0
|
1 ;;; cl-seq.el --- Common Lisp extensions for GNU Emacs Lisp (part three)
|
|
2
|
|
3 ;; Copyright (C) 1993 Free Software Foundation, Inc.
|
|
4
|
|
5 ;; Author: Dave Gillespie <daveg@synaptics.com>
|
|
6 ;; Version: 2.02
|
|
7 ;; Keywords: extensions
|
|
8
|
|
9 ;; This file is part of XEmacs.
|
|
10
|
|
11 ;; XEmacs is free software; you can redistribute it and/or modify it
|
|
12 ;; under the terms of the GNU General Public License as published by
|
|
13 ;; the Free Software Foundation; either version 2, or (at your option)
|
|
14 ;; any later version.
|
|
15
|
|
16 ;; XEmacs is distributed in the hope that it will be useful, but
|
|
17 ;; WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
18 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
19 ;; General Public License for more details.
|
|
20
|
|
21 ;; You should have received a copy of the GNU General Public License
|
|
22 ;; along with XEmacs; see the file COPYING. If not, write to the Free
|
|
23 ;; Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
24
|
|
25 ;;; Synched up with: FSF 19.30.
|
|
26
|
|
27 ;;; Commentary:
|
|
28
|
|
29 ;; These are extensions to Emacs Lisp that provide a degree of
|
|
30 ;; Common Lisp compatibility, beyond what is already built-in
|
|
31 ;; in Emacs Lisp.
|
|
32 ;;
|
|
33 ;; This package was written by Dave Gillespie; it is a complete
|
|
34 ;; rewrite of Cesar Quiroz's original cl.el package of December 1986.
|
|
35 ;;
|
|
36 ;; This package works with Emacs 18, Emacs 19, and Lucid Emacs 19.
|
|
37 ;;
|
|
38 ;; Bug reports, comments, and suggestions are welcome!
|
|
39
|
|
40 ;; This file contains the Common Lisp sequence and list functions
|
|
41 ;; which take keyword arguments.
|
|
42
|
|
43 ;; See cl.el for Change Log.
|
|
44
|
|
45
|
|
46 ;;; Code:
|
|
47
|
|
48 (or (memq 'cl-19 features)
|
|
49 (error "Tried to load `cl-seq' before `cl'!"))
|
|
50
|
|
51
|
|
52 ;;; We define these here so that this file can compile without having
|
|
53 ;;; loaded the cl.el file already.
|
|
54
|
|
55 (defmacro cl-push (x place) (list 'setq place (list 'cons x place)))
|
|
56 (defmacro cl-pop (place)
|
|
57 (list 'car (list 'prog1 place (list 'setq place (list 'cdr place)))))
|
|
58
|
|
59
|
|
60 ;;; Keyword parsing. This is special-cased here so that we can compile
|
|
61 ;;; this file independent from cl-macs.
|
|
62
|
|
63 (defmacro cl-parsing-keywords (kwords other-keys &rest body)
|
|
64 (cons
|
|
65 'let*
|
|
66 (cons (mapcar
|
|
67 (function
|
|
68 (lambda (x)
|
|
69 (let* ((var (if (consp x) (car x) x))
|
|
70 (mem (list 'car (list 'cdr (list 'memq (list 'quote var)
|
|
71 'cl-keys)))))
|
|
72 (if (eq var ':test-not)
|
|
73 (setq mem (list 'and mem (list 'setq 'cl-test mem) t)))
|
|
74 (if (eq var ':if-not)
|
|
75 (setq mem (list 'and mem (list 'setq 'cl-if mem) t)))
|
|
76 (list (intern
|
|
77 (format "cl-%s" (substring (symbol-name var) 1)))
|
|
78 (if (consp x) (list 'or mem (car (cdr x))) mem)))))
|
|
79 kwords)
|
|
80 (append
|
|
81 (and (not (eq other-keys t))
|
|
82 (list
|
|
83 (list 'let '((cl-keys-temp cl-keys))
|
|
84 (list 'while 'cl-keys-temp
|
|
85 (list 'or (list 'memq '(car cl-keys-temp)
|
|
86 (list 'quote
|
|
87 (mapcar
|
|
88 (function
|
|
89 (lambda (x)
|
|
90 (if (consp x)
|
|
91 (car x) x)))
|
|
92 (append kwords
|
|
93 other-keys))))
|
|
94 '(car (cdr (memq (quote :allow-other-keys)
|
|
95 cl-keys)))
|
|
96 '(error "Bad keyword argument %s"
|
|
97 (car cl-keys-temp)))
|
|
98 '(setq cl-keys-temp (cdr (cdr cl-keys-temp)))))))
|
|
99 body))))
|
|
100 (put 'cl-parsing-keywords 'lisp-indent-function 2)
|
|
101 (put 'cl-parsing-keywords 'edebug-form-spec '(sexp sexp &rest form))
|
|
102
|
|
103 (defmacro cl-check-key (x)
|
|
104 (list 'if 'cl-key (list 'funcall 'cl-key x) x))
|
|
105
|
|
106 (defmacro cl-check-test-nokey (item x)
|
|
107 (list 'cond
|
|
108 (list 'cl-test
|
|
109 (list 'eq (list 'not (list 'funcall 'cl-test item x))
|
|
110 'cl-test-not))
|
|
111 (list 'cl-if
|
|
112 (list 'eq (list 'not (list 'funcall 'cl-if x)) 'cl-if-not))
|
|
113 (list 't (list 'if (list 'numberp item)
|
|
114 (list 'equal item x) (list 'eq item x)))))
|
|
115
|
|
116 (defmacro cl-check-test (item x)
|
|
117 (list 'cl-check-test-nokey item (list 'cl-check-key x)))
|
|
118
|
|
119 (defmacro cl-check-match (x y)
|
|
120 (setq x (list 'cl-check-key x) y (list 'cl-check-key y))
|
|
121 (list 'if 'cl-test
|
|
122 (list 'eq (list 'not (list 'funcall 'cl-test x y)) 'cl-test-not)
|
|
123 (list 'if (list 'numberp x)
|
|
124 (list 'equal x y) (list 'eq x y))))
|
|
125
|
|
126 (put 'cl-check-key 'edebug-form-spec 'edebug-forms)
|
|
127 (put 'cl-check-test 'edebug-form-spec 'edebug-forms)
|
|
128 (put 'cl-check-test-nokey 'edebug-form-spec 'edebug-forms)
|
|
129 (put 'cl-check-match 'edebug-form-spec 'edebug-forms)
|
|
130
|
|
131 (defvar cl-test) (defvar cl-test-not)
|
|
132 (defvar cl-if) (defvar cl-if-not)
|
|
133 (defvar cl-key)
|
|
134
|
|
135
|
|
136 (defun reduce (cl-func cl-seq &rest cl-keys)
|
|
137 "Reduce two-argument FUNCTION across SEQUENCE.
|
|
138 Keywords supported: :start :end :from-end :initial-value :key"
|
|
139 (cl-parsing-keywords (:from-end (:start 0) :end :initial-value :key) ()
|
|
140 (or (listp cl-seq) (setq cl-seq (append cl-seq nil)))
|
|
141 (setq cl-seq (subseq cl-seq cl-start cl-end))
|
|
142 (if cl-from-end (setq cl-seq (nreverse cl-seq)))
|
|
143 (let ((cl-accum (cond ((memq ':initial-value cl-keys) cl-initial-value)
|
|
144 (cl-seq (cl-check-key (cl-pop cl-seq)))
|
|
145 (t (funcall cl-func)))))
|
|
146 (if cl-from-end
|
|
147 (while cl-seq
|
|
148 (setq cl-accum (funcall cl-func (cl-check-key (cl-pop cl-seq))
|
|
149 cl-accum)))
|
|
150 (while cl-seq
|
|
151 (setq cl-accum (funcall cl-func cl-accum
|
|
152 (cl-check-key (cl-pop cl-seq))))))
|
|
153 cl-accum)))
|
|
154
|
|
155 (defun fill (seq item &rest cl-keys)
|
|
156 "Fill the elements of SEQ with ITEM.
|
|
157 Keywords supported: :start :end"
|
|
158 (cl-parsing-keywords ((:start 0) :end) ()
|
|
159 (if (listp seq)
|
|
160 (let ((p (nthcdr cl-start seq))
|
|
161 (n (if cl-end (- cl-end cl-start) 8000000)))
|
|
162 (while (and p (>= (setq n (1- n)) 0))
|
|
163 (setcar p item)
|
|
164 (setq p (cdr p))))
|
|
165 (or cl-end (setq cl-end (length seq)))
|
|
166 (if (and (= cl-start 0) (= cl-end (length seq)))
|
|
167 (fillarray seq item)
|
|
168 (while (< cl-start cl-end)
|
|
169 (aset seq cl-start item)
|
|
170 (setq cl-start (1+ cl-start)))))
|
|
171 seq))
|
|
172
|
|
173 (defun replace (cl-seq1 cl-seq2 &rest cl-keys)
|
|
174 "Replace the elements of SEQ1 with the elements of SEQ2.
|
|
175 SEQ1 is destructively modified, then returned.
|
|
176 Keywords supported: :start1 :end1 :start2 :end2"
|
|
177 (cl-parsing-keywords ((:start1 0) :end1 (:start2 0) :end2) ()
|
|
178 (if (and (eq cl-seq1 cl-seq2) (<= cl-start2 cl-start1))
|
|
179 (or (= cl-start1 cl-start2)
|
|
180 (let* ((cl-len (length cl-seq1))
|
|
181 (cl-n (min (- (or cl-end1 cl-len) cl-start1)
|
|
182 (- (or cl-end2 cl-len) cl-start2))))
|
|
183 (while (>= (setq cl-n (1- cl-n)) 0)
|
|
184 (cl-set-elt cl-seq1 (+ cl-start1 cl-n)
|
|
185 (elt cl-seq2 (+ cl-start2 cl-n))))))
|
|
186 (if (listp cl-seq1)
|
|
187 (let ((cl-p1 (nthcdr cl-start1 cl-seq1))
|
|
188 (cl-n1 (if cl-end1 (- cl-end1 cl-start1) 4000000)))
|
|
189 (if (listp cl-seq2)
|
|
190 (let ((cl-p2 (nthcdr cl-start2 cl-seq2))
|
|
191 (cl-n (min cl-n1
|
|
192 (if cl-end2 (- cl-end2 cl-start2) 4000000))))
|
|
193 (while (and cl-p1 cl-p2 (>= (setq cl-n (1- cl-n)) 0))
|
|
194 (setcar cl-p1 (car cl-p2))
|
|
195 (setq cl-p1 (cdr cl-p1) cl-p2 (cdr cl-p2))))
|
|
196 (setq cl-end2 (min (or cl-end2 (length cl-seq2))
|
|
197 (+ cl-start2 cl-n1)))
|
|
198 (while (and cl-p1 (< cl-start2 cl-end2))
|
|
199 (setcar cl-p1 (aref cl-seq2 cl-start2))
|
|
200 (setq cl-p1 (cdr cl-p1) cl-start2 (1+ cl-start2)))))
|
|
201 (setq cl-end1 (min (or cl-end1 (length cl-seq1))
|
|
202 (+ cl-start1 (- (or cl-end2 (length cl-seq2))
|
|
203 cl-start2))))
|
|
204 (if (listp cl-seq2)
|
|
205 (let ((cl-p2 (nthcdr cl-start2 cl-seq2)))
|
|
206 (while (< cl-start1 cl-end1)
|
|
207 (aset cl-seq1 cl-start1 (car cl-p2))
|
|
208 (setq cl-p2 (cdr cl-p2) cl-start1 (1+ cl-start1))))
|
|
209 (while (< cl-start1 cl-end1)
|
|
210 (aset cl-seq1 cl-start1 (aref cl-seq2 cl-start2))
|
|
211 (setq cl-start2 (1+ cl-start2) cl-start1 (1+ cl-start1))))))
|
|
212 cl-seq1))
|
|
213
|
|
214 (defun remove* (cl-item cl-seq &rest cl-keys)
|
|
215 "Remove all occurrences of ITEM in SEQ.
|
|
216 This is a non-destructive function; it makes a copy of SEQ if necessary
|
|
217 to avoid corrupting the original SEQ.
|
|
218 Keywords supported: :test :test-not :key :count :start :end :from-end"
|
|
219 (cl-parsing-keywords (:test :test-not :key :if :if-not :count :from-end
|
|
220 (:start 0) :end) ()
|
|
221 (if (<= (or cl-count (setq cl-count 8000000)) 0)
|
|
222 cl-seq
|
|
223 (if (or (nlistp cl-seq) (and cl-from-end (< cl-count 4000000)))
|
|
224 (let ((cl-i (cl-position cl-item cl-seq cl-start cl-end
|
|
225 cl-from-end)))
|
|
226 (if cl-i
|
|
227 (let ((cl-res (apply 'delete* cl-item (append cl-seq nil)
|
|
228 (append (if cl-from-end
|
|
229 (list ':end (1+ cl-i))
|
|
230 (list ':start cl-i))
|
|
231 cl-keys))))
|
|
232 (if (listp cl-seq) cl-res
|
|
233 (if (stringp cl-seq) (concat cl-res) (vconcat cl-res))))
|
|
234 cl-seq))
|
|
235 (setq cl-end (- (or cl-end 8000000) cl-start))
|
|
236 (if (= cl-start 0)
|
|
237 (while (and cl-seq (> cl-end 0)
|
|
238 (cl-check-test cl-item (car cl-seq))
|
|
239 (setq cl-end (1- cl-end) cl-seq (cdr cl-seq))
|
|
240 (> (setq cl-count (1- cl-count)) 0))))
|
|
241 (if (and (> cl-count 0) (> cl-end 0))
|
|
242 (let ((cl-p (if (> cl-start 0) (nthcdr cl-start cl-seq)
|
|
243 (setq cl-end (1- cl-end)) (cdr cl-seq))))
|
|
244 (while (and cl-p (> cl-end 0)
|
|
245 (not (cl-check-test cl-item (car cl-p))))
|
|
246 (setq cl-p (cdr cl-p) cl-end (1- cl-end)))
|
|
247 (if (and cl-p (> cl-end 0))
|
|
248 (nconc (ldiff cl-seq cl-p)
|
|
249 (if (= cl-count 1) (cdr cl-p)
|
|
250 (and (cdr cl-p)
|
|
251 (apply 'delete* cl-item
|
|
252 (copy-sequence (cdr cl-p))
|
|
253 ':start 0 ':end (1- cl-end)
|
|
254 ':count (1- cl-count) cl-keys))))
|
|
255 cl-seq))
|
|
256 cl-seq)))))
|
|
257
|
|
258 (defun remove-if (cl-pred cl-list &rest cl-keys)
|
|
259 "Remove all items satisfying PREDICATE in SEQ.
|
|
260 This is a non-destructive function; it makes a copy of SEQ if necessary
|
|
261 to avoid corrupting the original SEQ.
|
|
262 Keywords supported: :key :count :start :end :from-end"
|
|
263 (apply 'remove* nil cl-list ':if cl-pred cl-keys))
|
|
264
|
|
265 (defun remove-if-not (cl-pred cl-list &rest cl-keys)
|
|
266 "Remove all items not satisfying PREDICATE in SEQ.
|
|
267 This is a non-destructive function; it makes a copy of SEQ if necessary
|
|
268 to avoid corrupting the original SEQ.
|
|
269 Keywords supported: :key :count :start :end :from-end"
|
|
270 (apply 'remove* nil cl-list ':if-not cl-pred cl-keys))
|
|
271
|
|
272 (defun delete* (cl-item cl-seq &rest cl-keys)
|
|
273 "Remove all occurrences of ITEM in SEQ.
|
|
274 This is a destructive function; it reuses the storage of SEQ whenever possible.
|
|
275 Keywords supported: :test :test-not :key :count :start :end :from-end"
|
|
276 (cl-parsing-keywords (:test :test-not :key :if :if-not :count :from-end
|
|
277 (:start 0) :end) ()
|
|
278 (if (<= (or cl-count (setq cl-count 8000000)) 0)
|
|
279 cl-seq
|
|
280 (if (listp cl-seq)
|
|
281 (if (and cl-from-end (< cl-count 4000000))
|
|
282 (let (cl-i)
|
|
283 (while (and (>= (setq cl-count (1- cl-count)) 0)
|
|
284 (setq cl-i (cl-position cl-item cl-seq cl-start
|
|
285 cl-end cl-from-end)))
|
|
286 (if (= cl-i 0) (setq cl-seq (cdr cl-seq))
|
|
287 (let ((cl-tail (nthcdr (1- cl-i) cl-seq)))
|
|
288 (setcdr cl-tail (cdr (cdr cl-tail)))))
|
|
289 (setq cl-end cl-i))
|
|
290 cl-seq)
|
|
291 (setq cl-end (- (or cl-end 8000000) cl-start))
|
|
292 (if (= cl-start 0)
|
|
293 (progn
|
|
294 (while (and cl-seq
|
|
295 (> cl-end 0)
|
|
296 (cl-check-test cl-item (car cl-seq))
|
|
297 (setq cl-end (1- cl-end) cl-seq (cdr cl-seq))
|
|
298 (> (setq cl-count (1- cl-count)) 0)))
|
|
299 (setq cl-end (1- cl-end)))
|
|
300 (setq cl-start (1- cl-start)))
|
|
301 (if (and (> cl-count 0) (> cl-end 0))
|
|
302 (let ((cl-p (nthcdr cl-start cl-seq)))
|
|
303 (while (and (cdr cl-p) (> cl-end 0))
|
|
304 (if (cl-check-test cl-item (car (cdr cl-p)))
|
|
305 (progn
|
|
306 (setcdr cl-p (cdr (cdr cl-p)))
|
|
307 (if (= (setq cl-count (1- cl-count)) 0)
|
|
308 (setq cl-end 1)))
|
|
309 (setq cl-p (cdr cl-p)))
|
|
310 (setq cl-end (1- cl-end)))))
|
|
311 cl-seq)
|
|
312 (apply 'remove* cl-item cl-seq cl-keys)))))
|
|
313
|
|
314 (defun delete-if (cl-pred cl-list &rest cl-keys)
|
|
315 "Remove all items satisfying PREDICATE in SEQ.
|
|
316 This is a destructive function; it reuses the storage of SEQ whenever possible.
|
|
317 Keywords supported: :key :count :start :end :from-end"
|
|
318 (apply 'delete* nil cl-list ':if cl-pred cl-keys))
|
|
319
|
|
320 (defun delete-if-not (cl-pred cl-list &rest cl-keys)
|
|
321 "Remove all items not satisfying PREDICATE in SEQ.
|
|
322 This is a destructive function; it reuses the storage of SEQ whenever possible.
|
|
323 Keywords supported: :key :count :start :end :from-end"
|
|
324 (apply 'delete* nil cl-list ':if-not cl-pred cl-keys))
|
|
325
|
|
326 (or (and (fboundp 'delete) (subrp (symbol-function 'delete)))
|
|
327 (defalias 'delete (function (lambda (x y) (delete* x y ':test 'equal)))))
|
|
328 (defun remove (x y) (remove* x y ':test 'equal))
|
|
329 (defun remq (x y) (if (memq x y) (delq x (copy-list y)) y))
|
|
330
|
|
331 (defun remove-duplicates (cl-seq &rest cl-keys)
|
|
332 "Return a copy of SEQ with all duplicate elements removed.
|
|
333 Keywords supported: :test :test-not :key :start :end :from-end"
|
|
334 (cl-delete-duplicates cl-seq cl-keys t))
|
|
335
|
|
336 (defun delete-duplicates (cl-seq &rest cl-keys)
|
|
337 "Remove all duplicate elements from SEQ (destructively).
|
|
338 Keywords supported: :test :test-not :key :start :end :from-end"
|
|
339 (cl-delete-duplicates cl-seq cl-keys nil))
|
|
340
|
|
341 (defun cl-delete-duplicates (cl-seq cl-keys cl-copy)
|
|
342 (if (listp cl-seq)
|
|
343 (cl-parsing-keywords (:test :test-not :key (:start 0) :end :from-end :if)
|
|
344 ()
|
|
345 (if cl-from-end
|
|
346 (let ((cl-p (nthcdr cl-start cl-seq)) cl-i)
|
|
347 (setq cl-end (- (or cl-end (length cl-seq)) cl-start))
|
|
348 (while (> cl-end 1)
|
|
349 (setq cl-i 0)
|
|
350 (while (setq cl-i (cl-position (cl-check-key (car cl-p))
|
|
351 (cdr cl-p) cl-i (1- cl-end)))
|
|
352 (if cl-copy (setq cl-seq (copy-sequence cl-seq)
|
|
353 cl-p (nthcdr cl-start cl-seq) cl-copy nil))
|
|
354 (let ((cl-tail (nthcdr cl-i cl-p)))
|
|
355 (setcdr cl-tail (cdr (cdr cl-tail))))
|
|
356 (setq cl-end (1- cl-end)))
|
|
357 (setq cl-p (cdr cl-p) cl-end (1- cl-end)
|
|
358 cl-start (1+ cl-start)))
|
|
359 cl-seq)
|
|
360 (setq cl-end (- (or cl-end (length cl-seq)) cl-start))
|
|
361 (while (and (cdr cl-seq) (= cl-start 0) (> cl-end 1)
|
|
362 (cl-position (cl-check-key (car cl-seq))
|
|
363 (cdr cl-seq) 0 (1- cl-end)))
|
|
364 (setq cl-seq (cdr cl-seq) cl-end (1- cl-end)))
|
|
365 (let ((cl-p (if (> cl-start 0) (nthcdr (1- cl-start) cl-seq)
|
|
366 (setq cl-end (1- cl-end) cl-start 1) cl-seq)))
|
|
367 (while (and (cdr (cdr cl-p)) (> cl-end 1))
|
|
368 (if (cl-position (cl-check-key (car (cdr cl-p)))
|
|
369 (cdr (cdr cl-p)) 0 (1- cl-end))
|
|
370 (progn
|
|
371 (if cl-copy (setq cl-seq (copy-sequence cl-seq)
|
|
372 cl-p (nthcdr (1- cl-start) cl-seq)
|
|
373 cl-copy nil))
|
|
374 (setcdr cl-p (cdr (cdr cl-p))))
|
|
375 (setq cl-p (cdr cl-p)))
|
|
376 (setq cl-end (1- cl-end) cl-start (1+ cl-start)))
|
|
377 cl-seq)))
|
|
378 (let ((cl-res (cl-delete-duplicates (append cl-seq nil) cl-keys nil)))
|
|
379 (if (stringp cl-seq) (concat cl-res) (vconcat cl-res)))))
|
|
380
|
|
381 (defun substitute (cl-new cl-old cl-seq &rest cl-keys)
|
|
382 "Substitute NEW for OLD in SEQ.
|
|
383 This is a non-destructive function; it makes a copy of SEQ if necessary
|
|
384 to avoid corrupting the original SEQ.
|
|
385 Keywords supported: :test :test-not :key :count :start :end :from-end"
|
|
386 (cl-parsing-keywords (:test :test-not :key :if :if-not :count
|
|
387 (:start 0) :end :from-end) ()
|
|
388 (if (or (eq cl-old cl-new)
|
|
389 (<= (or cl-count (setq cl-from-end nil cl-count 8000000)) 0))
|
|
390 cl-seq
|
|
391 (let ((cl-i (cl-position cl-old cl-seq cl-start cl-end)))
|
|
392 (if (not cl-i)
|
|
393 cl-seq
|
|
394 (setq cl-seq (copy-sequence cl-seq))
|
|
395 (or cl-from-end
|
|
396 (progn (cl-set-elt cl-seq cl-i cl-new)
|
|
397 (setq cl-i (1+ cl-i) cl-count (1- cl-count))))
|
|
398 (apply 'nsubstitute cl-new cl-old cl-seq ':count cl-count
|
|
399 ':start cl-i cl-keys))))))
|
|
400
|
|
401 (defun substitute-if (cl-new cl-pred cl-list &rest cl-keys)
|
|
402 "Substitute NEW for all items satisfying PREDICATE in SEQ.
|
|
403 This is a non-destructive function; it makes a copy of SEQ if necessary
|
|
404 to avoid corrupting the original SEQ.
|
|
405 Keywords supported: :key :count :start :end :from-end"
|
|
406 (apply 'substitute cl-new nil cl-list ':if cl-pred cl-keys))
|
|
407
|
|
408 (defun substitute-if-not (cl-new cl-pred cl-list &rest cl-keys)
|
|
409 "Substitute NEW for all items not satisfying PREDICATE in SEQ.
|
|
410 This is a non-destructive function; it makes a copy of SEQ if necessary
|
|
411 to avoid corrupting the original SEQ.
|
|
412 Keywords supported: :key :count :start :end :from-end"
|
|
413 (apply 'substitute cl-new nil cl-list ':if-not cl-pred cl-keys))
|
|
414
|
|
415 (defun nsubstitute (cl-new cl-old cl-seq &rest cl-keys)
|
|
416 "Substitute NEW for OLD in SEQ.
|
|
417 This is a destructive function; it reuses the storage of SEQ whenever possible.
|
|
418 Keywords supported: :test :test-not :key :count :start :end :from-end"
|
|
419 (cl-parsing-keywords (:test :test-not :key :if :if-not :count
|
|
420 (:start 0) :end :from-end) ()
|
|
421 (or (eq cl-old cl-new) (<= (or cl-count (setq cl-count 8000000)) 0)
|
|
422 (if (and (listp cl-seq) (or (not cl-from-end) (> cl-count 4000000)))
|
|
423 (let ((cl-p (nthcdr cl-start cl-seq)))
|
|
424 (setq cl-end (- (or cl-end 8000000) cl-start))
|
|
425 (while (and cl-p (> cl-end 0) (> cl-count 0))
|
|
426 (if (cl-check-test cl-old (car cl-p))
|
|
427 (progn
|
|
428 (setcar cl-p cl-new)
|
|
429 (setq cl-count (1- cl-count))))
|
|
430 (setq cl-p (cdr cl-p) cl-end (1- cl-end))))
|
|
431 (or cl-end (setq cl-end (length cl-seq)))
|
|
432 (if cl-from-end
|
|
433 (while (and (< cl-start cl-end) (> cl-count 0))
|
|
434 (setq cl-end (1- cl-end))
|
|
435 (if (cl-check-test cl-old (elt cl-seq cl-end))
|
|
436 (progn
|
|
437 (cl-set-elt cl-seq cl-end cl-new)
|
|
438 (setq cl-count (1- cl-count)))))
|
|
439 (while (and (< cl-start cl-end) (> cl-count 0))
|
|
440 (if (cl-check-test cl-old (aref cl-seq cl-start))
|
|
441 (progn
|
|
442 (aset cl-seq cl-start cl-new)
|
|
443 (setq cl-count (1- cl-count))))
|
|
444 (setq cl-start (1+ cl-start))))))
|
|
445 cl-seq))
|
|
446
|
|
447 (defun nsubstitute-if (cl-new cl-pred cl-list &rest cl-keys)
|
|
448 "Substitute NEW for all items satisfying PREDICATE in SEQ.
|
|
449 This is a destructive function; it reuses the storage of SEQ whenever possible.
|
|
450 Keywords supported: :key :count :start :end :from-end"
|
|
451 (apply 'nsubstitute cl-new nil cl-list ':if cl-pred cl-keys))
|
|
452
|
|
453 (defun nsubstitute-if-not (cl-new cl-pred cl-list &rest cl-keys)
|
|
454 "Substitute NEW for all items not satisfying PREDICATE in SEQ.
|
|
455 This is a destructive function; it reuses the storage of SEQ whenever possible.
|
|
456 Keywords supported: :key :count :start :end :from-end"
|
|
457 (apply 'nsubstitute cl-new nil cl-list ':if-not cl-pred cl-keys))
|
|
458
|
|
459 (defun find (cl-item cl-seq &rest cl-keys)
|
|
460 "Find the first occurrence of ITEM in LIST.
|
|
461 Return the matching ITEM, or nil if not found.
|
|
462 Keywords supported: :test :test-not :key :start :end :from-end"
|
|
463 (let ((cl-pos (apply 'position cl-item cl-seq cl-keys)))
|
|
464 (and cl-pos (elt cl-seq cl-pos))))
|
|
465
|
|
466 (defun find-if (cl-pred cl-list &rest cl-keys)
|
|
467 "Find the first item satisfying PREDICATE in LIST.
|
|
468 Return the matching ITEM, or nil if not found.
|
|
469 Keywords supported: :key :start :end :from-end"
|
|
470 (apply 'find nil cl-list ':if cl-pred cl-keys))
|
|
471
|
|
472 (defun find-if-not (cl-pred cl-list &rest cl-keys)
|
|
473 "Find the first item not satisfying PREDICATE in LIST.
|
|
474 Return the matching ITEM, or nil if not found.
|
|
475 Keywords supported: :key :start :end :from-end"
|
|
476 (apply 'find nil cl-list ':if-not cl-pred cl-keys))
|
|
477
|
|
478 (defun position (cl-item cl-seq &rest cl-keys)
|
|
479 "Find the first occurrence of ITEM in LIST.
|
|
480 Return the index of the matching item, or nil if not found.
|
|
481 Keywords supported: :test :test-not :key :start :end :from-end"
|
|
482 (cl-parsing-keywords (:test :test-not :key :if :if-not
|
|
483 (:start 0) :end :from-end) ()
|
|
484 (cl-position cl-item cl-seq cl-start cl-end cl-from-end)))
|
|
485
|
|
486 (defun cl-position (cl-item cl-seq cl-start &optional cl-end cl-from-end)
|
|
487 (if (listp cl-seq)
|
|
488 (let ((cl-p (nthcdr cl-start cl-seq)))
|
|
489 (or cl-end (setq cl-end 8000000))
|
|
490 (let ((cl-res nil))
|
|
491 (while (and cl-p (< cl-start cl-end) (or (not cl-res) cl-from-end))
|
|
492 (if (cl-check-test cl-item (car cl-p))
|
|
493 (setq cl-res cl-start))
|
|
494 (setq cl-p (cdr cl-p) cl-start (1+ cl-start)))
|
|
495 cl-res))
|
|
496 (or cl-end (setq cl-end (length cl-seq)))
|
|
497 (if cl-from-end
|
|
498 (progn
|
|
499 (while (and (>= (setq cl-end (1- cl-end)) cl-start)
|
|
500 (not (cl-check-test cl-item (aref cl-seq cl-end)))))
|
|
501 (and (>= cl-end cl-start) cl-end))
|
|
502 (while (and (< cl-start cl-end)
|
|
503 (not (cl-check-test cl-item (aref cl-seq cl-start))))
|
|
504 (setq cl-start (1+ cl-start)))
|
|
505 (and (< cl-start cl-end) cl-start))))
|
|
506
|
|
507 (defun position-if (cl-pred cl-list &rest cl-keys)
|
|
508 "Find the first item satisfying PREDICATE in LIST.
|
|
509 Return the index of the matching item, or nil if not found.
|
|
510 Keywords supported: :key :start :end :from-end"
|
|
511 (apply 'position nil cl-list ':if cl-pred cl-keys))
|
|
512
|
|
513 (defun position-if-not (cl-pred cl-list &rest cl-keys)
|
|
514 "Find the first item not satisfying PREDICATE in LIST.
|
|
515 Return the index of the matching item, or nil if not found.
|
|
516 Keywords supported: :key :start :end :from-end"
|
|
517 (apply 'position nil cl-list ':if-not cl-pred cl-keys))
|
|
518
|
|
519 (defun count (cl-item cl-seq &rest cl-keys)
|
|
520 "Count the number of occurrences of ITEM in LIST.
|
|
521 Keywords supported: :test :test-not :key :start :end"
|
|
522 (cl-parsing-keywords (:test :test-not :key :if :if-not (:start 0) :end) ()
|
|
523 (let ((cl-count 0) cl-x)
|
|
524 (or cl-end (setq cl-end (length cl-seq)))
|
|
525 (if (consp cl-seq) (setq cl-seq (nthcdr cl-start cl-seq)))
|
|
526 (while (< cl-start cl-end)
|
|
527 (setq cl-x (if (consp cl-seq) (cl-pop cl-seq) (aref cl-seq cl-start)))
|
|
528 (if (cl-check-test cl-item cl-x) (setq cl-count (1+ cl-count)))
|
|
529 (setq cl-start (1+ cl-start)))
|
|
530 cl-count)))
|
|
531
|
|
532 (defun count-if (cl-pred cl-list &rest cl-keys)
|
|
533 "Count the number of items satisfying PREDICATE in LIST.
|
|
534 Keywords supported: :key :start :end"
|
|
535 (apply 'count nil cl-list ':if cl-pred cl-keys))
|
|
536
|
|
537 (defun count-if-not (cl-pred cl-list &rest cl-keys)
|
|
538 "Count the number of items not satisfying PREDICATE in LIST.
|
|
539 Keywords supported: :key :start :end"
|
|
540 (apply 'count nil cl-list ':if-not cl-pred cl-keys))
|
|
541
|
|
542 (defun mismatch (cl-seq1 cl-seq2 &rest cl-keys)
|
|
543 "Compare SEQ1 with SEQ2, return index of first mismatching element.
|
|
544 Return nil if the sequences match. If one sequence is a prefix of the
|
|
545 other, the return value indicates the end of the shorted sequence.
|
|
546 Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end"
|
|
547 (cl-parsing-keywords (:test :test-not :key :from-end
|
|
548 (:start1 0) :end1 (:start2 0) :end2) ()
|
|
549 (or cl-end1 (setq cl-end1 (length cl-seq1)))
|
|
550 (or cl-end2 (setq cl-end2 (length cl-seq2)))
|
|
551 (if cl-from-end
|
|
552 (progn
|
|
553 (while (and (< cl-start1 cl-end1) (< cl-start2 cl-end2)
|
|
554 (cl-check-match (elt cl-seq1 (1- cl-end1))
|
|
555 (elt cl-seq2 (1- cl-end2))))
|
|
556 (setq cl-end1 (1- cl-end1) cl-end2 (1- cl-end2)))
|
|
557 (and (or (< cl-start1 cl-end1) (< cl-start2 cl-end2))
|
|
558 (1- cl-end1)))
|
|
559 (let ((cl-p1 (and (listp cl-seq1) (nthcdr cl-start1 cl-seq1)))
|
|
560 (cl-p2 (and (listp cl-seq2) (nthcdr cl-start2 cl-seq2))))
|
|
561 (while (and (< cl-start1 cl-end1) (< cl-start2 cl-end2)
|
|
562 (cl-check-match (if cl-p1 (car cl-p1)
|
|
563 (aref cl-seq1 cl-start1))
|
|
564 (if cl-p2 (car cl-p2)
|
|
565 (aref cl-seq2 cl-start2))))
|
|
566 (setq cl-p1 (cdr cl-p1) cl-p2 (cdr cl-p2)
|
|
567 cl-start1 (1+ cl-start1) cl-start2 (1+ cl-start2)))
|
|
568 (and (or (< cl-start1 cl-end1) (< cl-start2 cl-end2))
|
|
569 cl-start1)))))
|
|
570
|
|
571 (defun search (cl-seq1 cl-seq2 &rest cl-keys)
|
|
572 "Search for SEQ1 as a subsequence of SEQ2.
|
|
573 Return the index of the leftmost element of the first match found;
|
|
574 return nil if there are no matches.
|
|
575 Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end"
|
|
576 (cl-parsing-keywords (:test :test-not :key :from-end
|
|
577 (:start1 0) :end1 (:start2 0) :end2) ()
|
|
578 (or cl-end1 (setq cl-end1 (length cl-seq1)))
|
|
579 (or cl-end2 (setq cl-end2 (length cl-seq2)))
|
|
580 (if (>= cl-start1 cl-end1)
|
|
581 (if cl-from-end cl-end2 cl-start2)
|
|
582 (let* ((cl-len (- cl-end1 cl-start1))
|
|
583 (cl-first (cl-check-key (elt cl-seq1 cl-start1)))
|
|
584 (cl-if nil) cl-pos)
|
|
585 (setq cl-end2 (- cl-end2 (1- cl-len)))
|
|
586 (while (and (< cl-start2 cl-end2)
|
|
587 (setq cl-pos (cl-position cl-first cl-seq2
|
|
588 cl-start2 cl-end2 cl-from-end))
|
|
589 (apply 'mismatch cl-seq1 cl-seq2
|
|
590 ':start1 (1+ cl-start1) ':end1 cl-end1
|
|
591 ':start2 (1+ cl-pos) ':end2 (+ cl-pos cl-len)
|
|
592 ':from-end nil cl-keys))
|
|
593 (if cl-from-end (setq cl-end2 cl-pos) (setq cl-start2 (1+ cl-pos))))
|
|
594 (and (< cl-start2 cl-end2) cl-pos)))))
|
|
595
|
|
596 (defun sort* (cl-seq cl-pred &rest cl-keys)
|
|
597 "Sort the argument SEQUENCE according to PREDICATE.
|
|
598 This is a destructive function; it reuses the storage of SEQUENCE if possible.
|
|
599 Keywords supported: :key"
|
|
600 (if (nlistp cl-seq)
|
|
601 (replace cl-seq (apply 'sort* (append cl-seq nil) cl-pred cl-keys))
|
|
602 (cl-parsing-keywords (:key) ()
|
|
603 (if (memq cl-key '(nil identity))
|
|
604 (sort cl-seq cl-pred)
|
|
605 (sort cl-seq (function (lambda (cl-x cl-y)
|
|
606 (funcall cl-pred (funcall cl-key cl-x)
|
|
607 (funcall cl-key cl-y)))))))))
|
|
608
|
|
609 (defun stable-sort (cl-seq cl-pred &rest cl-keys)
|
|
610 "Sort the argument SEQUENCE stably according to PREDICATE.
|
|
611 This is a destructive function; it reuses the storage of SEQUENCE if possible.
|
|
612 Keywords supported: :key"
|
|
613 (apply 'sort* cl-seq cl-pred cl-keys))
|
|
614
|
|
615 (defun merge (cl-type cl-seq1 cl-seq2 cl-pred &rest cl-keys)
|
|
616 "Destructively merge the two sequences to produce a new sequence.
|
|
617 TYPE is the sequence type to return, SEQ1 and SEQ2 are the two
|
|
618 argument sequences, and PRED is a `less-than' predicate on the elements.
|
|
619 Keywords supported: :key"
|
|
620 (or (listp cl-seq1) (setq cl-seq1 (append cl-seq1 nil)))
|
|
621 (or (listp cl-seq2) (setq cl-seq2 (append cl-seq2 nil)))
|
|
622 (cl-parsing-keywords (:key) ()
|
|
623 (let ((cl-res nil))
|
|
624 (while (and cl-seq1 cl-seq2)
|
|
625 (if (funcall cl-pred (cl-check-key (car cl-seq2))
|
|
626 (cl-check-key (car cl-seq1)))
|
|
627 (cl-push (cl-pop cl-seq2) cl-res)
|
|
628 (cl-push (cl-pop cl-seq1) cl-res)))
|
|
629 (coerce (nconc (nreverse cl-res) cl-seq1 cl-seq2) cl-type))))
|
|
630
|
|
631 ;;; See compiler macro in cl-macs.el
|
|
632 (defun member* (cl-item cl-list &rest cl-keys)
|
|
633 "Find the first occurrence of ITEM in LIST.
|
|
634 Return the sublist of LIST whose car is ITEM.
|
|
635 Keywords supported: :test :test-not :key"
|
|
636 (if cl-keys
|
|
637 (cl-parsing-keywords (:test :test-not :key :if :if-not) ()
|
|
638 (while (and cl-list (not (cl-check-test cl-item (car cl-list))))
|
|
639 (setq cl-list (cdr cl-list)))
|
|
640 cl-list)
|
|
641 (if (and (numberp cl-item) (not (integerp cl-item)))
|
|
642 (member cl-item cl-list)
|
|
643 (memq cl-item cl-list))))
|
|
644
|
|
645 (defun member-if (cl-pred cl-list &rest cl-keys)
|
|
646 "Find the first item satisfying PREDICATE in LIST.
|
|
647 Return the sublist of LIST whose car matches.
|
|
648 Keywords supported: :key"
|
|
649 (apply 'member* nil cl-list ':if cl-pred cl-keys))
|
|
650
|
|
651 (defun member-if-not (cl-pred cl-list &rest cl-keys)
|
|
652 "Find the first item not satisfying PREDICATE in LIST.
|
|
653 Return the sublist of LIST whose car matches.
|
|
654 Keywords supported: :key"
|
|
655 (apply 'member* nil cl-list ':if-not cl-pred cl-keys))
|
|
656
|
|
657 (defun cl-adjoin (cl-item cl-list &rest cl-keys)
|
|
658 (if (cl-parsing-keywords (:key) t
|
|
659 (apply 'member* (cl-check-key cl-item) cl-list cl-keys))
|
|
660 cl-list
|
|
661 (cons cl-item cl-list)))
|
|
662
|
|
663 ;;; See compiler macro in cl-macs.el
|
|
664 (defun assoc* (cl-item cl-alist &rest cl-keys)
|
|
665 "Find the first item whose car matches ITEM in LIST.
|
|
666 Keywords supported: :test :test-not :key"
|
|
667 (if cl-keys
|
|
668 (cl-parsing-keywords (:test :test-not :key :if :if-not) ()
|
|
669 (while (and cl-alist
|
|
670 (or (not (consp (car cl-alist)))
|
|
671 (not (cl-check-test cl-item (car (car cl-alist))))))
|
|
672 (setq cl-alist (cdr cl-alist)))
|
|
673 (and cl-alist (car cl-alist)))
|
|
674 (if (and (numberp cl-item) (not (integerp cl-item)))
|
|
675 (assoc cl-item cl-alist)
|
|
676 (assq cl-item cl-alist))))
|
|
677
|
|
678 (defun assoc-if (cl-pred cl-list &rest cl-keys)
|
|
679 "Find the first item whose car satisfies PREDICATE in LIST.
|
|
680 Keywords supported: :key"
|
|
681 (apply 'assoc* nil cl-list ':if cl-pred cl-keys))
|
|
682
|
|
683 (defun assoc-if-not (cl-pred cl-list &rest cl-keys)
|
|
684 "Find the first item whose car does not satisfy PREDICATE in LIST.
|
|
685 Keywords supported: :key"
|
|
686 (apply 'assoc* nil cl-list ':if-not cl-pred cl-keys))
|
|
687
|
|
688 (defun rassoc* (cl-item cl-alist &rest cl-keys)
|
|
689 "Find the first item whose cdr matches ITEM in LIST.
|
|
690 Keywords supported: :test :test-not :key"
|
|
691 (if (or cl-keys (numberp cl-item))
|
|
692 (cl-parsing-keywords (:test :test-not :key :if :if-not) ()
|
|
693 (while (and cl-alist
|
|
694 (or (not (consp (car cl-alist)))
|
|
695 (not (cl-check-test cl-item (cdr (car cl-alist))))))
|
|
696 (setq cl-alist (cdr cl-alist)))
|
|
697 (and cl-alist (car cl-alist)))
|
|
698 (rassq cl-item cl-alist)))
|
|
699
|
|
700 (defun rassoc-if (cl-pred cl-list &rest cl-keys)
|
|
701 "Find the first item whose cdr satisfies PREDICATE in LIST.
|
|
702 Keywords supported: :key"
|
|
703 (apply 'rassoc* nil cl-list ':if cl-pred cl-keys))
|
|
704
|
|
705 (defun rassoc-if-not (cl-pred cl-list &rest cl-keys)
|
|
706 "Find the first item whose cdr does not satisfy PREDICATE in LIST.
|
|
707 Keywords supported: :key"
|
|
708 (apply 'rassoc* nil cl-list ':if-not cl-pred cl-keys))
|
|
709
|
|
710 (defun union (cl-list1 cl-list2 &rest cl-keys)
|
|
711 "Combine LIST1 and LIST2 using a set-union operation.
|
|
712 The result list contains all items that appear in either LIST1 or LIST2.
|
|
713 This is a non-destructive function; it makes a copy of the data if necessary
|
|
714 to avoid corrupting the original LIST1 and LIST2.
|
|
715 Keywords supported: :test :test-not :key"
|
|
716 (cond ((null cl-list1) cl-list2) ((null cl-list2) cl-list1)
|
|
717 ((equal cl-list1 cl-list2) cl-list1)
|
|
718 (t
|
|
719 (or (>= (length cl-list1) (length cl-list2))
|
|
720 (setq cl-list1 (prog1 cl-list2 (setq cl-list2 cl-list1))))
|
|
721 (while cl-list2
|
|
722 (if (or cl-keys (numberp (car cl-list2)))
|
|
723 (setq cl-list1 (apply 'adjoin (car cl-list2) cl-list1 cl-keys))
|
|
724 (or (memq (car cl-list2) cl-list1)
|
|
725 (cl-push (car cl-list2) cl-list1)))
|
|
726 (cl-pop cl-list2))
|
|
727 cl-list1)))
|
|
728
|
|
729 (defun nunion (cl-list1 cl-list2 &rest cl-keys)
|
|
730 "Combine LIST1 and LIST2 using a set-union operation.
|
|
731 The result list contains all items that appear in either LIST1 or LIST2.
|
|
732 This is a destructive function; it reuses the storage of LIST1 and LIST2
|
|
733 whenever possible.
|
|
734 Keywords supported: :test :test-not :key"
|
|
735 (cond ((null cl-list1) cl-list2) ((null cl-list2) cl-list1)
|
|
736 (t (apply 'union cl-list1 cl-list2 cl-keys))))
|
|
737
|
|
738 (defun intersection (cl-list1 cl-list2 &rest cl-keys)
|
|
739 "Combine LIST1 and LIST2 using a set-intersection operation.
|
|
740 The result list contains all items that appear in both LIST1 and LIST2.
|
|
741 This is a non-destructive function; it makes a copy of the data if necessary
|
|
742 to avoid corrupting the original LIST1 and LIST2.
|
|
743 Keywords supported: :test :test-not :key"
|
|
744 (and cl-list1 cl-list2
|
|
745 (if (equal cl-list1 cl-list2) cl-list1
|
|
746 (cl-parsing-keywords (:key) (:test :test-not)
|
|
747 (let ((cl-res nil))
|
|
748 (or (>= (length cl-list1) (length cl-list2))
|
|
749 (setq cl-list1 (prog1 cl-list2 (setq cl-list2 cl-list1))))
|
|
750 (while cl-list2
|
|
751 (if (if (or cl-keys (numberp (car cl-list2)))
|
|
752 (apply 'member* (cl-check-key (car cl-list2))
|
|
753 cl-list1 cl-keys)
|
|
754 (memq (car cl-list2) cl-list1))
|
|
755 (cl-push (car cl-list2) cl-res))
|
|
756 (cl-pop cl-list2))
|
|
757 cl-res)))))
|
|
758
|
|
759 (defun nintersection (cl-list1 cl-list2 &rest cl-keys)
|
|
760 "Combine LIST1 and LIST2 using a set-intersection operation.
|
|
761 The result list contains all items that appear in both LIST1 and LIST2.
|
|
762 This is a destructive function; it reuses the storage of LIST1 and LIST2
|
|
763 whenever possible.
|
|
764 Keywords supported: :test :test-not :key"
|
|
765 (and cl-list1 cl-list2 (apply 'intersection cl-list1 cl-list2 cl-keys)))
|
|
766
|
|
767 (defun set-difference (cl-list1 cl-list2 &rest cl-keys)
|
|
768 "Combine LIST1 and LIST2 using a set-difference operation.
|
|
769 The result list contains all items that appear in LIST1 but not LIST2.
|
|
770 This is a non-destructive function; it makes a copy of the data if necessary
|
|
771 to avoid corrupting the original LIST1 and LIST2.
|
|
772 Keywords supported: :test :test-not :key"
|
|
773 (if (or (null cl-list1) (null cl-list2)) cl-list1
|
|
774 (cl-parsing-keywords (:key) (:test :test-not)
|
|
775 (let ((cl-res nil))
|
|
776 (while cl-list1
|
|
777 (or (if (or cl-keys (numberp (car cl-list1)))
|
|
778 (apply 'member* (cl-check-key (car cl-list1))
|
|
779 cl-list2 cl-keys)
|
|
780 (memq (car cl-list1) cl-list2))
|
|
781 (cl-push (car cl-list1) cl-res))
|
|
782 (cl-pop cl-list1))
|
|
783 cl-res))))
|
|
784
|
|
785 (defun nset-difference (cl-list1 cl-list2 &rest cl-keys)
|
|
786 "Combine LIST1 and LIST2 using a set-difference operation.
|
|
787 The result list contains all items that appear in LIST1 but not LIST2.
|
|
788 This is a destructive function; it reuses the storage of LIST1 and LIST2
|
|
789 whenever possible.
|
|
790 Keywords supported: :test :test-not :key"
|
|
791 (if (or (null cl-list1) (null cl-list2)) cl-list1
|
|
792 (apply 'set-difference cl-list1 cl-list2 cl-keys)))
|
|
793
|
|
794 (defun set-exclusive-or (cl-list1 cl-list2 &rest cl-keys)
|
|
795 "Combine LIST1 and LIST2 using a set-exclusive-or operation.
|
|
796 The result list contains all items that appear in exactly one of LIST1, LIST2.
|
|
797 This is a non-destructive function; it makes a copy of the data if necessary
|
|
798 to avoid corrupting the original LIST1 and LIST2.
|
|
799 Keywords supported: :test :test-not :key"
|
|
800 (cond ((null cl-list1) cl-list2) ((null cl-list2) cl-list1)
|
|
801 ((equal cl-list1 cl-list2) nil)
|
|
802 (t (append (apply 'set-difference cl-list1 cl-list2 cl-keys)
|
|
803 (apply 'set-difference cl-list2 cl-list1 cl-keys)))))
|
|
804
|
|
805 (defun nset-exclusive-or (cl-list1 cl-list2 &rest cl-keys)
|
|
806 "Combine LIST1 and LIST2 using a set-exclusive-or operation.
|
|
807 The result list contains all items that appear in exactly one of LIST1, LIST2.
|
|
808 This is a destructive function; it reuses the storage of LIST1 and LIST2
|
|
809 whenever possible.
|
|
810 Keywords supported: :test :test-not :key"
|
|
811 (cond ((null cl-list1) cl-list2) ((null cl-list2) cl-list1)
|
|
812 ((equal cl-list1 cl-list2) nil)
|
|
813 (t (nconc (apply 'nset-difference cl-list1 cl-list2 cl-keys)
|
|
814 (apply 'nset-difference cl-list2 cl-list1 cl-keys)))))
|
|
815
|
|
816 (defun subsetp (cl-list1 cl-list2 &rest cl-keys)
|
|
817 "True if LIST1 is a subset of LIST2.
|
|
818 I.e., if every element of LIST1 also appears in LIST2.
|
|
819 Keywords supported: :test :test-not :key"
|
|
820 (cond ((null cl-list1) t) ((null cl-list2) nil)
|
|
821 ((equal cl-list1 cl-list2) t)
|
|
822 (t (cl-parsing-keywords (:key) (:test :test-not)
|
|
823 (while (and cl-list1
|
|
824 (apply 'member* (cl-check-key (car cl-list1))
|
|
825 cl-list2 cl-keys))
|
|
826 (cl-pop cl-list1))
|
|
827 (null cl-list1)))))
|
|
828
|
|
829 (defun subst-if (cl-new cl-pred cl-tree &rest cl-keys)
|
|
830 "Substitute NEW for elements matching PREDICATE in TREE (non-destructively).
|
|
831 Return a copy of TREE with all matching elements replaced by NEW.
|
|
832 Keywords supported: :key"
|
|
833 (apply 'sublis (list (cons nil cl-new)) cl-tree ':if cl-pred cl-keys))
|
|
834
|
|
835 (defun subst-if-not (cl-new cl-pred cl-tree &rest cl-keys)
|
|
836 "Substitute NEW for elts not matching PREDICATE in TREE (non-destructively).
|
|
837 Return a copy of TREE with all non-matching elements replaced by NEW.
|
|
838 Keywords supported: :key"
|
|
839 (apply 'sublis (list (cons nil cl-new)) cl-tree ':if-not cl-pred cl-keys))
|
|
840
|
|
841 (defun nsubst (cl-new cl-old cl-tree &rest cl-keys)
|
|
842 "Substitute NEW for OLD everywhere in TREE (destructively).
|
|
843 Any element of TREE which is `eql' to OLD is changed to NEW (via a call
|
|
844 to `setcar').
|
|
845 Keywords supported: :test :test-not :key"
|
|
846 (apply 'nsublis (list (cons cl-old cl-new)) cl-tree cl-keys))
|
|
847
|
|
848 (defun nsubst-if (cl-new cl-pred cl-tree &rest cl-keys)
|
|
849 "Substitute NEW for elements matching PREDICATE in TREE (destructively).
|
|
850 Any element of TREE which matches is changed to NEW (via a call to `setcar').
|
|
851 Keywords supported: :key"
|
|
852 (apply 'nsublis (list (cons nil cl-new)) cl-tree ':if cl-pred cl-keys))
|
|
853
|
|
854 (defun nsubst-if-not (cl-new cl-pred cl-tree &rest cl-keys)
|
|
855 "Substitute NEW for elements not matching PREDICATE in TREE (destructively).
|
|
856 Any element of TREE which matches is changed to NEW (via a call to `setcar').
|
|
857 Keywords supported: :key"
|
|
858 (apply 'nsublis (list (cons nil cl-new)) cl-tree ':if-not cl-pred cl-keys))
|
|
859
|
|
860 (defun sublis (cl-alist cl-tree &rest cl-keys)
|
|
861 "Perform substitutions indicated by ALIST in TREE (non-destructively).
|
|
862 Return a copy of TREE with all matching elements replaced.
|
|
863 Keywords supported: :test :test-not :key"
|
|
864 (cl-parsing-keywords (:test :test-not :key :if :if-not) ()
|
|
865 (cl-sublis-rec cl-tree)))
|
|
866
|
|
867 (defvar cl-alist)
|
|
868 (defun cl-sublis-rec (cl-tree) ; uses cl-alist/key/test*/if*
|
|
869 (let ((cl-temp (cl-check-key cl-tree)) (cl-p cl-alist))
|
|
870 (while (and cl-p (not (cl-check-test-nokey (car (car cl-p)) cl-temp)))
|
|
871 (setq cl-p (cdr cl-p)))
|
|
872 (if cl-p (cdr (car cl-p))
|
|
873 (if (consp cl-tree)
|
|
874 (let ((cl-a (cl-sublis-rec (car cl-tree)))
|
|
875 (cl-d (cl-sublis-rec (cdr cl-tree))))
|
|
876 (if (and (eq cl-a (car cl-tree)) (eq cl-d (cdr cl-tree)))
|
|
877 cl-tree
|
|
878 (cons cl-a cl-d)))
|
|
879 cl-tree))))
|
|
880
|
|
881 (defun nsublis (cl-alist cl-tree &rest cl-keys)
|
|
882 "Perform substitutions indicated by ALIST in TREE (destructively).
|
|
883 Any matching element of TREE is changed via a call to `setcar'.
|
|
884 Keywords supported: :test :test-not :key"
|
|
885 (cl-parsing-keywords (:test :test-not :key :if :if-not) ()
|
|
886 (let ((cl-hold (list cl-tree)))
|
|
887 (cl-nsublis-rec cl-hold)
|
|
888 (car cl-hold))))
|
|
889
|
|
890 (defun cl-nsublis-rec (cl-tree) ; uses cl-alist/temp/p/key/test*/if*
|
|
891 (while (consp cl-tree)
|
|
892 (let ((cl-temp (cl-check-key (car cl-tree))) (cl-p cl-alist))
|
|
893 (while (and cl-p (not (cl-check-test-nokey (car (car cl-p)) cl-temp)))
|
|
894 (setq cl-p (cdr cl-p)))
|
|
895 (if cl-p (setcar cl-tree (cdr (car cl-p)))
|
|
896 (if (consp (car cl-tree)) (cl-nsublis-rec (car cl-tree))))
|
|
897 (setq cl-temp (cl-check-key (cdr cl-tree)) cl-p cl-alist)
|
|
898 (while (and cl-p (not (cl-check-test-nokey (car (car cl-p)) cl-temp)))
|
|
899 (setq cl-p (cdr cl-p)))
|
|
900 (if cl-p
|
|
901 (progn (setcdr cl-tree (cdr (car cl-p))) (setq cl-tree nil))
|
|
902 (setq cl-tree (cdr cl-tree))))))
|
|
903
|
|
904 (defun tree-equal (cl-x cl-y &rest cl-keys)
|
|
905 "T if trees X and Y have `eql' leaves.
|
|
906 Atoms are compared by `eql'; cons cells are compared recursively.
|
|
907 Keywords supported: :test :test-not :key"
|
|
908 (cl-parsing-keywords (:test :test-not :key) ()
|
|
909 (cl-tree-equal-rec cl-x cl-y)))
|
|
910
|
|
911 (defun cl-tree-equal-rec (cl-x cl-y)
|
|
912 (while (and (consp cl-x) (consp cl-y)
|
|
913 (cl-tree-equal-rec (car cl-x) (car cl-y)))
|
|
914 (setq cl-x (cdr cl-x) cl-y (cdr cl-y)))
|
|
915 (and (not (consp cl-x)) (not (consp cl-y)) (cl-check-match cl-x cl-y)))
|
|
916
|
|
917
|
|
918 (run-hooks 'cl-seq-load-hook)
|
|
919
|
|
920 ;;; cl-seq.el ends here
|