subtract numbers or markers.
|
|
1383 With one arg, negates it. With more than one arg,
|
|
1384 subtracts all but the first from the first.
|
|
1385 */ )
|
|
1386 (nargs, args)
|
|
1387 int nargs;
|
|
1388 Lisp_Object *args;
|
|
1389 {
|
|
1390 return arith_driver (Asub, nargs, args);
|
|
1391 }
|
|
1392
|
|
1393 DEFUN ("*", Ftimes, Stimes, 0, MANY, 0 /*
|
|
1394 Return product of any number of arguments, which are numbers or markers.
|
|
1395 */ )
|
|
1396 (nargs, args)
|
|
1397 int nargs;
|
|
1398 Lisp_Object *args;
|
|
1399 {
|
|
1400 return arith_driver (Amult, nargs, args);
|
|
1401 }
|
|
1402
|
|
1403 DEFUN ("/", Fquo, Squo, 2, MANY, 0 /*
|
|
1404 Return first argument divided by all the remaining arguments.
|
|
1405 The arguments must be numbers or markers.
|
|
1406 */ )
|
|
1407 (nargs, args)
|
|
1408 int nargs;
|
|
1409 Lisp_Object *args;
|
|
1410 {
|
|
1411 return arith_driver (Adiv, nargs, args);
|
|
1412 }
|
|
1413
|
|
1414 DEFUN ("%", Frem, Srem, 2, 2, 0 /*
|
|
1415 Return remainder of first arg divided by second.
|
|
1416 Both must be integers or markers.
|
|
1417 */ )
|
|
1418 (num1, num2)
|
|
1419 Lisp_Object num1, num2;
|
|
1420 {
|
|
1421 CHECK_INT_COERCE_CHAR_OR_MARKER (num1);
|
|
1422 CHECK_INT_COERCE_CHAR_OR_MARKER (num2);
|
|
1423
|
|
1424 if (ZEROP (num2))
|
|
1425 Fsignal (Qarith_error, Qnil);
|
|
1426
|
|
1427 return (make_int (XINT (num1) % XINT (num2)));
|
|
1428 }
|
|
1429
|
|
1430 /* Note, ANSI *requires* the presence of the fmod() library routine.
|
|
1431 If your system doesn't have it, complain to your vendor, because
|
|
1432 that is a bug. */
|
|
1433
|
|
1434 #ifndef HAVE_FMOD
|
|
1435 double
|
|
1436 fmod (double f1, double f2)
|
|
1437 {
|
|
1438 if (f2 < 0.0)
|
|
1439 f2 = -f2;
|
|
1440 return (f1 - f2 * floor (f1/f2));
|
|
1441 }
|
|
1442 #endif /* ! HAVE_FMOD */
|
|
1443
|
|
1444
|
|
1445 DEFUN ("mod", Fmod, Smod, 2, 2, 0 /*
|
|
1446 Return X modulo Y.
|
|
1447 The result falls between zero (inclusive) and Y (exclusive).
|
|
1448 Both X and Y must be numbers or markers.
|
|
1449 If either argument is a float, a float will be returned.
|
|
1450 */ )
|
|
1451 (x, y)
|
|
1452 Lisp_Object x, y;
|
|
1453 {
|
|
1454 EMACS_INT i1, i2;
|
|
1455
|
|
1456 #ifdef LISP_FLOAT_TYPE
|
|
1457 CHECK_INT_OR_FLOAT_COERCE_CHAR_OR_MARKER (x);
|
|
1458 CHECK_INT_OR_FLOAT_COERCE_CHAR_OR_MARKER (y);
|
|
1459
|
|
1460 if (FLOATP (x) || FLOATP (y))
|
|
1461 {
|
|
1462 double f1, f2;
|
|
1463
|
|
1464 f1 = ((FLOATP (x)) ? float_data (XFLOAT (x)) : XINT (x));
|
|
1465 f2 = ((FLOATP (y)) ? float_data (XFLOAT (y)) : XINT (y));
|
|
1466 if (f2 == 0)
|
|
1467 Fsignal (Qarith_error, Qnil);
|
|
1468
|
|
1469 f1 = fmod (f1, f2);
|
|
1470
|
|
1471 /* If the "remainder" comes out with the wrong sign, fix it. */
|
|
1472 if (f2 < 0 ? f1 > 0 : f1 < 0)
|
|
1473 f1 += f2;
|
|
1474 return (make_float (f1));
|
|
1475 }
|
|
1476 #else /* not LISP_FLOAT_TYPE */
|
|
1477 CHECK_INT_OR_FLOAT_COERCE_CHAR_OR_MARKER (x);
|
|
1478 CHECK_INT_OR_FLOAT_COERCE_CHAR_OR_MARKER (y);
|
|
1479 #endif /* not LISP_FLOAT_TYPE */
|
|
1480
|
|
1481 i1 = XINT (x);
|
|
1482 i2 = XINT (y);
|
|
1483
|
|
1484 if (i2 == 0)
|
|
1485 Fsignal (Qarith_error, Qnil);
|
|
1486
|
|
1487 i1 %= i2;
|
|
1488
|
|
1489 /* If the "remainder" comes out with the wrong sign, fix it. */
|
|
1490 if (i2 < 0 ? i1 > 0 : i1 < 0)
|
|
1491 i1 += i2;
|
|
1492
|
|
1493 return (make_int (i1));
|
|
1494 }
|
|
1495
|
|
1496
|
|
1497 DEFUN ("max", Fmax, Smax, 1, MANY, 0 /*
|
|
1498 Return largest of all the arguments (which must be numbers or markers).
|
|
1499 The value is always a number; markers are converted to numbers.
|
|
1500 */ )
|
|
1501 (nargs, args)
|
|
1502 int nargs;
|
|
1503 Lisp_Object *args;
|
|
1504 {
|
|
1505 return arith_driver (Amax, nargs, args);
|
|
1506 }
|
|
1507
|
|
1508 DEFUN ("min", Fmin, Smin, 1, MANY, 0 /*
|
|
1509 Return smallest of all the arguments (which must be numbers or markers).
|
|
1510 The value is always a number; markers are converted to numbers.
|
|
1511 */ )
|
|
1512 (nargs, args)
|
|
1513 int nargs;
|
|
1514 Lisp_Object *args;
|
|
1515 {
|
|
1516 return arith_driver (Amin, nargs, args);
|
|
1517 }
|
|
1518
|
|
1519 DEFUN ("logand", Flogand, Slogand, 0, MANY, 0 /*
|
|
1520 Return bitwise-and of all the arguments.
|
|
1521 Arguments may be integers, or markers converted to integers.
|
|
1522 */ )
|
|
1523 (nargs, args)
|
|
1524 int nargs;
|
|
1525 Lisp_Object *args;
|
|
1526 {
|
|
1527 return arith_driver (Alogand, nargs, args);
|
|
1528 }
|
|
1529
|
|
1530 DEFUN ("logior", Flogior, Slogior, 0, MANY, 0 /*
|
|
1531 Return bitwise-or of all the arguments.
|
|
1532 Arguments may be integers, or markers converted to integers.
|
|
1533 */ )
|
|
1534 (nargs, args)
|
|
1535 int nargs;
|
|
1536 Lisp_Object *args;
|
|
1537 {
|
|
1538 return arith_driver (Alogior, nargs, args);
|
|
1539 }
|
|
1540
|
|
1541 DEFUN ("logxor", Flogxor, Slogxor, 0, MANY, 0 /*
|
|
1542 Return bitwise-exclusive-or of all the arguments.
|
|
1543 Arguments may be integers, or markers converted to integers.
|
|
1544 */ )
|
|
1545 (nargs, args)
|
|
1546 int nargs;
|
|
1547 Lisp_Object *args;
|
|
1548 {
|
|
1549 return arith_driver (Alogxor, nargs, args);
|
|
1550 }
|
|
1551
|
|
1552 DEFUN ("ash", Fash, Sash, 2, 2, 0 /*
|
|
1553 Return VALUE with its bits shifted left by COUNT.
|
|
1554 If COUNT is negative, shifting is actually to the right.
|
|
1555 In this case, the sign bit is duplicated.
|
|
1556 */ )
|
|
1557 (value, count)
|
|
1558 Lisp_Object value, count;
|
|
1559 {
|
|
1560 CHECK_INT_COERCE_CHAR (value);
|
|
1561 CHECK_INT (count);
|
|
1562
|
|
1563 if (XINT (count) > 0)
|
|
1564 return (make_int (XINT (value) << XINT (count)));
|
|
1565 else
|
|
1566 return (make_int (XINT (value) >> -XINT (count)));
|
|
1567 }
|
|
1568
|
|
1569 DEFUN ("lsh", Flsh, Slsh, 2, 2, 0 /*
|
|
1570 Return VALUE with its bits shifted left by COUNT.
|
|
1571 If COUNT is negative, shifting is actually to the right.
|
|
1572 In this case, zeros are shifted in on the left.
|
|
1573 */ )
|
|
1574 (value, count)
|
|
1575 Lisp_Object value, count;
|
|
1576 {
|
|
1577 Lisp_Object val;
|
|
1578
|
|
1579 CHECK_INT_COERCE_CHAR (value);
|
|
1580 CHECK_INT (count);
|
|
1581
|
|
1582 if (XINT (count) > 0)
|
|
1583 XSETINT (val, (EMACS_UINT) XUINT (value) << XINT (count));
|
|
1584 else
|
|
1585 XSETINT (val, (EMACS_UINT) XUINT (value) >> -XINT (count));
|
|
1586 return val;
|
|
1587 }
|
|
1588
|
|
1589 DEFUN ("1+", Fadd1, Sadd1, 1, 1, 0 /*
|
|
1590 Return NUMBER plus one. NUMBER may be a number or a marker.
|
|
1591 Markers are converted to integers.
|
|
1592 */ )
|
|
1593 (number)
|
|
1594 Lisp_Object number;
|
|
1595 {
|
|
1596 CHECK_INT_OR_FLOAT_COERCE_CHAR_OR_MARKER (number);
|
|
1597
|
|
1598 #ifdef LISP_FLOAT_TYPE
|
|
1599 if (FLOATP (number))
|
|
1600 return (make_float (1.0 + float_data (XFLOAT (number))));
|
|
1601 #endif /* LISP_FLOAT_TYPE */
|
|
1602
|
|
1603 return (make_int (XINT (number) + 1));
|
|
1604 }
|
|
1605
|
|
1606 DEFUN ("1-", Fsub1, Ssub1, 1, 1, 0 /*
|
|
1607 Return NUMBER minus one. NUMBER may be a number or a marker.
|
|
1608 Markers are converted to integers.
|
|
1609 */ )
|
|
1610 (number)
|
|
1611 Lisp_Object number;
|
|
1612 {
|
|
1613 CHECK_INT_OR_FLOAT_COERCE_CHAR_OR_MARKER (number);
|
|
1614
|
|
1615 #ifdef LISP_FLOAT_TYPE
|
|
1616 if (FLOATP (number))
|
|
1617 return (make_float (-1.0 + (float_data (XFLOAT (number)))));
|
|
1618 #endif /* LISP_FLOAT_TYPE */
|
|
1619
|
|
1620 return (make_int (XINT (number) - 1));
|
|
1621 }
|
|
1622
|
|
1623 DEFUN ("lognot", Flognot, Slognot, 1, 1, 0 /*
|
|
1624 Return the bitwise complement of NUMBER. NUMBER must be an integer.
|
|
1625 */ )
|
|
1626 (number)
|
|
1627 Lisp_Object number;
|
|
1628 {
|
|
1629 CHECK_INT (number);
|
|
1630 return (make_int (~XINT (number)));
|
|
1631 }
|
|
1632
|
|
1633
|
|
1634 /************************************************************************/
|
|
1635 /* weak lists */
|
|
1636 /************************************************************************/
|
|
1637
|
|
1638 /* A weak list is like a normal list except that elements automatically
|
|
1639 disappear when no longer in use, i.e. when no longer GC-protected.
|
|
1640 The basic idea is that we don't mark the elements during GC, but
|
|
1641 wait for them to be marked elsewhere. If they're not marked, we
|
|
1642 remove them. This is analogous to weak hashtables; see the explanation
|
|
1643 there for more info. */
|
|
1644
|
|
1645 static Lisp_Object mark_weak_list (Lisp_Object, void (*) (Lisp_Object));
|
|
1646 static void print_weak_list (Lisp_Object, Lisp_Object, int);
|
|
1647 static int weak_list_equal (Lisp_Object, Lisp_Object, int depth);
|
|
1648 static unsigned long weak_list_hash (Lisp_Object obj, int depth);
|
|
1649 DEFINE_LRECORD_IMPLEMENTATION ("weak-list", weak_list,
|
|
1650 mark_weak_list, print_weak_list,
|
|
1651 0, weak_list_equal, weak_list_hash,
|
|
1652 struct weak_list);
|
|
1653
|
|
1654 static Lisp_Object Vall_weak_lists; /* Gemarke es nicht!!! */
|
|
1655
|
|
1656 static Lisp_Object encode_weak_list_type (enum weak_list_type type);
|
|
1657
|
|
1658 static Lisp_Object
|
|
1659 mark_weak_list (Lisp_Object obj, void (*markobj) (Lisp_Object))
|
|
1660 {
|
|
1661 return Qnil; /* nichts ist gemarkt */
|
|
1662 }
|
|
1663
|
|
1664 static void
|
|
1665 print_weak_list (Lisp_Object obj, Lisp_Object printcharfun, int escapeflag)
|
|
1666 {
|
|
1667 if (print_readably)
|
|
1668 error ("printing unreadable object #<weak-list>");
|
|
1669
|
|
1670 write_c_string ("#<weak-list ", printcharfun);
|
|
1671 print_internal (encode_weak_list_type (XWEAK_LIST (obj)->type),
|
|
1672 printcharfun, 0);
|
|
1673 write_c_string (" ", printcharfun);
|
|
1674 print_internal (XWEAK_LIST (obj)->list, printcharfun, escapeflag);
|
|
1675 write_c_string (">", printcharfun);
|
|
1676 }
|
|
1677
|
|
1678 static int
|
|
1679 weak_list_equal (Lisp_Object o1, Lisp_Object o2, int depth)
|
|
1680 {
|
|
1681 struct weak_list *w1 = XWEAK_LIST (o1);
|
|
1682 struct weak_list *w2 = XWEAK_LIST (o2);
|
|
1683
|
|
1684 if (w1->type != w2->type ||
|
|
1685 !internal_equal (w1->list, w2->list, depth + 1))
|
|
1686 return 0;
|
|
1687 else
|
|
1688 return 1;
|
|
1689 }
|
|
1690
|
|
1691 static unsigned long
|
|
1692 weak_list_hash (Lisp_Object obj, int depth)
|
|
1693 {
|
|
1694 struct weak_list *w = XWEAK_LIST (obj);
|
|
1695
|
|
1696 return HASH2 ((unsigned long) w->type,
|
|
1697 internal_hash (w->list, depth + 1));
|
|
1698 }
|
|
1699
|
|
1700 Lisp_Object
|
|
1701 make_weak_list (enum weak_list_type type)
|
|
1702 {
|
|
1703 Lisp_Object result = Qnil;
|
|
1704
|
|
1705 struct weak_list *wl =
|
|
1706 alloc_lcrecord (sizeof (struct weak_list), lrecord_weak_list);
|
|
1707 wl->list = Qnil;
|
|
1708 wl->type = type;
|
|
1709 XSETWEAK_LIST (result, wl);
|
|
1710 wl->next_weak = Vall_weak_lists;
|
|
1711 Vall_weak_lists = result;
|
|
1712 return result;
|
|
1713 }
|
|
1714
|
|
1715 /*
|
|
1716 -- we do not mark the list elements (either the elements themselves
|
|
1717 or the cons cells that hold them) in the normal marking phase.
|
|
1718 -- at the end of marking, we go through all weak lists that are
|
|
1719 marked, and mark the cons cells that hold all marked
|
|
1720 objects, and possibly parts of the objects themselves.
|
|
1721 (See alloc.c, "after-mark".)
|
|
1722 -- after that, we prune away all the cons cells that are not marked.
|
|
1723
|
|
1724 WARNING WARNING WARNING WARNING WARNING:
|
|
1725
|
|
1726 The code in the following two functions is *unbelievably* tricky.
|
|
1727 Don't mess with it. You'll be sorry.
|
|
1728
|
|
1729 Linked lists just majorly suck, d'ya know?
|
|
1730 */
|
|
1731
|
|
1732 int
|
|
1733 finish_marking_weak_lists (int (*obj_marked_p) (Lisp_Object),
|
|
1734 void (*markobj) (Lisp_Object))
|
|
1735 {
|
|
1736 Lisp_Object rest;
|
|
1737 int did_mark = 0;
|
|
1738
|
|
1739 for (rest = Vall_weak_lists;
|
|
1740 !GC_NILP (rest);
|
|
1741 rest = XWEAK_LIST (rest)->next_weak)
|
|
1742 {
|
|
1743 Lisp_Object rest2;
|
|
1744 enum weak_list_type type = XWEAK_LIST (rest)->type;
|
|
1745
|
|
1746 if (! ((*obj_marked_p) (rest)))
|
|
1747 /* The weak list is probably garbage. Ignore it. */
|
|
1748 continue;
|
|
1749
|
|
1750 for (rest2 = XWEAK_LIST (rest)->list;
|
|
1751 /* We need to be trickier since we're inside of GC;
|
|
1752 use CONSP instead of !NILP in case of user-visible
|
|
1753 imperfect lists */
|
|
1754 GC_CONSP (rest2);
|
|
1755 rest2 = XCDR (rest2))
|
|
1756 {
|
|
1757 Lisp_Object elem;
|
|
1758 /* If the element is "marked" (meaning depends on the type
|
|
1759 of weak list), we need to mark the cons containing the
|
|
1760 element, and maybe the element itself (if only some part
|
|
1761 was already marked). */
|
|
1762 int need_to_mark_cons = 0;
|
|
1763 int need_to_mark_elem = 0;
|
|
1764
|
|
1765 /* If a cons is already marked, then its car is already marked
|
|
1766 (either because of an external pointer or because of
|
|
1767 a previous call to this function), and likewise for all
|
|
1768 the rest of the elements in the list, so we can stop now. */
|
|
1769 if ((*obj_marked_p) (rest2))
|
|
1770 break;
|
|
1771
|
|
1772 elem = XCAR (rest2);
|
|
1773
|
|
1774 switch (type)
|
|
1775 {
|
|
1776 case WEAK_LIST_SIMPLE:
|
|
1777 if ((*obj_marked_p) (elem))
|
|
1778 need_to_mark_cons = 1;
|
|
1779 break;
|
|
1780
|
|
1781 case WEAK_LIST_ASSOC:
|
|
1782 if (!GC_CONSP (elem))
|
|
1783 {
|
|
1784 /* just leave bogus elements there */
|
|
1785 need_to_mark_cons = 1;
|
|
1786 need_to_mark_elem = 1;
|
|
1787 }
|
|
1788 else if ((*obj_marked_p) (XCAR (elem)) &&
|
|
1789 (*obj_marked_p) (XCDR (elem)))
|
|
1790 {
|
|
1791 need_to_mark_cons = 1;
|
|
1792 /* We still need to mark elem, because it's
|
|
1793 probably not marked. */
|
|
1794 need_to_mark_elem = 1;
|
|
1795 }
|
|
1796 break;
|
|
1797
|
|
1798 case WEAK_LIST_KEY_ASSOC:
|
|
1799 if (!GC_CONSP (elem))
|
|
1800 {
|
|
1801 /* just leave bogus elements there */
|
|
1802 need_to_mark_cons = 1;
|
|
1803 need_to_mark_elem = 1;
|
|
1804 }
|
|
1805 else if ((*obj_marked_p) (XCAR (elem)))
|
|
1806 {
|
|
1807 need_to_mark_cons = 1;
|
|
1808 /* We still need to mark elem and XCDR (elem);
|
|
1809 marking elem does both */
|
|
1810 need_to_mark_elem = 1;
|
|
1811 }
|
|
1812 break;
|
|
1813
|
|
1814 case WEAK_LIST_VALUE_ASSOC:
|
|
1815 if (!GC_CONSP (elem))
|
|
1816 {
|
|
1817 /* just leave bogus elements there */
|
|
1818 need_to_mark_cons = 1;
|
|
1819 need_to_mark_elem = 1;
|
|
1820 }
|
|
1821 else if ((*obj_marked_p) (XCDR (elem)))
|
|
1822 {
|
|
1823 need_to_mark_cons = 1;
|
|
1824 /* We still need to mark elem and XCAR (elem);
|
|
1825 marking elem does both */
|
|
1826 need_to_mark_elem = 1;
|
|
1827 }
|
|
1828 break;
|
|
1829
|
|
1830 default:
|
|
1831 abort ();
|
|
1832 }
|
|
1833
|
|
1834 if (need_to_mark_elem && ! (*obj_marked_p) (elem))
|
|
1835 {
|
|
1836 (*markobj) (elem);
|
|
1837 did_mark = 1;
|
|
1838 }
|
|
1839
|
|
1840 /* We also need to mark the cons that holds the elem or
|
|
1841 assoc-pair. We do *not* want to call (markobj) here
|
|
1842 because that will mark the entire list; we just want to
|
|
1843 mark the cons itself.
|
|
1844 */
|
|
1845 if (need_to_mark_cons)
|
|
1846 {
|
|
1847 struct Lisp_Cons *ptr = XCONS (rest2);
|
|
1848 if (!CONS_MARKED_P (ptr))
|
|
1849 {
|
|
1850 MARK_CONS (ptr);
|
|
1851 did_mark = 1;
|
|
1852 }
|
|
1853 }
|
|
1854 }
|
|
1855
|
|
1856 /* In case of imperfect list, need to mark the final cons
|
|
1857 because we're not removing it */
|
|
1858 if (!GC_NILP (rest2) && ! (obj_marked_p) (rest2))
|
|
1859 {
|
|
1860 (markobj) (rest2);
|
|
1861 did_mark = 1;
|
|
1862 }
|
|
1863 }
|
|
1864
|
|
1865 return did_mark;
|
|
1866 }
|
|
1867
|
|
1868 void
|
|
1869 prune_weak_lists (int (*obj_marked_p) (Lisp_Object))
|
|
1870 {
|
|
1871 Lisp_Object rest, prev = Qnil;
|
|
1872
|
|
1873 for (rest = Vall_weak_lists;
|
|
1874 !GC_NILP (rest);
|
|
1875 rest = XWEAK_LIST (rest)->next_weak)
|
|
1876 {
|
|
1877 if (! ((*obj_marked_p) (rest)))
|
|
1878 {
|
|
1879 /* This weak list itself is garbage. Remove it from the list. */
|
|
1880 if (GC_NILP (prev))
|
|
1881 Vall_weak_lists = XWEAK_LIST (rest)->next_weak;
|
|
1882 else
|
|
1883 XWEAK_LIST (prev)->next_weak =
|
|
1884 XWEAK_LIST (rest)->next_weak;
|
|
1885 }
|
|
1886 else
|
|
1887 {
|
|
1888 Lisp_Object rest2, prev2 = Qnil;
|
|
1889 Lisp_Object tortoise;
|
|
1890 int go_tortoise = 0;
|
|
1891
|
|
1892 for (rest2 = XWEAK_LIST (rest)->list, tortoise = rest2;
|
|
1893 /* We need to be trickier since we're inside of GC;
|
|
1894 use CONSP instead of !NILP in case of user-visible
|
|
1895 imperfect lists */
|
|
1896 GC_CONSP (rest2);)
|
|
1897 {
|
|
1898 /* It suffices to check the cons for marking,
|
|
1899 regardless of the type of weak list:
|
|
1900
|
|
1901 -- if the cons is pointed to somewhere else,
|
|
1902 then it should stay around and will be marked.
|
|
1903 -- otherwise, if it should stay around, it will
|
|
1904 have been marked in finish_marking_weak_lists().
|
|
1905 -- otherwise, it's not marked and should disappear.
|
|
1906 */
|
|
1907 if (!(*obj_marked_p) (rest2))
|
|
1908 {
|
|
1909 /* bye bye :-( */
|
|
1910 if (GC_NILP (prev2))
|
|
1911 XWEAK_LIST (rest)->list = XCDR (rest2);
|
|
1912 else
|
|
1913 XCDR (prev2) = XCDR (rest2);
|
|
1914 rest2 = XCDR (rest2);
|
|
1915 /* Ouch. Circularity checking is even trickier
|
|
1916 than I thought. When we cut out a link
|
|
1917 like this, we can't advance the turtle or
|
|
1918 it'll catch up to us. Imagine that we're
|
|
1919 standing on floor tiles and moving forward --
|
|
1920 what we just did here is as if the floor
|
|
1921 tile under us just disappeared and all the
|
|
1922 ones ahead of us slid one tile towards us.
|
|
1923 In other words, we didn't move at all;
|
|
1924 if the tortoise was one step behind us
|
|
1925 previously, it still is, and therefore
|
|
1926 it must not move. */
|
|
1927 }
|
|
1928 else
|
|
1929 {
|
|
1930 prev2 = rest2;
|
|
1931
|
|
1932 /* Implementing circularity checking is trickier here
|
|
1933 than in other places because we have to guarantee
|
|
1934 that we've processed all elements before exiting
|
|
1935 due to a circularity. (In most places, an error
|
|
1936 is issued upon encountering a circularity, so it
|
|
1937 doesn't really matter if all elements are processed.)
|
|
1938 The idea is that we process along with the hare
|
|
1939 rather than the tortoise. If at any point in
|
|
1940 our forward process we encounter the tortoise,
|
|
1941 we must have already visited the spot, so we exit.
|
|
1942 (If we process with the tortoise, we can fail to
|
|
1943 process cases where a cons points to itself, or
|
|
1944 where cons A points to cons B, which points to
|
|
1945 cons A.) */
|
|
1946
|
|
1947 rest2 = XCDR (rest2);
|
|
1948 if (go_tortoise)
|
|
1949 tortoise = XCDR (tortoise);
|
|
1950 go_tortoise = !go_tortoise;
|
|
1951 if (GC_EQ (rest2, tortoise))
|
|
1952 break;
|
|
1953 }
|
|
1954 }
|
|
1955
|
|
1956 prev = rest;
|
|
1957 }
|
|
1958 }
|
|
1959 }
|
|
1960
|
|
1961 static enum weak_list_type
|
|
1962 decode_weak_list_type (Lisp_Object symbol)
|
|
1963 {
|
|
1964 CHECK_SYMBOL (symbol);
|
|
1965 if (EQ (symbol, Qsimple))
|
|
1966 return WEAK_LIST_SIMPLE;
|
|
1967 if (EQ (symbol, Qassoc))
|
|
1968 return WEAK_LIST_ASSOC;
|
|
1969 if (EQ (symbol, Qkey_assoc))
|
|
1970 return WEAK_LIST_KEY_ASSOC;
|
|
1971 if (EQ (symbol, Qvalue_assoc))
|
|
1972 return WEAK_LIST_VALUE_ASSOC;
|
|
1973
|
|
1974 signal_simple_error ("Invalid weak list type", symbol);
|
|
1975 return WEAK_LIST_SIMPLE; /* not reached */
|
|
1976 }
|
|
1977
|
|
1978 static Lisp_Object
|
|
1979 encode_weak_list_type (enum weak_list_type type)
|
|
1980 {
|
|
1981 switch (type)
|
|
1982 {
|
|
1983 case WEAK_LIST_SIMPLE:
|
|
1984 return Qsimple;
|
|
1985 case WEAK_LIST_ASSOC:
|
|
1986 return Qassoc;
|
|
1987 case WEAK_LIST_KEY_ASSOC:
|
|
1988 return Qkey_assoc;
|
|
1989 case WEAK_LIST_VALUE_ASSOC:
|
|
1990 return Qvalue_assoc;
|
|
1991 default:
|
|
1992 abort ();
|
|
1993 }
|
|
1994
|
|
1995 return Qnil;
|
|
1996 }
|
|
1997
|
|
1998 DEFUN ("weak-list-p", Fweak_list_p, Sweak_list_p, 1, 1, 0 /*
|
|
1999 Return non-nil if OBJECT is a weak list.
|
|
2000 */ )
|
|
2001 (object)
|
|
2002 Lisp_Object object;
|
|
2003 {
|
|
2004 return WEAK_LISTP (object) ? Qt : Qnil;
|
|
2005 }
|
|
2006
|
|
2007 DEFUN ("make-weak-list", Fmake_weak_list, Smake_weak_list, 0, 1, 0 /*
|
|
2008 Create a new weak list.
|
|
2009 A weak list object is an object that contains a list. This list behaves
|
|
2010 like any other list except that its elements do not count towards
|
|
2011 garbage collection -- if the only pointer to an object in inside a weak
|
|
2012 list (other than pointers in similar objects such as weak hash tables),
|
|
2013 the object is garbage collected and automatically removed from the list.
|
|
2014 This is used internally, for example, to manage the list holding the
|
|
2015 children of an extent -- an extent that is unused but has a parent will
|
|
2016 still be reclaimed, and will automatically be removed from its parent's
|
|
2017 list of children.
|
|
2018
|
|
2019 Optional argument TYPE specifies the type of the weak list, and defaults
|
|
2020 to `simple'. Recognized types are
|
|
2021
|
|
2022 `simple' Objects in the list disappear if not pointed to.
|
|
2023 `assoc' Objects in the list disappear if they are conses
|
|
2024 and either the car or the cdr of the cons is not
|
|
2025 pointed to.
|
|
2026 `key-assoc' Objects in the list disappear if they are conses
|
|
2027 and the car is not pointed to.
|
|
2028 `value-assoc' Objects in the list disappear if they are conses
|
|
2029 and the cdr is not pointed to.
|
|
2030 */ )
|
|
2031 (type)
|
|
2032 Lisp_Object type;
|
|
2033 {
|
|
2034 if (NILP (type))
|
|
2035 type = Qsimple;
|
|
2036
|
|
2037 return make_weak_list (decode_weak_list_type (type));
|
|
2038 }
|
|
2039
|
|
2040 DEFUN ("weak-list-type", Fweak_list_type, Sweak_list_type, 1, 1, 0 /*
|
|
2041 Return the type of the given weak-list object.
|
|
2042 */ )
|
|
2043 (weak)
|
|
2044 Lisp_Object weak;
|
|
2045 {
|
|
2046 CHECK_WEAK_LIST (weak);
|
|
2047 return encode_weak_list_type (XWEAK_LIST (weak)->type);
|
|
2048 }
|
|
2049
|
|
2050 DEFUN ("weak-list-list", Fweak_list_list, Sweak_list_list, 1, 1, 0 /*
|
|
2051 Return the list contained in a weak-list object.
|
|
2052 */ )
|
|
2053 (weak)
|
|
2054 Lisp_Object weak;
|
|
2055 {
|
|
2056 CHECK_WEAK_LIST (weak);
|
|
2057 return XWEAK_LIST_LIST (weak);
|
|
2058 }
|
|
2059
|
|
2060 DEFUN ("set-weak-list-list", Fset_weak_list_list, Sset_weak_list_list,
|
|
2061 2, 2, 0 /*
|
|
2062 Change the list contained in a weak-list object.
|
|
2063 */ )
|
|
2064 (weak, new_list)
|
|
2065 Lisp_Object weak, new_list;
|
|
2066 {
|
|
2067 CHECK_WEAK_LIST (weak);
|
|
2068 XWEAK_LIST_LIST (weak) = new_list;
|
|
2069 return new_list;
|
|
2070 }
|
|
2071
|
|
2072
|
|
2073 /************************************************************************/
|
|
2074 /* initialization */
|
|
2075 /************************************************************************/
|
|
2076
|
|
2077 static SIGTYPE
|
|
2078 arith_error (int signo)
|
|
2079 {
|
|
2080 EMACS_REESTABLISH_SIGNAL (signo, arith_error);
|
|
2081 EMACS_UNBLOCK_SIGNAL (signo);
|
|
2082 signal_error (Qarith_error, Qnil);
|
|
2083 }
|
|
2084
|
|
2085 void
|
|
2086 init_data_very_early (void)
|
|
2087 {
|
|
2088 /* Don't do this if just dumping out.
|
|
2089 We don't want to call `signal' in this case
|
|
2090 so that we don't have trouble with dumping
|
|
2091 signal-delivering routines in an inconsistent state. */
|
|
2092 #ifndef CANNOT_DUMP
|
|
2093 if (!initialized)
|
|
2094 return;
|
|
2095 #endif /* CANNOT_DUMP */
|
|
2096 signal (SIGFPE, arith_error);
|
|
2097 #ifdef uts
|
|
2098 signal (SIGEMT, arith_error);
|
|
2099 #endif /* uts */
|
|
2100 }
|
|
2101
|
|
2102 void
|
|
2103 init_errors_once_early (void)
|
|
2104 {
|
|
2105 defsymbol (&Qerror_conditions, "error-conditions");
|
|
2106 defsymbol (&Qerror_message, "error-message");
|
|
2107
|
|
2108 /* We declare the errors here because some other deferrors depend
|
|
2109 on some of the errors below. */
|
|
2110
|
|
2111 /* ERROR is used as a signaler for random errors for which nothing
|
|
2112 else is right */
|
|
2113
|
|
2114 deferror (&Qerror, "error", "error", Qnil);
|
|
2115 deferror (&Qquit, "quit", "Quit", Qnil);
|
|
2116
|
|
2117 deferror (&Qwrong_type_argument, "wrong-type-argument",
|
|
2118 "Wrong type argument", Qerror);
|
|
2119 deferror (&Qargs_out_of_range, "args-out-of-range", "Args out of range",
|
|
2120 Qerror);
|
|
2121 deferror (&Qvoid_function, "void-function",
|
|
2122 "Symbol's function definition is void", Qerror);
|
|
2123 deferror (&Qcyclic_function_indirection, "cyclic-function-indirection",
|
|
2124 "Symbol's chain of function indirections contains a loop", Qerror);
|
|
2125 deferror (&Qvoid_variable, "void-variable",
|
|
2126 "Symbol's value as variable is void", Qerror);
|
|
2127 deferror (&Qcyclic_variable_indirection, "cyclic-variable-indirection",
|
|
2128 "Symbol's chain of variable indirections contains a loop", Qerror);
|
|
2129 deferror (&Qsetting_constant, "setting-constant",
|
|
2130 "Attempt to set a constant symbol", Qerror);
|
|
2131 deferror (&Qinvalid_read_syntax, "invalid-read-syntax",
|
|
2132 "Invalid read syntax", Qerror);
|
|
2133 deferror (&Qmalformed_list, "malformed-list",
|
|
2134 "Malformed list", Qerror);
|
|
2135 deferror (&Qmalformed_property_list, "malformed-property-list",
|
|
2136 "Malformed property list", Qerror);
|
|
2137 deferror (&Qcircular_list, "circular-list",
|
|
2138 "Circular list", Qerror);
|
|
2139 deferror (&Qcircular_property_list, "circular-property-list",
|
|
2140 "Circular property list", Qerror);
|
|
2141 deferror (&Qinvalid_function, "invalid-function", "Invalid function",
|
|
2142 Qerror);
|
|
2143 deferror (&Qwrong_number_of_arguments, "wrong-number-of-arguments",
|
|
2144 "Wrong number of arguments", Qerror);
|
|
2145 deferror (&Qno_catch, "no-catch", "No catch for tag",
|
|
2146 Qerror);
|
|
2147 deferror (&Qbeginning_of_buffer, "beginning-of-buffer",
|
|
2148 "Beginning of buffer", Qerror);
|
|
2149 deferror (&Qend_of_buffer, "end-of-buffer", "End of buffer", Qerror);
|
|
2150 deferror (&Qbuffer_read_only, "buffer-read-only", "Buffer is read-only",
|
|
2151 Qerror);
|
|
2152
|
|
2153 deferror (&Qio_error, "io-error", "IO Error", Qerror);
|
|
2154 deferror (&Qend_of_file, "end-of-file", "End of stream", Qio_error);
|
|
2155
|
|
2156 deferror (&Qarith_error, "arith-error", "Arithmetic error", Qerror);
|
|
2157 deferror (&Qrange_error, "range-error", "Arithmetic range error",
|
|
2158 Qarith_error);
|
|
2159 deferror (&Qdomain_error, "domain-error", "Arithmetic domain error",
|
|
2160 Qarith_error);
|
|
2161 deferror (&Qsingularity_error, "singularity-error",
|
|
2162 "Arithmetic singularity error", Qdomain_error);
|
|
2163 deferror (&Qoverflow_error, "overflow-error",
|
|
2164 "Arithmetic overflow error", Qdomain_error);
|
|
2165 deferror (&Qunderflow_error, "underflow-error",
|
|
2166 "Arithmetic underflow error", Qdomain_error);
|
|
2167 }
|
|
2168
|
|
2169 void
|
|
2170 syms_of_data (void)
|
|
2171 {
|
|
2172 defsymbol (&Qcons, "cons");
|
|
2173 defsymbol (&Qkeyword, "keyword");
|
|
2174 /* Qstring, Qinteger, Qsymbol, Qvector defined in general.c */
|
|
2175
|
|
2176 defsymbol (&Qquote, "quote");
|
|
2177 defsymbol (&Qlambda, "lambda");
|
|
2178 defsymbol (&Qsignal, "signal");
|
|
2179 defsymbol (&Qtop_level, "top-level");
|
|
2180 defsymbol (&Qignore, "ignore");
|
|
2181
|
|
2182 defsymbol (&Qlistp, "listp");
|
|
2183 defsymbol (&Qconsp, "consp");
|
|
2184 defsymbol (&Qsubrp, "subrp");
|
|
2185 defsymbol (&Qsymbolp, "symbolp");
|
|
2186 defsymbol (&Qkeywordp, "keywordp");
|
|
2187 defsymbol (&Qintegerp, "integerp");
|
|
2188 defsymbol (&Qcharacterp, "characterp");
|
|
2189 defsymbol (&Qnatnump, "natnump");
|
|
2190 defsymbol (&Qstringp, "stringp");
|
|
2191 defsymbol (&Qarrayp, "arrayp");
|
|
2192 defsymbol (&Qsequencep, "sequencep");
|
|
2193 defsymbol (&Qbufferp, "bufferp");
|
|
2194 defsymbol (&Qbitp, "bitp");
|
|
2195 defsymbol (&Qbit_vectorp, "bit-vector-p");
|
|
2196 defsymbol (&Qvectorp, "vectorp");
|
|
2197 defsymbol (&Qcompiled_functionp, "compiled-function-p");
|
|
2198 defsymbol (&Qchar_or_string_p, "char-or-string-p");
|
|
2199 defsymbol (&Qmarkerp, "markerp");
|
|
2200 defsymbol (&Qinteger_or_marker_p, "integer-or-marker-p");
|
|
2201 /* HACK for 19.x only. */
|
|
2202 defsymbol (&Qinteger_char_or_marker_p, "integer-or-marker-p");
|
|
2203
|
|
2204 #ifdef LISP_FLOAT_TYPE
|
|
2205 defsymbol (&Qfloatp, "floatp");
|
|
2206 #endif /* LISP_FLOAT_TYPE */
|
|
2207 defsymbol (&Qnumberp, "numberp");
|
|
2208 defsymbol (&Qnumber_or_marker_p, "number-or-marker-p");
|
|
2209 /* HACK for 19.x only. */
|
|
2210 defsymbol (&Qnumber_char_or_marker_p, "number-or-marker-p");
|
|
2211
|
|
2212 defsymbol (&Qcdr, "cdr");
|
|
2213
|
|
2214 defsymbol (&Qweak_listp, "weak-list-p");
|
|
2215
|
|
2216 defsubr (&Swrong_type_argument);
|
|
2217
|
|
2218 defsubr (&Seq);
|
|
2219 defsubr (&Snull);
|
|
2220 defsubr (&Slistp);
|
|
2221 defsubr (&Snlistp);
|
|
2222 defsubr (&Sconsp);
|
|
2223 defsubr (&Satom);
|
|
2224 defsubr (&Schar_or_string_p);
|
|
2225 defsubr (&Scharacterp);
|
|
2226 defsubr (&Sintegerp);
|
|
2227 defsubr (&Sinteger_or_marker_p);
|
|
2228 defsubr (&Snumberp);
|
|
2229 defsubr (&Snumber_or_marker_p);
|
|
2230 #ifdef LISP_FLOAT_TYPE
|
|
2231 defsubr (&Sfloatp);
|
|
2232 #endif /* LISP_FLOAT_TYPE */
|
|
2233 defsubr (&Snatnump);
|
|
2234 defsubr (&Ssymbolp);
|
|
2235 defsubr (&Skeywordp);
|
|
2236 defsubr (&Sstringp);
|
|
2237 defsubr (&Svectorp);
|
|
2238 defsubr (&Sbitp);
|
|
2239 defsubr (&Sbit_vector_p);
|
|
2240 defsubr (&Sarrayp);
|
|
2241 defsubr (&Ssequencep);
|
|
2242 defsubr (&Smarkerp);
|
|
2243 defsubr (&Ssubrp);
|
|
2244 defsubr (&Ssubr_min_args);
|
|
2245 defsubr (&Ssubr_max_args);
|
|
2246 defsubr (&Scompiled_function_p);
|
|
2247 defsubr (&Stype_of);
|
|
2248 defsubr (&Scar);
|
|
2249 defsubr (&Scdr);
|
|
2250 defsubr (&Scar_safe);
|
|
2251 defsubr (&Scdr_safe);
|
|
2252 defsubr (&Ssetcar);
|
|
2253 defsubr (&Ssetcdr);
|
|
2254 defsubr (&Sindirect_function);
|
|
2255 defsubr (&Saref);
|
|
2256 defsubr (&Saset);
|
|
2257
|
|
2258 defsubr (&Scompiled_function_instructions);
|
|
2259 defsubr (&Scompiled_function_constants);
|
|
2260 defsubr (&Scompiled_function_stack_depth);
|
|
2261 defsubr (&Scompiled_function_arglist);
|
|
2262 defsubr (&Scompiled_function_interactive);
|
|
2263 defsubr (&Scompiled_function_doc_string);
|
|
2264 defsubr (&Scompiled_function_domain);
|
|
2265 #ifdef COMPILED_FUNCTION_ANNOTATION_HACK
|
|
2266 defsubr (&Scompiled_function_annotation);
|
|
2267 #endif
|
|
2268
|
|
2269 defsubr (&Snumber_to_string);
|
|
2270 defsubr (&Sstring_to_number);
|
|
2271 defsubr (&Seqlsign);
|
|
2272 defsubr (&Slss);
|
|
2273 defsubr (&Sgtr);
|
|
2274 defsubr (&Sleq);
|
|
2275 defsubr (&Sgeq);
|
|
2276 defsubr (&Sneq);
|
|
2277 defsubr (&Szerop);
|
|
2278 defsubr (&Splus);
|
|
2279 defsubr (&Sminus);
|
|
2280 defsubr (&Stimes);
|
|
2281 defsubr (&Squo);
|
|
2282 defsubr (&Srem);
|
|
2283 defsubr (&Smod);
|
|
2284 defsubr (&Smax);
|
|
2285 defsubr (&Smin);
|
|
2286 defsubr (&Slogand);
|
|
2287 defsubr (&Slogior);
|
|
2288 defsubr (&Slogxor);
|
|
2289 defsubr (&Slsh);
|
|
2290 defsubr (&Sash);
|
|
2291 defsubr (&Sadd1);
|
|
2292 defsubr (&Ssub1);
|
|
2293 defsubr (&Slognot);
|
|
2294
|
|
2295 defsubr (&Sweak_list_p);
|
|
2296 defsubr (&Smake_weak_list);
|
|
2297 defsubr (&Sweak_list_type);
|
|
2298 defsubr (&Sweak_list_list);
|
|
2299 defsubr (&Sset_weak_list_list);
|
|
2300 }
|
|
2301
|
|
2302 void
|
|
2303 vars_of_data (void)
|
|
2304 {
|
|
2305 /* This must not be staticpro'd */
|
|
2306 Vall_weak_lists = Qnil;
|
|
2307 }
|