0
|
1 /* Lisp interface to hash tables.
|
|
2 Copyright (C) 1992, 1993, 1994 Free Software Foundation, Inc.
|
|
3 Copyright (C) 1995, 1996 Ben Wing.
|
223
|
4 Copyright (C) 1997 Free Software Foundation, Inc.
|
0
|
5
|
|
6 This file is part of XEmacs.
|
|
7
|
|
8 XEmacs is free software; you can redistribute it and/or modify it
|
|
9 under the terms of the GNU General Public License as published by the
|
|
10 Free Software Foundation; either version 2, or (at your option) any
|
|
11 later version.
|
|
12
|
|
13 XEmacs is distributed in the hope that it will be useful, but WITHOUT
|
|
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
16 for more details.
|
|
17
|
|
18 You should have received a copy of the GNU General Public License
|
|
19 along with XEmacs; see the file COPYING. If not, write to
|
|
20 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
21 Boston, MA 02111-1307, USA. */
|
|
22
|
|
23 /* Synched up with: Not in FSF. */
|
|
24
|
|
25 #include <config.h>
|
|
26 #include "lisp.h"
|
|
27 #include "hash.h"
|
|
28 #include "elhash.h"
|
|
29 #include "bytecode.h"
|
|
30
|
272
|
31 EXFUN (Fmake_weak_hashtable, 2);
|
|
32 EXFUN (Fmake_key_weak_hashtable, 2);
|
|
33 EXFUN (Fmake_value_weak_hashtable, 2);
|
|
34
|
223
|
35 Lisp_Object Qhashtablep, Qhashtable;
|
|
36 Lisp_Object Qweak, Qkey_weak, Qvalue_weak, Qnon_weak;
|
0
|
37
|
|
38 #define LISP_OBJECTS_PER_HENTRY (sizeof (hentry) / sizeof (Lisp_Object))/* 2 */
|
|
39
|
185
|
40 struct hashtable
|
0
|
41 {
|
|
42 struct lcrecord_header header;
|
|
43 unsigned int fullness;
|
|
44 unsigned long (*hash_function) (CONST void *);
|
|
45 int (*test_function) (CONST void *, CONST void *);
|
|
46 Lisp_Object zero_entry;
|
|
47 Lisp_Object harray;
|
|
48 enum hashtable_type type; /* whether and how this hashtable is weak */
|
|
49 Lisp_Object next_weak; /* Used to chain together all of the weak
|
|
50 hashtables. Don't mark through this. */
|
|
51 };
|
|
52
|
|
53 static Lisp_Object Vall_weak_hashtables;
|
|
54
|
|
55 static Lisp_Object
|
|
56 mark_hashtable (Lisp_Object obj, void (*markobj) (Lisp_Object))
|
|
57 {
|
185
|
58 struct hashtable *table = XHASHTABLE (obj);
|
0
|
59
|
|
60 if (table->type != HASHTABLE_NONWEAK)
|
|
61 {
|
|
62 /* If the table is weak, we don't want to mark the keys and values
|
|
63 (we scan over them after everything else has been marked,
|
|
64 and mark or remove them as necessary). Note that we will mark
|
|
65 the table->harray itself at the same time; it's hard to mark
|
|
66 that here without also marking its contents. */
|
|
67 return Qnil;
|
|
68 }
|
|
69 ((markobj) (table->zero_entry));
|
173
|
70 return table->harray;
|
0
|
71 }
|
223
|
72
|
231
|
73 /* Equality of hashtables. Two hashtables are equal when they are of
|
|
74 the same type and test function, they have the same number of
|
|
75 elements, and for each key in hashtable, the values are `equal'.
|
|
76
|
|
77 This is similar to Common Lisp `equalp' of hashtables, with the
|
241
|
78 difference that CL requires the keys to be compared with the test
|
|
79 function, which we don't do. Doing that would require consing, and
|
|
80 consing is bad idea in `equal'. Anyway, our method should provide
|
|
81 the same result -- if the keys are not equal according to test
|
|
82 function, then Fgethash() in hashtable_equal_mapper() will fail. */
|
231
|
83 struct hashtable_equal_closure
|
|
84 {
|
|
85 int depth;
|
241
|
86 int equal;
|
231
|
87 Lisp_Object other_table;
|
|
88 };
|
|
89
|
241
|
90 static int
|
251
|
91 hashtable_equal_mapper (CONST void *key, void *contents, void *arg)
|
231
|
92 {
|
|
93 struct hashtable_equal_closure *closure =
|
|
94 (struct hashtable_equal_closure *)arg;
|
|
95 Lisp_Object keytem, valuetem;
|
241
|
96 Lisp_Object value_in_other;
|
231
|
97
|
241
|
98 CVOID_TO_LISP (keytem, key);
|
|
99 CVOID_TO_LISP (valuetem, contents);
|
|
100 /* Look up the key in the other hashtable, and compare the values. */
|
|
101 value_in_other = Fgethash (keytem, closure->other_table, Qunbound);
|
|
102 if (UNBOUNDP (value_in_other)
|
|
103 || !internal_equal (valuetem, value_in_other, closure->depth))
|
231
|
104 {
|
241
|
105 /* Give up. */
|
|
106 closure->equal = 0;
|
|
107 return 1;
|
231
|
108 }
|
241
|
109 return 0;
|
231
|
110 }
|
|
111
|
|
112 static int
|
|
113 hashtable_equal (Lisp_Object t1, Lisp_Object t2, int depth)
|
|
114 {
|
|
115 struct hashtable_equal_closure closure;
|
|
116 struct hashtable *table1 = XHASHTABLE (t1);
|
|
117 struct hashtable *table2 = XHASHTABLE (t2);
|
|
118
|
|
119 /* The objects are `equal' if they are of the same type, so return 0
|
|
120 if types or test functions are not the same. Obviously, the
|
251
|
121 number of elements must be equal, too. #### table->fullness is
|
|
122 broken, so we cannot use it. */
|
231
|
123 if ((table1->test_function != table2->test_function)
|
|
124 || (table1->type != table2->type)
|
251
|
125 /*|| (table1->fullness != table2->fullness))*/
|
|
126 )
|
231
|
127 return 0;
|
|
128
|
|
129 closure.depth = depth + 1;
|
241
|
130 closure.equal = 1;
|
231
|
131 closure.other_table = t2;
|
|
132 elisp_maphash (hashtable_equal_mapper, t1, &closure);
|
241
|
133 return closure.equal;
|
|
134 }
|
|
135
|
223
|
136 /* Printing hashtables.
|
|
137
|
|
138 This is non-trivial, because we use a readable structure-style
|
|
139 syntax for hashtables. This means that a typical hashtable will be
|
|
140 readably printed in the form of:
|
|
141
|
|
142 #s(hashtable size 2 data (key1 value1 key2 value2))
|
|
143
|
|
144 The supported keywords are `type' (non-weak (or nil), weak,
|
|
145 key-weak and value-weak), `test' (eql (or nil), eq or equal),
|
|
146 `size' (a natnum or nil) and `data' (a list).
|
|
147
|
|
148 If `print-readably' is non-nil, then a simpler syntax is used; for
|
|
149 instance:
|
|
150
|
|
151 #<hashtable size 2/13 data (key1 value1 key2 value2) 0x874d>
|
|
152
|
|
153 The data is truncated to four pairs, and the rest is shown with
|
241
|
154 `...'. This printer does not cons. */
|
223
|
155
|
231
|
156 struct print_hashtable_data_closure
|
|
157 {
|
|
158 EMACS_INT count; /* Used to implement truncation for
|
|
159 non-readable printing, as well as
|
|
160 to avoid the unnecessary space at
|
|
161 the beginning. */
|
223
|
162 Lisp_Object printcharfun;
|
|
163 };
|
|
164
|
241
|
165 static int
|
251
|
166 print_hashtable_data_mapper (CONST void *key, void *contents, void *arg)
|
223
|
167 {
|
|
168 Lisp_Object keytem, valuetem;
|
231
|
169 struct print_hashtable_data_closure *closure =
|
|
170 (struct print_hashtable_data_closure *)arg;
|
223
|
171
|
|
172 if (closure->count < 4 || print_readably)
|
|
173 {
|
|
174 CVOID_TO_LISP (keytem, key);
|
|
175 CVOID_TO_LISP (valuetem, contents);
|
|
176
|
|
177 if (closure->count)
|
|
178 write_c_string (" ", closure->printcharfun);
|
|
179
|
|
180 print_internal (keytem, closure->printcharfun, 1);
|
|
181 write_c_string (" ", closure->printcharfun);
|
|
182 print_internal (valuetem, closure->printcharfun, 1);
|
|
183 }
|
|
184 ++closure->count;
|
241
|
185 return 0;
|
223
|
186 }
|
|
187
|
|
188 /* Print the data of the hashtable. This maps through a Lisp
|
|
189 hashtable and prints key/value pairs using PRINTCHARFUN. */
|
|
190 static void
|
|
191 print_hashtable_data (Lisp_Object hashtable, Lisp_Object printcharfun)
|
|
192 {
|
231
|
193 struct print_hashtable_data_closure closure;
|
223
|
194 closure.count = 0;
|
|
195 closure.printcharfun = printcharfun;
|
|
196
|
|
197 write_c_string (" data (", printcharfun);
|
|
198 elisp_maphash (print_hashtable_data_mapper, hashtable, &closure);
|
|
199 write_c_string ((!print_readably && closure.count > 4) ? " ...)" : ")",
|
|
200 printcharfun);
|
|
201 }
|
|
202
|
251
|
203 /* Needed for tests. */
|
|
204 static int lisp_object_eql_equal (CONST void *x1, CONST void *x2);
|
|
205 static int lisp_object_equal_equal (CONST void *x1, CONST void *x2);
|
|
206
|
0
|
207 static void
|
|
208 print_hashtable (Lisp_Object obj, Lisp_Object printcharfun, int escapeflag)
|
|
209 {
|
185
|
210 struct hashtable *table = XHASHTABLE (obj);
|
223
|
211 char buf[128];
|
|
212
|
|
213 write_c_string (print_readably ? "#s(hashtable" : "#<hashtable",
|
|
214 printcharfun);
|
|
215 if (table->type != HASHTABLE_NONWEAK)
|
|
216 {
|
|
217 sprintf (buf, " type %s",
|
|
218 (table->type == HASHTABLE_WEAK ? "weak" :
|
|
219 table->type == HASHTABLE_KEY_WEAK ? "key-weak" :
|
|
220 table->type == HASHTABLE_VALUE_WEAK ? "value-weak" :
|
|
221 "you-d-better-not-see-this"));
|
|
222 write_c_string (buf, printcharfun);
|
|
223 }
|
241
|
224 /* These checks have a kludgy look to them, but they are safe. Due
|
|
225 to nature of hashing, you cannot use arbitrary test functions
|
|
226 anyway. */
|
|
227 if (!table->test_function)
|
223
|
228 write_c_string (" test eq", printcharfun);
|
|
229 else if (table->test_function == lisp_object_equal_equal)
|
|
230 write_c_string (" test equal", printcharfun);
|
|
231 else if (table->test_function == lisp_object_eql_equal)
|
231
|
232 DO_NOTHING;
|
223
|
233 else
|
|
234 abort ();
|
|
235 if (table->fullness || !print_readably)
|
|
236 {
|
|
237 if (print_readably)
|
231
|
238 sprintf (buf, " size %u", table->fullness);
|
223
|
239 else
|
|
240 sprintf (buf, " size %u/%ld", table->fullness,
|
|
241 XVECTOR_LENGTH (table->harray) / LISP_OBJECTS_PER_HENTRY);
|
|
242 write_c_string (buf, printcharfun);
|
|
243 }
|
|
244 if (table->fullness)
|
|
245 print_hashtable_data (obj, printcharfun);
|
0
|
246 if (print_readably)
|
223
|
247 write_c_string (")", printcharfun);
|
|
248 else
|
|
249 {
|
|
250 sprintf (buf, " 0x%x>", table->header.uid);
|
|
251 write_c_string (buf, printcharfun);
|
|
252 }
|
|
253 }
|
|
254
|
272
|
255 DEFINE_LRECORD_IMPLEMENTATION ("hashtable", hashtable,
|
|
256 mark_hashtable, print_hashtable, 0,
|
|
257 /* #### Implement hashtable_hash()! */
|
|
258 hashtable_equal, 0,
|
|
259 struct hashtable);
|
223
|
260
|
|
261 /* Pretty reading of hashtables.
|
|
262
|
|
263 Here we use the existing structures mechanism (which is,
|
|
264 unfortunately, pretty cumbersome) for validating and instantiating
|
|
265 the hashtables. The idea is that the side-effect of reading a
|
|
266 #s(hashtable PLIST) object is creation of a hashtable with desired
|
|
267 properties, and that the hashtable is returned. */
|
|
268
|
|
269 /* Validation functions: each keyword provides its own validation
|
|
270 function. The errors should maybe be continuable, but it is
|
|
271 unclear how this would cope with ERRB. */
|
|
272 static int
|
|
273 hashtable_type_validate (Lisp_Object keyword, Lisp_Object value,
|
|
274 Error_behavior errb)
|
|
275 {
|
|
276 if (!(NILP (value)
|
|
277 || EQ (value, Qnon_weak)
|
|
278 || EQ (value, Qweak)
|
|
279 || EQ (value, Qkey_weak)
|
|
280 || EQ (value, Qvalue_weak)))
|
|
281 {
|
|
282 maybe_signal_simple_error ("Invalid hashtable type", value,
|
|
283 Qhashtable, errb);
|
|
284 return 0;
|
|
285 }
|
|
286 return 1;
|
|
287 }
|
|
288
|
|
289 static int
|
|
290 hashtable_test_validate (Lisp_Object keyword, Lisp_Object value,
|
|
291 Error_behavior errb)
|
|
292 {
|
|
293 if (!(NILP (value)
|
|
294 || EQ (value, Qeq)
|
|
295 || EQ (value, Qeql)
|
|
296 || EQ (value, Qequal)))
|
|
297 {
|
|
298 maybe_signal_simple_error ("Invalid hashtable test", value,
|
|
299 Qhashtable, errb);
|
|
300 return 0;
|
|
301 }
|
|
302 return 1;
|
|
303 }
|
|
304
|
|
305 static int
|
|
306 hashtable_size_validate (Lisp_Object keyword, Lisp_Object value,
|
|
307 Error_behavior errb)
|
|
308 {
|
|
309 if (!NATNUMP (value))
|
|
310 {
|
|
311 maybe_signal_error (Qwrong_type_argument, list2 (Qnatnump, value),
|
|
312 Qhashtable, errb);
|
|
313 return 0;
|
|
314 }
|
|
315 return 1;
|
0
|
316 }
|
|
317
|
223
|
318 static int
|
|
319 hashtable_data_validate (Lisp_Object keyword, Lisp_Object value,
|
|
320 Error_behavior errb)
|
|
321 {
|
|
322 int num = 0;
|
|
323 Lisp_Object tail;
|
|
324
|
|
325 /* #### Doesn't respect ERRB! */
|
|
326 EXTERNAL_LIST_LOOP (tail, value)
|
|
327 {
|
|
328 ++num;
|
|
329 QUIT;
|
|
330 }
|
|
331 if (num & 1)
|
|
332 {
|
|
333 maybe_signal_simple_error
|
|
334 ("Hashtable data must have alternating keyword/value pairs", value,
|
|
335 Qhashtable, errb);
|
|
336 return 0;
|
|
337 }
|
|
338 return 1;
|
|
339 }
|
|
340
|
|
341 /* The actual instantiation of hashtable. This does practically no
|
|
342 error checking, because it relies on the fact that the paranoid
|
|
343 functions above have error-checked everything to the last details.
|
|
344 If this assumption is wrong, we will get a crash immediately (with
|
|
345 error-checking compiled in), and we'll know if there is a bug in
|
|
346 the structure mechanism. So there. */
|
|
347 static Lisp_Object
|
|
348 hashtable_instantiate (Lisp_Object plist)
|
|
349 {
|
|
350 /* I'm not sure whether this can GC, but better safe than sorry. */
|
|
351 Lisp_Object hashtab = Qnil;
|
|
352 Lisp_Object type = Qnil, test = Qnil, size = Qnil, data = Qnil;
|
|
353 struct gcpro gcpro1;
|
|
354 GCPRO1 (hashtab);
|
|
355
|
|
356 while (!NILP (plist))
|
|
357 {
|
272
|
358 Lisp_Object key, value;
|
|
359 key = XCAR (plist); plist = XCDR (plist);
|
|
360 value = XCAR (plist); plist = XCDR (plist);
|
|
361
|
|
362 if (EQ (key, Qtype)) type = value;
|
|
363 else if (EQ (key, Qtest)) test = value;
|
|
364 else if (EQ (key, Qsize)) size = value;
|
|
365 else if (EQ (key, Qdata)) data = value;
|
223
|
366 else
|
|
367 abort ();
|
|
368 }
|
272
|
369
|
223
|
370 if (NILP (type))
|
|
371 type = Qnon_weak;
|
272
|
372
|
223
|
373 if (NILP (size))
|
272
|
374 /* Divide by two, because data is a plist. */
|
|
375 size = make_int (XINT (Flength (data)) / 2);
|
223
|
376
|
|
377 /* Create the hashtable. */
|
|
378 if (EQ (type, Qnon_weak))
|
|
379 hashtab = Fmake_hashtable (size, test);
|
|
380 else if (EQ (type, Qweak))
|
|
381 hashtab = Fmake_weak_hashtable (size, test);
|
|
382 else if (EQ (type, Qkey_weak))
|
|
383 hashtab = Fmake_key_weak_hashtable (size, test);
|
|
384 else if (EQ (type, Qvalue_weak))
|
|
385 hashtab = Fmake_value_weak_hashtable (size, test);
|
|
386 else
|
|
387 abort ();
|
|
388
|
|
389 /* And fill it with data. */
|
|
390 while (!NILP (data))
|
|
391 {
|
272
|
392 Lisp_Object key, value;
|
|
393 key = XCAR (data); data = XCDR (data);
|
|
394 value = XCAR (data); data = XCDR (data);
|
223
|
395 Fputhash (key, value, hashtab);
|
|
396 }
|
|
397
|
|
398 UNGCPRO;
|
|
399 return hashtab;
|
|
400 }
|
|
401
|
|
402 /* Initialize the hashtable as a structure type. This is called from
|
|
403 emacs.c. */
|
|
404 void
|
|
405 structure_type_create_hashtable (void)
|
|
406 {
|
|
407 struct structure_type *st;
|
|
408
|
|
409 st = define_structure_type (Qhashtable, 0, hashtable_instantiate);
|
|
410 define_structure_type_keyword (st, Qtype, hashtable_type_validate);
|
|
411 define_structure_type_keyword (st, Qtest, hashtable_test_validate);
|
|
412 define_structure_type_keyword (st, Qsize, hashtable_size_validate);
|
|
413 define_structure_type_keyword (st, Qdata, hashtable_data_validate);
|
|
414 }
|
|
415
|
|
416 /* Basic conversion and allocation functions. */
|
|
417
|
|
418 /* Create a C hashtable from the data in the Lisp hashtable. The
|
|
419 actual vector is not copied, nor are the keys or values copied. */
|
0
|
420 static void
|
185
|
421 ht_copy_to_c (struct hashtable *ht, c_hashtable c_table)
|
0
|
422 {
|
173
|
423 int len = XVECTOR_LENGTH (ht->harray);
|
0
|
424
|
185
|
425 c_table->harray = (hentry *) XVECTOR_DATA (ht->harray);
|
0
|
426 c_table->zero_set = (!GC_UNBOUNDP (ht->zero_entry));
|
|
427 c_table->zero_entry = LISP_TO_VOID (ht->zero_entry);
|
207
|
428 #ifndef LRECORD_VECTOR
|
0
|
429 if (len < 0)
|
|
430 {
|
|
431 /* #### if alloc.c mark_object() changes, this must change too. */
|
|
432 /* barf gag retch. When a vector is marked, its len is
|
|
433 made less than 0. In the prune_weak_hashtables() stage,
|
|
434 we are called on vectors that are like this, and we must
|
|
435 be able to deal. */
|
|
436 assert (gc_in_progress);
|
|
437 len = -1 - len;
|
|
438 }
|
207
|
439 #endif
|
173
|
440 c_table->size = len/LISP_OBJECTS_PER_HENTRY;
|
|
441 c_table->fullness = ht->fullness;
|
0
|
442 c_table->hash_function = ht->hash_function;
|
|
443 c_table->test_function = ht->test_function;
|
|
444 XSETHASHTABLE (c_table->elisp_table, ht);
|
|
445 }
|
|
446
|
|
447 static void
|
185
|
448 ht_copy_from_c (c_hashtable c_table, struct hashtable *ht)
|
0
|
449 {
|
|
450 struct Lisp_Vector dummy;
|
|
451 /* C is truly hateful */
|
|
452 void *vec_addr
|
185
|
453 = ((char *) c_table->harray
|
173
|
454 - ((char *) &(dummy.contents[0]) - (char *) &dummy));
|
0
|
455
|
|
456 XSETVECTOR (ht->harray, vec_addr);
|
|
457 if (c_table->zero_set)
|
|
458 VOID_TO_LISP (ht->zero_entry, c_table->zero_entry);
|
|
459 else
|
|
460 ht->zero_entry = Qunbound;
|
|
461 ht->fullness = c_table->fullness;
|
|
462 }
|
|
463
|
|
464
|
185
|
465 static struct hashtable *
|
0
|
466 allocate_hashtable (void)
|
|
467 {
|
185
|
468 struct hashtable *table =
|
|
469 alloc_lcrecord_type (struct hashtable, lrecord_hashtable);
|
173
|
470 table->harray = Qnil;
|
|
471 table->zero_entry = Qunbound;
|
|
472 table->fullness = 0;
|
0
|
473 table->hash_function = 0;
|
|
474 table->test_function = 0;
|
173
|
475 return table;
|
0
|
476 }
|
|
477
|
173
|
478 void *
|
0
|
479 elisp_hvector_malloc (unsigned int bytes, Lisp_Object table)
|
|
480 {
|
|
481 Lisp_Object new_vector;
|
185
|
482 struct hashtable *ht = XHASHTABLE (table);
|
0
|
483
|
173
|
484 assert (bytes > XVECTOR_LENGTH (ht->harray) * sizeof (Lisp_Object));
|
207
|
485 new_vector = make_vector ((bytes / sizeof (Lisp_Object)), Qnull_pointer);
|
173
|
486 return (void *) XVECTOR_DATA (new_vector);
|
0
|
487 }
|
|
488
|
|
489 void
|
|
490 elisp_hvector_free (void *ptr, Lisp_Object table)
|
|
491 {
|
185
|
492 struct hashtable *ht = XHASHTABLE (table);
|
0
|
493 #if defined (USE_ASSERTIONS) || defined (DEBUG_XEMACS)
|
|
494 Lisp_Object current_vector = ht->harray;
|
|
495 #endif
|
|
496
|
173
|
497 assert (((void *) XVECTOR_DATA (current_vector)) == ptr);
|
0
|
498 ht->harray = Qnil; /* Let GC do its job */
|
|
499 }
|
|
500
|
|
501
|
20
|
502 DEFUN ("hashtablep", Fhashtablep, 1, 1, 0, /*
|
0
|
503 Return t if OBJ is a hashtable, else nil.
|
20
|
504 */
|
|
505 (obj))
|
0
|
506 {
|
173
|
507 return HASHTABLEP (obj) ? Qt : Qnil;
|
0
|
508 }
|
|
509
|
|
510
|
|
511
|
|
512
|
|
513 #if 0 /* I don't think these are needed any more.
|
|
514 If using the general lisp_object_equal_*() functions
|
|
515 causes efficiency problems, these can be resurrected. --ben */
|
|
516 /* equality and hash functions for Lisp strings */
|
|
517 int
|
|
518 lisp_string_equal (CONST void *x1, CONST void *x2)
|
|
519 {
|
241
|
520 /* This is wrong anyway. You can't use strcmp() on Lisp strings,
|
|
521 because they can contain zero characters. */
|
0
|
522 Lisp_Object str1, str2;
|
|
523 CVOID_TO_LISP (str1, x1);
|
|
524 CVOID_TO_LISP (str2, x2);
|
14
|
525 return !strcmp ((char *) XSTRING_DATA (str1), (char *) XSTRING_DATA (str2));
|
0
|
526 }
|
|
527
|
|
528 unsigned long
|
|
529 lisp_string_hash (CONST void *x)
|
|
530 {
|
|
531 Lisp_Object str;
|
|
532 CVOID_TO_LISP (str, x);
|
14
|
533 return hash_string (XSTRING_DATA (str), XSTRING_LENGTH (str));
|
0
|
534 }
|
|
535
|
|
536 #endif /* 0 */
|
|
537
|
|
538 static int
|
|
539 lisp_object_eql_equal (CONST void *x1, CONST void *x2)
|
|
540 {
|
|
541 Lisp_Object obj1, obj2;
|
|
542 CVOID_TO_LISP (obj1, x1);
|
|
543 CVOID_TO_LISP (obj2, x2);
|
195
|
544 return FLOATP (obj1) ? internal_equal (obj1, obj2, 0) : EQ (obj1, obj2);
|
0
|
545 }
|
|
546
|
|
547 static unsigned long
|
|
548 lisp_object_eql_hash (CONST void *x)
|
|
549 {
|
|
550 Lisp_Object obj;
|
|
551 CVOID_TO_LISP (obj, x);
|
|
552 if (FLOATP (obj))
|
|
553 return internal_hash (obj, 0);
|
|
554 else
|
|
555 return LISP_HASH (obj);
|
|
556 }
|
|
557
|
|
558 static int
|
|
559 lisp_object_equal_equal (CONST void *x1, CONST void *x2)
|
|
560 {
|
|
561 Lisp_Object obj1, obj2;
|
|
562 CVOID_TO_LISP (obj1, x1);
|
|
563 CVOID_TO_LISP (obj2, x2);
|
195
|
564 return internal_equal (obj1, obj2, 0);
|
0
|
565 }
|
|
566
|
|
567 static unsigned long
|
|
568 lisp_object_equal_hash (CONST void *x)
|
|
569 {
|
|
570 Lisp_Object obj;
|
|
571 CVOID_TO_LISP (obj, x);
|
|
572 return internal_hash (obj, 0);
|
|
573 }
|
|
574
|
|
575 Lisp_Object
|
|
576 make_lisp_hashtable (int size,
|
|
577 enum hashtable_type type,
|
|
578 enum hashtable_test_fun test)
|
|
579 {
|
|
580 Lisp_Object result;
|
185
|
581 struct hashtable *table = allocate_hashtable ();
|
0
|
582
|
|
583 table->harray = make_vector ((compute_harray_size (size)
|
|
584 * LISP_OBJECTS_PER_HENTRY),
|
207
|
585 Qnull_pointer);
|
0
|
586 switch (test)
|
|
587 {
|
|
588 case HASHTABLE_EQ:
|
187
|
589 table->test_function = NULL;
|
|
590 table->hash_function = NULL;
|
0
|
591 break;
|
|
592
|
|
593 case HASHTABLE_EQL:
|
|
594 table->test_function = lisp_object_eql_equal;
|
|
595 table->hash_function = lisp_object_eql_hash;
|
|
596 break;
|
|
597
|
|
598 case HASHTABLE_EQUAL:
|
|
599 table->test_function = lisp_object_equal_equal;
|
|
600 table->hash_function = lisp_object_equal_hash;
|
|
601 break;
|
|
602
|
|
603 default:
|
|
604 abort ();
|
|
605 }
|
|
606
|
|
607 table->type = type;
|
|
608 XSETHASHTABLE (result, table);
|
|
609
|
|
610 if (table->type != HASHTABLE_NONWEAK)
|
|
611 {
|
|
612 table->next_weak = Vall_weak_hashtables;
|
|
613 Vall_weak_hashtables = result;
|
|
614 }
|
|
615 else
|
|
616 table->next_weak = Qunbound;
|
|
617
|
173
|
618 return result;
|
0
|
619 }
|
|
620
|
|
621 static enum hashtable_test_fun
|
|
622 decode_hashtable_test_fun (Lisp_Object sym)
|
|
623 {
|
187
|
624 if (NILP (sym)) return HASHTABLE_EQL;
|
2
|
625 if (EQ (sym, Qeq)) return HASHTABLE_EQ;
|
|
626 if (EQ (sym, Qequal)) return HASHTABLE_EQUAL;
|
|
627 if (EQ (sym, Qeql)) return HASHTABLE_EQL;
|
185
|
628
|
231
|
629 signal_simple_error ("Invalid hashtable test function", sym);
|
2
|
630 return HASHTABLE_EQ; /* not reached */
|
0
|
631 }
|
|
632
|
20
|
633 DEFUN ("make-hashtable", Fmake_hashtable, 1, 2, 0, /*
|
272
|
634 Return a new hashtable object of initial size SIZE.
|
0
|
635 Comparison between keys is done with TEST-FUN, which must be one of
|
|
636 `eq', `eql', or `equal'. The default is `eql'; i.e. two keys must
|
|
637 be the same object (or have the same floating-point value, for floats)
|
|
638 to be considered equivalent.
|
|
639
|
|
640 See also `make-weak-hashtable', `make-key-weak-hashtable', and
|
|
641 `make-value-weak-hashtable'.
|
20
|
642 */
|
|
643 (size, test_fun))
|
0
|
644 {
|
|
645 CHECK_NATNUM (size);
|
|
646 return make_lisp_hashtable (XINT (size), HASHTABLE_NONWEAK,
|
|
647 decode_hashtable_test_fun (test_fun));
|
|
648 }
|
|
649
|
20
|
650 DEFUN ("copy-hashtable", Fcopy_hashtable, 1, 1, 0, /*
|
272
|
651 Return a new hashtable containing the same keys and values as HASHTABLE.
|
|
652 The keys and values will not themselves be copied.
|
20
|
653 */
|
272
|
654 (hashtable))
|
0
|
655 {
|
|
656 struct _C_hashtable old_htbl;
|
|
657 struct _C_hashtable new_htbl;
|
185
|
658 struct hashtable *old_ht;
|
|
659 struct hashtable *new_ht;
|
0
|
660 Lisp_Object result;
|
|
661
|
272
|
662 CHECK_HASHTABLE (hashtable);
|
|
663 old_ht = XHASHTABLE (hashtable);
|
0
|
664 ht_copy_to_c (old_ht, &old_htbl);
|
|
665
|
|
666 /* we can't just call Fmake_hashtable() here because that will make a
|
|
667 table that is slightly larger than the one we're trying to copy,
|
|
668 which will make copy_hash() blow up. */
|
|
669 new_ht = allocate_hashtable ();
|
|
670 new_ht->fullness = 0;
|
|
671 new_ht->zero_entry = Qunbound;
|
|
672 new_ht->hash_function = old_ht->hash_function;
|
|
673 new_ht->test_function = old_ht->test_function;
|
207
|
674 new_ht->harray = Fmake_vector (Flength (old_ht->harray), Qnull_pointer);
|
0
|
675 ht_copy_to_c (new_ht, &new_htbl);
|
|
676 copy_hash (&new_htbl, &old_htbl);
|
|
677 ht_copy_from_c (&new_htbl, new_ht);
|
|
678 new_ht->type = old_ht->type;
|
|
679 XSETHASHTABLE (result, new_ht);
|
|
680
|
|
681 if (UNBOUNDP (old_ht->next_weak))
|
|
682 new_ht->next_weak = Qunbound;
|
|
683 else
|
|
684 {
|
|
685 new_ht->next_weak = Vall_weak_hashtables;
|
|
686 Vall_weak_hashtables = result;
|
|
687 }
|
|
688
|
173
|
689 return result;
|
0
|
690 }
|
|
691
|
|
692
|
20
|
693 DEFUN ("gethash", Fgethash, 2, 3, 0, /*
|
187
|
694 Find hash value for KEY in HASHTABLE.
|
0
|
695 If there is no corresponding value, return DEFAULT (defaults to nil).
|
20
|
696 */
|
187
|
697 (key, hashtable, default_))
|
0
|
698 {
|
|
699 CONST void *vval;
|
|
700 struct _C_hashtable htbl;
|
|
701 if (!gc_in_progress)
|
187
|
702 CHECK_HASHTABLE (hashtable);
|
|
703 ht_copy_to_c (XHASHTABLE (hashtable), &htbl);
|
0
|
704 if (gethash (LISP_TO_VOID (key), &htbl, &vval))
|
|
705 {
|
|
706 Lisp_Object val;
|
|
707 CVOID_TO_LISP (val, vval);
|
|
708 return val;
|
|
709 }
|
185
|
710 else
|
173
|
711 return default_;
|
0
|
712 }
|
|
713
|
|
714
|
20
|
715 DEFUN ("remhash", Fremhash, 2, 2, 0, /*
|
187
|
716 Remove hash value for KEY in HASHTABLE.
|
20
|
717 */
|
187
|
718 (key, hashtable))
|
0
|
719 {
|
|
720 struct _C_hashtable htbl;
|
187
|
721 CHECK_HASHTABLE (hashtable);
|
0
|
722
|
187
|
723 ht_copy_to_c (XHASHTABLE (hashtable), &htbl);
|
0
|
724 remhash (LISP_TO_VOID (key), &htbl);
|
187
|
725 ht_copy_from_c (&htbl, XHASHTABLE (hashtable));
|
0
|
726 return Qnil;
|
|
727 }
|
|
728
|
|
729
|
20
|
730 DEFUN ("puthash", Fputhash, 3, 3, 0, /*
|
187
|
731 Hash KEY to VAL in HASHTABLE.
|
20
|
732 */
|
187
|
733 (key, val, hashtable))
|
0
|
734 {
|
185
|
735 struct hashtable *ht;
|
0
|
736 void *vkey = LISP_TO_VOID (key);
|
|
737
|
187
|
738 CHECK_HASHTABLE (hashtable);
|
|
739 ht = XHASHTABLE (hashtable);
|
0
|
740 if (!vkey)
|
|
741 ht->zero_entry = val;
|
|
742 else
|
|
743 {
|
|
744 struct gcpro gcpro1, gcpro2, gcpro3;
|
|
745 struct _C_hashtable htbl;
|
|
746
|
187
|
747 ht_copy_to_c (XHASHTABLE (hashtable), &htbl);
|
|
748 GCPRO3 (key, val, hashtable);
|
0
|
749 puthash (vkey, LISP_TO_VOID (val), &htbl);
|
187
|
750 ht_copy_from_c (&htbl, XHASHTABLE (hashtable));
|
0
|
751 UNGCPRO;
|
|
752 }
|
173
|
753 return val;
|
0
|
754 }
|
|
755
|
20
|
756 DEFUN ("clrhash", Fclrhash, 1, 1, 0, /*
|
187
|
757 Remove all entries from HASHTABLE.
|
20
|
758 */
|
187
|
759 (hashtable))
|
0
|
760 {
|
|
761 struct _C_hashtable htbl;
|
187
|
762 CHECK_HASHTABLE (hashtable);
|
|
763 ht_copy_to_c (XHASHTABLE (hashtable), &htbl);
|
0
|
764 clrhash (&htbl);
|
187
|
765 ht_copy_from_c (&htbl, XHASHTABLE (hashtable));
|
0
|
766 return Qnil;
|
|
767 }
|
|
768
|
20
|
769 DEFUN ("hashtable-fullness", Fhashtable_fullness, 1, 1, 0, /*
|
187
|
770 Return number of entries in HASHTABLE.
|
20
|
771 */
|
187
|
772 (hashtable))
|
0
|
773 {
|
|
774 struct _C_hashtable htbl;
|
187
|
775 CHECK_HASHTABLE (hashtable);
|
|
776 ht_copy_to_c (XHASHTABLE (hashtable), &htbl);
|
173
|
777 return make_int (htbl.fullness);
|
0
|
778 }
|
|
779
|
243
|
780 DEFUN ("hashtable-type", Fhashtable_type, 1, 1, 0, /*
|
|
781 Return type of HASHTABLE.
|
|
782 This can be one of `non-weak', `weak', `key-weak' and `value-weak'.
|
|
783 */
|
|
784 (hashtable))
|
|
785 {
|
|
786 CHECK_HASHTABLE (hashtable);
|
|
787
|
|
788 switch (XHASHTABLE (hashtable)->type)
|
|
789 {
|
272
|
790 case HASHTABLE_WEAK: return Qweak;
|
|
791 case HASHTABLE_KEY_WEAK: return Qkey_weak;
|
|
792 case HASHTABLE_VALUE_WEAK: return Qvalue_weak;
|
|
793 default: return Qnon_weak;
|
243
|
794 }
|
|
795 }
|
|
796
|
|
797 DEFUN ("hashtable-test-function", Fhashtable_test_function, 1, 1, 0, /*
|
|
798 Return test function of HASHTABLE.
|
|
799 This can be one of `eq', `eql' or `equal'.
|
|
800 */
|
|
801 (hashtable))
|
|
802 {
|
|
803 int (*fun) (CONST void *, CONST void *);
|
|
804
|
|
805 CHECK_HASHTABLE (hashtable);
|
|
806
|
|
807 fun = XHASHTABLE (hashtable)->test_function;
|
|
808
|
|
809 if (fun == lisp_object_eql_equal)
|
|
810 return Qeql;
|
|
811 else if (fun == lisp_object_equal_equal)
|
|
812 return Qequal;
|
|
813 else
|
|
814 return Qeq;
|
|
815 }
|
0
|
816
|
|
817 static void
|
|
818 verify_function (Lisp_Object function, CONST char *description)
|
|
819 {
|
223
|
820 /* #### Unused DESCRIPTION? */
|
0
|
821 if (SYMBOLP (function))
|
272
|
822 {
|
|
823 if (NILP (function))
|
|
824 return;
|
|
825 else
|
|
826 function = indirect_function (function, 1);
|
|
827 }
|
0
|
828 if (SUBRP (function) || COMPILED_FUNCTIONP (function))
|
|
829 return;
|
|
830 else if (CONSP (function))
|
272
|
831 {
|
|
832 Lisp_Object funcar = XCAR (function);
|
|
833 if ((SYMBOLP (funcar)) && (EQ (funcar, Qlambda) ||
|
|
834 EQ (funcar, Qautoload)))
|
|
835 return;
|
|
836 }
|
0
|
837 signal_error (Qinvalid_function, list1 (function));
|
|
838 }
|
|
839
|
241
|
840 static int
|
0
|
841 lisp_maphash_function (CONST void *void_key,
|
|
842 void *void_val,
|
|
843 void *void_fn)
|
|
844 {
|
|
845 /* This function can GC */
|
|
846 Lisp_Object key, val, fn;
|
|
847 CVOID_TO_LISP (key, void_key);
|
|
848 VOID_TO_LISP (val, void_val);
|
|
849 VOID_TO_LISP (fn, void_fn);
|
|
850 call2 (fn, key, val);
|
241
|
851 return 0;
|
0
|
852 }
|
|
853
|
|
854
|
20
|
855 DEFUN ("maphash", Fmaphash, 2, 2, 0, /*
|
187
|
856 Map FUNCTION over entries in HASHTABLE, calling it with two args,
|
0
|
857 each key and value in the table.
|
20
|
858 */
|
187
|
859 (function, hashtable))
|
0
|
860 {
|
|
861 struct _C_hashtable htbl;
|
|
862 struct gcpro gcpro1, gcpro2;
|
|
863
|
|
864 verify_function (function, GETTEXT ("hashtable mapping function"));
|
187
|
865 CHECK_HASHTABLE (hashtable);
|
|
866 ht_copy_to_c (XHASHTABLE (hashtable), &htbl);
|
|
867 GCPRO2 (hashtable, function);
|
0
|
868 maphash (lisp_maphash_function, &htbl, LISP_TO_VOID (function));
|
|
869 UNGCPRO;
|
|
870 return Qnil;
|
|
871 }
|
|
872
|
|
873
|
|
874 /* This function is for mapping a *C* function over the elements of a
|
|
875 lisp hashtable.
|
|
876 */
|
|
877 void
|
243
|
878 elisp_maphash (int (*function) (CONST void *key, void *contents,
|
241
|
879 void *extra_arg),
|
|
880 Lisp_Object hashtable, void *closure)
|
0
|
881 {
|
|
882 struct _C_hashtable htbl;
|
|
883
|
187
|
884 if (!gc_in_progress) CHECK_HASHTABLE (hashtable);
|
|
885 ht_copy_to_c (XHASHTABLE (hashtable), &htbl);
|
0
|
886 maphash (function, &htbl, closure);
|
|
887 }
|
|
888
|
|
889 void
|
272
|
890 elisp_map_remhash (remhash_predicate function, Lisp_Object hashtable,
|
187
|
891 void *closure)
|
0
|
892 {
|
|
893 struct _C_hashtable htbl;
|
|
894
|
187
|
895 if (!gc_in_progress) CHECK_HASHTABLE (hashtable);
|
|
896 ht_copy_to_c (XHASHTABLE (hashtable), &htbl);
|
0
|
897 map_remhash (function, &htbl, closure);
|
187
|
898 ht_copy_from_c (&htbl, XHASHTABLE (hashtable));
|
0
|
899 }
|
|
900
|
|
901 #if 0
|
|
902 void
|
|
903 elisp_table_op (Lisp_Object table, generic_hashtable_op op, void *arg1,
|
|
904 void *arg2, void *arg3)
|
|
905 {
|
|
906 struct _C_hashtable htbl;
|
|
907 CHECK_HASHTABLE (table);
|
|
908 ht_copy_to_c (XHASHTABLE (table), &htbl);
|
|
909 (*op) (&htbl, arg1, arg2, arg3);
|
|
910 ht_copy_from_c (&htbl, XHASHTABLE (table));
|
|
911 }
|
|
912 #endif /* 0 */
|
|
913
|
|
914
|
|
915
|
20
|
916 DEFUN ("make-weak-hashtable", Fmake_weak_hashtable, 1, 2, 0, /*
|
272
|
917 Return a new fully weak hashtable object of initial size SIZE.
|
0
|
918 A weak hashtable is one whose pointers do not count as GC referents:
|
|
919 for any key-value pair in the hashtable, if the only remaining pointer
|
|
920 to either the key or the value is in a weak hash table, then the pair
|
|
921 will be removed from the table, and the key and value collected. A
|
|
922 non-weak hash table (or any other pointer) would prevent the object
|
|
923 from being collected.
|
|
924
|
|
925 You can also create semi-weak hashtables; see `make-key-weak-hashtable'
|
|
926 and `make-value-weak-hashtable'.
|
20
|
927 */
|
|
928 (size, test_fun))
|
0
|
929 {
|
|
930 CHECK_NATNUM (size);
|
|
931 return make_lisp_hashtable (XINT (size), HASHTABLE_WEAK,
|
|
932 decode_hashtable_test_fun (test_fun));
|
|
933 }
|
|
934
|
20
|
935 DEFUN ("make-key-weak-hashtable", Fmake_key_weak_hashtable, 1, 2, 0, /*
|
272
|
936 Return a new key-weak hashtable object of initial size SIZE.
|
0
|
937 A key-weak hashtable is similar to a fully-weak hashtable (see
|
|
938 `make-weak-hashtable') except that a key-value pair will be removed
|
|
939 only if the key remains unmarked outside of weak hashtables. The pair
|
|
940 will remain in the hashtable if the key is pointed to by something other
|
|
941 than a weak hashtable, even if the value is not.
|
20
|
942 */
|
|
943 (size, test_fun))
|
0
|
944 {
|
|
945 CHECK_NATNUM (size);
|
|
946 return make_lisp_hashtable (XINT (size), HASHTABLE_KEY_WEAK,
|
|
947 decode_hashtable_test_fun (test_fun));
|
|
948 }
|
|
949
|
20
|
950 DEFUN ("make-value-weak-hashtable", Fmake_value_weak_hashtable, 1, 2, 0, /*
|
272
|
951 Return a new value-weak hashtable object of initial size SIZE.
|
0
|
952 A value-weak hashtable is similar to a fully-weak hashtable (see
|
|
953 `make-weak-hashtable') except that a key-value pair will be removed only
|
|
954 if the value remains unmarked outside of weak hashtables. The pair will
|
|
955 remain in the hashtable if the value is pointed to by something other
|
|
956 than a weak hashtable, even if the key is not.
|
20
|
957 */
|
|
958 (size, test_fun))
|
0
|
959 {
|
|
960 CHECK_NATNUM (size);
|
|
961 return make_lisp_hashtable (XINT (size), HASHTABLE_VALUE_WEAK,
|
|
962 decode_hashtable_test_fun (test_fun));
|
|
963 }
|
|
964
|
|
965 struct marking_closure
|
|
966 {
|
|
967 int (*obj_marked_p) (Lisp_Object);
|
|
968 void (*markobj) (Lisp_Object);
|
|
969 enum hashtable_type type;
|
|
970 int did_mark;
|
|
971 };
|
|
972
|
241
|
973 static int
|
0
|
974 marking_mapper (CONST void *key, void *contents, void *closure)
|
|
975 {
|
|
976 Lisp_Object keytem, valuetem;
|
|
977 struct marking_closure *fmh =
|
|
978 (struct marking_closure *) closure;
|
|
979
|
|
980 /* This function is called over each pair in the hashtable.
|
|
981 We complete the marking for semi-weak hashtables. */
|
|
982 CVOID_TO_LISP (keytem, key);
|
|
983 CVOID_TO_LISP (valuetem, contents);
|
185
|
984
|
0
|
985 switch (fmh->type)
|
|
986 {
|
|
987 case HASHTABLE_KEY_WEAK:
|
|
988 if ((fmh->obj_marked_p) (keytem) &&
|
|
989 !(fmh->obj_marked_p) (valuetem))
|
|
990 {
|
|
991 (fmh->markobj) (valuetem);
|
|
992 fmh->did_mark = 1;
|
|
993 }
|
|
994 break;
|
|
995
|
|
996 case HASHTABLE_VALUE_WEAK:
|
|
997 if ((fmh->obj_marked_p) (valuetem) &&
|
|
998 !(fmh->obj_marked_p) (keytem))
|
|
999 {
|
|
1000 (fmh->markobj) (keytem);
|
|
1001 fmh->did_mark = 1;
|
|
1002 }
|
|
1003 break;
|
|
1004
|
|
1005 case HASHTABLE_KEY_CAR_WEAK:
|
|
1006 if (!CONSP (keytem) || (fmh->obj_marked_p) (XCAR (keytem)))
|
|
1007 {
|
|
1008 if (!(fmh->obj_marked_p) (keytem))
|
|
1009 {
|
|
1010 (fmh->markobj) (keytem);
|
|
1011 fmh->did_mark = 1;
|
|
1012 }
|
|
1013 if (!(fmh->obj_marked_p) (valuetem))
|
|
1014 {
|
|
1015 (fmh->markobj) (valuetem);
|
|
1016 fmh->did_mark = 1;
|
|
1017 }
|
|
1018 }
|
|
1019 break;
|
|
1020
|
|
1021 case HASHTABLE_VALUE_CAR_WEAK:
|
|
1022 if (!CONSP (valuetem) || (fmh->obj_marked_p) (XCAR (valuetem)))
|
|
1023 {
|
|
1024 if (!(fmh->obj_marked_p) (keytem))
|
|
1025 {
|
|
1026 (fmh->markobj) (keytem);
|
|
1027 fmh->did_mark = 1;
|
|
1028 }
|
|
1029 if (!(fmh->obj_marked_p) (valuetem))
|
|
1030 {
|
|
1031 (fmh->markobj) (valuetem);
|
|
1032 fmh->did_mark = 1;
|
|
1033 }
|
|
1034 }
|
|
1035 break;
|
|
1036
|
|
1037 default:
|
|
1038 abort (); /* Huh? */
|
|
1039 }
|
185
|
1040
|
241
|
1041 return 0;
|
0
|
1042 }
|
|
1043
|
|
1044 int
|
|
1045 finish_marking_weak_hashtables (int (*obj_marked_p) (Lisp_Object),
|
|
1046 void (*markobj) (Lisp_Object))
|
|
1047 {
|
|
1048 Lisp_Object rest;
|
|
1049 int did_mark = 0;
|
|
1050
|
|
1051 for (rest = Vall_weak_hashtables;
|
|
1052 !GC_NILP (rest);
|
|
1053 rest = XHASHTABLE (rest)->next_weak)
|
|
1054 {
|
|
1055 enum hashtable_type type;
|
|
1056
|
|
1057 if (! ((*obj_marked_p) (rest)))
|
|
1058 /* The hashtable is probably garbage. Ignore it. */
|
|
1059 continue;
|
|
1060 type = XHASHTABLE (rest)->type;
|
187
|
1061 if (type == HASHTABLE_KEY_WEAK ||
|
|
1062 type == HASHTABLE_VALUE_WEAK ||
|
|
1063 type == HASHTABLE_KEY_CAR_WEAK ||
|
|
1064 type == HASHTABLE_VALUE_CAR_WEAK)
|
0
|
1065 {
|
|
1066 struct marking_closure fmh;
|
|
1067
|
|
1068 fmh.obj_marked_p = obj_marked_p;
|
|
1069 fmh.markobj = markobj;
|
|
1070 fmh.type = type;
|
|
1071 fmh.did_mark = 0;
|
|
1072 /* Now, scan over all the pairs. For all pairs that are
|
|
1073 half-marked, we may need to mark the other half if we're
|
|
1074 keeping this pair. */
|
|
1075 elisp_maphash (marking_mapper, rest, &fmh);
|
|
1076 if (fmh.did_mark)
|
|
1077 did_mark = 1;
|
|
1078 }
|
|
1079
|
|
1080 /* #### If alloc.c mark_object changes, this must change also... */
|
|
1081 {
|
|
1082 /* Now mark the vector itself. (We don't need to call markobj
|
|
1083 here because we know that everything *in* it is already marked,
|
|
1084 we just need to prevent the vector itself from disappearing.)
|
|
1085 (The remhash above has taken care of zero_entry.)
|
|
1086 */
|
|
1087 struct Lisp_Vector *ptr = XVECTOR (XHASHTABLE (rest)->harray);
|
207
|
1088 #ifdef LRECORD_VECTOR
|
|
1089 if (! MARKED_RECORD_P(XHASHTABLE(rest)->harray))
|
|
1090 {
|
|
1091 MARK_RECORD_HEADER(&(ptr->header.lheader));
|
|
1092 did_mark = 1;
|
|
1093 }
|
|
1094 #else
|
223
|
1095 int len = vector_length (ptr);
|
0
|
1096 if (len >= 0)
|
|
1097 {
|
|
1098 ptr->size = -1 - len;
|
|
1099 did_mark = 1;
|
|
1100 }
|
207
|
1101 #endif
|
0
|
1102 /* else it's already marked (remember, this function is iterated
|
|
1103 until marking stops) */
|
|
1104 }
|
|
1105 }
|
|
1106
|
|
1107 return did_mark;
|
|
1108 }
|
|
1109
|
|
1110 struct pruning_closure
|
|
1111 {
|
|
1112 int (*obj_marked_p) (Lisp_Object);
|
|
1113 };
|
|
1114
|
|
1115 static int
|
|
1116 pruning_mapper (CONST void *key, CONST void *contents, void *closure)
|
|
1117 {
|
|
1118 Lisp_Object keytem, valuetem;
|
185
|
1119 struct pruning_closure *fmh = (struct pruning_closure *) closure;
|
0
|
1120
|
|
1121 /* This function is called over each pair in the hashtable.
|
|
1122 We remove the pairs that aren't completely marked (everything
|
|
1123 that is going to stay ought to have been marked already
|
|
1124 by the finish_marking stage). */
|
|
1125 CVOID_TO_LISP (keytem, key);
|
|
1126 CVOID_TO_LISP (valuetem, contents);
|
|
1127
|
173
|
1128 return ! ((*fmh->obj_marked_p) (keytem) &&
|
|
1129 (*fmh->obj_marked_p) (valuetem));
|
0
|
1130 }
|
|
1131
|
|
1132 void
|
|
1133 prune_weak_hashtables (int (*obj_marked_p) (Lisp_Object))
|
|
1134 {
|
|
1135 Lisp_Object rest, prev = Qnil;
|
|
1136 for (rest = Vall_weak_hashtables;
|
|
1137 !GC_NILP (rest);
|
|
1138 rest = XHASHTABLE (rest)->next_weak)
|
|
1139 {
|
|
1140 if (! ((*obj_marked_p) (rest)))
|
|
1141 {
|
|
1142 /* This table itself is garbage. Remove it from the list. */
|
|
1143 if (GC_NILP (prev))
|
|
1144 Vall_weak_hashtables = XHASHTABLE (rest)->next_weak;
|
|
1145 else
|
|
1146 XHASHTABLE (prev)->next_weak = XHASHTABLE (rest)->next_weak;
|
|
1147 }
|
|
1148 else
|
|
1149 {
|
|
1150 struct pruning_closure fmh;
|
|
1151 fmh.obj_marked_p = obj_marked_p;
|
|
1152 /* Now, scan over all the pairs. Remove all of the pairs
|
|
1153 in which the key or value, or both, is unmarked
|
|
1154 (depending on the type of weak hashtable). */
|
|
1155 elisp_map_remhash (pruning_mapper, rest, &fmh);
|
|
1156 prev = rest;
|
|
1157 }
|
|
1158 }
|
|
1159 }
|
|
1160
|
|
1161 /* Return a hash value for an array of Lisp_Objects of size SIZE. */
|
|
1162
|
|
1163 unsigned long
|
|
1164 internal_array_hash (Lisp_Object *arr, int size, int depth)
|
|
1165 {
|
|
1166 int i;
|
|
1167 unsigned long hash = 0;
|
|
1168
|
|
1169 if (size <= 5)
|
|
1170 {
|
|
1171 for (i = 0; i < size; i++)
|
|
1172 hash = HASH2 (hash, internal_hash (arr[i], depth + 1));
|
|
1173 return hash;
|
|
1174 }
|
185
|
1175
|
0
|
1176 /* just pick five elements scattered throughout the array.
|
|
1177 A slightly better approach would be to offset by some
|
|
1178 noise factor from the points chosen below. */
|
|
1179 for (i = 0; i < 5; i++)
|
|
1180 hash = HASH2 (hash, internal_hash (arr[i*size/5], depth + 1));
|
185
|
1181
|
0
|
1182 return hash;
|
|
1183 }
|
|
1184
|
|
1185 /* Return a hash value for a Lisp_Object. This is for use when hashing
|
|
1186 objects with the comparison being `equal' (for `eq', you can just
|
|
1187 use the Lisp_Object itself as the hash value). You need to make a
|
|
1188 tradeoff between the speed of the hash function and how good the
|
|
1189 hashing is. In particular, the hash function needs to be FAST,
|
|
1190 so you can't just traipse down the whole tree hashing everything
|
|
1191 together. Most of the time, objects will differ in the first
|
|
1192 few elements you hash. Thus, we only go to a short depth (5)
|
|
1193 and only hash at most 5 elements out of a vector. Theoretically
|
|
1194 we could still take 5^5 time (a big big number) to compute a
|
|
1195 hash, but practically this won't ever happen. */
|
|
1196
|
|
1197 unsigned long
|
|
1198 internal_hash (Lisp_Object obj, int depth)
|
|
1199 {
|
|
1200 if (depth > 5)
|
|
1201 return 0;
|
|
1202 if (CONSP (obj))
|
|
1203 {
|
|
1204 /* no point in worrying about tail recursion, since we're not
|
|
1205 going very deep */
|
|
1206 return HASH2 (internal_hash (XCAR (obj), depth + 1),
|
|
1207 internal_hash (XCDR (obj), depth + 1));
|
|
1208 }
|
|
1209 else if (STRINGP (obj))
|
14
|
1210 return hash_string (XSTRING_DATA (obj), XSTRING_LENGTH (obj));
|
0
|
1211 else if (VECTORP (obj))
|
|
1212 {
|
|
1213 struct Lisp_Vector *v = XVECTOR (obj);
|
|
1214 return HASH2 (vector_length (v),
|
|
1215 internal_array_hash (v->contents, vector_length (v),
|
|
1216 depth + 1));
|
|
1217 }
|
|
1218 else if (LRECORDP (obj))
|
|
1219 {
|
|
1220 CONST struct lrecord_implementation
|
211
|
1221 *imp = XRECORD_LHEADER_IMPLEMENTATION (obj);
|
0
|
1222 if (imp->hash)
|
173
|
1223 return (imp->hash) (obj, depth);
|
0
|
1224 }
|
|
1225
|
|
1226 return LISP_HASH (obj);
|
|
1227 }
|
|
1228
|
241
|
1229 #if 0
|
|
1230 xxDEFUN ("internal-hash-value", Finternal_hash_value, 1, 1, 0, /*
|
|
1231 Hash value of OBJECT. For debugging.
|
|
1232 The value is returned as (HIGH . LOW).
|
|
1233 */
|
|
1234 (object))
|
|
1235 {
|
|
1236 /* This function is pretty 32bit-centric. */
|
|
1237 unsigned long hash = internal_hash (object, 0);
|
|
1238 return Fcons (hash >> 16, hash & 0xffff);
|
|
1239 }
|
|
1240 #endif
|
|
1241
|
0
|
1242
|
|
1243 /************************************************************************/
|
|
1244 /* initialization */
|
|
1245 /************************************************************************/
|
|
1246
|
|
1247 void
|
|
1248 syms_of_elhash (void)
|
|
1249 {
|
20
|
1250 DEFSUBR (Fmake_hashtable);
|
|
1251 DEFSUBR (Fcopy_hashtable);
|
|
1252 DEFSUBR (Fhashtablep);
|
|
1253 DEFSUBR (Fgethash);
|
|
1254 DEFSUBR (Fputhash);
|
|
1255 DEFSUBR (Fremhash);
|
|
1256 DEFSUBR (Fclrhash);
|
|
1257 DEFSUBR (Fmaphash);
|
|
1258 DEFSUBR (Fhashtable_fullness);
|
243
|
1259 DEFSUBR (Fhashtable_type);
|
|
1260 DEFSUBR (Fhashtable_test_function);
|
20
|
1261 DEFSUBR (Fmake_weak_hashtable);
|
|
1262 DEFSUBR (Fmake_key_weak_hashtable);
|
|
1263 DEFSUBR (Fmake_value_weak_hashtable);
|
241
|
1264 #if 0
|
|
1265 DEFSUBR (Finternal_hash_value);
|
|
1266 #endif
|
0
|
1267 defsymbol (&Qhashtablep, "hashtablep");
|
223
|
1268 defsymbol (&Qhashtable, "hashtable");
|
|
1269 defsymbol (&Qweak, "weak");
|
|
1270 defsymbol (&Qkey_weak, "key-weak");
|
|
1271 defsymbol (&Qvalue_weak, "value-weak");
|
|
1272 defsymbol (&Qnon_weak, "non-weak");
|
0
|
1273 }
|
|
1274
|
|
1275 void
|
|
1276 vars_of_elhash (void)
|
|
1277 {
|
2
|
1278 /* This must NOT be staticpro'd */
|
0
|
1279 Vall_weak_hashtables = Qnil;
|
|
1280 }
|